WorldWideScience

Sample records for inorganic carbon concentrating

  1. A Novel Method for Analysis of Dissolved Inorganic Carbon Concentration and δ13C by Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Smith, E.; Gonneea, M. E.; Boze, L. G.; Casso, M.; Pohlman, J.

    2017-12-01

    Dissolved inorganic carbon (DIC) is the largest pool of carbon in the oceans and is where about half of anthropogenic carbon dioxide (CO2) emissions are being sequestered. Determining the concentration and stable carbon isotopic content (δ13C) of DIC allows us to delineate carbon sources that contribute to marine DIC. A simple and reliable method for measuring DIC concentration and δ13C can be used to apportion contributions from external sources and identify effects from biogeochemical reactions that contribute or remove DIC. The U.S. Geological Survey has developed a discrete sample analysis module (DSAM) that interfaces to a Picarro G-2201i cavity ring-down spectrometer (CRDS, Picarro Inc.) to analyze CO2 and methane concentrations and δ13C from discrete gas samples. In this study, we adapted the USGS DSAM-CRDS analysis system to include an AutoMate prep device (Automate FX, Inc.) for analysis of DIC concentration and δ13C from aqueous samples. The Automate prep device was modified to deliver CO2 extracted from DIC to the DSAM, which conditions and transfers the gas to the CRDS. LabVIEW software (National Instruments) triggers the Automate Prep device, controls the DSAM and collects data from the CRDS. CO2 mass concentration data are obtained by numerical integration of the CO2 volumetric concentrations output by the CRDS and subsequent comparison to standard materials. CO2 carbon isotope values from the CRDS (iCO2) are converted to δ13C values using a slope and offset correction calibration procedure. The system design and operation was optimized using sodium bicarbonate (NaHCO3) standards and a certified reference material. Surface water and pore water samples collected from Sage Lot Pond, a salt marsh in Cape Cod MA, have been analyzed for concentration by coulometry and δ13C by isotope ratio mass spectrometry and will be used to validate the DIC-DSAM-CRDS method for field applications.

  2. Determining Inorganic and Organic Carbon.

    Science.gov (United States)

    Koistinen, Jaana; Sjöblom, Mervi; Spilling, Kristian

    2017-11-21

    Carbon is the element which makes up the major fraction of lipids and carbohydrates, which could be used for making biofuel. It is therefore important to provide enough carbon and also follow the flow into particulate organic carbon and potential loss to dissolved organic forms of carbon. Here we present methods for determining dissolved inorganic carbon, dissolved organic carbon, and particulate organic carbon.

  3. Fourier transform infrared spectroscopy, a new method for rapid determination of total organic and inorganic carbon and biogenic silica concentration in lake sediments

    DEFF Research Database (Denmark)

    Rosén, Peter; Vogel, Hendrik; Cunningham, Laura

    2010-01-01

    We demonstrate the use of Fourier transform infrared spectroscopy (FTIRS) to make quantitative measures of total organic carbon (TOC), total inorganic carbon (TIC) and biogenic silica (BSi) concentrations in sediment. FTIRS is a fast and cost-effective technique and only small sediment samples...... varied between r = 0.84-0.99 for TOC, r = 0.85-0.99 for TIC, and r = 0.68-0.94 for BSi. Because FTIR spectra contain information on a large number of both inorganic and organic components, there is great potential for FTIRS to become an important tool in paleolimnology....

  4. Review of progress in soil inorganic carbon research

    Science.gov (United States)

    Bai, S. G.; Jiao, Y.; Yang, W. Z.; Gu, P.; Yang, J.; Liu, L. J.

    2017-12-01

    Soil inorganic carbon is one of the main carbon banks in the near-surface environment, and is the main form of soil carbon library in arid and semi-arid regions, which plays an important role in the global carbon cycle. This paper mainly focuses on the inorganic dynamic process of soil inorganic carbon in soil environment in arid and semi-arid regions, and summarized the composition and source of soil inorganic carbon, influence factors and soil carbon sequestration.

  5. Carbon dioxide removal with inorganic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Fain, D.E. [Oak Ridge National Laboratory, TN (United States)

    1993-12-31

    The increasing concentrations of greenhouse gases, particularly carbon dioxide, in the atmosphere has sparked a great deal of interest in the removal of CO{sub 2} from flue gases of fossil fueled plants. Presently, several techniques for the removal of CO{sub 2} are considered to have potential, but are lacking in practicality. For example, amine scrubbing of flue gas streams is potential, but are lacking in practically. For example, amine scrubbing of flue gas streams is effective in removing CO{sub 2}, but costs are high; efficiency suffers; and other acid gases must be removed prior to amine stripping. Membrane systems for CO{sub 2} removal are held in high regard, and inorganic, particularly ceramic, membranes offer the potential for high temperature, thus energy saving, removal.

  6. Geochemical Impacts to Groundwater from Geologic Carbon Sequestration: Controls on pH and Inorganic Carbon Concentrations from Reaction Path and Kinetic Modeling

    Science.gov (United States)

    Geologic carbon sequestration has the potential to cause long-term reductions in global emissions of carbon dioxide to the atmosphere. Safe and effective application of carbon sequestration technology requires an understanding of the potential risks to the quality of underground...

  7. The effect of Cu (II) on the electro-olfactogram (EOG) of the Atlantic salmon (Salmo salar L) in artificial freshwater of varying inorganic carbon concentrations

    DEFF Research Database (Denmark)

    Winberg, S; Bjerselius, R; Baatrup, E

    1993-01-01

    The effect of inorganic copper species was studied by recording the receptor potential, electro-olfactogram (EOG), from the olfactory epithelium of Atlantic salmon (Salmo salar L). In a series of experiments, the olfactory organ was irrigated with aqueous copper solutions with concentrations...... of the free cupric ion (Cu2+) ranging from 0.2 to 9.7 microM. The diverse copper species were created by varying the amount of bicarbonate (NaHCO3) in artificial freshwater solutions of equal total copper concentrations. In general, these copper solutions induced a slow depolarization of the baseline followed...

  8. Solubility and stability of inorganic carbonates

    International Nuclear Information System (INIS)

    Taylor, P.

    1987-01-01

    The chemistry of inorganic carbonates is reviewed, with emphasis on solubility and hydrolytic stability, in order to identify candidate waste forms for immobilization and disposal of 14 C. At present, CaCO 3 and BaCO 3 are the two most widely favoured wasted forms, primarily because they are the products of proven CO 2 -scrubbing technology. However, they have relatively high solubilities in non-alkaline solutions, necessitating care in selecting and assessing an appropriate disposal environment. Three compounds with better solubility characteristics in near-neutral waters are identified: bismutite, (BiO) 2 CO 3 ; hydrocerussite, Pb 3 (OH) 2 (CO 3 ) 2 ; and rhodochrosite, MnCO 3 . Some of the limitations of each of these alternative waste forms are discussed

  9. The Mechanisms of Calcification in Coccolithophores - The molecular basis of calcium and inorganic carbon transport in Emiliania huxleyi

    OpenAIRE

    Mackinder, Luke

    2012-01-01

    Coccolithophores are calcifying marine phytoplankton that through the fixation of inorganic carbon into calcite and particulate organic carbon play a fundamental role in global carbon cycles. As the CO2 concentration of the surface ocean increases through the anthropogenic release of CO2 by burning fossil fuels both a decrease in pH (ocean acidification) and a increase in dissolved inorganic carbon (ocean carbonation) are taking place. To understand the impact of these ocean changes on coccol...

  10. Effect of organic and inorganic fertilizers on nutrient concentrations ...

    African Journals Online (AJOL)

    Effect of organic and inorganic fertilizers on nutrient concentrations in plantain ( Musa spp.) ... Fruit parameters measured were fruit weight, edible proportion and pulp dry matter content; also, the concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), iron (Fe) and zinc (Zn) in fruits were determined.

  11. Simulating the effects of light intensity and carbonate system composition on particulate organic and inorganic carbon production in Emiliania huxleyi.

    Science.gov (United States)

    Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke

    2015-05-07

    Coccolithophores play an important role in the marine carbon cycle. Variations in light intensity and external carbonate system composition alter intracellular carbon fluxes and therewith the production rates of particulate organic and inorganic carbon. Aiming to find a mechanistic explanation for the interrelation between dissolved inorganic carbon fluxes and particulate carbon production rates, we develop a numerical cell model for Emiliania huxleyi, one of the most abundant coccolithophore species. The model consists of four cellular compartments, for each of which the carbonate system is resolved dynamically. The compartments are connected to each other and to the external medium via substrate fluxes across the compartment-confining membranes. By means of the model we are able to explain several pattern observed in particulate organic and inorganic carbon production rates for different strains and under different acclimation conditions. Particulate organic and inorganic carbon production rates for instance decrease at very low external CO2 concentrations. Our model suggests that this effect is caused mainly by reduced HCO3(-) uptake rates, not by CO2 limitation. The often observed decrease in particulate inorganic carbon production rates under Ocean Acidification is explained by a downregulation of cellular HCO3(-) uptake. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Input of particulate organic and dissolved inorganic carbon from the Amazon to the Atlantic Ocean

    OpenAIRE

    Druffel, E. R. M; Bauer, J. E; Griffin, S.

    2005-01-01

    We report concentrations and isotope measurements (radiocarbon and stable carbon) of dissolved inorganic carbon (DIC) and suspended particulate organic carbon (POC) in waters collected from the mouth of the Amazon River and the North Brazil Current. Samples were collected in November 1991, when the Amazon hydrograph was at its annual minimum and the North Brazil Current had retroflected into the equatorial North Atlantic. The DIC Δ14C results revealed postbomb carbon in river and ocean waters...

  13. Modelling the inorganic ocean carbon cycle under past and future climate change

    International Nuclear Information System (INIS)

    Ewan, T.L.

    2004-01-01

    This study used a coupled ocean-atmosphere-sea ice model with an inorganic carbon component to examine the inorganic ocean carbon cycle with particular reference to how climate feedback influences future uptake. In the last 150 years, the increase in atmosphere carbon dioxide (CO 2 ) concentrations have been higher than any time during the Earth's history. Although the oceans are the largest sink for carbon dioxide, it is not know how the ocean carbon cycle will respond to increasing anthropogenic carbon dioxide concentrations in the future. Climate feedbacks could potentially reduce further uptake of carbon by the ocean. In addition to examining past climate transitions, including both abrupt and glacial-interglacial climate transitions, this study also examined the sensitivity of the inorganic carbon cycle to increased atmospheric carbon dioxide. Atmospheric carbon dioxide levels were also projected under a range of global warming scenarios. Most simulations identified a transient weakening of the North Atlantic and increased sea surface temperatures (SST). These positive feedbacks act on the carbon system to reduce uptake. However, the ocean has the capacity to take up 65 to 75 per cent of the anthropogenic carbon dioxide increases. An analysis of climate feedback on future carbon uptake shows that oceans store 7 per cent more carbon when there are no climate feedbacks acting on the system. Sensitivity experiments using the Gent McWilliams parameterization for mixing associated with mesoscale eddies show a further 6 per cent increase in oceanic uptake. Inclusion of sea ice dynamics resulted in a 2 per cent difference in uptake. This study also examined changes in atmospheric carbon dioxide concentration that occur during abrupt climate change events. Changes in ocean circulation and carbon solubility cause significant increases in atmospheric carbon dioxide concentrations when melt water episodes are simulated in both hemispheres. The response of the carbon

  14. Elemental and stable isotopic approaches for studying the organic and inorganic carbon components in natural samples

    International Nuclear Information System (INIS)

    Helie, J-F

    2009-01-01

    The carbon cycle is an important part of major biogeochemical cycles. Many techniques may be used to characterize carbon amounts and sources in the environment. Here we first review the most popular techniques for the determination of organic and inorganic carbon concentrations. Decarbonatation techniques are also reviewed in details since it is often an important part of organic carbon analysis. The second part of this paper addresses the use of carbon stable isotopes to characterize organic carbon sources and processes in the environment. An overview of general stable isotopes background and terminology is given as well as the most popular analytical techniques.

  15. Kinetics of inorganic carbon utilization by microalgal biofilm in a flat plate photoreactor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y.H.; Leu, J.Y.; Lan, C.R.; Lin, P.H.P.; Chang, F.L. [Development Center for Biotechnology, Taipei (Taiwan). Dept. for Environmental Program

    2003-11-01

    A kinetic model was developed to describe inorganic carbon utilization by microalgae biofilm in a flat plate photoreactor. The model incorporates the fundamental mechanisms of diffusive mass transport and biological reaction of inorganic carbon by microalgal biofilm. An advanced numerical technique, the orthogonal collocation method and Gear's method, was employed to solve this kinetic model. The model solutions included the concentration profiles of inorganic carbon in the microalgal biofilm, the growths of suspended microalgae and microalgal biofilm, the effluent concentrations of inorganic carbon, and the flux of inorganic carbon from bulk liquid into biofilm. The batch kinetic test was independently conducted to determine biokinetic parameters used in the microalgal biofilm model simulation while initial thickness of microalgal biofilm were assumed. A laboratory-scale flat plate photoreactor with a high recycle flow rate was set up and conducted to verify the model. The volume of photoreactor is 60 l which yields a hydraulic retention time of 1.67 days. The model-generated inorganic carbon and the suspended microalgae concentration curves agreed well with those obtained in the laboratory-scale test. The fixation efficiencies of HCO{sub 3}{sup -} and CO{sub 2} are 98.5% and 90% at a steady-state condition, respectively. The concentration of suspended microalgal cell reached up to 12 mg/l at a maximum growth rate while the thickness of microalgal biofilm was estimated to be 104 pm at a steady-state condition. The approaches of experiments and model simulation presented in this study could be employed for the design of a flat plate photoreactor to treat CO{sub 2} by microalgal biofilm in a fossil-fuel power plant.

  16. Methodologies for extraction of dissolved inorganic carbon for stable carbon isotope studies : evaluation and alternatives

    Science.gov (United States)

    Hassan, Afifa Afifi

    1982-01-01

    The gas evolution and the strontium carbonate precipitation techniques to extract dissolved inorganic carbon (DIC) for stable carbon isotope analysis were investigated. Theoretical considerations, involving thermodynamic calculations and computer simulation pointed out several possible sources of error in delta carbon-13 measurements of the DIC and demonstrated the need for experimental evaluation of the magnitude of the error. An alternative analytical technique, equilibration with out-gassed vapor phase, is proposed. The experimental studies revealed that delta carbon-13 of the DIC extracted from a 0.01 molar NaHC03 solution by both techniques agreed within 0.1 per mil with the delta carbon-13 of the DIC extracted by the precipitation technique, and an increase of only 0.27 per mil in that extracted by the gas evolution technique. The efficiency of extraction of DIC decreased with sulfate concentration in the precipitation technique but was independent of sulfate concentration in the gas evolution technique. Both the precipitation and gas evolution technique were found to be satisfactory for extraction of DIC from different kinds of natural water for stable carbon isotope analysis, provided appropriate precautions are observed in handling the samples. For example, it was found that diffusion of atmospheric carbon dioxide does alter the delta carbon-13 of the samples contained in polyethylene bottles; filtration and drying in the air change the delta carbon-13 of the samples contained in polyethylene bottles; filtration and drying in the air change the delta carbon-13 of the precipitation technique; hot manganese dioxide purification changes the delta carbon-13 of carbon dioxide. (USGS)

  17. Dissolved organic carbon biodegradability from thawing permafrost stimulated by sunlight rather than inorganic nitrogen

    Science.gov (United States)

    Liu, F.; Chen, L.; Zhang, B.; Wang, G.; Qin, S.; Yang, Y.

    2017-12-01

    Permafrost thaw could result in a large portion of frozen carbon being laterally transferred to aquatic ecosystems as dissolved organic carbon (DOC). During this delivery process, the size of biodegradable DOC (BDOC) determines the proportion of DOC mineralized by microorganisms and associated carbon loss to the atmosphere, which may further trigger positive carbon-climate feedback. Thermokarst is an abrupt permafrost thaw process that can enhance DOC export and also impact DOC processing through increased inorganic nitrogen (N) and sunlight exposure. However, it remains unclear how thermokarst-impacted BDOC responds to inorganic N addition and ultraviolet (UV) light irradiation. Here we explored the responses of DOC concentration, composition and its biodegradability to inorganic N and UV light in a typical thermokarst on the Tibetan Plateau, by combining field observation and laboratory incubation with spectra analyses (UV-visible absorption and three-dimensional fluorescence spectra) and parallel factor analyses. Our results showed that BDOC in thermokarst feature outflows was significantly higher than in reference water. Furthermore, inorganic N addition had no influence on thermokarst-impacted BDOC, whereas exposure to UV light significantly increased BDOC by as much as 2.3 times higher than the dark-control. Moreover, N addition and UV irradiation did not generate additive effects on BDOC. These results imply that sunlight rather than inorganic N can increase thermokarst-derived BDOC, potentially strengthening the positive permafrost carbon-climate feedback.

  18. Evaluation of Dissolved Inorganic and Organic Carbon Concentrations (DIC, DOC and Their Isotopic Compositions (δ 13C-DOC, δ 13C-DIC in Water Resources of the Karde Catchment (North of Mashhad

    Directory of Open Access Journals (Sweden)

    Hossein Mohammadzadeh

    2015-07-01

    Full Text Available In this paper, the variations of dissolved inorganic and organic carbon (DIC, DOC concentrations and their isotopic compositions (δ13C- DIC, δ13C- DOC were evaluated in both surface and ground water resources in the Karde catchment area (with an area of about 547 Km2, located in the North of Mashhad. To identify the sources of the dissolved carbon (DIC and DOC, samples were collected in June 2011 from surface and ground water resources (river, dam’s lake, springs, wells, and Qanat and from depths of 1, 5, 10, 15, and 20 meters of Karde dam lakeat a point located near the dam outlet. Field parameters (T, EC, and TDS were measured during sampling. All measurements were performed in the G.G. Hatch Stable Isotope Laboratory at the University of Ottawa, Canada. The concentrations and isotopic compositions of DIC and DOC were determined using TCA and CF-IRMS instruments, respectively. Based on the results obt 1-دانشیار،مرکزتحقیقاتآبهایزیرزمینی متآب،دانشکدهعلوم،دانشگاهفردوسی مشهد،،مشهد، ایران 2- دانشجوی کارشناسی ارشدهیدروژئولوژی، مرکزتحقیقاتآبهایزیرزمینی متآب،دانشکده علوم،دانشگاهفردوسیمشهد، مشهد، ایران *نویسنده مسئول، پست الکترونیکی:mohammadzadeh@um.ac.ir           ained, the average values of DIC are 54.1 mg/l and 66.8 mg/l in the surface and ground water resources in the Karde catchment area, respectively; the average values of DOC are 2.2 mg/l and 0.45 mg/l; the average values of δ13C-DIC are -7‰ and -11 ‰; and the average values of δ13C-DOC are -31.6‰ and -29.5 ‰, respectively. In general, the concentrations of DIC, DOC, and their isotopic compositions (δ13C-DIC, δ13C-DOC are different in the various water resources (surface and ground water in the catchment and the major source of dissolved carbon in the catchment area is

  19. The exchange of inorganic carbon on the Canadian Beaufort Shelf

    Science.gov (United States)

    Mol, Jacoba; Thomas, Helmuth; Hu, Xianmin; Myers, Paul G.

    2017-04-01

    The Mackenzie Shelf in the southeastern Beaufort Sea is an area that has experienced large changes in the past several decades as warming, sea-ice loss, and increased river discharge have altered carbon cycling. Upwelling and downwelling events are common on the shelf, caused by strong, fluctuating along-shore winds and resulting cross-shelf Ekman transport. Downwelling carries inorganic carbon and other remineralization products off the shelf and into the deep basin for possible long-term storage in the world oceans. Upwelling carries water high in dissolved inorganic carbon (DIC) and nutrients from the Pacific-origin upper halocline layer (UHL) onto the shelf. Profiles of DIC and total alkalinity (TA) taken in August and September of 2014 are used to investigate the cycling of inorganic carbon on the Mackenzie Shelf. The along-shore and cross-shelf transport of inorganic carbon is quantified using velocity field output from a simulation of the Arctic and Northern Hemisphere Atlantic (ANHA4) configuration of the Nucleus of European Modelling of the Ocean (NEMO) model. A strong upwelling event prior to sampling on the Mackenzie Shelf is analyzed and the resulting influence on the carbonate system, including the saturation state of aragonite and pH levels, is investigated. TA and δ18O are used to examine water mass distributions in the study area and analyze the influence of Pacific Water, Mackenzie River freshwater, and sea-ice melt on carbon dynamics and air-sea fluxes of CO2 in the surface mixed layer. Understanding carbon transfer in this seasonally dynamic environment is key in order to quantify the importance of Arctic shelf regions to the global carbon cycle and to provide a basis for understanding how its role will respond to the aforementioned changes in the regional marine system.

  20. Inorganic carbon fluxes across the vadose zone of planted and unplanted soil mesocosms

    DEFF Research Database (Denmark)

    Thaysen, Eike Marie; Jacques, D.; Jessen, S.

    2014-01-01

    The efflux of carbon dioxide (CO2) from soils influences atmospheric CO2 concentrations and thereby climate change. The partitioning of inorganic carbon (C) fluxes in the vadose zone between emission to the atmosphere and to the groundwater was investigated to reveal controlling underlying...... mechanisms. Carbon dioxide partial pressure in the soil gas (pCO(2)), alkalinity, soil moisture and temperature were measured over depth and time in unplanted and planted (barley) mesocosms. The dissolved inorganic carbon (DIC) percolation flux was calculated from the pCO(2), alkalinity and the water flux...... to calculate the soil CO2 production. Carbon dioxide fluxes were modeled using the HP1 module of the Hydrus 1-D software. The average CO2 effluxes to the atmosphere from unplanted and planted mesocosm ecosystems during 78 days of experiment were 0.1 +/- 0.07 and 4.9 +/- 0.07 mu mol Cm-2 s(-1), respectively...

  1. Safe recycling of materials containing persistent inorganic and carbon nanoparticles

    NARCIS (Netherlands)

    Reijnders, L.; Njuguna, J.; Pielichowski, K.; Zhu, H.

    2014-01-01

    For persistent inorganic and carbon nanomaterials, considerable scope exists for a form of recycling called ‘resource cascading’. Resource cascading is aimed at the maximum exploitation of quality and service time of natural resources. Options for resource cascading include engineered nanomaterials

  2. Contribution of fish to the marine inorganic carbon cycle.

    Science.gov (United States)

    Wilson, R W; Millero, F J; Taylor, J R; Walsh, P J; Christensen, V; Jennings, S; Grosell, M

    2009-01-16

    Oceanic production of calcium carbonate is conventionally attributed to marine plankton (coccolithophores and foraminifera). Here we report that marine fish produce precipitated carbonates within their intestines and excrete these at high rates. When combined with estimates of global fish biomass, this suggests that marine fish contribute 3 to 15% of total oceanic carbonate production. Fish carbonates have a higher magnesium content and solubility than traditional sources, yielding faster dissolution with depth. This may explain up to a quarter of the increase in titratable alkalinity within 1000 meters of the ocean surface, a controversial phenomenon that has puzzled oceanographers for decades. We also predict that fish carbonate production may rise in response to future environmental changes in carbon dioxide, and thus become an increasingly important component of the inorganic carbon cycle.

  3. Inorganic carbon availability in benthic diatom communities: photosynthesis and migration.

    Science.gov (United States)

    Marques da Silva, Jorge; Cruz, Sónia; Cartaxana, Paulo

    2017-09-05

    Diatom-dominated microphytobenthos (MPB) is the main primary producer of many intertidal and shallow subtidal environments, being therefore of critical importance to estuarine and coastal food webs. Owing to tidal cycles, intertidal MPB diatoms are subjected to environmental conditions far more variable than the ones experienced by pelagic diatoms (e.g. light, temperature, salinity, desiccation and nutrient availability). Nevertheless, benthic diatoms evolved adaptation mechanisms to these harsh conditions, including the capacity to move within steep physical and chemical gradients, allowing them to perform photosynthesis efficiently. In this contribution, we will review present knowledge on the effects of dissolved inorganic carbon (DIC) availability on photosynthesis and productivity of diatom-dominated MPB. We present evidence of carbon limitation of photosynthesis in benthic diatom mats and highly productive MPB natural communities. Furthermore, we hypothesize that active vertical migration of epipelic motile diatoms could overcome local depletion of DIC in the photic layer, providing the cells alternately with light and inorganic carbon supply. The few available longer-term experiments on the effects of inorganic carbon enrichment on the productivity of diatom-dominated MPB have yielded inconsistent results. Therefore, further studies are needed to properly assess the response of MPB communities to increased CO 2 and ocean acidification related to climate change.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Author(s).

  4. Inorganic carbon uptake during photosynthesis. II. Uptake by isolated Asparagus mesophyll cells during isotopic disequilibrium

    International Nuclear Information System (INIS)

    Espie, G.S.; Owttrim, G.W.; Colman, B.

    1986-01-01

    The species of inorganic carbon (CO 2 or HCO 3 - ) taken up as a source of substrate for photosynthetic fixation by isolated Asparagus sprengeri mesophyll cells is investigated. Discrimination between CO 2 or HCO 3 - transport, during steady state photosynthesis, is achieved by monitoring the changes (by 14 C fixation) which occur in the specific activity of the intracellular pool of inorganic carbon when the inorganic carbon present in the suspending medium is in a state of isotopic disequilibrium. Quantitative comparisons between theoretical (CO 2 or HCO 3 - transport) and experimental time-courses of 14 C incorporation, over the pH range of 5.2 to 7.5, indicate that the specific activity of extracellular CO 2 , rather than HCO 3 - , is the appropriate predictor of the intracellular specific activity. It is concluded, therefore, that CO 2 is the major source of exogenous inorganic carbon taken up by Asparagus cells. However, at high pH (8.5), a component of net DIC uptake may be attributable to HCO 3 - transport, as the incorporation of 14 C during isotopic disequilibrium exceeds the maximum possible incorporation predicted on the basis of CO 2 uptake alone. The contribution of HCO 3 - to net inorganic carbon uptake (pH 8.5) is variable, ranging from 5 to 16%, but is independent of the extracellular HCO 3 - concentration. The evidence for direct HCO 3 - transport is subject to alternative explanations and must, therefore, be regarded as equivocal. Nonlinear regression analysis of the rate of 14 C incorporation as a function of time indicates the presence of a small extracellular resistance to the diffusion of CO 2 , which is partially alleviated by a high extracellular concentration of HCO 3 -

  5. Carbon dioxide concentrations are very high in developing oilseeds.

    Science.gov (United States)

    Goffman, Fernando D; Ruckle, Mike; Ohlrogge, John; Shachar-Hill, Yair

    2004-09-01

    A new method has been developed to rapidly determine the total inorganic carbon concentration (gaseous [CO2] + aqueous [CO(2)] + [HCO3-] + [CO3(2)-]) in developing seeds. Seeds are rapidly dissected and homogenized in 1 N HCl in gas-tight vials. The headspace gas is then analyzed by infrared gas analysis. Developing rapeseed (Brassica napus L.) and soybean [Glycine max (L.) Merr.] seeds were analyzed and found to have up to 40 and 12 mM total inorganic carbon, respectively. These concentrations are ca. 600-2000-fold higher than in ambient air or values reported for leaves. Carbon dioxide concentrations in rapeseed peaked during the stage of maximum oil synthesis and declined as seeds matured. The consequences for seed metabolism, physiology and carbon economy are discussed.

  6. Coulometric precise analysis of total inorganic carbon in seawater and measurements of radiocarbon for the carbon dioxide in the atmosphere and for the total inorganic carbon in seawater

    International Nuclear Information System (INIS)

    Ishii, Masao; Inoue, Hisayuki Y.; Matsueda Hidekazu

    2000-01-01

    Climate change is one of the biggest issues on the earth, and the research on the climate system has been paid much attention today. The behavior of carbon dioxide (Co 2 ), one of the major green house gases, and its related substances within and among the atmosphere, the ocean and the land biosphere is playing a key role in regulating the climate. The ocean contains ca. 4x10 19 g of carbon, which is about 50 times of that in the atmosphere. The change in carbon cycle in the ocean is considered to have a crucial impact on the concentration of CO 2 in the atmosphere. However, little has been quantitatively known about the variability of CO 2 in the ocean and its controlling physical, chemical and biological processes. The observations of the concentration and carbon isotopic ratio of total dissolved inorganic carbon (TCO 2 ) in seawater occupy important part of the research on the behavior of carbon in the ocean. In the first part of this report, we describe the fundamental knowledge of CO 2 system in seawater and the method to precisely measure TCO 2 including sampling method, the structure and the operation of the instrument we developed, and the way to assure the quality of the data. We also present some results we obtained in the western North Pacific and the equatorial Pacific. In the second part, we report the methods to collect and treat samples for the analysis of the isotopic ratio of radio carbon ( 14 C) in the atmospheric CO 2 and TCO 2 in sea water. (author)

  7. Dissolved inorganic carbon and organic carbon in mires in the Forsmark area. A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Loefgren, Anders [EcoAnalytica, Haegersten (Sweden)

    2011-12-15

    Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are the large dissolved carbon pools in mires. They are both related to a number of factors such as groundwater flow, minerogenic influence and peat properties, which all are more or less related to peatland development stage. In a scenario of a release of radionuclides from an underground repository containing radioactive material, behaviour of these pools during the mire ontogeny will be of importance for the understanding of how C-14 will constitute a potential risk to humans and non-human biota. In this pilot study, DIC and DOC concentrations were investigated for three mires representing a potential sequence of peatland development in a coastal area at Forsmark in central Sweden characterized by land upheaval, a flat topography and calcareous content in the soil. The mires where chosen based on difference in height above the sea level, covering approximate 1000 years, and characteristics based on their vegetation. Water samples were collected during August from all three mires at two different depths in the anoxic layer of the mires, by extracting water from peat obtained with a peat corer. DIC concentrations where related to the age of the mires, with the lowest concentrations in the highest located mire. There was a positive correlation between pH and DIC, where the higher DIC concentrations were found in the 'richer' fens. DIC concentrations were also positively related to the conductivity within and between the mires, where conductivity would be a proxy for the dominating cation Ca{sup 2+} associated to the calcareous-influenced groundwater. DOC concentrations were highest in the oldest mire, but were similar in the younger mires. No patterns were found between DIC and DOC, and the peat bulk density. The report ends with suggestions on how a continued study could be improved.

  8. Dissolved inorganic carbon and organic carbon in mires in the Forsmark area. A pilot study

    International Nuclear Information System (INIS)

    Loefgren, Anders

    2011-12-01

    Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are the large dissolved carbon pools in mires. They are both related to a number of factors such as groundwater flow, minerogenic influence and peat properties, which all are more or less related to peatland development stage. In a scenario of a release of radionuclides from an underground repository containing radioactive material, behaviour of these pools during the mire ontogeny will be of importance for the understanding of how C-14 will constitute a potential risk to humans and non-human biota. In this pilot study, DIC and DOC concentrations were investigated for three mires representing a potential sequence of peatland development in a coastal area at Forsmark in central Sweden characterized by land upheaval, a flat topography and calcareous content in the soil. The mires where chosen based on difference in height above the sea level, covering approximate 1000 years, and characteristics based on their vegetation. Water samples were collected during August from all three mires at two different depths in the anoxic layer of the mires, by extracting water from peat obtained with a peat corer. DIC concentrations where related to the age of the mires, with the lowest concentrations in the highest located mire. There was a positive correlation between pH and DIC, where the higher DIC concentrations were found in the 'richer' fens. DIC concentrations were also positively related to the conductivity within and between the mires, where conductivity would be a proxy for the dominating cation Ca 2+ associated to the calcareous-influenced groundwater. DOC concentrations were highest in the oldest mire, but were similar in the younger mires. No patterns were found between DIC and DOC, and the peat bulk density. The report ends with suggestions on how a continued study could be improved

  9. Organic-inorganic hybrid carbon dots for cell imaging

    Science.gov (United States)

    Liu, Huan; Zhang, Hongwen; Li, Jiayu; Tang, Yuying; Cao, Yu; Jiang, Yan

    2018-04-01

    In this paper, nitrogen-doped carbon dots (CDs) had been synthesized directly by one-step ultrasonic treatment under mild conditions. During the functionalization process, Octa-aminopropyl polyhedral oligomeric silsesquioxane hydrochloride salt (OA-POSS) was used as stabilizing and passivation agent, which lead to self-assembling of CDs in aqueous medium solution. OA-POSS was obtained via hydrolytic condensation of γ-aminopropyl triethoxy silane (APTES). The average size of CDs prepared was approximately 3.3 nm with distribution between 2.5 nm and 4.5 nm. The prepared organic-inorganic hybrid carbon dots have several characteristics such as photoluminescence emission wavelength, efficient cellular uptake, and good biocompatibility. The results indicate that OA-POSS can maintain the fluorescence properties of the carbon dots effectively, and reduced cytotoxicity provides the possibility for biomedical applications. More than 89% of the Hela cells were viable when incubated with 2 mg ml‑1 or lesser organic-inorganic hybrid carbon dots. Thus, it provides a potential for multicolor imaging with HeLa cells.

  10. Effects of inorganic anions on carbon isotope fractionation during Fenton-like degradation of trichloroethene

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunde [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences, Wuhan 430074 (China); Zhou, Aiguo, E-mail: aiguozhou@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Gan, Yiqun; Li, Xiaoqian [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China)

    2016-05-05

    Highlights: • The effect of inorganic anions on carbon isotope fractionation was evaluated. • The enrichment factors was independent concentration of NO{sub 3}{sup −}, or SO{sub 4}{sup 2−}. • Cl{sup −} significantly influenced the carbon isotope fractionation. - Abstract: Understanding the magnitude and variability in isotope fractionation with respect to specific processes is crucial to the application of stable isotopic analysis as a tool to infer and quantify transformation processes. The variability of carbon isotope fractionation during Fenton-like degradation of trichloroethene (TCE) in the presence of different inorganic ions (nitrate, sulfate, and chloride), was investigated to evaluate the potential effects of inorganic anions on carbon isotope enrichment factor (ε value). A comparison of ε values obtained in deionized water, nitrate solution, and sulfate solution demonstrated that the ε values were identical and not affected by the presence of nitrate and sulfate. In the presence of chloride, however, the ε values (ranging from −6.3 ± 0.8 to 10 ± 1.3‰) were variable and depended on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during Fenton-like degradation of TCE. Thus, caution should be exercised in selecting appropriate ε values for the field application of stable isotope analysis, as various chloride concentrations may be present due to naturally present or introduced with pH adjustment and iron salts during Fenton-like remediation. Furthermore, the effects of chloride on carbon isotope fractionation may be able to provide new insights about reaction mechanisms of Fenton-like processes.

  11. Effects of inorganic anions on carbon isotope fractionation during Fenton-like degradation of trichloroethene

    International Nuclear Information System (INIS)

    Liu, Yunde; Zhou, Aiguo; Gan, Yiqun; Li, Xiaoqian

    2016-01-01

    Highlights: • The effect of inorganic anions on carbon isotope fractionation was evaluated. • The enrichment factors was independent concentration of NO_3"−, or SO_4"2"−. • Cl"− significantly influenced the carbon isotope fractionation. - Abstract: Understanding the magnitude and variability in isotope fractionation with respect to specific processes is crucial to the application of stable isotopic analysis as a tool to infer and quantify transformation processes. The variability of carbon isotope fractionation during Fenton-like degradation of trichloroethene (TCE) in the presence of different inorganic ions (nitrate, sulfate, and chloride), was investigated to evaluate the potential effects of inorganic anions on carbon isotope enrichment factor (ε value). A comparison of ε values obtained in deionized water, nitrate solution, and sulfate solution demonstrated that the ε values were identical and not affected by the presence of nitrate and sulfate. In the presence of chloride, however, the ε values (ranging from −6.3 ± 0.8 to 10 ± 1.3‰) were variable and depended on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during Fenton-like degradation of TCE. Thus, caution should be exercised in selecting appropriate ε values for the field application of stable isotope analysis, as various chloride concentrations may be present due to naturally present or introduced with pH adjustment and iron salts during Fenton-like remediation. Furthermore, the effects of chloride on carbon isotope fractionation may be able to provide new insights about reaction mechanisms of Fenton-like processes.

  12. Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials

    CERN Document Server

    Levitsky, Igor A; Karachevtsev, Victor A

    2012-01-01

    Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials describes physical, optical and spectroscopic properties of the emerging class of nanocomposites formed from carbon nanotubes (CNTs)  interfacing with organic and inorganic materials. The three main chapters detail novel trends in  photophysics related to the interaction of  light with various carbon nanotube composites from relatively simple CNT/small molecule assemblies to complex hybrids such as CNT/Si and CNT/DNA nanostructures.   The latest experimental results are followed up with detailed discussions and scientific and technological perspectives to provide a through coverage of major topics including: ·   Light harvesting, energy conversion, photoinduced charge separation  and transport  in CNT based nanohybrids · CNT/polymer composites exhibiting photoactuation; and ·         Optical  spectroscopy  and structure of CNT/DNA complexes. Including original data and a short review of recent research, Phot...

  13. Watershed scale spatial variability in dissolved and total organic and inorganic carbon in contrasting UK catchments

    Science.gov (United States)

    Cumberland, S.; Baker, A.; Hudson, N. J.

    2006-12-01

    Approximately 800 organic and inorganic carbon analyses have been undertaken from watershed scale and regional scale spatial surveys in various British catchments. These include (1) a small (urban catchment (Ouseburn, N England); (2) a headwater, lowland agricultural catchment (River Tern, C England) (3) a large UK catchment (River Tyne, ~3000 sq-km) and (4) a spatial survey of ~300 analyses from rivers from SW England (~1700 sq-km). Results demonstrate that: (1) the majority of organic and inorganic carbon is in the dissolved (DOC and DIC) fractions; (2) that with the exception of peat rich headwaters, DIC concentration is always greater than DOC; (3) In the rural River Tern, riverine DOC and DIC are shown to follow a simple end- member mixing between DIC (DOC) rich (poor) ground waters and DOC (DIC) rich (poor) riparian wetlands for all sample sites. (4) In the urbanized Ouseburn catchment, although many sample sites also show this same mixing trend, some tributaries follow a pollutant trend of simultaneous increases in both DOC and DIC. The Ouseburn is part of the larger Tyne catchment: this larger catchment follows the simple groundwater DIC- soil water DOC end member mixing model, with the exception of the urban catchments which exhibit an elevated DIC compared to rural sites. (5) Urbanization is demonstrated to increase DIC compared to equivalent rural catchments; this DIC has potential sources including diffuse source inputs from the dissolution of concrete, point sources such as trade effluents and landfill leachates, and bedrock derived carbonates relocated to the soil dissolution zone by urban development. (6) DIC in rural SW England demonstrates that spatial variability in DIC can be attributed to variations in geology; but that DIC concentrations in the SW England rivers dataset are typically lower than the urbanized Tyne catchments despite the presence of carbonate bedrock in many of the sample catchments in the SW England dataset. (7) Recent

  14. Photosynthesis and Calcification by Emiliania huxleyi (Prymnesiophyceae) as a Function of Inorganic Carbon Species

    NARCIS (Netherlands)

    Buitenhuis, Erik T.; Baar, Hein J.W. de; Veldhuis, Marcel J.W.

    1999-01-01

    To test the possibility of inorganic carbon limitation of the marine unicellular alga Emiliania huxleyi (Lohmann) Hay and Mohler, its carbon acquisition was measured as a function of the different chemical species of inorganic carbon present in the medium. Because these different species are

  15. Ion-exchange concentration of inorganic anions from aqueous solution

    Directory of Open Access Journals (Sweden)

    L. P. Bondareva

    2016-01-01

    Full Text Available Monitoring of natural waters in the present time - consuming process, the accuracy of which is influenced by many factors: the composition of water, the presence of impurities and "interfering" components. The water sample preparation process includes the step of concentration and separation of ions determined. The most versatile, efficient, and frequently used method is the concentration of inorganic anions from aqueous solutions by ion exchanger, which can optimize the composition of water to the optimal for identification and quantitative determination of anions. The characteristics of sorption chloride, nitrate and sulfate ions of basic anion exchange resin AВ-17 and Purolite A430 were compared in the article. The constants of protolysis of ion exchangers both AB 17 and Purolite A430 are the same and equal 0.037 ± 0,002. The value of total capacity (POE Purolite A430 was 4.3 mmol/g, AB 17 – 3.4 mmol/g. The studied ion exchangers have the same type of ionic groups – quaternary ammonium, but their number and denotes differ. The number of quaternary ammonium groups is higher in Purolite A430, respectively the number of absorbed anions of these ion exchanger is higher. The values of dynamic exchange capacity (DOE of ion exchanger Purolite A430 is higher than these values of AB-17 and equal to 1.48 ± 0.03 mmol / dm3 for chloride ion, 1.50 ± 0.03 mmol / dm3 for nitrate ion, 1.62 ± 0.03 mmol / dm3 for sulfate ion. The values of the POE and DOE of anion-exchange resins Purolite A430 and AV-17 and the characteristics of the individual sorption of chloride, nitrate, sulfate ions showed an advantage of the Purolite for the concentrationing of anions. It is found that times of anions sorption from triple-anion solutions by Purolite A430 are significantly different for different anions, and these times are close for anion-exchanger AV-17. It proves the possibility of quantitative separation and concentration by anion-exchanger Purolite A430.

  16. Distribution of Coral Reef and Seagrass Ecosystems’s Inorganic Carbon in the Waters of Beras Basah Bontang, East Kalimantan

    Directory of Open Access Journals (Sweden)

    Irwan Ramadhan Ritonga

    2013-06-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Inorganic carbon is closely related to the calcification process (CaCO3, which is the main constituent of coral reefs or microorganisms that exist in the oceans such as foraminifera and cocolitoporit. Inorganic carbon is also closely linked to the chemical processes that occur when carbon dioxide gas (CO2 dissolved in water. The research of inorganic carbon in the waters of Beras Basah was carried out in January, February and March 2012. The purpose of this study was to understand the distribution and concentration of total inorganic carbon (CT in coral reef and seagrass ecosystems as well as the correlation of Beras Basah. The results showed that the concentration of total inorganic carbon (CT in January average 1166.503 μmol/kgSW, February average 1115.599 μmol/kgSW, and then in March the average 987.443 μmol/kgSW. Distribution patterns of total inorganic carbon (CT is vectoral, where in January, the concentration of total inorganic carbon (CT was highest in the Southeast region, was in February in the South and Southeast, while in March shifted to North region of Beras Basah Island. The concentration difference is thought to be influenced by pH and the seasons, tides, biochemical processes, and biological activity. Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Doi: 10.12777/ijse.5.1.1-5 [How to cite this article: Ritonga, I.R., Supriharyono, and Henderarto, B. (2013. Distribution of Coral Reef and Seagrass Ecosystems’s Inorganic Carbon in the Waters of Beras Basah Bontang, East Kalimantan. International Journal of Science and Engineering, 5(1,1-6. Doi: 10.12777/ijse.5.1.1-5]  Carbon-concentrating mechanisms in seagrasses.

    Science.gov (United States)

    Larkum, Anthony William D; Davey, Peter A; Kuo, John; Ralph, Peter J; Raven, John A

    2017-06-01

    Seagrasses are unique angiosperms that carry out growth and reproduction submerged in seawater. They occur in at least three families of the Alismatales. All have chloroplasts mainly in the cells of the epidermis. Living in seawater, the supply of inorganic carbon (Ci) to the chloroplasts is diffusion limited, especially under unstirred conditions. Therefore, the supply of CO2 and bicarbonate across the diffusive boundary layer on the outer side of the epidermis is often a limiting factor. Here we discuss the evidence for mechanisms that enhance the uptake of Ci into the epidermal cells. Since bicarbonate is plentiful in seawater, a bicarbonate pump might be expected; however, the evidence for such a pump is not strongly supported. There is evidence for a carbonic anhydrase outside the outer plasmalemma. This, together with evidence for an outward proton pump, suggests the possibility that local acidification leads to enhanced concentrations of CO2 adjacent to the outer tangential epidermal walls, which enhances the uptake of CO2, and this could be followed by a carbon-concentrating mechanism (CCM) in the cytoplasm and/or chloroplasts. The lines of evidence for such an epidermal CCM are discussed, including evidence for special 'transfer cells' in some but not all seagrass leaves in the tangential inner walls of the epidermal cells. It is concluded that seagrasses have a CCM but that the case for concentration of CO2 at the site of Rubisco carboxylation is not proven. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. In situ spectrophotometric measurement of dissolved inorganic carbon in seawater

    Science.gov (United States)

    Liua, Xuewu; Byrne, Robert H.; Adornato, Lori; Yates, Kimberly K.; Kaltenbacher, Eric; Ding, Xiaoling; Yang, Bo

    2013-01-01

    Autonomous in situ sensors are needed to document the effects of today’s rapid ocean uptake of atmospheric carbon dioxide (e.g., ocean acidification). General environmental conditions (e.g., biofouling, turbidity) and carbon-specific conditions (e.g., wide diel variations) present significant challenges to acquiring long-term measurements of dissolved inorganic carbon (DIC) with satisfactory accuracy and resolution. SEAS-DIC is a new in situ instrument designed to provide calibrated, high-frequency, long-term measurements of DIC in marine and fresh waters. Sample water is first acidified to convert all DIC to carbon dioxide (CO2). The sample and a known reagent solution are then equilibrated across a gas-permeable membrane. Spectrophotometric measurement of reagent pH can thereby determine the sample DIC over a wide dynamic range, with inherent calibration provided by the pH indicator’s molecular characteristics. Field trials indicate that SEAS-DIC performs well in biofouling and turbid waters, with a DIC accuracy and precision of ∼2 μmol kg–1 and a measurement rate of approximately once per minute. The acidic reagent protects the sensor cell from biofouling, and the gas-permeable membrane excludes particulates from the optical path. This instrument, the first spectrophotometric system capable of automated in situ DIC measurements, positions DIC to become a key parameter for in situ CO2-system characterizations.

  18. Inorganic carbon addition stimulates snow algae primary productivity

    Science.gov (United States)

    Hamilton, T. L.; Havig, J. R.

    2017-12-01

    Earth has experienced glacial/interglacial oscillations throughout its history. Today over 15 million square kilometers (5.8 million square miles) of Earth's land surface is covered in ice including glaciers, ice caps, and the ice sheets of Greenland and Antarctica, most of which are retreating as a consequence of increased atmospheric CO2. Glaciers are teeming with life and supraglacial snow and ice surfaces are often red due to blooms of photoautotrophic algae. Recent evidence suggests the red pigmentation, secondary carotenoids produced in part to thrive under high irradiation, lowers albedo and accelerates melt. However, there are relatively few studies that report the productivity of snow algae communities and the parameters that constrain their growth on snow and ice surfaces. Here, we demonstrate that snow algae primary productivity can be stimulated by the addition of inorganic carbon. We found an increase in light-dependent carbon assimilation in snow algae microcosms amended with increasing amounts of inorganic carbon. Our snow algae communities were dominated by typical cosmopolitan snow algae species recovered from Alpine and Arctic environments. The climate feedbacks necessary to enter and exit glacial/interglacial oscillations are poorly understood. Evidence and models agree that global Snowball events are accompanied by changes in atmospheric CO2 with increasing CO2 necessary for entering periods of interglacial time. Our results demonstrate a positive feedback between increased CO2 and snow algal productivity and presumably growth. With the recent call for bio-albedo effects to be considered in climate models, our results underscore the need for robust climate models to include feedbacks between supraglacial primary productivity, albedo, and atmospheric CO2.

  19. Instrumentation and analytical methods in carbon balance studies - inorganic components in a marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Skjelvan, I.; Johannessen, T.; Miller, L.; Stoll, M.

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. Substantial amounts of anthropogenic CO{sub 2} enters the atmosphere. The land biota acts as a sink for CO{sub 2}, with uncertain consequences. About 30% of the anthropogenic CO{sub 2} added to the atmosphere is absorbed by the ocean and how the ocean acts as a sink is central in understanding the carbon cycle. In their project the authors investigate the inorganic carbon in the ocean, especially total dissolved inorganic carbon, alkalinity, and partial pressure of CO{sub 2} (pCO{sub 2}) in surface ocean and atmosphere. To determine total dissolved inorganic carbon, coulometric analysis is used in which an exact amount of sea water is acidified and the amount of carbon extracted is determined by a coulometer. Alkalinity is determined by potentiometric titration. In the pCO{sub 2} measurement, a small amount of air is circulated in a large amount of sea water and when after some time the amount of CO{sub 2} in the air reflects the CO{sub 2} concentration in the water, the pCO{sub 2} in the gas phase is determined by infra-red detection. The atmospheric pCO{sub 2} is also determined, and the difference between the two partial pressures gives information about source or sink activities. Total carbon and alkalinity measurements are done on discrete samples taken from all depths in the ocean, but for partial pressure detection an underway system is used, which determines the pCO{sub 2} in the surface ocean continuously

  1. Physiological conditions and uptake of inorganic carbon-14 by plant roots

    International Nuclear Information System (INIS)

    Amiro, B.D.; Ewing, L.L.

    1992-01-01

    The uptake of inorganic 14 C by bean plant roots was measured. The plants were grown in a nutrient solution culture at pH 6 and a NaH 14 CO 3 tracer was added to the growth medium. Photosynthesis and transpiration were varied by exposing the aerial portions of the plants to different atmospheric CO 2 concentrations, humidities and light levels in a cuvette system. Leaf concentrations of 14 C were measured at the end of the experiments using liquid scintillation counting. Plant uptake of 14 C via the roots was independent of the photosynthetic rate and, in most cases, could be predicted by knowing the transpiration rate and the nutrient solution concentration. However, when a less efficient root-medium aeration system was used, 14 C uptake was greater than that predicted using transpiration, a phenomenon observed by other researchers. This contrasted to results of another experiment where the measured uptake of iodine was much slower than that predicted using transpiration. Knowledge of transpiration rates is useful in predicting inorganic carbon uptake via the roots and in estimating 14 C transport from contaminated soils to biota. Also, the independence of the uptake from photosynthesis and ambient CO 2 concentrations suggests that future increases in atmospheric CO 2 concentrations may not have a direct effect on root uptake of soil carbon. (author)

  2. Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in northeast China

    Science.gov (United States)

    Cao, F.; Zhang, Y.; Kawamura, K.

    2015-12-01

    To better characterize the sources of fine particulate matter (i.e. PM2.5) in Sanjiang Plain, Northeast China, aerosol chemical composition such total carbon (TC), organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and inorganic ions were studied as well as stable carbon isotopic composition (δ13C) of TC. Intensively open biomass burning episodes were identified from late September to early October by satellite fire and aerosol optical depth maps. During the biomass burning episodes, concentrations of PM2.5, OC, EC, and WSOC increased by a factor of 4-12 compared to non-biomass-burning periods. Non-sea-salt potassium is strongly correlated with PM2.5, OC, EC and WSOC, suggesting an important contribution of biomass burning emission. The enrichment in both the non-sea-salt potassium and chlorine is significantly larger than other inorganic species, indicating that biomass burning aerosols in Sanjiang Plain is mostly fresh and less aged. In addition, WSOC to OC ratio is relatively lower compared to that reported in biomass burning aerosols in tropical regions, supporting that biomass burning aerosols in Sanjiang Plain is mostly primary and secondary organic aerosols is not significant. A lower average δ13C value (-26.2‰) is found for the biomass-burning aerosols, suggesting a dominant contribution from combustion of C3 plants in the studied region.

  3. Application technique affects the potential of mineral concentrates from livestock manure to replace inorganic nitrogen fertilizer

    NARCIS (Netherlands)

    Klop, G.; Velthof, G.L.; Groenigen, van J.W.

    2012-01-01

    It has been suggested that mineral concentrates (MCs) produced from livestock manure might partly replace inorganic N fertilizers, thereby further closing the nitrogen (N) cycle. Here, we quantified nitrogen use efficiency (NUE) and N loss pathways associated with MCs, compared with inorganic

  4. Concentrations of polycyclic aromatic hydrocarbons and inorganic constituents in ambient surface soils, Chicago, Illinois: 2001-2002

    Science.gov (United States)

    Kay, R.T.; Arnold, T.L.; Cannon, W.F.; Graham, D.

    2008-01-01

    Samples of ambient surface soils were collected from 56 locations in Chicago, Illinois, using stratified random sampling techniques and analyzed for polycyclic aromatic hydrocarbon (PAH) compounds and inorganic constituents. PAHs appear to be derived primarily from combustion of fossil fuels and may be affected by proximity to industrial operations, but do not appear to be substantially affected by the organic carbon content of the soil, proximity to nonindustrial land uses, or proximity to a roadway. Atmospheric settling of particulate matter appears to be an important mechanism for the placement of PAH compounds into soils. Concentrations of most inorganic constituents are affected primarily by soil-forming processes. Concentrations of lead, arsenic, mercury, calcium, magnesium, phosphorus, copper, molybdenum, zinc, and selenium are elevated in ambient surface soils in Chicago in comparison to the surrounding area, indicating anthropogenic sources for these elements in Chicago soils. Concentrations of calcium and magnesium in Chicago soils appear to reflect the influence of the carbonate bedrock parent material on the chemical composition of the soil, although the effects of concrete and road fill cannot be discounted. Concentrations of inorganic constituents appear to be largely unaffected by the type of nearby land use. Copyright ?? Taylor & Francis Group, LLC.

  5. Inter-annual Variability in Global Suspended Particulate Inorganic Carbon Inventory Using Space-based Measurements

    Science.gov (United States)

    Hopkins, J.; Balch, W. M.; Henson, S.; Poulton, A. J.; Drapeau, D.; Bowler, B.; Lubelczyk, L.

    2016-02-01

    Coccolithophores, the single celled phytoplankton that produce an outer covering of calcium carbonate coccoliths, are considered to be the greatest contributors to the global oceanic particulate inorganic carbon (PIC) pool. The reflective coccoliths scatter light back out from the ocean surface, enabling PIC concentration to be quantitatively estimated from ocean color satellites. Here we use datasets of AQUA MODIS PIC concentration from 2003-2014 (using the recently-revised PIC algorithm), as well as statistics on coccolithophore vertical distribution derived from cruises throughout the world ocean, to estimate the average global (surface and integrated) PIC standing stock and its associated inter-annual variability. In addition, we divide the global ocean into Longhurst biogeochemical provinces, update the PIC biomass statistics and identify those regions that have the greatest inter-annual variability and thus may exert the greatest influence on global PIC standing stock and the alkalinity pump.

  6. Recent developments in inorganically filled carbon nanotubes: successes and challenges

    Directory of Open Access Journals (Sweden)

    Ujjal K Gautam, Pedro M F J Costa, Yoshio Bando, Xiaosheng Fang, Liang Li, Masataka Imura and Dmitri Golberg

    2010-01-01

    Full Text Available Carbon nanotubes (CNTs are a unique class of nanomaterials that can be imagined as rolled graphene sheets. The inner hollow of a CNT provides an extremely small, one-dimensional space for storage of materials. In the last decade, enormous effort has been spent to produce filled CNTs that combine the properties of both the host CNT and the guest filling material. CNTs filled with various inorganic materials such as metals, alloys, semiconductors and insulators have been obtained using different synthesis approaches including capillary filling and chemical vapor deposition. Recently, several potential applications have emerged for these materials, such as the measurement of temperature at the nanoscale, nano-spot welding, and the storage and delivery of extremely small quantities of materials. A clear distinction between this class of materials and other nanostructures is the existence of an enormous interfacial area between the CNT and the filling matter. Theoretical investigations have shown that the lattice mismatch and strong exchange interaction of CNTs with the guest material across the interface should result in reordering of the guest crystal structure and passivation of the surface dangling bonds and thus yielding new and interesting physical properties. Despite preliminary successes, there remain many challenges in realizing applications of CNTs filled with inorganic materials, such as a comprehensive understanding of their growth and physical properties and control of their structural parameters. In this article, we overview research on filled CNT nanomaterials with special emphasis on recent progress and key achievements. We also discuss the future scope and the key challenges emerging out of a decade of intensive research on these fascinating materials.

  7. Carbon Balance in an Irrigated Corn Field after Inorganic Fertilizer or Manure Application

    Science.gov (United States)

    Lentz, R. D.; Lehrsch, G. A.

    2014-12-01

    Little is known about inorganic fertilizer or manure effects on organic carbon (OC) and inorganic C (IC) losses from a furrow irrigated field, particularly in the context of other system C gains or losses. In 2003 and 2004, we measured dissolved organic and inorganic C (DOC, DIC), particulate OC and IC (POC, PIC) concentrations in irrigation inflow, runoff, and percolation waters (6-7 irrigations/y); C inputs from soil amendments and crop biomass; harvested C; and gaseous C emissions from field plots cropped to silage corn (Zea mays L.) in southern Idaho. Annual treatments included: (M) 13 (y 1) and 34 Mg/ha (y 2) stockpiled dairy manure; (F) 78 (yr 1) and 195 kg N/ha (y 2) inorganic N fertilizer; or (NA) no amendment--control. The mean annual total C input into M plots averaged 16.1 Mg/ha, 1.4-times greater than that for NA (11.5 Mg/ha) or F (11.1 Mg/ha), while total C outputs for the three treatments were similar, averaging 11.8 Mg/ha. Thus, the manure plots ended each growing season with an average net gain of 3.8 Mg C/ha (a positive net C flux), while the control (-0.5 Mg C/ha) and fertilizer (-0.4 Mg C/ha) treatments finished the season with a net C loss. Atmospheric CO2 incorporated into the crop biomass contributed 96% of the mean annual C input to NA and F plots but only 68% to M plots. We conclude that nutrient amendments substantially influence the short-term carbon balance of our furrow-irrigated system. Amendments had both direct and indirect influences on individual C components, such as the losses of DIC and POC in runoff and DOC in percolation water, producing temporally complex outcomes which may depend on environmental conditions external to the field.

  8. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage.

    Science.gov (United States)

    Wang, Hailiang; Dai, Hongjie

    2013-04-07

    The global shift of energy production from fossil fuels to renewable energy sources requires more efficient and reliable electrochemical energy storage devices. In particular, the development of electric or hydrogen powered vehicles calls for much-higher-performance batteries, supercapacitors and fuel cells than are currently available. In this review, we present an approach to synthesize electrochemical energy storage materials to form strongly coupled hybrids (SC-hybrids) of inorganic nanomaterials and novel graphitic nano-carbon materials such as carbon nanotubes and graphene, through nucleation and growth of nanoparticles at the functional groups of oxidized graphitic nano-carbon. We show that the inorganic-nano-carbon hybrid materials represent a new approach to synthesize electrode materials with higher electrochemical performance than traditional counterparts made by simple physical mixtures of electrochemically active inorganic particles and conducting carbon materials. The inorganic-nano-carbon hybrid materials are novel due to possible chemical bonding between inorganic nanoparticles and oxidized carbon, affording enhanced charge transport and increased rate capability of electrochemical materials without sacrificing specific capacity. Nano-carbon with various degrees of oxidation provides a novel substrate for nanoparticle nucleation and growth. The interactions between inorganic precursors and oxidized-carbon substrates provide a degree of control over the morphology, size and structure of the resulting inorganic nanoparticles. This paper reviews the recent development of inorganic-nano-carbon hybrid materials for electrochemical energy storage and conversion, including the preparation and functionalization of graphene sheets and carbon nanotubes to impart oxygen containing groups and defects, and methods of synthesis of nanoparticles of various morphologies on oxidized graphene and carbon nanotubes. We then review the applications of the SC

  9. Inorganic speciation of dissolved elements in seawater: the influence of pH on concentration ratios

    Directory of Open Access Journals (Sweden)

    Byrne Robert H

    2002-01-01

    Full Text Available Assessments of inorganic elemental speciation in seawater span the past four decades. Experimentation, compilation and critical review of equilibrium data over the past forty years have, in particular, considerably improved our understanding of cation hydrolysis and the complexation of cations by carbonate ions in solution. Through experimental investigations and critical evaluation it is now known that more than forty elements have seawater speciation schemes that are strongly influenced by pH. In the present work, the speciation of the elements in seawater is summarized in a manner that highlights the significance of pH variations. For elements that have pH-dependent species concentration ratios, this work summarizes equilibrium data (S = 35, t = 25°C that can be used to assess regions of dominance and relative species concentrations. Concentration ratios of complex species are expressed in the form log[A]/[B] = pH - C where brackets denote species concentrations in solution, A and B are species important at higher (A and lower (B solution pH, and C is a constant dependent on salinity, temperature and pressure. In the case of equilibria involving complex oxy-anions (MOx(OHy or hydroxy complexes (M(OHn, C is written as pKn = -log Kn or pKn* = -log Kn* respectively, where Kn and Kn* are equilibrium constants. For equilibria involving carbonate complexation, the constant C is written as pQ = -log(K2lKn [HCO3-] where K2l is the HCO3 - dissociation constant, Kn is a cation complexation constant and [HCO3-] is approximated as 1.9 × 10-3 molar. Equilibrium data expressed in this manner clearly show dominant species transitions, ranges of dominance, and relative concentrations at any pH.

  10. Bioengineering aspects of inorganic carbon supply to mass algal cultures. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, J.C.

    1980-06-01

    The work included in this report is part of an ongoing study (currently funded by the Solar Energy Research Institute - Subcontract No. XR-9-8144-1) on the inorganic carbon requirements of microalgae under mass culture conditions and covers the period June 1, 1978 through May 31, 1979. It is divided into two parts appended herein. The first part is a literature review on the inorganic carbon chemical system in relation to algal growth requirements, and the second part deals with the kinetics of inorganic carbon-limited growth of two freshwater chlorophytes including the effect of carbon limitation on cellular chemical composition. Additional experiment research covered under this contract was reported in the Proceedings of the 3rd Annual Biomass Energy Systems Conferences, pp. 25-32, Bioengineering aspects of inorganic carbon supply to mass algal cultures. Report No. SERI/TP-33-285.

  11. Dependence of carbon dioxide concentration on microalgal carbon dioxide fixation

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Yeoung Sang; Park, Song Moon [Department of Chemical Engineering, School of Environmental Engineering, Pohang University of Science and Technology, Pohang (Korea); Bolesky, Bohumil [Department of Chemical Engineering, McGill University (Canada)

    1999-10-01

    Batch cultivation of chlorella vulgaris was carried out under various CO{sub 2} concentrations in order to understand and describe mathematically the CO{sub 2} inhibition of microalgal CO{sub 2} fixation. The volumetric CO{sub 2} transfer coefficient from mixture gas to culture medium was estimated from the volumetric O{sub 2} transfer coefficient obtained experimentally. Using this transfer coefficient and aquatic equilibrium relationship between dissolved inorganic carbons, the behavior of dissolved CO{sub 2} was calculated during microalgal culture. When air containing 0.035%(v/v) CO{sub 2} was supplied into microalgal culture, the fixation rate was limited by CO{sub 2} transfer rate. However, the limitation was disappeared by supplying mixture gas containing above 2%(v/v) CO{sub 2} and the dissolved CO{sub 2} concentration was maintained at the saturated value. In the range of CO{sub 2} partial pressure in the flue gases from thermal power sations and steel-making plants, the microalgal CO{sub 2} fixation rate was inhibited. The CO{sub 2} fixation rate was successfully formulated by a new empirical equation as a function of dissolved CO{sub 2} concentration, which could be useful for modeling and simulating the performance of photobioreaction with enriched CO{sub 2}. Also, it was found that the CO{sub 2} inhibition of microalgal CO{sub 2} fixation was reversible and that microalgal CO{sub 2} fixation process could be stable against a shock of unusually high CO{sub 2} concentration. 29 refs., 8 figs.

  12. Radiocarbon and stable-isotope geochemistry of organic and inorganic carbon in Lake Superior

    Science.gov (United States)

    Zigah, Prosper K.; Minor, Elizabeth C.; Werne, Josef P.

    2012-03-01

    We present a lake-wide investigation of Lake Superior carbon and organic matter biogeochemistry using radiocarbon, stable isotope, and carbon concentrations. Dissolved inorganic carbon (DIC) abundance in the lake was 121-122 Tg C, with offshore concentration andδ13C values being laterally homogenous and tightly coupled to the physical and thermal regime and biochemical processes. Offshore Δ14C of DIC (50-65‰) exhibited lateral homogeneity and was more 14C enriched than co-occurring atmospheric CO2 (˜38‰); nearshore Δ14C of DIC (36-38‰) was similar to atmospheric CO2. Dissolved organic carbon (DOC) abundance was 14.2-16.4 Tg C. DOC's concentration and δ13C were homogenous in June (mixed lake), but varied laterally during August (stratification) possibly due to spatial differences in lake productivity. Throughout sampling, DOC had modern radiocarbon values (14-58‰) indicating a semilabile nature with a turnover time of ≤60 years. Lake particulate organic carbon (POC, 0.9-1.3 Tg C) was consistently 13C depleted relative to DOC. The δ15N of epilimnetic particulate organic nitrogen shifted to more negative values during stratification possibly indicating greater use of nitrate (rather than ammonium) by phytoplankton in August. POC's radiocarbon was spatially heterogeneous (Δ14C range: 58‰ to -303‰), and generally 14C depleted relative to DOC and DIC. POC 14C depletion could not be accounted for by black carbon in the lake but, because of its spatial and temporal distribution, is attributed to sediment resuspension. The presence of old POC within the epilimnion of the open lake indicates possible benthic-pelagic coupling in the lake's organic carbon cycle; the ultimate fate of this old POC bears further investigation.

  13. Inorganic membranes for carbon capture and power generation

    Science.gov (United States)

    Snider, Matthew T.

    Inorganic membranes are under consideration for cost-effective reductions of carbon emissions from coal-fired power plants, both in the capture of pollutants post-firing and in the direct electrochemical conversion of coal-derived fuels for improved plant efficiency. The suitability of inorganic membrane materials for these purposes stems as much from thermal and chemical stability in coal plant operating conditions as from high performance in gas separations and power generation. Hydrophilic, micro-porous zeolite membrane structures are attractive for separating CO2 from N2 in gaseous waste streams due to the attraction of CO2 to the membrane surface and micropore walls that gives the advantage to CO2 transport. Recent studies have indicated that retention of the templating agent used in zeolite synthesis can further block N2 from the micropore interior and significantly improve CO2/N2 selectivity. However, the role of the templating agent in micro-porous transport has not been well investigated. In this work, gas sorption studies were conducted by high-pressure thermo-gravimetric analysis on Zeolite Y membrane materials to quantify the effect of the templating agent on CO2, N2, and H2O adsorption/desorption, as well as to examine the effect of humidification on overall membrane performance. In equilibrium conditions, the N2 sorption enthalpy was nearly unchanged by the presence of the templating agent, but the N2 pore occupation was reduced ˜1000x. Thus, the steric nature of the blocking of N2 from the micropores by the templating agent was confirmed. CO2 and H2O sorption enthalpies were similarly unaffected by the templating agent, and the micropore occupations were only reduced as much as the void volume taken up by the templating agent. Thus, the steric blocking effect did not occur for molecules more strongly attracted to the micropore walls. Additionally, in time-transient measurements the CO 2 and H2O mobilities were significantly enhanced by the presence

  14. Sources and fluxes of inorganic carbon in a deep, oligotrophic lake (Loch Ness, Scotland)

    Science.gov (United States)

    Jones, R. I.; Grey, J.; Quarmby, Christopher; Sleep, Darren

    2001-12-01

    The main river inflows to Loch Ness and several depths in the water column within the loch were sampled over an annual cycle. The carbon isotope composition of total dissolved inorganic carbon (DIC) from the samples was determined as well as that of phytoplankton from the loch. Values of δ13C for DIC in the rivers indicated that this DIC was derived from soil respiration in the catchment and achieved only partial equilibrium with the atmosphere during river transport. Riverine loading accounted for most of the DIC in Loch Ness, and the great depth of the loch relative to its surface area allows only limited exchange with the atmosphere. Despite the low productivity in Loch Ness, DIC concentrations in the low alkalinity water are appreciably influenced by plankton metabolism, and seasonal fluctuations in δ13C of DIC and phytoplankton revealed the particular impact of photosynthetic carbon fixation on DIC. However, the photosynthetic depletion of DIC during summer does not offset the riverine loading sufficiently to prevent the loch waters being supersaturated with CO2 throughout the year. Annual efflux of CO2 from Loch Ness is estimated to be 253 × 106 mol yr-1, of which around one quarter may be due to net heterotrophic mineralization within the loch of organic carbon of terrestrial origin. The remainder is attributable to inorganic carbon input to the lake via river inflow and derived from prior mineralization of soil organic matter within the drainage area. This annual efflux of CO2 can represent around 6% of net ecosystem production in the catchment.

  15. Distribution of dissolved inorganic carbon and related parameters in the Thermaikos Gulf (Eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    E. KRASAKOPOULOU

    2006-06-01

    Full Text Available Data on the distribution of dissolved inorganic carbon (measured as TCO2 and related parameters in the Thermaikos Gulf were obtained during May 1997. High TCO2 concentrations were recorded close to the bottom, especially in the northern part of the gulf, as a result of organic matter remineralisation. The positive relatively good correlation between TCO2 and both apparent oxygen utilisation (AOU and phosphate at the last sampling depth confi rmed the regenerative origin of a large proportion of TCO2. The comparatively conservative behaviour of alkalinity, together with the relatively low value of the homogenous buffer factor β (β = ∂lnfCO2/∂lnTCO2 revealed that calcifi cation or carbonate dissolution takes place on a very small scale, simultaneously with the organic carbon production. The correlations between fCO2 and chlorophyll α, as well as AOU and the surface temperature, revealed that the carbon dioxide fi xation through the biological activity is the principal factor that modulates the variability of fCO2. A rough first estimate of the magnitude of the air-sea CO2 exchange and the potential role of the Thermaikos Gulf in the transfer of atmospheric CO2 was also obtained. The results showed that during May 1997, the Thermaikos Gulf acted as a weak sink for atmospheric CO2 at a rate of -0.60 - -1.43 mmol m-2 d-1, depending on which formula for the gas transfer velocity was used, and in accordance to recent reports regarding other temperate continental shelves. Extensive study of the dissolved inorganic carbon and related parameters, and continuous shipboard measurements of fCO2 a and fCO2 w during all seasons are necessary to safely quantify the role of the Thermaikos Gulf in the context of the coastal margins CO2 dynamics.

  16. Effects of acid mine drainage on dissolved inorganic carbon and stable carbon isotopes in receiving streams

    International Nuclear Information System (INIS)

    Fonyuy, Ernest W.; Atekwana, Eliot A.

    2008-01-01

    Dissolved inorganic carbon (DIC) constitutes a significant fraction of a stream's carbon budget, yet the role of acid mine drainage (AMD) in DIC dynamics in receiving streams remains poorly understood. The objective of this study was to evaluate spatial and temporal effects of AMD and its chemical evolution on DIC and stable isotope ratio of DIC (δ 13 C DIC ) in receiving streams. We examined spatial and seasonal variations in physical and chemical parameters, DIC, and δ 13 C DIC in a stream receiving AMD. In addition, we mixed different proportions of AMD and tap water in a laboratory experiment to investigate AMD dilution and variable bicarbonate concentrations to simulate downstream and seasonal hydrologic conditions in the stream. Field and laboratory samples showed variable pH, overall decreases in Fe 2+ , alkalinity, and DIC, and variable increase in δ 13 C DIC . We attribute the decrease in alkalinity, DIC loss, and enrichment of 13 C of DIC in stream water to protons produced from oxidation of Fe 2+ followed by Fe 3+ hydrolysis and precipitation of Fe(OH) 3(s) . The extent of DIC decrease and 13 C enrichment of DIC was related to the amount of HCO 3 - dehydrated by protons. The laboratory experiment showed that lower 13 C enrichment occurred in unmixed AMD (2.7 per mille ) when the amount of protons produced was in excess of HCO 3 - or in tap water (3.2 per mille ) where no protons were produced from Fe 3+ hydrolysis for HCO 3 - dehydration. The 13 C enrichment increased and was highest for AMD-tap water mixture (8.0 per mille ) where Fe 2+ was proportional to HCO 3 - concentration. Thus, the variable downstream and seasonal 13 C enrichment in stream water was due in part to: (1) variations in the volume of stream water initially mixed with AMD and (2) to HCO 3 - input from groundwater and seepage in the downstream direction. Protons produced during the chemical evolution of AMD caused seasonal losses of 50 to >98% of stream water DIC. This loss of DIC

  17. Involvement of H(+)-ATPase and carbonic anhydrase in inorganic carbon uptake for endosymbiont photosynthesis.

    Science.gov (United States)

    Furla, P; Allemand, D; Orsenigo, M N

    2000-04-01

    Symbiotic cnidarians absorb inorganic carbon from seawater to supply intracellular dinoflagellates with CO(2) for their photosynthesis. To determine the mechanism of inorganic carbon transport by animal cells, we used plasma membrane vesicles prepared from ectodermal cells isolated from tentacles of the sea anemone, Anemonia viridis. H(14)CO(-)(3) uptake in the presence of an outward NaCl gradient or inward H(+) gradient, showed no evidence for a Cl(-)- or H(+)- driven HCO(-)(3) transport. H(14)CO(-)(3) and (36)Cl(-) uptakes were stimulated by a positive inside-membrane diffusion potential, suggesting the presence of HCO(-)(3) and Cl(-) conductances. A carbonic anhydrase (CA) activity was measured on plasma membrane (4%) and in the cytoplasm of the ectodermal cells (96%) and was sensitive to acetazolamide (IC(50) = 20 nM) and ethoxyzolamide (IC(50) = 2.5 nM). A strong DIDS-sensitive H(+)-ATPase activity was observed (IC(50) = 14 microM). This activity was also highly sensitive to vanadate and allyl isothiocyanate, two inhibitors of P-type H(+)-ATPases. Present data suggest that HCO(-)(3) absorption by ectodermal cells is carried out by H(+) secretion by H(+)-ATPase, resulting in the formation of carbonic acid in the surrounding seawater, which is quickly dehydrated into CO(2) by a membrane-bound CA. CO(2) then diffuses passively into the cell where it is hydrated in HCO(-)(3) by a cytosolic CA.

  18. Seasonal variability of the inorganic carbon system in a large coastal plain estuary

    Science.gov (United States)

    Joesoef, Andrew; Kirchman, David L.; Sommerfield, Christopher K.; Cai, Wei-Jun

    2017-11-01

    Carbonate geochemistry research in large estuarine systems is limited. More work is needed to understand how changes in land-use activity influence watershed export of organic and inorganic carbon, acids, and nutrients to the coastal ocean. To investigate the seasonal variation of the inorganic carbon system in the Delaware Estuary, one of the largest estuaries along the US east coast, dissolved inorganic carbon (DIC), total alkalinity (TA), and pH were measured along the estuary from June 2013 to April 2015. In addition, DIC, TA, and pH were periodically measured from March to October 2015 in the nontidal freshwater Delaware, Schuylkill, and Christina rivers over a range of discharge conditions. There were strong negative relationships between river TA and discharge, suggesting that changes in HCO3- concentrations reflect dilution of weathering products in the drainage basin. The ratio of DIC to TA, an understudied but important property, was high (1.11) during high discharge and low (0.94) during low discharge, reflecting additional DIC input in the form of carbon dioxide (CO2), most likely from terrestrial organic matter decomposition, rather than bicarbonate (HCO3-) inputs due to drainage basin weathering processes. This is also a result of CO2 loss to the atmosphere due to rapid water transit during the wet season. Our data further show that elevated DIC in the Schuylkill River is substantially different than that in the Delaware River. Thus, tributary contributions must be considered when attributing estuarine DIC sources to the internal carbon cycle versus external processes such as drainage basin mineralogy, weathering intensity, and discharge patterns. Long-term records in the Delaware and Schuylkill rivers indicate shifts toward higher alkalinity in estuarine waters over time, as has been found in other estuaries worldwide. Annual DIC input flux to the estuary and export flux to the coastal ocean are estimated to be 15.7 ± 8.2 × 109 mol C yr-1 and 16

  19. Preliminary Study: Application of Off-Axis ICOS to Determine Stable Carbon Isotope in Dissolved Inorganic Carbon

    Science.gov (United States)

    Kim, Y. T.; Lee, J. M.; Hwang, J. H.; Piao, J.; Woo, N. C.

    2015-12-01

    CO2 is one of the major causes for global climate change. Because stable carbon isotope ratio is used to trace carbon source, several analytical techniques likes IRMS (Isotope Ratio Mass Spectrometry) and LAS (Laser Absorption Spectrometry) were extensively used. Off-axis ICOS, a kind of LAS, has merits on long-term stability and field application, therefore it is widely being used in CCS (Carbon Capture and Storage) field. The aim of this study is to extend the application scope of OA-ICOS to determine dissolved inorganic carbon (DIC). Because OA-ICOS showed dependence of δ13C on CO2 concentration, data processing is required. We tested CO2 Carbon Isotope Analyzer (CCIA-36-EP, Los Gatos Research) with both reference gas (δ13C= -28.28‰) and aqueous solutions prepared by dissolving sodium bicarbonate standards (δ13C= -12.26‰ and +3.96‰). The differences of δ13C between reference and measurement values are plotted by CO2 concentrations, then compared. At first, we checked the similarity between our curve pattern for reference gas and Guillon's research (δ13C= -43.99‰) by other Analyzer. To analyze aqueous samples, more errors can be caused than gas analysis. The carbon isotope fractionation occurs during dissolving standard reagents and extracting DIC as CO2 gas form. This effect is mixed with CO2 concentration dependence effect, therefore the curve patterns are different with that for reference gas. Our experiments are done for various δ13C values. It could be an important point to use OA-ICOS to analyze DIC, too.

  20. Determination of the origin of dissolved inorganic carbon in groundwater around a reclaimed landfill in Otwock using stable carbon isotopes.

    Science.gov (United States)

    Porowska, Dorota

    2015-05-01

    Chemical and isotopic analyses of groundwater from piezometers located around a reclaimed landfill in Otwock (Poland) were performed in order to trace the origin of dissolved inorganic carbon (DIC) in the groundwater. Due to differences in the isotopic composition of carbon from different sources, an analysis of stable carbon isotopes in the groundwater, together with the Keeling plot approach and a two-component mixing model allow us to evaluate the relative contributions of carbon from these sources in the groundwater. In the natural (background) groundwater, DIC concentrations and the isotopic composition of DIC (δ(13)CDIC) comes from two sources: decomposition of organic matter and carbonate dissolution within the aquifer sediments, whereas in the leachate-contaminated groundwater, DIC concentrations and δ(13)CDIC values depend on the degradation of organic matter within the aquifer sediments and biodegradation of organic matter stored in the landfill. From the mixing model, about 4-54% of the DIC pool is derived from organic matter degradation and 96-46% from carbonate dissolution in natural conditions. In the leachate-contaminated groundwater, about 20-53% of the DIC is derived from organic matter degradation of natural origin and 80-47% from biodegradation of organic matter stored in the landfill. Partial pressure of CO2 (P CO2) was generally above the atmospheric, hence atmospheric CO2 as a source of carbon in DIC pool was negligible in the aquifer. P CO2 values in the aquifer in Otwock were always one to two orders of magnitude above the atmospheric P CO2, and thus CO2 escaped directly into the vadose zone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effects of land use on soil inorganic carbon stocks in the Russian Chernozem.

    Science.gov (United States)

    Mikhailova, Elena A; Post, Christopher J

    2006-01-01

    Little is known about changes in soil inorganic carbon (SIC) stocks with depth and with land use in grassland ecosystems. This study was conducted to determine SIC stocks under different management regimes in the Mollisol, one of the typical soils in grasslands. Four sites were sampled: a native grassland field (not cultivated for at least 300 yr), an adjacent 50-yr continuous fallow field, a yearly cut hay field in the V.V. Alekhin Central-Chernozem Biosphere State Reserve in the Kursk region of Russia, and a continuously cropped field in the Experimental Station of the Kursk Institute of Agronomy and Soil Erosion Control. All sampled soils were classified as fine-silty, mixed, frigid Pachic Hapludolls. Significant differences occurred in SIC stocks between cultivated and grassland soil. The inorganic carbon stocks in the top 2 m were 107 Mg ha(-1) for the native grassland, 91 Mg ha(-1) for the yearly cut hay field, 242 Mg ha(-1) for the continuously cropped field, and 196 Mg ha(-1) for the 50-yr continuous fallow. The SIC was in the form of calcium carbonate and was mostly stored below the 1-m depth. The largest difference between inorganic carbon stocks was observed between the continuously cropped field and native grassland. The increase in inorganic carbon in the continuously cropped field and continuous fallow was attributed to initial cultivation and fertilization. Soil inorganic carbon in Mollisols is not accounted for in the current global carbon estimates.

  2. Input of particulate organic and dissolved inorganic carbon from the Amazon to the Atlantic Ocean

    Science.gov (United States)

    Druffel, E. R. M.; Bauer, J. E.; Griffin, S.

    2005-03-01

    We report concentrations and isotope measurements (radiocarbon and stable carbon) of dissolved inorganic carbon (DIC) and suspended particulate organic carbon (POC) in waters collected from the mouth of the Amazon River and the North Brazil Current. Samples were collected in November 1991, when the Amazon hydrograph was at its annual minimum and the North Brazil Current had retroflected into the equatorial North Atlantic. The DIC Δ14C results revealed postbomb carbon in river and ocean waters, with slightly higher values at the river mouth. The low DIC δ13C signature of the river end-member (-11‰) demonstrates that about half of the DIC originated from the remineralization of terrestrially derived organic matter. A linear relationship between DIC and salinity indicates that DIC was mixed nearly conservatively in the transition zone from the river mouth to the open ocean, though there was a small amount (≤10%) of organic matter remineralization in the mesohaline region. The POC Δ14C values in the river mouth were markedly lower than those values from the western Amazon region (Hedges et al., 1986). We conclude that the dominant source of POC near the river mouth and in the inner Amazon plume during November 1991 was aged, resuspended material of significant terrestrial character derived from shelf sediments, while the outer plume contained mainly marine-derived POC.

  3. Understanding on Soil Inorganic Carbon Transformation in North China

    Science.gov (United States)

    Li, Guitong; Yang, Lifang; Zhang, Chenglei; Zhang, Hongjie

    2015-04-01

    experiment concerning soil carbonate transformation under straw return and biochar addition was carried out. It is designed as a long-term field experiment. In the experiment, Ca2+ and Mg2+ in soil solution of different depth and time, in situ soil pH, soil CO2 concentration, and microbial activity will be measured. The main propose of the experiment is to explore the relationship between the transformation of SOC and SIC. Meanwhile, it is one of important field experiment for biochar effects on crop production, soil processes, and environmental impact. These researches were funded by National Natural Science Foundation of China (NNSFC) under projects of 41171211,40771106, and 40303015.

  4. Bioinformatic analysis of the distribution of inorganic carbon transporters and prospective targets for bioengineering to increase Ci uptake by cyanobacteria.

    Science.gov (United States)

    Gaudana, Sandeep B; Zarzycki, Jan; Moparthi, Vamsi K; Kerfeld, Cheryl A

    2015-10-01

    Cyanobacteria have evolved a carbon-concentrating mechanism (CCM) which has enabled them to inhabit diverse environments encompassing a range of inorganic carbon (Ci: [Formula: see text] and CO2) concentrations. Several uptake systems facilitate inorganic carbon accumulation in the cell, which can in turn be fixed by ribulose 1,5-bisphosphate carboxylase/oxygenase. Here we survey the distribution of genes encoding known Ci uptake systems in cyanobacterial genomes and, using a pfam- and gene context-based approach, identify in the marine (alpha) cyanobacteria a heretofore unrecognized number of putative counterparts to the well-known Ci transporters of beta cyanobacteria. In addition, our analysis shows that there is a huge repertoire of transport systems in cyanobacteria of unknown function, many with homology to characterized Ci transporters. These can be viewed as prospective targets for conversion into ancillary Ci transporters through bioengineering. Increasing intracellular Ci concentration coupled with efforts to increase carbon fixation will be beneficial for the downstream conversion of fixed carbon into value-added products including biofuels. In addition to CCM transporter homologs, we also survey the occurrence of rhodopsin homologs in cyanobacteria, including bacteriorhodopsin, a class of retinal-binding, light-activated proton pumps. Because they are light driven and because of the apparent ease of altering their ion selectivity, we use this as an example of re-purposing an endogenous transporter for the augmentation of Ci uptake by cyanobacteria and potentially chloroplasts.

  5. Dynamics of organic and inorganic carbon in surface sediments of the Yellow River Estuary

    Science.gov (United States)

    Yu, Z.; Wang, X.; Liu, X.; Zhang, E.; Hang, F.

    2017-12-01

    Estuarine sediment is an important carbon reservoir thus may play an important role in the global carbon cycle. However, little is known on the dynamics of organic carbon (OC) and inorganic carbon (IC) in the surface sediment of the Yellow River Estuary, a large estuary in northern China. In this study, we applied element analyses and isotopic approach to study spatial distribution and sources of OC and IC in the Yellow River Estuary. We found that TIC concentration (6.3-20.1 g kg-1) was much higher than TOC (0.2-4.4 g kg-1) in the surface sediment. There showed a large spatial variability in TOC and TIC and their stable isotopes. Both TOC and TIC were higher to the north (2.6 and 14.5 g kg-1) than to the south (1.6 and 12.2 g kg-1), except in the southern bay where TOC and TIC reached 2.7 and 15.4 g kg-1, respectively. Generally, TOC and TIC in our study area was mainly autochthonous. The lower TOC values in the south section were due to relatively higher kinetic energy level whereas the higher values in the bay was attributable to terrigenous matters accumulation and lower kinetic energy level. However, the southern bay revealed the most negative δ13Corg and δ13Ccarb, suggesting that there might exist some transfer of OC to IC in the section. Our study points out that the dynamics of sedimentary carbon in the Yellow River Estuary is influenced by multiple and complex processes, and highlights the importance of carbonate in carbon sequstration.

  6. Modelling the 13C and 12C isotopes of inorganic and organic carbon in the Baltic Sea

    Science.gov (United States)

    Gustafsson, Erik; Mörth, Carl-Magnus; Humborg, Christoph; Gustafsson, Bo G.

    2015-08-01

    In this study, 12C and 13C contents of all carbon containing state variables (dissolved inorganic and organic carbon, detrital carbon, and the carbon content of autotrophs and heterotrophs) have for the first time been explicitly included in a coupled physical-biogeochemical Baltic Sea model. Different processes in the carbon cycling have distinct fractionation values, resulting in specific isotopic fingerprints. Thus, in addition to simulating concentrations of different tracers, our new model formulation improves the possibility to constrain the rates of processes such as CO2 assimilation, mineralization, and air-sea exchange. We demonstrate that phytoplankton production and respiration, and the related air-sea CO2 fluxes, are to a large degree controlling the isotopic composition of organic and inorganic carbon in the system. The isotopic composition is further, but to a lesser extent, influenced by river loads and deep water inflows as well as transformation of terrestrial organic carbon within the system. Changes in the isotopic composition over the 20th century have been dominated by two processes - the preferential release of 12C to the atmosphere in association with fossil fuel burning, and the eutrophication of the Baltic Sea related to increased nutrient loads under the second half of the century.

  7. Inorganic Carbon Source for Photosynthesis in the Seagrass Thalassia hemprichii (Ehrenb.) Aschers.

    Science.gov (United States)

    Abel, K M

    1984-11-01

    Photosynthetic carbon uptake of the tropical seagrass Thalassia hemprichii (Ehrenb.) Aschers was studied by several methods. Photosynthesis in buffered seawater in media in the range of pH 6 to pH 9 showed an exponentially increasing rate with decreasing pH, thus indicating that free CO(2) was a photosynthetic substrate. However, these experiments were unable to determine whether photosynthesis at alkaline pH also contained some component due to HCO(3) (-) uptake. This aspect was further investigated by studying photosynthetic rates in a number of media of varying pH (7.8-8.61) and total inorganic carbon (0.75-13.17 millimolar). In these media, photosynthetic rate was correlated with free CO(2) concentration and was independent of the HCO(3) (-) concentration in the medium. Short time-course experiments were conducted during equilibration of free CO(2) and HCO(3) (-) after injection of (14)C labeled solution at acid or alkaline pH. High initial photosynthetic rates were observed when acidic solutions (largely free CO(2)) were used but not with alkaline solutions. The concentration of free CO(2) was found to be a limiting factor for photosynthesis in this plant.

  8. Determination of the origin of dissolved inorganic carbon in groundwater around a reclaimed landfill in Otwock using stable carbon isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Porowska, Dorota, E-mail: dorotap@uw.edu.pl

    2015-05-15

    Highlights: • Research showed the origin of DIC in the groundwater around a reclaimed landfill. • Carbon isotope was used to evaluate the contributions of carbon from different sources. • The leachate-contaminated water was isotopically distinct from the natural groundwater. • DIC in the natural groundwater comes from organic matter and dissolution of carbonates. • In the contaminated water, DIC comes from organic matter in the aquifer and landfill. - Abstract: Chemical and isotopic analyses of groundwater from piezometers located around a reclaimed landfill in Otwock (Poland) were performed in order to trace the origin of dissolved inorganic carbon (DIC) in the groundwater. Due to differences in the isotopic composition of carbon from different sources, an analysis of stable carbon isotopes in the groundwater, together with the Keeling plot approach and a two-component mixing model allow us to evaluate the relative contributions of carbon from these sources in the groundwater. In the natural (background) groundwater, DIC concentrations and the isotopic composition of DIC (δ{sup 13}C{sub DIC}) comes from two sources: decomposition of organic matter and carbonate dissolution within the aquifer sediments, whereas in the leachate-contaminated groundwater, DIC concentrations and δ{sup 13}C{sub DIC} values depend on the degradation of organic matter within the aquifer sediments and biodegradation of organic matter stored in the landfill. From the mixing model, about 4–54% of the DIC pool is derived from organic matter degradation and 96–46% from carbonate dissolution in natural conditions. In the leachate-contaminated groundwater, about 20–53% of the DIC is derived from organic matter degradation of natural origin and 80–47% from biodegradation of organic matter stored in the landfill. Partial pressure of CO{sub 2} (P CO{sub 2}) was generally above the atmospheric, hence atmospheric CO{sub 2} as a source of carbon in DIC pool was negligible in the

  9. Urea route to coat inorganic nanowires, carbon fibers and nanotubes by boron nitride

    International Nuclear Information System (INIS)

    Gomathi, A.; Ramya Harika, M.; Rao, C.N.R.

    2008-01-01

    A simple route involving urea as the nitrogen source has been employed to carry out boron nitride coating on carbon fibers, multi-walled carbon nanotubes and inorganic nanowires. The process involves heating the carbon fibers and nanotubes or inorganic nanowires in a mixture of H 3 BO 3 and urea, followed by a heat treatment at 1000 deg. C in a N 2 atmosphere. We have been able to characterize the BN coating by transmission electron microscopy as well as X-ray photoelectron spectroscopy. The urea decomposition route affords a simple method to coat boron nitride on one-dimensional nanostructures

  10. Inorganic carbon turnover caused by digestion of carbonate sands and metabolic activity of holothurians

    Science.gov (United States)

    Schneider, Kenneth; Silverman, Jacob; Kravitz, Ben; Rivlin, Tanya; Schneider-Mor, Aya; Barbosa, Sergio; Byrne, Maria; Caldeira, Ken

    2013-11-01

    Recent measurements have shown that holothurians (sea cucumbers) may play an important role in the cycling of CaCO3 in tropical coral reef systems through ingestion and processing of carbonate sediment. In this report, we present estimates of inorganic carbon turnover rates determined from laboratory incubations of Holothuria atra, Holothuria leucospilota and Stichopus herrmanni. The pH values of the gut lumen ranged from 7.0 to 7.6 when digestive tracts were filled with sediment compared with 6.1-6.7 in animals with empty digestive tracts. Empty gut volume estimates for H. atra and S. herrmanni were 36 ± 4 mL and 151 ± 14 mL, respectively. Based on these measurements and the density and porosity of carbonate sediments of coral reefs, it is estimated that these species process 19 ± 2 kg and 80 ± 7 kg CaCO3 sand yr-1 per individual, respectively. The annual CaCO3 dissolution rates per H. atra and S. herrmanni individual are estimated to be 6.5 ± 1.9 g and 9.6 ± 1.4 g, respectively, suggesting that 0.05 ± 0.02% and 0.1 ± 0.02% of the CaCO3 processed through their gut annually is dissolved. During incubations the CaCO3 dissolution of the fecal casts was 0.07 ± 0.01%, 0.04 ± 0.01% and 0.21 ± 0.05% for H. atra, H. leucospilota and S. herrmanni, respectively. The CaCO3 saturation state in the incubation seawater decreased markedly due to a greater increase in dissolved inorganic carbon (DIC) relative to total alkalinity (AT) as a result of respiration by the animals. Our results support the hypothesis that deposit feeders such as sea cucumbers play an important ecological role in the coral reef CaCO3 cycle.

  11. Dynamics of organic and inorganic carbon across contiguous mangrove and seagrass systems (Gazi Bay, Kenya)

    NARCIS (Netherlands)

    Bouillon, S.; Dehairs, F.; Velimirov, B.; Abril, G.; Borges, A.V.

    2007-01-01

    We report on the water column biogeochemistry in adjacent mangrove and seagrass systems in Gazi Bay (Kenya), with a focus on assessing the sources and cycling of organic and inorganic carbon. Mangrove and seagrass-derived material was found to be the dominant organic carbon sources in the water

  12. Bioengineering Aspects of Inorganic Carbon Supply to Mass Algal Cultures: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, J. C.

    1981-04-01

    Regardless of the application, the basic biotechnology of large-scale outdoor cultures involves many common features, particularly in the requirement for adequate nutrients such as carbon, nitrogen, and phosphorus to ensure that light is the sole limiting yield determinant. Whereas the required quantities of nitrogen and phosphorus are fairly simple, to estimate, those for inorganic carbon are far more complex.

  13. Stress corrosion inhibitors for type 18-10 stainless steels with low carbon content in hot and concentrated solutions of MgCl2. Study of some inorganic iodides

    International Nuclear Information System (INIS)

    Pinard, J.-L.

    1974-01-01

    Stress corrosion inhibitors for type Z2CN18-10 austenitic stainless steels with low carbon content in a solution of Cl 2 Mg at 105 deg C were investigated. It was established that iodides are the most adequate corrosion inhibitors because they react simultaneously upon the three main components of the alloy (Fe, Ni, Cr). A difference of behavior between I 2 Mg and the other iodides was observed (in electrochemistry and in simple stress corrosion experiments) and the influence of the metallic cation associated to I - was studied. The formation of the superficial film and the phenomena liable to occur at the interface film-corrosive solution were examined: film growth in MgCl 2 ; influence of certain substances added to the solution. A mechanism of inhibition by I - is suggested. It is similar to the mechanism proposed by BERGEN for the stress corrosion cracking by Cl - [fr

  14. Synthesis of PbI(2) single-layered inorganic nanotubes encapsulated within carbon nanotubes.

    Science.gov (United States)

    Cabana, Laura; Ballesteros, Belén; Batista, Eudar; Magén, César; Arenal, Raúl; Oró-Solé, Judith; Rurali, Riccardo; Tobias, Gerard

    2014-04-02

    The template assisted growth of single-layered inorganic nanotubes is reported. Single-crystalline lead iodide single-layered nanotubes have been prepared using the inner cavities of carbon nanotubes as hosting templates. The diameter of the resulting inorganic nanotubes is merely dependent on the diameter of the host. This facile method is highly versatile opening up new horizons in the preparation of single-layered nanostructures. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Inorganic Carbon Turnover caused by Digestion of Carbonate Sands and Metabolic Activity of Holothurians

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Kenneth; Silverman, Jacob; Kravitz, Benjamin S.; Rivlin, Tanya; Schneider-Mor, Aya; Barbosa, Sergio; Byrne, Maria; Caldeira, Ken

    2013-11-20

    Recent measurements have shown that holothurians (sea cucumbers) play an important role in the cycling of CaCO3 in tropical coral reef systems through ingestion and processing of carbonate sediment. In this study inorganic additional aspects of carbon turnover were determined in laboratory incubations of Holothuria atra, H. leucospilota and Stichopus herrmanni from One Tree Reef, Great Barrier Reef. The pH values of the gut lumen ranged from 6.1 to 6.7 in animals with empty digestive tracts as opposed to 7.0 to 7.6 when digestive tracts were filled with sediment. Empty gut volume estimates for H. atra and S. herrmanni were 36 ± 4 mL and 151 ± 14 mL, respectively. Based on these measurements it is estimated that these species process 19 ± 2kg and 80 ± 7kg CaCO3 sand yr-1 per individual, respectively. The annual dissolution rates of H. atra and S. herrmanni of 6.5±1.9g and 9.6±1.4g, respectively, suggest that 0.05±0.02% and 0.1±0.02% of the CaCO3 processed through their gut annually is dissolved. During the incubations the CaCO3 dissolution was 0.07±0.01%, 0.04±0.01% and 0.21±0.05% of the fecal casts for H. atra, H. leucospilota and S. herrmanni, respectively. The CaCO3 saturation state for both aragonite and calcite minerals during laboratory incubations decreased markedly due to a greater increase in dissolved inorganic carbon (DIC) relative to total alkalinity (AT) as a result of respiration by the animals. Our results support the hypothesis that deposit feeders such as sea cucumbers play an important ecological role in the coral reef CaCO3 cycle.

  16. Barium carbonate sediment sampling for inorganic dissolved carbon using isotope mass ratio spectrometer

    International Nuclear Information System (INIS)

    Kamaruzaman Mohamad; Rohaimah Demanah; Juhari Mohd Yusof; Roslanzairi Mostapa

    2009-01-01

    This paperwork explain the method of water sampling to obtain the precipitate of BaCO 3 solutions that will be used to analyze 13 C from field work in Kelana Jaya, Selangor, Langkawi, Kedah and Taiping, Perak. The sampling involves collecting of water samples for groundwater from boreholes and surface water from canal, river, pond and ex-mining pond from several locations at the study sites. This study also elaborates the instruments and chemicals used. The main purpose of this sampling is to obtain the precipitate of BaCO 3 for 13 C analysis of dissolved inorganic carbon (DIC). A correct sampling method according to standard is very important to ensure an accurate and precise result. With this, the data from the laboratory analysis result can be fully utilized to make the interpretation of the pollutants movement. (Author)

  17. Comparing carbon to carbon: Organic and inorganic carbon balances across nitrogen fertilization gradients in rainfed vs. irrigated Midwest US cropland

    Science.gov (United States)

    Hamilton, S. K.; McGill, B.

    2017-12-01

    The top meter of the earth's soil contains about twice the amount of carbon than the atmosphere. Agricultural management practices influence whether a cropland soil is a net carbon source or sink. These practices affect both organic and inorganic carbon cycling although the vast majority of studies examine the former. We will present results from several rarely-compared carbon fluxes: carbon dioxide emissions and sequestration from lime (calcium carbonate) weathering, dissolved gases emitted from groundwater-fed irrigation, dissolved organic carbon (DOC) leaching to groundwater, and soil organic matter storage. These were compared in a corn-soybean-wheat rotation under no-till management across a nitrogen fertilizer gradient where half of the replicated blocks are irrigated with groundwater. DOC and liming fluxes are also estimated from a complementary study in neighboring plots comparing a gradient of management practices from conventional to biologically-based annuals and perennials. These studies were conducted at the Kellogg Biological Station Long Term Ecological Research site in Michigan where previous work estimated that carbon dioxide emissions from liming accounted for about one quarter of the total global warming impact (GWI) from no-till systems—our work refines that figure. We will present a first time look at the GWI of gases dissolved in groundwater that are emitted when the water equilibrates with the atmosphere. We will explore whether nitrogen fertilizer and irrigation increase soil organic carbon sequestration by producing greater crop biomass and residues or if they enhance microbial activity, increasing decomposition of organic matter. These results are critical for more accurately estimating how intensive agricultural practices affect the carbon balance of cropping systems.

  18. Treated Wastewater Changes the Export of Dissolved Inorganic Carbon and Its Isotopic Composition and Leads to Acidification in Coastal Oceans.

    Science.gov (United States)

    Yang, Xufeng; Xue, Liang; Li, Yunxiao; Han, Ping; Liu, Xiangyu; Zhang, Longjun; Cai, Wei-Jun

    2018-04-25

    Human-induced changes in carbon fluxes across the land-ocean interface can influence the global carbon cycle, yet the impacts of rapid urbanization and establishment of wastewater treatment plants (WWTPs) on coastal ocean carbon cycles are poorly known. This is unacceptable as at present ∼64% of global municipal wastewater is treated before discharge. Here, we report surface water dissolved inorganic carbon (DIC) and sedimentary organic carbon concentrations and their isotopic compositions in the rapidly urbanized Jiaozhou Bay in northeast China as well as carbonate parameters in effluents of three large WWTPs around the bay. Using DIC, δ 13 C DIC and total alkalinity (TA) data and a tracer model, we determine the contributions to DIC from wastewater DIC input, net ecosystem production, calcium carbonate precipitation, and CO 2 outgassing. Our study shows that high-DIC and low-pH wastewater effluent represents an important source of DIC and acidification in coastal waters. In contrast to the traditional view of anthropogenic organic carbon export and degradation, we suggest that with the increase of wastewater discharge and treatment rates, wastewater DIC input may play an increasingly more important role in the coastal ocean carbon cycle.

  19. Study on the concentration and seasonal variation of inorganic elements in 35 species of marine algae

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Yan, X.J.

    1998-01-01

    The concentrations of five major and 28 trace elements in 35 marine algae collected along the coast of China were determined by instrumental neutron activation analysis. The concentrations of halogens, rare earth elements and many transition metal elements in marine algae are remarkably higher than...... those in terrestrial plants. The concentration factors for 31 elements in all collected algae were calculated, those for tri- and tetra-valent elements were higher than those of the mono- and di-valent elements in marine algae. The biogeochemical characteristics of inorganic elements in marine algae...

  20. Seasonal variability of the inorganic carbon system in a large coastal plain estuary

    Directory of Open Access Journals (Sweden)

    A. Joesoef

    2017-11-01

    Full Text Available Carbonate geochemistry research in large estuarine systems is limited. More work is needed to understand how changes in land-use activity influence watershed export of organic and inorganic carbon, acids, and nutrients to the coastal ocean. To investigate the seasonal variation of the inorganic carbon system in the Delaware Estuary, one of the largest estuaries along the US east coast, dissolved inorganic carbon (DIC, total alkalinity (TA, and pH were measured along the estuary from June 2013 to April 2015. In addition, DIC, TA, and pH were periodically measured from March to October 2015 in the nontidal freshwater Delaware, Schuylkill, and Christina rivers over a range of discharge conditions. There were strong negative relationships between river TA and discharge, suggesting that changes in HCO3− concentrations reflect dilution of weathering products in the drainage basin. The ratio of DIC to TA, an understudied but important property, was high (1.11 during high discharge and low (0.94 during low discharge, reflecting additional DIC input in the form of carbon dioxide (CO2, most likely from terrestrial organic matter decomposition, rather than bicarbonate (HCO3− inputs due to drainage basin weathering processes. This is also a result of CO2 loss to the atmosphere due to rapid water transit during the wet season. Our data further show that elevated DIC in the Schuylkill River is substantially different than that in the Delaware River. Thus, tributary contributions must be considered when attributing estuarine DIC sources to the internal carbon cycle versus external processes such as drainage basin mineralogy, weathering intensity, and discharge patterns. Long-term records in the Delaware and Schuylkill rivers indicate shifts toward higher alkalinity in estuarine waters over time, as has been found in other estuaries worldwide. Annual DIC input flux to the estuary and export flux to the coastal ocean are estimated to be 15.7 ± 8.2

  1. Form of inorganic carbon utilized for photosynthesis in Chlorella vulgaris 11h cells

    International Nuclear Information System (INIS)

    Miyachi, Shigetoh; Shiraiwa, Yoshihiro

    1979-01-01

    The rate of photosynthetic 14 CO 2 fixation in Chlorella vulgaris 11h cells in the presence of 0.55 mM NaH 14 CO 3 at pH 8.0 (20 0 C) was greatly enhanced by the addition of carbonic anhydrase (CA). However, when air containing 400 ppm 14 CO 2 was bubbled through the algal suspension, the rate of 14 CO 2 fixation immediately after the start of the bubbling was suppressed by CA. These effects of CA were observed in cells which had been grown in air containing 2% CO 2 (high-CO 2 cells) as well as those grown in ordinary air (containing 0.04% CO 2 , low-CO 2 cells). We therefore concluded that, irrespective of the CO 2 concentration given to the algal cells during growth, the active species of inorganic carbon absorbed by Chlorella cells is free CO 2 and they cannot utilize bicarbonate. The effects observed in the high-CO 2 cells were much more pronounced than those in the low-CO 2 cells. This difference was accounted for by the difference in the affinity for CO 2 in photosynthesis between the high- and low-CO 2 cells. (author)

  2. Determination of 14C age of inorganic and organic carbon in ancient Siberian permafrost

    Science.gov (United States)

    Onstott, T. C.; Liang, R.; Lau, M.; Vishnivetskaya, T. A.; Lloyd, K. G.; Pfiffner, S. M.; Hodgins, G.; Rivkina, E.

    2017-12-01

    Permafrost represents a large reservoir of ancient carbon that could have an important impact on the global carbon budget during climate warming. Due to the low turnover rate of carbon by microorganisms at subzero temperatures, the persistence of ancient carbon in younger permafrost deposits could also pose challenges for radiocarbon dating of permafrost sediment. We utilized Accelerator Mass Spectrometry to determine the 14C age of inorganic carbon, labile and recalcitrant organic carbon in Siberian permafrost sediment sampled at various depths from 2.9 to 5.6m. The fraction of inorganic carbon (CO2) was collected after acidification using phosphoric acid. The labile (younger) and recalcitrant (old) organic carbon in the subsequent residues were collected after combustion at 400 ºC and 800 ºC, respectively. The percentages of inorganic carbon increased from the youngest (2.9m) to the oldest (5.6m), whereas the fractions for organic carbon varied significantly at different depths. The 14C age determined in the inorganic fraction in the top sample (2.9 m) was 21,760 yr BP and gradually increased to 33,900 yr BP in the relative deeper sediment (3.5 and 5.6 m). Surprisingly, the fraction of "younger" carbon liberated at 400 oC was older than the more recalcitrant and presumably older organic carbon liberated at 800 oC in all cases. Moreover, the 14C age of the younger and older organic carbon fractions did not increase with depth as observed in the carbonate fraction. In particular, the 14C age of the organic carbon in the top sample (38,590-41,700 yr BP) was much older than the deeper samples at depth of 3.5m (18,228-20,158 yr BP) and 5.6m (29,040-38,020 yr BP). It should be noticed that the metabolism of ancient carbon in frozen permafrost may vary at different depths due to the different proportion of necromass and metabolically active microbes. Therefore, additional knowledge about the carbon dynamics of permafrost and more investigation would be required to

  3. A biological indicator of inorganic arsenic exposure using the sum of urinary inorganic arsenic and monomethylarsonic acid concentrations

    Science.gov (United States)

    Hata, Akihisa; Kurosawa, Hidetoshi; Endo, Yoko; Yamanaka, Kenzo; Fujitani, Noboru; Endo, Ginji

    2016-01-01

    Objectives: The sum of urinary inorganic arsenic (iAs), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) concentrations is used for the biological monitoring of occupational iAs exposure. Although DMA is a major metabolite of iAs, it is an inadequate index because high DMA levels are present in urine after seafood consumption. We estimated the urinary iAs+MMA concentration corresponding to iAs exposure. Methods: We used data from two arsenic speciation analyses of urine samples from 330 Bangladeshi with oral iAs exposure and 172 Japanese workers without occupational iAs exposure using high-performance liquid chromatography with inductively coupled plasma mass spectrometry. Results: iAs, MMA, and DMA, but not arsenobetaine (AsBe), were detected in the urine of the Bangladeshi subjects. The correlation between iAs+MMA+DMA and iAs+MMA was obtained as log (iAs+MMA) = 1.038 log (iAs+MMA+DMA) -0.658. Using the regression formula, the iAs+MMA value was calculated as 2.15 and 7.5 μg As/l, corresponding to 3 and 10 μg As/m3 of exposures, respectively. In the urine of the Japanese workers, arsenic was mostly excreted as AsBe. We used the 95th percentile of iAs+MMA (12.6 μg As/l) as the background value. The sum of the calculated and background values can be used as a biological indicator of iAs exposure. Conclusion: We propose 14.8 and 20.1 μg As/l of urinary iAs+MMA as the biological indicators of 3 and 10 μg As/m3 iAs exposure, respectively. PMID:27010090

  4. Fractionation between inorganic and organic carbon during the Lomagundi (2.22 2.1 Ga) carbon isotope excursion

    Science.gov (United States)

    Bekker, A.; Holmden, C.; Beukes, N. J.; Kenig, F.; Eglinton, B.; Patterson, W. P.

    2008-07-01

    The Lomagundi (2.22-2.1 Ga) positive carbon isotope excursion in shallow-marine sedimentary carbonates has been associated with the rise in atmospheric oxygen, but subsequent studies have demonstrated that the carbon isotope excursion was preceded by the rise in atmospheric oxygen. The amount of oxygen released to the exosphere during the Lomagundi excursion is constrained by the average global fractionation between inorganic and organic carbon, which is poorly characterized. Because dissolved inorganic and organic carbon reservoirs were arguably larger in the Paleoproterozoic ocean, at a time of lower solar luminosity and lower ocean redox state, decoupling between these two variables might be expected. We determined carbon isotope values of carbonate and organic matter in carbonates and shales of the Silverton Formation, South Africa and in the correlative Sengoma Argillite Formation, near the border in Botswana. These units were deposited between 2.22 and 2.06 Ga along the margin of the Kaapvaal Craton in an open-marine deltaic setting and experienced lower greenschist facies metamorphism. The prodelta to offshore marine shales are overlain by a subtidal carbonate sequence. Carbonates exhibit elevated 13C values ranging from 8.3 to 11.2‰ vs. VPDB consistent with deposition during the Lomagundi positive excursion. The total organic carbon (TOC) contents range from 0.01 to 0.6% and δ13C values range from - 24.8 to - 13.9‰. Thus, the isotopic fractionation between organic and carbonate carbon was on average 30.3 ± 2.8‰ ( n = 32) in the shallow-marine environment. The underlying Sengoma shales have highly variable TOC contents (0.14 to 21.94%) and δ13C values (- 33.7 to - 20.8‰) with an average of - 27.0 ± 3.0‰ ( n = 50). Considering that the shales were also deposited during the Lomagundi excursion, and taking δ13C values of the overlying carbonates as representative of the δ13C value of dissolved inorganic carbon during shale deposition, a carbon

  5. Photochemical mineralization of terrigenous DOC to dissolved inorganic carbon in ocean

    OpenAIRE

    Aarnos, Hanna; Gélinas, Yves; Kasurinen, Ville; Gu, Yufei; Puupponen, Veli-Mikko; Vähätalo, Anssi

    2018-01-01

    When terrigenous dissolved organic carbon (tDOC) rich in chromophoric dissolved organic matter (tCDOM) enters the ocean, solar radiation mineralizes it partially into dissolved inorganic carbon (DIC). This study addresses the amount and the rates of DIC photoproduction from tDOC and the area of ocean required to photomineralize tDOC. We collected water samples from 10 major rivers, mixed them with artificial seawater, and irradiated them with simulated solar radiation to measure DIC photoprod...

  6. Riverine dissolved carbon concentration and yield in subtropical catchments, Taiwan

    Science.gov (United States)

    Chen, Pei-Hao; Shih, Yu-ting; Huang, -Chuan, Jr.

    2017-04-01

    Dissolved carbon is not highly correlated to carbon cycle, but also a critical water quality indicator and affected by interaction of terrestrial and aquatic environment at catchment scale. However, the rates and extent of the dissolved carbon export are still poorly understood and scarcely quantified especially for typhoon events. In this study, regular and events' data of riverine dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) were monitored to estimate the export. Meanwhile, the hydrological model and mixing model were used for determination of DOC and DIC flow pathways at 3 sites of Tsengwen reservoir in southern Taiwan in 2014-2015. Results showed that the mean DOC concentration was 1.5 - 2.2 mg l-1 (flow weighted) without seasonal variation. The average DOC yield was 3.1 ton-C km-2 yr-1. On the other hand, DIC concentration ranged from 15 to 25.8 mg l-1, but DIC concentration in dry season was higher than wet season. Mean annual DIC yield was 51 ton-C km-2 yr-1. The export-ratio of DOC:DIC was 1:16.5, which was extremely lower than that of worldwide large rivers (DOC:DIC=1:4.5 in average) and other mountainous rivers (DOC:DIC=1:4.6 in average). Both DOC and DIC concentration showed the dramatically discrepant change in typhoon events. The DOC concentration increased to 4-8 folds rapidly before the flood peak. However, DIC concentration was diluted to one third with discharge simultaneously and returned slowly to base concentration in more than a week. According to the hydrological model, events contributed 14.6% of the annual discharge and 21.9% and 11.1% of DOC and DIC annual flux, respectively. Furthermore, 68.9% of events' discharge derived from surface runoff which carried out 91.3% of DOC flux and 51.1% of DIC flux. It implied that increases of surface runoff transported DOC form near soil surface, but diluted DIC concentration likely implied the contribution of groundwater. Our study characterized the specialty of dissolved carbon

  7. Apparent Disequilibrium of Inorganic and Organic Carbon Compounds in Serpentinizing Fluids

    Science.gov (United States)

    Robinson, K.; Shock, E.

    2014-12-01

    During serpentinization of ultramafic rocks, ferrous iron in silicates is oxidized to ferric minerals and H2O is reduced to H2. This process is accompanied by the reduction of inorganic carbon, as observed in experiments and natural systems. To test the extent to which stable and metastable equilibria are reached among aqueous organic compounds during serpentinization, we sampled water and dissolved gases from circumneutral surface pools and hyperalkaline seeps in the Samail ophiolite in the Sultanate of Oman and analyzed for various carbon constituents, including dissolved inorganic carbon, dissolved organic carbon, methane, carbon monoxide, formate, acetate, and other small organic acid anions. Measurements of temperature, pH, dissolved H2, O2, major cations, major anions, and major and trace elements were also made. The aqueous composition of the analyzed samples was speciated based on ionic equilibrium interactions in order to obtain activities for inorganic carbon species, reduced carbon species, H2, and O2. The redox disequilibria among carbon species was then assessed using data and parameters for the revised HKF equations of state. This analysis demonstrates that the carbon species in this system are out of equilibrium with respect to one another in ways that cannot be compensated by altering the abundance of the other constituents within analytical uncertainties. Specifically, there is too much formate and too little methane relative to stable and metastable equilibria. This result implies the following: 1) Methane and formate equilibrated in separate parts of the system, given that no reasonable temperature, pressure, or composition changes satisfy equilibrium with their measured abundances. 2) Methane production is kinetically inhibited, as seen in experiments. 3) Microbial methane oxidation altered the abundance of methane and formate; methane oxidation to formate or carbonate is calculated to be extremely thermodynamically favorable in these fluids.

  8. Enrichment of Inorganic Martian Dust Simulant with Carbon Component can Provoke Neurotoxicity

    Science.gov (United States)

    Pozdnyakova, Natalia; Pastukhov, Artem; Dudarenko, Marina; Borysov, Arsenii; Krisanova, Natalia; Nazarova, Anastasia; Borisova, Tatiana

    2017-02-01

    Carbon is the most abundant dust-forming element in the interstellar medium. Tremendous amount of meteorites containing plentiful carbon and carbon-enriched dust particles have reached the Earth daily. National Institute of Health panel accumulates evidences that nano-sized air pollution components may have a significant impact on the central nervous system (CNS) in health and disease. During inhalation, nano-/microsized particles are efficiently deposited in nasal, tracheobronchial, and alveolar regions and can be transported to the CNS. Based on above facts, here we present the study, the aims of which were: 1) to upgrade inorganic Martian dust simulant derived from volcanic ash (JSC-1a/JSC, ORBITEC Orbital Technologies Corporation, Madison, Wisconsin) by the addition of carbon components, that is, nanodiamonds and carbon dots; 2) to analyse acute effects of upgraded simulant on key characteristics of synaptic neurotransmission; and 3) to compare above effects with those of inorganic dust and carbon components per se. Acute administration of carbon-containing Martian dust analogues resulted in a significant decrease in transporter-mediated uptake of L-[14C]glutamate (the major excitatory neurotransmitter) and [3H]GABA (the main inhibitory neurotransmitter) by isolated rat brain nerve terminals. The extracellular level of both neurotransmitters increased in the presence of carbon-containing Martian dust analogues. These effects were associated with action of carbon components of upgraded Martian dust simulant, but not with its inorganic constituent. This fact indicates that carbon component of native Martian dust can have deleterious effects on extracellular glutamate and GABA homeostasis in the CNS, and so glutamate- and GABA-ergic neurotransmission disballansing exitation and inhibition.

  9. Comparison of CO(2) and bicarbonate as inorganic carbon sources for triacylglycerol and starch accumulation in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Gardner, Robert D; Lohman, Egan; Gerlach, Robin; Cooksey, Keith E; Peyton, Brent M

    2013-01-01

    Microalgae are capable of accumulating high levels of lipids and starch as carbon storage compounds. Investigation into the metabolic activities involved in the synthesis of these compounds has escalated since these compounds can be used as precursors for food and fuel. Here, we detail the results of a comprehensive analysis of Chlamydomonas reinhardtii using high or low inorganic carbon concentrations and speciation between carbon dioxide and bicarbonate, and the effects these have on inducing lipid and starch accumulation during nitrogen depletion. High concentrations of CO(2) (5%; v/v) produced the highest amount of biofuel precursors, transesterified to fatty acid methyl esters, but exhibited rapid accumulation and degradation characteristics. Low CO(2) (0.04%; v/v) caused carbon limitation and minimized triacylglycerol (TAG) and starch accumulation. High bicarbonate caused a cessation of cell cycling and accumulation of both TAG and starch that was more stable than the other experimental conditions. Starch accumulated prior to TAG and then degraded as maximum TAG was reached. This suggests carbon reallocation from starch-based to TAG-based carbon storage. Copyright © 2012 Wiley Periodicals, Inc.

  10. The geographic concentration of blue carbon in the continental US

    Science.gov (United States)

    Feagin, R. A.; Hinson, A.

    2014-12-01

    Salt water wetlands have the potential to be bought and sold as relatively rich reservoirs of carbon in the context of sequestration projects. However, little is known about the geographic distribution of this potential, and no coarse scale investigation has addressed this ecosystem service at the continental scale. Our objective was to determine blue carbon stocks and flux in coastal wetland soils in the United States and categorize the potential for projects by estuarine basin, state, and wetland type. We linked National Wetlands Inventory (NWI) data with the Soil Survey Geographic Database (SSURGO) through spatial analysis within a Geographic Information System (GIS). We then calculated and mapped soil organic carbon across the continental US. Results were filtered by state, estuarine basin, wetland type, and accumulation rate, and ranking lists for each categorization were produced. The results showed that belowground carbon accumulation is concentrated in specific regions, with the richest and largest reservoirs in the Gulf and Atlantic southeastern estuaries, for example mangrove zones in Florida. Salt marshes on the southern Pacific Coast were relatively low in carbon due to small areas of coverage and the presence of sandy and inorganic soil. The geomorphic position of a wetland within a given estuary, for example on an exposed barrier island versus recessed towards inflowing headwaters, accounted for a greater degree of soil carbon variation than the wetland type, for example woody mangroves versus herbaceous marshes. The potential of a blue carbon sequestration project in relation to its location could be influential in determining wetland policy, conservation, and restoration in the coming decades.

  11. Inorganic Carbon Utilization of the Freshwater Red Alga Compsopogon coeruleus (Balbis Montagne (Compsopogonaceae, Rhodophyta Evaluated by in situ Measurement of Chlorophyll Fluorescence

    Directory of Open Access Journals (Sweden)

    Shao-Lun Liu

    2004-09-01

    Full Text Available To explore the inorganic carbon utilization of the freshwater red alga Compsopogon coeruleus, photosynthetic rates in response to increasing of bicarbonate concentration, the addition of alkaline HEPES buffer (pH 8.8, acid HEPES buffer (pH 4.0 and the extracellular carbonic anhydrase inhibitor (acetazolamide, AZ, respectively, were examined in situ by using a submersible pulse amplitude modulated (PAM fluorometer. Among the treatments, adding acid HEPES buffer significantly reduced photosynthetic rates of the alga, while others showed no effect. Accordingly, we concluded that C. coeruleus had less or no inorganic carbon (Ci limitation in its natural habitat. The alga might have higher affinity for bicarbonate and directly uptake bicarbonate as main Ci source without the aid of extracellular carbonic anhydrase.

  12. Carbon isotopes of dissolved inorganic carbon reflect utilization of different carbon sources by microbial communities in two limestone aquifer assemblages

    Directory of Open Access Journals (Sweden)

    M. E. Nowak

    2017-08-01

    Full Text Available Isotopes of dissolved inorganic carbon (DIC are used to indicate both transit times and biogeochemical evolution of groundwaters. These signals can be complicated in carbonate aquifers, as both abiotic (i.e., carbonate equilibria and biotic factors influence the δ13C and 14C of DIC. We applied a novel graphical method for tracking changes in the δ13C and 14C of DIC in two distinct aquifer complexes identified in the Hainich Critical Zone Exploratory (CZE, a platform to study how water transport links surface and shallow groundwaters in limestone and marlstone rocks in central Germany. For more quantitative estimates of contributions of different biotic and abiotic carbon sources to the DIC pool, we used the NETPATH geochemical modeling program, which accounts for changes in dissolved ions in addition to C isotopes. Although water residence times in the Hainich CZE aquifers based on hydrogeology are relatively short (years or less, DIC isotopes in the shallow, mostly anoxic, aquifer assemblage (HTU were depleted in 14C compared to a deeper, oxic, aquifer complex (HTL. Carbon isotopes and chemical changes in the deeper HTL wells could be explained by interaction of recharge waters equilibrated with post-bomb 14C sources with carbonates. However, oxygen depletion and δ13C and 14C values of DIC below those expected from the processes of carbonate equilibrium alone indicate considerably different biogeochemical evolution of waters in the upper aquifer assemblage (HTU wells. Changes in 14C and 13C in the upper aquifer complexes result from a number of biotic and abiotic processes, including oxidation of 14C-depleted OM derived from recycled microbial carbon and sedimentary organic matter as well as water–rock interactions. The microbial pathways inferred from DIC isotope shifts and changes in water chemistry in the HTU wells were supported by comparison with in situ microbial community structure based on 16S rRNA analyses. Our findings

  13. Seasonal distribution of dissolved inorganic carbon and net community production on the Bering Sea shelf

    Directory of Open Access Journals (Sweden)

    J. T. Mathis

    2010-05-01

    Full Text Available In order to assess the current state of net community production (NCP in the southeastern Bering Sea, we measured the spatio-temporal distribution and controls on dissolved inorganic carbon (DIC concentrations in spring and summer of 2008 across six shelf domains defined by differing biogeochemical characteristics. DIC concentrations were tightly coupled to salinity in spring and ranged from ~1900 μmoles kg−1 over the inner shelf to ~2400 μmoles kg−1 in the deeper waters of the Bering Sea. In summer, DIC concentrations were lower due to dilution from sea ice melt, terrestrial inputs, and primary production. Concentrations were found to be as low ~1800 μmoles kg−1 over the inner shelf. We found that DIC concentrations were drawn down 30–150 μmoles kg−1 in the upper 30 m of the water column due to primary production and calcium carbonate formation between the spring and summer occupations. Using the seasonal drawdown of DIC, estimated rates of NCP on the inner, middle, and outer shelf averaged 28 ± 9 mmoles C m−2 d−1. However, higher rates of NCP (40–47 mmoles C m−2 d−1 were observed in the "Green Belt" where the greatest confluence of nutrient-rich basin water and iron-rich shelf water occurs. We estimated that in 2008, total NCP across the shelf was on the order of ~96 Tg C yr−1. Due to the paucity of consistent, comparable productivity data, it is impossible at this time to quantify whether the system is becoming more or less productive. However, as changing climate continues to modify the character of the Bering Sea, we have shown that NCP can be an important indicator of how the ecosystem is functioning.

  14. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Cochrane, T. T., E-mail: agteca@hotmail.com [AGTECA S.A., 230 Oceanbeach Road, Mount Maunganui, Tauranga 3116 (New Zealand); Cochrane, T. A., E-mail: tom.cochrane@canterbury.ac.nz [Department of Civil and Natural Resources Engineering, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand)

    2016-01-15

    Purpose: To demonstrate that the authors’ new “aqueous solution vs pure water” equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. Methods: The authors experimented with their new equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of “free” water molecules per unit volume of solution, “N{sub f},” and (c) the “t” factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate N{sub f} was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors’ equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. Results: The provisional equations formulated to calculate N{sub f}, the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of N{sub f

  15. Osmotic potential calculations of inorganic and organic aqueous solutions over wide solute concentration levels and temperatures

    International Nuclear Information System (INIS)

    Cochrane, T. T.; Cochrane, T. A.

    2016-01-01

    Purpose: To demonstrate that the authors’ new “aqueous solution vs pure water” equation to calculate osmotic potential may be used to calculate the osmotic potentials of inorganic and organic aqueous solutions over wide ranges of solute concentrations and temperatures. Currently, the osmotic potentials of solutions used for medical purposes are calculated from equations based on the thermodynamics of the gas laws which are only accurate at low temperature and solute concentration levels. Some solutions used in medicine may need their osmotic potentials calculated more accurately to take into account solute concentrations and temperatures. Methods: The authors experimented with their new equation for calculating the osmotic potentials of inorganic and organic aqueous solutions up to and beyond body temperatures by adjusting three of its factors; (a) the volume property of pure water, (b) the number of “free” water molecules per unit volume of solution, “N f ,” and (c) the “t” factor expressing the cooperative structural relaxation time of pure water at given temperatures. Adequate information on the volume property of pure water at different temperatures is available in the literature. However, as little information on the relative densities of inorganic and organic solutions, respectively, at varying temperatures needed to calculate N f was available, provisional equations were formulated to approximate values. Those values together with tentative t values for different temperatures chosen from values calculated by different workers were substituted into the authors’ equation to demonstrate how osmotic potentials could be estimated over temperatures up to and beyond bodily temperatures. Results: The provisional equations formulated to calculate N f , the number of free water molecules per unit volume of inorganic and organic solute solutions, respectively, over wide concentration ranges compared well with the calculations of N f using recorded

  16. Seasonal variations in inorganic carbon components in the central and eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S; DileepKumar, M.; George, M.D.; Rajendran, A

    Extensive observations have been made on the carbon dioxide system in the Arabian Sea during three different seasons as part of the Indian Joint Global Ocean Flux Study (JGOFS) Programme. Concentrations of total carbon dioxide and partial pressure...

  17. Organic, elemental and inorganic carbon in particulate matter of six urban environments in Europe

    Directory of Open Access Journals (Sweden)

    M. Sillanpää

    2005-01-01

    Full Text Available A series of 7-week sampling campaigns were conducted in urban background sites of six European cities as follows: Duisburg (autumn, Prague (winter, Amsterdam (winter, Helsinki (spring, Barcelona (spring and Athens (summer. The campaigns were scheduled to include seasons of local public health concern due to high particulate concentrations or findings in previously conducted epidemiological studies. Aerosol samples were collected in parallel with two identical virtual impactors that divide air particles into fine (PM2.5 and coarse (PM2.5-10 size ranges. From the collected filter samples, elemental (EC and organic (OC carbon contents were analysed with a thermal-optical carbon analyser (TOA; total Ca, Ti, Fe, Si, Al and K by energy dispersive X-ray fluorescence (ED-XRF; As, Cu, Ni, V, and Zn by inductively coupled plasma mass spectrometry (ICP/MS; Ca2+, succinate, malonate and oxalate by ion chromatography (IC; and the sum of levoglucosan+galactosan+mannosan (∑MA by liquid chromatography mass spectrometry (LC/MS. The campaign means of PM2.5 and PM2.5-10 were 8.3-29.6 µg m-3 and 5.4-28.7 µg m-3, respectively. The contribution of particulate organic matter (POM to PM2.5 ranged from 21% in Barcelona to 54% in Prague, while that to PM2.5-10 ranged from 10% in Barcelona to 27% in Prague. The contribution of EC was higher to PM2.5 (5-9% than to PM2.5-10 (1-6% in all the six campaigns. Carbonate (C(CO3, that interferes with the TOA analysis, was detected in PM2.5-10 of Athens and Barcelona but not elsewhere. It was subtracted from the OC by a simple integration method that was validated. The CaCO3 accounted for 55% and 11% of PM2.5-10 in Athens and Barcelona, respectively. It was anticipated that combustion emissions from vehicle engines affected the POM content in PM2.5 of all the six sampling campaigns, but a comparison of mass concentration ratios of the selected inorganic and organic tracers of common sources of organic material to POM suggested

  18. High dark inorganic carbon fixation rates by specific microbial groups in the Atlantic off the Galician coast (NW Iberian margin)

    NARCIS (Netherlands)

    Guerrero-Feijóo, E.; Sintes, E.; Herndl, G.J.; Varela, M.M.

    2018-01-01

    Bulk dark dissolved inorganic carbon (DIC) fixation rates were determined and compared to microbial heterotrophic production in subsurface, meso- and bathypelagic Atlantic waters off the Galician coast (NW Iberian margin). DIC fixation rates were slightly higher than heterotrophic production

  19. Studies on sorption of plutonium on inorganic exchangers from sodium carbonate medium

    Energy Technology Data Exchange (ETDEWEB)

    Pius, I C; Charyulu, M M; Sivaramakrishnan, C K [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai (India); Venkataramani, B [Chemistry Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Sorption of Pu(IV) from sodium carbonate medium has been investigated by using different inorganic exchangers alumina, silica gel and hydrous titanium oxide. Distribution ratios of Pu(IV) for its sorption on these exchangers from sodium carbonate medium were found to be sufficiently high indicating the suitability of these exchangers for the removal of Pu(IV). The presence of uranium and dibutyl phosphate do not have any effect on distribution ratio. The 10% Pu(IV) breakthrough capacities for above exchangers have been determined with 5 ml bed at a flow rate of 30 ml/hour. (author). 4 refs., 2 tabs.

  20. Drivers of inorganic carbon dynamics in first-year sea ice: A model study

    DEFF Research Database (Denmark)

    Moreau, Sebastien; Vancoppenolle, Martin; Delille, Bruno

    2015-01-01

    , of total dissolved inorganic carbon (DIC) and total alkalinity (TA) are represented using fluid transport equa- tions. Carbonate chemistry, the consumption, and release of CO2 by primary production and respiration, the precipitation and dissolution of ikaite (CaCO3ﰀ6H2O) and ice-air CO2 fluxes, are also...... included. The model is evaluated using observations from a 6 month field study at Point Barrow, Alaska, and an ice-tank experi- ment. At Barrow, results show that the DIC budget is mainly driven by physical processes, wheras brine-air CO2 fluxes, ikaite formation, and net primary production, are secondary...

  1. Effects of inorganic carbon on the nitrous oxide emissions and microbial diversity of an anaerobic ammonia oxidation reactor.

    Science.gov (United States)

    Zhang, Wenjie; Wang, Dunqiu; Jin, Yue

    2018-02-01

    Inorganic carbon (IC) is important for anaerobic ammonium oxidation (anammox). In this study, the effects of the IC concentration on N 2 O emissions and microbial diversity in an anammox reactor were investigated. N 2 O emissions were positively correlated with IC concentrations, and IC concentrations in the range of 55-130 mg/L were optimal, considering the nitrogen removal rate and N 2 O emissions. High IC concentrations resulted in the formation of CaCO 3 on the surface of anammox granules, which impacted the diffusion conditions of the substrate. Microbial community analysis indicated that high IC concentrations decreased the populations of specific bacteria, such as Achromobacter spanius strain YJART-7, Achromobacter xylosoxidans strain IHB B 6801, and Denitratisoma oestradiolicum clone 20b_15. D. oestradiolicum clone 20b_15 appeared to be the key contributor to N 2 O emissions. High N 2 O emissions may result from changes in organic carbon sources, which lead to denitrification by D. oestradiolicum clone 20b_15. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions

    NARCIS (Netherlands)

    Obernberger, I.; Biedermann, F.; Widmann, W.; Riedl, R.

    1997-01-01

    Inorganic elements and compounds in biomass fuels influence the combustion process and the composition of the ashes produced. Consequently, knowledge about the material fluxes of inorganic elements and compounds during biomass combustion for different kinds of biofuels and their influencing

  3. Natural variability in the surface ocean carbonate ion concentration

    Directory of Open Access Journals (Sweden)

    N. S. Lovenduski

    2015-11-01

    Full Text Available We investigate variability in the surface ocean carbonate ion concentration ([CO32−] on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32−] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite are already or nearly detectable at the sustained, open-ocean time series sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32−] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC in association with El Niño–Southern Oscillation. In the North Pacific, surface [CO32−] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20–30-year periods. North Atlantic [CO32−] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results

  4. Natural variability in the surface ocean carbonate ion concentration

    Science.gov (United States)

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-11-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32-]) on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32-] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32-] in the tropical Pacific and at the boundaries between the subtropical and subpolar gyres in the Northern Hemisphere, and relatively low interannual variability in the centers of the subtropical gyres and in the Southern Ocean. Statistical analysis of modeled [CO32-] variance and autocorrelation suggests that significant anthropogenic trends in the saturation state of aragonite (Ωaragonite) are already or nearly detectable at the sustained, open-ocean time series sites, whereas several decades of observations are required to detect anthropogenic trends in Ωaragonite in the tropical Pacific, North Pacific, and North Atlantic. The detection timescale for anthropogenic trends in pH is shorter than that for Ωaragonite, due to smaller noise-to-signal ratios and lower autocorrelation in pH. In the tropical Pacific, the leading mode of surface [CO32-] variability is primarily driven by variations in the vertical advection of dissolved inorganic carbon (DIC) in association with El Niño-Southern Oscillation. In the North Pacific, surface [CO32-] variability is caused by circulation-driven variations in surface DIC and strongly correlated with the Pacific Decadal Oscillation, with peak spectral power at 20-30-year periods. North Atlantic [CO32-] variability is also driven by variations in surface DIC, and exhibits weak correlations with both the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. As the scientific community seeks to detect the anthropogenic influence on ocean carbonate chemistry, these results will aid the interpretation of trends

  5. Optimized inorganic carbon regime for enhanced growth and lipid accumulation in Chlorella vulgaris.

    Science.gov (United States)

    Lohman, Egan J; Gardner, Robert D; Pedersen, Todd; Peyton, Brent M; Cooksey, Keith E; Gerlach, Robin

    2015-01-01

    Large-scale algal biofuel production has been limited, among other factors, by the availability of inorganic carbon in the culture medium at concentrations higher than achievable with atmospheric CO2. Life cycle analyses have concluded that costs associated with supplying CO2 to algal cultures are significant contributors to the overall energy consumption. A two-phase optimal growth and lipid accumulation scenario is presented, which (1) enhances the growth rate and (2) the triacylglyceride (TAG) accumulation rate in the oleaginous Chlorophyte Chlorella vulgaris strain UTEX 395, by growing the organism in the presence of low concentrations of NaHCO3 (5 mM) and controlling the pH of the system with a periodic gas sparge of 5 % CO2 (v/v). Once cultures reached the desired cell densities, which can be "fine-tuned" based on initial nutrient concentrations, cultures were switched to a lipid accumulation metabolism through the addition of 50 mM NaHCO3. This two-phase approach increased the specific growth rate of C. vulgaris by 69 % compared to cultures sparged continuously with 5 % CO2 (v/v); further, biomass productivity (g L(-1) day(-1)) was increased by 27 %. Total biodiesel potential [assessed as total fatty acid methyl ester (FAME) produced] was increased from 53.3 to 61 % (FAME biomass(-1)) under the optimized conditions; biodiesel productivity (g FAME L(-1) day(-1)) was increased by 7.7 %. A bicarbonate salt screen revealed that American Chemical Society (ACS) and industrial grade NaHCO3 induced the highest TAG accumulation (% w/w), whereas Na2CO3 did not induce significant TAG accumulation. NH4HCO3 had a negative effect on cell health presumably due to ammonia toxicity. The raw, unrefined form of trona, NaHCO3∙Na2CO3 (sodium sesquicarbonate) induced TAG accumulation, albeit to a slightly lower extent than the more refined forms of sodium bicarbonate. The strategic addition of sodium bicarbonate was found to enhance growth and lipid accumulation rates in

  6. On-line technique for preparingand measuring stable carbon isotopeof total dissolved inorganic carbonin water samples ( d13CTDIC

    Directory of Open Access Journals (Sweden)

    S. Inguaggiato

    2005-06-01

    Full Text Available A fast and completely automated procedure is proposed for the preparation and determination of d13C of total inorganic carbon dissolved in water ( d13CTDIC. This method is based on the acidification of water samples transforming the whole dissolved inorganic carbon species into CO2. Water samples are directly injected by syringe into 5.9 ml vials with screw caps which have a pierciable rubber septum. An Analytical Precision «Carbonate Prep System» was used both to flush pure helium into the vials and to automatically dispense a fixed amount of H3PO4. Full-equilibrium conditions between produced CO2 and water are reached at a temperature of 70°C (± 0.1°C in less than 24 h. Carbon isotope ratios (13C/ 12C were measured on an AP 2003 continuous flow mass spectrometer, connected on-line with the injection system. The precision and reproducibility of the proposed method was tested both on aqueous standard solutions prepared using Na2CO3 with d13C=-10.78 per mil versus PDB (1 s= 0.08, n = 11, and at five different concentrations (2, 3, 4, 5 and 20 mmol/l and on more than thirty natural samples. Mean d13CTDIC on standard solution samples is ?10.89 < per mil versus PDB (1 s= 0.18, n = 50, thus revealing both a good analytical precision and reproducibility. A comparison between average d13CTDIC values on a quadruplicate set of natural samples and those obtained following the chemical and physical stripping method highlights a good agreement between the two analytical methods.

  7. Effect of changes in water salinity on ammonium, calcium, dissolved inorganic carbon and influence on water/sediment dynamics

    Science.gov (United States)

    López, P.

    2003-04-01

    The effect of a sudden increase in salinity from 10 to 37 in porewater concentration and the benthic fluxes of ammonium, calcium and dissolved inorganic carbon were studied in sediments of a small coastal lagoon, the Albufera d'Es Grau (Minorca Island, Spain). The temporal effects of the changes in salinity were examined over 17 days using a single diffusion-reaction model and a mass-balance approach. After the salinity change, NH 4+-flux to the water and Ca-flux toward sediments increased (NH 4+-flux: 5000-3000 μmol m -2 d -1 in seawater and 600/250 μmol m -2 d -1 in brackish water; Ca-flux: -40/-76 meq m -2 d -1 at S=37 and -13/-10 meq m -2 d -1 at S=10); however, later NH 4+-flux decreased in seawater, reaching values lower than in brackish water. In contrast, Ca-flux presented similar values in both conditions. The fluxes of dissolved inorganic carbon, which were constant at S=10 (55/45 mmol m -2 d -1), increased during the experiment at S=37 (from ˜30 mmol m -2 d -1 immediately after salinity increase to ˜60 mmol m -2 d -1 after 17 days). In brackish conditions, NH 4+ and Ca 2+ fluxes were consistent with a single diffusion-reaction model that assumes a zero-order reaction for NH 4+ production and a first-order reaction for Ca 2+ production. In seawater, this model explained the Ca-flux observed, but did not account for the high initial flux of NH 4+. The mass balance for 17 days indicated a higher retention of NH 4+ in porewater in the littoral station in seawater conditions (9.5 mmol m -2 at S=37 and 1.6 mmol m -2 at S=10) and a significant reduction in the water consumption at both sites (5 mmol m -2 at S=37; 35/23 mmol m -2 at S=10). In contrast, accumulation of dissolved inorganic carbon in porewater was lower in seawater incubations (-10/-1 meq m -2 at S=37; 50/90 meq m -2 at S=10) and was linked to a higher efflux of CO 2 to the atmosphere, because of calcium carbonate precipitation in water (675/500 meq m -2). These results indicate that increased

  8. Organic and inorganic carbon dynamics in a karst aquifer: Santa Fe River Sink-Rise system, north Florida, USA

    Science.gov (United States)

    Jin, Jin; Zimmerman, Andrew R.; Moore, Paul J.; Martin, Jonathan B.

    2014-03-01

    Spatiotemporal variations in dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), major ions concentrations and other geochemical parameters including stable carbon isotopes of DIC (δ13CDIC), were measured in surface water and deep and shallow well water samples of the Santa Fe River Sink-Rise eogenetic karst system, north Florida, USA. Three end-member water sources were identified: one DOC-rich/DIC-poor/δ13CDIC-depleted, one DOC-poor/DIC-rich/δ13CDIC-enriched, and one enriched in major ions. Given their spatiotemporal distributions, they were presumed to represent soil water, upper aquifer groundwater, and deep aquifer water sources, respectively. Using assumed ratios of Na+, Cl, and SO42- for each end-member, a mixing model calculated the contribution of each water source to each sample. Then, chemical effects of biogeochemical reactions were calculated as the difference between those predicted by the mixing model and measured species concentrations. In general, carbonate mineral dissolution occurred throughout the Sink-Rise system, surface waters were net autotrophic and the subsurface was in metabolic balance, i.e., no net DOC or DIC production or consumption. However, there was evidence for chemolithoautotrophy, perhaps by hydrogen oxidizing microbes, at some deep aquifer sites. Mineralization of this autochthonous natural dissolved organic matter (NDOM) led to localized carbonate dissolution as did surface water-derived NDOM supplied to shallow well sites during the highest flow periods. This study demonstrates linkages between hydrology, abiotic and microbial processes and carbon dynamics and has important implications for groundwater quality, karst morphologic evolution, and hydrogeologic projects such as aquifer storage and recovery in karst systems.

  9. A systematic investigation of the preparation and properties of composite carbon molecular sieves containing inorganic oxides

    Science.gov (United States)

    Foley, Henry C.

    1990-01-01

    The objective of this research is to define the methodology for the preparation and characterization of new carbon-based molecular sieves with composite structures. Carbon molecular sieves have found increasing application in the field of separation and purification of gases. These materials are relatively easy to prepare and their surfaces can be modified to some extent. It is expected that by combining inorganic oxides with the carbonaceous structure one can begin to design composite materials with a wider range of possible chemical and physical properties. In this way, the IOM-CMS materials may confer distinct advantages over pure carbon molecular sieves, not just for separation, but also for catalysis. The most recent results in the design and characterization of these IOM-CMS materials are reviewed and summarized. Directions for further research are also presented.

  10. Molecular studies of Cs adsorption sites in inorganic layered materials: the influence of solution concentration.

    Science.gov (United States)

    Sato, Kiminori; Hunger, Michael

    2017-07-19

    Radioactive Cs released into a soil environment migrates along with groundwater in a manner dependent on Cs concentration. Data on the variation of Cs adsorption as a function of solution concentration are an essential prerequisite to successful decontamination work in Fukushima. To aid the ongoing decontamination work, the adsorption of Cs in aqueous solution across a wide Cs + molarity range is studied for the case of saponite clay as adsorbent, an inorganic layered material that is an abundant mineral in the soil environment. The local molecular structures, i.e. nanosheet surfaces, nanosheet edges, and oncoming hexagonal cavities, participating in Cs adsorption are qualitatively highlighted by means of a recently developed analytical method using data from a conventional elution test, 133 Cs magic-angle-spinning nuclear magnetic resonance (MAS NMR), and the radiocesium interception potential (RIP) [K. Sato, et al., J. Phys. Chem. C, 2016, 120, 1270]. The concentrations of nanosheet edges amount to between 100 and 400 mmol kg -1 , which are not substantially different from those of the nanosheet surfaces, generally regarded as the main decontamination sites. This unambiguously implies that the nanosheet edges should be targeted as the molecular sites for decontaminating radioactive Cs, in addition to the nanosheet surfaces.

  11. Controls on the Origin and Cycling of Riverine Dissolved Inorganic Carbon in the Brazos River, Texas

    Science.gov (United States)

    Zeng, F.; Masiello, C. A.; Hockaday, W. C.

    2008-12-01

    Rivers are generally supersaturated in CO2 with respect to the atmosphere. However, there is little agreement on the sources and turnover times of excess CO2 in river waters. This is likely due to varying dominant controls on carbon sources (e.g. geologic setting, climate, land use, or human activities). In this study, we measured carbon isotopic signatures (δ13C and Δ14C) of riverine dissolved inorganic carbon (DIC), as well as solid state cross polarization/magic angle spinning (CP/MAS) 13C nuclear magnetic resonance (NMR) of particulate organic carbon (POC), to determine carbon sources fuelling respiration of the Brazos River in Texas. We found that sources of riverine CO2 varied significantly along the length of the Brazos. In the middle Brazos (between Graham and Waco), which is partially underlain by limestone, riverine DIC had average Δ14C of 74 ‰ and δ13C of -7.5 ‰, suggesting that riverine CO2 is derived almost entirely from contemporary carbon (less than 5 years old) with little evidence of carbonate input, probably due to the damming upstream of Waco. In the lower Brazos (downstream of Bryan), riverine DIC was highly depleted in 14C (average Δ14C = -148.5 ‰) and enriched in 13C (average δ13C= -9.32 ‰), indicative of the presence of old carbonate. Since there is no carbonate bedrock in contact with the river in this area, the most likely source of old carbonate is the shell used in road and building construction throughout the 19th century. Our results suggest that the effect of human activities superimposes and even surpasses the effect of natural controls (e.g. geologic setting and climate) on C cycling in the Brazos.

  12. Subsurface Monitor for Dissolved Inorganic Carbon at Geological Sequestration Site Phase 1 SBIR Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Wu

    2012-08-03

    Phase I research of this SBIR contract has yielded anticipated results and enable us to develop a practical new instrument to measure the Dissolved Inorganic Carbons (DIC) as well as Supercritical (SC) CO2 in underground brine water at higher sensitivity, lower cost, higher frequency and longer period of time for the Monitoring, Verification & Accounting (MVA) of CO2 sequestration as well as Enhanced Oil Recovery (EOR). We show that reduced cost and improved performance are possible; both future and emerging market exist for the proposed new instrument.

  13. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter

    Science.gov (United States)

    Vladislav Gulis; Keller Suberkropp

    2003-01-01

    The relative contributions of fungi and bacteria to carbon flow from submerged decaying plant litter at different levels of inorganic nutrients (N and P) were studied. We estimated leaf mass loss, fungal and bacterial biomass and production, and microbial respiration and constructed partial carbon budgets for red maple leaf disks precolonized in a stream and then...

  14. Urinary inorganic arsenic concentrations and semen quality of male partners of subfertile couples in Tokyo.

    Science.gov (United States)

    Oguri, Tomoko; Yoshinaga, Jun; Toshima, Hiroki; Mizumoto, Yoshifumi; Hatakeyama, Shota; Tokuoka, Susumu

    2016-01-01

    Inorganic arsenic (iAs) has been known as a testicular toxicant in experimental rodents. Possible association between iAs exposure and semen quality (semen volume, sperm concentration, and sperm motility) was explored in male partners of couples (n = 42) who visited a gynecology clinic in Tokyo for infertility consultation. Semen parameters were measured according to WHO guideline at the clinic, and urinary iAs and methylarsonic acid (MMA), and dimethylarsinic acid concentrations were determined by liquid chromatography-hydride generation-ICP mass spectrometry. Biological attributes, dietary habits, and exposure levels to other chemicals with known effects on semen parameters were taken into consideration as covariates. Multiple regression analyses and logistic regression analyses did not find iAs exposure as significant contributor to semen parameters. Lower exposure level of subjects (estimated to be 0.5 μg kg(-1) day(-1)) was considered a reason of the absence of adverse effects on semen parameters, which were seen in rodents dosed with 4-7.5 mg kg(-1).

  15. Effect of carbon dioxide and bicarbonate as inorganic carbon sources on growth and adaptation of autohydrogenotrophic denitrifying bacteria

    International Nuclear Information System (INIS)

    Ghafari, Shahin; Hasan, Masitah; Aroua, Mohamed Kheireddine

    2009-01-01

    Acclimation of autohydrogenotrophic denitrifying bacteria using inorganic carbon source (CO 2 and bicarbonate) and hydrogen gas as electron donor was performed in this study. In this regard, activated sludge was used as the seed source and sequencing batch reactor (SBR) technique was applied for accomplishing the acclimatization. Three distinct strategies in feeding of carbon sources were applied: (I) continuous sparging of CO 2 , (II) bicarbonate plus continuous sparging of CO 2 , and (III) only bicarbonate. The pH-reducing nature of CO 2 showed an unfavorable impact on denitrification rate; however bicarbonate resulted in a buffered environment in the mixed liquor and provided a suitable mean to maintain the pH in the desirable range of 7-8.2. As a result, bicarbonate as the only carbon source showed a faster adaptation, while carbon dioxide as the only carbon source as well as a complementary carbon source added to bicarbonate resulted in longer acclimation period. Adapted hydrogenotrophic denitrifying bacteria, using bicarbonate and hydrogen gas in the aforementioned pH range, caused denitrification at a rate of 13.33 mg NO 3 - -N/g MLVSS/h for degrading 20 and 30 mg NO 3 - -N/L and 9.09 mg NO 3 - -N/g MLVSS/h for degrading 50 mg NO 3 - -N/L

  16. Effect of carbon dioxide and bicarbonate as inorganic carbon sources on growth and adaptation of autohydrogenotrophic denitrifying bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Ghafari, Shahin; Hasan, Masitah [Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Aroua, Mohamed Kheireddine [Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)], E-mail: mk_aroua@um.edu.my

    2009-03-15

    Acclimation of autohydrogenotrophic denitrifying bacteria using inorganic carbon source (CO{sub 2} and bicarbonate) and hydrogen gas as electron donor was performed in this study. In this regard, activated sludge was used as the seed source and sequencing batch reactor (SBR) technique was applied for accomplishing the acclimatization. Three distinct strategies in feeding of carbon sources were applied: (I) continuous sparging of CO{sub 2}, (II) bicarbonate plus continuous sparging of CO{sub 2}, and (III) only bicarbonate. The pH-reducing nature of CO{sub 2} showed an unfavorable impact on denitrification rate; however bicarbonate resulted in a buffered environment in the mixed liquor and provided a suitable mean to maintain the pH in the desirable range of 7-8.2. As a result, bicarbonate as the only carbon source showed a faster adaptation, while carbon dioxide as the only carbon source as well as a complementary carbon source added to bicarbonate resulted in longer acclimation period. Adapted hydrogenotrophic denitrifying bacteria, using bicarbonate and hydrogen gas in the aforementioned pH range, caused denitrification at a rate of 13.33 mg NO{sub 3}{sup -}-N/g MLVSS/h for degrading 20 and 30 mg NO{sub 3}{sup -}-N/L and 9.09 mg NO{sub 3}{sup -}-N/g MLVSS/h for degrading 50 mg NO{sub 3}{sup -}-N/L.

  17. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China.

    Directory of Open Access Journals (Sweden)

    Xiaochuang Cao

    Full Text Available Amino acids are important sources of soil organic nitrogen (N, which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3--N + NH4+-N. On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine did not vary appreciably with elevation (p>0.10. The compositional

  18. Stable carbon isotope signals in particulate organic and inorganic carbon of coccolithophores - A numerical model study for Emiliania huxleyi.

    Science.gov (United States)

    Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke

    2017-05-07

    A recent numerical cell model, which explains observed light and carbonate system effects on particulate organic and inorganic carbon (POC and PIC) production rates under the assumption of internal pH homeostasis, is extended for stable carbon isotopes ( 12 C, 13 C). Aim of the present study is to mechanistically understand the stable carbon isotopic fractionation signal (ε) in POC and PIC and furthermore the vital effect(s) included in measured ε PIC values. The virtual cell is divided into four compartments, for each of which the 12 C as well as the 13 C carbonate system kinetics are implemented. The compartments are connected to each other via trans-membrane fluxes. In contrast to existing carbon fractionation models, the presented model calculates the disequilibrium state for both carbonate systems and for each compartment. It furthermore calculates POC and PIC production rates as well as ε POC and ε PIC as a function of given light conditions and the compositions of the external carbonate system. Measured POC and PIC production rates as well as ε PIC values are reproduced well by the model (comparison with literature data). The observed light effect on ε POC (increase of ε POC with increasing light intensities), however, is not reproduced by the basic model set-up, which is solely based on RubisCO fractionation. When extending the latter set-up by assuming that biological fractionation includes further carbon fractionation steps besides the one of RubisCO, the observed light effect on ε POC is also reproduced. By means of the extended model version, four different vital effects that superimpose each other in a real cell can be detected. Finally, we discuss potential limitations of the ε PIC proxy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Engineered in situ bioremediation of a petroleum hydrocarbon-contaminated aquifer: assessment of mineralization based on alkalinity, inorganic carbon and stable carbon isotope balances

    Science.gov (United States)

    Hunkeler, Daniel; Höhener, Patrick; Bernasconi, Stefano; Zeyer, Josef

    1999-04-01

    A concept is proposed to assess in situ petroleum hydrocarbon mineralization by combining data on oxidant consumption, production of reduced species, CH 4, alkalinity and dissolved inorganic carbon (DIC) with measurements of stable isotope ratios. The concept was applied to a diesel fuel contaminated aquifer in Menziken, Switzerland, which was treated by engineered in situ bioremediation. In the contaminated aquifer, added oxidants (O 2 and NO 3-) were consumed, elevated concentrations of Fe(II), Mn(II), CH 4, alkalinity and DIC were detected and the DIC was generally depleted in 13C compared to the background. The DIC production was larger than expected based on the consumption of dissolved oxidants and the production of reduced species. Stable carbon isotope balances revealed that the DIC production in the aquifer originated mainly from microbial petroleum hydrocarbon mineralization, and that geochemical reactions such as carbonate dissolution produced little DIC. This suggests that petroleum hydrocarbon mineralization can be underestimated if it is determined based on concentrations of dissolved oxidants and reduced species.

  20. Environmental Conditions Influencing Sorption of Inorganic Anions to Multiwalled Carbon Nanotubes Studied by Column Chromatography.

    Science.gov (United States)

    Metzelder, Florian; Schmidt, Torsten C

    2017-05-02

    Sorption to carbon-based nanomaterials is typically studied in batch experiments. An alternative method offering advantages to study sorption is column chromatography. Sorbent packed columns are used and sorption data are determined by relating sorbate retention to that of a nonretarded tracer. We have now for the first time applied this technique to study the influence of environmental conditions on sorption of inorganic anions (bromide, nitrite, nitrate, and iodide) to multiwalled carbon nanotubes. Deuterium oxide was used as nonretarded tracer. Sorption isotherms were best described by the Freundlich model. Sorption increased in the order bromide 4.5 the surface charge was negative, but sorption was still detectable at pH 6 and 9. Consequently, other forces than electrostatic attraction contributed to sorption. These forces may include H-bonding as indicated by sorption enthalpy determined by variation of column temperature. Overall, column chromatography represents a promising alternative in sorption studies to reveal sorbent properties.

  1. Inorganic carbon dynamics of melt pond-covered first year sea ice in the Canadian Arctic

    DEFF Research Database (Denmark)

    Geilfus, Nicolas-Xavier; Galley, R.J.; Crabeck, O.

    2014-01-01

    Melt pond formation is a common feature of the spring and summer Arctic sea ice. However, the role of the melt ponds formation and the impact of the sea ice melt on both the direction and size of CO2 flux between air and sea is still unknown. Here we describe the CO2-carbonate chemistry of melting...... a strong decrease of the total alkalinity (TA), total dissolved inorganic carbon (TCO2) and partial pressure of CO2 (pCO2) within the bulk sea ice and the brine. Later on, melt pond formation affects both the bulk sea ice and the brine system. As melt ponds are formed from melted snow the in situ melt pond...

  2. The transformation of inorganic sulfur compounds and the assimilation of organic and inorganic carbon by the sulfur disproportionating bacterium Desulfocapsa sulfoexigens.

    Science.gov (United States)

    Frederiksen, Trine-Maria; Finster, Kai

    2004-02-01

    The physiology of the sulfur disproportionator Desulfocapsa sulfoexigens was investigated in batch cultures and in a pH-regulated continuously flushed fermentor system. It was shown that a sulphide scavanger in the form of ferric iron was not obligatory and that the control of pH allowed production of more biomass than was possible in carbonate buffered but unregulated batch cultures. Small amounts of sulphite were produced during disproportionation of elemental sulfur and thiosulphate. In addition, it was shown that in the presence of hydrogen, a respiratory type of process is favored before the disproportionation of sulphite, thiosulphate and elemental sulfur. Sulphate reduction was not observed. D. sulfoexigens assimilated inorganic carbon even in the presence of organic carbon sources. Inorganic carbon assimilation was probably catalyzed by the reverse CO-dehydrogenase pathway, which was supported by the constitutive expression of the gene encoding CO-dehydrogenase in cultures grown in the presence of acetate and by the high carbon fractionation values that are indicative of this pathway.

  3. [Influence of an infusion of 5- or 20% glucose solution on blood glucose and inorganic phosphate concentrations in dairy cows].

    Science.gov (United States)

    Aldaek, T A A; Failing, K; Wehrend, A; Klymiuk, M C

    2011-01-01

    The study was performed to evaluate the influence of an intravenous infusion of 5% and 20% dextrose solution on the plasma concentration of glucose and inorganic phosphate in healthy, dairy cows. Ten healthy, lactating, nonpregnant 3 to 6 year-old Holstein-Friesian cows were included in this investigation. The daily milk yield was 20.3±2.7 liters. Blood plasma concentrations of inorganic phosphate and glucose were determined before, during, immediately and 60 minutes after infusion of 0.9% physiological saline, 5% or 20% dextrose solution. A statistically significant influence of dextrose infusion on blood glucose concentration was observed. After 20% dextrose infusion (200 g dextrose) the blood glucose concentration increased by approximately 13.26 mmol/l. The administration of 5% dextrose solution (50 g dextrose) yielded an increase of blood glucose concentration by 3.31 mmol/l. There was no significant correlation between plasma inorganic phosphate concentrations and infusion of 0.9% saline, 5% or 20% dextrose solution. Intravenous administration of 1000 ml of 5% or 20% dextrose solution does not induce a lasting plasma phosphate reduction and is suitable for elevating the blood glucose concentration.

  4. Temperature dependence of photodegradation of dissolved organic matter to dissolved inorganic carbon and particulate organic carbon

    Czech Academy of Sciences Publication Activity Database

    Porcal, Petr; Dillon, P. J.; Molot, L. A.

    2015-01-01

    Roč. 10, č. 6 (2015), e0128884 E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP503/12/0781; GA ČR(CZ) GA15-09721S Institutional support: RVO:60077344 Keywords : dissolved organic carbon * particulate organic carbon * photodegradation * temperature Subject RIV: DA - Hydrology ; Limnology Impact factor: 3.057, year: 2015

  5. Impact of Tile Drainage on the Distribution of Concentration and Age of Inorganic Soil Nitrogen.

    Science.gov (United States)

    Woo, D.; Kumar, P.

    2017-12-01

    Extensive network of tile drainage network across the Midwestern United States, northern Europe and other regions of the world have enhanced agricultural productivity. Because of its impact on sub-surface flow patterns and moisture and temperature dynamics, it controls the nitrogen cycle in agricultural systems, and its influence on nitrogen dynamics plays a key role in determining the short- and long-term evolution of soil inorganic nitrogen concentration and age. The spatial mapping of nitrogen concentration and age under tile-drained fields has, therefore, the potential to open up novel solution to the vexing challenge of reducing environmental impacts while at the same time maintaining agricultural productivity. The objective of this study is to explore the impacts of tile drains on the age dynamics of nitrate, immobile ammonium, mobile ammonia/um, and non-reactive tracer (such as chloride) by implementing two mobile interacting pore domains to capture matrix and preferential flow paths in a coupled ecohydrology and biogeochemistry model, Dhara. We applied this model to an agricultural farm supporting a corn-soybean rotation in the Midwestern United States. It should be expected that the installation of tile drains decrease the age of soil nutrient due to nutrient losses through tile drainage. However, an increase in the age of mobile ammonia/um is observed in contrast to the cases for nitrate, immobile ammonium, and non-reactive tracer. These results arise because the depletion of mobile ammonia/um due to tile drainage causes a high mobility flux from immobile ammonium to mobile ammonia/um, which also carries a considerable amount of relatively old age of immobile ammonium to mobile ammonia/um. In addition, the ages of nitrate and mobile ammonia/um in tile drainage range from 1 to 3 years, and less than a year, respectively, implying that not considering age transformations between nitrogen species would result in substantial underestimation of nitrogen ages

  6. Modeling wet deposition and concentration of inorganics over Northeast Asia with MRI-PM/c

    Directory of Open Access Journals (Sweden)

    M. Kajino

    2012-11-01

    Full Text Available We conducted a regional-scale simulation over Northeast Asia for the year 2006 using an aerosol chemical transport model, with time-varying lateral and upper boundary concentrations of gaseous species predicted by a global stratospheric and tropospheric chemistry-climate model. The present one-way nested global-through-regional-scale model is named the Meteorological Research Institute–Passive-tracers Model system for atmospheric Chemistry (MRI-PM/c. We evaluated the model's performance with respect to the major anthropogenic and natural inorganic components, SO42−, NH4+, NO3, Na+ and Ca2+ in the air, rain and snow measured at the Acid Deposition Monitoring Network in East Asia (EANET stations. Statistical analysis showed that approximately 40–50 % and 70–80 % of simulated concentration and wet deposition of SO42−, NH4+, NO3and Ca2+ are within factors of 2 and 5 of the observations, respectively. The prediction of the sea-salt originated component Na+ was not successful at near-coastal stations (where the distance from the coast ranged from 150 to 700 m, because the model grid resolution (Δx=60 km is too coarse to resolve it. The simulated Na+ in precipitation was significantly underestimated by up to a factor of 30.

  7. Determination of the δ13C of dissolved inorganic carbon in water; RSIL lab code 1710

    Science.gov (United States)

    Singleton, Glenda L.; Revesz, Kinga; Coplen, Tyler B.

    2012-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 1710 is to present a method to determine the δ13C of dissolved inorganic carbon (DIC) of water. The DIC of water is precipitated using ammoniacal strontium chloride (SrCl2) solution to form strontium carbonate (SrCO3). The δ13C is analyzed by reacting SrCO3 with 100-percent phosphoric acid (H3PO4) to liberate carbon quantitatively as carbon dioxide (CO2), which is collected, purified by vacuum sublimation, and analyzed by dual inlet isotope-ratio mass spectrometry (DI-IRMS). The DI-IRMS is a DuPont double-focusing mass spectrometer. One ion beam passes through a slit in a forward collector and is collected in the rear collector. The other measurable ion beams are collected in the front collector. By changing the ion-accelerating voltage under computer control, the instrument is capable of measuring mass/charge (m/z) 45 or 46 in the rear collector and m/z 44 and 46 or 44 and 45, respectively, in the front collector. The ion beams from these m/z values are as follows: m/z 44 = CO2 = 12C16O16O, m/z 45 = CO2 = 13C16O16O primarily, and m/z 46 = CO2 = 12C16O18O primarily. The data acquisition and control software calculates δ13C values.

  8. Corrosion Protection of Carbon Steel Using Poly aniline Composite with Inorganic Pigments

    International Nuclear Information System (INIS)

    Al-Dulaimi, A.A.; Shahrir Hashim; Khan, M.I.

    2011-01-01

    Two inorganic pigments (TiO 2 and SiO 2 ) were used to prepare composites with poly aniline (PANI) by situ polymerization method. PANI and PANI composites with SiO 2 and TiO 2 were characterized using Fourier transform infrared spectroscopy and X-ray diffraction. The morphology of the synthesized pigments (PANI , PANI-SiO 2 and PANI-TiO 2 ) was examined using scanning electron microscopy. Samples were then used as pigments through blending them with acrylic paint and applied on the surface of carbon steel panels. Corrosion was evaluated for coating of carbon steel panels through full immersion test up to standard ASTMG 31. Mass loss was calculated after they have been exposed in acidic media. A digital camera was also used for monitoring corrosion visually on the surface of carbon steel specimens. The results revealed that acrylic paint pigmented by PANI-SiO 2 composite was more efficient in corrosion protection for carbon steel compared with the other synthesized pigments. (author)

  9. Inorganic Carbon and Oxygen Dynamics in a Marsh-dominated Estuary

    Science.gov (United States)

    Wang, S. R.; Di Iorio, D.; Cai, W. J.; Hopkinson, C.

    2017-12-01

    A free-water mass balance-based study was conducted to address the rate of metabolism and net carbon exchange for the tidal wetland and estuarine portion of the coastal ocean and the uncertainties associated with this approach were assessed. Open water diurnal O2 and dissolved inorganic carbon (DIC) were measured seasonally in a salt marsh-estuary in Georgia, U.S.A. with a focus on the marsh-estuary linkage associated with tidal flooding. We observed that the overall estuarine system was a net source of CO2 to the atmosphere and coastal ocean and a net sink for oceanic and atmospheric O2. Rates of metabolism were extremely high, with respiration (43 mol m-2 yr-1) greatly exceeding gross primary production (28 mol m-2 yr-1), such that the overall system was net heterotrophic. Metabolism measured with DIC were higher than with O2, which we attribute to high rates of anaerobic respiration and reduced sulfur storage in salt marsh sediments, and we assume substantial levels of anoxygenic photosynthesis. We found gas exchange from a flooded marsh is substantial, accounting for about 28% of total O2 and CO2 air-water exchange. A significant percentage of the overall estuarine aquatic metabolism is attributable to metabolism of marsh organisms during inundation. Our study suggests not rely on oceanographic stoichiometry to convert from O2to C based measurements when constructing C balances for the coastal ocean. We also suggest eddy covariance measurements of salt marsh net ecosystem exchange underestimate net ecosystem production as they do not account for lateral DIC exchange associated with marsh tidal inundation. With the increase of global temperature and sea level rise, salt marshes are likely to export more inorganic carbon to the atmosphere and the coastal ocean due to the decrease of solubility, the increase of aquatic and benthic metabolic activities and the longer marsh inundation.

  10. Understanding the carbon cycle in a Late Quaternary-age limestone aquifer system using radiocarbon of dissolved inorganic and organic carbon

    Science.gov (United States)

    Bryan, Eliza; Meredith, Karina T.; Baker, Andy; Andersen, Martin S.; Post, Vincent E. A.

    2017-04-01

    Estimating groundwater residence time is critical for our understanding of hydrogeological systems, for groundwater resource assessments and for the sustainable management of groundwater resources. Due to its capacity to date groundwater up to 30 thousand years old, as well as the ubiquitous nature of dissolved carbon (as organic and inorganic forms) in groundwater, 14C is the most widely used radiogenic dating technique in regional aquifers. However, the geochemistry of carbon in groundwater systems includes interaction with the atmosphere, biosphere and geosphere, which results in multiple sources and sinks of carbon that vary in time and space. Identifying these sources of carbon and processes relating to its release or removal is important for understanding the evolution of the groundwater and essential for residence time calculations. This study investigates both the inorganic and organic facets of the carbon cycle in groundwaters throughout a freshwater lens and mixing zone of a carbonate island aquifer and identifies the sources of carbon that contribute to the groundwater system. Groundwater samples were collected from shallow (5-20 m) groundwater wells on a small carbonate Island in Western Australia in September 2014 and analysed for major and minor ions, stable water isotopes (SWIs: δ18O, δ2H), 3H, 14C and 13C carbon isotope values of both DIC and DOC, and 3H. The composition of groundwater DOC was investigated by Liquid Chromatography-Organic Carbon Detection (LC-OCD) analysis. The presence of 3H (0.12 to 1.35 TU) in most samples indicates that groundwaters on the Island are modern, however the measured 14CDIC values (8.4 to 97.2 pmc) suggest that most samples are significantly older due to carbonate dissolution and recrystallisation reactions that are identified and quantified in this work. 14CDOC values (46.6 to 105.6 pMC) were higher than 14CDIC values and were well correlated with 3H values, however deeper groundwaters had lower 14CDOC values than

  11. Inorganic carbon cycle in soil-rock-groundwater system in karst and fissured aquifers

    Directory of Open Access Journals (Sweden)

    Ajda Koceli

    2013-12-01

    Full Text Available The paper presents a systematic analysis of the isotopic composition of carbon (δ13CCaCO3 in carbonate rocks in central Slovenia, representing karst and fissured aquifers, and share of carbon contributions from carbonate dissolution and degradation of organic matter in aquifers, calculated from the mass balance equation. 59 samples of rocks (mainly dolomites from Upper Permian to Upper Triassic age were analyzed. Samples of carbonate rocks were pulverized and ground to fraction of 45 μm and for determination of δ13CCaCO3 analyzed with mass spectrometer for analyses of stable isotopes of light elements-IRMS. The same method was used for determination of isotopic composition of dissolved inorganic carbon (δ13CDIC in groundwater for 54 of 59 locations. Values of δ13CCaCO3 are in the range from -2.0 ‰ to +4.1 ‰, with an average δ13CCaCO3 value of +2.2 ‰. These values are typical for marine carbonates with δ13CCaCO3 around 0 ‰, although δ13CCaCO3 values differ between groups depending on the origin and age. Early diagenetic dolomites have relatively higher values of δ13CCaCO3 compared to other analyzed samples. The lowest values of δ13CCaCO3 were observed in Cordevolian and Bača dolomite, probably due to late diagenesis, during which meteoric water with lower isotopic carbon composition circulated in the process of sedimentation. Values of δ13CDIC range from -14.6 ‰ to -8.2 ‰. Higher δ13CDIC values (-8.2 ‰ indicate a low proportion of soil CO2 in the aquifer and rapid infiltration, while lower values (-14.6 ‰ indicate higher proportion of soil CO2 in the aquifer and slower infiltration. Calculated contributions of carbon from organic matter / dissolution of carbonates in the karstic and fissured aquifers s how a similar proportion (50 % : 50 %.

  12. Mechanisms of inorganic-carbon acquisition in marine phytoplankton and their implications for the use of other resources

    International Nuclear Information System (INIS)

    Raven, J.A.; Johnston, A.M.

    1991-01-01

    Most of the marine phytoplankton species for which data are available are rate saturated for photosynthesis and probably for growth with inorganic C at normal seawater concentrations; 2 of the 17 species are not saturated. Photosynthesis in these two species can probably be explained by the 17 species not saturated. Photosynthesis in these two species can probably be explained by assuming that CO 2 reaches the site of its reaction with RUBISCO (ribulose bisphosphate carboxylase-oxygenase) by passive diffusion. The kinetics of CO 2 fixation by intact cells are explicable by RUBISCO kinetics typical of algae, and a CO 2 -saturated in vivo RUBISCO activity not more than twice the in vivo light- and inorganic-C-saturated rate of photosynthesis. For the other species, the high affinity in vivo for inorganic C could be other species, the high affinity in vivo for inorganic C could be explained by postulating active influx of inorganic C yielding a higher concentration of CO 2 available to RUBISCO during steady state photosynthesis than in the medium. Although such a higher concentration of internal CO 2 in cells with high affinity for inorganic C is found at low levels of external inorganic C, the situation is more equivocal at normal seawater concentrations. In theory, the occurrence of a CO 2 -concentrating mechanism rather than passive CO 2 entry could reduce the photon, N, Fe, Mn, and Mo costs of growth, but increase the Zn and Se costs. Thus far, data on costs are available only for photons and N; these data generally agree with the predicted lower costs for cells with high affinity for inorganic C

  13. [Impact of Rocky Desertification Treatment on Underground Water Chemistry and Dissolved Inorganic Carbon Isotope in Karst Areas].

    Science.gov (United States)

    Xiao, Shi-zhen; Xiong, Kang-ning; Lan, Jia-cheng; Zhang, Hui; Yang, Long

    2015-05-01

    Five springs representing different land-use types and different karst rocky desertification treatment models were chosen at the Huajiang Karst Rocky Desertification Treatment Demonstration Site in Guanling-Zhenfeng Counties in Guizhou, to analyze the features of underground water chemistry and dissolved inorganic carbon isotopes (δ13C(DIC)) and reveal the effect of rocky desertification treatment on karstification and water quality. It was found that, the underground water type of the research area was HCO3-Ca; the water quality of the springs which were relatively less affected by human activities including Shuijingwan Spring (SJW) , Gebei Spring (GB), and Maojiawan Spring (MJW) was better than those relatively more affected by human activities including Diaojing Spring (DJ) and Tanjiazhai Spring (TJZ) , the main ion concentrations and electrical conductivity of which were higher; pH, SIc and pCO2 were sensitive to land-use types and rocky desertification treatment, which could be shown by the higher pH and SIc and lower pCO2 in MJW than those in the other four springs; (Ca(2+) + Mg2+)/HCO(3-) of SJW, MJW and GB were nearly 1:1, dominated by carbonate rock weathering by carbon acid, while the (Ca(2+) + Mg2+) of DJ and TJZ was much higher than HCO3-, suggesting that sulfate and nitrate might also dissolve carbonate rock because of the agricultural activities; δ13C(DIC) was lighter in wet season because of the higher biological activities; the average δ13C(DIC) was in the order of DJ (-12.79 per thousand) desertification and lighter after the rocky desertification are treated and controlled.

  14. Technical Note: Precise quantitative measurements of total dissolved inorganic carbon from small amounts of seawater using a gas chromatographic system

    Directory of Open Access Journals (Sweden)

    T. Hansen

    2013-10-01

    Full Text Available Total dissolved inorganic carbon (CT is one of the most frequently measured parameters used to calculate the partial pressure of carbon dioxide in seawater. Its determination has become increasingly important because of the rising interest in the biological effects of ocean acidification. Coulometric and infrared detection methods are currently favored in order to precisely quantify CT. These methods however are not sufficiently validated for CT measurements of biological experiments manipulating seawater carbonate chemistry with an extended CT measurement range (~1250–2400 μmol kg–1 compared to natural open ocean seawater (~1950–2200 μmol kg−1. The requirement of total sample amounts between 0.1–1 L seawater in the coulometric- and infrared detection methods potentially exclude their use for experiments working with much smaller volumes. Additionally, precise CT analytics become difficult with high amounts of biomass (e.g., phytoplankton cultures or even impossible in the presence of planktonic calcifiers without sample pre-filtration. Filtration however, can alter CT concentration through gas exchange induced by high pressure. Addressing these problems, we present precise quantification of CT using a small, basic and inexpensive gas chromatograph as a CT analyzer. Our technique is able to provide a repeatability of ±3.1 μmol kg−1, given by the pooled standard deviation over a CT range typically applied in acidification experiments. 200 μL of sample is required to perform the actual CT measurement. The total sample amount needed is 12 mL. Moreover, we show that sample filtration is applicable with only minor alteration of the CT. The method is simple, reliable and with low cumulative material costs. Hence, it is potentially attractive for all researchers experimentally manipulating the seawater carbonate system.

  15. Carbon isotopic fractionation in live benthic foraminifera -comparison with inorganic precipitate studies

    International Nuclear Information System (INIS)

    Grossmann, E.L.

    1984-01-01

    Carbon and oxygen isotopic analyses have been performed on live-stained aragonitic and calcitic benthic foraminifera and dissolved inorganic carbon from the Southern California Borderland to examine carbon isotopic fractionation in foraminifera. Temperature, salinity and pH data have also been collected to permit accurate determination of the delta 13 C of bicarbonate ion and thus aragonite-HCO 3 - and calcite-HCO 3 - isotopic enrichment factors (epsilonsub(ar-b) and epsilonsub(cl-b), respectively). Only species which precipitate in 18 O equilibrium have been considered. epsilonsub (ar-b) values based on Hoeglundina elegans range from 1.9 per mille at 2.7 deg C to 1.1 per mille at 9.5 deg C. The temperature dependence of epsilonsub(ar-b) is considerably greater than the equilibrium equation would predict and may be due to a vital effect. The calcitic foraminifera Cassidulina tortuosa, Cassidulina braziliensis, and Cassidulina limbata, Bank and Terrace dwellers, have similar delta 13 C values and yield an average epsilonsub(cl-b) value of -0.2 +- 0.1 per mille between 8 deg and 10 deg C. Calcitic Uvigerina curticosta, Uvigerina peregrina, and megalospheric B, argentea, Slope and Basin dwellers, are -0.7 +- 0.1 per mille enriched relative to ambient bicarbonate for 3 to 9 deg C. (author)

  16. Carbon isotopic fractionation in live benthic foraminifera -comparison with inorganic precipitate studies

    Energy Technology Data Exchange (ETDEWEB)

    Grossmann, E L [University of Southern California, Los Angeles (USA). Dept. of Geological Sciences

    1984-07-01

    Carbon and oxygen isotopic analyses have been performed on live-stained aragonitic and calcitic benthic foraminifera and dissolved inorganic carbon from the Southern California Borderland to examine carbon isotopic fractionation in foraminifera. Temperature, salinity and pH data have also been collected to permit accurate determination of the delta/sup 13/C of bicarbonate ion and thus aragonite-HCO/sub 3//sup -/ and calcite-HCO/sub 3//sup -/ isotopic enrichment factors (epsilonsub(ar-b) and epsilonsub(cl-b), respectively). Only species which precipitate in /sup 18/O equilibrium have been considered. epsilonsub (ar-b) values based on Hoeglundina elegans range from 1.9 per mille at 2.7 deg C to 1.1 per mille at 9.5 deg C. The temperature dependence of epsilonsub(ar-b) is considerably greater than the equilibrium equation would predict and may be due to a vital effect. The calcitic foraminifera Cassidulina tortuosa, Cassidulina braziliensis, and Cassidulina limbata, Bank and Terrace dwellers, have s

  17. On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bandosz, T.J.; Petit, C. [CUNY City College, New York, NY (United States). Dept. of Chemistry

    2009-10-15

    Ammonia adsorption was studied under dynamic conditions, at room temperature, on activated carbons of different origins (coal-based, wood-based and coconut-shell-based carbons) before and after their impregnation with various inorganic compounds including metal chlorides, metal oxides and polycations. The role of humidity was evaluated by running tests in both dry and moist conditions. Adsorbents were analyzed before and after exposure to ammonia by thermal analyses, sorption of nitrogen, potentiometric titration, X-ray diffraction and FTIR spectroscopy. Results of breakthrough tests show significant differences in terms of adsorption capacity depending on the parent carbon, the impregnates and the experimental conditions. It is found that surface chemistry governs ammonia adsorption on the impregnated carbons. More precisely, it was demonstrated that a proper combination of the surface pH, the strength, type and amount of functional groups present on the adsorbents' surface is a key point in ammonia uptake. Water can have either positive or negative effects on the performance of adsorbents. It can enhance NH{sub 3} adsorption capacity since it favors ammonia dissolution and thus enables reaction between ammonium ions and carboxylic groups from the carbons' surface. On the other hand, water can also reduce the performance from the strength of adsorption standpoint. It promotes dissolution of ammonia and that ammonia is first removed from the system when the adsorbent bed is purged with air. Ammonia, besides adsorption by van der Waals forces and dissolution in water, is also retained on the surface via reactive mechanisms such as acid-base reactions (Bronsted and Lewis) or complexation. Depending on the materials used and the experimental conditions, 6-47% ammonia adsorbed is strongly retained on the surface even when the bed is purged with air.

  18. Functional polarity of the tentacle of the sea anemone Anemonia viridis: role in inorganic carbon acquisition.

    Science.gov (United States)

    Furla, P; Bénazet-Tambutté, S; Jaubert, J; Allemand, D

    1998-02-01

    The oral epithelial layers of anthozoans have a polarized morphology: photosynthetic endosymbionts live within endodermal cells facing the coelenteric cavity and are separated from the external seawater by the ectodermal layer and the mesoglea. To study if this morphology plays a role in the supply of inorganic carbon for symbiont photosynthesis, we measured the change in pH and the rate of OH- (H+) fluxes induced by each cell layer on a tentacle of the sea anemone Anemonia viridis. Light-induced pH increase of the medium bathing the endodermal layers led to the generation of a transepithelial pH gradient of approximately 0.8 pH units across the tentacle, whereas darkness induced acidification of this medium. The light-induced pH change was associated with an increase of total alkalinity. Only the endodermal layer was able to induce a net OH- secretion (H+ absorption). The light-induced OH- secretion by the endodermal cell layer was dependent on the presence of HCO3- in the compartment facing the ectoderm and was sensitive to several inhibitors of ion transport. [14C] HCO3- incorporation into photosynthates confirmed the ectodermal supply, the extent of which varied from 25 to > 90%, according to HCO3- availability. Our results suggest that the light-induced OH- secretion by the endodermal cell layer followed the polarized transport of HCO3- and its subsequent decarboxylation within the endodermal cell layer. This polarity may play a significant role both in inorganic carbon absorption and in the control of light-enhanced calcification in scleractinian corals.

  19. A Simplified Model to Estimate the Concentration of Inorganic Ions and Heavy Metals in Rivers

    Directory of Open Access Journals (Sweden)

    Clemêncio Nhantumbo

    2016-10-01

    Full Text Available This paper presents a model that uses only pH, alkalinity, and temperature to estimate the concentrations of major ions in rivers (Na+, K+, Mg2+, Ca2+, HCO3−, SO42−, Cl−, and NO3− together with the equilibrium concentrations of minor ions and heavy metals (Fe3+, Mn2+, Cd2+, Cu2+, Al3+, Pb2+, and Zn2+. Mining operations have been increasing, which has led to changes in the pollution loads to receiving water systems, meanwhile most developing countries cannot afford water quality monitoring. A possible solution is to implement less resource-demanding monitoring programs, supported by mathematical models that minimize the required sampling and analysis, while still being able to detect water quality changes, thereby allowing implementation of measures to protect the water resources. The present model was developed using existing theories for: (i carbonate equilibrium; (ii total alkalinity; (iii statistics of major ions; (iv solubility of minerals; and (v conductivity of salts in water. The model includes two options to estimate the concentrations of major ions: (1 a generalized method, which employs standard values from a world-wide data base; and (2 a customized method, which requires specific baseline data for the river of interest. The model was tested using data from four monitoring stations in Swedish rivers with satisfactory results.

  20. Dynamics regulating major trends in Barents Sea temperatures and subsequent effect on remotely sensed particulate inorganic carbon

    DEFF Research Database (Denmark)

    Hovland, Erlend Kjeldsberg; Dierssen, Heidi M.; Ferreira, Ana Sofia

    2013-01-01

    A more comprehensive understanding of how ocean temperatures influence coccolithophorid production of particulate inorganic carbon (PIC) will make it easier to constrain the effect of ocean acidification in the future. We studied the effect of temperature on Emiliania huxleyi PIC production...

  1. Variations in the inorganic carbon components in the thermal fronts during winter in the Northeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; Delabehra, H.B.; Sudharani, P.; Remya, R.; Patil, J.S.; Desai, D.V.

    of high phytoplankton biomass. Dissolved inorganic carbon (DIC) was higher in the frontal zone by 3 to 41.5 Mu M than outside. The salinity normalized DIC displayed linear relation with Chl-a and inverse correlation with dissolved oxygen saturation...

  2. Growth limitation of three Arctic sea-ice algae species: effects of salinitty, pH and inorganic carbon availability

    DEFF Research Database (Denmark)

    Søgaard, Dorte Haubjerg; Hansen, Per Juel; Rysgaard, Søren

    2011-01-01

    The effect of salinity, pH, and dissolved inorganic carbon (TCO(2)) on growth and survival of three Arctic sea ice algal species, two diatoms (Fragilariopsis nana and Fragilariopsis sp.), and one species of chlorophyte (Chlamydomonas sp.) was assessed in controlled laboratory experiments. Our res...

  3. Total allowable concentrations of monomeric inorganic aluminum and hydrated aluminum silicates in drinking water.

    Science.gov (United States)

    Willhite, Calvin C; Ball, Gwendolyn L; McLellan, Clifton J

    2012-05-01

    Maximum contaminant levels are used to control potential health hazards posed by chemicals in drinking water, but no primary national or international limits for aluminum (Al) have been adopted. Given the differences in toxicological profiles, the present evaluation derives total allowable concentrations for certain water-soluble inorganic Al compounds (including chloride, hydroxide, oxide, phosphate and sulfate) and for the hydrated Al silicates (including attapulgite, bentonite/montmorillonite, illite, kaolinite) in drinking water. The chemistry, toxicology and clinical experience with Al materials are extensive and depend upon the particular physical and chemical form. In general, the water solubility of the monomeric Al materials depends on pH and their water solubility and gastrointestinal bioavailability are much greater than that of the hydrated Al silicates. Other than Al-containing antacids and buffered aspirin, food is the primary source of Al exposure for most healthy people. Systemic uptake of Al after ingestion of the monomeric salts is somewhat greater from drinking water (0.28%) than from food (0.1%). Once absorbed, Al accumulates in bone, brain, liver and kidney, with bone as the major site for Al deposition in humans. Oral Al hydroxide is used routinely to bind phosphate salts in the gut to control hyperphosphatemia in people with compromised renal function. Signs of chronic Al toxicity in the musculoskeletal system include a vitamin D-resistant osteomalacia (deranged membranous bone formation characterized by accumulation of the osteoid matrix and reduced mineralization, reduced numbers of osteoblasts and osteoclasts, decreased lamellar and osteoid bands with elevated Al concentrations) presenting as bone pain and proximal myopathy. Aluminum-induced bone disease can progress to stress fractures of the ribs, femur, vertebrae, humerus and metatarsals. Serum Al ≥100 µg/L has a 75-88% positive predictive value for Al bone disease. Chronic Al

  4. Drivers of inorganic carbon dynamics in first-year sea ice: A model study

    Science.gov (United States)

    Moreau, Sébastien; Vancoppenolle, Martin; Delille, Bruno; Tison, Jean-Louis; Zhou, Jiayun; Kotovich, Marie; Thomas, David; Geilfus, Nicolas-Xavier; Goosse, Hugues

    2015-04-01

    Sea ice is an active source or a sink for carbon dioxide (CO2), although to what extent is not clear. Here, we analyze CO2 dynamics within sea ice using a one-dimensional halo-thermodynamic sea ice model including gas physics and carbon biogeochemistry. The ice-ocean fluxes, and vertical transport, of total dissolved inorganic carbon (DIC) and total alkalinity (TA) are represented using fluid transport equations. Carbonate chemistry, the consumption and release of CO2 by primary production and respiration, the precipitation and dissolution of ikaite (CaCO3•6H2O) and ice-air CO2 fluxes, are also included. The model is evaluated using observations from a 6-month field study at Point Barrow, Alaska and an ice-tank experiment. At Barrow, results show that the DIC budget is mainly driven by physical processes, wheras brine-air CO2 fluxes, ikaite formation, and net primary production, are secondary factors. In terms of ice-atmosphere CO2 exchanges, sea ice is a net CO2 source and sink in winter and summer, respectively. The formulation of the ice-atmosphere CO2 flux impacts the simulated near-surface CO2 partial pressure (pCO2), but not the DIC budget. Because the simulated ice-atmosphere CO2 fluxes are limited by DIC stocks, and therefore < 2 mmol m-2 day-1, we argue that the observed much larger CO2 fluxes from eddy covariance retrievals cannot be explained by a sea ice direct source and must involve other processes or other sources of CO2. Finally, the simulations suggest that near surface TA/DIC ratios of ~2, sometimes used as an indicator of calcification, would rather suggest outgassing.

  5. Inorganic carbon fluxes on the Mackenzie Shelf of the Beaufort Sea

    Science.gov (United States)

    Mol, Jacoba; Thomas, Helmuth; Myers, Paul G.; Hu, Xianmin; Mucci, Alfonso

    2018-02-01

    The Mackenzie Shelf in the southeastern Beaufort Sea is a region that has experienced large changes in the past several decades as warming, sea-ice loss, and increased river discharge have altered carbon cycling. Upwelling and downwelling events are common on the shelf, caused by strong, fluctuating along-shore winds, resulting in cross-shelf Ekman transport, and an alternating estuarine and anti-estuarine circulation. Downwelling carries dissolved inorganic carbon (DIC) and other remineralization products off the shelf and into the deep basin for possible long-term storage in the world's oceans. Upwelling carries DIC and nutrient-rich waters from the Pacific-origin upper halocline layer (UHL) onto the shelf. Profiles of DIC and total alkalinity (TA) taken in August and September of 2014 are used to investigate the cycling of carbon on the Mackenzie Shelf. The along-shore transport of water and the cross-shelf transport of DIC are quantified using velocity field output from a simulation of the Arctic and Northern Hemisphere Atlantic (ANHA4) configuration of the Nucleus of European Modelling of the Ocean (NEMO) framework. A strong upwelling event prior to sampling on the Mackenzie Shelf took place, bringing CO2-rich (elevated pCO2) water from the UHL onto the shelf bottom. The maximum on-shelf DIC flux was estimated at 16.9×103 mol C d-1 m-2 during the event. The maximum on-shelf transport of DIC through the upwelling event was found to be 65±15×10-3 Tg C d-1. TA and the oxygen isotope ratio of water (δ18O-H2O) are used to examine water-mass distributions in the study area and to investigate the influence of Pacific Water, Mackenzie River freshwater, and sea-ice melt on carbon dynamics and air-sea fluxes of carbon dioxide (CO2) in the surface mixed layer. Understanding carbon transfer in this seasonally dynamic environment is key to quantify the importance of Arctic shelf regions to the global carbon cycle and provide a basis for understanding how it will

  6. Inorganic carbon fluxes on the Mackenzie Shelf of the Beaufort Sea

    Directory of Open Access Journals (Sweden)

    J. Mol

    2018-02-01

    Full Text Available The Mackenzie Shelf in the southeastern Beaufort Sea is a region that has experienced large changes in the past several decades as warming, sea-ice loss, and increased river discharge have altered carbon cycling. Upwelling and downwelling events are common on the shelf, caused by strong, fluctuating along-shore winds, resulting in cross-shelf Ekman transport, and an alternating estuarine and anti-estuarine circulation. Downwelling carries dissolved inorganic carbon (DIC and other remineralization products off the shelf and into the deep basin for possible long-term storage in the world's oceans. Upwelling carries DIC and nutrient-rich waters from the Pacific-origin upper halocline layer (UHL onto the shelf. Profiles of DIC and total alkalinity (TA taken in August and September of 2014 are used to investigate the cycling of carbon on the Mackenzie Shelf. The along-shore transport of water and the cross-shelf transport of DIC are quantified using velocity field output from a simulation of the Arctic and Northern Hemisphere Atlantic (ANHA4 configuration of the Nucleus of European Modelling of the Ocean (NEMO framework. A strong upwelling event prior to sampling on the Mackenzie Shelf took place, bringing CO2-rich (elevated pCO2 water from the UHL onto the shelf bottom. The maximum on-shelf DIC flux was estimated at 16.9×103 mol C d−1 m−2 during the event. The maximum on-shelf transport of DIC through the upwelling event was found to be 65±15×10−3 Tg C d−1. TA and the oxygen isotope ratio of water (δ18O-H2O are used to examine water-mass distributions in the study area and to investigate the influence of Pacific Water, Mackenzie River freshwater, and sea-ice melt on carbon dynamics and air–sea fluxes of carbon dioxide (CO2 in the surface mixed layer. Understanding carbon transfer in this seasonally dynamic environment is key to quantify the importance of Arctic shelf regions to the global carbon cycle and provide a basis

  7. Carbon Concentration and Carbon-to-Nitrogen Ratio Influence Submerged-Culture Conidiation by the Potential Bioherbicide Colletotrichum truncatum NRRL 13737

    Science.gov (United States)

    Jackson, Mark A.; Bothast, Rodney J.

    1990-01-01

    We assessed the influence of various carbon concentrations and carbon-to-nitrogen (C:N) ratios on Colletotrichum truncatum NRRL 13737 conidium formation in submerged cultures grown in a basal salts medium containing various amounts of glucose and Casamino Acids. Under the nutritional conditions tested, the highest conidium concentrations were produced in media with carbon concentrations of 4.0 to 15.3 g/liter. High carbon concentrations (20.4 to 40.8 g/liter) inhibited sporulation and enhanced the formation of microsclerotiumlike hyphal masses. At all the carbon concentrations tested, a culture grown in a medium with a C:N ratio of 15:1 produced more conidia than cultures grown in media with C:N ratios of 40:1 or 5:1. While glucose exhaustion was often coincident with conidium formation, cultures containing residual glucose sporulated and those with high carbon concentrations (>25 g/liter) exhausted glucose without sporulation. Nitrogen source studies showed that the levels of C. truncatum NRRL 13737 conidiation were similar for all protein hydrolysates tested. Reduced conidiation occurred when amino acid and inorganic nitrogen sources were used. Of the nine carbon sources evaluated, acetate as the sole carbon source resulted in the lowest level of sporulation. Images PMID:16348348

  8. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, Anoop [Terrafore Inc.

    2013-08-14

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during

  9. Determination of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) in freshwaters by sequential injection spectrophotometry with on-line UV photo-oxidation

    International Nuclear Information System (INIS)

    Tue-Ngeun, Orawan; Sandford, Richard C.; Jakmunee, Jaroon; Grudpan, Kate; McKelvie, Ian D.; Worsfold, Paul J.

    2005-01-01

    An automated sequential injection (SI) method for the determination of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) in freshwaters is presented. For DIC measurement on-line sample acidification (sulphuric acid, pH 2 which subsequently diffused through a PTFE membrane into a basic, cresol red acceptor stream. The CO 2 increased the concentration of the acidic form of the cresol red indicator, with a resultant decrease in absorbance at 570 nm being directly proportional to DIC concentration. DIC + DOC was determined after on-line sample irradiation (15 W low power UV lamp) coupled with acid-peroxydisulfate digestion, with the subsequent detection of CO 2 as described above. DOC was determined by subtraction of DIC from (DIC + DOC). Analytical figures of merit were linear ranges of 0.05-5.0 mg C L -1 for both DIC and DIC + DOC, with typical R.S.D.s of less than 7% (0.05 mg C L -1 -5.3% for DIC and 6.6% for DIC + DOC; 4.0 mg C L -1 -2.6% for DIC and 2.4% for DIC + DOC, n = 3) and an LOD (blank + 3S.D.) of 0.05 mg C L -1 . Sample throughput for the automated system was 8 h -1 for DIC and DOC with low reagent consumption (acid/peroxydisulfate 200 μL per DIC + DOC analysis). A range of model carbon compounds and Tamar River (Plymouth, UK) samples were analysed for DIC and DOC and the results showed good agreement with a high temperature catalytic oxidation (HTCO) reference method (t-test, P = 0.05)

  10. Determination of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) in freshwaters by sequential injection spectrophotometry with on-line UV photo-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Tue-Ngeun, Orawan [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sandford, Richard C. [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drakes Circus, Plymouth PL4 8AA (United Kingdom)]. E-mail: rsandford@plymouth.ac.uk; Jakmunee, Jaroon [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Grudpan, Kate [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); McKelvie, Ian D. [Water Studies Centre, School of Chemistry, Monash University, P.O. Box 23, Clayton Campus, Vic. 3800 (Australia); Worsfold, Paul J. [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drakes Circus, Plymouth PL4 8AA (United Kingdom)

    2005-12-04

    An automated sequential injection (SI) method for the determination of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) in freshwaters is presented. For DIC measurement on-line sample acidification (sulphuric acid, pH < 2), converted DIC to CO{sub 2} which subsequently diffused through a PTFE membrane into a basic, cresol red acceptor stream. The CO{sub 2} increased the concentration of the acidic form of the cresol red indicator, with a resultant decrease in absorbance at 570 nm being directly proportional to DIC concentration. DIC + DOC was determined after on-line sample irradiation (15 W low power UV lamp) coupled with acid-peroxydisulfate digestion, with the subsequent detection of CO{sub 2} as described above. DOC was determined by subtraction of DIC from (DIC + DOC). Analytical figures of merit were linear ranges of 0.05-5.0 mg C L{sup -1} for both DIC and DIC + DOC, with typical R.S.D.s of less than 7% (0.05 mg C L{sup -1}-5.3% for DIC and 6.6% for DIC + DOC; 4.0 mg C L{sup -1}-2.6% for DIC and 2.4% for DIC + DOC, n = 3) and an LOD (blank + 3S.D.) of 0.05 mg C L{sup -1}. Sample throughput for the automated system was 8 h{sup -1} for DIC and DOC with low reagent consumption (acid/peroxydisulfate 200 {mu}L per DIC + DOC analysis). A range of model carbon compounds and Tamar River (Plymouth, UK) samples were analysed for DIC and DOC and the results showed good agreement with a high temperature catalytic oxidation (HTCO) reference method (t-test, P = 0.05)

  11. The physiological response of two green calcifying algae from the Great Barrier Reef towards high dissolved inorganic and organic carbon (DIC and DOC availability.

    Directory of Open Access Journals (Sweden)

    Friedrich Wilhelm Meyer

    Full Text Available Increasing dissolved inorganic carbon (DIC concentrations associated with ocean acidification can affect marine calcifiers, but local factors, such as high dissolved organic carbon (DOC concentrations through sewage and algal blooms, may interact with this global factor. For calcifying green algae of the genus Halimeda, a key tropical carbonate producer that often occurs in coral reefs, no studies on these interactions have been reported. These data are however urgently needed to understand future carbonate production. Thus, we investigated the independent and combined effects of DIC (pCO2 402 μatm/ pHtot 8.0 and 996 μatm/ pHtot 7.7 and DOC (added as glucose in 0 and 294 μmol L-1 on growth, calcification and photosynthesis of H. macroloba and H. opuntia from the Great Barrier Reef in an incubation experiment over 16 days. High DIC concentrations significantly reduced dark calcification of H. opuntia by 130 % and led to net dissolution, but did not affect H. macroloba. High DOC concentrations significantly reduced daily oxygen production of H. opuntia and H. macroloba by 78 % and 43 %, respectively, and significantly reduced dark calcification of H. opuntia by 70%. Combined high DIC and DOC did not show any interactive effects for both algae, but revealed additive effects for H. opuntia where the combination of both factors reduced dark calcification by 162 % compared to controls. Such species-specific differences in treatment responses indicate H. opuntia is more susceptible to a combination of high DIC and DOC than H. macroloba. From an ecological perspective, results further suggest a reduction of primary production for Halimeda-dominated benthic reef communities under high DOC concentrations and additional decreases of carbonate accretion under elevated DIC concentrations, where H. opuntia dominates the benthic community. This may reduce biogenic carbonate sedimentation rates and hence the buffering capacity against further ocean

  12. The physiological response of two green calcifying algae from the Great Barrier Reef towards high dissolved inorganic and organic carbon (DIC and DOC) availability.

    Science.gov (United States)

    Meyer, Friedrich Wilhelm; Vogel, Nikolas; Teichberg, Mirta; Uthicke, Sven; Wild, Christian

    2015-01-01

    Increasing dissolved inorganic carbon (DIC) concentrations associated with ocean acidification can affect marine calcifiers, but local factors, such as high dissolved organic carbon (DOC) concentrations through sewage and algal blooms, may interact with this global factor. For calcifying green algae of the genus Halimeda, a key tropical carbonate producer that often occurs in coral reefs, no studies on these interactions have been reported. These data are however urgently needed to understand future carbonate production. Thus, we investigated the independent and combined effects of DIC (pCO2 402 μatm/ pHtot 8.0 and 996 μatm/ pHtot 7.7) and DOC (added as glucose in 0 and 294 μmol L-1) on growth, calcification and photosynthesis of H. macroloba and H. opuntia from the Great Barrier Reef in an incubation experiment over 16 days. High DIC concentrations significantly reduced dark calcification of H. opuntia by 130 % and led to net dissolution, but did not affect H. macroloba. High DOC concentrations significantly reduced daily oxygen production of H. opuntia and H. macroloba by 78 % and 43 %, respectively, and significantly reduced dark calcification of H. opuntia by 70%. Combined high DIC and DOC did not show any interactive effects for both algae, but revealed additive effects for H. opuntia where the combination of both factors reduced dark calcification by 162 % compared to controls. Such species-specific differences in treatment responses indicate H. opuntia is more susceptible to a combination of high DIC and DOC than H. macroloba. From an ecological perspective, results further suggest a reduction of primary production for Halimeda-dominated benthic reef communities under high DOC concentrations and additional decreases of carbonate accretion under elevated DIC concentrations, where H. opuntia dominates the benthic community. This may reduce biogenic carbonate sedimentation rates and hence the buffering capacity against further ocean acidification.

  13. Ionising radiation effect on the luminescence emission of inorganic and biogenic calcium carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Boronat, C. [CIEMAT, Av. Complutense 40, Madrid 28040 (Spain); Correcher, V., E-mail: v.correcher@ciemat.es [CIEMAT, Av. Complutense 40, Madrid 28040 (Spain); Virgos, M.D. [CIEMAT, Av. Complutense 40, Madrid 28040 (Spain); Garcia-Guinea, J. [CSIC, Museo Nacional Ciencias Naturales, José Gutiérrez Abascal 2, Madrid 28006 (Spain)

    2017-06-15

    Highlights: • Aragonite and biogenic Ca-carbonates could be used as a TL dosimeters. • TL can be employed for retrospective dosimetry purposes. • Calcium carbonates show an acceptable ionizing radiation sensitivity. • The stability of the radiation–induced TL remains, at least, till 700 h. - Abstract: As known, the luminescence emission of mineral phases could be potentially employed for dosimetric purposes in the case of radiological terrorism or radiation accident where conventional monitoring is not available. In this sense, this paper reports on the thermo- (TL) and cathodoluminescence (CL) emission of both biogenic (common periwinkle – littorina littorera – shell made of calcite 90% and aragonite 10%) and inorganic (aragonite 100%) Ca-rich carbonates previously characterized by X-ray diffraction and Raman spectroscopy. Whereas the aragonite sample displays the main CL waveband peaked in the red region (linked to point defects), the more intense emission obtained from the common periwinkle shell appears at higher energies (mainly associated with structural defects). The UV-blue TL emission of the samples, regardless of the origin, displays (i) an acceptable ionizing radiation sensitivity, (ii) linear dose response in the range of interest (up to 8 Gy), (iii) reasonable stability of the TL signal after 700 h of storage with an initial decay of ca. 88% for the mineral sample and 60% for the biogenic sample and maintaining the stability from 150 h onwards. (iv) The tests of thermal stability of the TL emission performed in the range of 180–320 °C confirm a continuum in the trap system.

  14. Ionising radiation effect on the luminescence emission of inorganic and biogenic calcium carbonates

    International Nuclear Information System (INIS)

    Boronat, C.; Correcher, V.; Virgos, M.D.; Garcia-Guinea, J.

    2017-01-01

    Highlights: • Aragonite and biogenic Ca-carbonates could be used as a TL dosimeters. • TL can be employed for retrospective dosimetry purposes. • Calcium carbonates show an acceptable ionizing radiation sensitivity. • The stability of the radiation–induced TL remains, at least, till 700 h. - Abstract: As known, the luminescence emission of mineral phases could be potentially employed for dosimetric purposes in the case of radiological terrorism or radiation accident where conventional monitoring is not available. In this sense, this paper reports on the thermo- (TL) and cathodoluminescence (CL) emission of both biogenic (common periwinkle – littorina littorera – shell made of calcite 90% and aragonite 10%) and inorganic (aragonite 100%) Ca-rich carbonates previously characterized by X-ray diffraction and Raman spectroscopy. Whereas the aragonite sample displays the main CL waveband peaked in the red region (linked to point defects), the more intense emission obtained from the common periwinkle shell appears at higher energies (mainly associated with structural defects). The UV-blue TL emission of the samples, regardless of the origin, displays (i) an acceptable ionizing radiation sensitivity, (ii) linear dose response in the range of interest (up to 8 Gy), (iii) reasonable stability of the TL signal after 700 h of storage with an initial decay of ca. 88% for the mineral sample and 60% for the biogenic sample and maintaining the stability from 150 h onwards. (iv) The tests of thermal stability of the TL emission performed in the range of 180–320 °C confirm a continuum in the trap system.

  15. Concentration of carbon-14 in plants

    International Nuclear Information System (INIS)

    1978-01-01

    The carbon-14 survey program initiated 1960 to gather data on current levels of carbon-14 in environments. Plants essential oil and fermented alcohol were selected as sample materials. The carbon contained in these materials is fixed from atmospheric carbon dioxide by anabolism, so they well reflect the variation of carbon-14 in biosphere. Thymol; Thymol was obtained from the essential oil of Orthodon Japonicium Benth which was cultivated and harvested every year in the experimental field of NIRS and Chiba University. The methylation was carried out to eliminate the strong quenching action of the phenolic group of thymol. Eighteen grams of thymol methyl ether was used as liquid scintillator by adding 0.4% PPO and 0.01% POPOP. Menthol; Menthol was obtained from Mentha arvensis L which was cultivated in the east part of Hokkaido and prepared by Kitami Factory of Federation of Agricultural Cooperative Society of Hokkaido. The chemical conversion of menthol to p-cymene was carried out and used as liquid scintillator as same as above sample. Lemongrass oil; Lemongrass oil was obtained from Cymbopogon citratus Stapf which was cultivated in Izu Experimental Station of Medicinal Plants, National Institute of Hygienic Science located Minami-Izu, Shizuoka Pref. The p-cymene derived from Lemongrass oil was used as liquid scintillator. Alcohol; All sample of fermented alcohol were obtained from the Alcohol Factories of Ministry of Trade and Industry. Raw materials of alcohol were sweet potatos cultivated in several prefectures in Japan ''high test'' molasses and blackstrap molasses imported from several countries of Asia, South America and South Africa, crude alcohol imported from U.S.A., Argentina and Brazil. Mixed solvent of 10 ml sample alcohol and 10 ml toluene or p-xylene containing 0.8% PPO and 0.1% dimethyl POPOP was used as liquid scintillator. (author)

  16. Changes in plasma potassium concentration during carbon dioxide pneumoperitoneum

    DEFF Research Database (Denmark)

    Perner, A; Bugge, K; Lyng, K M

    1999-01-01

    Hyperkalaemia with ECG changes had been noted during prolonged carbon dioxide pneumoperitoneum in pigs. We have compared plasma potassium concentrations during surgery in 11 patients allocated randomly to undergo either laparoscopic or open appendectomy and in another 17 patients allocated randomly...... to either carbon dioxide pneumoperitoneum or abdominal wall lifting for laparoscopic colectomy. Despite an increasing metabolic acidosis, prolonged carbon dioxide pneumoperitoneum resulted in only a slight increase in plasma potassium concentrations, which was both statistically and clinically insignificant....... Thus hyperkalaemia is unlikely to develop in patients with normal renal function undergoing carbon dioxide pneumoperitoneum for laparoscopic surgery....

  17. The effect of low-concentration inorganic materials on the behaviour of supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Imre, A.R., E-mail: imre@aeki.kfki.h [KFKI Atomic Energy Research Institute, POB 49, Budapest (Hungary); Hazi, G.; Horvath, A.; Maraczy, Cs. [KFKI Atomic Energy Research Institute, POB 49, Budapest (Hungary); Mazur, V.; Artemenko, S. [Odessa State Academy of Refrigeration, 1/3 Dvoryanslaya Str., 65026, Odessa (Ukraine)

    2011-01-15

    Research highlights: Small amount of inorganic materials (like corrosion products) can be dissolved in the supercritical water. Pseudo-critical temperature and other properties will be changed. Thermal and hydraulic behaviours of the SCW with small amount of contaminants differ in great extent from the behaviour of pure SCW. - Abstract: Supercritical water is a promising working fluid in the new Generation IV nuclear power plants. Due to the presence of the pseudo-critical line, the thermo-hydraulics (thermal and flow properties) and the physical chemistry of the supercritical water differ significantly from the pressurized hot water used in pressurized water reactors. In this study we would like to analyse the effect of small amount of inorganic material on the thermo-hydraulics of the supercritical water cooled nuclear reactors and other, non-nuclear supercritical water loops.

  18. High dark inorganic carbon fixation rates by specific microbial groups in the Atlantic off the Galician coast (NW Iberian margin).

    Science.gov (United States)

    Guerrero-Feijóo, Elisa; Sintes, Eva; Herndl, Gerhard J; Varela, Marta M

    2018-02-01

    Bulk dark dissolved inorganic carbon (DIC) fixation rates were determined and compared to microbial heterotrophic production in subsurface, meso- and bathypelagic Atlantic waters off the Galician coast (NW Iberian margin). DIC fixation rates were slightly higher than heterotrophic production throughout the water column, however, more prominently in the bathypelagic waters. Microautoradiography combined with catalyzed reporter deposition fluorescence in situ hybridization (MICRO-CARD-FISH) allowed us to identify several microbial groups involved in dark DIC uptake. The contribution of SAR406 (Marinimicrobia), SAR324 (Deltaproteobacteria) and Alteromonas (Gammaproteobacteria) to the dark DIC fixation was significantly higher than that of SAR202 (Chloroflexi) and Thaumarchaeota, in agreement with their contribution to microbial abundance. Q-PCR on the gene encoding for the ammonia monooxygenase subunit A (amoA) from the putatively high versus low ammonia concentration ecotypes revealed their depth-stratified distribution pattern. Taken together, our results indicate that chemoautotrophy is widespread among microbes in the dark ocean, particularly in bathypelagic waters. This chemolithoautotrophic biomass production in the dark ocean, depleted in bio-available organic matter, might play a substantial role in sustaining the dark ocean's food web. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunde [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Zhou, Aiguo, E-mail: aiguozhou@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Gan, Yiqun; Li, Xiaoqian [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China)

    2016-04-01

    Stable carbon isotope analysis has the potential to be used for assessing the performance of in situ remediation of organic contaminants. Successful application of this isotope technique requires understanding the magnitude and variability in carbon isotope fractionation associated with the reactions under consideration. This study investigated the influence of inorganic anions (sulfate, bicarbonate, and chloride) on carbon isotope fractionation of trichloroethene (TCE) during its degradation by persulfate activated with zero-valent iron. The results demonstrated that the significant carbon isotope fractionation (enrichment factors ε ranging from − 3.4 ± 0.3 to − 4.3 ± 0.3 ‰) was independent on the zero-iron dosage, sulfate concentration, and bicarbonate concentration. However, the ε values (ranging from − 7.0 ± 0.4 to − 13.6 ± 1.2 ‰) were dependent on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during TCE degradation by persulfate activated with zero-valent iron. The dependence of ε values on chloride concentration, indicated that TCE degradation mechanisms may be different from the degradation mechanism caused by sulfate radical (SO{sub 4}·{sup −}). Ignoring the effect of chloride on ε value may cause numerous uncertainties in quantitative assessment of the performance of the in situ chemical oxidation (ISCO). - Highlights: • Significant C isotope fractionation for TCE degradation by Fe{sup 0} activated persulfate. • The enrichment factors was independent of Fe{sup 0}, SO{sub 4}{sup 2−}, or HCO{sub 3}{sup −} concentration. • Cl{sup −} significantly influenced the carbon isotope fractionation.

  20. Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions

    International Nuclear Information System (INIS)

    Liu, Yunde; Zhou, Aiguo; Gan, Yiqun; Li, Xiaoqian

    2016-01-01

    Stable carbon isotope analysis has the potential to be used for assessing the performance of in situ remediation of organic contaminants. Successful application of this isotope technique requires understanding the magnitude and variability in carbon isotope fractionation associated with the reactions under consideration. This study investigated the influence of inorganic anions (sulfate, bicarbonate, and chloride) on carbon isotope fractionation of trichloroethene (TCE) during its degradation by persulfate activated with zero-valent iron. The results demonstrated that the significant carbon isotope fractionation (enrichment factors ε ranging from − 3.4 ± 0.3 to − 4.3 ± 0.3 ‰) was independent on the zero-iron dosage, sulfate concentration, and bicarbonate concentration. However, the ε values (ranging from − 7.0 ± 0.4 to − 13.6 ± 1.2 ‰) were dependent on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during TCE degradation by persulfate activated with zero-valent iron. The dependence of ε values on chloride concentration, indicated that TCE degradation mechanisms may be different from the degradation mechanism caused by sulfate radical (SO_4·"−). Ignoring the effect of chloride on ε value may cause numerous uncertainties in quantitative assessment of the performance of the in situ chemical oxidation (ISCO). - Highlights: • Significant C isotope fractionation for TCE degradation by Fe"0 activated persulfate. • The enrichment factors was independent of Fe"0, SO_4"2"−, or HCO_3"− concentration. • Cl"− significantly influenced the carbon isotope fractionation.

  1. Classroom Carbon Dioxide Concentration, School Attendance, and Educational Attainment

    Science.gov (United States)

    Gaihre, Santosh; Semple, Sean; Miller, Janice; Fielding, Shona; Turner, Steve

    2014-01-01

    Background: We tested the hypothesis that classroom carbon dioxide (CO[subscript 2]) concentration is inversely related to child school attendance and educational attainment. Methods: Concentrations of CO[subscript 2] were measured over a 3-5?day period in 60 naturally ventilated classrooms of primary school children in Scotland. Concentrations of…

  2. Variation of photoautotrophic fatty acid production from a highly CO2 tolerant alga, Chlorococcum littorale, with inorganic carbon over narrow ranges of pH.

    Science.gov (United States)

    Ota, Masaki; Takenaka, Motohiro; Sato, Yoshiyuki; Smith, Richard L; Inomata, Hiroshi

    2015-01-01

    Photoautotrophic fatty acid production of a highly CO2 -tolerant green alga Chlorococcum littorale in the presence of inorganic carbon at 295 K and light intensity of 170 µmol-photon m(-2) s(-1) was investigated. CO2 concentration in the bubbling gas was adjusted by mixing pure gas components of CO2 and N2 to avoid photorespiration and β-oxidation of fatty acids under O2 surrounding conditions. Maximum content of total fatty acid showed pH-dependence after nitrate depletion of the culture media and increased with the corresponding inorganic carbon ratio. Namely, [HCO3 (-) ]/([CO2 ]+n[ CO32-]) ratio in the culture media was found to be a controlling factor for photoautotrophic fatty acid production after the nitrate limitation. At a CO2 concentration of 5% (vol/vol) and a pH of 6.7, the fatty acid content was 47.8 wt % (dry basis) at its maximum that is comparable with land plant seed oils. © 2015 American Institute of Chemical Engineers.

  3. Carbon monoxide and COHb concentration in blood in various circumstances

    Energy Technology Data Exchange (ETDEWEB)

    Modic, J. [Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana (Slovenia)

    2003-07-01

    On the basis of known medical experiments we find out the correlation between the concentration of carbon monoxide (CO) in inhaling air and the concentration of carboxihemoglobyne (COHb) in human blood. All internal combustion engines produce exhaust gases containing noxious compounds: carbon monoxide, nitrogen oxides (NO{sub x}), carbon oxides (CxHy) and smoke. In a living room is important the smoke of cigarettes, smoke of furnaces, improper ventilation. In tunnel is most dangerous the carbon monoxide if it exceeds an allowable level. In human blood the carbon monoxide causes increasing the concentration of carboxihemoglobyne and in this case the hypoxia of web. With help of mathematical model the concentrations of some dangerous substances at the end of tunnel were calculated. For this case a differential equation also was developed and it shows the correlation between concentration of carbon monoxide in the air and concentration of carboxihemoglobyne in the blood. The constructed mathematical model shows circumstances in the tunnel (velocity of air moving as effect of induction, concentration of noxious substances and criterial number). Also a corresponding computer program was developed, which makes possible a quick and simple calculation. All the results are proved by experiments. Finally the differential equation was done, which shows a temporal connection between both parameters as a function of tunnel characteristics. (author)

  4. Dissolved inorganic carbon, pH, temperature, salinity and other variables collected from time series and surface observations using Moored Autonomous Dissolved Inorganic Carbon (MADIC) System, Sunburst SAMI2 pH sensor, and other instruments from Kewalo Buoy near the coast of Honolulu, Hawaii from 2013-10-31 to 2014-06-15 (NCEI Accession 0132048)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To expand the number of tools available for autonomous carbonate system observations, we have developed a robust surface ocean dissolved inorganic carbon (DIC)...

  5. Simulated In Situ Determination of Soil Profile Organic and Inorganic Carbon With LIBS and VisNIR

    Science.gov (United States)

    Bricklemyer, R. S.; Brown, D. J.; Clegg, S. M.; Barefield, J. E.

    2008-12-01

    There is growing need for rapid, accurate, and inexpensive methods to measure, and verify soil organic carbon (SOC) change for national greenhouse gas accounting and the development of a soil carbon trading market. Laser Induced Breakdown Spectroscopy (LIBS) and Visible and Near Infrared Spectroscopy (VisNIR) are complementary analytical techniques that have the potential to fill that need. The LIBS method provides precise elemental analysis of soils, but generally cannot distinguish between organic C and inorganic C. VisNIR has been established as a viable technique for measuring soil properties including SOC and inorganic carbon (IC). As part of the Big Sky Carbon Sequestration Regional Partnership, 240 intact core samples (3.8 x 50 cm) have been collected from six agricultural fields in north central Montana, USA. Each of these core samples were probed concurrently with LIBS and VisNIR at 2.5, 7.5, 12.5, 17.5, 22.5, 27.5, 35 and 45 cm (+/- 1.5 cm) depths. VisNIR measurements were taken using an Analytical Spectral Devices (ASD, Boulder, CO, USA) Agrispec spectrometer to determine the partition of SOC vs. IC in the samples. The LIBS scans were collected with the LANL LIBS Core Scanner Instrument which collected the entire 200 - 900 nm plasma emission including the 247.8 nm carbon emission line. This instrument also collected the emission from the elements typically found in inorganic carbon (Ca and Mg) and organic carbon (H, O, and N). Subsamples of soil (~ 4 g) were taken from interrogation points for laboratory determination of SOC and IC. Using this analytical data, we constructed several full spectrum multivariate VisNIR/LIBS calibration models for SOC and IC. These models were then applied to independent validation cores for model evaluation.

  6. Ionising radiation effect on the luminescence emission of inorganic and biogenic calcium carbonates

    Science.gov (United States)

    Boronat, C.; Correcher, V.; Virgos, M. D.; Garcia-Guinea, J.

    2017-06-01

    As known, the luminescence emission of mineral phases could be potentially employed for dosimetric purposes in the case of radiological terrorism or radiation accident where conventional monitoring is not available. In this sense, this paper reports on the thermo- (TL) and cathodoluminescence (CL) emission of both biogenic (common periwinkle - littorina littorera - shell made of calcite 90% and aragonite 10%) and inorganic (aragonite 100%) Ca-rich carbonates previously characterized by X-ray diffraction and Raman spectroscopy. Whereas the aragonite sample displays the main CL waveband peaked in the red region (linked to point defects), the more intense emission obtained from the common periwinkle shell appears at higher energies (mainly associated with structural defects). The UV-blue TL emission of the samples, regardless of the origin, displays (i) an acceptable ionizing radiation sensitivity, (ii) linear dose response in the range of interest (up to 8 Gy), (iii) reasonable stability of the TL signal after 700 h of storage with an initial decay of ca. 88% for the mineral sample and 60% for the biogenic sample and maintaining the stability from 150 h onwards. (iv) The tests of thermal stability of the TL emission performed in the range of 180-320 °C confirm a continuum in the trap system.

  7. Inorganic Nanoparticle-Modified Poly(Phenylene Sulphide/ Carbon Fiber Laminates: Thermomechanical Behaviour

    Directory of Open Access Journals (Sweden)

    Ana M. Díez-Pascual

    2013-07-01

    Full Text Available Carbon fiber (CF-reinforced high-temperature thermoplastics such as poly(phenylene sulphide (PPS are widely used in structural composites for aerospace and automotive applications. The porosity of CF-reinforced polymers is a very important topic for practical applications since there is a direct correlation between void content and mechanical properties. In this study, inorganic fullerene-like tungsten disulphide (IF-WS2 lubricant nanoparticles were used to manufacture PPS/IF-WS2/CF laminates via melt-blending and hot-press processing, and the effect of IF-WS2 loading on the quality, thermal and mechanical behaviour of the hybrid composites was investigated. The addition of IF-WS2 improved fiber impregnation, resulting in lower degree of porosity and increased delamination resistance, compression and flexural properties; their reinforcement effect was greater at temperatures above the glass transition (Tg. IF-WS2 contents higher than 0.5 wt % increased Tg and the heat deflection temperature while reduced the coefficient of thermal expansion. The multiscale laminates exhibited higher ignition point and notably reduced peak heat release rate compared to PPS/CF. The coexistence of micro- and nano-scale fillers resulted in synergistic effects that enhanced the stiffness, strength, thermal conductivity and flame retardancy of the matrix. The results presented herein demonstrate that the IF-WS2 are very promising nanofillers to improve the thermomechanical properties of conventional thermoplastic/CF composites.

  8. Enhanced energy density of carbon-based supercapacitors using Cerium (III) sulphate as inorganic redox electrolyte

    International Nuclear Information System (INIS)

    Díaz, Patricia; González, Zoraida; Santamaría, Ricardo; Granda, Marcos; Menéndez, Rosa; Blanco, Clara

    2015-01-01

    Highlights: •Ce 2 (SO 4 ) 3 /H 2 SO 4 redox electrolyte as a new route to increase the energy density of SCs. •Increased operating cell voltage with no electrolyte decomposition. •Redox reactions on the battery-type electrode. •The negative electrode retains its capacitor behaviour. •Outstanding energy density values compared to those measured in H 2 SO 4 . -- ABSTRACT: The energy density of carbon based supercapacitors (CBSCs) was significantly increased by the addition of an inorganic redox species [Ce 2 (SO 4 ) 3 ] to an aqueous electrolyte (H 2 SO 4 ). The development of the faradaic processes on the positive electrode not only significantly increased the capacitance but also the operational cell voltage of these devices (up to 1.5 V) due to the high redox potentials at which the Ce 3+ /Ce 4+ reactions occur. Therefore, in asymmetric CBSCs assembled using an activated carbon as negative electrode and MWCNTs as the positive one, the addition of Ce 2 (SO 4 ) 3 moderately increases the energy density of the device (from 1.24 W h kg −1 to 5.08 W h kg −1 ). When a modified graphite felt is used as positive electrode the energy density of the cell reaches values as high as 13.84 W h kg −1 . The resultant systems become asymmetric hybrid devices where energy is stored due to the electrical double layer formation in the negative electrode and the development of the faradaic process in the positive electrode, which acts as a battery-type electrode

  9. Source contributions to atmospheric fine carbon particle concentrations

    Science.gov (United States)

    Andrew Gray, H.; Cass, Glen R.

    A Lagrangian particle-in-cell air quality model has been developed that facilitates the study of source contributions to atmospheric fine elemental carbon and fine primary total carbon particle concentrations. Model performance was tested using spatially and temporally resolved emissions and air quality data gathered for this purpose in the Los Angeles area for the year 1982. It was shown that black elemental carbon (EC) particle concentrations in that city were dominated by emissions from diesel engines including both on-highway and off-highway applications. Fine primary total carbon particle concentrations (TC=EC+organic carbon) resulted from the accumulation of small increments from a great variety of emission source types including both gasoline and diesel powered highway vehicles, stationary source fuel oil and gas combustion, industrial processes, paved road dust, fireplaces, cigarettes and food cooking (e.g. charbroilers). Strategies for black elemental carbon particle concentration control will of necessity need to focus on diesel engines, while controls directed at total carbon particle concentrations will have to be diversified over a great many source types.

  10. The effect of dimensionality of nanostructured carbon on the architecture of organic-inorganic hybrid materials.

    Science.gov (United States)

    Misra, R D K; Depan, D; Shah, J

    2013-08-21

    The natural tendency of carbon nanotubes (CNTs) to agglomerate is an underlying reason that prevents the realization of their full potential. On the other hand, covalent functionalization of CNTs to control dispersion leads to disruption of π-conjugation in CNTs and the non-covalent functionalization leads to a weak CNT-polymer interface. To overcome these challenges, we describe the characteristics of fostering of direct nucleation of polymers on nanostructured carbon (CNTs of diameters (~2-200 nm), carbon nanofibers (~200-300 nm), and graphene), which culminates in interfacial adhesion, resulting from electrostatic and van der Waals interaction in the hybrid nanostructured carbon-polymer architecture. Furthermore, the structure is tunable through a change in undercooling. High density polyethylene and polypropylene were selected as two model polymers and two sets of experiments were carried out. The first set of experiments was carried out using CNTs of diameter ~2-5 nm to explore the effect of undercooling and polymer concentration. The second set of experiments was focused on studying the effect of dimensionality on geometrical confinements. The periodic crystallization of polyethylene on small diameter CNTs is demonstrated to be a consequence of the geometrical confinement effect, rather than epitaxy, such that petal-like disks nucleate on large diameter CNTs, carbon nanofibers, and graphene. The application of the process is illustrated in terms of fabricating a system for cellular uptake and bioimaging.

  11. [Study on the content and carbon isotopic composition of water dissolved inorganic carbon from rivers around Xi'an City].

    Science.gov (United States)

    Guo, Wei; Li, Xiang-Zhong; Liu, Wei-Guo

    2013-04-01

    In this study, the content and isotopic compositions of water dissolved inorganic carbon (DIC) from four typical rivers (Chanhe, Bahe, Laohe and Heihe) around Xi'an City were studied to trace the possible sources of DIC. The results of this study showed that the content of DIC in the four rivers varied from 0.34 to 5.66 mmol x L(-1) with an average value of 1.23 mmol x L(-1). In general, the content of DIC increased from the headstream to the river mouth. The delta13C(DIC) of four rivers ranged from -13.3 per thousand to -7.2 per thousand, with an average value of -10.1 per thousand. The delta13C(DIC) values of river water were all negative (average value of -12.6 per thousand) at the headstream of four rivers, but the delta13C(DIC) values of downstream water were more positive (with an average value of -9.4 per thousand). In addition, delta13C(DIC) of river water showed relatively negative values (the average value of delta13C(DIC) was -10.5 per thousand) near the estuary of the rivers. The variation of the DIC content and its carbon isotope suggested that the DIC sources of the rivers varied from the headstream to the river mouth. The negative delta13C(DIC) value indicated that the DIC may originate from the soil CO2 at the headstream of the rivers. On the other hand, the delta13C(DIC) values of river water at the middle and lower reaches of rivers were more positive, and it showed that soil CO2 produced by respiration of the C4 plants (like corn) and soil carbonates with positive delta13C values may be imported into river water. Meanwhile, the input of pollutants with low delta13C(DIC) values may result in a decrease of delta13C(DIC) values in the rivers. The study indicated that the DIC content and carbon isotope may be used to trace the sources of DIC in rivers around Xi'an City. Our study may provide some basic information for tracing the sources of DIC of rivers in the small watershed area in the Loess Plateau of China.

  12. Cyanobacterial carbon concentrating mechanisms facilitate sustained CO2 depletion in eutrophic lakes

    Directory of Open Access Journals (Sweden)

    A. M. Morales-Williams

    2017-06-01

    Full Text Available Phytoplankton blooms are increasing in frequency, intensity, and duration in aquatic ecosystems worldwide. In many eutrophic lakes, these high levels of primary productivity correspond to periods of CO2 depletion in surface waters. Cyanobacteria and other groups of phytoplankton have the ability to actively transport bicarbonate (HCO3− across their cell membrane when CO2 concentrations are limiting, possibly giving them a competitive advantage over algae not using carbon concentrating mechanisms (CCMs. To investigate whether CCMs can maintain phytoplankton bloom biomass under CO2 depletion, we measured the δ13C signatures of dissolved inorganic carbon (δ13CDIC and phytoplankton particulate organic carbon (δ13Cphyto in 16 mesotrophic to hypereutrophic lakes during the ice-free season of 2012. We used mass–balance relationships to determine the dominant inorganic carbon species used by phytoplankton under CO2 stress. We found a significant positive relationship between phytoplankton biomass and phytoplankton δ13C signatures as well as a significant nonlinear negative relationship between water column ρCO2 and isotopic composition of phytoplankton, indicating a shift from diffusive uptake to active uptake by phytoplankton of CO2 or HCO3− during blooms. Calculated photosynthetic fractionation factors indicated that this shift occurs specifically when surface water CO2 drops below atmospheric equilibrium. Our results indicate that active HCO3− uptake via CCMs may be an important mechanism in maintaining phytoplankton blooms when CO2 is depleted. Further increases in anthropogenic pressure, eutrophication, and cyanobacteria blooms are therefore expected to contribute to increased bicarbonate uptake to sustain primary production.

  13. Cyanobacterial carbon concentrating mechanisms facilitate sustained CO2 depletion in eutrophic lakes

    Science.gov (United States)

    Morales-Williams, Ana M.; Wanamaker, Alan D., Jr.; Downing, John A.

    2017-06-01

    Phytoplankton blooms are increasing in frequency, intensity, and duration in aquatic ecosystems worldwide. In many eutrophic lakes, these high levels of primary productivity correspond to periods of CO2 depletion in surface waters. Cyanobacteria and other groups of phytoplankton have the ability to actively transport bicarbonate (HCO3-) across their cell membrane when CO2 concentrations are limiting, possibly giving them a competitive advantage over algae not using carbon concentrating mechanisms (CCMs). To investigate whether CCMs can maintain phytoplankton bloom biomass under CO2 depletion, we measured the δ13C signatures of dissolved inorganic carbon (δ13CDIC) and phytoplankton particulate organic carbon (δ13Cphyto) in 16 mesotrophic to hypereutrophic lakes during the ice-free season of 2012. We used mass-balance relationships to determine the dominant inorganic carbon species used by phytoplankton under CO2 stress. We found a significant positive relationship between phytoplankton biomass and phytoplankton δ13C signatures as well as a significant nonlinear negative relationship between water column ρCO2 and isotopic composition of phytoplankton, indicating a shift from diffusive uptake to active uptake by phytoplankton of CO2 or HCO3- during blooms. Calculated photosynthetic fractionation factors indicated that this shift occurs specifically when surface water CO2 drops below atmospheric equilibrium. Our results indicate that active HCO3- uptake via CCMs may be an important mechanism in maintaining phytoplankton blooms when CO2 is depleted. Further increases in anthropogenic pressure, eutrophication, and cyanobacteria blooms are therefore expected to contribute to increased bicarbonate uptake to sustain primary production.

  14. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    Science.gov (United States)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-01-01

    “Clumped-isotope” thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope “clumps”). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals.We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect.Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3− and CO32−. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many

  15. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    Science.gov (United States)

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B.; Henry, Drew

    2015-10-01

    ;Clumped-isotope; thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of 13C and 18O isotopes bound to each other within carbonate minerals in 13C18O16O22- groups (heavy isotope ;clumps;). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solution chemistry), several factors other than temperature, including dissolved inorganic carbon (DIC) speciation may influence mineral isotopic signatures. Therefore we used a combination of approaches to understand the potential influence of different variables on the clumped isotope (and oxygen isotope) composition of minerals. We conducted witherite precipitation experiments at a single temperature and at varied pH to empirically determine 13C-18O bond ordering (Δ47) and δ18O of CO32- and HCO3- molecules at a 25 °C equilibrium. Ab initio cluster models based on density functional theory were used to predict equilibrium 13C-18O bond abundances and δ18O of different DIC species and minerals as a function of temperature. Experiments and theory indicate Δ47 and δ18O compositions of CO32- and HCO3- ions are significantly different from each other. Experiments constrain the Δ47-δ18O slope for a pH effect (0.011 ± 0.001; 12 ⩾ pH ⩾ 7). Rapidly-growing temperate corals exhibit disequilibrium mineral isotopic signatures with a Δ47-δ18O slope of 0.011 ± 0.003, consistent with a pH effect. Our theoretical calculations for carbonate minerals indicate equilibrium lattice calcite values for Δ47 and δ18O are intermediate between HCO3- and CO32-. We analyzed synthetic calcites grown at temperatures ranging from 0.5 to 50 °C with and without the enzyme carbonic anhydrase present. This enzyme catalyzes oxygen isotopic exchange between DIC species and is present in many natural systems. The two

  16. Dissolved inorganic carbon and alkalinity fluxes from coastal marine sediments: Model estimates for different shelf environments and sensitivity to global change

    NARCIS (Netherlands)

    Krumins, V.; Gehlen, M.; Arndt, S.; Van Cappellen, P.; Regnier, P.

    2013-01-01

    We present a one-dimensional reactive transport model to estimate benthic fluxes of dissolved inorganic carbon (DIC) and alkalinity (AT) from coastal marine sediments. The model incorporates the transport processes of sediment accumulation, molecular diffusion, bioturbation and bioirrigation,

  17. Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: the effect of pH-induced changes in the seawater carbonate chemistry

    DEFF Research Database (Denmark)

    Trimborn, S; Lundholm, Nina; Thoms, S

    2008-01-01

    . In terms of carbon source, all species took up both CO2 and HCO3-. K-1/2 values for inorganic carbon uptake decreased with increasing pH in two species, while in N. navis-varingica apparent affinities did not change. While the contribution of HCO3- to net fixation was more than 85% in S. stellaris......The effects of pH-induced changes in seawater carbonate chemistry on inorganic carbon (C-i) acquisition and domoic acid (DA) production were studied in two potentially toxic diatom species, Pseudo-nitzschia multiseries and Nitzschia navis-varingica, and the non-toxic Stellarima stellaris. In vivo...... activities of carbonic anhydrase (CA), photosynthetic O-2 evolution and CO2 and HCO3- uptake rates were measured by membrane inlet MS in cells acclimated to low (7.9) and high pH (8.4 or 8.9). Species-specific differences in the mode of carbon acquisition were found. While extracellular carbonic anhydrase (e...

  18. Effects of diagenesis on strontium, carbon, nitrogen and oxygen concentration and isotopic composition of bone

    Science.gov (United States)

    Nelson, Bruce K.; Deniro, Michael J.; Schoeninger, Margaret J.; De Paolo, Donald J.; Hare, P. E.

    1986-09-01

    Paleodietary analysis based on variations in the trace element and stable isotopic composition of inorganic and organic phases in fossil bone depends on the assumption that measured values reflect in vivo values. To test for postmortem alteration, we measured 87Sr /86Sr , 13C /12C , 18O /16O and 15N /14N ratios and Sr concentrations in modern and prehistoric (610 to 5470 yr old) bones of animals with marine or terrestrial diets from Greenland. Bones from modern terrestrial feeders have substantially lower Sr concentrations and more radiogenic 87Sr /86Sr ratios than those from modern marine feeders. This contrast was not preserved in the prehistoric samples, which showed almost complete overlap for both Sr concentration and isotopic composition in bones from the two types of animals. Leaching experiments, X-ray diffraction analysis and infrared spectroscopy indicate that alteration of the Sr concentration and isotopic composition in prehistoric bone probably results from nearly complete exchange with groundwater. Oxygen isotope ratios in fossil apatite carbonate also failed to preserve the original discrimination between modern terrestrial and marine feeders. The C isotope ratio of apatite carbonate did not discriminate between animals with marine or terrestrial diets in the modern samples. Even so, the ranges of apatite δ 13C values in prehistoric bone are more scattered than in modern samples for both groups, suggesting alteration had occurred. δ 13C and δ 15N values of collagen in modern bone are distinctly different for the two feeding types, and this distinction is preserved in most of the prehistoric samples. Our results suggest that postmortem alteration of dietary tracers in the inorganic phases of bone may be a problem at all archaeological sites and must be evaluated in each case. While collagen analyzed in this study was resistant to alteration, evaluation of the possibility of diagenetic alteration of its isotopic composition in bones from other

  19. An inorganic carbon transport system responsible for acclimation specific to air levels of CO2 in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Wang, Yingjun; Spalding, Martin H

    2006-06-27

    Many photosynthetic microorganisms acclimate to CO(2) limited environments by induction and operation of CO(2)-concentrating mechanisms (CCMs). Despite their central role in CCM function, inorganic carbon (Ci) transport systems never have been identified in eukaryotic photosynthetic organisms. In the green alga Chlamydomonas reinhardtii, a mutant, pmp1, was described in 1983 with deficiencies in Ci transport, and a Pmp1 protein-associated Ci uptake system has been proposed to be responsible for Ci uptake in low CO(2) (air level)-acclimated cells. However, even though pmp1 represents the only clear genetic link to Ci transport in microalgae and is one of only a very few mutants directly affecting the CCM itself, the identity of Pmp1 has remained unknown. Physiological analyses indicate that C. reinhardtii possesses multiple Ci transport systems responsible for acclimation to different levels of limiting CO(2) and that the Pmp1-associated transport system is required specifically for low (air level) CO(2) acclimation. In the current study, we identified and characterized a pmp1 allelic mutant, air dier 1 (ad1) that, like pmp1, cannot grow in low CO(2) (350 ppm) but can grow either in high CO(2) (5% CO(2)) or in very low CO(2) (<200 ppm). Molecular analyses revealed that the Ad1/Pmp1 protein is encoded by LciB, a gene previously identified as a CO(2)-responsive gene. LciB and three related genes in C. reinhardtii compose a unique gene family that encode four closely related, apparently soluble plastid proteins with no clearly identifiable conserved motifs.

  20. Carbon isotopes and concentrations in mid-oceanic ridge basalts

    International Nuclear Information System (INIS)

    Pineau, F.; Javoy, M.

    1983-01-01

    In order to estimate carbon fluxes at mid-ocean ridges and carbon isotopic compositions in the convective mantle, we have studied carbon concentrations and isotopic compositions in tholeiitic glasses from the FAMOUS zone (Mid-Atlantic Ridge at 36 0 N) and East Pacific Rise from 21 0 N (RITA zone) to 20 0 S. These samples correspond essentially to the whole spectrum of spreading rates (2-16 cm/yr). The contain: -CO 2 vesicles in various quantities (3-220 ppm C) with delta 13 C between -4 and -9per mille relative to PDB, in the range of carbonatites and diamonds. - Carbonate carbon (3-100 ppm C) with delta 13 C between -2.6 and -20.0per mille relative to PDB. - Dissolved carbon at a concentration of 170+-10 ppm under 250 bar pressure with delta 13 C from -9 to -21per mille relative to PDB. This dissolved carbon, not contained in large CO 2 vesicles, corresponds to a variety of chemical forms among which part of the above carbonates, microscopic CO 2 bubbles and graphite. The lightest portions of this dissolved carbon are extracted at low temperatures (400-600 0 C) whereas the CO 2 from the vesicles is extracted near fusion temperature. These features can be explained by outgassing processes in two steps from the source region of the magma: (1) equilibrium outgassing before the second percolation threshold, where micron size bubbles are continuously reequilibrated with the magma; (2) distillation after the second percolation threshold when larger bubbles travel faster than magma concentrations to the surface. The second step may begin at different depths apparently related to the spreading rate, shallower for fast-spreading ridges than for slow-spreading ridges. (orig./WL)

  1. Determination of reference concentrations for inorganic analytes in groundwater at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-03-01

    Background (or reference) concentrations for inorganics in Y-12 Plant groundwater were determined using a combination of statistical cluster analysis and conventional cumulative probability graphing. Objective was to develop a methodology for setting groundwater reference concentrations that uses all site groundwater data instead of only results of sampling upgradient of groundwater contamination. Y-12 was selected as prototype because the groundwater data set is very large and the data have been consistently collected since 1986. A conceptual framework of groundwater quality at Y-12 was formulated; as a quality check, data were statistically modeled or clustered. Ten hydrochemical regimes or clusters were identified. Six well clusters closely corresponded to the water quality framework and to observed water quality regimes in groundwater at Y-12. Four clusters were associated with nitrate, an S-3 Site contaminant, or with nonspecific contaminants commonly encountered at shallow depths at industrial sites (e.g., road salt). These four clusters were eliminated from the reference data set. Cumulative probability graphs were used within a cluster or group of clusters to distinguish contaminated wells from wells with ambient water quality. Only median values of unfiltered samples were plotted. Outlying data points (assumed to be contaminated samples) were identified and eliminated from the data set. When all outliers for a given inorganic had been identified and deleted from the data set, the reference concentration was set at the one-sided upper tolerance limit on the 95th percentile with 95% confidence. The methodology proved useful in integrating a large amount of data into the Y-12 plant groundwater conceptual framework and in identifying those wells or groups of wells that have monitoring or sample and analysis problems or that may be monitoring site-related contamination

  2. Effects of High Dissolved Inorganic and Organic Carbon Availability on the Physiology of the Hard Coral Acropora millepora from the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Friedrich W Meyer

    Full Text Available Coral reefs are facing major global and local threats due to climate change-induced increases in dissolved inorganic carbon (DIC and because of land-derived increases in organic and inorganic nutrients. Recent research revealed that high availability of labile dissolved organic carbon (DOC negatively affects scleractinian corals. Studies on the interplay of these factors, however, are lacking, but urgently needed to understand coral reef functioning under present and near future conditions. This experimental study investigated the individual and combined effects of ambient and high DIC (pCO2 403 μatm/ pHTotal 8.2 and 996 μatm/pHTotal 7.8 and DOC (added as Glucose 0 and 294 μmol L-1, background DOC concentration of 83 μmol L-1 availability on the physiology (net and gross photosynthesis, respiration, dark and light calcification, and growth of the scleractinian coral Acropora millepora (Ehrenberg, 1834 from the Great Barrier Reef over a 16 day interval. High DIC availability did not affect photosynthesis, respiration and light calcification, but significantly reduced dark calcification and growth by 50 and 23%, respectively. High DOC availability reduced net and gross photosynthesis by 51% and 39%, respectively, but did not affect respiration. DOC addition did not influence calcification, but significantly increased growth by 42%. Combination of high DIC and high DOC availability did not affect photosynthesis, light calcification, respiration or growth, but significantly decreased dark calcification when compared to both controls and DIC treatments. On the ecosystem level, high DIC concentrations may lead to reduced accretion and growth of reefs dominated by Acropora that under elevated DOC concentrations will likely exhibit reduced primary production rates, ultimately leading to loss of hard substrate and reef erosion. It is therefore important to consider the potential impacts of elevated DOC and DIC simultaneously to assess real world

  3. A robust and fast method of sampling and analysis of delta13C of dissolved inorganic carbon in ground waters.

    Science.gov (United States)

    Spötl, Christoph

    2005-09-01

    The stable carbon isotopic composition of dissolved inorganic carbon (delta13C(DIC)) is traditionally determined using either direct precipitation or gas evolution methods in conjunction with offline gas preparation and measurement in a dual-inlet isotope ratio mass spectrometer. A gas evolution method based on continuous-flow technology is described here, which is easy to use and robust. Water samples (100-1500 microl depending on the carbonate alkalinity) are injected into He-filled autosampler vials in the field and analysed on an automated continuous-flow gas preparation system interfaced to an isotope ratio mass spectrometer. Sample analysis time including online preparation is 10 min and overall precision is 0.1 per thousand. This method is thus fast and can easily be automated for handling large sample batches.

  4. Effect of Low Dose Gamma Radiation Upon the Concentration of Calcium and Inorganic Phosphorus in the Blood Plasma of Chickens

    International Nuclear Information System (INIS)

    Kraljevic, P.; Vilic, M.; Miljanic, S.; Simpraga, M.

    2003-01-01

    In our previous paper it has been showed that the irradiation of chickens eggs before incubation by low dose gamma irradiation effects upon growth of the chickens hatched from irradiated eggs as well as upon activity of ALT and AST, and on the concentration of total proteins, glucose and cholesterol in the blood plasma of those chickens. Therefore in this paper an attempt was made to determine the effects of irradiation of eggs by low dose of ionizing radiation on the 19th day of incubation upon the concentration of calcium (Ca) and inorganic phosphorus (P) in the blood plasma of chickens hatched from irradiated eggs. The eggs of heavy breeding chickens (Gent, line COBB 500) were irradiated by a dose of 0.15 Gy gamma radiation (6 0C o source) on the 19th day of incubation. Along with the chickens, which were hatched from irradiated eggs, there was a control group of chickens hatched from nonirradiated eggs. All other conditions were the same for both groups. After hatching, blood samples were taken on day 1, 3, 5, 7, 10, 20, 30 and 42. The concentration of Ca was determined calorimetrically using Randox optimized kits, while the concentration of P was determined by Herbos dijagnostika Sisak (Croatia) optimized kits. The concentration of Ca in the blood plasma of chickens hatched from irradiated eggs was significantly increased on the first day, while it was decreased on the day 42. The concentration of P was decreased on the first day in blood plasma of chickens hatched from irradiated eggs. The fact that the concentration of both minerals in blood plasma of chickens hatched from irradiated eggs was significantly changed on the first day proves that the irradiation of eggs by low dose of ionizing radiation on the nineteenth day of incubation had an effect on metabolism of both minerals in those chickens. (author)

  5. Natural variability in the surface ocean carbonate ion concentration

    OpenAIRE

    N. S. Lovenduski; M. C. Long; K. Lindsay

    2015-01-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32−]) on the basis of a long control simulation with a fully-coupled Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical...

  6. Natural variability in the surface ocean carbonate ion concentration

    OpenAIRE

    Lovenduski, N. S.; Long, M. C.; Lindsay, K.

    2015-01-01

    We investigate variability in the surface ocean carbonate ion concentration ([CO32−]) on the basis of a~long control simulation with an Earth System Model. The simulation is run with a prescribed, pre-industrial atmospheric CO2 concentration for 1000 years, permitting investigation of natural [CO32−] variability on interannual to multi-decadal timescales. We find high interannual variability in surface [CO32−] in the tropical Pacific and ...

  7. Evaluation of sampling methods for measuring exposure to volatile inorganic acids in workplace air. Part 2: Sampling capacity and breakthrough tests for sodium carbonate-impregnated filters.

    Science.gov (United States)

    Demange, Martine; Oury, Véronique; Rousset, Davy

    2011-11-01

    In France, the MétroPol 009 method used to measure workplace exposure to inorganic acids, such as HF, HCl, and HNO3, consists of a closed-face cassette fitted with a prefilter to collect particles, and two sodium carbonate-impregnated filters to collect acid vapor. This method was compared with other European methods during the development of a three-part standard (ISO 21438) on the determination of inorganic acids in workplace air by ion chromatography. Results of this work, presented in a companion paper, led to a need to go deeper into the performance of the MétroPol 009 method regarding evaluation of the breakthrough of the acids, both alone and in mixtures, interference from particulate salts, the amount of sodium carbonate required to impregnate the sampling filter, the influence of sampler components, and so on. Results enabled improvements to be made to the sampling device with respect to the required amount of sodium carbonate to sample high HCl or HNO3 concentrations (500 μL of 5% Na2CO3 on each of two impregnated filters). In addition, a PVC-A filter used as a prefilter in a sampling device showed a propensity to retain HNO3 vapor so a PTFE filter was considered more suitable for use as a prefilter. Neither the material of the sampling cassette (polystyrene or polypropylene) nor the sampling flowrate (1 L/min or 2 L/min) influenced the performance of the sampling device, as a recovery of about 100% was achieved in all experiments for HNO3, HCl, and HF, as well as HNO3+HF and HNO3+HCl mixtures, over a wide range of concentrations. However, this work points to the possibility of interference between an acid and salts of other acids. For instance, interference can occur through interaction of HNO3 with chloride salts: the stronger the acid, the greater the interference. Methods based on impregnated filters are reliable for quantitative recovery of inorganic volatile acids in workplace atmosphere but are valuable only in the absence of interferents.

  8. Steady-State Growth under Inorganic Carbon Limitation Conditions Increases Energy Consumption for Maintenance and Enhances Nitrous Oxide Production in Nitrosomonas europaea.

    Science.gov (United States)

    Mellbye, Brett L; Giguere, Andrew; Chaplen, Frank; Bottomley, Peter J; Sayavedra-Soto, Luis A

    2016-06-01

    Nitrosomonas europaea is a chemolithoautotrophic bacterium that oxidizes ammonia (NH3) to obtain energy for growth on carbon dioxide (CO2) and can also produce nitrous oxide (N2O), a greenhouse gas. We interrogated the growth, physiological, and transcriptome responses of N. europaea to conditions of replete (>5.2 mM) and limited inorganic carbon (IC) provided by either 1.0 mM or 0.2 mM sodium carbonate (Na2CO3) supplemented with atmospheric CO2 IC-limited cultures oxidized 25 to 58% of available NH3 to nitrite, depending on the dilution rate and Na2CO3 concentration. IC limitation resulted in a 2.3-fold increase in cellular maintenance energy requirements compared to those for NH3-limited cultures. Rates of N2O production increased 2.5- and 6.3-fold under the two IC-limited conditions, increasing the percentage of oxidized NH3-N that was transformed to N2O-N from 0.5% (replete) up to 4.4% (0.2 mM Na2CO3). Transcriptome analysis showed differential expression (P ≤ 0.05) of 488 genes (20% of inventory) between replete and IC-limited conditions, but few differences were detected between the two IC-limiting treatments. IC-limited conditions resulted in a decreased expression of ammonium/ammonia transporter and ammonia monooxygenase subunits and increased the expression of genes involved in C1 metabolism, including the genes for RuBisCO (cbb gene cluster), carbonic anhydrase, folate-linked metabolism of C1 moieties, and putative C salvage due to oxygenase activity of RuBisCO. Increased expression of nitrite reductase (gene cluster NE0924 to NE0927) correlated with increased production of N2O. Together, these data suggest that N. europaea adapts physiologically during IC-limited steady-state growth, which leads to the uncoupling of NH3 oxidation from growth and increased N2O production. Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, is an important process in the global nitrogen cycle. This process is generally dependent on ammonia

  9. Influence of the concentration of carbon nanotubes on electrical ...

    Indian Academy of Sciences (India)

    Influence of the concentration of carbon nanotubes on electrical conductivity of magnetically aligned MWCNT–polypyrrole composites. KAVEH KAZEMIKIA1,∗, FAHIMEH BONABI2, ALI ASADPOORCHALLO3 and. MAJID SHOKRZADEH4. 1Department of Electrical and Computer Engineering, Islamic Azad University, Bonab ...

  10. Root carbon input in organic and inorganic fertilizer-based systems

    DEFF Research Database (Denmark)

    Chirinda, Ngoni; Olesen, Jørgen E; Porter, John

    2012-01-01

    C input to remain scant. This study aimed at determining macro-root C input and topsoil root related respiration in response to nutrient management and soil fertility building measures. Methods We sampled roots and shoots of cereals and catch crops in inorganic and organic fertilizer-based arable...... season of winter wheat by subtracting soil respiration from soil with and without exclusion of roots. Results Catch crop roots accounted for more than 40 % of total plant C. For spring barley in 2008 and spring wheat in 2010, root C was higher in the organic than in the inorganic fertilizer-based systems...... was higher (31–131 %) in inorganic than in organic fertilizer-based systems. Conclusions Our findings show that macro-roots of both cereal crops and catch crops play a relatively larger role in organically managed systems than in mineral fertilizer based systems; and that the use of fixed biomass S/R ratios...

  11. A study of the concentration of certain inorganic air pollutants in the city of Elefsis

    International Nuclear Information System (INIS)

    Katselis, V.; Paradellis, T.

    1981-11-01

    The airborne concentration of Ca, Fe, Zn, Mn, Pb and Br pollutants has been measured in the city of Elefsis during 1977. The results obtained are compared with data obtained during 1975 in the same site, as well as with data obtained from the site of the NRC Democritus during 1977. (author)

  12. Response of dissolved inorganic carbon (DIC) and δ13CDIC to changes in climate and land cover in SW China karst catchments

    Science.gov (United States)

    Zhao, Min; Liu, Zaihua; Li, Hong-Chun; Zeng, Cheng; Yang, Rui; Chen, Bo; Yan, Hao

    2015-09-01

    Monthly hydrochemical data and δ13C of dissolved inorganic carbon (DIC) in karst water samples from September 2007 to October 2012 were obtained to reveal the controlling mechanisms on DIC geochemistry and δ13CDIC under different conditions of climate and land cover in three karst catchments: Banzhai, Dengzhanhe and Chenqi, in Guizhou Province, SW China. DIC of karst water at the Banzhai site comes mainly from carbonate dissolution under open system conditions with soil CO2 produced by root respiration and organic carbon decomposition with lowest δ13C values under its dense virgin forest coverage. Weaker carbonate bedrock dissolution due to sparse and thin soil cover results in lower δ13CDIC, pCO2, DIC and EC, and lower cation and anion concentrations. At the Chenqi site, larger soil CO2 input from a thick layer of soil results in high pCO2 and DIC, and low pH, SIc and δ13CDIC in the karst water. At the Dengzhanhe site, a lesser soil CO2 input due to stronger karst rock desertification and strong gypsum dissolution contribute to higher δ13CDIC, high EC and high cation and anion concentrations. Soil CO2 inputs, controlled by biological activity and available soil moisture, carbonate bedrock dissolution, dilution and degassing effects, vary seasonally following rainfall and temperature changes. Consequently, there are seasonal cycles in hydrochemistry and δ13CDIC of the karst water, with high pCO2 and low pH, EC, SIc, and δ13CDIC values in the warm and rainy seasons, and vice versa during the cold and dry seasons. A strongly positive shift (>3‰) in δ13CDIC occurred in the drought year, 2011, indicating that δ13CDIC in groundwater systems can be an effective indicator of environmental and/or climate changes.

  13. Inorganic Contaminant Concentrations and Body Condition in Wintering Waterfowl from Great Salt Lake, Utah

    Science.gov (United States)

    Vest, J.; Conover, M.; Perschon, C.; Luft, J.

    2006-12-01

    The Great Salt Lake (GSL) is the fourth largest terminal lake in the world and is an important region for migratory and breeding waterbirds. Because the GSL is a closed basin, contaminants associated with industrial and urban development may accumulate in this system. Recently, water and sediment samples from the GSL revealed high concentrations of Hg and Se and methylmercury concentrations in GSL water samples were among the highest ever recorded in surface water by the USGS Mercury Laboratory. Thus, GSL waterbirds are likely exposed to these contaminants and elevated contaminant concentrations may adversely affect survival and reproduction in waterfowl. Our objectives were to 1) estimate mercury (Hg), selenium (Se), cadmium (Cd), copper (Cu), and zinc (Zn) concentrations in wintering waterfowl from GSL and, 2) evaluate relationships between measures of waterfowl body condition and internal organ masses (hereafter body condition) with trace metal concentrations. We collected common goldeneye (COGO), northern shoveler (NSHO), and American green-winged teal (AGWT) from the GSL during early winter. We used ICP-MS to analyze liver and muscle tissue samples for contaminant concentrations. We developed species specific regression models for each of 5 condition indices, including ingesta-free plucked body mass (IFPBM), abdominal fat mass, spleen, liver, and pancreas masses. Independent variables were comprised of Hg, Se, Cd, Cu, and Zn and we included sex and age as covariates in each regression. We used Akaike's Information Criterion adjusted for small sample size to select best and competing models. Subsequently, we used partial correlations to depict inverse relationships identified in competing models. Hg concentrations in COGO and NSHO muscle tissue generally exceeded or approached the 1 ppm wet weight (ww) threshold considered unsafe for human consumption in fish and game. Hg concentrations in liver tissue exceeded or were among the highest reported in published

  14. The mitigating effect of calcification-dependent of utilization of inorganic carbon of Chara vulgaris Linn on NH4-N toxicity.

    Science.gov (United States)

    Wang, Heyun; Ni, Leyi; Xie, Ping

    2013-09-01

    Increased ammonium (NH4-N) concentrations in water bodies have been reported to adversely affect the dominant species of submersed vegetation in meso-eutrophic waters worldwide. However calcareous plants were lowly sensitive to NH4-N toxicity. In order to make clear the function of calcification in the tolerance of calcareous plants to NH4-N stress, we studied the effects of increased HCO3(-) and additional NH4-N on calcification and utilization of dissolve inorganic carbon (DIC) in Chara vulgaris Linn in a 7-d sub-acute experiment (light:dark 12:12h) carried out in an open experimental system in lab. Results revealed that calcification was dependent of utilization of dissolve inorganic carbon. Additional HCO3(-) significantly decreased the increase of pH while additional NH4-N did not. And additional HCO3(-) significantly improved calcification while NH4-N did in versus in relation to the variation of DIC concentration. However, addition of both HCO3(-) and NH4-N increased utilization of DIC. This resulted in calcification to utilization of DIC ratio decreased under additional NH4-N condition while increased under additional HCO3(-) conditions in response to the variation of solution pH. In the present study, external HCO3(-) decreased the increase of solution pH by increasing calcification, which correspondingly mitigated the toxic effect of high NH4-N. And we argue that the mitigating effect of increased HCO3(-) on NH4-N toxicity is dependent of plant calcification, and it is a positive feedback mechanism, potentially leading to the dominance of calcareous plants in meso-eutrophic water bodies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. High-resolution transmission electron microscopy studies of graphite materials prepared by high-temperature treatment of unburned carbon concentrates from combustion fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Miguel Cabielles; Jean-Nol Rouzaud; Ana B. Garcia [Instituto Nacional del Carbn (INCAR), Oviedo (Spain)

    2009-01-15

    High-resolution transmission electron microscopy (HRTEM) has been used in this work to study the microstructural (structure and microtexture) changes occurring during the high-temperature treatment of the unburned carbon concentrates from coal combustion fly ashes. Emphasis was placed on two aspects: (i) the development of graphitic carbon structures and (ii) the disordered carbon forms remaining in the graphitized samples. In addition, by coupling HRTEM with energy-dispersive spectroscopy, the transformations with the temperature of the inorganic matter (mainly iron- and silicon-based phases) of the unburned carbon concentrates were evidenced. The HRTEM results were compared to the averaged structural order of the materials as evaluated by X-ray diffraction (XRD) and Raman spectroscopy. As indicated by XRD and Raman parameters, more-ordered materials were obtained from the unburned carbon concentrates with higher mineral/inorganic matter, thus inferring the catalytic effect of some of their components. However, the average character of the information provided by these instrumental techniques seems to be inconclusive in discriminating between carbon structures with different degrees of order (stricto sensu graphite, graphitic, turbostratic, etc.) in a given graphitized unburned carbon. Unlike XRD and Raman, HRTEM is a useful tool for imaging directly the profile of the polyaromatic layers (graphene planes), thus allowing the sample heterogeneity to be looked at, specifically the presence of disordered carbon phases. 49 refs., 9 figs., 3 tabs.

  16. Chronic arsenic exposure increases TGFalpha concentration in bladder urothelial cells of Mexican populations environmentally exposed to inorganic arsenic

    International Nuclear Information System (INIS)

    Valenzuela, Olga L.; Germolec, Dori R.; Borja-Aburto, Victor H.; Contreras-Ruiz, Jose; Garcia-Vargas, Gonzalo G.; Razo, Luz M. del

    2007-01-01

    Inorganic arsenic (iAs) is a well-established carcinogen and human exposure has been associated with a variety of cancers including those of skin, lung, and bladder. High expression of transforming growth factor alpha (TGF-α) has associated with local relapses in early stages of urinary bladder cancer. iAs exposures are at least in part determined by the rate of formation and composition of iAs metabolites (MAs III , MAs V , DMAs III , DMAs V ). This study examines the relationship between TGF-α concentration in exfoliated bladder urothelial cells (BUC) separated from urine and urinary arsenic species in 72 resident women (18-51 years old) from areas exposed to different concentrations of iAs in drinking water (2-378 ppb) in central Mexico. Urinary arsenic species, including trivalent methylated metabolites were measured by hydride generation atomic absorption spectrometry method. The concentration of TGF-α in BUC was measured using an ELISA assay. Results show a statistically significant positive correlation between TGF-α concentration in BUC and each of the six arsenic species present in urine. The multivariate linear regression analyses show that the increment of TGF-α levels in BUC was importantly associated with the presence of arsenic species after adjusting by age, and presence of urinary infection. People from areas with high arsenic exposure had a significantly higher TGF-α concentration in BUC than people from areas of low arsenic exposure (128.8 vs. 64.4 pg/mg protein; p < 0.05). Notably, exfoliated cells isolated from individuals with skin lesions contained significantly greater amount of TGF-α than cells from individuals without skin lesions: 157.7 vs. 64.9 pg/mg protein (p = 0.003). These results suggest that TGF-α in exfoliated BUC may serve as a susceptibility marker of adverse health effects on epithelial tissue in arsenic-endemic areas

  17. Correlation of the concentration of the carbon-associated radiation damage levels with the total carbon concentration in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Ferenczi, G.; Londos, C.A.; Pavelka, T.; Somogyi, M.; Mertens, A.

    1988-01-01

    The dominant carbon-related radiation damage center in silicon was studied in detail by deep level transient spectroscopy. Samples with different carbon and oxygen content were implanted with gradually increasing proton fluence. Two energetically closely spaced levels were revealed and tentative identities were assigned. One at E/sub T/+E/sub V/ = 0.344 eV (sigma/sub p/ = 1.1 x 10/sup -16/ cm/sup 2/) is assigned as the C+O/sub i/ complex, and that at E/sub T/+E/sub V/ = 0.370 eV (sigma/sub p/ = 8 x 10/sup -18/ cm/sup 2/) is assigned as the C/sub s/-Si/sub i/-C/sub s/ complex. It was shown that the concentration of these defects is correlated to the total concentration of carbon in the crystal.

  18. Effect of Elevated Carbon Dioxide Concentration on Carbon Assimilation under Fluctuating Light

    Czech Academy of Sciences Publication Activity Database

    Holišová, Petra; Zitová, Martina; Klem, Karel; Urban, Otmar

    2012-01-01

    Roč. 41, č. 6 (2012), s. 1931-1938 ISSN 0047-2425 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA ČR(CZ) GAP501/10/0340; GA MŠk(CZ) LM2010007; GA AV ČR IAA600870701 Institutional support: RVO:67179843 Keywords : carbon * light * beech * spruce * carbon assimilation * elevat e carbon * dioxide concentration * mol * photosynthetic * assimilation * carbon dioxide * dioxide * concentracion * leave * photosynthetic efficiency Subject RIV: EH - Ecology, Behaviour Impact factor: 2.353, year: 2012

  19. Carbon-Electrode-Tailored All-Inorganic Perovskite Solar Cells To Harvest Solar and Water-Vapor Energy.

    Science.gov (United States)

    Duan, Jialong; Hu, Tianyu; Zhao, Yuanyuan; He, Benlin; Tang, Qunwei

    2018-05-14

    Moisture is the worst enemy for state-of-the-art perovskite solar cells (PSCs). However, the flowing water vapor within nanoporous carbonaceous materials can create potentials. Therefore, it is a challenge to integrate water vapor and solar energies into a single PSC device. We demonstrate herein all-inorganic cesium lead bromide (CsPbBr 3 ) solar cells tailored with carbon electrodes to simultaneously harvest solar and water-vapor energy. Upon interfacial modification and plasma treatment, the bifunctional PSCs yield a maximum power conversion efficiency up to 9.43 % under one sun irradiation according to photoelectric conversion principle and a power output of 0.158 μW with voltage of 0.35 V and current of 0.45 μA in 80 % relative humidity through the flowing potentials at the carbon/water interface. The initial efficiency is only reduced by 2 % on exposing the inorganic PSC with 80 % humidity over 40 days. The successful realization of physical proof-of-concept multi-energy integrated solar cells provides new opportunities of maximizing overall power output. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Concentrations of inorganic arsenic in groundwater, agricultural soils and subsurface sediments from the middle Gangetic plain of Bihar, India.

    Science.gov (United States)

    Kumar, Manoj; Ramanathan, A L; Rahman, Mohammad Mahmudur; Naidu, Ravi

    2016-12-15

    Concentrations of inorganic forms [arsenite, As(III) and arsenate, As(V) of arsenic (As) present in groundwater, agricultural soils and subsurface sediments located in the middle Gangetic plain of Bihar, India were determined. Approximately 73% of the groundwater samples (n=19) show As(III) as the dominant species while 27% reveals As(V) was the dominant species. The concentration of As(III) in agricultural soil samples varies from not detectable to 40μg/kg and As(V) was observed as the major species (ranging from 1050 to 6835μg/kg) while the total As concentration varied from 3528 to 14,690μg/kg. Total extracted concentration of As was higher in the subsurface sediments (range 9119-20,056μg/kg in Methrapur and 4788-19,681μg/kg in Harail Chapar) than the agricultural soil, indicating the subsurface sediment as a source of As. Results of X-ray diffraction (XRD) and environmental scanning electron microscope (ESEM) revealed the presence of hematite and goethite throughout the vertical section below while magnetite was observed only in the upper oxidized layer at Methrapur and Harail Chapar. Alteration of Fe-oxides and presence of fibrous goethite indicating presence of diagenetic sediment. Siderite plays a crucial role as sinks to the As in subsurface sediments. The study also concluded that decomposition of organic matter present in dark and grey sections promote the redox conditions and trigger mobilization of As into groundwater. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Kinetic characteristics and modeling of microalgae Chlorella vulgaris growth and CO2 biofixation considering the coupled effects of light intensity and dissolved inorganic carbon.

    Science.gov (United States)

    Chang, Hai-Xing; Huang, Yun; Fu, Qian; Liao, Qiang; Zhu, Xun

    2016-04-01

    Understanding and optimizing the microalgae growth process is an essential prerequisite for effective CO2 capture using microalgae in photobioreactors. In this study, the kinetic characteristics of microalgae Chlorella vulgaris growth in response to light intensity and dissolved inorganic carbon (DIC) concentration were investigated. The greatest values of maximum biomass concentration (Xmax) and maximum specific growth rate (μmax) were obtained as 2.303 g L(-1) and 0.078 h(-1), respectively, at a light intensity of 120 μmol m(-2) s(-1) and DIC concentration of 17 mM. Based on the results, mathematical models describing the coupled effects of light intensity and DIC concentration on microalgae growth and CO2 biofixation are proposed. The models are able to predict the temporal evolution of C. vulgaris growth and CO2 biofixation rates from lag to stationary phases. Verification experiments confirmed that the model predictions agreed well with the experimental results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effect of Inorganic and Organic Carbon Enrichments (DIC and DOC on the Photosynthesis and Calcification Rates of Two Calcifying Green Algae from a Caribbean Reef Lagoon.

    Directory of Open Access Journals (Sweden)

    Friedrich W Meyer

    Full Text Available Coral reefs worldwide are affected by increasing dissolved inorganic carbon (DIC and organic carbon (DOC concentrations due to ocean acidification (OA and coastal eutrophication. These two stressors can occur simultaneously, particularly in near-shore reef environments with increasing anthropogenic pressure. However, experimental studies on how elevated DIC and DOC interact are scarce and fundamental to understanding potential synergistic effects and foreseeing future changes in coral reef function. Using an open mesocosm experiment, the present study investigated the impact of elevated DIC (pHNBS: 8.2 and 7.8; pCO2: 377 and 1076 μatm and DOC (added as 833 μmol L-1 of glucose on calcification and photosynthesis rates of two common calcifying green algae, Halimeda incrassata and Udotea flabellum, in a shallow reef environment. Our results revealed that under elevated DIC, algal photosynthesis decreased similarly for both species, but calcification was more affected in H. incrassata, which also showed carbonate dissolution rates. Elevated DOC reduced photosynthesis and calcification rates in H. incrassata, while in U. flabellum photosynthesis was unaffected and thalus calcification was severely impaired. The combined treatment showed an antagonistic effect of elevated DIC and DOC on the photosynthesis and calcification rates of H. incrassata, and an additive effect in U. flabellum. We conclude that the dominant sand dweller H. incrassata is more negatively affected by both DIC and DOC enrichments, but that their impact could be mitigated when they occur simultaneously. In contrast, U. flabellum can be less affected in coastal eutrophic waters by elevated DIC, but its contribution to reef carbonate sediment production could be further reduced. Accordingly, while the capacity of environmental eutrophication to exacerbate the impact of OA on algal-derived carbonate sand production seems to be species-specific, significant reductions can be expected

  3. Effect of Inorganic and Organic Carbon Enrichments (DIC and DOC) on the Photosynthesis and Calcification Rates of Two Calcifying Green Algae from a Caribbean Reef Lagoon.

    Science.gov (United States)

    Meyer, Friedrich W; Schubert, Nadine; Diele, Karen; Teichberg, Mirta; Wild, Christian; Enríquez, Susana

    2016-01-01

    Coral reefs worldwide are affected by increasing dissolved inorganic carbon (DIC) and organic carbon (DOC) concentrations due to ocean acidification (OA) and coastal eutrophication. These two stressors can occur simultaneously, particularly in near-shore reef environments with increasing anthropogenic pressure. However, experimental studies on how elevated DIC and DOC interact are scarce and fundamental to understanding potential synergistic effects and foreseeing future changes in coral reef function. Using an open mesocosm experiment, the present study investigated the impact of elevated DIC (pHNBS: 8.2 and 7.8; pCO2: 377 and 1076 μatm) and DOC (added as 833 μmol L-1 of glucose) on calcification and photosynthesis rates of two common calcifying green algae, Halimeda incrassata and Udotea flabellum, in a shallow reef environment. Our results revealed that under elevated DIC, algal photosynthesis decreased similarly for both species, but calcification was more affected in H. incrassata, which also showed carbonate dissolution rates. Elevated DOC reduced photosynthesis and calcification rates in H. incrassata, while in U. flabellum photosynthesis was unaffected and thalus calcification was severely impaired. The combined treatment showed an antagonistic effect of elevated DIC and DOC on the photosynthesis and calcification rates of H. incrassata, and an additive effect in U. flabellum. We conclude that the dominant sand dweller H. incrassata is more negatively affected by both DIC and DOC enrichments, but that their impact could be mitigated when they occur simultaneously. In contrast, U. flabellum can be less affected in coastal eutrophic waters by elevated DIC, but its contribution to reef carbonate sediment production could be further reduced. Accordingly, while the capacity of environmental eutrophication to exacerbate the impact of OA on algal-derived carbonate sand production seems to be species-specific, significant reductions can be expected under future

  4. New features on the environmental regulation of metabolism revealed by modeling the cellular proteomic adaptations induced by light, carbon and inorganic nitrogen in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Stéphanie Gérin

    2016-08-01

    Full Text Available Microalgae are currently emerging to be very promising organisms for the production of biofuels and high-added value compounds. Understanding the influence of environmental alterations on their metabolism is a crucial issue. Light, carbon and nitrogen availability have been reported to induce important metabolic adaptations. So far, the influence of these variables has essentially been studied while varying only one or two environmental factors at the same time. The goal of the present work was to model the cellular proteomic adaptations of the green microalga Chlamydomonas reinhardtii upon the simultaneous changes of light intensity, carbon concentrations (CO2 and acetate and inorganic nitrogen concentrations (nitrate and ammonium in the culture medium. Statistical design of experiments (DOE enabled to define 32 culture conditions to be tested experimentally. Relative protein abundance was quantified by two dimensional differential in-gel electrophoresis (2D-DIGE. Additional assays for respiration, photosynthesis, and lipid and pigment concentrations were also carried out. A hierarchical clustering survey enabled to partition biological variables (proteins + assays into eight co-regulated clusters. In most cases, the biological variables partitioned in the same cluster had already been reported to participate to common biological functions (acetate assimilation, bioenergetic processes, light harvesting, Calvin cycle and protein metabolism. The environmental regulation within each cluster was further characterized by a series of multivariate methods including principal component analysis and multiple linear regressions. This metadata analysis enabled to highlight the existence of a clear regulatory pattern for every cluster and to mathematically simulate the effects of light, carbon and nitrogen. The influence of these environmental variables on cellular metabolism is described in details and thoroughly discussed. This work provides an overview

  5. Selection of pecan shell-based activated carbons for removal of organic and inorganic impurities from water.

    Science.gov (United States)

    Niandou, Mohamed A S; Novak, Jeffrey M; Bansode, Rishipal R; Yu, Jianmei; Rehrah, Djaafar; Ahmedna, Mohamed

    2013-01-01

    Activated carbons are a byproduct from pyrolysis and have value as a purifying agent. The effectiveness of activated carbons is dependent on feedstock selection and pyrolysis conditions that modify their surface properties. Therefore, pecan shell-based activated carbons (PSACs) were prepared by soaking shells in 50% (v/v) HPO or 25 to 50% of KOH-NaHCO followed by pyrolysis at 400 to 700°C under a N atmosphere. Physically activated PSACs were produced by pyrolysis at 700°C under N followed by activation with steam or CO at 700 to 900°C. Physicochemical, surface, and adsorption properties of the PSACs were compared with two commercially available activated carbons. The average mass yield of PSACs with respect to the initial mass of the biomass was about 20 and 34% for physically activated and chemically activated carbons, respectively. Acid-activated carbons exhibited higher surface area, higher bulk density, and lower ash content compared with steam- or CO-activated carbons and the two commercial products. Base activation led to the development of biochar with moderate to high surface area with surface charges suitable for adsorption of anionic species. Regardless of the activation method, PSACs had high total surface area ranging from 400 to 1000 m g, better pore size distribution, and more surface charges than commercial samples. Our results also showed that PSACs were effective in removing inorganic contaminants such as Cu and NO as well as organic contaminants such as atrazine and metolachlor. This study showed that pyrolysis conditions and activation had a large influence on the PSAC's surface characteristics, which can limit its effectiveness as a custom sorbent for targeted water contaminants. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Regulatory components of carbon concentrating mechanisms in aquatic unicellular photosynthetic organisms.

    Science.gov (United States)

    Tomar, Vandana; Sidhu, Gurpreet Kaur; Nogia, Panchsheela; Mehrotra, Rajesh; Mehrotra, Sandhya

    2017-11-01

    This review provides an insight into the regulation of the carbon concentrating mechanisms (CCMs) in lower organisms like cyanobacteria, proteobacteria, and algae. CCMs evolved as a mechanism to concentrate CO 2 at the site of primary carboxylating enzyme Ribulose-1, 5-bisphosphate carboxylase oxygenase (Rubisco), so that the enzyme could overcome its affinity towards O 2 which leads to wasteful processes like photorespiration. A diverse set of CCMs exist in nature, i.e., carboxysomes in cyanobacteria and proteobacteria; pyrenoids in algae and diatoms, the C 4 system, and Crassulacean acid metabolism in higher plants. Prime regulators of CCM in most of the photosynthetic autotrophs belong to the LysR family of transcriptional regulators, which regulate the activity of the components of CCM depending upon the ambient CO 2 concentrations. Major targets of these regulators are carbonic anhydrase and inorganic carbon uptake systems (CO 2 and HCO 3 - transporters) whose activities are modulated either at transcriptional level or by changes in the levels of their co-regulatory metabolites. The article provides information on the localization of the CCM components as well as their function and participation in the development of an efficient CCM. Signal transduction cascades leading to activation/inactivation of inducible CCM components on perception of low/high CO 2 stimuli have also been brought into picture. A detailed study of the regulatory components can aid in identifying the unraveled aspects of these mechanisms and hence provide information on key molecules that need to be explored to further provide a clear understanding of the mechanism under study.

  7. Coupled organic and inorganic carbon cycling in the deep subseafloor sediment of the northeastern Bering Sea Slope (IODP Exp. 323)

    DEFF Research Database (Denmark)

    Wehrmann, Laura M.; Risgaard-Petersen, Nils; Schrum, Heather

    2011-01-01

    We studied microbially mediated diagenetic processes driven by carbon mineralization in subseafloor sediment of the northeastern Bering Sea Slope to a depth of 745 meters below seafloor (mbsf). Sites U1343, U1344 and U1345 were drilled during Integrated Ocean Drilling Program (IODP) Expedition 323......) and between 300 and 400 mbsf. The SMTZ at the three sites is located between 6 and 9 mbsf. The upward methane fluxes into the SMTZ are similar to fluxes in SMTZs underlying high-productivity surface waters off Chile and Namibia. Our Bering Sea results show that intense organic carbon mineralization drives...... microbially mediated carbon mineralization leaves DIC isotope composition unaffected. Ongoing carbonate formation between 300 and 400 mbsf strongly influences pore-water DIC and magnesium concentration profiles. The linked succession of organic carbon mineralization and carbonate dissolution and precipitation...

  8. A flow injection analyser conductometric coupled system for the field analysis of free dissolved CO{sub 2} and total dissolved inorganic carbon in natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Martinotti, Valter; Balordi, Marcella; Ciceri, Giovanni [RSE SpA - Environment and Sustainable Development Department, Milan (Italy)

    2012-05-15

    A flow injection analyser coupled with a gas diffusion membrane and a conductometric microdetector was adapted for the field analysis of natural concentrations of free dissolved CO{sub 2} and dissolved inorganic carbon in natural waters and used in a number of field campaigns for marine water monitoring. The dissolved gaseous CO{sub 2} presents naturally, or that generated by acidification of the sample, is separated by diffusion using a hydrophobic semipermeable gas porous membrane, and the permeating gas is incorporated into a stream of deionised water and measured by means of an electrical conductometric microdetector. In order to make the system suitable and easy to use for in-field measurements aboard oceanographic ships, the single components of the analyser were compacted into a robust and easy to use system. The calibration of the system is carried out by using standard solutions of potassium bicarbonate at two concentration ranges. Calibration and sample measurements are carried out inside a temperature-constant chamber at 25 C and in an inert atmosphere (N{sub 2}). The detection and quantification limits of the method, evaluated as 3 and 10 times the standard deviation of a series of measurements of the matrix solution were 2.9 and 9.6 {mu}mol/kg of CO{sub 2}, respectively. Data quality for dissolved inorganic carbon was checked with replicate measurements of a certified reference material (A. Dickson, Scripps Institution of Oceanography, University of California, San Diego), both accuracy and repeatability were -3.3% and 10%, respectively. Optimization, performance qualification of the system and its application in various natural water samples are reported and discussed. In the future, the calibration step will be operated automatically in order to improve the analytical performance and the applicability will be increased in the course of experimental surveys carried out both in marine and freshwater ecosystems. Considering the present stage of

  9. The carbon-nitrogen balance of the nodule and its regulation under elevated carbon dioxide concentration.

    Science.gov (United States)

    Libault, Marc

    2014-01-01

    Legumes have developed a unique way to interact with bacteria: in addition to preventing infection from pathogenic bacteria like any other plant, legumes also developed a mutualistic symbiotic relationship with one gender of soil bacteria: rhizobium. This interaction leads to the development of a new root organ, the nodule, where the differentiated bacteria fix for the plant the atmospheric dinitrogen (atmN2). In exchange, the symbiont will benefit from a permanent source of carbon compounds, products of the photosynthesis. The substantial amounts of fixed carbon dioxide dedicated to the symbiont imposed to the plant a tight regulation of the nodulation process to balance carbon and nitrogen incomes and outcomes. Climate change including the increase of the concentration of the atmospheric carbon dioxide is going to modify the rates of plant photosynthesis, the balance between nitrogen and carbon, and, as a consequence, the regulatory mechanisms of the nodulation process. This review focuses on the regulatory mechanisms controlling carbon/nitrogen balances in the context of legume nodulation and discusses how the change in atmospheric carbon dioxide concentration could affect nodulation efficiency.

  10. Organic and Inorganic Pollutant Concentrations Suggest Anthropogenic Contamination of Soils Along the Manali-Leh Highway, Northwestern Himalaya, India.

    Science.gov (United States)

    Dasgupta, Rajarshi; Crowley, Brooke E; Barry Maynard, J

    2017-05-01

    Most studies on roadside soil pollution have been performed in areas where petrol is the main fuel. Very little work has been conducted in regions where diesel predominates. We collected soil samples from four sites that span a precipitation gradient along the Manali-Leh Highway in northwestern Himalaya, India. This road traverses rough terrain and most of the vehicles that travel along it are diesel-driven. At each site, we collected samples at incremental distances from the highway (0, 2, 5, 10, 20, and 150 m), and at each distance we collected samples from three depths (3, 9, and 15 cm). We assessed the concentrations of 10 heavy metals (Al, Fe, Cr, Cu, Pb, Ni, Co, Zn, V, and Ba), total sulphur, and total organic carbon (TOC) at each distance, and we measured the concentration of 16 polycyclic aromatic hydrocarbons (PAHs) at 2 m from the highway. Overall, we found that metal concentrations are low and there is no relationship between concentrations and distance from the highway, or depth within the soil profile. Sulphur concentrations, on the other hand, are high in roadside soils and there is a negative relationship between concentration and distance from the highway. PAH concentrations are low, but the proportion of different ringed species suggests that their source is anthropogenic. Correlations between TOC and the various pollutants further suggest that diesel vehicles and potentially biomass combustion are starting to affect the roadside environment in remote northwestern India. We suggest that pollutant concentrations be regularly monitored.

  11. Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change.

    Science.gov (United States)

    Raven, John A; Giordano, Mario; Beardall, John; Maberly, Stephen C

    2011-09-01

    Carbon dioxide concentrating mechanisms (also known as inorganic carbon concentrating mechanisms; both abbreviated as CCMs) presumably evolved under conditions of low CO(2) availability. However, the timing of their origin is unclear since there are no sound estimates from molecular clocks, and even if there were, there are no proxies for the functioning of CCMs. Accordingly, we cannot use previous episodes of high CO(2) (e.g. the Palaeocene-Eocene Thermal Maximum) to indicate how organisms with CCMs responded. Present and predicted environmental change in terms of increased CO(2) and temperature are leading to increased CO(2) and HCO(3)(-) and decreased CO(3)(2-) and pH in surface seawater, as well as decreasing the depth of the upper mixed layer and increasing the degree of isolation of this layer with respect to nutrient flux from deeper waters. The outcome of these forcing factors is to increase the availability of inorganic carbon, photosynthetic active radiation (PAR) and ultraviolet B radiation (UVB) to aquatic photolithotrophs and to decrease the supply of the nutrients (combined) nitrogen and phosphorus and of any non-aeolian iron. The influence of these variations on CCM expression has been examined to varying degrees as acclimation by extant organisms. Increased PAR increases CCM expression in terms of CO(2) affinity, whilst increased UVB has a range of effects in the organisms examined; little relevant information is available on increased temperature. Decreased combined nitrogen supply generally increases CO(2) affinity, decreased iron availability increases CO(2) affinity, and decreased phosphorus supply has varying effects on the organisms examined. There are few data sets showing interactions amongst the observed changes, and even less information on genetic (adaptation) changes in response to the forcing factors. In freshwaters, changes in phytoplankton species composition may alter with environmental change with consequences for frequency of

  12. Construction of Multi-Year Time-Series Profiles of Suspended Particulate Inorganic Matter Concentrations Using Machine Learning Approach

    Directory of Open Access Journals (Sweden)

    Pannimpullath R. Renosh

    2017-12-01

    Full Text Available Hydro-sedimentary numerical models have been widely employed to derive suspended particulate matter (SPM concentrations in coastal and estuarine waters. These hydro-sedimentary models are computationally and technically expensive in nature. Here we have used a computationally less-expensive, well-established methodology of self-organizing maps (SOMs along with a hidden Markov model (HMM to derive profiles of suspended particulate inorganic matter (SPIM. The concept of the proposed work is to benefit from all available data sets through the use of fusion methods and machine learning approaches that are able to process a growing amount of available data. This approach is applied to two different data sets entitled “Hidden” and “Observable”. The hidden data are composed of 15 months (27 September 2007 to 30 December 2008 of hourly SPIM profiles extracted from the Regional Ocean Modeling System (ROMS. The observable data include forcing parameter variables such as significant wave heights ( H s and H s 50 (50 days from the Wavewatch 3-HOMERE database and barotropic currents ( U b a r and V b a r from the Iberian–Biscay–Irish (IBI reanalysis data. These observable data integrate hourly surface samples from 1 February 2002 to 31 December 2012. The time-series profiles of the SPIM have been derived from four different stations in the English Channel by considering 15 months of output hidden data from the ROMS as a statistical representation of the ocean for ≈11 years. The derived SPIM profiles clearly show seasonal and tidal fluctuations in accordance with the parent numerical model output. The surface SPIM concentrations of the derived model have been validated with satellite remote sensing data. The time series of the modeled SPIM and satellite-derived SPIM show similar seasonal fluctuations. The ranges of concentrations for the four stations are also in good agreement with the corresponding satellite data. The high accuracy of the

  13. Electrochemical study of oxidation process of promethazine using sensor based on carbon nanotubes paste containing immobilized DNA on inorganic matrix

    Directory of Open Access Journals (Sweden)

    João Paulo Marco

    2014-10-01

    Full Text Available In the present work the voltammetric behavior and the oxidation process of promethazine (PHZ in electrochemical sensor based on carbon nanotubes paste containing DNA immobilized on the inorganic matrix prepared by sol-gel process (SiO2/Al2O3/Nb2O5. The method of Laviron verified that the system is irreversible and high speed of electron transfer between the electrode and DNA. The study of the oxidation of PHZ and influence of pH showed slope of 0.054 V / pH (near the nernstian system: 0.0592 V / pH suggesting that it involves the transfer of two protons and two electrons.

  14. Effect of increased carbon dioxide concentrations on stratospheric ozone

    International Nuclear Information System (INIS)

    Boughner, R.E.

    1978-01-01

    During the past several years, much attention has been focused on the destruction of ozone by anthropogenic pollutants such as the nitrogen oxides and chlorofluoromethane. Little or no attention has been given to the influence on ozone of an increased carbon dioxide concentration for which a measurable growth has been observed. Increased carbon dioxide can directly affect ozone by perturbing atmospheric temperatures, which will alter ozone production, whose rate displays a fairly strong temperature dependence. This paper presents one-dimensional model results for the steady state ozone behavior when the CO 2 concentration is twice its ambient level which account for coupling between chemistry and temperature. When the CO 2 level doubled, the total ozone burden increased in relation to the ambient burden by 1.2--2.5%, depending on the vertical diffusion coefficient used. Above 30 km. In this region the relation variations were insensitive to the choice of diffusion coefficient. Below 30 km, ozone concentrations were smaller than the unperturbed values and were sensitive to the vertical diffusion profile in this region (10--30 km). Ozone decreases in the lower stratosphere because of a reduction in ozone-producing solar radiation, which results in smaller downward ozone fluxes from the region at 25--30 km relative to the flux values for the ambient atmosphere. These offsetting changes occurring in the upper and lower stratosphere act to minimize the variation in total ozone

  15. Effects of resuspension on benthic fluxes of oxygen, nutrients, dissolved inorganic carbon, iron and manganese in the Gulf of Finland, Baltic Sea

    NARCIS (Netherlands)

    Almroth, E.; Tengberg, A.; Andersson, J.H.; Pakhomova, S.; Hall, P.O.J.

    2009-01-01

    The effect of resuspension on benthic fluxes of oxygen (O2), ammonium (NH4+), nitrate (NO3-), phosphate (PO43-), silicate (Si(OH)4), dissolved inorganic carbon (DIC), total dissolved iron (Fe) and total dissolved manganese (Mn) was studied at three different stations in the Gulf of Finland (GoF),

  16. Effect of inorganic inhibitors on the corrosion behavior of 1018 carbon steel in the LiBr + ethylene glycol + H2O mixture

    International Nuclear Information System (INIS)

    Samiento-Bustos, E.; Rodriguez, J.G. Gonzalez; Uruchurtu, J.; Dominguez-Patino, G.; Salinas-Bravo, V.M.

    2008-01-01

    The effect of inorganic inhibitors on the corrosion behavior of 1018 carbon steel in the mixture LiBr (55%) + ethylene glycol + H 2 O at room temperature has been evaluated. Used inhibitors included LiNO 3 (Lithium Nitrate), Li 2 MoO 4 (Lithium Molybdate) and Li 2 CrO 4 (Lithium Chromate) at concentrations of 5, 20 and 50 ppm. Electrochemical techniques included potentiodynamic polarization curves, electrochemical noise resistance (EN) and electrochemical impedance spectroscopy (EIS) measurements. Additionally, adsorption isotherms were calculated. The results obtained showed that both, the corrosion rate and the passive current density decreased with inhibitors, and, in general terms, inhibitors efficiency increased with inhibitor concentration, except in the case of Li 2 CrO 4, where the highest efficiency was obtained with 20 ppm of inhibitor. Pitting potential with 5 ppm of inhibitor, regardless its chemical composition, was more active than in absence of inhibitor, increased at 20 ppm, especially with Li 2 CrO 4 , and remained unaltered with 50 ppm. EN measurements showed that at 5 ppm of inhibitor, the number of film rupture/repassivation events was higher than that obtained at 20 or 50 ppm. Adsorption isotherms suggested a different adsorption mechanism for each inhibitor, whereas EIS results suggested that the corrosion process when nitrates were added was under charge transfer control, but in the case of molybdates or chromates was under diffusion control

  17. Effect of inorganic inhibitors on the corrosion behavior of 1018 carbon steel in the LiBr + ethylene glycol + H{sub 2}O mixture

    Energy Technology Data Exchange (ETDEWEB)

    Samiento-Bustos, E. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos. Av. Universidad 1001, Col. Chamilpa, CP 62210, Cuernavaca, Morelos (Mexico); Rodriguez, J.G. Gonzalez [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos. Av. Universidad 1001, Col. Chamilpa, CP 62210, Cuernavaca, Morelos (Mexico)], E-mail: ggonzalez@uaem.mx; Uruchurtu, J. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos. Av. Universidad 1001, Col. Chamilpa, CP 62210, Cuernavaca, Morelos (Mexico); Dominguez-Patino, G. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos. Av. Universidad 1001, Col. Chamilpa, CP 62210, Cuernavaca, Morelos (Mexico); U.A.E.M. Facultad de Ciencias Quimicas e Ingenieria, Av. Universidad 1001, 62209, Cuernavaca, Morelos (Mexico); Salinas-Bravo, V.M. [Instituto de Investigaciones Electricas, Gerencia de Materiales y Proceso Quimicos, Av. Reforma 113, Col. Palmira, CP 62490, Cuernavaca, Morelos (Mexico)

    2008-08-15

    The effect of inorganic inhibitors on the corrosion behavior of 1018 carbon steel in the mixture LiBr (55%) + ethylene glycol + H{sub 2}O at room temperature has been evaluated. Used inhibitors included LiNO{sub 3} (Lithium Nitrate), Li{sub 2}MoO{sub 4} (Lithium Molybdate) and Li{sub 2}CrO{sub 4} (Lithium Chromate) at concentrations of 5, 20 and 50 ppm. Electrochemical techniques included potentiodynamic polarization curves, electrochemical noise resistance (EN) and electrochemical impedance spectroscopy (EIS) measurements. Additionally, adsorption isotherms were calculated. The results obtained showed that both, the corrosion rate and the passive current density decreased with inhibitors, and, in general terms, inhibitors efficiency increased with inhibitor concentration, except in the case of Li{sub 2}CrO{sub 4,} where the highest efficiency was obtained with 20 ppm of inhibitor. Pitting potential with 5 ppm of inhibitor, regardless its chemical composition, was more active than in absence of inhibitor, increased at 20 ppm, especially with Li{sub 2}CrO{sub 4}, and remained unaltered with 50 ppm. EN measurements showed that at 5 ppm of inhibitor, the number of film rupture/repassivation events was higher than that obtained at 20 or 50 ppm. Adsorption isotherms suggested a different adsorption mechanism for each inhibitor, whereas EIS results suggested that the corrosion process when nitrates were added was under charge transfer control, but in the case of molybdates or chromates was under diffusion control.

  18. Organic and Inorganic Matter in Louisiana Coastal Waters: Vermilion, Atchafalaya, Terrebonne, Barataria, and Mississippi Regions.

    Science.gov (United States)

    Chromophoric dissolved organic matter (CDOM) spectral absorption, dissolved organic carbon (DOC) concentration, and the particulate fraction of inorganic (PIM) and organic matter (POM) were measured in Louisiana coastal waters at Vermilion, Atchafalaya, Terrebonne, Barataria, and...

  19. Limestone-Concentrate-Pellet Roasting in wet Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    1990-01-01

    A roast process for treating chalcopyrite concentrate was developed. The investigation of the reaction of limestone-concentrate-pellet in a wet carbon dioxide flow was carried out by means of a thermogravimetric analysis (TGA) to determine at which temperatures the roasting reaction would take place. The thermodynamic calculations on the roast reaction were made by the use of SOLGASMIX-PV program. The TGA curves and thermodynamic calculations indicated that the conversion of chalcopyrite into bornite took place at about 975K, and the conversion of bornite into chalcocite at 1065-1123K. The thermodynamic calculations also showed that the sulfur released was fixed as calcium sulfide within roasted pellets. X-ray diffraction examination identified these phases in products.

  20. Methane and Carbon Dioxide Concentrations and Fluxes in Amazon Floodplains

    Science.gov (United States)

    Melack, J. M.; MacIntyre, S.; Forsberg, B.; Barbosa, P.; Amaral, J. H.

    2016-12-01

    Field studies on the central Amazon floodplain in representative aquatic habitats (open water, flooded forests, floating macrophytes) combine measurements of methane and carbon dioxide concentrations and fluxes to the atmosphere over diel and seasonal times with deployment of meteorological sensors and high-resolution thermistors and dissolved oxygen sondes. A cavity ringdown spectrometer is used to determine gas concentrations, and floating chambers and bubble collectors are used to measure fluxes. To further understand fluxes, we measured turbulence as rate of dissipation of turbulent kinetic energy based on microstructure profiling. These results allow calculations of vertical mixing within the water column and of air-water exchanges using surface renewal models. Methane and carbon dioxide fluxes varied as a function of season, habitat and water depth. High CO2 fluxes at high water are related to high pCO2; low pCO2 levels at low water result from increased phytoplankton uptake. CO2 fluxes are highest at turbulent open water sites, and pCO2 is highest in macrophyte beds. Fluxes and pCH4 are high in macrophyte beds.

  1. Influence of surface chemistry of carbon materials on their interactions with inorganic nitrogen contaminants in soil and water.

    Science.gov (United States)

    Sumaraj; Padhye, Lokesh P

    2017-10-01

    Inorganic nitrogen contaminants (INC) (NH 4 + , NO 3 - , NO 2 - , NH 3 , NO, NO 2 , and N 2 O) pose a growing risk to the environment, and their remediation methods are highly sought after. Application of carbon materials (CM), such as biochar and activated carbon, to remediate INC from agricultural fields and wastewater treatment plants has gained a significant interest since past few years. Understanding the role of surface chemistry of CM in adsorption of various INC is highly critical to increase adsorption efficiency as well as to assess the long term impact of using these highly recalcitrant CM for remediation of INC. Critical reviews of adsorption studies related to INC have revealed that carbon surface chemistry (surface functional groups, pH, Eh, elemental composition, and mineral content) has significant influence on adsorption of INC. Compared to basic functional groups, oxygen containing surface functional groups have been found to be more influential for adsorption of INC. However, basic sites on carbon materials still play an important role in chemisorption of anionic INC. Apart from surface functional groups, pH, Eh and pH zpc of CM and elemental and mineral composition of its surface are important properties capable of altering INC interactions with CM. This review summarizes our current understanding of INC interactions with CM's surface through the known chemisorption mechanisms: electrostatic interaction, hydrogen bonding, electron donor-acceptor mechanism, hydrophobic and hydrophilic interaction, chemisorption aided by minerals, and interactions influenced by pH and elemental composition. Change in surface chemistry of CM in soil during aging is also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Biogeochemical generation of dissolved inorganic carbon and nitrogen in the North Branch of inner Changjiang Estuary in a dry season

    Science.gov (United States)

    Zhai, Wei-Dong; Yan, Xiu-Li; Qi, Di

    2017-10-01

    We investigated the surface water carbonate system, nutrients, and relevant hydrochemical parameters in the inner Changjiang (Yangtze River) Estuary in early spring 2009 and 2010. The two surveys were carried out shortly after spring-tide days, and covered both the channel-like South Branch and the freshwater-blocked North Branch. In the North Branch, with a water residence time of approximately one month, we detected remarkable partial pressures of CO2 (pCO2) of 930-1518 μatm with a salinity range of 4.5-17.4, which were substantially higher than the South Branch pCO2 values of 700-1100 μatm at salinities of less than 0.88. The North Branch pCO2 distribution pattern is unique compared with many other estuaries where aquatic pCO2 normally declines with salinity increase. Furthermore, the biogeochemical additions of ammonium (7.4-65.7 μmol kg-1) and alkalinity (196-695 μmol kg-1) were identified in salinities between 4 and 16 in the North Branch. Based on field data analyses and simplified stoichiometric equations, we suggest that the relatively high North Branch pCO2 values and estuarine additions of dissolved inorganic nitrogen/carbon in the mid-salinity area were strongly associated with each other. These signals were primarily controlled by biogeochemical processes in the North Branch, combining biogenic organic matter decomposition (i.e. respiration), ammonia oxidation, CaCO3 dissolution, and CO2 degassing. In the upper reach of the South Branch, notable salinity values of 0.20-0.88 were detected, indicating saltwater spillover from the North Branch. These spillover waters had minor contributions (1.5-6.9%) to the springtime nutrient, dissolved inorganic carbon, and alkalinity export fluxes from Changjiang to the adjacent East China Sea. This is the first attempt to understand the biogeochemical controls of the unique pCO2 distributions in the North Branch, and to evaluate the effects of saltwater spillover from the North Branch on dry-season export fluxes

  3. Yttrium and lanthanum recovery from low cerium carbonate, yttrium carbonate and yttrium concentrate

    International Nuclear Information System (INIS)

    Vasconcelos, Mari Estela de

    2006-01-01

    In this work, separation, enrichment and purification of lanthanum and yttrium were performed using as raw material a commercial low cerium rare earth concentrate named LCC (low cerium carbonate), an yttrium concentrate named 'yttrium carbonate', and a third concentrated known as 'yttrium earths oxide. The first two were industrially produced by the late NUCLEMON - NUCLEBRAS de Monazita e Associados Ltda, using Brazilian monazite. The 'yttrium earths oxide' come from a process for preparation of lanthanum during the course of the experimental work for the present thesis. The following techniques were used: fractional precipitation with urea; fractional leaching of the LCC using ammonium carbonate; precipitation of rare earth peroxycarbonates starting from the rare earth complex carbonates. Once prepared the enriched rare earth fractions the same were refined using the ion exchange chromatography with strong cationic resin without the use of retention ion and elution using the ammonium salt of ethylenediaminetetraacetic acid. With the association of the above mentioned techniques were obtained pure oxides of yttrium (>97,7%), lanthanum (99,9%), gadolinium (96,6%) and samarium (99,9%). The process here developed has technical and economic viability for the installation of a large scale unity. (author)

  4. Gas dispersion concentration of trace inorganic contaminants from fuel gas and analysis using head-column field-amplified sample stacking capillary electrophoresis.

    Science.gov (United States)

    Yang, Jianmin; Li, Hai-Fang; Li, Meilan; Lin, Jin-Ming

    2012-08-21

    The presence of inorganic elements in fuel gas generally accelerates the corrosion and depletion of materials used in the fuel gas industry, and even leads to serious accidents. For identification of existing trace inorganic contaminants in fuel gas in a portable way, a highly efficient gas-liquid sampling collection system based on gas dispersion concentration is introduced in this work. Using the constructed dual path gas-liquid collection setup, inorganic cations and anions were simultaneously collected from real liquefied petroleum gas (LPG) and analyzed by capillary electrophoresis (CE) with indirect UV absorbance detection. The head-column field-amplified sample stacking technique was applied to improve the detection limits to 2-25 ng mL(-1). The developed collection and analytical methods have successfully determined existing inorganic contaminants in a real LPG sample in the range of 4.59-138.69 μg m(-3). The recoveries of cations and anions with spiked LPG samples were between 83.98 and 105.63%, and the relative standard deviations (RSDs) were less than 7.19%.

  5. Synthesis of Carbon Nanotube-Inorganic Hybrid Nanocomposites: An Instructional Experiment in Nanomaterials Chemistry

    Science.gov (United States)

    de Dios, Miguel; Salgueirino, Veronica; Perez-Lorenzo, Moises; Correa-Duarte, Miguel A.

    2012-01-01

    An experiment is described to introduce advanced undergraduate students to an exciting area of nanotechnology that incorporates nanoparticles onto carbon nanotubes to produce systems that have valuable technological applications. The synthesis of such material has been easily achieved through a simple three-step procedure. Students explore…

  6. Inorganic synthesis of Fe-Ca-Mg carbonates at low temperature

    NARCIS (Netherlands)

    Romanek, Christopher S.; Jiménez-López, Concepción; Navarro, Alejandro Rodriguez; Sánchez-Román, Monica; Sahai, Nita; Coleman, Max

    2009-01-01

    A set of free-drift experiments was undertaken to synthesize carbonates of mixed cation content (Fe, Ca, Mg) from solution at 25 and 70 °C to better understand the relationship between the mineralogy and composition of these phases and the solutions from which they precipitate. Metastable solid

  7. Nitrogen-doped ordered mesoporous carbon with a high surface area, synthesized through organic-inorganic coassembly, and its application in supercapacitors.

    Science.gov (United States)

    Song, Yanfang; Li, Li; Wang, Yonggang; Wang, Congxiao; Guo, Zaipin; Xia, Yongyao

    2014-07-21

    A new nitrogen-doped ordered mesoporous carbon (N-doped OMC) is synthesized by using an organic-inorganic coassembly method, in which resol is used as the carbon precursor, dicyandiamide as the nitrogen precursor, silicate oligomers as the inorganic precursors, and F127 as the soft template. The N-doped OMC possesses a surface area as high as 1374 m(2)  g(-1) and a large pore size of 7.4 nm. As an electrode material for supercapacitors, the obtained carbon exhibits excellent cycling stability and delivers a reversible specific capacitance as high as 308 F g(-1) in 1 mol L(-1) H(2)SO(4) aqueous electrolyte, of which 58 % of the capacity is due to pseudo-capacitance. The large specific capacitance is attributed to proper pore size distributions, large surface area, and high nitrogen content. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A study on inorganic carbon components in the Andaman Sea during the post monsoon season

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; Narvekar, P.V.

    saturated with respect to calcite. © 2001 Ifremer/CNRS/IRD/Éditions scientifiques et médicales Elsevier SAS Résumé − Étude du système dioxyde de carbone en mer d’Andaman après la mousson. Des données extensives sur le système dioxyde de carbone ont été... recueillies en saison post-mousson dans la partie est du golfe du Bengale et la mer d’Andaman (océan Indien NE). La distribution verticale de la température et de la salinité est similaire dans ces deux parties jusqu’à l’horizon 700 à 800 m. En dessous de 1200...

  9. Understanding the Burial and Migration Characteristics of Deep Geothermal Water Using Hydrogen, Oxygen, and Inorganic Carbon Isotopes

    Directory of Open Access Journals (Sweden)

    Xinyi Wang

    2017-12-01

    Full Text Available Geothermal water samples taken from deep aquifers within the city of Kaifeng at depths between 800 and 1650 m were analyzed for conventional water chemical compositions and stable isotopes. These results were then combined with the deuterium excess parameter (d value, and the contribution ratios of different carbon sources were calculated along with distributional characteristics and data on the migration and transformation of geothermal water. These results included the conventional water chemical group, hydrogen, and oxygen isotopes (δD-δ18O, dissolved inorganic carbon (DIC and associated isotopes (δ13CDIC. The results of this study show that geothermal water in the city of Kaifeng is weakly alkaline, water chemistry mostly comprises a HCO3-Na type, and the range of variation of δD is between −76.12‰ and −70.48‰, (average: −74.25‰, while the range of variation of δ18O is between −11.08‰ and −9.41‰ (average: −10.15‰. Data show that values of d vary between 1.3‰ and 13.3‰ (average: 6.91‰, while DIC content is between 91.523 and 156.969 mg/L (average: 127.158 mg/L. The recorded range of δ13CDIC was between −10.160‰ and −6.386‰ (average: −9.019‰. The results presented in this study show that as depth increases, so do δD and δ18O, while d values decrease and DIC content and δ13CDIC gradually increase. Thus, δD, δ18O, d values, DIC, and δ13CDIC can all be used as proxies for the burial characteristics of geothermal water. Because data show that the changes in d values and DIC content are larger along the direction of geothermal water flow, so these proxies can be used to indicate migration. This study also shows demonstrates that the main source of DIC in geothermal water is CO2thathas a biological origin in soils, as well as the dissolution of carbonate minerals in surrounding rocks. Thus, as depth increases, the contribution of soil biogenic carbon sources to DIC decreases while the influence

  10. Change in concentration of inorganic phosphate and phosphocreatine in the rat diaphragm under the influence of whole-body gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, M A; Gaber, M; Abdel-Fatah, K I

    1987-01-01

    The influence of irradiation on the concentration of creatine phosphate and inorganic phosphate in the diaphragm muscle were studied in rats exposed to 400 rad and 800 rad whole-body gamma radiation. The results showed that on the first day of post-exposure with 400 rad, the creatine phosphate concentration significantly increased, while the level significantly decreased on the third up to the fourteenth days of post exposure. In animals exposed to 800 rad, the diaphragm phosphocreatine showed a significant decrease on the first up to the ninth day post-irradiation as compared with the control group.

  11. Change in concentration of inorganic phosphate and phosphocreatine in the rat diaphragm under the influence of whole-body gamma irradiation

    International Nuclear Information System (INIS)

    Mansour, M.A.; Gaber, M.; Abdel-Fatah, K.I.

    1987-01-01

    The influence of irradiation on the concentration of creatine phosphate and inorganic phosphate in the diaphragm muscle were studied in rats exposed to 400 rad and 800 rad whole-body gamma radiation. The results showed that on the first day of post-exposure with 400 rad, the creatine phosphate concentration significantly increased, while the level significantly decreased on the third up to the fourteenth days of post exposure. In animals exposed to 800 rad, the diaphragm phosphocreatine showed a significant decrease on the first up to the ninth day post-irradiation as compared with the control group

  12. The use of capacitive deionization with carbon aerogel electrodes to remove inorganic contaminants from water

    International Nuclear Information System (INIS)

    Farmer, J.C.; Fix, D.V.; Mack, G.V.; Pekala, R.W.; Poco, J.F.

    1995-01-01

    The capacitive deionization of water with a stack of carbon aerogel electrodes has been successfully demonstrated for the first time. Unlike ion exchange, one of the more conventional deionization processes, no chemicals were required for regeneration of the system. Electricity was used instead. Water with various anions and cations was pumped through the electrochemical cell. After polarization, ions were electrostatically removed from the water and held in the electric double layers formed at electrode surfaces. The water leaving the cell was purified, as desired

  13. Progress in inorganic cathode catalysts for electrochemical conversion of carbon dioxide into formate or formic acid

    OpenAIRE

    Du, Dongwei; Lan, Rong; Humphreys, John; Tao, Shanwen

    2017-01-01

    As a greenhouse gas, carbon dioxide in the atmosphere is one of the key contributors to climate change. Many strategies have been proposed to address this issue, such as CO2 capture and sequestration (CCS) and CO2 utilization (CCU). Electroreduction of CO2 into useful fuels is proving to be a promising technology as it not only consumes CO2 but can also store the redundant electrical energy generated from renewable energy sources (e.g., solar, wind, geothermal, wave, etc.) as chemical energy ...

  14. Uranium Isotopes in Calcium Carbonate: A Possible Proxy for Paleo-pH and Carbonate Ion Concentration?

    Science.gov (United States)

    Chen, X.; Romaniello, S. J.; Herrmann, A. D.; Wasylenki, L. E.; Anbar, A. D.

    2015-12-01

    Natural variations of 238U/235U in marine carbonates are being explored as a paleoredox proxy. However, in order for this proxy to be robust, it is important to understand how pH and alkalinity affect the fractionation of 238U/235U during coprecipitation with calcite and aragonite. Recent work suggests that the U/Ca ratio of foraminiferal calcite may vary with seawater [CO32-] concentration due to changes in U speciation[1]. Here we explore analogous isotopic consequences in inorganic laboratory co-precipitation experiments. Uranium coprecipitation experiments with calcite and aragonite were performed at pH 8.5 ± 0.1 and 7.5 ± 0.1 using a constant addition method [2]. Dissolved U in the remaining solution was periodically collected throughout the experiments. Samples were purified with UTEVA resin and 238U/235U was determined using a 233U-236U double-spike and MC-ICP-MS, attaining a precision of ± 0.10 ‰ [3]. Small but resolvable U isotope fractionation was observed in aragonite experiments at pH ~8.5, preferentially enriching heavier U isotopes in the solid phase. 238U/235U of the dissolved U in these experiments can be fit by Rayleigh fractionation curves with fractionation factors of 1.00002 - 1.00009. In contrast, no resolvable U isotope fractionation was detected in an aragonite experiment at pH ~7.5 or in calcite experiments at either pH. Equilibrium isotope fractionation among dissolved U species is the most likely mechanism driving these isotope effects. Our quantitative model of this process assumes that charged U species are preferentially incorporated into CaCO3 relative to the neutral U species Ca2UO2(CO3)3(aq), which we hypothesize to have a lighter equilibrium U isotope composition than the charged U species. According to this model, the magnitude of U isotope fractionation should scale with the fraction of the neutral U species in the solution, in agreement with our experimental results. These findings suggest that U isotope variations in

  15. The role of inorganic ions in the calcium carbonate scaling of seawater reverse osmosis systems

    KAUST Repository

    Waly, Tarek; Kennedy, Maria Dolores; Witkamp, Geert-Jan; Amy, Gary L.; Schippers, Jan Cornelis

    2012-01-01

    -. The prepared synthetic solutions have the same ionic strength values found in the Gulf of Oman SWRO concentrates at 30% and 50% recovery. The results showed a significant increase in the induction time by 1140%, 2820%, and 3880% for a recovery of 50%, when

  16. Organic aerosols and inorganic species from post-harvest agricultural-waste burning emissions over northern India: impact on mass absorption efficiency of elemental carbon.

    Science.gov (United States)

    Rajput, Prashant; Sarin, M M; Sharma, Deepti; Singh, Darshan

    2014-01-01

    Atmospheric PM2.5 (particulate matter with aerodynamic diameter of ≤ 2.5 μm), collected from a source region [Patiala: 30.2 °N; 76.3 °E; 250 m above mean sea level] of emissions from post-harvest agricultural-waste (paddy-residue) burning in the Indo-Gangetic Plain (IGP), North India, has been studied for its chemical composition and impact on regional atmospheric radiative forcing. On average, organic aerosol mass accounts for 63% of PM2.5, whereas the contribution of elemental carbon (EC) is ∼3.5%. Sulphate, nitrate and ammonium contribute up to ∼85% of the total water-soluble inorganic species (WSIS), which constitutes ∼23% of PM2.5. The potassium-to-organic carbon ratio from paddy-residue burning emissions (KBB(+)/OC: 0.05 ± 0.01) is quite similar to that reported from Amazonian and Savanna forest-fires; whereas non-sea-salt-sulphate-to-OC ratio (nss-SO4(2-)/OC: 0.21) and nss-SO4(2-)/EC ratio of 2.6 are significantly higher (by factor of 5 to 8). The mass absorption efficiency of EC (3.8 ± 1.3 m(2) g(-1)) shows significant decrease with a parallel increase in the concentrations of organic aerosols and scattering species (sulphate and nitrate). A cross plot of OC/EC and nss-SO4(2-)/EC ratios show distinct differences for post-harvest burning emissions from paddy-residue as compared to those from fossil-fuel combustion sources in south-east Asia.

  17. Nitrogen fertilization raises CO2 efflux from inorganic carbon: A global assessment.

    Science.gov (United States)

    Zamanian, Kazem; Zarebanadkouki, Mohsen; Kuzyakov, Yakov

    2018-03-25

    Nitrogen (N) fertilization is an indispensable agricultural practice worldwide, serving the survival of half of the global population. Nitrogen transformation (e.g., nitrification) in soil as well as plant N uptake releases protons and increases soil acidification. Neutralizing this acidity in carbonate-containing soils (7.49 × 10 9  ha; ca. 54% of the global land surface area) leads to a CO 2 release corresponding to 0.21 kg C per kg of applied N. We here for the first time raise this problem of acidification of carbonate-containing soils and assess the global CO 2 release from pedogenic and geogenic carbonates in the upper 1 m soil depth. Based on a global N-fertilization map and the distribution of soils containing CaCO 3 , we calculated the CO 2 amount released annually from the acidification of such soils to be 7.48 × 10 12  g C/year. This level of continuous CO 2 release will remain constant at least until soils are fertilized by N. Moreover, we estimated that about 273 × 10 12  g CO 2 -C are released annually in the same process of CaCO 3 neutralization but involving liming of acid soils. These two CO 2 sources correspond to 3% of global CO 2 emissions by fossil fuel combustion or 30% of CO 2 by land-use changes. Importantly, the duration of CO 2 release after land-use changes usually lasts only 1-3 decades before a new C equilibrium is reached in soil. In contrast, the CO 2 released by CaCO 3 acidification cannot reach equilibrium, as long as N fertilizer is applied until it becomes completely neutralized. As the CaCO 3 amounts in soils, if present, are nearly unlimited, their complete dissolution and CO 2 release will take centuries or even millennia. This emphasizes the necessity of preventing soil acidification in N-fertilized soils as an effective strategy to inhibit millennia of CO 2 efflux to the atmosphere. Hence, N fertilization should be strictly calculated based on plant-demand, and overfertilization should be avoided not only

  18. Highly reliable field electron emitters produced from reproducible damage-free carbon nanotube composite pastes with optimal inorganic fillers

    Science.gov (United States)

    Kim, Jae-Woo; Jeong, Jin-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2014-02-01

    Highly reliable field electron emitters were developed using a formulation for reproducible damage-free carbon nanotube (CNT) composite pastes with optimal inorganic fillers and a ball-milling method. We carefully controlled the ball-milling sequence and time to avoid any damage to the CNTs, which incorporated fillers that were fully dispersed as paste constituents. The field electron emitters fabricated by printing the CNT pastes were found to exhibit almost perfect adhesion of the CNT emitters to the cathode, along with good uniformity and reproducibility. A high field enhancement factor of around 10 000 was achieved from the CNT field emitters developed. By selecting nano-sized metal alloys and oxides and using the same formulation sequence, we also developed reliable field emitters that could survive high-temperature post processing. These field emitters had high durability to post vacuum annealing at 950 °C, guaranteeing survival of the brazing process used in the sealing of field emission x-ray tubes. We evaluated the field emitters in a triode configuration in the harsh environment of a tiny vacuum-sealed vessel and observed very reliable operation for 30 h at a high current density of 350 mA cm-2. The CNT pastes and related field emitters that were developed could be usefully applied in reliable field emission devices.

  19. Technical Note: Mesocosm approach to quantify dissolved inorganic carbon percolation fluxes

    DEFF Research Database (Denmark)

    Thaysen, Eike Marie; Jessen, S.; Ambus, Per

    2014-01-01

    unplanted soil. Carbon dioxide partial pressure (pCO(2)), alkalinity, soil moisture and temperature were measured with depth and time, and DIC in the percolate was quantified using a sodium hydroxide trap. Results showed good reproducibility between two replicate mesocosms. The pCO(2) varied between 0.......2 and 1.1 %, and the alkalinity was 0.1-0.6 meq L-1. The measured cumulative effluent DIC flux over the 78-day experimental period was 185-196 mg L-1 m(-2) and in the same range as estimates derived from pCO(2) and alkalinity in samples extracted from the side of the mesocosm column and the drainage flux...

  20. Carbon on Mercury's Surface — Origin, Distribution, and Concentration

    Science.gov (United States)

    Klima, R. L.; Blewett, D. T.; Denevi, B. W.; Ernst, C. M.; Murchie, S. L.; Peplowski, P. N.; Perera, V.; Vander Kaaden, K.

    2018-05-01

    Low-reflectance material on Mercury, excavated from depth, may contain up to 5wt% carbon in some areas of the planet. We interpret this as endogenic carbon associated with the earliest crust of Mercury.

  1. Elevated atmospheric carbon dioxide concentrations promote ant tending of aphids.

    Science.gov (United States)

    Kremer, Jenni M M; Nooten, Sabine S; Cook, James M; Ryalls, James M W; Barton, Craig V M; Johnson, Scott N

    2018-04-27

    Animal mutualisms, which involve beneficial interactions between individuals of different species, are common in nature. Insect-insect mutualism, for example, is widely regarded as a keystone ecological interaction. Some mutualisms are anticipated to be modified by climate change, but the focus has largely been on plant-microbe and plant-animal mutualisms rather than those between animals. Ant-aphid mutualisms, whereby ants tend aphids to harvest their honeydew excretions and, in return, provide protection for the aphids, are widespread. The mutualism is heavily influenced by the quality and quantity of honeydew produced by aphids, which is directly affected by host plant quality. As predicted increases in concentrations of atmospheric carbon dioxide (eCO 2 ) are widely reported to affect plant nutritional chemistry, this may also alter honeydew quality and hence the nature of ant-aphid mutualisms. Using glasshouse chambers and field-based open-top chambers, we determined the effect of eCO 2 on the growth and nutritional quality (foliar amino acids) of lucerne (Medicago sativa). We determined how cowpea aphid (Aphis craccivora) populations and honeydew production were impacted when feeding on such plants and how this affected the tending behaviour of ants (Iridomyrmex sp.). eCO 2 stimulated plant growth but decreased concentrations of foliar amino acids by 29% and 14% on aphid-infested plants and aphid-free plants, respectively. Despite the deterioration in host plant quality under eCO 2 , aphids maintained performance and populations were unchanged by eCO 2 . Aphids induced higher concentrations of amino acids (glutamine, asparagine, glutamic acid and aspartic acid) important for endosymbiont-mediated synthesis of essential amino acids. Aphids feeding under eCO 2 also produced over three times more honeydew than aphids feeding under ambient CO 2 , suggesting they were imbibing more phloem sap at eCO 2 . The frequency of ant tending of aphids more than doubled in

  2. The role of inorganic ions in the calcium carbonate scaling of seawater reverse osmosis systems

    KAUST Repository

    Waly, Tarek

    2012-01-01

    In supersaturated solutions the period preceding the start of \\'measurable\\' crystallization is normally referred to as the \\'induction time\\'. This research project aimed to investigate the induction times of CaCO 3 in the presence of Mg 2+ and SO 4 2-. The prepared synthetic solutions have the same ionic strength values found in the Gulf of Oman SWRO concentrates at 30% and 50% recovery. The results showed a significant increase in the induction time by 1140%, 2820%, and 3880% for a recovery of 50%, when adding SO 4 2- only, Mg 2+ only, or both Mg 2+ and SO 4 2-, respectively, to synthetic SWRO concentrate compared to that obtained in the absence of Mg 2+ and SO 4 2- at an initial pH of 8.3. The increase in the induction time in the presence of SO 4 2- was more than likely to be due to nucleation and growth inhibition while the presence of Mg 2+ affected the nucleation and growth through both complexation and inhibition. After a 5-month solution stabilization period, ESEM and XRD analyses showed aragonite in solutions containing Mg 2+. On the contrary, calcite was the final crystal phase formed in solutions with no Mg 2+. This suggests that magnesium may play an important role in inhibiting the formation of calcite. © 2011 Elsevier B.V..

  3. Evolution of CAM and C4 carbon-concentrating mechanisms

    Science.gov (United States)

    Keeley, Jon E.; Rundel, Philip W.

    2003-01-01

    Mechanisms for concentrating carbon around the Rubisco enzyme, which drives the carbon-reducing steps in photosynthesis, are widespread in plants; in vascular plants they are known as crassulacean acid metabolism (CAM) and C4 photosynthesis. CAM is common in desert succulents, tropical epiphytes, and aquatic plants and is characterized by nighttime fixation of CO2. The proximal selective factor driving the evolution of this CO2-concentrating pathway is low daytime CO2, which results from the unusual reverse stomatal behavior of terrestrial CAM species or from patterns of ambient CO2 availability for aquatic CAM species. In terrestrials the ultimate selective factor is water stress that has selected for increased water use efficiency. In aquatics the ultimate selective factor is diel fluctuations in CO2 availability for palustrine species and extreme oligotrophic conditions for lacustrine species. C4 photosynthesis is based on similar biochemistry but carboxylation steps are spatially separated in the leaf rather than temporally as in CAM. This biochemical pathway is most commonly associated with a specialized leaf anatomy known as Kranz anatomy; however, there are exceptions. The ultimate selective factor driving the evolution of this pathway is excessively high photorespiration that inhibits normal C3 photosynthesis under high light and high temperature in both terrestrial and aquatic habitats. CAM is an ancient pathway that likely has been present since the Paleozoic era in aquatic species from shallow-water palustrine habitats. While atmospheric CO2 levels have undoubtedly affected the evolution of terrestrial plant carbon-concentrating mechanisms, there is reason to believe that past atmospheric changes have not played as important a selective role in the aquatic milieu since palustrine habitats today are not generally carbon sinks, and the selective factors driving aquatic CAM are autogenic. Terrestrial CAM, in contrast, is of increasing selective value under

  4. Automated determination of the stable carbon isotopic composition (δ13C) of total dissolved inorganic carbon (DIC) and total nonpurgeable dissolved organic carbon (DOC) in aqueous samples: RSIL lab codes 1851 and 1852

    Science.gov (United States)

    Révész, Kinga M.; Doctor, Daniel H.

    2014-01-01

    The purposes of the Reston Stable Isotope Laboratory (RSIL) lab codes 1851 and 1852 are to determine the total carbon mass and the ratio of the stable isotopes of carbon (δ13C) for total dissolved inorganic carbon (DIC, lab code 1851) and total nonpurgeable dissolved organic carbon (DOC, lab code 1852) in aqueous samples. The analysis procedure is automated according to a method that utilizes a total carbon analyzer as a peripheral sample preparation device for analysis of carbon dioxide (CO2) gas by a continuous-flow isotope ratio mass spectrometer (CF-IRMS). The carbon analyzer produces CO2 and determines the carbon mass in parts per million (ppm) of DIC and DOC in each sample separately, and the CF-IRMS determines the carbon isotope ratio of the produced CO2. This configuration provides a fully automated analysis of total carbon mass and δ13C with no operator intervention, additional sample preparation, or other manual analysis. To determine the DIC, the carbon analyzer transfers a specified sample volume to a heated (70 °C) reaction vessel with a preprogrammed volume of 10% phosphoric acid (H3PO4), which allows the carbonate and bicarbonate species in the sample to dissociate to CO2. The CO2 from the reacted sample is subsequently purged with a flow of helium gas that sweeps the CO2 through an infrared CO2 detector and quantifies the CO2. The CO2 is then carried through a high-temperature (650 °C) scrubber reactor, a series of water traps, and ultimately to the inlet of the mass spectrometer. For the analysis of total dissolved organic carbon, the carbon analyzer performs a second step on the sample in the heated reaction vessel during which a preprogrammed volume of sodium persulfate (Na2S2O8) is added, and the hydroxyl radicals oxidize the organics to CO2. Samples containing 2 ppm to 30,000 ppm of carbon are analyzed. The precision of the carbon isotope analysis is within 0.3 per mill for DIC, and within 0.5 per mill for DOC.

  5. Technical Note: Comparison between a direct and the standard, indirect method for dissolved organic nitrogen determination in freshwater environments with high dissolved inorganic nitrogen concentrations

    DEFF Research Database (Denmark)

    Graeber, Daniel; Gelbrecht, Jörg; Kronvang, Brian

    2012-01-01

    Research on dissolved organic nitrogen (DON) in aquatic systems with high dissolved inorganic nitrogen (DIN, the sum of NO3–, NO2– and NH4+) concentrations is often hampered by high uncertainties regarding the determined DON concentration. The reason is that DON is determined indirectly...... accuracy at high DIN : TDN ratios, we investigated the DON measurement accuracy of this standard approach according to the DIN : TDN ratio and compared it to the direct measurement of DON by size-exclusion chromatography (SEC) for freshwater systems. For this, we used standard compounds and natural samples...... separation of DON from DIN. For SEC, DON recovery rates were 91–108% for five pure standard compounds and 89–103% for two standard compounds, enriched with DIN. Moreover, SEC resulted in 93–108% recovery rates for DON concentrations of natural samples at a DIN : TDN ratio of 0.8 and the technique...

  6. Emissions of Black Carbon, Organic, and Inorganic Aerosols From Biomass Burning in North America and Asia in 2008

    Science.gov (United States)

    Kondo, Y.; Matsui, H.; Moteki, N.; Sahu, L.; Takegawa, N.; Kajino, M.; Zhao, Y.; Cubison, M. J.; Jimenez, J. L.; Vay, S.; hide

    2011-01-01

    Reliable assessment of the impact of aerosols emitted from boreal forest fires on the Arctic climate necessitates improved understanding of emissions and the microphysical properties of carbonaceous (black carbon (BC) and organic aerosols (OA)) and inorganic aerosols. The size distributions of BC were measured by an SP2 based on the laser-induced incandescence technique on board the DC-8 aircraft during the NASA ARCTAS campaign. Aircraft sampling was made in fresh plumes strongly impacted by wildfires in North America (Canada and California) in summer 2008 and in those transported from Asia (Siberia in Russia and Kazakhstan) in spring 2008. We extracted biomass burning plumes using particle and tracer (CO, CH3CN, and CH2Cl2) data. OA constituted the dominant fraction of aerosols mass in the submicron range. The large majority of the emitted particles did not contain BC. We related the combustion phase of the fire as represented by the modified combustion efficiency (MCE) to the emission ratios between BC and other species. In particular, we derived the average emission ratios of BC/CO = 2.3 +/- 2.2 and 8.5 +/- 5.4 ng/cu m/ppbv for BB in North America and Asia, respectively. The difference in the BC/CO emission ratios is likely due to the difference in MCE. The count median diameters and geometric standard deviations of the lognormal size distribution of BC in the BB plumes were 136-141 nm and 1.32-1.36, respectively, and depended little on MCE. These BC particles were thickly coated, with shell/core ratios of 1.3-1.6. These parameters can be used directly for improving model estimates of the impact of BB in the Arctic.

  7. Estimating Terrestrial Wood Biomass from Observed Concentrations of Atmospheric Carbon Dioxide

    NARCIS (Netherlands)

    Schaefer, K. M.; Peters, W.; Carvalhais, N.; van der Werf, G.; Miller, J.

    2008-01-01

    We estimate terrestrial disequilibrium state and wood biomass from observed concentrations of atmospheric CO2 using the CarbonTracker system coupled to the SiBCASA biophysical model. Starting with a priori estimates of carbon flux from the land, ocean, and fossil fuels, CarbonTracker estimates net

  8. The Effect of Carbon Source and Fluoride Concentrations in the "Streptococcus Mutans" Biofilm Formation

    Science.gov (United States)

    Paulino, Tony P.; Andrade, Ricardo O.; Bruschi-Thedei, Giuliana C. M.; Thedei, Geraldo, Jr.; Ciancaglini, Pietro

    2004-01-01

    The main objective of this class experiment is to show the influence of carbon source and of different fluoride concentrations on the biofilm formation by the bacterium "Streptococcus mutans." The observation of different biofilm morphology as a function of carbon source and fluoride concentration allows an interesting discussion regarding the…

  9. Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms

    Czech Academy of Sciences Publication Activity Database

    Raven, John A.; Beardall, J.; Giordano, Mario

    2014-01-01

    Roč. 121, 2-3 (2014), s. 111-124 ISSN 0166-8595 Institutional support: RVO:61388971 Keywords : carbon dioxide * environmental change * radiation Subject RIV: EE - Microbiology, Virology Impact factor: 3.502, year: 2014

  10. CHEMISTRY OF FOG WATERS IN CALIFORNIA'S CENTRAL VALLEY - PART 3: CONCENTRATIONS AND SPECIATION OF ORGANIC AND INORGANIC NITROGEN. (R825433)

    Science.gov (United States)

    Although organic nitrogen (ON) has been found to be a ubiquitous and significant component in wet and dry deposition, almost nothing is known about its concentration or composition in fog waters. To address this gap, we have investigated the concentration and composition of ON...

  11. Trends in air concentration and deposition at background monitoring sites in Sweden - major inorganic compounds, heavy metals and ozone

    Energy Technology Data Exchange (ETDEWEB)

    Kindbom, K.; Svensson, Annika; Sjoeberg, K.; Pihl Karlsson, G.

    2001-09-01

    This report describes concentrations in air of sulphur compounds, soot, nitrogen compounds and ozone in Sweden between 1985-1998. Time trends of concentration in precipitation and deposition of sulphate, nitrate, ammonium, acidity, base cations and chloride in six different regions covering Sweden are evaluated during the period 1983-1998. Trends of heavy metals in precipitation have been analysed for the period 1983-1998 and the change in heavy metal concentration, 1975-1995, in mosses is described. Data used in the trend analyses originates from measurements performed at six Swedish EMEP stations and from approximately 25 stations within the national Precipitation Chemistry Network. Two different statistical methods, linear regression and the non-parametric Mann Kendall test, have been used to evaluate changes in annual mean values. Time trends of concentration of sulphur dioxide, particulate sulphate, soot, nitrogen dioxide, total nitrate and total ammonium in air show highly significant decreasing trends, except for soot at one station in northern Sweden. Concentrations of ozone have a strong seasonal variation with a peak occurring in spring every year. However, annual ozone concentrations show no obvious trends in spite of decreasing emissions of the precursors NOx and VOC. A slight indication of a decreasing trend in the number of ozone episodes might be seen from 1990 to 1998. Sulphate concentrations in precipitation and deposition show strongly significant decreasing trends in the whole country. Concentrations and deposition of nitrate and ammonium have been decreasing in all areas except for nitrate at stations in south-west and north-west Sweden and ammonium in south-west Sweden. Acidity has decreased in all areas since 1989, resulting in increasing pH values in Sweden. The interannual variations of concentration and deposition of base cations and chloride are large and few general trends can be seen during 1983-1997. Time trends of four heavy metals in

  12. Effect of oxide ion concentration on the electrochemical oxidation of carbon in molten LiCl

    International Nuclear Information System (INIS)

    Yun, J. W.; Choi, I. K.; Park, Y. S.; Kim, W. H.

    2001-01-01

    The continuous measurement of lithium oxide concentration was required in DOR (Direct Oxide Reduction) process, which converts spent nuclear fuel to metal form, for the reactivity monitor and effective control of the process. The concentration of lithium oxide was measured by the electrochemical method, which was based on the phenomenon that carbon atoms of glassy carbon electrode electrochemically react with oxygen ions of lithium oxide in molten LiCl medium. From the results of electrode polarization experiments, the trend of oxidation rate of carbon atoms was classified into two different regions, which were proportional and non-proportional ones, dependent on the amount of lithium oxide. Below about 2.5 wt % Li 2 O, as the carbon atom ionization rate was fast enough for reacting with diffusing lithium oxide to the surface of carbon electrode. In this concentration range, the oxidation rate of carbon atoms was controlled by the diffusion of lithium oxide, and the concentration of lithium oxide could be measured by electrochemical method. But, above 2.5 wt % Li 2 O, the oxidation rate of carbon atoms was controlled by the applied electrochemical potential, because the carbon atom ionization rate was suppressed by the huge amounts of diffusing Li 2 O. Above this concentration, the electrochemical method was not applicable to determine the concentration of lithium oxide

  13. Expression of the pyr operon of Lactobacillus plantarum is regulated by inorganic carbon availability through a second regulator, PyrR2, homologous to the pyrimidine-dependent regulator PyrR1

    DEFF Research Database (Denmark)

    Arsène-Ploetze, Florence; Valérie Kugler, Valérie; Martinussen, Jan

    2006-01-01

    Inorganic carbon (IC), such as bicarbonate or carbon dioxide, stimulates the growth of Lactobacillus plantarum. At low IC levels, one-third of natural isolated L. plantarum strains are nutritionally dependent on exogenous arginine and pyrimidine, a phenotype previously defined as high-CO2-requiri...

  14. Mechanical properties of PET composites using multi-walled carbon nanotubes functionalized by inorganic and itaconic acids

    Directory of Open Access Journals (Sweden)

    A. May-Pat

    2012-02-01

    Full Text Available Multi-walled carbon nanotubes (MWCNTs were oxidized by two different acid treatments and further functionalized with itaconic acid (IA. The functionalized MWCNTs were used to fabricate Poly(ethylene terephthalate (PET composites by melt mixing. The presence of functional groups on the surface of the treated MWCNTs was confirmed by infrared spectroscopy and thermogravimetric analysis. The MWCNTs oxidized with a concentrated mixture of HNO3 and H2SO4 exhibited more oxygen containing functional groups (OH, COOH but also suffer larger structural degradation than those oxidized by a mild treatment based on diluted HNO3 followed by H2O2. PET composites were fabricated using the oxidized-only and oxidized followed by functionalization with IA MWCNTs. PET composites fabricated with MWCNT oxidized by mild conditions showed improved tensile strength and failure strain, while harsh MWCNT oxidation render them overly brittle.

  15. Quantifying the impact of daily and seasonal variation in sap pH on xylem dissolved inorganic carbon estimates in plum trees.

    Science.gov (United States)

    Erda, F G; Bloemen, J; Steppe, K

    2014-01-01

    In studies on internal CO2 transport, average xylem sap pH (pH(x)) is one of the factors used for calculation of the concentration of dissolved inorganic carbon in the xylem sap ([CO2 *]). Lack of detailed pH(x) measurements at high temporal resolution could be a potential source of error when evaluating [CO2*] dynamics. In this experiment, we performed continuous measurements of CO2 concentration ([CO2]) and stem temperature (T(stem)), complemented with pH(x) measurements at 30-min intervals during the day at various stages of the growing season (Day of the Year (DOY): 86 (late winter), 128 (mid-spring) and 155 (early summer)) on a plum tree (Prunus domestica L. cv. Reine Claude d'Oullins). We used the recorded pH(x) to calculate [CO2*] based on T(stem) and the corresponding measured [CO2]. No statistically significant difference was found between mean [CO2*] calculated with instantaneous pH(x) and daily average pH(x). However, using an average pH(x) value from a different part of the growing season than the measurements of [CO2] and T(stem) to estimate [CO2*] led to a statistically significant error. The error varied between 3.25 ± 0.01% under-estimation and 3.97 ± 0.01% over-estimation, relative to the true [CO2*] data. Measured pH(x) did not show a significant daily variation, unlike [CO2], which increased during the day and declined at night. As the growing season progressed, daily average [CO2] (3.4%, 5.3%, 7.4%) increased and average pH(x) (5.43, 5.29, 5.20) decreased. Increase in [CO2] will increase its solubility in xylem sap according to Henry's law, and the dissociation of [CO2*] will negatively affect pH(x). Our results are the first quantifying the error in [CO2*] due to the interaction between [CO2] and pH(x) on a seasonal time scale. We found significant changes in pH(x) across the growing season, but overall the effect on the calculation of [CO2*] remained within an error range of 4%. However, it is possible that the error could be more

  16. A Liquid Inorganic Electrolyte Showing an Unusually High Lithium Ion Transference Number: A Concentrated Solution of LiAlCl4 in Sulfur Dioxide

    Directory of Open Access Journals (Sweden)

    Martin Winter

    2013-08-01

    Full Text Available We report on studies of an inorganic electrolyte: LiAlCl4 in liquid sulfur dioxide. Concentrated solutions show a very high conductivity when compared with typical electrolytes for lithium ion batteries that are based on organic solvents. Our investigations include conductivity measurements and measurements of transference numbers via nuclear magnetic resonance (NMR and by a classical direct method, Hittorf’s method. For the use of Hittorf’s method, it is necessary to measure the concentration of the electrolyte in a selected cell compartment before and after electrochemical polarization very precisely. This task was finally performed by potentiometric titration after hydrolysis of the salt. The Haven ratio was determined to estimate the association behavior of this very concentrated electrolyte solution. The measured unusually high transference number of the lithium cation of the studied most concentrated solution, a molten solvate LiAlCl4 × 1.6SO2, makes this electrolyte a promising alternative for lithium ion cells with high power ability.

  17. Natural vegetation restoration is more beneficial to soil surface organic and inorganic carbon sequestration than tree plantation on the Loess Plateau of China.

    Science.gov (United States)

    Jin, Zhao; Dong, Yunshe; Wang, Yunqiang; Wei, Xiaorong; Wang, Yafeng; Cui, Buli; Zhou, Weijian

    2014-07-01

    Natural vegetation restoration and tree plantation are the two most important measures for ecosystem restoration on the Loess Plateau of China. However, few studies have compared the effects of the two contrasting measures on soil organic and inorganic carbon (SOC and SIC) sequestration or have further used SOC and SIC isotopes to analyze the inherent sequestration mechanism. This study examined a pair of neighboring small watersheds with similar topographical and geological backgrounds. Since 1954, natural vegetation restoration has been conducted in one of these watersheds, and tree plantation has been conducted in the other. The two watersheds have now formed completely different landscapes (naturally restored grassland and artificial forestland). Differences in soil bulk density, SOC and SIC content and storage, and SOC and SIC δ(13)C values were investigated in the two ecosystems in the upper 1m of the soil. We found that SOC storage was higher in the grassland than in the forestland, with a difference of 14.90 Mg ha(-1). The vertical changes in the δ(13)CSOC value demonstrated that the two ecosystems have different mechanisms of soil surface organic carbon accumulation. The SIC storage in the grassland was lower than that in the forestland, with a difference of 38.99 Mg ha(-1). The δ(13)CSIC values indicated that the grassland generates more secondary carbonate than the forestland and that SIC was most likely transported to the rivers from the grassland as dissolved inorganic carbon (DIC). The biogeochemical characteristics of the grassland were favorable for the formation of bicarbonate. Thus, more DIC derived from the dissolution of root and microbial respired CO2 into soil water could have been transported to the rivers through flood runoff. It is necessary to study further the transportation of DIC from the grassland because this process can produce a large potential carbon sink. Copyright © 2014. Published by Elsevier B.V.

  18. Nuclear graphite waste's behaviour under disposal conditions: Study of the release and repartition of organic and inorganic forms of carbon 14 and tritium in alkaline media

    International Nuclear Information System (INIS)

    Vende, L.

    2012-01-01

    23000 tons of graphite wastes will be generated during dismantling of the first generation of French reactors (9 gas cooled reactors). These wastes are classified as Long Lived Low Level wastes (LLW-LL). As requested by the law, the French National Radioactive Waste Management Agency (Andra) is studying concepts of low-depth disposals.In this work we focus on carbon 14, the main long-lived radionuclide in graphite waste (5730 y), but also on tritium, which is the main contributor to the radioactivity in the short term. Carbon 14 and tritium may be released from graphite waste in many forms in gaseous phase ( 14 CO 2 , HT...) or in solution ( 14 CO 3 2- , HTO...). Their speciation will strongly affect their migration from the disposal site to the environment. Leaching experiments, in alkaline solution (0.1 M NaOH simulating repository conditions) have been performed on irradiated graphite, from Saint-Laurent A2 and G2 reactors, in order to quantify their release and characterize their speciation. The studies show that carbon 14 exists in both gaseous and aqueous phases. In the gaseous phase, release is weak (≤0.1%) and corresponds to oxidizable species. Carbon 14 is mainly released into liquid phase, as both inorganic and organic species. 65% of released fraction is inorganic and 35% organic carbon. Two tritiated species have been identified in gaseous phase: HTO and HT/Organically Bond Tritium. More than 90% of tritium in that phase corresponds to HT/OBT. But release is weak (≤0.1%). HTO is mainly in the liquid phase. (author)

  19. Biological variables and health status affecting inorganic element concentrations in harbour porpoises (Phocoena phocoena) from Portugal (western Iberian Peninsula)

    International Nuclear Information System (INIS)

    Ferreira, Marisa; Monteiro, Silvia S.; Torres, Jordi; Oliveira, Isabel; Sequeira, Marina; López, Alfredo

    2016-01-01

    The coastal preferences of harbour porpoise (Phocoena phocoena) intensify their exposure to human activities. The harbour porpoise Iberian population is presently very small and information about the threats it endures is vital for the conservation efforts that are being implemented to avoid local extinction. The present study explored the possible relation between the accumulation of trace elements by porpoises and their sex, body length, nutritional state, presence of parasites and gross pathologies. The concentrations of arsenic (As), cadmium (Cd), copper (Cu), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), zinc (Zn) and selenium (Se) were evaluated in 42 porpoises stranded in Portugal between 2005 and 2013. Considering European waters, porpoises stranded in Portugal present the highest Hg concentrations and the lowest Cd concentrations, which may reflect dietary preferences and the geographic availability of these pollutants. While no effect of sex on trace element concentrations was detected, there was a positive relationship between porpoise body length and the concentration of Cd, Hg and Pb. Animals in worse nutritional condition showed higher levels of Zn. Harbour porpoises with high parasite burdens showed lower levels of Zn and As in all analysed tissues and also lower levels of renal Ni, while those showing gross pathologies presented higher Zn and Hg levels. This is the first data on the relationship between trace elements and health-related variables in porpoises from southern European Atlantic waters, providing valuable baseline information about the contamination status of this vulnerable population. - Highlights: • High levels of mercury in harbour porpoises from Portugal. • Evidence of bioaccumulation of non-essential trace elements. • Presence of parasites influenced some essential trace elements. • Evidence of nutritional state effect on Zn levels. • Presence of gross pathologies influenced Zn and Hg levels. - The small harbour

  20. High-resolution carbon dioxide concentration record 650,000-800,000 years before present

    Energy Technology Data Exchange (ETDEWEB)

    Luthi, D; Bereiter, B; Blunier, T; Siegenthaler, U; Kawamura, K; Stocker, T F [Climate and Environm. Physics, Physics Inst., Univ. Bern, CH-3012 Bern, (Switzerland); Luthi, D; Bereiter, B; Blunier, T; Siegenthaler, U; Kawamura, K; Stocker, T F [Oeschger Centre for Climate Change Research, Univ. Bern, CH-3012 Bern, (Switzerland); Le Floch, M; Barnola, J M; Raynaud, D [LGGE, CNRS-Univ. Grenoble 1, F-38402 Saint Martin d' Heres, (France); Jouzel, J [Inst. Pierre Simon Laplace, LSCE, CEA-CNRS-Universite Versailles-Saint Quentin, CEA Saclay, F-91191 Gif sur Yvette (France); Fischer, H [Alfred Wegener Inst. for Polar and Maine Research, D-27568 Bremerhaven, (Germany)

    2008-07-01

    Changes in past atmospheric carbon dioxide concentrations can be determined by measuring the composition of air trapped in ice cores from Antarctica. So far, the Antarctic Vostok and EPICA Dome C ice cores have provided a composite record of atmospheric carbon dioxide levels over the past 650,000 years. Here we present results of the lowest 200 m of the Dome C ice core, extending the record of atmospheric carbon dioxide concentration by two complete glacial cycles to 800,000 yr before present. From previously published data and the present work, we find that atmospheric carbon dioxide is strongly correlated with Antarctic temperature throughout eight glacial cycles but with significantly lower concentrations between 650,000 and 750,000 yr before present. Carbon dioxide levels are below 180 parts per million by volume (p.p.m.v.) for a period of 3,000 yr during Marine Isotope Stage 16, possibly reflecting more pronounced oceanic carbon storage. We report the lowest carbon dioxide concentration measured in an ice core, which extends the pre-industrial range of carbon dioxide concentrations during the late Quaternary by about 10 p.p.m.v. to 172-300 p.p.m.v. (authors)

  1. Mercury, monomethyl mercury, and dissolved organic carbon concentrations in surface water entering and exiting constructed wetlands treated with metal-based coagulants, Twitchell Island, California

    Science.gov (United States)

    Stumpner, Elizabeth B.; Kraus, Tamara E.C.; Fleck, Jacob A.; Hansen, Angela M.; Bachand, Sandra M.; Horwath, William R.; DeWild, John F.; Krabbenhoft, David P.; Bachand, Philip A.M.

    2015-09-02

    Coagulation with metal-based salts is a practice commonly employed by drinking-water utilities to decrease particle and dissolved organic carbon concentrations in water. In addition to decreasing dissolved organic carbon concentrations, the effectiveness of iron- and aluminum-based coagulants for decreasing dissolved concentrations both of inorganic and monomethyl mercury in water was demonstrated in laboratory studies that used agricultural drainage water from the Sacramento–San Joaquin Delta of California. To test the effectiveness of this approach at the field scale, nine 15-by-40‑meter wetland cells were constructed on Twitchell Island that received untreated water from island drainage canals (control) or drainage water treated with polyaluminum chloride or ferric sulfate coagulants. Surface-water samples were collected approximately monthly during November 2012–September 2013 from the inlets and outlets of the wetland cells and then analyzed by the U.S. Geological Survey for total concentrations of mercury and monomethyl mercury in filtered (less than 0.3 micrometers) and suspended-particulate fractions and for concentrations of dissolved organic carbon.

  2. Effects of Elevated Soil Carbon dioxide (CO2) Concentrations on ...

    African Journals Online (AJOL)

    PROF HORSFALL

    concentrations on spring wheat and soil chemical properties in the Sutton Bonington Campus, of the University of ... pipeline, marine tanker or road tankers to the storage site. .... Chlorophyll analysis of wheat plant was determined using the ...

  3. Silver birch and climate change: variable growth and carbon allocation responses to elevated concentrations of carbon dioxide and ozone

    International Nuclear Information System (INIS)

    Riikonen, J.; Holopainen, T.; Oksanen, E.; Lindsberg, M-M.; Lappi, J.; Peltonen, P.; Vapaavuori, E.

    2004-01-01

    The effects of elevated concentrations of carbon dioxide and ozone were studied on growth, biomass allocation and leaf area of field-grown ozone-tolerant (Clone 4) and ozone-sensitive (Clone 80) European silver birch trees. Seven-year old trees of both types were exposed for three years to outside and chamber control, (1) twice ambient ozone, (2) twice ambient carbon dioxide, and (3) twice ambient carbon dioxide and twice ambient ozone. No effect on biomass allocation was observed when results of the two clones were analyzed together. Total leaf area showed an increase, and leaf abscission appeared delayed in response to elevated carbon dioxide. Elevated ozone caused the dry mass of roots, branches and mean leaf size to decrease, and autumnal leaf abscission occurred earlier than usual in both clones. In general. the effects of elevated ozone were small, however, the interaction between elevated carbon dioxide and elevated oxygen were significant. When results from the two clones were analyzed separately, stem diameter, volume growth and total biomass of Clone 80 increased when exposed to elevated concentrations of carbon dioxide; elevated concentrations of ozone appeared to have no effect. In Clone 4 elevated ozone caused significant decrease in root and branch biomass, but the effects of elevated carbon dioxide were minimal. Responses to elevated ozone exposure were observed only under ambient carbon dioxide conditions. This response is believed to reflect the greater quantity of carbohydrates available for detoxification and repair under elevated carbon dioxide conditions. Alternatively, the response may be due to decreased stomatal conductance, thus decreased ozone uptake under elevated carbon dioxide conditions. 45 refs., 6 tabs., 4 figs

  4. Effects of elevated carbon dioxide concentration on growth and N2 fixation of young Robinia pseudoacacia

    International Nuclear Information System (INIS)

    Feng, Z; Flessa, H.; Dyckmans, J.

    2004-01-01

    The effects of elevated carbon dioxide concentration on carbon and nitrogen uptake and nitrogen source partitioning were determined in one year-old locust trees using a dual 13 C and 15 N continuous labelling experiment. Elevated carbon dioxide increased the fraction of new carbon in total carbon, but it did not alter carbon partitioning among plant compartments. Elevated carbon dioxide also increased the fraction of new nitrogen in total nitrogen. This was coupled with a shift in nitrogen source partitioning toward nitrogen fixation. Soil nitrogen uptake was not affected, but nitrogen fixation was markedly increased by elevated carbon dioxide treatment. The increased nitrogen fixation tended to decrease the C/N ratio in the presence of elevated carbon dioxide. Total dry mass of root nodules doubled in response to elevated carbon dioxide, however, this effect was not considered significant because of the great variability in root nodule formation. Overall, it was concluded that the growth of locust trees in an elevated carbon dioxide environment will not primarily be limited by nitrogen availability, giving the R. pseudoacacia species a competitive advantage over non-nitrogen-fixing tree species. It was also suggested that the increase in nitrogen fixation observed in response to elevated carbon dioxide treatment may play a key role in the growth response of forest ecosystems to elevated carbon dioxide by improving nitrogen availability for non-nitrogen-fixing trees. 51 refs., 1 tab., 4 figs

  5. Trends of atmospheric black carbon concentration over the United Kingdom

    Science.gov (United States)

    Singh, Vikas; Ravindra, Khaiwal; Sahu, Lokesh; Sokhi, Ranjeet

    2018-04-01

    The continuous observations over a period of 7 years (2009-2016) available at 7 locations show declining trend of atmospheric BC in the UK. Among all the locations, the highest decrease of 8 ± 3 percent per year was observed at the Marylebone road in London. The detailed analysis performed at 21 locations during 2009-2011 shows that average annual mean atmospheric BC concentration were 0.45 ± 0.10, 1.47 ± 0.58, 1.34 ± 0.31, 1.83 ± 0.46 and 9.72 ± 0.78 μgm-3 at rural, suburban, urban background, urban centre and kerbside sites respectively. Around 1 μgm-3 of atmospheric BC could be attributed to urban emission, whereas traffic contributed up to 8 μg m-3 of atmospheric BC near busy roads. Seasonal pattern was also observed at all locations except rural and kerbside location, with maximum concentrations (1.2-4 μgm-3) in winter. Further, minimum concentrations (0.3-1.2 μgm-3) were observed in summer and similar concentrations in spring and fall. At suburban and urban background locations, similar diurnal pattern were observed with atmospheric BC concentration peaks (≈1.8 μg m-3) in the morning (around 9 a.m.) and evening (7-9 p.m.) rush hours, whereas minimum concentrations were during late night hours (peak at 5 a.m.) and the afternoon hours (peak at 2 p.m.). The urban centre values show a similar morning pattern (peak at 9 a.m.; concentration - 2.5 μgm-3) in relation to background locations but only a slight decrease in concentration in the afternoon which remained above 2 μgm-3 till midnight. It is concluded that the higher flow of traffic at urban centre locations results in higher atmospheric BC concentrations throughout the day. Comparison of weekday and weekend daily averaged atmospheric BC showed maximum concentrations on Friday, having minimum levels on Sunday. This study will help to refine the atmospheric BC emission inventories and provide data for air pollution and climate change models evaluation, which are used to formulate air pollution

  6. Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO₂ concentrations compared to primordial values.

    Science.gov (United States)

    Xiao, Leilei; Lian, Bin; Hao, Jianchao; Liu, Congqiang; Wang, Shijie

    2015-01-13

    It is widely recognized that carbonic anhydrase (CA) participates in silicate weathering and carbonate formation. Nevertheless, it is still not known if the magnitude of the effect produced by CA on surface rock evolution changes or not. In this work, CA gene expression from Bacillus mucilaginosus and the effects of recombination protein on wollastonite dissolution and carbonate formation under different conditions are explored. Real-time fluorescent quantitative PCR was used to explore the correlation between CA gene expression and sufficiency or deficiency in calcium and CO₂ concentration. The results show that the expression of CA genes is negatively correlated with both CO₂ concentration and ease of obtaining soluble calcium. A pure form of the protein of interest (CA) is obtained by cloning, heterologous expression, and purification. The results from tests of the recombination protein on wollastonite dissolution and carbonate formation at different levels of CO₂ concentration show that the magnitudes of the effects of CA and CO₂ concentration are negatively correlated. These results suggest that the effects of microbial CA in relation to silicate weathering and carbonate formation may have increased importance at the modern atmospheric CO₂ concentration compared to 3 billion years ago.

  7. Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO2 concentrations compared to primordial values

    Science.gov (United States)

    Xiao, Leilei; Lian, Bin; Hao, Jianchao; Liu, Congqiang; Wang, Shijie

    2015-01-01

    It is widely recognized that carbonic anhydrase (CA) participates in silicate weathering and carbonate formation. Nevertheless, it is still not known if the magnitude of the effect produced by CA on surface rock evolution changes or not. In this work, CA gene expression from Bacillus mucilaginosus and the effects of recombination protein on wollastonite dissolution and carbonate formation under different conditions are explored. Real-time fluorescent quantitative PCR was used to explore the correlation between CA gene expression and sufficiency or deficiency in calcium and CO2 concentration. The results show that the expression of CA genes is negatively correlated with both CO2 concentration and ease of obtaining soluble calcium. A pure form of the protein of interest (CA) is obtained by cloning, heterologous expression, and purification. The results from tests of the recombination protein on wollastonite dissolution and carbonate formation at different levels of CO2 concentration show that the magnitudes of the effects of CA and CO2 concentration are negatively correlated. These results suggest that the effects of microbial CA in relation to silicate weathering and carbonate formation may have increased importance at the modern atmospheric CO2 concentration compared to 3 billion years ago. PMID:25583135

  8. High-resolution carbon dioxide concentration record 650,000-800,000 years before present

    DEFF Research Database (Denmark)

    Lüthi, Dieter; Le Floch, Martine; Bereiter, Bernhard

    2008-01-01

    Changes in past atmospheric carbon dioxide concentrations can be determined by measuring the composition of air trapped in ice cores from Antarctica. So far, the Antarctic Vostok and EPICA Dome C ice cores have provided a composite record of atmospheric carbon dioxide levels over the past 650......,000 years. Here we present results of the lowest 200 m of the Dome C ice core, extending the record of atmospheric carbon dioxide concentration by two complete glacial cycles to 800,000 yr before present. From previously published data and the present work, we find that atmospheric carbon dioxide...... is strongly correlated with Antarctic temperature throughout eight glacial cycles but with significantly lower concentrations between 650,000 and 750,000 yr before present. Carbon dioxide levels are below 180 parts per million by volume (p.p.m.v.) for a period of 3,000 yr during Marine Isotope Stage 16...

  9. Use of dissolved inorganic carbon isotopes to track photosynthesis, respiration, and nitrification along a 56 mile transect in the Sacramento River and San Francisco Bay

    Science.gov (United States)

    Silva, S. R.; Kendall, C.; Peek, S.; Young, M. B.

    2013-12-01

    A decline in phytoplankton stocks in the San Francisco Bay and Delta is thought to contribute to the pelagic organism decline observed over the past two decades. One factor controlling phytoplankton growth rate is the availability of nutrients. Although there is an excess of nutrients in the Bay and Delta, the type and relative abundance of nutrients is critical to phytoplankton growth. To evaluate the response of phytoplankton to nutrient sources and to better understand phytoplankton dynamics downstream, we tested the hypothesis that the δ13C values of dissolved inorganic carbon (DIC) along with conventional water chemistry analyses will record events such as increased nitrification (related to the Sacramento River Wastewater Treatment Plant ammonium input) and algal blooms, and reflect the balance between photosynthesis and bacterial respiration. Multiple parameters affect [DIC] and its δ13C, including DIC sources, pH, and biological processes. Consumption of CO2 by phytoplankton during photosynthesis and by autotrophic bacteria during nitrification both result in increases in δ13C-DIC. However, photosynthesis and nitrification have very different relationships to chlorophyll and nutrient concentrations. The balance between heterotrophic bacterial respiration and photosynthesis should be reflected in trends in DIC, nutrient, and chlorophyll concentration, and δ13C-DIC. The δ13C of DIC should also be reflected in the δ13C of phytoplankton with approximately a 20 per mil fractionation. Significant deviation in the fractionation factor may indicate local variations in growth rate, nutrient availability, or speciation. Combined, these parameters should provide a gauge of the relative importance of the above mentioned processes. To test this hypothesis, we collected 19 water samples per cruise between July 2012 and July 2013 along a 56 mile transect between Rio Vista on the Sacramento River and San Francisco Bay near Angel Island during 8 cruises on the USGS RV

  10. Dermal inorganic gadolinium concentrations: evidence for in vivo transmetallation and long-term persistence in nephrogenic systemic fibrosis

    DEFF Research Database (Denmark)

    Abraham, J.L.; Thakral, C.; Skov, L.

    2008-01-01

    patients with NSF and to determine their relative concentrations over time from administration of GBMCA. Methods An investigator-blinded retrospective study, analysing 43 skin biopsies from 20 patients with gadodiamide-related NSF and one NSF-negative gadodiamide-exposed dialysis patient, ranging from 16...... days to 1991 days after Gd contrast dose. Utilizing automated quantitative scanning electron microscopy/energy-dispersive X-ray spectroscopy we determined the concentration of Gd and associated elements present as insoluble deposits in situ in the tissues. Results We detected Gd in skin lesions of all...... contained phosphorus, calcium and sodium. The ratio of Gd to calcium in tissue deposits correlated positively with the gadodiamide dose and with serum ionized calcium at the time of Gd exposure. Conclusions These findings demonstrate the in vivo release (through transmetallation) of the toxic free Gd3+ from...

  11. Dermal inorganic gadolinium concentrations: evidence for in vivo transmetallation and long-term persistence in nephrogenic systemic fibrosis

    DEFF Research Database (Denmark)

    Abraham, J L; Thakral, C; Skov, L

    2008-01-01

    BACKGROUND: Gadolinium (Gd)-based magnetic resonance contrast agents (GBMCA), including gadodiamide, have been identified as the probable causative agents of the serious disease, nephrogenic systemic fibrosis (NSF). OBJECTIVES: To investigate retained Gd-containing deposits in skin biopsies from...... patients with NSF and to determine their relative concentrations over time from administration of GBMCA. METHODS: An investigator-blinded retrospective study, analysing 43 skin biopsies from 20 patients with gadodiamide-related NSF and one NSF-negative gadodiamide-exposed dialysis patient, ranging from 16...... days to 1991 days after Gd contrast dose. Utilizing automated quantitative scanning electron microscopy/energy-dispersive X-ray spectroscopy we determined the concentration of Gd and associated elements present as insoluble deposits in situ in the tissues. RESULTS: We detected Gd in skin lesions of all...

  12. A Comparison of Recent Organic and Inorganic Carbon Isotope Records: Why Do They Covary in Some Settings and Not In Others?

    Science.gov (United States)

    Oehlert, A. M.; Swart, P. K.

    2013-12-01

    Covariance between inorganic and organic δ13C records has been used to determine whether a deposit has been altered by diagenesis, how the dynamics of the global carbon cycle changed during the production of the sediments in the deposit, and also for chronostratigraphic correlations. Although covariant records are observed in the ancient geologic record in a variety of depositional environments, such comparisons are not widely applied to modern deposits where definitive data regarding sediment producers, sea level fluctuations, and changes in the global carbon cycle are available. This study uses paired δ13C records from cores collected by the Ocean Drilling Program from three modern periplatform settings (the Great Bahama Bank, the Great Australian Bight, and the Great Barrier Reef), and two pelagic settings (the Walvis Ridge, and the Madingley Rise). These sites were selected in order to assess the influence of several different environmental factors including; sediment and organic matter producers, sediment mineralogy, margin architecture, sea level oscillations, and sediment transport pathways. In the three periplatform settings, multiple cores arranged in a margin to basin transect were analyzed in order to provide insights into the effects of downslope sediment transport. The preliminary results of this study suggest that sea level oscillations and margin architecture may artificially generate a covarying relationship in periplatform sediments that is unrelated to changes in the global carbon cycle. Furthermore, preliminary results from the Walvis Ridge and the Madingley Rise sediments suggest that the relationship between inorganic and organic δ13C records may not always exhibit a positive covariance as is currently assumed for pelagic carbonates.

  13. Influence of soil mercury concentration and fraction on bioaccumulation process of inorganic mercury and methylmercury in rice (Oryza sativa L.).

    Science.gov (United States)

    Zhou, Jun; Liu, Hongyan; Du, Buyun; Shang, Lihai; Yang, Junbo; Wang, Yusheng

    2015-04-01

    Recent studies showed that rice is the major pathway for methylmercury (MeHg) exposure to inhabitants in mercury (Hg) mining areas in China. There is, therefore, a concern regarding accumulation of Hg in rice grown in soils with high Hg concentrations. A soil pot experimental study was conducted to investigate the effects of Hg-contaminated soil on the growth of rice and uptake and speciation of Hg in the rice. Our results imply that the growth of rice promotes residual fraction of Hg transforming to organic-bound fraction in soil and increased the potential risks of MeHg production. Bioaccumulation factors deceased for IHg but relatively stabilized for MeHg with soil total mercury (THg) increasing. IHg in soil was the major source of Hg in the root and stalk, but leaf was contributed by Hg from both atmosphere and soil. Soluble and exchangeable Hg fraction can predict the bioavailability of IHg and MeHg in soils, and that can provide quantitative description of the rate of uptake of the bioavailable Hg. Soluble and exchangeable Hg fraction in paddy soil exceeding 0.0087 mg kg(-1) may cause THg concentration in rice grain above the permissible limit standard, and MeHg concentration in paddy soil more than 0.0091 mg kg(-1) may have the health risks to humans.

  14. A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in groundwater

    Science.gov (United States)

    Han, L. F; Plummer, Niel

    2016-01-01

    Numerous methods have been proposed to estimate the pre-nuclear-detonation 14C content of dissolved inorganic carbon (DIC) recharged to groundwater that has been corrected/adjusted for geochemical processes in the absence of radioactive decay (14C0) - a quantity that is essential for estimation of radiocarbon age of DIC in groundwater. The models/approaches most commonly used are grouped as follows: (1) single-sample-based models, (2) a statistical approach based on the observed (curved) relationship between 14C and δ13C data for the aquifer, and (3) the geochemical mass-balance approach that constructs adjustment models accounting for all the geochemical reactions known to occur along a groundwater flow path. This review discusses first the geochemical processes behind each of the single-sample-based models, followed by discussions of the statistical approach and the geochemical mass-balance approach. Finally, the applications, advantages and limitations of the three groups of models/approaches are discussed.The single-sample-based models constitute the prevailing use of 14C data in hydrogeology and hydrological studies. This is in part because the models are applied to an individual water sample to estimate the 14C age, therefore the measurement data are easily available. These models have been shown to provide realistic radiocarbon ages in many studies. However, they usually are limited to simple carbonate aquifers and selection of model may have significant effects on 14C0 often resulting in a wide range of estimates of 14C ages.Of the single-sample-based models, four are recommended for the estimation of 14C0 of DIC in groundwater: Pearson's model, (Ingerson and Pearson, 1964; Pearson and White, 1967), Han & Plummer's model (Han and Plummer, 2013), the IAEA model (Gonfiantini, 1972; Salem et al., 1980), and Oeschger's model (Geyh, 2000). These four models include all processes considered in single-sample-based models, and can be used in different ranges of

  15. Characterization of Black and Brown Carbon Concentrations and Sources during winter in Beijing

    Science.gov (United States)

    Yan, Caiqing; Liu, Yue; Hansen, Anthony D. A.; Močnik, Griša; Zheng, Mei

    2017-04-01

    Carbonaceous aerosols, including black carbon (BC) and organic carbon (OC), play important roles in air quality, human health, and climate change. A better understanding of sources of light-absorbing carbonaceous aerosol (including black carbon and brown carbon) is particular critical for formulating emission-based control strategies and reducing uncertainties in current aerosol radiative forcing estimates. Beijing, the capital of China, has experienced serious air pollution problems and high concentrations of carbonaceous aerosols in recent years, especially during heating seasons. During November and December of 2016, several severe haze episodes occurred in Beijing, with hourly average PM2.5 mass concentration up to 400 μg/m3. In this study, concentration levels and sources of black carbon and brown carbon were investigated based on 7-wavelength Aethalometer (AE-33) with combination of other PM2.5 chemical composition information. Contributions of traffic and non-traffic emissions (e.g., coal combustion, biomass burning) were apportioned, and brown carbon was separated from black carbon. Our preliminary results showed that (1) Concentrations of BC were around 5.3±4.2 μg/m3 during the study period, with distinct diurnal variations during haze and non-haze days. (2) Traffic emissions contributed to about 37±17% of total BC, and exhibited higher contributions during non-haze days compared to haze days. (3) Coal combustion was a major source of black carbon and brown carbon in Beijing, which was more significant compared to biomass burning. Sources and the relative contributions to black carbon and brown carbon during haze and non-haze days will be further discussed.

  16. Six-man, self-contained carbon dioxide concentrator subsystem for Space Station Prototype (SSP) application

    Science.gov (United States)

    Kostell, G. D.; Schubert, F. H.; Shumar, J. W.; Hallick, T. M.; Jensen, F. C.

    1974-01-01

    A six man, self contained, electrochemical carbon dioxide concentrating subsystem for space station prototype use was successfully designed, fabricated, and tested. A test program was successfully completed which covered shakedown testing, design verification testing, and acceptance testing.

  17. Comparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments

    NARCIS (Netherlands)

    Koelmans, A.A.; Nowack, B.; Wiesner, M.

    2009-01-01

    In this paper, we show that concentrations of manufactured carbon-based nanoparticles (MCNPs) in aquatic sediments will be negligible compared to levels of black carbon nanoparticles (BCNPs). This is concluded from model calculations accounting for MCNP sedimentation fluxes, removal rates due to

  18. Adaptações de plantas submersas à absorção do carbono inorgânico Adaptations of submerged plants to inorganic carbon uptake

    Directory of Open Access Journals (Sweden)

    Sandra Andréa Pierini

    2004-09-01

    Full Text Available No presente trabalho são discutidos alguns aspectos teóricos dos mecanismos e adaptações empregados pela vegetação submersa para maximizar o aproveitamento do carbono inorgânico na água. O tipo de estratégia utilizada pelas macrófitas aquáticas submersas deve-se a diferenças genéticas entre as espécies e também às condições ambientais predominantes. Vários mecanismos fisiológicos e morfológicos, como a utilização do metabolismo C4, do ácido das crassuláceas (CAM, a utilização do bicarbonato (HCO3-, a utilização do CO2 da água intersticial do sedimento e o desenvolvimento de folhas aéreas foram considerados as principais adaptações para evitar a limitação do carbono no ambiente aquático. De relevância ecológica, a utilização destas diferentes estratégias pode compensar baixas ofertas de CO2 às taxas fotossintéticas de várias espécies submersas e suprimir a fotorrespiração por garantir altas concentrações intracelulares de CO2. Assim, estes mecanismos são responsáveis, em parte, pelo sucesso das macrófitas aquáticas submersas em ambientes oligotróficos, com baixas concentrações de CO2.In this paper, the main theoretical aspects of the mechanisms and adaptations used by submerged vegetation to maximize the utilization of inorganic carbon are discussed. The type of strategy used by submerged plants is related to both genetic differences among species and environmental conditions. The use of C4 metabolism and crassulacean acid metabolism (CAM, uptake of bicarbonate (HCO3-, uptake of CO2 from interstitial (sediment water and the development of aerial leaves are considered the main physiological and morphological adaptations to avoid CO2 limitation. These mechanisms are ecologically important given that their utilization overcome the low CO2 availability to several submerged species. In addition, they suppress the photorespiration by increasing the intracellular CO2 concentrations. Thus, these

  19. Radiocarbon dating of dissolved inorganic carbon in groundwater from confined parts of the Upper Floridan aquifer, Florida, USA

    Science.gov (United States)

    Plummer, Niel; Sprinkle, Craig

    2001-03-01

    Geochemical reaction models were evaluated to improve radiocarbon dating of dissolved inorganic carbon (DIC) in groundwater from confined parts of the Upper Floridan aquifer in central and northeastern Florida, USA. The predominant geochemical reactions affecting the 14C activity of DIC include (1) dissolution of dolomite and anhydrite with calcite precipitation (dedolomitization), (2) sulfate reduction accompanying microbial degradation of organic carbon, (3) recrystallization of calcite (isotopic exchange), and (4) mixing of fresh water with as much as 7% saline water in some coastal areas. The calculated cumulative net mineral transfers are negligibly small in upgradient parts of the aquifer and increase significantly in downgradient parts of the aquifer, reflecting, at least in part, upward leakage from the Lower Floridan aquifer and circulation that contacted middle confining units in the Floridan aquifer system. The adjusted radiocarbon ages are independent of flow path and represent travel times of water from the recharge area to the sample point in the aquifer. Downgradient from Polk City (adjusted age 1.7 ka) and Keystone Heights (adjusted age 0.4 ka), 14 of the 22 waters have adjusted 14C ages of 20-30 ka, indicating that most of the fresh-water resource in the Upper Floridan aquifer today was recharged during the last glacial period. All of the paleowaters are enriched in 18O and 2H relative to modern infiltration, with maximum enrichment in δ18O of approximately 2.0‰. Résumé. Les modèles de réactions géochimiques ont été évalués afin de tester la datation par le radiocarbone du carbone minéral dissous (CMD) des eaux souterraines dans les parties captives de la nappe supérieure de Floride, en Floride centrale et nord-orientale (États-Unis). Les réactions géochimiques prédominantes affectant l'activité en 14C du CMD comprennent (1) la dissolution de la dolomite et de l'anhydrite accompagnée de la précipitation de la calcite (d

  20. A lake classification concept for a more accurate global estimate of the dissolved inorganic carbon export from terrestrial ecosystems to inland waters

    Science.gov (United States)

    Engel, Fabian; Farrell, Kaitlin J.; McCullough, Ian M.; Scordo, Facundo; Denfeld, Blaize A.; Dugan, Hilary A.; de Eyto, Elvira; Hanson, Paul C.; McClure, Ryan P.; Nõges, Peeter; Nõges, Tiina; Ryder, Elizabeth; Weathers, Kathleen C.; Weyhenmeyer, Gesa A.

    2018-04-01

    The magnitude of lateral dissolved inorganic carbon (DIC) export from terrestrial ecosystems to inland waters strongly influences the estimate of the global terrestrial carbon dioxide (CO2) sink. At present, no reliable number of this export is available, and the few studies estimating the lateral DIC export assume that all lakes on Earth function similarly. However, lakes can function along a continuum from passive carbon transporters (passive open channels) to highly active carbon transformers with efficient in-lake CO2 production and loss. We developed and applied a conceptual model to demonstrate how the assumed function of lakes in carbon cycling can affect calculations of the global lateral DIC export from terrestrial ecosystems to inland waters. Using global data on in-lake CO2 production by mineralization as well as CO2 loss by emission, primary production, and carbonate precipitation in lakes, we estimated that the global lateral DIC export can lie within the range of {0.70}_{-0.31}^{+0.27} to {1.52}_{-0.90}^{+1.09} Pg C yr-1 depending on the assumed function of lakes. Thus, the considered lake function has a large effect on the calculated lateral DIC export from terrestrial ecosystems to inland waters. We conclude that more robust estimates of CO2 sinks and sources will require the classification of lakes into their predominant function. This functional lake classification concept becomes particularly important for the estimation of future CO2 sinks and sources, since in-lake carbon transformation is predicted to be altered with climate change.

  1. Evolution of chemical and isotopic composition of inorganic carbon in a complex semi-arid zone environment: Consequences for groundwater dating using radiocarbon

    Science.gov (United States)

    Meredith, K. T.; Han, L. F.; Hollins, S. E.; Cendón, D. I.; Jacobsen, G. E.; Baker, A.

    2016-09-01

    Estimating groundwater age is important for any groundwater resource assessment and radiocarbon (14C) dating of dissolved inorganic carbon (DIC) can provide this information. In semi-arid zone (i.e. water-limited environments), there are a multitude of reasons why 14C dating of groundwater and traditional correction models may not be directly transferable. Some include; (1) the complex hydrological responses of these systems that lead to a mixture of different ages in the aquifer(s), (2) the varied sources, origins and ages of organic matter in the unsaturated zone and (3) high evaporation rates. These all influence the evolution of DIC and are not easily accounted for in traditional correction models. In this study, we determined carbon isotope data for; DIC in water, carbonate minerals in the sediments, sediment organic matter, soil gas CO2 from the unsaturated zone, and vegetation samples. The samples were collected after an extended drought, and again after a flood event, to capture the evolution of DIC after varying hydrological regimes. A graphical method (Han et al., 2012) was applied for interpretation of the carbon geochemical and isotopic data. Simple forward mass-balance modelling was carried out on key geochemical processes involving carbon and agreed well with observed data. High values of DIC and δ13CDIC, and low 14CDIC could not be explained by a simple carbonate mineral-CO2 gas dissolution process. Instead it is suggested that during extended drought, water-sediment interaction leads to ion exchange processes within the top ∼10-20 m of the aquifer which promotes greater calcite dissolution in saline groundwater. This process was found to contribute more than half of the DIC, which is from a mostly 'dead' carbon source. DIC is also influenced by carbon exchange between DIC in water and carbonate minerals found in the top 2 m of the unsaturated zone. This process occurs because of repeated dissolution/precipitation of carbonate that is dependent on

  2. Dynamics of Intracellular Polymers in Enhanced Biological Phosphorus Removal Processes under Different Organic Carbon Concentrations

    Directory of Open Access Journals (Sweden)

    Lizhen Xing

    2013-01-01

    Full Text Available Enhanced biological phosphorus removal (EBPR may deteriorate or fail during low organic carbon loading periods. Polyphosphate accumulating organisms (PAOs in EBPR were acclimated under both high and low organic carbon conditions, and then dynamics of polymers in typical cycles, anaerobic conditions with excess organic carbons, and endogenous respiration conditions were examined. After long-term acclimation, it was found that organic loading rates did not affect the yield of PAOs and the applied low organic carbon concentrations were advantageous for the enrichment of PAOs. A low influent organic carbon concentration induced a high production of extracellular carbohydrate. During both anaerobic and aerobic endogenous respirations, when glycogen decreased to around 80 ± 10 mg C per gram of volatile suspended solids, PAOs began to utilize polyphosphate significantly. Regressed by the first-order reaction model, glycogen possessed the highest degradation rate and then was followed by polyphosphate, while biomass decay had the lowest degradation rate.

  3. The measurement of dissolved and gaseous carbon dioxide concentration

    Science.gov (United States)

    Zosel, J.; Oelßner, W.; Decker, M.; Gerlach, G.; Guth, U.

    2011-07-01

    In this review the basic principles of carbon dioxide sensors and their manifold applications in environmental control, biotechnology, biology, medicine and food industry are reported. Electrochemical CO2 sensors based on the Severinghaus principle and solid electrolyte sensors operating at high temperatures have been manufactured and widely applied already for a long time. Besides these, nowadays infrared, non-dispersive infrared and acoustic CO2 sensors, which use physical measuring methods, are being increasingly used in some fields of application. The advantages and drawbacks of the different sensor technologies are outlined. Electrochemical sensors for the CO2 measurement in aqueous media are pointed out in more detail because of their simple setup and the resulting low costs. A detailed knowledge of the basic detection principles and the windows for their applications is necessary to find an appropriate decision on the technology to be applied for measuring dissolved CO2. In particular the pH value and the composition of the analyte matrix exert important influence on the results of the measurements.

  4. The measurement of dissolved and gaseous carbon dioxide concentration

    International Nuclear Information System (INIS)

    Zosel, J; Oelßner, W; Decker, M; Gerlach, G; Guth, U

    2011-01-01

    In this review the basic principles of carbon dioxide sensors and their manifold applications in environmental control, biotechnology, biology, medicine and food industry are reported. Electrochemical CO 2 sensors based on the Severinghaus principle and solid electrolyte sensors operating at high temperatures have been manufactured and widely applied already for a long time. Besides these, nowadays infrared, non-dispersive infrared and acoustic CO 2 sensors, which use physical measuring methods, are being increasingly used in some fields of application. The advantages and drawbacks of the different sensor technologies are outlined. Electrochemical sensors for the CO 2 measurement in aqueous media are pointed out in more detail because of their simple setup and the resulting low costs. A detailed knowledge of the basic detection principles and the windows for their applications is necessary to find an appropriate decision on the technology to be applied for measuring dissolved CO 2 . In particular the pH value and the composition of the analyte matrix exert important influence on the results of the measurements. (topical review)

  5. Effect of ion concentrations on uranium absorption from sodium carbonate solutions

    International Nuclear Information System (INIS)

    Traut, D.E.; El Hazek, N.M.T.; Palmer, G.R.; Nichols, I.L.

    1979-01-01

    The effect of various ion concentrations on uranium absorption from a sodium carbonate solution by a strong-base, anion resin was investigated in order to help assure an adequate uranium supply for future needs. The studies were conducted to improve the recovery of uranium from in situ leach solutions by ion exchange. The effects of carbonate, bicarbonate, chloride, and sulfate ions were examined. Relatively low (less than 5 g/l) concentrations of chloride, sulfate, and bicarbonate were found to be detrimental to the absorption of uranium. High (greater than 10 g/l) carbonate concentrations also adversely affected the uranium absorption. In addition, the effect of initial resin form was investigated in tests of the chloride, carbonate, and bicarbonate forms; resin form was shown to have no effect on the absorption of uranium

  6. How low can you go? Assessing minimum concentrations of NSC in carbon limited tree saplings

    Science.gov (United States)

    Hoch, Guenter; Hartmann, Henrik; Schwendener, Andrea

    2016-04-01

    Tissue concentrations of non-structural carbohydrates (NSC) are frequently used to determine the carbon balance of plants. Over the last years, an increasing number of studies have inferred carbon starvation in trees under environmental stress like drought from low tissue NSC concentrations. However, such inferences are limited by the fact that minimum concentrations of NSC required for survival are not known. So far, it was hypothesized that even under lethal carbon starvation, starch and low molecular sugar concentrations cannot be completely depleted and that minimum NSC concentrations at death vary across tissues and species. Here we present results of an experiment that aimed to determine minimum NSC concentrations in different tissues of saplings of two broad-leaved tree species (Acer pseudoplatanus and Quercus petratea) exposed to lethal carbon starvation via continuous darkening. In addition, we investigated recovery rates of NSC concentrations in saplings that had been darkened for different periods of time and were then re-exposed to light. Both species survived continuous darkening for about 12 weeks (confirmed by testing the ability to re-sprout after darkness). In all investigated tissues, starch concentrations declined close to zero within three to six weeks of darkness. Low molecular sugars also decreased strongly within the first weeks of darkness, but seemed to stabilize at low concentrations of 0.5 to 2 % dry matter (depending on tissue and species) almost until death. NSC concentrations recovered surprisingly fast in saplings that were re-exposed to light. After 3 weeks of continuous darkness, tissue NSC concentrations recovered within 6 weeks to levels of unshaded control saplings in all tissues and in both species. To our knowledge, this study represents the first experimental attempt to quantify minimum tissue NSC concentrations at lethal carbon starvation. Most importantly, our results suggest that carbon-starved tree saplings are able to

  7. Determining How Atmospheric Carbon Dioxide Concentrations Have Changed during the History of the Earth

    Science.gov (United States)

    Badger, Marcus P. S.; Pancost, Richard D.; Harrison, Timothy G.

    2011-01-01

    The reconstruction of ancient atmospheric carbon dioxide concentrations is essential to understanding the history of the Earth and life. It is also an important guide to identifying the sensitivity of the Earth system to this greenhouse gas and, therefore, constraining its future impact on climate. However, determining the concentration of…

  8. New Adsorption Cycles for Carbon Dioxide Capture and Concentration

    Energy Technology Data Exchange (ETDEWEB)

    James Ritter; Armin Ebner; Steven Reynolds Hai Du; Amal Mehrotra

    2008-07-31

    The objective of this three-year project was to study new pressure swing adsorption (PSA) cycles for CO{sub 2} capture and concentration at high temperature. The heavy reflux (HR) PSA concept and the use of a hydrotalcite like (HTlc) adsorbent that captures CO{sub 2} reversibly at high temperatures simply by changing the pressure were two key features of these new PSA cycles. Through the completion or initiation of nine tasks, a bench-scale experimental and theoretical program has been carried out to complement and extend the process simulation study that was carried out during Phase I (DE-FG26-03NT41799). This final report covers the entire project from August 1, 2005 to July 31, 2008. This program included the study of PSA cycles for CO{sub 2} capture by both rigorous numerical simulation and equilibrium theory analysis. The insight gained from these studies was invaluable toward the applicability of PSA for CO{sub 2} capture, whether done at ambient or high temperature. The rigorous numerical simulation studies showed that it is indeed possible to capture and concentrate CO{sub 2} by PSA. Over a wide range of conditions it was possible to achieve greater than 90% CO{sub 2} purity and/or greater than 90% CO{sub 2} recovery, depending on the particular heavy reflux (HR) PSA cycle under consideration. Three HR PSA cycles were identified as viable candidates for further study experimentally. The equilibrium theory analysis, which represents the upper thermodynamic limit of the performance of PSA process, further validated the use of certain HR PSA cycles for CO{sub 2} capture and concentration. A new graphical approach for complex PSA cycle scheduling was also developed during the course of this program. This new methodology involves a priori specifying the cycle steps, their sequence, and the number of beds, and then following a systematic procedure that requires filling in a 2-D grid based on a few simple rules, some heuristics and some experience. It has been

  9. Effects of Long Term Application of Inorganic and Organic Fertilizers on Soil Organic Carbon and Physical Properties in Maize–Wheat Rotation

    Directory of Open Access Journals (Sweden)

    Babbu Singh Brar

    2015-06-01

    Full Text Available Balanced and integrated use of organic and inorganic fertilizers may enhance the accumulation of soil organic matter and improves soil physical properties. A field experiment having randomized complete block design with four replications was conducted for 36 years at Punjab Agricultural University (PAU, Ludhiana, India to assess the effects of inorganic fertilizers and farmyard manure (FYM on soil organic carbon (SOC, soil physical properties and crop yields in a maize (Zea mays–wheat (Triticum aestivum rotation. Soil fertility management treatments included were non-treated control, 100% N, 50% NPK, 100% NP, 100% NPK, 150% NPK, 100% NPK + Zn, 100% NPK + W, 100% NPK (-S and 100% NPK + FYM. Soil pH, bulk density (BD, electrical conductivity (EC, cation exchange capacity, aggregate mean weight diameter (MWD and infiltration were measured 36 years after the initiation of experiment. Cumulative infiltration, infiltration rate and aggregate MWD were greater with integrated use of FYM along with 100% NPK compared to non-treated control. No significant differences were obtained among fertilizer treatments for BD and EC. The SOC pool was the lowest in control at 7.3 Mg ha−1 and increased to 11.6 Mg ha−1 with 100%NPK+FYM. Improved soil physical conditions and increase in SOC resulted in higher maize and wheat yields. Infiltration rate, aggregate MWD and crop yields were positively correlated with SOC. Continuous cropping and integrated use of organic and inorganic fertilizers increased soil C sequestration and crop yields. Balanced application of NPK fertilizers with FYM was best option for higher crop yields in maize–wheat rotation.

  10. Elevated atmospheric carbon dioxide concentration: effects of increased carbon input in a Lolium perenne soil on microorganisms and decomposition

    NARCIS (Netherlands)

    Ginkel, van J.H.; Gorissen, A.; Polci, D.

    2000-01-01

    Effects of ambient and elevated atmospheric CO2 concentrations (350 and 700 μl l-1) on net carbon input into soil, the production of root-derived material and the subsequent microbial transformation were investigated. Perennial ryegrass plants (L. perenne L.) were labelled in a continuously labelled

  11. Slow-Photon-Effect-Induced Photoelectrical-Conversion Efficiency Enhancement for Carbon-Quantum-Dot-Sensitized Inorganic CsPbBr3 Inverse Opal Perovskite Solar Cells.

    Science.gov (United States)

    Zhou, Shujie; Tang, Rui; Yin, Longwei

    2017-11-01

    All-inorganic cesium lead halide perovskite is suggested as a promising candidate for perovskite solar cells due to its prominent thermal stability and comparable light absorption ability. Designing textured perovskite films rather than using planar-architectural perovskites can indeed optimize the optical and photoelectrical conversion performance of perovskite photovoltaics. Herein, for the first time, this study demonstrates a rational strategy for fabricating carbon quantum dot (CQD-) sensitized all-inorganic CsPbBr 3 perovskite inverse opal (IO) films via a template-assisted, spin-coating method. CsPbBr 3 IO introduces slow-photon effect from tunable photonic band gaps, displaying novel optical response property visible to naked eyes, while CQD inlaid among the IO frameworks not only broadens the light absorption range but also improves the charge transfer process. Applied in the perovskite solar cells, compared with planar CsPbBr 3 , slow-photon effect of CsPbBr 3 IO greatly enhances the light utilization, while CQD effectively facilitates the electron-hole extraction and injection process, prolongs the carrier lifetime, jointly contributing to a double-boosted power conversion efficiency (PCE) of 8.29% and an increased incident photon-to-electron conversion efficiency of up to 76.9%. The present strategy on CsPbBr 3 IO to enhance perovskite PCE can be extended to rationally design other novel optoelectronic devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effect of tooth-bleaching on the carbonate concentration in dental enamel by Raman spectroscopy.

    Science.gov (United States)

    Vargas-Koudriavtsev, Tatiana; Herrera-Sancho, Óscar-Andrey

    2017-01-01

    There are not many studies evaluating the effects of surface treatments at the molecular level. The aim of this in vitro study was to analyze the concentration of carbonate molecules in dental enamel by Raman spectroscopy after the application of in-office and home whitening agents. Sixty human teeth were randomly divided into six groups and exposed to three different home bleaching gels (Day White) and three in-office whitening agents (Zoom! Whitespeed and PolaOffice) according to the manufacturer´s instructions. The concentration of carbonate molecules in enamel was measured prior to and during the treatment by means of Raman spectroscopy. Statistical analysis included repeated measures analysis of variance ( p ≤0.05) and Bonferroni pairwise comparisons. At home bleaching agents depicted a decrease in the carbonate molecule. This decrease was statistically significant for the bleaching gel with the highest hydrogen peroxide concentration ( p ≤0,05). In-office whitening agents caused an increase in carbonate, which was significant for all three groups ( p ≤0,05). In-office bleaching gels seem to cause a gain in carbonate of the enamel structure, whilst at-home whitening gels caused a loss in carbonate. Key words: Bleaching, whitening, hydrogen peroxide, carbamide peroxide, Raman spectroscopy, carbonate.

  13. Proteomic analysis of carbon concentrating chemolithotrophic bacteria Serratia sp. for sequestration of carbon dioxide.

    Science.gov (United States)

    Bharti, Randhir K; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-01-01

    A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO). The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC), however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials.

  14. Proteomic analysis of carbon concentrating chemolithotrophic bacteria Serratia sp. for sequestration of carbon dioxide.

    Directory of Open Access Journals (Sweden)

    Randhir K Bharti

    Full Text Available A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO. The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC, however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials.

  15. Corrosion by concentrated sulfuric acid in carbon steel pipes and tanks: state of the art

    Energy Technology Data Exchange (ETDEWEB)

    Panossian, Zehbour; Almeida, Neusvaldo Lira de; Sousa, Raquel Maria Ferreira de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil); Pimenta, Gutemberg de Souza [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas e Desenvolvimento (CENPES); Marques, Leandro Bordalo Schmidt [PETROBRAS Engenharia, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    PETROBRAS, allied to the policy of reduction of emission of pollutants, has been adjusting the processes of the new refineries to obtain products with lower sulfur content. Thus, the sulfur dioxide, extracted from the process gases of a new refinery to be built in the Northeast, will be used to produce sulfuric acid with concentration between (94-96) %. This acid will be stored in carbon steel tanks and transported through a buried 8-km carbon steel pipe from the refinery to a pier, where it will be loaded onto ships and sent to the consumer markets. Therefore, the corrosion resistance of carbon steel by concentrated acid will become a great concern for the mentioned storage and transportation. When the carbon steel comes into contact with concentrated sulfuric acid, there is an immediate acid attack with the formation of hydrogen gas and ferrous ions which, in turn, forms a protective layer of FeSO{sub 4} on the metallic surface. The durability of the tanks and pipes made of carbon steel will depend on the preservation of this protective layer. This work presents a review of the carbon steel corrosion in concentrated sulfuric acid and discusses the preventive methods against this corrosion, including anodic protection. (author)

  16. Large increase in dissolved inorganic carbon flux from the Mississippi River to Gulf of Mexico due to climatic and anthropogenic changes over the 21st century.

    Science.gov (United States)

    Ren, Wei; Tian, Hanqin; Tao, Bo; Yang, Jia; Pan, Shufen; Cai, Wei-Jun; Lohrenz, Steven E; He, Ruoying; Hopkinson, Charles S

    2015-04-01

    It is recognized that anthropogenic factors have had a major impact on carbon fluxes from land to the ocean during the past two centuries. However, little is known about how future changes in climate, atmospheric CO 2 , and land use may affect riverine carbon fluxes over the 21st century. Using a coupled hydrological-biogeochemical model, the Dynamic Land Ecosystem Model, this study examines potential changes in dissolved inorganic carbon (DIC) export from the Mississippi River basin to the Gulf of Mexico during 2010-2099 attributable to climate-related conditions (temperature and precipitation), atmospheric CO 2 , and land use change. Rates of annual DIC export are projected to increase by 65% under the high emission scenario (A2) and 35% under the low emission scenario (B1) between the 2000s and the 2090s. Climate-related changes along with rising atmospheric CO 2 together would account for over 90% of the total increase in DIC export throughout the 21st century. The predicted increase in DIC export from the Mississippi River basin would alter chemistry of the coastal ocean unless appropriate climate mitigation actions are taken in the near future.

  17. Water relations link carbon and oxygen isotope discrimination to phloem sap sugar concentration in eucalyptus globulus

    International Nuclear Information System (INIS)

    Cernusak, L.A.; Farquhar, G.D.; Arthur, D.J; Pate, J.S.

    2002-01-01

    Full text: The carbon isotope ratio of phloem sap sugars has been previously observed to correlate strongly with the phloem sap sugar concentration in Eucalyptus globulus. We hypothesized that the correspondence between these two parameters results from co-linearity in their responses to variation in plant water potential. Carbon isotope discrimination is expected to decrease with decreasing plant water potential due to the influence of stomatal conductance on the ratio of intercellular to ambient CO 2 , concentrations (c 1 /c a ). Conversely, we expected the phloem sap sugar concentration to increase with decreasing plant water potential, thereby maintaining positive turgor pressure within the sieve tubes. The study comprised 40 individual Eucalyptus globulus trees growing in three plantations situated on opposing ends of a rainfall gradient in southwestern Australia. A strong correlation was observed between the carbon isotope ratio in phloem sap sugars and phloem sap sugar concentration. Carbon isotope discrimination correlated positively with shoot water potential, whereas phloem sap sugar concentration correlated negatively with shoot water potential. The relationship between carbon isotope discrimination measured in phloem sap sugars collected from the stem and c 1 /c a measured instantaneously on subtending leaves was close to that theoretically predicted. Accordingly, a strong, negative relationship was observed between instantaneous c 1 /c a and the phloem sap sugar concentration. Oxygen isotope discrimination in phloem sap sugars also correlated strongly with phloem sap sugar concentration. A theoretical model suggested that the observed variation in stomatal conductance was sufficient to account for the variation observed in oxygen isotope discrimination across the study. Results strongly support the contention that water relations form a mechanistic link between phloem sap sugar concentration and both instantaneous and integrated measures of the

  18. Effect of Carbon Concentration on the Sputtering of Carbon-Rich SiC Bombarded by Helium Ions

    Directory of Open Access Journals (Sweden)

    Xinghao Liang

    2018-02-01

    Full Text Available Silicon carbide (SiC is considered as an important material for nuclear engineering due to its excellent properties. Changing the carbon content in SiC can regulate and control its elastic and thermodynamic properties, but a simulation study of the effect of carbon content on the sputtering (caused by the helium ions of SiC is still lacking. In this work, we used the Monte-Carlo and molecular dynamics simulation methods to study the effects of carbon concentration, incidence energy, incident angle, and target temperature on the sputtering yield of SiC. The results show that the incident ions’ energy and angle have a significant effect on sputtering yield of SiC when the carbon concentration in SiC is around 62 at %, while the target temperature has a little effect on the sputtering yield of SiC. Our work might provide theoretical support for the experimental research and engineering application of carbon fiber-reinforced SiC that be used as the plasma-facing material in tokamak fusion reactors.

  19. Benchmark Dose Modeling Estimates of the Concentrations of Inorganic Arsenic That Induce Changes to the Neonatal Transcriptome, Proteome, and Epigenome in a Pregnancy Cohort.

    Science.gov (United States)

    Rager, Julia E; Auerbach, Scott S; Chappell, Grace A; Martin, Elizabeth; Thompson, Chad M; Fry, Rebecca C

    2017-10-16

    Prenatal inorganic arsenic (iAs) exposure influences the expression of critical genes and proteins associated with adverse outcomes in newborns, in part through epigenetic mediators. The doses at which these genomic and epigenomic changes occur have yet to be evaluated in the context of dose-response modeling. The goal of the present study was to estimate iAs doses that correspond to changes in transcriptomic, proteomic, epigenomic, and integrated multi-omic signatures in human cord blood through benchmark dose (BMD) modeling. Genome-wide DNA methylation, microRNA expression, mRNA expression, and protein expression levels in cord blood were modeled against total urinary arsenic (U-tAs) levels from pregnant women exposed to varying levels of iAs. Dose-response relationships were modeled in BMDExpress, and BMDs representing 10% response levels were estimated. Overall, DNA methylation changes were estimated to occur at lower exposure concentrations in comparison to other molecular endpoints. Multi-omic module eigengenes were derived through weighted gene co-expression network analysis, representing co-modulated signatures across transcriptomic, proteomic, and epigenomic profiles. One module eigengene was associated with decreased gestational age occurring alongside increased iAs exposure. Genes/proteins within this module eigengene showed enrichment for organismal development, including potassium voltage-gated channel subfamily Q member 1 (KCNQ1), an imprinted gene showing differential methylation and expression in response to iAs. Modeling of this prioritized multi-omic module eigengene resulted in a BMD(BMDL) of 58(45) μg/L U-tAs, which was estimated to correspond to drinking water arsenic concentrations of 51(40) μg/L. Results are in line with epidemiological evidence supporting effects of prenatal iAs occurring at levels iAs exposure influences neonatal outcome-relevant transcriptomic, proteomic, and epigenomic profiles.

  20. Revision of Fontes & Garnier's model for the initial 14C content of dissolved inorganic carbon used in groundwater dating

    Science.gov (United States)

    Han, Liang-Feng; Plummer, Niel

    2013-01-01

    The widely applied model for groundwater dating using 14C proposed by Fontes and Garnier (F&G) (Fontes and Garnier, 1979) estimates the initial 14C content in waters from carbonate-rock aquifers affected by isotopic exchange. Usually, the model of F&G is applied in one of two ways: (1) using a single 13C fractionation factor of gaseous CO2 with respect to a solid carbonate mineral, εg/s, regardless of whether the carbon isotopic exchange is controlled by soil CO2 in the unsaturated zone, or by solid carbonate mineral in the saturated zone; or (2) using different fractionation factors if the exchange process is dominated by soil CO2 gas as opposed to solid carbonate mineral (typically calcite). An analysis of the F&G model shows an inadequate conceptualization, resulting in underestimation of the initial 14C values (14C0) for groundwater systems that have undergone isotopic exchange. The degree to which the 14C0 is underestimated increases with the extent of isotopic exchange. Examples show that in extreme cases, the error in calculated adjusted initial 14C values can be more than 20% modern carbon (pmc). A model is derived that revises the mass balance method of F&G by using a modified model conceptualization. The derivation yields a “global” model both for carbon isotopic exchange dominated by gaseous CO2 in the unsaturated zone, and for carbon isotopic exchange dominated by solid carbonate mineral in the saturated zone. However, the revised model requires different parameters for exchange dominated by gaseous CO2 as opposed to exchange dominated by solid carbonate minerals. The revised model for exchange dominated by gaseous CO2 is shown to be identical to the model of Mook (Mook, 1976). For groundwater systems where exchange occurs both in the unsaturated zone and saturated zone, the revised model can still be used; however, 14C0 will be slightly underestimated. Finally, in carbonate systems undergoing complex geochemical reactions, such as oxidation of

  1. Methods for Introducing Inorganic Polymer Concepts throughout the Undergraduate Curriculum

    Science.gov (United States)

    de Lill, Daniel T.; Carraher, Charles E., Jr.

    2017-01-01

    Inorganic polymers can be introduced in a variety of undergraduate courses to discuss concepts related to polymer chemistry. Inorganic polymers such as silicates and polysiloxanes are simple materials that can be incorporated into an introductory or descriptive inorganic course. Polymers based on inorganic carbon, including diamond and graphite,…

  2. Enrichment of yttrium from rare earth concentrate by ammonium carbonate leaching and peroxide precipitation

    International Nuclear Information System (INIS)

    Vasconcellos, Mari E. de; Rocha, S.M.R. da; Pedreira, W.R.; Queiroz S, Carlos A. da; Abrao, Alcidio

    2006-01-01

    The rare earth elements (REE) solubility with ammonium carbonate vary progressively from element to element, the heavy rare earth elements (HRE) being more soluble than the light rare earth elements (LRE). Their solubility is function of the carbonate concentration and the kind of carbonate as sodium, potassium and ammonium. In this work, it is explored this ability of the carbonate for the dissolution of the REE and an easy separation of yttrium was achieved using the precipitation of the peroxide from complex yttrium carbonate. For this work is used a REE concentrate containing (%) Y 2 O 3 2.4, Dy 2 O 3 0.6, Gd 2 O 3 2.7, CeO 2 2.5, Nd 2 O 3 33.2, La 2 O 3 40.3, Sm 2 O 3 4.1 and Pr 6 O 11 7.5. The mentioned concentrate was produced industrially from the chemical treatment of monazite sand by NUCLEMON in Sao Paulo. The yttrium concentrate was treated with 200 g L -1 ammonium carbonate during 10 and 30 min at room temperature. The experiments indicated that a single leaching operation was sufficient to get a rich yttrium solution with about 60.3% Y 2 O 3 . In a second step, this yttrium solution was treated with an excess of hydrogen peroxide (130 volumes), cerium, praseodymium and neodymium peroxides being completely precipitated and separated from yttrium. Yttrium was recovered from the carbonate solution as the oxalate and finally as oxide. The final product is an 81% Y 2 O 3 . This separation envisages an industrial application. The work discussed the solubility of the REE using ammonium carbonate and the subsequent precipitation of the correspondent peroxides

  3. Determination of Concentration Dependent Diffusion Coefficients of Carbon in Expanded Austenite

    DEFF Research Database (Denmark)

    Hummelshøj, Thomas Strabo; Christiansen, Thomas; Somers, Marcel A. J.

    2008-01-01

    Abstract. In the present paper various experimental procedures to experimentally determine the concentration dependent diffusion coefficient of carbon in expanded austenite are evaluated. To this end thermogravimetric carburization was simulated for various experimental conditions and the evaluated...... composition dependent diffusivity of carbon derived from the simulated experiments was compared with the input data. The most promising procedure for an accurate determination is shown to be stepwise gaseous carburizing of thin foils in a gaseous atmosphere; the finer the stepsize, the more accurate...

  4. Influence of temperature and solvent concentration on the kinetics of the enzyme carbonic anhydrase in carbon capture technology

    DEFF Research Database (Denmark)

    Gladis, Arne; Deslauriers, Maria Gundersen; Fosbøl, Philip Loldrup

    2017-01-01

    In this study the effect of carbonic anhydrase addition on the absorption of CO2 was investigated in a wetted wall column apparatus. Four different solvents: the primary amine monoethanolamine (MEA), the sterically hindered primary amine 2-amino-2-methyl-1-propanol (AMP), the tertiary amine N......-methyl-diethanolamine (MDEA) and the carbonate salt solution K2CO3 were compared in concentrations from 5 to 50 wt% in a temperature range of 298–328 K with and without enzyme. Necessary mass transfer parameters such as liquid side mass transfer coefficient and solvent and enzyme reaction rates were determined...

  5. Thorium inorganic gels

    International Nuclear Information System (INIS)

    Genet, M.; Brandel, V.

    1988-01-01

    The optimum pH and concentration values of thorium salts and oxoacids or oxoacid salts which lead to transparent and stable inorganic gels have been determined. The isotherm drying process of the gel at 50 0 C leads successively to a partly dehydrated gel, then, to the formation of an unusual liquid phase and, finally to a dry amorphous solid phase which is still transparent. This kind of transparent inorganic gels and amorphous phase can be used as matrices for spectroscopic studies [fr

  6. Recovery of gold from arsenopyrite concentrates by cyanidation-carbon adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Heinen, H.J.; McClelland, G.E., Lindstrom, R.E.

    1980-01-01

    The Bureau of Mines, investigated a cyanidation-carbon adsorption technique for extracting gold from arsenopyrite concentrates. Agitation leach experiments were conducted on 85%-minus-35-mesh gravity concentrates containing 21.8 oz gold and 6.4 oz silver per ton. Results obtained in leaching the concentrates showed that 96.9% gold and 90.7% silver extraction could be achieved in 96 hours of agitation. Gold and silver were recovered from the resulting pregnant solution by exposure to granular activated carbon in a countercurrent system. Carbon loadings of 2556 oz of gold and 502 oz of silver per ton were achieved. These loadings are significantly higher than heretofore thought practical.

  7. Carbonic anhydrase levels and internal lacunar CO/sub 2/ concentrations in aquatic macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, C.I.

    1979-01-01

    Carbonic anhydrase levels were examined in a variety of aquatic macrophytes from different habitats. In general, carbonic anhydrase levels increased across the habitat gradient such that activities were low in submersed aquatic macrophytes and high in emergent macrophytes with floating-leaved and free-floating plants exhibiting intermediate activities. Internal lacunar CO/sub 2/ concentrations were analyzed in relation to carbonic anhydrase activities. There was no correlation between these two parameters. Internal CO/sub 2/ concentrations ranged from low to high in submersed macrophytes, but were low in floating-leaved and emergent macrophytes. The observed internal CO/sub 2/ concentrations are discussed in relation to the individual morphologies of the plants and the environments in which they occurred.

  8. Stable isotope composition of inorganic carbonates from Lake Abiyata (Ethiopia): Attempt of reconstructing δ18O palaeohydrological changes during the Holocene

    International Nuclear Information System (INIS)

    Gibert, E.; Massault, M.; Travi, Y.; Chernet, T.

    2002-01-01

    Due to the sensitivity of its regional climate to the African monsoon seasonal shifting, Ethiopia has been designated as a key site for palaeoenvironmental reconstructions mainly within the IGBP-PAGES-PEPIII programme. Under the French-Ethiopian ERICA project, we focused on Lake Abiyata located in the Ziway-Shala basin (Central Ethiopia) which has experienced several lacustrine highstands during the Late Pleistocene and Holocene. At present, Lake Abiyata is a closed lake with a very flat catchment area, and corresponds to a half, deep graben infilled by 600-m of sedimentary deposits. In 1995, a 12.6-m-long sequence ABII was cored in Lake Abiyata. A reliable 14 C-AMS chronology was defined on both organic matter and inorganic carbonates. Both the modern hydrologeological and geochemical balances of the 'groundwater-lake' system indicate that (i) carbonate cristallization mainly occurs at the water-sediment interface via the mixing of lake water and 14 C-depleted groundwaters, and that (ii) modern algae form in equilibrium with the atmospheric reservoir. Phytoplankton is thus considered as an authigenic material, and Core ABII has registered 13,500 cal. yr B.P. of environmental history. The evidence of calcite precipitation at the water-sediment interface calls into question the direct palaeoclimatic reconstruction based on inorganic carbonates. Since the evolution of isotopic contents of carbonates might be linked to the variable proportion of the 'lake/groundwater' end-members in the mixing, calculations based on isotopic mass balance models may allow for the reconstruction of δ 18 O composition of the lake water. Two major changes can be highlighted: (i) the ∼12,000-5500 cal. yr B.P. period is associated to low 18 O contents of lake water, and corresponds to an open hydrological system, with a high lacustrine phytoplanktonic productivity, and (ii) from ∼5500 cal. yr B.P. to Present, regressive conditions are suggested by the δ 18 O enrichment of the lake

  9. Adsorption of ultra-low concentration malodorous substances using coal-derived granular activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Urano, K.; Maeda, T.; Yamashita, H.; Hagio, S.; Arioka, A.

    1986-01-01

    The experimental adsorption is reported of diosmin and 2-methylisoborneol using two types of coal-derived granular activated carbon and one derived from coconut husk. It was discovered that carbons with more pores below 15 angstroms in size gave a higher equilibrium adsorption of malodorous substances at mg/l concentrations. It was also found that the coal-derived materials, which contained more pores larger than 15 angstroms, gave faster adsorption. Given that the coal-derived carbons have a longer service life, it is concluded that they are suitable for use in full-scale adsorption plant where contact times are short. 3 references, 5 figures, 5 tables.

  10. Spectroscopic and redox properties of curium and californium ions in concentrated aqueous carbonate-bicarbonate media

    International Nuclear Information System (INIS)

    Hobart, D.E.; Varlashkin, P.G.; Samhoun, K.; Haire, R.G.; Peterson, J.R.

    1983-01-01

    Multimilligram quantities of trivalent curium-248 and californium-249 were investigated by absorption spectroscopy, cyclic voltammetry, and bulk solution electrolysis in concentrated aqueous carbonate-bicarbonate solution. Actinide concentrations between 10 -4 and 10 -2 M were studied in 2 M sodium carbonate and 5.5 M potassium carbonate solutions at pH values from 8 to 14. The solution absorption spectra of Cm(III) and Cf(III) in carbonate media are presented for the first time and compared to literature spectra of these species in noncomplexing aqueous solution. It was anticipated that carbonate complexation of the actinide ions could provide a sufficient negative shift in the formal potentials of the M(IV)/M(III) couples of Cm and Cf to permit the generation and stabilization of their tetravalent states in aqueous carbonate-bicarbonate medium. No conclusive evidence was found in the present work to indicate the existence of any higher oxidation states of curium or californium in carbonate solution. Some possible reasons for our inability to generate and detect oxidized species of curium and californium in this medium are discussed

  11. Carbonic anhydrase 2-like in the giant clam, Tridacna squamosa: characterization, localization, response to light, and possible role in the transport of inorganic carbon from the host to its symbionts.

    Science.gov (United States)

    Ip, Yuen K; Koh, Clarissa Z Y; Hiong, Kum C; Choo, Celine Y L; Boo, Mel V; Wong, Wai P; Neo, Mei L; Chew, Shit F

    2017-12-01

    The fluted giant clam, Tridacna squamosa , lives in symbiosis with zooxanthellae which reside extracellularly inside a tubular system. Zooxanthellae fix inorganic carbon (C i ) during insolation and donate photosynthate to the host. Carbonic anhydrases catalyze the interconversion of CO 2 and HCO3-, of which carbonic anhydrase 2 (CA2) is the most ubiquitous and involved in many biological processes. This study aimed to clone a CA2 homolog ( CA2-like ) from the fleshy and colorful outer mantle as well as the thin and whitish inner mantle of T. squamosa , to determine its cellular and subcellular localization, and to examine the effects of light exposure on its gene and protein expression levels. The cDNA coding sequence of CA2-like from T. squamosa comprised 789 bp, encoding 263 amino acids with an estimated molecular mass of 29.6 kDa. A phenogramic analysis of the deduced CA2-like sequence denoted an animal origin. CA2-like was not detectable in the shell-facing epithelium of the inner mantle adjacent to the extrapallial fluid. Hence, CA2-like is unlikely to participate directly in light-enhanced calcification. By contrast, the outer mantle, which contains the highest density of tertiary tubules and zooxanthellae, displayed high level of CA2-like expression, and CA2-like was localized to the tubule epithelial cells. More importantly, exposure to light induced significant increases in the protein abundance of CA2-like in the outer mantle. Hence, CA2-like could probably take part in the increased supply of inorganic carbon (C i ) from the host clam to the symbiotic zooxanthellae when the latter conduct photosynthesis to fix C i during light exposure. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  12. How do changes in bulk soil organic carbon content affect carbon concentrations in individual soil particle fractions?

    Science.gov (United States)

    Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.

    2016-06-01

    We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2-53 μm) and sand (53-2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg-1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg-1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation.

  13. Use of carbonates for biological and chemical synthesis

    Science.gov (United States)

    Rau, Gregory Hudson

    2014-09-09

    A system of using carbonates, especially water-insoluble or sparing soluble mineral carbonates, for maintaining or increasing dissolved inorganic carbon concentrations in aqueous media. In particular, the system generates concentrated dissolve inorganic carbon substrates for photosynthetic, chemosynthetic, or abiotic chemical production of carbonaceous or other compounds in solution. In some embodiments, the invention can also enhance the dissolution and retention of carbon dioxide in aqueous media, and can produce pH buffering capacity, metal ions, and heat, which can be beneficial to the preceding syntheses.

  14. Adsorption of Crystal Violet on Activated Carbon Prepared from Coal Flotation Concentrate

    Science.gov (United States)

    Aydogmus, Ramazan; Depci, Tolga; Sarikaya, Musa; Riza Kul, Ali; Onal, Yunus

    2016-10-01

    The objective of this study is firstly to investigate the floatability properties of Zilan- Van coal after microwave irradiation and secondly to produce activated carbon from flotation concentrate in order to remove Crystal Violet (CV) from waste water. The flotation experiments showed that microwave heating at 0.9 kW power level for 60 sec exposure time enhanced the hydrophobicity and increased the flotation yield. The activated carbon with remarkable surface area (696 m2/g) was produced from the flotation concentrate and used to adsorb CV from aqueous solution in a batch reactor at different temperature. The adsorption properties of CV onto the activated carbon are discussed in terms of the adsorption isotherms (Langmuir and Freundlich) and found that the experimental results best fitted by the Langmuir model.

  15. Relationship between Structural Characteristics of Activated Carbons and Their Concentrating Efficiency with Respect to Nitroorganics.

    Science.gov (United States)

    Leboda, R.; Gun'ko, V. M.; Tomaszewski, W.; Trznadel, B. J.

    2001-07-15

    The relationships between structural properties of activated microporous, micro-mesoporous, mesoporous, and graphitized carbons determined on the basis of nitrogen adsorption at 77.4 K and the efficiency of concentrating (solid-phase extraction (SPE) technique) several nitroorganic compounds from polar solvents were investigated. Microporosity, mesoporosity, fractality, and other characteristics of adsorbents were analyzed to evaluate the dependence of the effectiveness of the SPE technique with respect to nitrate esters, cyclic nitroamines, and nitroaromatics on the origin and texture of carbons. The values of the free energy of solvation and dipole moment of nitroorganic compounds in polar liquids computed with the SM5.42/PM3 method with consideration of geometry relaxation in solution were utilized to elucidate features of their concentration of carbon adsorbents. Copyright 2001 Academic Press.

  16. Effect of Biodiesel Concentration on Corrosion of Carbon Steel by Serratia marcescens

    Directory of Open Access Journals (Sweden)

    Pusparizkita Yustina M

    2018-01-01

    Full Text Available Biodiesel come into being used as an alternative source of energy as the diminishing of petroleum reserves. This fuel is typically stored in tanks that are commonly made from carbon steel, which is easily corroded by microorganisms. Recent studies have shown that bacteria aside from SRB may also be involved in corrosion. Therefore, this research was aimed to evaluate the effect of biodiesel concentration (15%, 20% and 30% v/v mixed in diesel oil on the corrosion of carbon steel by S. marcescens that dominate biocorrosion on hydrocarbon products. In this study, the corrosion process was investigated by evaluation of biofilm morphology and composition, the rate of corrosion and the corrosion product of carbon steel which was exposed in the mixture of hydrocarbons and the presence of S. marcescens. It can be concluded that higher concentration of biodiesel in diesel oil leads to higher growth of bacteria in the biofilm and higher corrosion rate.

  17. The determination of hydroxide and carbonate in concentrated sodium chloride solutions

    NARCIS (Netherlands)

    Roolvink, W.B.; Bos, M.

    1980-01-01

    A computer method for the determination of carbonate and hydroxide in concentrated (2.89 M) sodium chloride solutions is described. The method is based on multiparametric curve-fitting and can also be applied to salts of dibasic acids with unknown equilibrium constants. The systematic error is not

  18. To Error Problem Concerning Measuring Concentration of Carbon Oxide by Thermo-Chemical Sen

    Directory of Open Access Journals (Sweden)

    V. I. Nazarov

    2007-01-01

    Full Text Available The paper gives additional errors in respect of measuring concentration of carbon oxide by thermo-chemical sensors. A number of analytical expressions for calculation of error data and corrections for environmental factor deviations from admissible ones have been obtained in the paper

  19. Determination of sub-ng g-1 levels of total inorganic arsenic and selenium in foods by hydride-generation atomic absorption spectrometry after pre-concentration.

    Science.gov (United States)

    Altunay, Nail; Gürkan, Ramazan

    2017-03-01

    A new and simple ultrasonic-assisted extraction (UAE) procedure was developed for the determination of inorganic arsenic and selenium in foods by hydride-generation atomic absorption spectrometry (HG-AAS). The various analytical variables affecting complex formation and extraction efficiency were investigated and optimised. The method is based on selective complex formation of As(III) and Se(IV) in the presence of excess As(V) and Se(VI) with toluidine red in the presence of tartaric acid at pH 4.5, and then extraction of the resulting condensation products into the micellar phase of non-ionic surfactant, polyethylene glycol dodecyl ether, Brij 35. Under optimised conditions, good linear relationships were obtained in the ranges of 4-225 and 12-400 ng l - 1 with limits of detection of 1.1 and 3.5 ng l - 1 for As(III) and Se(IV), respectively. The repeatability was better than 3.9% for both analytes (n = 10, 25 ng l - 1 ) while reproducibility ranged from 4.2% to 4.8%. The recoveries of As(III) and Se(IV) spiked at 25-100 ng l - 1 were in the range of 94.2-104.8%. After pre-concentration of a 5.0 ml sample, the sensitivity enhancement factors for As(III) and Se(IV) were 185 and 140, respectively. Accuracy was assessed by analysis of two standard reference materials (SRMs) and spiked recovery experiments. The method was successfully applied to the accurate and reliable determination of total As and total Se by HG-AAS after pre-reduction with a mixture of L-cysteine and tartaric acid. Finally, the method was shown to be rapid and sensitive, with good results for extraction, pre-concentration and determination of total As and Se contents (as As(III) and Se(IV)) from food samples.

  20. A modelling exercise on the importance of ternary alkaline earth carbonate species of uranium(VI) in the inorganic speciation of natural waters

    International Nuclear Information System (INIS)

    Vercouter, Thomas; Reiller, Pascal E.; Ansoborlo, Eric; Février, Laureline; Gilbin, Rodolphe; Lomenech, Claire; Philippini, Violaine

    2015-01-01

    Highlights: • The U(VI) speciation in natural waters has been modelled through a modelling exercise. • The results evidence the importance of alkaline earth U(VI) carbonate complexes. • Possible solubility-controlling phases were reported and discussed. • The differences were related to the choice and reliability of thermodynamic data. • Databases need to be improved for reliable U(VI) speciation calculations. - Abstract: Predictive modelling of uranium speciation in natural waters can be achieved using equilibrium thermodynamic data and adequate speciation software. The reliability of such calculations is highly dependent on the equilibrium reactions that are considered as entry data, and the values chosen for the equilibrium constants. The working group “Speciation” of the CETAMA (Analytical methods establishment committee of the French Atomic Energy commission, CEA) has organized a modelling exercise, including four participants, in order to compare modellers’ selections of data and test thermodynamic data bases regarding the calculation of U(VI) inorganic speciation. Six different compositions of model waters were chosen so that to check the importance of ternary alkaline earth carbonate species of U(VI) on the aqueous speciation, and the possible uranium solid phases as solubility-limiting phases. The comparison of the results from the participants suggests (i) that it would be highly valuable for end-users to review thermodynamic constants of ternary carbonate species of U(VI) in a consistent way and implement them in available speciation data bases, and (ii) stresses the necessary care when using data bases to avoid biases and possible erroneous calculations

  1. Molecular Characterization of a Dual Domain Carbonic Anhydrase From the Ctenidium of the Giant Clam, Tridacna squamosa, and Its Expression Levels After Light Exposure, Cellular Localization, and Possible Role in the Uptake of Exogenous Inorganic Carbon

    Directory of Open Access Journals (Sweden)

    Clarissa Z. Y. Koh

    2018-03-01

    Full Text Available A Dual-Domain Carbonic Anhydrase (DDCA had been sequenced and characterized from the ctenidia (gills of the giant clam, Tridacna squamosa, which lives in symbiosis with zooxanthellae. DDCA was expressed predominantly in the ctenidium. The complete cDNA coding sequence of DDCA from T. squamosa comprised 1,803 bp, encoding a protein of 601 amino acids and 66.7 kDa. The deduced DDCA sequence contained two distinct α-CA domains, each with a specific catalytic site. It had a high sequence similarity with tgCA from Tridacna gigas. In T. squamosa, the DDCA was localized apically in certain epithelial cells near the base of the ctenidial filament and the epithelial cells surrounding the tertiary water channels. Due to the presence of two transmembrane regions in the DDCA, one of the Zn2+-containing active sites could be located externally and the other one inside the cell. These results denote that the ctenidial DDCA was positioned to dehydrate HCO3- to CO2 in seawater, and to hydrate the CO2 that had permeated the apical membrane back to HCO3- in the cytoplasm. During insolation, the host clam needs to increase the uptake of inorganic carbon from the ambient seawater to benefit the symbiotic zooxanthellae; only then, can the symbionts conduct photosynthesis and share the photosynthates with the host. Indeed, the transcript and protein levels of DDCA/DDCA in the ctenidium of T. squamosa increased significantly after 6 and 12 h of exposure to light, respectively, denoting that DDCA could participate in the light-enhanced uptake and assimilation of exogenous inorganic carbon.

  2. Sources and fate of organic (DOC, POC, CDOM) and inorganic (DIC) carbon in a mangrove dominated estuary (French Guiana)

    Science.gov (United States)

    Ray, R.; Michaud, E.; Vantrepotte, V.; Aller, R. C.; Morvan, S.; Thouzeau, G.

    2016-12-01

    We studied the mangrove dominated Sinnamary estuarine system in French Guiana during the dry and wet seasons in 2015 to examine the sources, transport and fate of surface water DOC, POC and DIC along the salinity gradient and the effect of tidal fluctuations on carbon dynamics. Elemental ratios, stable isotopes and optical properties (absorption) were applied as proxies to delineate the sources and molecular structure of the organic carbon. Results showed that during the wet season there were significant net inputs of POC and DOC along the salinity gradient from mangroves and enhanced surface runoff. Time series performed during the dry season at a station in channel water adjacent to mangroves revealed mangrove-derived export and exchanges of DOC and POC during the ebb and marine algae import during the flood. DOC was the dominant form of carbon in both seasons with DOC:POC ratios typically between 13 and 40. Both δ13DOC and CDOM descriptors (e.g., S275-295 and a*412) confirmed mangrove litter leaching to be the primary contributor of high molecular weight dissolved organic matter in the wet season which was replaced by marine phytoplanktonic OC during transport offshore in the dry season. CDOM aromaticity is lower in the dry season as mangrove inputs decrease. POC showed similar trends as DOC, with maximum contributions of terrestrial litter in the river and mixing zone, and in situ production dominant in the marine zone. The entire estuary is heterotrophic, exhibiting high pCO2 (837-5575µatm) and oxygen undersaturation (59-86%) in both seasons, and substantial CO2 emission fluxes (278-3671mmol m-2 d-1). Intense local remineralization and laterally transported CO2 originating from mangrove benthic respiration could account for the water column pCO2 enrichment during low tide and night time. Keywords: Organic carbon, stable isotopes, CDOM, pCO2, mangrove, French Guiana

  3. Personal carbon monoxide exposures of preschool children in Helsinki, Finland - comparison to ambient air concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Alm, S.; Mukala, K.; Tittanen, P.; Jantunen, M.J. [KTL National Public Health Institute, Kuopio (Finland). Dept. of Environmental Health

    2001-07-01

    The associations of personal carbon monoxide (CO) exposures with ambient air CO concentrations measured at fixed monitoring sites, were studied among 194 children aged 3-6yr in four downtown and four suburban day-care centers in Helsinki, Finland. Each child carried a personal CO exposure monitor between 1 and 4 times for a time period of between 20 and 24h. CO concentrations at two fixed monitoring sites were measured simultaneously. The CO concentrations measured at the fixed monitoring sites were usually lower (mean maximum 8-h concentration: 0.9 and 2.6mgm{sup -3}) than the personal CO exposure concentrations (mean maximum 8-h concentration: 3.3mgm{sup -3}).The fixed site CO concentrations were poor predictors of the personal CO exposure concentrations. However, the correlations between the personal CO exposure and the fixed monitoring site CO concentrations increased (-0.03 -- -0.12 to 0.13-0.16) with increasing averaging times from 1 to 8h. Also, the fixed monitoring site CO concentrations explained the mean daily or weekly personal CO exposures of a group of simultaneously measured children better than individual exposure CO concentrations. This study suggests that the short-term CO personal exposure of children cannot be meaningfully assessed using fixed monitoring sites. (author)

  4. The effect of microbial activity and adsorption processes on groundwater dissolved organic carbon character and concentration

    Science.gov (United States)

    Meredith, K.; McDonough, L.; Oudone, P.; Rutlidge, H.; O'Carroll, D. M.; Andersen, M. S.; Baker, A.

    2017-12-01

    Balancing the terrestrial global carbon budget has proven to be a significant challenge. Whilst the movement of carbon in the atmosphere, rivers and oceans has been extensively studied, the potential for groundwater to act as a carbon source or sink through both microbial activity and sorption to and from mineral surfaces, is poorly understood. To investigate the biodegradable component of groundwater dissolved organic carbon (DOC), groundwater samples were collected from multiple coastal and inland sites. Water quality parameters such as pH, electrical conductivity, temperature, dissolved oxygen were measured in the field. Samples were analysed and characterised for their biodegradable DOC content using spectrofluorometric and Liquid Chromatography-Organic Carbon Detection (LC-OCD) techniques at set intervals within a 28 day period. Further to this, we performed laboratory sorption experiments on our groundwater samples using different minerals to examine the effect of adsorption processes on DOC character and concentration. Calcium carbonate, quartz and iron coated quartz were heated to 400ºC to remove potential carbon contamination, and then added at various known masses (0 mg to 10 g) to 50 mL of groundwater. Samples were then rotated for two hours, filtered at 0.2 μm and analysed by LC-OCD. This research forms part of an ongoing project which will assist in identifying the factors affecting the mobilisation, transport and removal of DOC in uncontaminated groundwater. By quantifying the relative importance of these processes, we can then determine whether the groundwater is a carbon source or sink. Importantly, this information will help guide policy and identify the need to include groundwater resources as part of the carbon economy.

  5. Sudden increase in atmospheric concentration reveals strong coupling between shoot carbon uptake and root nutrient uptake in young walnut trees

    International Nuclear Information System (INIS)

    Delaire, M.; Sigogne, M.; Beaujard, F.; Frak, E.; Adam, B.; Le Roux, X.

    2005-01-01

    Short-term effects of a sudden increase in carbon dioxide concentration on nutrient uptake by roots during vegetative growth was studied in young walnut trees. Rates of carbon dioxide uptake and water loss by individual trees were determined by a branch bag method from three days before and six days after carbon dioxide concentration was increased. Nutrient uptake rates were measured concurrently by a hydroponic recirculating nutrient solution system. Carbon dioxide uptake rates increased greatly with increasing atmospheric carbon dioxide; nutrient uptake rates were proportional to carbon dioxide uptake rates, except for the phosphorus ion. Daily water loss rates were only slightly affected by elevated carbon dioxide. Overall, it was concluded that in the presence of non-limiting supplies of water and nutrients, root nutrient uptake and shoot carbon assimilation are strongly coupled in the short term in young walnut trees despite the important carbon and nutrient storage capacities od woody species. 45 refs., 7 figs

  6. Influence of nitric acid concentration on the characteristics of active carbons obtained from a mineral coal

    Energy Technology Data Exchange (ETDEWEB)

    Khelifi, A.; Temdrara, L.; Addoun, A. [Laboratoire d' Etude Physicochimique des Materiaux et Application a l' Environnement, Faculte de Chimie, USTHB, BP. 32 El Alia, Bab Ezzouar 16111, Algiers (Algeria); Almazan-Almazan, M.C.; Perez-Mendoza, M.; Domingo-Garcia, M.; Lopez-Garzon, F.J [Departamento de Quimica Inorganica, Facultad de Ciencias, 18071 Granada (Spain); Lopez-Domingo, F.J. [Departamento de CCIA, ETS de Ingenieria Informatica y Telecomunicacion, Granada, 18071 (Spain)

    2010-10-15

    This paper deals with the effect of the concentration of nitric acid solutions on the properties of activated carbons obtained by the oxidation of a parent activated carbon. For this purpose a mineral coal from Algeria has been used as raw material to prepare the parent active carbon AC. This was further treated with nitric acid solutions. The analysis of the samples includes the chemical and textural characterization. The former was carried out by selective titrations and FTIR spectroscopy. The latter, by nitrogen and carbon dioxide adsorption at 77 and 273 K, respectively, and by adsorption of organic probes (benzene, dichloromethane, cyclohexane and 2,2-dimethyl butane) at 303 K. The nitrogen adsorption isotherms have been analysed by using the BET equation, {alpha}{sub s}-method and molecular simulation. The Dubinin-Radushkevich approach has been applied to the carbon dioxide and vapours adsorption data. The results show that the treatment with 2 N nitric acid solution is very appropriate because it introduces a large amount of oxygen containing groups with a small change of the textural characteristics of the parent AC. More concentrated nitric acid solutions change in large extent the textural properties although they also introduce large amount of chemical groups. (author)

  7. Radiation-use of a forest exposed to elevated concentrations of atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    DeLucia, E. H.; George, K.; Hamilton, J. G.

    2002-01-01

    Radiation-use efficiency of growth (defined as biomass accumulation per unit of absorbed photosynthetically active radiation) of loblobby pine forest plots exposed to ambient or elevated atmospheric carbon dioxide concentration was compared. Biomass accumulation of the dominant loblobby pines was calculated from monthly measurements of tree growth and site-specific allometric measurements. Leaf area index was estimated by optical, allometric and interfall methods, depending on species. Results showed that depending on tree height, elevated carbon dioxide did not alter the above-ground biomass allocation in loblobby pine. Leaf area index estimates by the different methods were found to vary significantly, but elevated carbon dioxide had only a slight effect on leaf area index in the first three years of this study. The 27 per cent increase in radiation-use efficiency of growth in response to carbon dioxide enrichment is believed to have been caused primarily by the stimulation of biomass increment. It was concluded that long-term increases in atmospheric carbon dioxide concentration can increase the radiation-use efficiency of growth in closed canopy forests, but the magnitude and duration of this increase in uncertain. 57 refs., 2 tabs., 3 figs

  8. Concentrations and characteristics of organic carbon in surface water in Arizona: Influence of urbanization

    Science.gov (United States)

    Westerhoff, P.; Anning, D.

    2000-01-01

    Dissolved (DOC) and total (TOC) organic carbon concentrations and compositions were studied for several river systems in Arizona, USA. DOC composition was characterized by ultraviolet and visible absorption and fluorescence emission (excitation wavelength of 370 nm) spectra characteristics. Ephemeral sites had the highest DOC concentrations, and unregulated perennial sites had lower concentrations than unregulated intermittent sites, regulated sites, and sites downstream from wastewater-treatment plants (p TOC) organic carbon concentrations and compositions were studied for several river systems in Arizona, USA. DOC composition was characterized by ultraviolet and visible absorption and fluorescence emission (excitation wavelength of 370 nm) spectra characteristics. Ephemeral sites had the highest DOC concentrations, and unregulated perennial sites had lower concentrations than unregulated intermittent sites, regulated sites, and sites downstream from wastewater-treatment plants (p<0.05). Reservoir outflows and wastewater-treatment plant effluent were higher in DOC concentration (p<0.05) and exhibited less variability in concentration than inflows to the reservoirs. Specific ultraviolet absorbance values at 254 nm were typically less than 2 m-1(milligram DOC per liter)-1 and lower than values found in most temperate-region rivers, but specific ultraviolet absorbance values increased during runoff events. Fluorescence measurements indicated that DOC in desert streams typically exhibit characteristics of autochthonous sources; however, DOC in unregulated upland rivers and desert streams experienced sudden shifts from autochthonous to allochthonous sources during runoff events. The urban water system (reservoir systems and wastewater-treatment plants) was found to affect temporal variability in DOC concentration and composition.The influence of urbanization, becoming increasingly common in arid regions, on dissolved organic carbon (DOC) concentrations in surface water

  9. Long-term Trends of Organic Carbon Concentrations in Freshwaters: Strengths and Weaknesses of Existing Evidence

    Directory of Open Access Journals (Sweden)

    Montserrat Filella

    2014-05-01

    Full Text Available Many articles published in the last few years start with the assumption that the past decades have seen an increase in dissolved organic carbon (DOC concentrations in the rivers and lakes of the Northern Hemisphere. This study analyses whether the existing evidence supports this claim. With this aim, we have collected published studies where long series of organic carbon concentrations (i.e., longer than 10 years were analyzed for existing trends and have carefully evaluated the 63 articles found. Information has been collated in a comprehensive and comparable way, allowing readers to easily access it. The two main aspects considered in our analysis have been the analytical methods used and the data treatment methods applied. Both are sensitive issues because, on the one hand, the difficulties associated with correctly determining organic carbon concentrations in surface waters are well known, while, on the other, dealing with real environmental data (i.e., lack of normality, censoring, missing values, etc. is an extremely intricate matter. Other issues such as data reporting and the geographical location of the systems studied are also discussed. In conclusion, it is clear that organic carbon concentrations have increased in some surface waters in the Northern Hemisphere since the 1990s. However, due to a lack of data in many parts of the world, it is not known whether this phenomenon is general and, more importantly, in the areas for which such data do exist, the reporting and methodological problems in the published studies prevent any conclusion on the existence of a general temporal behavior of organic carbon from being drawn.

  10. Carbon assimilation in Eucalyptus urophylla grown under high atmospheric CO2 concentrations: A proteomics perspective.

    Science.gov (United States)

    Santos, Bruna Marques Dos; Balbuena, Tiago Santana

    2017-01-06

    Photosynthetic organisms may be drastically affected by the future climate projections of a considerable increase in CO 2 concentrations. Growth under a high concentration of CO 2 could stimulate carbon assimilation-especially in C3-type plants. We used a proteomics approach to test the hypothesis of an increase in the abundance of the enzymes involved in carbon assimilation in Eucalyptus urophylla plants grown under conditions of high atmospheric CO 2 . Our strategy allowed the profiling of all Calvin-Benson cycle enzymes and associated protein species. Among the 816 isolated proteins, those involved in carbon fixation were found to be the most abundant ones. An increase in the abundance of six key enzymes out of the eleven core enzymes involved in carbon fixation was detected in plants grown at a high CO 2 concentration. Proteome changes were corroborated by the detection of a decrease in the stomatal aperture and in the vascular bundle area in Eucalyptus urophylla plantlets grown in an environment of high atmospheric CO 2 . Our proteomics approach indicates a positive metabolic response regarding carbon fixation in a CO 2 -enriched atmosphere. The slight but significant increase in the abundance of the Calvin enzymes suggests that stomatal closure did not prevent an increase in the carbon assimilation rates. The sample enrichment strategy and data analysis used here enabled the identification of all enzymes and most protein isoforms involved in the Calvin-Benson-Bessham cycle in Eucalyptus urophylla. Upon growth in CO 2 -enriched chambers, Eucalyptus urophylla plantlets responded by reducing the vascular bundle area and stomatal aperture size and by increasing the abundance of six of the eleven core enzymes involved in carbon fixation. Our proteome approach provides an estimate on how a commercially important C3-type plant would respond to an increase in CO 2 concentrations. Additionally, confirmation at the protein level of the predicted genes involved in

  11. Northern European trees show a progressively diminishing response to increasing atmospheric carbon dioxide concentrations

    CSIR Research Space (South Africa)

    Waterhouse, JS

    2004-04-01

    Full Text Available Reviews 23 (2004) 803?810 Northern European trees show a progressively diminishing response to increasing atmospheric carbon dioxide concentrations J.S. Waterhousea,*, V.R. Switsura,b, A.C. Barkera, A.H.C. Cartera,b,{, D.L. Hemmingc, N.J. Loaderd, I..., V.R., Waterhouse, J.S., Heaton, T.H.E., Carter, A.H.C., 1998. Climatic variation andthe stable carbon isotope composition of tree ring cellulose: an intercomparison of Quercus robur, Fagus sylvatica and Pinus silvestris. Tellus 50B, 25?33. J.ggi, M...

  12. Inorganic chemistry of earliest sediments

    International Nuclear Information System (INIS)

    Ochiai, E.I.

    1983-01-01

    A number of inorganic elements are now known to be essential to organisms. Chemical evolutionary processes involving carbon, hydrogen, nitrogen and oxygen have been studied intensively and extensively, but the other essential elements have been rather neglected in the studies of chemical and biological evolution. This article attempts to assess the significance of inorganic chemistry in chemical and biological evolutionary processes on the earth. Emphasis is placed on the catalytic effects of inorganic elements and compounds, and also on possible studies on the earliest sediments, especially banded iron formation and stratabound copper from the inorganic point of view in the hope of shedding some light on the evolution of the environment and the biological effects on it. (orig./WL)

  13. Effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root architecture and anatomy

    International Nuclear Information System (INIS)

    Lee-Ho, E.; Walton, L.J.; Reid, D.M.; Yeung, E.C.; Kurepin, L.V.

    2007-01-01

    Plant root growth is known to be influenced by higher levels of atmospheric carbon dioxide (CO 2 ). Roots of some species grown in hydroponics under elevated CO 2 concentrations may be more competitive sinks for photosynthetic assimilates than roots grown under lower CO 2 conditions. Root branching patterns may also be influenced by elevated CO 2 concentrations. Studies have also shown that factors such as soil compaction, salinity and the availability of nitrate, phosphorous, oxygen and water also influence root growth, and the effects of higher CO 2 on roots can be confounded by such environmental factors. This study evaluated the effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root growth, morphology, and architecture. Both ambient and elevated CO 2 levels were used along with various sucrose concentrations. The study revealed that A. thaliana plants grown on a phytagar medium in small chambers with elevated CO 2 had longer roots, more lateral root growth than plants grown in ambient CO 2 . Roots in elevated CO 2 were found to have wider root diameters, and more secondary growth. The addition of sucrose to the media closely resembled the effects of elevated CO 2 . In addition, the increase in sucrose concentration had a bigger effect on root morphology under ambient, than elevated CO 2 . Therefore, both elevated CO 2 and increased sucrose concentrations promote root growth by increasing their number, length, and diameter. The dichotomy branching index (DBI) also dropped resulting in a more dichotomous branching pattern. 34 refs., 5 figs

  14. Carbon monoxide concentration in donated blood: relation to cigarette smoking and other sources.

    Science.gov (United States)

    Aberg, Anna-Maja; Sojka, Birgitta Nilsson; Winsö, Ola; Abrahamsson, Pernilla; Johansson, Göran; Larsson, Jan Erik

    2009-02-01

    Carbon monoxide (CO) is normally present in the human body due to endogenous production of CO. CO can also be inhaled by exposure to external sources such as cigarette smoke, car exhaust, and fire. The purpose of this study was to investigate CO concentrations in blood from 410 blood donors at the blood center in Umeå, Sweden. To further evaluate the effects of cigarette smoking on CO concentrations, the elimination time for CO was examined in six volunteer smokers after a smoked cigarette. Blood samples from whole blood donors were obtained during the blood center's routine operation. In connection with blood donations, demographic and behavioral data were collected from the donors. The CO concentration was determined using gas chromatography. The majority of blood donors had approximately the same CO concentration (mean, 84.5 micromol/L). In 6 percent of the samples, the concentrations were higher than 130 micromol per L. The highest CO concentration was 561 micromol per L. The main source for these high CO concentrations appeared to be cigarette smoking. In the volunteer smokers, the elimination time after a smoked cigarette varied significantly, with elimination half-lives from 4.7 to 8.4 hours. These results show that blood bank red blood cell bags may have CO concentrations above the physiologic level. The time interval between cigarette smoking and blood donation seems to be a particularly important factor for elevated CO concentrations.

  15. Impact of upwelling events on the sea water carbonate chemistry and dissolved oxygen concentration in the Gulf of Papagayo (Culebra Bay, Costa Rica: Implications for coral reefs

    Directory of Open Access Journals (Sweden)

    Tim Rixen

    2012-04-01

    Full Text Available The Gulf of Papagayo, Pacific coast of Costa Rica, is one of the three seasonal upwelling areas of Mesoamerica. In April 2009, a 29-hour experiment was carried out at the pier of the Marina Papagayo, Culebra Bay. We determined sea surface temperature (SST, dissolved oxygen concentration, salinity, pH, and the partial pressure of CO2 (pCO2. The aragonite saturation state (Ωa as well as the other parameters of the marine carbonate system such as the total dissolved inorganic carbon (DIC and the total alkalinity (TA were calculated based on the measured pH and the pCO2. The entrainment of subsurface waters raised the pCO2 up to 645 µatm. SSTs, dissolved oxygen concentrations decreased form 26.4 to 23.7°C and from 228 to 144 µmol l-1. Ωa dropped down to values of 2.1. Although these changes are assumed to reduce the coral growth, the main reef building coral species within the region (Pocillopora spp. and Pavona clavus reveal growth rates exceeding those measured at other sites in the eastern tropical Pacific. This implies that the negative impact of upwelling on coral growth might be overcompensated by an enhanced energy supply caused by the high density of food and nutrients and more favorable condition for coral growth during the non-upwelling season.

  16. Relationships between net photosynthesis and foliar nitrogen concentrations in a loblobby pine forest ecosystem grown in elevated atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Springer, C. J.; Thomas, R. B.; Delucia, E. H.

    2005-01-01

    The effects of elevated carbon dioxide concentration on the relationship between light-saturated net photosynthesis and area-based foliar nitrogen concentration in the canopy of a loblobby pine forest at the Duke Forest FACE experiment was examined. Two overstory and four understory tree species were examined at their growth carbon dioxide concentrations during the early summer and late summer of 1999, 2001 and 2002. Light-saturated net photosynthesis and foliar nitrogen relationship were compared to determine if the stimulatory effects of elevated carbon dioxide on net photosynthesis had declined. Results at all three sample times showed no difference in either the slopes, or in the y-intercepts of the net photosynthesis-foliar nitrogen relationship when measured at common carbon dioxide concentrations. Net photosynthesis was also unaffected by growth in elevated carbon dioxide, indicating that these overstory and understory trees continued to show strong stimulation of photosynthesis by elevated carbon dioxide. 46 refs., 6 tabs., 3 figs

  17. [Carboxyhemoglobin concentration in carbon monoxide poisoning. Critical appraisal of the predictive value].

    Science.gov (United States)

    Köthe, L; Radke, J

    2010-06-01

    In cases of unclear depression of conciousness, arrhythmia and symptoms of cardiac insufficiency inadvertent carbon monoxide intoxication should always be taken into consideration. Rapid diagnosis of acute carbon monoxide intoxication with mostly unspecific symptoms requires an immediate supply of high dose oxygen which enables a distinct reduction of mortality and long-term morbidity. Levels of carboxyhemoglobin, however, should not be used as a parameter to decide whether to supply normobaric or the more efficient hyperbaric oxygen. There is no sufficient coherence between carboxyhemoglobin blood levels and clinical symptoms. Increased carboxyhemoglobin concentrations help to diagnose acute carbon monoxide intoxication but do not allow conclusions to be drawn about possible long-term neuropsychiatric or cardiac consequences.

  18. Efficient Carbon-Based CsPbBr3 Inorganic Perovskite Solar Cells by Using Cu-Phthalocyanine as Hole Transport Material

    Science.gov (United States)

    Liu, Zhiyong; Sun, Bo; Liu, Xingyue; Han, Jinghui; Ye, Haibo; Shi, Tielin; Tang, Zirong; Liao, Guanglan

    2018-06-01

    Metal halide perovskite solar cells (PSCs) have attracted extensive research interest for next-generation solution-processed photovoltaic devices because of their high solar-to-electric power conversion efficiency (PCE) and low fabrication cost. Although the world's best PSC successfully achieves a considerable PCE of over 20% within a very limited timeframe after intensive efforts, the stability, high cost, and up-scaling of PSCs still remain issues. Recently, inorganic perovskite material, CsPbBr3, is emerging as a promising photo-sensitizer with excellent durability and thermal stability, but the efficiency is still embarrassing. In this work, we intend to address these issues by exploiting CsPbBr3 as light absorber, accompanied by using Cu-phthalocyanine (CuPc) as hole transport material (HTM) and carbon as counter electrode. The optimal device acquires a decent PCE of 6.21%, over 60% higher than those of the HTM-free devices. The systematic characterization and analysis reveal a more effective charge transfer process and a suppressed charge recombination in PSCs after introducing CuPc as hole transfer layer. More importantly, our devices exhibit an outstanding durability and a promising thermal stability, making it rather meaningful in future fabrication and application of PSCs.[Figure not available: see fulltext.

  19. A highly reproducible solenoid micropump system for the analysis of total inorganic carbon and ammonium using gas-diffusion with conductimetric detection.

    Science.gov (United States)

    Henríquez, Camelia; Horstkotte, Burkhard; Cerdà, Víctor

    2014-01-01

    In this work, a simple, economic, and miniaturized flow-based analyzer based on solenoid micropumps is presented. It was applied to determine two parameters of high environmental interest: ammonium and total inorganic carbon (TIC) in natural waters. The method is based on gas diffusion (GD) of CO₂ and NH3 through a hydrophobic gas permeable membrane from an acidic or alkaline donor stream, respectively. The analytes are trapped in an acceptor solution, being slightly alkaline for CO₂ and slightly acidic for NH₃. The analytes are quantified using a homemade stainless steel conductimetric cell. The proposed system required five solenoid micro-pumps, one for each reagent and sample. Two especially made air bubble traps were placed down-stream of the solendoid pumps, which provided the acceptor solutions, by this increasing the method's reproducibility. Values of RSD lower than 1% were obtained. Achieved limits of detection were 0.27 µmol L⁻¹ for NH₄⁺ and 50 µmol L⁻¹ for TIC. Add-recovery tests were used to prove the trueness of the method and recoveries of 99.5 ± 7.5% were obtained for both analytes. The proposed system proved to be adequate for monitoring purpose of TIC and NH₄⁺ due to its high sample throughput and repeatability. © 2013 Published by Elsevier B.V.

  20. Elegant Face-Down Liquid-Space-Restricted Deposition of CsPbBr3 Films for Efficient Carbon-Based All-Inorganic Planar Perovskite Solar Cells.

    Science.gov (United States)

    Teng, Pengpeng; Han, Xiaopeng; Li, Jiawei; Xu, Ya; Kang, Lei; Wang, Yangrunqian; Yang, Ying; Yu, Tao

    2018-03-21

    It is a great challenge to obtain the uniform films of bromide-rich perovskites such as CsPbBr 3 in the two-step sequential solution process (two-step method), which was mainly due to the decomposition of the precursor films in solution. Herein, we demonstrated a novel and elegant face-down liquid-space-restricted deposition to inhibit the decomposition and fabricate high-quality CsPbBr 3 perovskite films. This method is highly reproducible, and the surface of the films was smooth and uniform with an average grain size of 860 nm. As a consequence, the planar perovskite solar cells (PSCs) without the hole-transport layer based on CsPbBr 3 and carbon electrodes exhibit enhanced power conversion efficiency (PCE) along with high open circuit voltage ( V OC ). The champion device has achieved a PCE of 5.86% with a V OC of 1.34 V, which to our knowledge is the highest performing CsPbBr 3 PSC in planar structure. Our results suggest an efficient and low-cost route to fabricate the high-quality planar all-inorganic PSCs.

  1. Equilibrium concentration of radionuclides in cement/groundwater/carbon steel system

    International Nuclear Information System (INIS)

    Keum, D. K.; Cho, W. J.; Hahn, P. S.

    1997-01-01

    Equilibrium concentration of major elements in an underground repository with a capacity of 100,000 drums have been simulated using the geochemical computer code (EQMOD). The simulation has been carried out at the conditions of pH 12 to 13.5, and Eh 520 and -520 mV. Solubilities of magnesium and calcium decrease with the increase of pH. The solubility of iron increases with pH at Eh -520 mV of reducing environment, while it almost entirely exists as the precipitate of Fe(OH) 3 (s) at Eh 520 mV of oxidizing environment. All of cobalt and nickel are predicted to be dissolved in the liquid phase regardless of pH since the solubility limit is greater than the total concentration. In the case of cesium and strontium, all forms of both ions are present in the liquid phase because they have negligible sorption capacity on cement and large solubility under disposal atmosphere. And thus the total concentration determines the equilibrium concentration. Adsorbed amounts of iodide and carbonate are dependent on adsorption capacity and adsorption equilibrium constant. Especially, the calcite turns out to be a solubility-limiting phase on the carbonate system. In order to validate the model, the equilibrium concentrations measured for a number of systems which consist of iron, cement, synthetic groundwater and radionuclides are compared with those predicted by the model. The concentrations between the model and the experiment of nonadsorptive elements - cesium, strontium, cobalt, nickel and iron, are well agreed. It indicates that the assumptions and the thermodynamic data in this work are valid. Using the adsorption equilibrium constant as a free parameter, the experimental data of iodide and carbonate have been fitted to the model. The model is in a good agreement with the experimental data of the iodide system. (author)

  2. Comparison of manufactured and black carbon nanoparticle concentrations in aquatic sediments

    International Nuclear Information System (INIS)

    Koelmans, A.A.; Nowack, B.; Wiesner, M.R.

    2009-01-01

    In this paper, we show that concentrations of manufactured carbon-based nanoparticles (MCNPs) in aquatic sediments will be negligible compared to levels of black carbon nanoparticles (BCNPs). This is concluded from model calculations accounting for MCNP sedimentation fluxes, removal rates due to aggregation or degradation, and MCNP burial in deeper sediment layers. The resultant steady state MCNP levels are compared with BCNP levels calculated from soot levels in sediments and weight fractions of nanosized fractions of these soot particles. MCNP/BCNP ratios range from 10 -7 to 10 -4 (w:w). This suggests that the often acclaimed effect of MCNPs on organic pollutant binding and bioavailability will likely be below the level of detection if natural BCNPs are present, even if binding to MCNP is one to two orders of magnitude stronger than to BCNPs. Furthermore, exposure and toxic effects of MCNPs in sediments and soils will be negligible compared to that of BCNPs. - Concentrations of manufactured carbon-based nanoparticles in sediments and soils will be negligible compared to levels of black carbon (soot) nanoparticles

  3. Carbon concentration in structures of Arctostaphylos pungens HBK: An alternative CO2 sink in forests

    OpenAIRE

    Pompa-García, M; Jurado, E

    2015-01-01

    Arctostaphylos pungens HBK is a dominant species with increasing abundance and distribution in chaparral ecosystems as a result of range management and, possibly, changes in climate. The value of this species for carbon (C) sequestration is unknown, and the standard 50% C out of total tree biomass is used as an approximate value. In this study, we aim to determine the C concentration of the primary components of A. pungens. The total C expressed as a percentage of biomass was determined with ...

  4. Effect of tooth-bleaching on the carbonate concentration in dental enamel by Raman spectroscopy

    OpenAIRE

    Vargas-Koudriavtsev, Tatiana; Herrera-Sancho, ?scar-Andrey

    2017-01-01

    Background There are not many studies evaluating the effects of surface treatments at the molecular level. The aim of this in vitro study was to analyze the concentration of carbonate molecules in dental enamel by Raman spectroscopy after the application of in-office and home whitening agents. Material and Methods Sixty human teeth were randomly divided into six groups and exposed to three different home bleaching gels (Day White) and three in-office whitening agents (Zoom! Whitespeed and Pol...

  5. Concentration of enteric virus indicator from seawater using granular activated carbon.

    Science.gov (United States)

    Cormier, Jiemin; Gutierrez, Miguel; Goodridge, Lawrence; Janes, Marlene

    2014-02-01

    Fecal contamination of shellfish growing seawater with enteric viruses is often associated with human outbreaks of gastroenteritis. Male specific bacteriophage MS2 is correlated with those of enteric viruses in a wide range of water environments and has been used widely as a surrogate for pathogenic waterborne viruses. Since viruses in contaminated water are usually at low levels, the development of methods to concentrate viruses from water is crucial for detection purposes. In the present study, granular activated carbon was evaluated for concentration of MS2 from artificial seawater, and different parameters of the seawater were also compared. Recovery of MS2 from warm seawater (37°C) was found to be significantly greater than from cold seawater (4 and 20°C), and even greater than from fresh water (4, 20 and 37°C); the difference between seawater and fresh water became less profound when the temperatures of both were below 37°C. Although not of statistical significance, recovery of MS2 from low salinity seawater (10 and 20 parts per thousand, ppt) was greater than from high salinity seawater (30 and 40ppt). One gram of granular activated carbon was able to extract 6-log plaque forming units (PFU) of MS2 from 500ml seawater at 37°C. This study demonstrated that granular activated carbon can concentrate an enteric virus indicator from shellfish growing seawater effectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Activity of type i methanotrophs dominates under high methane concentration: Methanotrophic activity in slurry surface crusts as influenced by methane, oxygen, and inorganic nitrogen

    DEFF Research Database (Denmark)

    Duan, Yun Feng; Reinsch, Sabine; Ambus, Per

    2017-01-01

    Livestock slurry is a major source of atmospheric methane (CH4), but surface crusts harboring methane-oxidizing bacteria (MOB) could mediate against CH4 emissions. This study examined conditions for CH4 oxidation by in situ measurements of oxygen (O2) and nitrous oxide (N2O), as a proxy for inorg......Livestock slurry is a major source of atmospheric methane (CH4), but surface crusts harboring methane-oxidizing bacteria (MOB) could mediate against CH4 emissions. This study examined conditions for CH4 oxidation by in situ measurements of oxygen (O2) and nitrous oxide (N2O), as a proxy...... for inorganic N transformations, in intact crusts using microsensors. This was combined with laboratory incubations of crust material to investigate the effects of O2, CH4, and inorganic N on CH4 oxidation, using 13CH4 to trace C incorporation into lipids of MOB. Oxygen penetration into the crust was 2 to 14 mm...

  7. Increased ultrafine particles and carbon monoxide concentrations are associated with asthma exacerbation among urban children

    Science.gov (United States)

    Evans, Kristin A.; Halterman, Jill S.; Hopke, Philip K.; Fagnano, Maria; Rich, David Q.

    2014-01-01

    Objectives Increased air pollutant concentrations have been linked to several asthma-related outcomes in children, including respiratory symptoms, medication use, and hospital visits. However, few studies have examined effects of ultrafine particles in a pediatric population. Our primary objective was to examine the effects of ambient concentrations of ultrafine particles on asthma exacerbation among urban children and determine whether consistent treatment with inhaled corticosteroids could attenuate these effects. We also explored the relationship between asthma exacerbation and ambient concentrations of accumulation mode particles, fine particles (≤ 2.5 micrograms [μm]; PM2.5), carbon monoxide, sulfur dioxide, and ozone. We hypothesized that increased 1 to 7 day concentrations of ultrafine particles and other pollutants would be associated with increases in the relative odds of an asthma exacerbation, but that this increase in risk would be attenuated among children receiving school-based corticosteroid therapy. Methods We conducted a pilot study using data from 3–10 year-old children participating in the School-Based Asthma Therapy trial. Using a time-stratified case-crossover design and conditional logistic regression, we estimated the relative odds of a pediatric asthma visit treated with prednisone (n=96 visits among 74 children) associated with increased pollutant concentrations in the previous 7 days. We re-ran these analyses separately for children receiving medications through the school-based intervention and children in a usual care control group. Results Interquartile range increases in ultrafine particles and carbon monoxide concentrations in the previous 7 days were associated with increases in the relative odds of a pediatric asthma visit, with the largest increases observed for 4-day mean ultrafine particles (interquartile range=2088 p/cm3; OR=1.27; 95% CI=0.90–1.79) and 7-day mean carbon monoxide (interquartile range=0.17 ppm; OR=1.63; 95

  8. Synthesis of inorganic materials in a supercritical carbon dioxide medium. Application to ceramic cross-flow filtration membranes preparation

    International Nuclear Information System (INIS)

    Papet, Sebastien

    2000-01-01

    Membrane separations, using cross-flow mineral ceramic membranes, allows fractionation of aqueous solutions due to the molecular sieve effect and electrostatic charges. To obtain a high selectivity, preparation of new selective ceramic membranes is necessary. We propose in this document two different routes to prepare such cross-flow tubular mineral membranes. In the first exposed method, a ceramic material is used, titanium dioxide, synthesized in supercritical carbon dioxide by the hydrolysis of an organometallic precursor of the oxide. The influence of operating parameters is similar to what is observed during a liquid-phase synthesis (sol-gel process), and leads us to control the size and texture of the prepared particles. This material is then used to prepare mineral membrane with a compressed layer process. The particles are mixed with organic components to form a liquid suspension. A layer is then deposited on the internal surface of a tubular porous support by slip-casting. The layer is then dried and compressed on the support before sintering. The obtained membranes arc in the ultrafiltration range. A second process has been developed in this work. It consists on the hydrolysis, in a supercritical CO 2 medium, of a precursor of titanium dioxide infiltrated into the support. The obtained material is then both deposited on the support but also infiltrated into the porosity. This new method leads to obtain ultrafiltration membranes that retain molecules which molecular weight is round 4000 g.mol -1 . Furthermore, we studied mass transfer mechanisms in cross-flow filtration of aqueous solutions. An electrostatic model, based on generalized Nernst-Planck equation that takes into account electrostatic interactions between solutes and the ceramic material, lead us to obtain a good correlation between experimental results and the numerical simulation. (author) [fr

  9. Dissolved inorganic carbon, total alkalinity, pH, phosphate, dissolved oxygen, and other variables collected from surface discrete observations using Niksin bottle and other instruments from R/V Sultana in the southwest coast of Puerto Rico from 2009-01-05 to 2016-02-01 (NCEI Accession 0145164)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This time series dataset includes weekly and bi-weekly discrete seawater samples of pH and total alkalinity, dissolved inorganic carbon, phosphates and profile...

  10. Dissolved inorganic carbon, total alkalinity, pH, nutrients, and other variables collected from surface discrete observations using Niskin bottle and other instruments from R/V F. G. Walton Smith in the west coast of Florida within Gulf of Mexico from 2015-09-23 to 2015-09-24 (NCEI Accession 0157025)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains the surface discrete measurements of dissolved inorganic carbon, total alkalinity, pH and nutrients in the west coast of Florida near...

  11. Dissolved inorganic carbon, total alkalinity, pH, and other variables collected from surface and discrete observations using flow-through pump and other instruments from M/V Equinox in the North Atlantic ocean (east coast of Miami, FL, Bahamas, and Turks and Caicos Islands) from 2015-03-07 to 2015-03-09 (NCEI Accession 0154382)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains surface discrete measurements of dissolved inorganic carbon, total alkalinity, and pH from the east coast of Florida to Puerto Rico....

  12. Dissolved inorganic carbon, total alkalinity, pH, nutrients, and other variables collected from profile and discrete observations using Niskin bottle and other instruments from NOAA Ship Gordon Gunter on the northeastern U.S. continental shelf, Gulf of Maine, coastal waters of Canada, Greenland and Iceland from 2015-10-13 to 2015-10-24 (NCEI Accession 0157023)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains profile discrete measurements of dissolved inorganic carbon, total alkalinity, pH, dissolved oxygen, and nutrients in the North...

  13. Dissolved inorganic carbon, total alkalinity, pH, and other variables collected from surface discrete observations using flow through pump and other instruments from Explorer of the Seas (ID: 33KF) in the Caribbean Sea and North Atlantic ocean during the Ocean Acidification Cruise EX1507 from 2015-02-14 to 2015-02-15 (NCEI Accession 0154385)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains surface discrete measurements of dissolved inorganic carbon, total alkalinity, pH in the Caribbean Sea. Increasing amounts of...

  14. Dissolved inorganic carbon, total alkalinity, pH, and other variables collected from surface and discrete observations using Niskin bottle, flow-through pump and other instruments from F.G. Walton Smith in the Gulf of Mexico (east coast of Florida near the Keys) from 2014-12-03 to 2014-12-04 (NCEI Accession 0154383)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains surface discrete measurement of dissolved inorganic carbon, total alkalinity, pH, dissolved oxygen and nutrients from a transect off...

  15. Dissolved inorganic carbon, pH, oxygen, and other variables collected from surface discrete and surface underway observations using flow-through pump from NOAA Ship Gordon Gunter off the U.S. East Coast during the East Coast Ocean Acidification (ECOA) Cruise from 2015-06-19 to 2015-07-24 (NCEI Accession 0157485)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains dissolved inorganic carbon, pH, oxygen, and other variables collected from surface discrete and surface underway observations during...

  16. Dissolved inorganic carbon, total alkalinity, nutrients, and other variables collected from profile and discrete observations using Niskin bottle and other instruments from NOAA Ship Henry B. Bigelow in Gulf of Maine, Georges Bank, and Mid-Atlantic Bight from 2015-05-20 to 2015-06-02 (NCEI Accession 0157024)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains profile discrete measurements of dissolved inorganic carbon, total alkalinity, nutrients, and chlorophyll a in Mid-Atlantic Bight and...

  17. Dissolved inorganic carbon, total alkalinity, temperature, salinity and other variables collected from profile and discrete sample observations using CTD, Niskin bottle, and other instruments from NOAA Ship HI'IALAKAI and NOAA Ship OSCAR ELTON SETTE in the U.S. Pacific Reefs from 2012-03-02 to 2014-05-05 (NCEI Accession 0131502)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains data from samples collected and analyzed for total alkalinity (TA) and dissolved inorganic carbon (DIC). From these constituents,...

  18. Dissolved inorganic carbon, total alkalinity, pH, nutrients and other variables collected from profile and discrete sample observations using CTD, Niskin bottle, and other instruments from NOAA Ship Gordon Gunter off the U.S. East Coast during the East Coast Ocean Acidification (GU-15-04 ECOA1) from 2015-06-20 to 2015-07-23 (NCEI Accession 0159428)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains dissolved inorganic carbon, total alkalinity, pH, nutrients and other variables collected from profile and discrete sample...

  19. Dissolved inorganic carbon, total alkalinity, pH, dissolved oxygen, and nutrients collected from profile, discrete sampling, and time series observations using CTD, Niskin bottle, and other instruments from R/V Gulf Challenger near a buoy off the coast of New Hampshire, U.S. in the Gulf of Maine from 2011-01-11 to 2015-11-18 (NCEI Accession 0142327)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains discrete measurements of dissolved inorganic carbon, total alkalinity, pH, dissolved oxygen, and nutrients collected at the buoy off...

  20. Dissolved inorganic carbon, total alkalinity, pH, nutrients, and other variables collected from surface discrete observations using flow-through pump and other instruments from NOAA Ship Henry B. Bigelow on the Northeast U.S. Shelf (Gulf of Maine and Mid-Atlantic Bight) from 2013-03-17 to 2013-05-09 (NCEI Accession 0154386)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains surface discrete measurements of dissolved inorganic carbon, total alkalinity, pH and nutrients in the Mid-Atlantic Bight and Gulf of...

  1. Dissolved inorganic carbon, total alkalinity, pH, nutrients and other variables collected from surface discrete sampling using flow through pump and other instruments from NOAA Ship Gordon Gunter in the U.S. East Coast during the East Coast Ocean Acidification (GU-15-04 ECOA1) from 2015-06-20 to 2015-07-23 (NCEI Accession 0157389)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains dissolved inorganic carbon, total alkalinity, pH, nutrients and other variables collected from surface discrete sampling using flow...

  2. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments

    Science.gov (United States)

    Morales Betancourt, R.; Galvis, B.; Balachandran, S.; Ramos-Bonilla, J. P.; Sarmiento, O. L.; Gallo-Murcia, S. M.; Contreras, Y.

    2017-05-01

    This research determined intake dose of fine particulate matter (PM2.5), equivalent black carbon (eBC), and number of sub-micron particles (Np) for commuters in Bogotá, Colombia. Doses were estimated through measurements of exposure concentration, a surrogate of physical activity, as well as travel times and speeds. Impacts of travel mode, traffic load, and street configuration on dose and exposure were explored. Three road segments were selected because of their different traffic loads and composition, and dissimilar street configuration. The transport modes considered include active modes (walking and cycling) and motorized modes (bus, car, taxi, and motorcycle). Measurements were performed simultaneously in the available modes at each road segment. High average eBC concentrations were observed throughout the campaign, ranging from 20 to 120 μgm-3 . Commuters in motorized modes experienced significantly higher exposure concentrations than pedestrians and bicyclists. The highest average concentrations of PM2.5, eBC , and Np were measured inside the city's Bus Rapid Transit (BRT) system vehicles. Pedestrians and bicycle users in an open street configuration were exposed to the lowest average concentrations of PM2.5 and eBC , six times lower than those experienced by commuters using the BRT in the same street segment. Pedestrians experienced the highest particulate matter intake dose in the road segments studied, despite being exposed to lower concentrations than commuters in motorized modes. Average potential dose of PM2.5 and eBC per unit length traveled were nearly three times higher for pedestrians in a street canyon configuration compared to commuters in public transport. Slower travel speed and elevated inhalation rates dominate PM dose for pedestrians. The presence of dedicated bike lanes on sidewalks has a significant impact on reducing the exposure concentration for bicyclists compared to those riding in mixed traffic lanes. This study proposes a simple

  3. In-vehicle carbon dioxide concentration in commuting cars in Bangkok, Thailand.

    Science.gov (United States)

    Luangprasert, Maytat; Vasithamrong, Chainarin; Pongratananukul, Suphasit; Chantranuwathana, Sunhapos; Pumrin, Suree; De Silva, I P D

    2017-05-01

    It is known that in-vehicle carbon dioxide (CO 2 ) concentration tends to increase due to occupant exhalation when the HVAC (heating, ventilation, and air conditioning) air is in recirculation mode. Field experiments were conducted to measure CO 2 concentration during typical commute in Bangkok, Thailand. The measured concentrations agreed with the concentration predicted using first-order mass balance equation, in both recirculating and outside air modes. The long-term transient decay of the concentration when the vehicle was parked and the HVAC system was turned off was also studied. This decay was found to follow Fickian diffusion process. The paper also provides useful operational details of the automotive HVAC system and fresh air ventilation exchange between cabin interior and exterior. Drivers in tropical Asian countries typically use HVAC recirculation mode in their automobiles. This behavior leads to excessive buildup of cabin CO 2 concentration levels. The paper describes the CO 2 buildup in a typical commute in Bangkok, Thailand. Auto manufacturers can potentially take measures to alleviate such high concentration levels. The paper also discusses the diffusion of CO 2 through the vehicle envelope, an area that has never been investigated before.

  4. Adsorption of SO{sub 2} on activated carbon for low gas concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, P.; Wanko, H.; Ulrich, J. [Martin-Luther-Universitaet Halle-Wittenberg, Zentrum fuer Ingenieurwissenschaften, Verfahrenstechnik/TVT, Halle (Saale) (Germany)

    2007-05-15

    Adsorption experiments of SO{sub 2} on activated carbon has been carried out for low concentrations (about 100 ppm) at room temperature (15 to 33 C) with varying humidity in the air. The breakthrough curves show that at high relative humidity or relative higher SO{sub 2} concentration, the load capacity increases with respect to temperature. The humidity of the air is also of benefit to the load capacity of SO{sub 2}. When an adsorption process is interrupted and the activated carbon is kept closed for a while, the SO{sub 2} concentration at the exit of a fixed-bed adsorber is similar to that of the fresh activated carbon and begins at a very low value. It appears that the sorption potential has been refreshed after the storage period. Analysis of desorption experiments by simultaneous thermal analysis combined with mass spectrometry (MS) after loading, shows that the physisorbed SO{sub 2} and H{sub 2}O are desorbed at low temperatures. At higher temperatures, the MS peak of SO{sub 2} and H{sub 2}O occur at the same time. Compared with desorption immediately after loading, after one day, the desorption peak due to the physisorbed SO{sub 2} disappears. From this, it can be concluded that the refreshment of the loading capacity of the activated carbon after storage is mainly due to a change in the nature of the SO{sub 2} from a physisorbed state to a chemisorbed form. The same mechanism leads to a continuous refreshment of the sorption potential by means of a chemical reaction during the adsorption process. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  5. Inorganic Constituents in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović A.

    2006-02-01

    Full Text Available Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates,minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fractions of trace elements usually decrease when the rank of coal increases.Fractions of the inorganic elements are different, depending on the coal bed and basin. A varietyof analytical methods and techniques can be used to determine the mass fractions, mode ofoccurrence, and distribution of organic constituents in coal. There are many different instrumentalmethods for analysis of coal and coal products but atomic absorption spectroscopy – AAS is theone most commonly used. Fraction and mode of occurrence are one of the main factors that haveinfluence on transformation and separation of inorganic constituents during coal conversion.Coal, as an important world energy source and component for non-fuels usage, will be continuouslyand widely used in the future due to its relatively abundant reserves. However, there is aconflict between the requirements for increased use of coal on the one hand and less pollution onthe other. It’s known that the environmental impacts, due to either coal mining or coal usage, canbe: air, water and land pollution. Although, minor components, inorganic constituents can exert asignificant influence on the economic value, utilization, and environmental impact of the coal.

  6. A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry.

    Science.gov (United States)

    Albalasmeh, Ammar A; Berhe, Asmeret Asefaw; Ghezzehei, Teamrat A

    2013-09-12

    A new UV spectrophotometry based method for determining the concentration and carbon content of carbohydrate solution was developed. This method depends on the inherent UV absorption potential of hydrolysis byproducts of carbohydrates formed by reaction with concentrated sulfuric acid (furfural derivatives). The proposed method is a major improvement over the widely used Phenol-Sulfuric Acid method developed by DuBois, Gilles, Hamilton, Rebers, and Smith (1956). In the old method, furfural is allowed to develop color by reaction with phenol and its concentration is detected by visible light absorption. Here we present a method that eliminates the coloration step and avoids the health and environmental hazards associated with phenol use. In addition, avoidance of this step was shown to improve measurement accuracy while significantly reducing waiting time prior to light absorption reading. The carbohydrates for which concentrations and carbon content can be reliably estimated with this new rapid Sulfuric Acid-UV technique include: monosaccharides, disaccharides and polysaccharides with very high molecular weight. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Ambient concentrations and insights on organic and elemental carbon dynamics in São Paulo, Brazil

    Science.gov (United States)

    Monteiro dos Santos, Djacinto A.; Brito, Joel F.; Godoy, José Marcus; Artaxo, Paulo

    2016-11-01

    The São Paulo Metropolitan Area (SPMA) is a megacity with about 20 million people and about 8 million vehicles, most of which are fueled with a significant fraction of ethanol - making it a unique case worldwide. This study presents organic and elemental carbon measurements using thermal-optical analysis from quartz filters collected in four sampling sites within the SPMA. Overall Organic Carbon (OC) concentration was comparable at all sites, where Street Canyon had the highest concentration (3.37 μg m-3) and Park site the lowest (2.65 μg m-3). Elemental Carbon (EC), emitted as result of incomplete combustion, has been significantly higher at the Street Canyon site (6.11 μg m-3) in contrast to all other three sites, ranging from 2.25 μg m-3 (Downtown) to 1.50 μg m-3 (Park). For all sampling sites, the average OC:EC ratio are found on the lower bound (pollution dynamics in a megacity impacted by a unique vehicular fleet. It also shows the need of implementation of EURO VI technology and to improve mass transport systems such a metro and more bus corridors to allow better transport for 19 million people in the SPMA.

  8. Effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root architecture and anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Lee-Ho, E.; Walton, L.J.; Reid, D.M.; Yeung, E.C.; Kurepin, L.V. [Calgary Univ., AB (Canada). Dept. of Biology

    2007-03-15

    Plant root growth is known to be influenced by higher levels of atmospheric carbon dioxide (CO{sub 2}). Roots of some species grown in hydroponics under elevated CO{sub 2} concentrations may be more competitive sinks for photosynthetic assimilates than roots grown under lower CO{sub 2} conditions. Root branching patterns may also be influenced by elevated CO{sub 2} concentrations. Studies have also shown that factors such as soil compaction, salinity and the availability of nitrate, phosphorous, oxygen and water also influence root growth, and the effects of higher CO{sub 2} on roots can be confounded by such environmental factors. This study evaluated the effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root growth, morphology, and architecture. Both ambient and elevated CO{sub 2} levels were used along with various sucrose concentrations. The study revealed that A. thaliana plants grown on a phytagar medium in small chambers with elevated CO{sub 2} had longer roots, more lateral root growth than plants grown in ambient CO{sub 2}. Roots in elevated CO{sub 2} were found to have wider root diameters, and more secondary growth. The addition of sucrose to the media closely resembled the effects of elevated CO{sub 2}. In addition, the increase in sucrose concentration had a bigger effect on root morphology under ambient, than elevated CO{sub 2}. Therefore, both elevated CO{sub 2} and increased sucrose concentrations promote root growth by increasing their number, length, and diameter. The dichotomy branching index (DBI) also dropped resulting in a more dichotomous branching pattern. 34 refs., 5 figs.

  9. Assessment of Global Carbon Dioxide Concentration Using MODIS and GOSAT Data

    Directory of Open Access Journals (Sweden)

    Hiroshi Tani

    2012-11-01

    Full Text Available Carbon dioxide (CO2 is the most important greenhouse gas (GHG in the atmosphere and is the greatest contributor to global warming. CO2 concentration data are usually obtained from ground observation stations or from a small number of satellites. Because of the limited number of observations and the short time series of satellite data, it is difficult to monitor CO2 concentrations on regional or global scales for a long time. The use of the remote sensing data such as the Advanced Very High Resolution Radiometer (AVHRR or Moderate Resolution Imaging Spectroradiometer (MODIS data can overcome these problems, particularly in areas with low densities of CO2 concentration watch stations. A model based on temperature (MOD11C3, vegetation cover (MOD13C2 and MOD15A2 and productivity (MOD17A2 of MODIS (which we have named the TVP model was developed in the current study to assess CO2 concentrations on a global scale. We assumed that CO2 concentration from the Thermal And Near infrared Sensor for carbon Observation (TANSO aboard the Greenhouse gases Observing SATellite (GOSAT are the true values and we used these values to check the TVP model accuracy. The results indicate that the accuracy of the TVP model is different in different continents: the greatest Pearson’s correlation coefficient (R2 was 0.75 in Eurasia (RMSE = 1.16 and South America (RMSE = 1.17; the lowest R2 was 0.57 in Australia (RMSE = 0.73. Compared with the TANSO-observed CO2 concentration (XCO2, we found that the accuracy throughout the World is between −2.56~3.14 ppm. Potential sources of TVP model uncertainties were also analyzed and identified.

  10. Assessment of global carbon dioxide concentration using MODIS and GOSAT data.

    Science.gov (United States)

    Guo, Meng; Wang, Xiufeng; Li, Jing; Yi, Kunpeng; Zhong, Guosheng; Tani, Hiroshi

    2012-11-26

    Carbon dioxide (CO(2)) is the most important greenhouse gas (GHG) in the atmosphere and is the greatest contributor to global warming. CO(2) concentration data are usually obtained from ground observation stations or from a small number of satellites. Because of the limited number of observations and the short time series of satellite data, it is difficult to monitor CO(2) concentrations on regional or global scales for a long time. The use of the remote sensing data such as the Advanced Very High Resolution Radiometer (AVHRR) or Moderate Resolution Imaging Spectroradiometer (MODIS) data can overcome these problems, particularly in areas with low densities of CO(2) concentration watch stations. A model based on temperature (MOD11C3), vegetation cover (MOD13C2 and MOD15A2) and productivity (MOD17A2) of MODIS (which we have named the TVP model) was developed in the current study to assess CO(2) concentrations on a global scale. We assumed that CO(2) concentration from the Thermal And Near infrared Sensor for carbon Observation (TANSO) aboard the Greenhouse gases Observing SATellite (GOSAT) are the true values and we used these values to check the TVP model accuracy. The results indicate that the accuracy of the TVP model is different in different continents: the greatest Pearson's correlation coefficient (R2) was 0.75 in Eurasia (RMSE = 1.16) and South America (RMSE = 1.17); the lowest R2 was 0.57 in Australia (RMSE = 0.73). Compared with the TANSO-observed CO(2) concentration (XCO(2)), we found that the accuracy throughout the World is between -2.56~3.14 ppm. Potential sources of TVP model uncertainties were also analyzed and identified.

  11. Estimation of local concentration from measurements of stochastic adsorption dynamics using carbon nanotube-based sensors

    International Nuclear Information System (INIS)

    Jang, Hong; Lee, Jay H.; Braatz, Richard D.

    2016-01-01

    This paper proposes a maximum likelihood estimation (MLE) method for estimating time varying local concentration of the target molecule proximate to the sensor from the time profile of monomolecular adsorption and desorption on the surface of the sensor at nanoscale. Recently, several carbon nanotube sensors have been developed that can selectively detect target molecules at a trace concentration level. These sensors use light intensity changes mediated by adsorption or desorption phenomena on their surfaces. The molecular events occurring at trace concentration levels are inherently stochastic, posing a challenge for optimal estimation. The stochastic behavior is modeled by the chemical master equation (CME), composed of a set of ordinary differential equations describing the time evolution of probabilities for the possible adsorption states. Given the significant stochastic nature of the underlying phenomena, rigorous stochastic estimation based on the CME should lead to an improved accuracy over than deterministic estimation formulated based on the continuum model. Motivated by this expectation, we formulate the MLE based on an analytical solution of the relevant CME, both for the constant and the time-varying local concentrations, with the objective of estimating the analyte concentration field in real time from the adsorption readings of the sensor array. The performances of the MLE and the deterministic least squares are compared using data generated by kinetic Monte Carlo (KMC) simulations of the stochastic process. Some future challenges are described for estimating and controlling the concentration field in a distributed domain using the sensor technology.

  12. Declines in the dissolved organic carbon (DOC) concentration and flux from the UK

    Science.gov (United States)

    Worrall, Fred; Howden, Nicholas J. K.; Burt, Tim P.; Bartlett, Rebecca

    2018-01-01

    Increased concentrations of dissolved organic carbon (DOC) have been reported for many catchments across the northern hemisphere. Hypotheses to explain the increase have varied (eg. increasing air temperature or recovery from acidification) but one test of alternative hypotheses is the trend over the recent decade, with the competing hypotheses predicting: continuing increase; the rate of increase declining with time; and even decrease in concentration. In this study, records of DOC concentration in non-tidal rivers across the UK were examined for the period 2003-2012. The study found that: Of the 62 decade-long concentration trends that could be examined, 3 showed a significant increase, 17 experienced no significant change and 42 showed a significant decrease; in 28 of the 42 significant decreases, a significant step change was apparent with step changes being a decrease in concentration in every case. Of the 118 sites where annual flux and concentration records were available from 1974, 28 showed a significant step change down in flux and 52 showed a step down in concentration. The modal year of the step changes was 2000 with no step changes observed before 1982. At the UK national scale, DOC flux peaked in 2005 at 1354 ktonnes C/yr (5.55 tonnes C/km2/yr) but has declined since. The study suggests that there is a disconnection between DOC records from large catchments at their tidal limits and complementary records from headwater catchments, which means that mechanisms believed to be driving increases in DOC concentrations in headwaters will not necessarily be those controlling trends in DOC concentration further downstream. We propose that the changes identified here have been driven by changes in in-stream processing and changes brought about by the Urban Waste Water Treatment Directive. Therefore, signals identified in headwater catchments may bear little relation to those observed in large rivers much further downstream and vice versa.

  13. Substrate turnover at low carbon concentrations in a model drinking water distribution system

    DEFF Research Database (Denmark)

    Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    concentrations of carbon allowed for a close monitoring of the kinetics of substrate turnover (less than 10 μg C/L 14C-benzoic acid was added). The mineralisation of benzoic acid was rapid and could be modelled by a no-growth Monod expression using a maximum degradation rate of 0.59 μg C/L/h and a half......-saturation constant of 2.6 μg C/L. Only 2–4% of the carbon being degraded was incorporated into the biofilm. The results from our study suggest that the cellspecific respiration of biofilm was much higher than for suspended bacteria, and that the growth rate of the bulk phase bacteria was approximately 10 times...

  14. Carbon Balance at Landscape Level inferred fromTower CO2 Concentration Measurements

    Science.gov (United States)

    Chen, J. M.; Chen, B.; Higuchi, K.; Chan, D.; Shashkov, A.; Lin, H.; Liu, J.

    2003-04-01

    Terrestrial carbon sinks are considerable in the global carbon budget, but the accumulation of carbon in terrestrial ecosystems is very small (~0.2% per year) relative to the total carbon stocks in forests. Currently, eddy-covariance instruments mounted on towers are the only reliable means to measure carbon balance of a land surface, albeit limited to small areas and not free of caveats. In our quest of understanding the collective performance of ecosystems under the changing climate, it is highly desirable to have the ability to acquire carbon cycle information for large areas (landscape) consisting of patches of different ecosystems. For this purpose we explored methodologies of inferring carbon cycle information from tower CO2 concentration measurements affected by large areas (100-10000 km2). An ecosystem model named Boreal Ecosystem Productivity Simulator (BEPS) is coupled with a carbon-specific Vertical Diffusion Scheme (VDS) in order to decipher temporal variations in CO2 for landscape-level photosynthesis and respiration information. The coupled BEPS-VDS is applied to a unique 9-year (1990-2000 with 1997-8 missing data) 5-minute CO2 record measured on a 40-m tower over boreal forests near Fraserdale, Ontario, Canada. Over the period, the mean diurnal amplitude of the measured CO2 at 40 m increased by 5.58 ppmv, or 28% in the growing season. The increase in nighttime ecosystem respiration, causing the increase in the daily maximum CO2 concentration, was responsible for 65% of the increase in the diurnal amplitude, i.e., 3.61 ppmv, corresponding to an increase in the mean daily air temperature by about 2.77 degC and precipitation by 5% over the same period. The rest (35%) is explained by the increase in ecosystem daytime photosynthesis, causing the decrease in the daily minimum CO2 concentration. As the nighttime stable boundary layer (SBL) (270-560 m) was much shallower than the daytime convective boundary layer (CBL) (1000-1600 m), the increase in

  15. Black carbon and particulate matter (PM2.5) concentrations in New York City's subway stations.

    Science.gov (United States)

    Vilcassim, M J Ruzmyn; Thurston, George D; Peltier, Richard E; Gordon, Terry

    2014-12-16

    The New York City (NYC) subway is the main mode of transport for over 5 million passengers on an average weekday. Therefore, airborne pollutants in the subway stations could have a significant impact on commuters and subway workers. This study looked at black carbon (BC) and particulate matter (PM2.5) concentrations in selected subway stations in Manhattan. BC and PM2.5 levels were measured in real time using a Micro-Aethalometer and a PDR-1500 DataRAM, respectively. Simultaneous samples were also collected on quartz filters for organic and elemental carbon (OC/EC) analysis and on Teflon filters for gravimetric and trace element analysis. In the underground subway stations, mean real time BC concentrations ranged from 5 to 23 μg/m(3), with 1 min average peaks >100 μg/m(3), while real time PM2.5 levels ranged from 35 to 200 μg/m(3). Mean EC levels ranged from 9 to 12.5 μg/m(3). At street level on the same days, the mean BC and PM2.5 concentrations were below 3 and 10 μg/m(3), respectively. This study shows that both BC soot and PM levels in NYC's subways are considerably higher than ambient urban street levels and that further monitoring and investigation of BC and PM subway exposures are warranted.

  16. Low black carbon concentration in agricultural soils of central and northern Ethiopia.

    Science.gov (United States)

    Yli-Halla, Markku; Rimhanen, Karoliina; Muurinen, Johanna; Kaseva, Janne; Kahiluoto, Helena

    2018-08-01

    Soil carbon (C) represents the largest terrestrial carbon stock and is key for soil productivity. Major fractions of soil C consist of organic C, carbonates and black C. The turnover rate of black C is lower than that of organic C, and black C abundance decreases the vulnerablility of soil C stock to decomposition under climate change. The aim of this study was to determine the distribution of soil C in different pools and impact of agricultural management on the abundance of different species. Soil C fractions were quantified in the topsoils (0-15cm) of 23 sites in the tropical highlands of Ethiopia. The sites in central Ethiopia represented paired plots of agroforestry and adjacent control plots where cereal crops were traditionally grown in clayey soils. In the sandy loam and loam soils of northern Ethiopia, the pairs represented restrained grazing with adjacent control plots with free grazing, and terracing with cereal-based cropping with adjacent control plots without terracing. Soil C contained in carbonates, organic matter and black C along with total C was determined. The total C median was 1.5% (range 0.3-3.6%). The median proportion of organic C was 85% (range 53-94%), 6% (0-41%) for carbonate C and 6% (4-21%) for black C. An increase was observed in the organic C and black C fractions attributable to agroforestry and restrained grazing. The very low concentration of the relatively stable black C fraction and the dominance of organic C in these Ethiopian soils suggest vulnerability to degradation and the necessity for cultivation practices maintaining the C stock. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Strength of briquettes made of Cu concentrate and carbon-bearing materials

    Directory of Open Access Journals (Sweden)

    B. Oleksiak

    2015-01-01

    Full Text Available In the present paper, results of the research on application of residual fine-grained, carbon-bearing materials as coke substitutes in the shaft process of copper matter smelting are discussed. The addition was introduced into the charge as a component of concentrate-made briquettes, then, its effects on properties of the obtained briquettes were analysed for their compressive and drop strengths. The results of investigations confirmed the potential use of proposed alternative fuels (as briquette components in the process of copper matte smelting.

  18. Structure Manipulation of Carbon Aerogels by Managing Solution Concentration of Precursor and Its Application for CO2 Capture

    Directory of Open Access Journals (Sweden)

    Pingping He

    2018-04-01

    Full Text Available A series of carbon aerogels were synthesized by polycondensation of resorcinol and formaldehyde, and their structure was adjusted by managing solution concentration of precursors. Carbon aerogels were characterized by X-ray diffraction (XRD, Raman, Fourier transform infrared spectroscopy (FTIR, N2 adsorption/desorption and scanning electron microscope (SEM technologies. It was found that the pore structure and morphology of carbon aerogels can be efficiently manipulated by managing solution concentration. The relative micropore volume of carbon aerogels, defined by Vmicro/Vtol, first increased and then decreased with the increase of solution concentration, leading to the same trend of CO2 adsorption capacity. Specifically, the CA-45 (the solution concentration of precursors is 45 wt% sample had the highest CO2 adsorption capacity (83.71 cm3/g and the highest selectivity of CO2/N2 (53 at 1 bar and 0 °C.

  19. Carbon dioxide as working fluid for medium and high-temperature concentrated solar thermal systems

    Directory of Open Access Journals (Sweden)

    Van Duong

    2014-03-01

    Full Text Available This paper explores the benefits and drawbacks of using carbon dioxide in solar thermal systems at medium and high operating temperatures. For medium temperatures, application of CO2 in non-imaging-optics based compound parabolic concentrators (CPC combined with evacuated-tube collectors is studied. These collectors have been shown to obtain efficiencies higher than 40% operating at around 200℃ without the need of tracking. Validated numerical models of external compound parabolic concentrators (XCPCs are used to simulate their performance using CO2 as working fluid. For higher temperatures, a mathematical model is implemented to analyze the operating performance of a parabolic trough solar collector (PTC using CO2 at temperatures between 100℃ and 600℃.

  20. Linking CDOM spectral absorption to dissolved organic carbon concentrations and loadings in boreal estuaries

    DEFF Research Database (Denmark)

    Asmala, Eero; Stedmon, Colin A.; Thomas, David N.

    2012-01-01

    concentrations across the salinity gradient and ranged from 1.67 to 33.4 m−1. The link between DOC and CDOM was studied using a range of wavelengths and algorithms. Wavelengths between 250 and 270 nm gave the best predictions with single linear regression. Total dissolved iron was found to influence......The quantity of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) in three Finnish estuaries (Karjaanjoki, Kyrönjoki and Kiiminkijoki) was investigated, with respect to predicting DOC concentrations and loadings from spectral CDOM absorption measurements. Altogether 87...... the prediction in wavelengths above 520nm. Despite significant seasonal and spatial differences in DOC–CDOM models, a universal relationship was tested with an independent data set and found to be robust. DOC and CDOM yields (loading/catchment area) from the catchments ranged from 1.98 to 5.44gCm−2yr−1, and 1...

  1. Modelling Black Carbon concentrations in two busy street canyons in Brussels using CANSBC

    Science.gov (United States)

    Brasseur, O.; Declerck, P.; Heene, B.; Vanderstraeten, P.

    2015-01-01

    This paper focused on modelling Black Carbon (BC) concentrations in two busy street canyons, the Crown and Belliard Street in Brussels. The used original Operational Street Pollution Model was adapted to BC by eliminating the chemical module and is noted here as CANSBC. Model validations were performed using temporal BC data from the fixed measurement network in Brussels. Subsequently, BC emissions were adjusted so that simulated BC concentrations equalled the observed ones, averaged over the whole period of simulation. Direct validations were performed for the Crown Street, while BC model calculations for the Belliard Street were validated indirectly using the linear relationship between BC and NOx. Concerning the Crown Street, simulated and observed half-hourly BC concentrations correlated well (r = 0.74) for the period from July 1st, 2011 till June 30th, 2013. In particular, CANSBC performed very well to simulate the monthly and diurnal evolutions of averaged BC concentrations, as well as the difference between weekdays and weekends. This means that the model correctly handled the meteorological conditions as well as the variation in traffic emissions. Considering dispersion, it should however be noted that BC concentrations are better simulated under stable than under unstable conditions. Even if the correlation on half-hourly NOx concentrations was slightly lower (r = 0.60) than the one of BC, indirect validations of CANSBC for the Belliard Street yielded comparable results and conclusions as described above for the Crown Street. Based on our results, it can be stated that CANSBC is suitable to accurately simulate BC concentrations in the street canyons of Brussels, under the following conditions: (i) accurate vehicle counting data is available to correctly estimate traffic emissions, and (ii) vehicle speeds are measured in order to improve emission estimates and to take into account the impact of the turbulence generated by moving vehicles on the local

  2. Effects of potential and concentration of bicarbonate solution on stress corrosion cracking of annealed carbon steel

    International Nuclear Information System (INIS)

    Haruna, Takumi; Zhu, Liehong; Murakami, Makoto; Shibata, Toshio

    2000-01-01

    Effects of potential and concentration of bicarbonate on stress corrosion cracking (SCC) of annealed SM 400 B carbon steel has been investigated in bicarbonate solutions at 343 K. The surface of annealed specimen had decarburized layer of about 0. 5 mm thickness. A potentiostatic slow strain rate testing apparatus equipped with a charge coupled device camera system was employed to evaluate SCC susceptibility from the viewpoint of the crack behavior. In a constant bicarbonate concentration of 1 M, cracks were observed in the potential range from -800 to 600 mV Ag/ A gCl . and especially, the initiation and the propagation of the cracks were accelerated at -600 mV. At a constant potential of -600 mV, cracks were observed in the concentration range from 0.001 to 1 M, and the initiation and the propagation of the cracks were suppressed as the concentration decreased. Polarization curves for the decarburized surface were measured with two different scan rates. High SCC susceptibility may be expected in the potential range where the difference between the two current densities is large. It was found in this system that the potential with the maximum difference in the current density was -600 mV for 1 M bicarbonate solution, and the potential increased with a decrease in the concentration of bicarbonate. This means that an applied potential of -600 mV provides the highest SCC susceptibility for 1 M bicarbonate solution, and that the SCC susceptibility decreases as the concentration decreases. These findings support the dependence of the actual SCC behavior on the potential and the concentration of bicarbonate. (author)

  3. Deficiency of Carbonic Anhydrase II Results in a Urinary Concentrating Defect

    Directory of Open Access Journals (Sweden)

    Devishree Krishnan

    2018-01-01

    Full Text Available Carbonic anhydrase II (CAII is expressed along the nephron where it interacts with a number of transport proteins augmenting their activity. Aquaporin-1 (AQP1 interacts with CAII to increase water flux through the water channel. Both CAII and aquaporin-1 are expressed in the thin descending limb (TDL; however, the physiological role of a CAII-AQP1 interaction in this nephron segment is not known. To determine if CAII was required for urinary concentration, we studied water handling in CAII-deficient mice. CAII-deficient mice demonstrate polyuria and polydipsia as well as an alkaline urine and bicarbonaturia, consistent with a type III renal tubular acidosis. Natriuresis and hypercalciuria cause polyuria, however, CAII-deficient mice did not have increased urinary sodium nor calcium excretion. Further examination revealed dilute urine in the CAII-deficient mice. Urinary concentration remained reduced in CAII-deficient mice relative to wild-type animals even after water deprivation. The renal expression and localization by light microscopy of NKCC2 and aquaporin-2 was not altered. However, CAII-deficient mice had increased renal AQP1 expression. CAII associates with and increases water flux through aquaporin-1. Water flux through aquaporin-1 in the TDL of the loop of Henle is essential to the concentration of urine, as this is required to generate a concentrated medullary interstitium. We therefore measured cortical and medullary interstitial concentration in wild-type and CAII-deficient mice. Mice lacking CAII had equivalent cortical interstitial osmolarity to wild-type mice: however, they had reduced medullary interstitial osmolarity. We propose therefore that reduced water flux through aquaporin-1 in the TDL in the absence of CAII prevents the generation of a maximally concentrated medullary interstitium. This, in turn, limits urinary concentration in CAII deficient mice.

  4. Particulate Matter and Black Carbon Concentration Levels in Ashaiman, a Semi-Urban Area of Ghana, 2008

    OpenAIRE

    Sam-Quarcoo Dotse; Joshua Kwame Asane; F.G. Ofosu

    2012-01-01

    Particulate matter and black carbon concentration levels in Ashaiman, a semi-urban area of Ghana was assessed. Using IVL PM2.5 and PM10 particle samplers, airborne particulate matter was sampled on Teflon filters for a period of three months. In addition to determination of particulate mass in the two fractions by gravimetrical method, aerosol filters were analyzed to determine Black Carbon (BC) concentration levels using the black smoke method. BC fractions in fine and coarse, together with ...

  5. [Carbon emissions and low-carbon regulation countermeasures of land use change in the city and town concentrated area of central Liaoning Province, China].

    Science.gov (United States)

    Xi, Feng-ming; Liang, Wen-juan; Niu, Ming-fen; Wang, Jiao-yue

    2016-02-01

    Carbon emissions due to land use change have an important impact on global climate change. Adjustment of regional land use patterns has a great scientific significance to adaptation to a changing climate. Based on carbon emission/absorption parameters suitable for Liaoning Province, this paper estimated the carbon emission of land use change in the city and town concentrated area of central Liaoning Province. The results showed that the carbon emission and absorption were separately 308.51 Tg C and 11.64 Tg C from 1997 to 2010. It meant 3.8% of carbon emission. was offset by carbon absorption. Among the 296.87 Tg C net carbon emission of land use change, carbon emission of remaining land use type was 182.24 Tg C, accounting for 61.4% of the net carbon emission, while the carbon emission of land use transformation was 114.63 Tg C, occupying the rest 38.6% of net carbon emission. Through quantifying the mapping relationship between land use change and carbon emission, it was shown that during 1997-2004 the contributions of remaining construction land (40.9%) and cropland transform ation to construction land (40.6%) to carbon emission were larger, but the greater contributions to carbon absorption came from cropland transformation to forest land (38.6%) and remaining forest land (37.5%). During 2004-2010, the land use types for carbon emission and absorption were the same to the period of 1997-2004, but the contribution of remaining construction land to carbon emission increased to 80.6%, and the contribution of remaining forest land to carbon absorption increased to 71.7%. Based on the carbon emission intensity in different land use types, we put forward the low-carbon regulation countermeasures of land use in two aspects. In carbon emission reduction, we should strict control land transformation to construction land, increase the energy efficiency of construction land, and avoid excessive development of forest land and water. In carbon sink increase, we should

  6. Effect of cloric acid concentration on corrosion behavior of Ni/Cr coated on carbon steel

    Science.gov (United States)

    Desiati, Resetiana Dwi; Sugiarti, Eni; Thosin, K. A. Zaini

    2018-05-01

    Corrosion is one of the causes of metal degradation. Carbon steel (Fe) is easy to corrode in the extreme environment. Coating on carbon steel is required to improve corrosion resistance owing to protection or hindrance to extreme environmental conditions. In this present work, carbon steel was coated by electroplating techniques for nickel and pack cementation for chrome. The corrosion rate test was performed by Weight Loss method on FeNiCr, FeNi, FeCr and uncoated Fe as comparator which was dyed in 37% HCl and 25% HCl which had previously been measured dimension and mass. The immersion test result of FeNiCr and FeNi specimen were better than FeCr and uncoated Fe in terms of increasing corrosion resistance. The corrosion rate for 56 hours in 37% HCl for FeNiCr was 1.592 mm/y and FeNi was 3.208 mm/y, FeCr only lasted within 32 hours with corrosion rate was 6.494 mm/y. Surface of the sample after the corrosion test there was pitting, crevice corrosion and alloy cracking caused by chloride. The higher the concentration of HCl the faster the corrosion rate.

  7. Biological nitrogen and carbon removal in a gravity flow biomass concentrator reactor for municipal sewage treatment.

    Science.gov (United States)

    Scott, Daniel; Hidaka, Taira; Campo, Pablo; Kleiner, Eric; Suidan, Makram T; Venosa, Albert D

    2013-01-01

    A novel membrane system, the Biomass Concentrator Reactor (BCR), was evaluated as an alternative technology for the treatment of municipal wastewater. Because the BCR is equipped with a membrane whose average poresize is 20 μm (18-28 μm), the reactor requires low-pressure differential to operate (gravity). The effectiveness of this system was evaluated for the removal of carbon and nitrogen using two identical BCRs, identified as conventional and hybrid, that were operated in parallel. The conventional reactor was operated under full aerobic conditions (i.e., organic carbon and ammonia oxidation), while the hybrid reactor incorporated an anoxic zone for nitrate reduction as well as an aerobic zone for organic carbon and ammonia oxidation. Both reactors were fed synthetic wastewater at a flow rate of 71 L d(-1), which resulted in a hydraulic retention time of 9 h. In the case of the hybrid reactor, the recycle flow from the aerobic zone to the anoxic zone was twice the feed flow rate. Reactor performance was evaluated under two solids retention times (6 and 15 d). Under these conditions, the BCRs achieved nearly 100% mixed liquor solids separation with a hydraulic head differential of less than 2.5 cm. The COD removal efficiency was over 90%. Essentially complete nitrification was achieved in both systems, and nitrogen removal in the hybrid reactor was close to the expected value (67%). Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Large reductions in urban black carbon concentrations in the United States between 1965 and 2000

    Science.gov (United States)

    Kirchstetter, Thomas W.; Preble, Chelsea V.; Hadley, Odelle L.; Bond, Tami C.; Apte, Joshua S.

    2017-02-01

    Long-term pollutant concentration trends can be useful for evaluating air quality effects of emission controls and historical transitions in energy sources. We employed archival records of coefficient of haze (COH), a now-retired measure of light-absorbing particulate matter, to re-construct historical black carbon (BC) concentrations at urban locations in the United States (U.S.). The following relationship between COH and BC was determined by reinstating into service COH monitors beside aethalometers for two years in Vallejo and one year in San Jose, California: BC (μg m-3) = 6.7COH + 0.1, R2 = 0.9. Estimated BC concentrations in ten states stretching from the East to West Coast decreased markedly between 1965 and 1980: 5-fold in Illinois, Ohio, and Virginia, 4-fold in Missouri, and 2.5-fold in Pennsylvania. Over the period from the mid-1960s to the early 2000s, annual average BC concentrations in New Jersey and California decreased from 13 to 2 μg m-3 and 4 to 1 μg m-3, respectively, despite concurrent increases in fossil fuel consumption from 1.6 to 2.1 EJ (EJ = 1018 J) in New Jersey and 4.2 to 6.4 EJ in California. New Jersey's greater reliance on BC-producing heavy fuel oils and coal in the 1960s and early 1970s and subsequent transition to cleaner fuels explains why the decrease was larger in New Jersey than California. Patterns in seasonal and weekly BC concentrations and energy consumption trends together indicate that reducing wintertime emissions - namely substituting natural gas and electricity for heavy fuel oil in the residential sector - and decreasing emissions from diesel vehicles contributed to lower ambient BC concentrations. Over the period of study, declining concentrations of BC, a potent and short-lived climate warming pollutant, contrast increasing fossil fuel carbon dioxide (CO2) emissions in the U.S. Declining BC emissions may have had the benefit of mitigating some atmospheric warming driven by increased CO2 emissions with

  9. Estimating dissolved organic carbon concentration in turbid coastal waters using optical remote sensing observations

    Science.gov (United States)

    Cherukuru, Nagur; Ford, Phillip W.; Matear, Richard J.; Oubelkheir, Kadija; Clementson, Lesley A.; Suber, Ken; Steven, Andrew D. L.

    2016-10-01

    Dissolved Organic Carbon (DOC) is an important component in the global carbon cycle. It also plays an important role in influencing the coastal ocean biogeochemical (BGC) cycles and light environment. Studies focussing on DOC dynamics in coastal waters are data constrained due to the high costs associated with in situ water sampling campaigns. Satellite optical remote sensing has the potential to provide continuous, cost-effective DOC estimates. In this study we used a bio-optics dataset collected in turbid coastal waters of Moreton Bay (MB), Australia, during 2011 to develop a remote sensing algorithm to estimate DOC. This dataset includes data from flood and non-flood conditions. In MB, DOC concentration varied over a wide range (20-520 μM C) and had a good correlation (R2 = 0.78) with absorption due to coloured dissolved organic matter (CDOM) and remote sensing reflectance. Using this data set we developed an empirical algorithm to derive DOC concentrations from the ratio of Rrs(412)/Rrs(488) and tested it with independent datasets. In this study, we demonstrate the ability to estimate DOC using remotely sensed optical observations in turbid coastal waters.

  10. Concentration of carbonate admixture from opalized tuff into one separate fraction

    International Nuclear Information System (INIS)

    Bogoevski, Slobodan; Boshkovski, Boshko

    2016-01-01

    White opalized tuff (from the Strmosh locality, Probishtip), as a raw silicate amorphous material, contains some quantity of admixtures. The total quantity of admixtures amounts is about 8% mass. Mine powdery ingredients are homogeneously distributed into the basic silicate mass.Carbonate material is a significant part of present admixtures, and it is possible to be separated with controlled milling. Milling parameters (type and time of milling) enables to concentrate the present CaCO 3 in granulometric fraction<0.032 μm, after 30 min. milling. Reliable evidence about afore mentioned separation is shown with simultaneous view of the results of silicate chemical analysis, DT/TG analysis (750 - 850 °C), and sieve-analysis.From the X-ray analysis it is evident that the present carbonate material exists in crypto crystal to amorphous state. The space where CaCO 3 is hidden, presents the place between basic silicate particles inside the groups, generally with dimensions about 40 to 60 μm. The concentration of CaCO 3 appears when this particle group goes to the process of disintegration. (author)

  11. Electrochemical characterization of doped diamond-coated carbon fibers at different boron concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, E.C. [INPE, CP 515, Sao Jose dos Campos, SP 12201-970 (Brazil)]. E-mail: erica@las.inpe.br; Diniz, A.V. [INPE, CP 515, Sao Jose dos Campos, SP 12201-970 (Brazil); Trava-Airoldi, V.J. [INPE, CP 515, Sao Jose dos Campos, SP 12201-970 (Brazil); Ferreira, N.G. [CTA-Divisao de Materiais, Sao Jose dos Campos, SP 12228-904 (Brazil)

    2005-08-01

    Doped diamond films have been deposited on carbon fibers (felt) obtained from polyacrylonitrile at different levels of boron doping. For a successful coating of the fibers, an ultrasonic pretreatment in a bath of diamond powder dissolved in hexane was required. Films were grown on both sample sides, simultaneously, by hot filament-assisted chemical vapour deposition technique at 750 deg. C from a 0.5% H{sub 2}/CH{sub 4} mixture at a total pressure of 6.5 x 10{sup 3} Pa. Boron was obtained from H{sub 2} forced to pass through a bubbler containing B{sub 2}O{sub 3} dissolved in methanol. The doping level studied corresponds to films with acceptor concentrations in the range of 6.5 x 10{sup 18} to 1.5 x 10{sup 21} cm{sup -} {sup 3}, obtained from Mott-Schottky plots. Scanning electron microscopy analyses evidenced fibers totally covered with high quality polycrystalline boron-doped diamond film, also confirmed by Raman spectroscopy spectra. Diamond electrodes grown on carbon fibers demonstrated similar electrochemical behavior obtained from films on Si substrate, for ferri/ferrocyanide redox couple as a function of boron content. The boron content influences electrochemical surface area. A lower boron concentration provides a higher growth rate that results in a higher surface area.

  12. Determinants of black carbon, particle mass and number concentrations in London transport microenvironments

    Science.gov (United States)

    Rivas, Ioar; Kumar, Prashant; Hagen-Zanker, Alex; Andrade, Maria de Fatima; Slovic, Anne Dorothee; Pritchard, John P.; Geurs, Karst T.

    2017-07-01

    We investigated the determinants of personal exposure concentrations of commuters' to black carbon (BC), ultrafine particle number concentrations (PNC), and particulate matter (PM1, PM2.5 and PM10) in different travel modes. We quantified the contribution of key factors that explain the variation of the previous pollutants in four commuting routes in London, each covered by four transport modes (car, bus, walk and underground). Models were performed for each pollutant, separately to assess the effect of meteorology (wind speed) or ambient concentrations (with either high spatial or temporal resolution). Concentration variations were mainly explained by wind speed or ambient concentrations and to a lesser extent by route and period of the day. In multivariate models with wind speed, the wind speed was the common significant predictor for all the pollutants in the above-ground modes (i.e., car, bus, walk); and the only predictor variable for the PM fractions. Wind speed had the strongest effect on PM during the bus trips, with an increase in 1 m s-1 leading to a decrease in 2.25, 2.90 and 4.98 μg m-3 of PM1, PM2.5 and PM10, respectively. PM2.5 and PM10 concentrations in car trips were better explained by ambient concentrations with high temporal resolution although from a single monitoring station. On the other hand, ambient concentrations with high spatial coverage but lower temporal resolution predicted better the concentrations in bus trips, due to bus routes passing through streets with a high variability of traffic intensity. In the underground models, wind speed was not significant and line and type of windows on the train explained 42% of the variation of PNC and 90% of all PM fractions. Trains in the district line with openable windows had an increase in concentrations of 1 684 cm-3 for PNC and 40.69 μg m-3 for PM2.5 compared with trains that had non-openable windows. The results from this work can be used to target efforts to reduce personal exposures of

  13. Carbon Dioxide Concentrations and Temperatures within Tour Buses under Real-Time Traffic Conditions.

    Science.gov (United States)

    Chiu, Chun-Fu; Chen, Ming-Hung; Chang, Feng-Hsiang

    2015-01-01

    This study monitored the carbon dioxide (CO2) concentrations and temperatures of three 43-seat tour buses with high-passenger capacities in a course of a three-day, two-night school excursion. Results showed that both driver zones and passenger zones of the tour buses achieved maximum CO2 concentrations of more than 3000 ppm, and maximum daily average concentrations of 2510.6 and 2646.9 ppm, respectively. The findings confirmed that the CO2 concentrations detected in the tour buses exceeded the indoor air quality standard of Taiwan Environmental Protection Administration (8 hr-CO2: 1000 ppm) and the air quality guideline of Hong Kong Environmental Protection Department (1 hr-CO2: 2500 ppm for Level 1 for buses). Observations also showed that high-capacity tour bus cabins with air conditioning system operating in recirculation mode are severely lacking in air exchange rate, which may negatively impact transportation safety. Moreover, the passenger zones were able to maintain a temperature of between 20 and 25°C during travel, which effectively suppresses the dispersion of volatile organic compounds. Finally, the authors suggest that in the journey, increasing the ventilation frequency of tour bus cabin, which is very beneficial to maintain the travel safety and enhance the quality of travel.

  14. Carbon Dioxide Concentrations and Temperatures within Tour Buses under Real-Time Traffic Conditions

    Science.gov (United States)

    Chiu, Chun-Fu; Chen, Ming-Hung; Chang, Feng-Hsiang

    2015-01-01

    This study monitored the carbon dioxide (CO2) concentrations and temperatures of three 43-seat tour buses with high-passenger capacities in a course of a three-day, two-night school excursion. Results showed that both driver zones and passenger zones of the tour buses achieved maximum CO2 concentrations of more than 3000 ppm, and maximum daily average concentrations of 2510.6 and 2646.9 ppm, respectively. The findings confirmed that the CO2 concentrations detected in the tour buses exceeded the indoor air quality standard of Taiwan Environmental Protection Administration (8 hr-CO2: 1000 ppm) and the air quality guideline of Hong Kong Environmental Protection Department (1 hr-CO2: 2500 ppm for Level 1 for buses). Observations also showed that high-capacity tour bus cabins with air conditioning system operating in recirculation mode are severely lacking in air exchange rate, which may negatively impact transportation safety. Moreover, the passenger zones were able to maintain a temperature of between 20 and 25°C during travel, which effectively suppresses the dispersion of volatile organic compounds. Finally, the authors suggest that in the journey, increasing the ventilation frequency of tour bus cabin, which is very beneficial to maintain the travel safety and enhance the quality of travel. PMID:25923722

  15. Vertical profiles of black carbon concentration and particle number size distribution in the North China Plain

    Science.gov (United States)

    Ran, L.; Deng, Z.

    2013-12-01

    The vertical distribution of aerosols is of great importance to our understanding in the impacts of aerosols on radiation balance and climate, as well as air quality and public health. To better understand and estimate the effects of atmospheric components including trace gases and aerosols on atmospheric environment and climate, an intensive field campaign, Vertical Observations of trace Gases and Aerosols in the North China Plain (VOGA-NCP), was carried out from late July to early August 2013 over a rural site in the polluted NCP. During the campaign, vertical profiles of black carbon (BC) concentration and particle number size distribution were measured respectively by a micro-Aethalometer and an optical particle counter attached to a tethered balloon within 1000 m height. Meteorological parameters, including temperature, relative humidity, wind speed and wind direction, were measured simultaneously by a radiosonde also attached to the tethered balloon. Preliminary results showed distinct diurnal variations of the vertical distribution of aerosol total number concentration and BC concentration, following the development of the mixing layer. Generally, there was a well mixing of aerosols within the mixing layer and a sharp decrease above the mixing layer. Particularly, a small peak of BC concentrations was observed around 400-500 m height for several profiles. Further analysis would be needed to explain such phenomenon. It was also found that measured vertical profiles of BC using the filter-based method might be affected by the vertical distribution of relative humidity.

  16. Physiological responses of Pinus sylvestris to changing carbon dioxide and ozone concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, T. [Kuopio Univ. (Finland). Dept. of Ecology and Environmental Science; Palomaeki, V. [Joensuu Univ. (Finland). Faculty of Forestry; Helmisaari, H.S. [Finnish Forest Research Inst., Helsinki (Finland)] [and others

    1996-12-31

    The objective of this research is to study the effects of elevated ozone, carbon dioxide and their combination on ultrastructural, physiological and biochemical responses of Scots pine needles and how these effects are reflected to photosynthesis, carbohydrate and nutrient allocation and finally to shoot and root growth of trees. In addition the interactions of the studied trees and mycorrhizal fungi as well as insect herbivores are studied. The exposures have been running only for two growing periods and it seems necessary to continue the experiment over the third growing season in 1996. Since the analyses are partially incomplete, only preliminary conclusions are possible at the moment. The slightly increased shoot growth and needle width and increased amount of starch in chloroplasts point to the slight stimulating effect of elevated CO{sub 2} among the chamber treatments. Altogether the growth of the seedlings was best in the chamberless treatment indicating a negative chamber effect. The elevated ozone significantly increased the chlorotic mottling and overall yellowing of second year needles as well as caused increased density of chloroplast stroma and declined photosynthesis, all these responses being often related to ozone exposures. The ozone related responses appeared at both CO{sub 2} levels indicating no clear protection due to elevated CO{sub 2}. The ozone or carbon dioxide treatments were not able to significantly change nutrient concentrations, insect herbivory or carbon allocation among the secondary compounds of needles. A tendency of increased carbon allocation to fine roots due to ozone but not so clearly to CO{sub 2} was observed

  17. Physiological responses of Pinus sylvestris to changing carbon dioxide and ozone concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Holopainen, T [Kuopio Univ. (Finland). Dept. of Ecology and Environmental Science; Palomaeki, V [Joensuu Univ. (Finland). Faculty of Forestry; Helmisaari, H S [Finnish Forest Research Inst., Helsinki (Finland); and others

    1997-12-31

    The objective of this research is to study the effects of elevated ozone, carbon dioxide and their combination on ultrastructural, physiological and biochemical responses of Scots pine needles and how these effects are reflected to photosynthesis, carbohydrate and nutrient allocation and finally to shoot and root growth of trees. In addition the interactions of the studied trees and mycorrhizal fungi as well as insect herbivores are studied. The exposures have been running only for two growing periods and it seems necessary to continue the experiment over the third growing season in 1996. Since the analyses are partially incomplete, only preliminary conclusions are possible at the moment. The slightly increased shoot growth and needle width and increased amount of starch in chloroplasts point to the slight stimulating effect of elevated CO{sub 2} among the chamber treatments. Altogether the growth of the seedlings was best in the chamberless treatment indicating a negative chamber effect. The elevated ozone significantly increased the chlorotic mottling and overall yellowing of second year needles as well as caused increased density of chloroplast stroma and declined photosynthesis, all these responses being often related to ozone exposures. The ozone related responses appeared at both CO{sub 2} levels indicating no clear protection due to elevated CO{sub 2}. The ozone or carbon dioxide treatments were not able to significantly change nutrient concentrations, insect herbivory or carbon allocation among the secondary compounds of needles. A tendency of increased carbon allocation to fine roots due to ozone but not so clearly to CO{sub 2} was observed

  18. Carbon concentrations and carbon pool distributions in dry, moist, and cold mid-aged forests of the Rocky Mountains

    Science.gov (United States)

    Theresa B. Jain; Russell T. Graham; David Adams

    2010-01-01

    Although "carbon” management may not be a primary objective in forest management, influencing the distribution, composition, growth, and development of biomass to fulfill multiple objectives is; therefore, given a changing climate, managing carbon could influence future management decisions. Also, typically, the conversion from total biomass to total carbon is 50...

  19. Arsenic Adsorption Equilibrium Concentration and Adsorption Rate of Activated Carbon Coated with Ferric-Aluminum Hydroxides

    Science.gov (United States)

    Zhang, M.; Sugita, H.; Oguma, T.; Hara, J.; Takahashi, S.

    2015-12-01

    In some areas of developing countries, ground or well water contaminated with arsenic has been reluctantly used as drinking water. It is highly desirable that effective and inexpensive arsenic removal agents should be developed and provided to reduce the potential health risk. Previous studies demonstrated that activated carbon coated with ferric-aluminum hydroxides (Fe-Al-C) has high adsorptive potential for removal of arsenic. In this study, a series of experiments using Fe-Al-C were carried to discuss adsorption equilibrium time, adsorption equilibrium concentration and adsorption rate of arsenic for Fe-Al-C. Fe-Al-C used in this study was provided by Astec Co., Ltd. Powder reagent of disodium hydrogen arsenate heptahydrate was dissolved into ion-exchanged water. The solution was then further diluted with ion-exchanged water to be 1 and 10 mg/L as arsenic concentration. The pH of the solution was adjusted to be around 7 by adding HCl and/or NaOH. The solution was used as artificial arsenic contaminated water in two types of experiments (arsenic adsorption equilibrium and arsenic adsorption rate tests). The results of the arsenic equilibrium tests were showed that a time period of about 3 days to reach apparent adsorption equilibrium for arsenic. The apparent adsorption equilibrium concentration and adsorbed amount of arsenic on Fe-Al-C adsorbent could be estimated by application of various adsorption isotherms, but the distribution coefficient of arsenic between solid and liquid varies with experimental conditions such as initial concentration of arsenic and addition concentration of adsorbent. An adsorption rate equation that takes into account the reduction in the number of effective adsorption sites on the adsorbent caused by the arsenic adsorption reaction was derived based on the data obtained from the arsenic adsorption rate tests.

  20. Linking CDOM spectral absorption to dissolved organic carbon concentrations and loadings in boreal estuaries

    Science.gov (United States)

    Asmala, Eero; Stedmon, Colin A.; Thomas, David N.

    2012-10-01

    The quantity of chromophoric dissolved organic matter (CDOM) and dissolved organic carbon (DOC) in three Finnish estuaries (Karjaanjoki, Kyrönjoki and Kiiminkijoki) was investigated, with respect to predicting DOC concentrations and loadings from spectral CDOM absorption measurements. Altogether 87 samples were collected from three estuarine transects which were studied in three seasons, covering a salinity range between 0 and 6.8, and DOC concentrations from 1572 μmol l-1 in freshwater to 222 μmol l-1 in coastal waters. CDOM absorption coefficient, aCDOM(375) values followed the trend in DOC concentrations across the salinity gradient and ranged from 1.67 to 33.4 m-1. The link between DOC and CDOM was studied using a range of wavelengths and algorithms. Wavelengths between 250 and 270 nm gave the best predictions with single linear regression. Total dissolved iron was found to influence the prediction in wavelengths above 520 nm. Despite significant seasonal and spatial differences in DOC-CDOM models, a universal relationship was tested with an independent data set and found to be robust. DOC and CDOM yields (loading/catchment area) from the catchments ranged from 1.98 to 5.44 g C m-2 yr-1, and 1.67 to 11.5 aCDOM(375) yr-1, respectively.

  1. Using ANN and EPR models to predict carbon monoxide concentrations in urban area of Tabriz

    Directory of Open Access Journals (Sweden)

    Mohammad Shakerkhatibi

    2015-09-01

    Full Text Available Background: Forecasting of air pollutants has become a popular topic of environmental research today. For this purpose, the artificial neural network (AAN technique is widely used as a reliable method for forecasting air pollutants in urban areas. On the other hand, the evolutionary polynomial regression (EPR model has recently been used as a forecasting tool in some environmental issues. In this research, we compared the ability of these models to forecast carbon monoxide (CO concentrations in the urban area of Tabriz city. Methods: The dataset of CO concentrations measured at the fixed stations operated by the East Azerbaijan Environmental Office along with meteorological data obtained from the East Azerbaijan Meteorological Bureau from March 2007 to March 2013, were used as input for the ANN and EPR models. Results: Based on the results, the performance of ANN is more reliable in comparison with EPR. Using the ANN model, the correlation coefficient values at all monitoring stations were calculated above 0.85. Conversely, the R2 values for these stations were obtained <0.41 using the EPR model. Conclusion: The EPR model could not overcome the nonlinearities of input data. However, the ANN model displayed more accurate results compared to the EPR. Hence, the ANN models are robust tools for predicting air pollutant concentrations.

  2. Effect of nitrite concentration on pit depth in carbon steel exposed to simulated radioactive waste

    International Nuclear Information System (INIS)

    Zapp, P.E.

    1997-01-01

    The growth of pits in carbon steel exposed to dilute (0.055 M nitrate-bearing) alkaline salt solutions that simulate radioactive waste was investigated in coupon immersion tests. Most coupons were tested in the as-received condition, with the remainder having been heat treated to produce an oxide film. Nitrite, which is an established pitting inhibitor in these solutions, was present in concentrations from 0 to 0.031 M to 0.16 M; the last concentration is known to prevent pitting initiation in the test solution at the 50 degrees C test temperature. The depths of the deepest pits on coupons of particular exposure conditions were measure microscopically and were analyzed as simple, type 1 extreme value statistical distributions, to predict the deepest expected pit in a radioactive waste tank subject to the test conditions. While the growth rate of pits could not be established from these tests, the absolute value of the deepest pits predicted is of the order of 100 mils after 448 days of exposure. The data indicate that even nitrite concentrations insufficient to prevent pitting have a beneficial effect on limiting the growth of deepest pits

  3. Carbon Monoxide Emission and Concentration Models for Chiang Mai Urban Area

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An emission inventory containing emissions from traffic and other sources was complied. Based on the analysis, Carbon Monoxide (CO) emissions from traffic play a very important role in CO levels in Chiang Mai area. Analysis showed that CO emissions from traffic during rush hours contributed approximately 90% of total CO emissions. Regional Atmospheric Modeling System (RAMS) was applied to simulate wind fields and temperatures in the Chiang Mai area, and eight cases were selected to study annual variations in wind fields and temperatures. Model results can reflect major features of wind fields and diurnal variations in temperatures. For evaluating the model performance, model results were compared with observed wind speed, wind direction and temperature, which were monitored at a meteorological tower. Comparison showed that model results are in good agreement with observations, and the model captured many of the observed features. HYbrid Particle And Concentration Transport model (HYPACT) was used to simulate CO concentration in the Chiang Mai area. Model results generally agree well with observed CO concentrations at the air quality monitoring stations, and can explain observed CO diurnal variations.

  4. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schuller; Frank Little; Darren Malik; Matt Betts; Qian Shao; Jun Luo; Wan Zhong; Sandhya Shankar; Ashwin Padmanaban

    2012-03-30

    We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials, including the specific heat, thermal conductivity, latent heat, and melting point. We also assessed the stability of the composite material with repeated thermal cycling and the effects of adding the nanoparticles on the corrosion of stainless steel by the composite salt. Our results indicate that stable, repeatable 25-50% improvements in specific heat are possible for these materials. We found that using these composite salts as the thermal energy storage material for a concentrating solar thermal power system can reduce the levelized cost of electricity by 10-20%. We conclude that these materials are worth further development and inclusion in future concentrating solar power systems.

  5. Additional calcium carbonate into concentrate diet for sheep fed ensiled king grass as a based-diet

    Directory of Open Access Journals (Sweden)

    I-W Mathius

    1997-10-01

    Full Text Available In order to ascertain the effect of additional calcium carbonate into concentrate diet, on the performance of sheep fed ensiled king grass as a basal diet, a trial was conducted using 28 growing sheep ( average body weight 17 _+ 1 .4 kg. Based on body weight, the animals were grouped and randomized into four dietary treatments in block randomized design . Dietary treatments were (i chopped king grass + 400 g of concentrate, (ii ensiled king grass + 400 g concentrate + 0 % of calcium carbonate, (iii ensiled king grass + 400 g concentrate + 5 % calcium carbonate and (iv ensiled king grass + 400 g concentrate + 10 % calcium carbonate . Results showed that offering 5 % of calcium carbonate into concentrate diet increased (P 0 .05 for all groups . No differences in the apparent digestibility of the nutrient components were observed, but crude protein decreased significantly (P < 0 .05 . A significant relationship ( P < 0 .01 was found between nitrogen intake (NI and nitrogen retention (NR, and the equation was NR = - 0.1848 + 0.3788 NI ( r = 0.9 . Based on data found that feeding only ensiled king grass as a single diet could not meet the maintenance requirement of energy and protein, therefore, additional energy and crude protein sources is needed .

  6. Carbon sequestration potential for forage and pasture systems

    Science.gov (United States)

    Grassland soils represent a large reservoir of organic and inorganic carbon. Regionally, grasslands are annual CO2 sources or sinks depending on crop and soil management, current soil organic carbon (SOC) concentration and climate. Land management changes (LMC) impact SOC sequestration rate, the du...

  7. Corrosion performance of inorganic coatings in seawater

    NARCIS (Netherlands)

    Zhang, X.; Buter, S.J.; Ferrari, G.M.; Westing, E. van; Kowalski, L.

    2011-01-01

    Inorganic coatings are widely used to protect carbon steel hydraulic cylinder rods from wear and corrosion in aggressive offshore environment. Different types of lay-ers such as Ni/Cr, Al2O3, Cr2O3, TiO2, and Inconel 625 layers were applied to the carbon steels by plasma, High Velocity Oxygen Fuel

  8. Effect of Phosphoric Acid Concentration on the Characteristics of Sugarcane Bagasse Activated Carbon

    Science.gov (United States)

    Adib, M. R. M.; Suraya, W. M. S. W.; Rafidah, H.; Amirza, A. R. M.; Attahirah, M. H. M. N.; Hani, M. S. N. Q.; Adnan, M. S.

    2016-07-01

    Impregnation method is one of the crucial steps involved in producing activated carbon using chemical activation process. Chemicals employed in this step is effective at decomposing the structure of material and forming micropores that helps in adsorption of contaminants. This paper explains thorough procedures that have been involved in producing sugarcane bagasse activated carbon (SBAC) by using 5%, 10%, 20%, 30% phosphoric acid (H3PO4) during the impregnation step. Concentration of H3PO4 used in the process of producing SBAC was optimized through several tests including bulk density, ash content, iodine adsorption and pore size diameter and the charactesristic of optimum SBAC produced has been compared with commercial activated carbon (CAC). Batch study has been carried out by using the SBAC produced from optimum condition to investigate the performance of SBAC in removal of turbidity and chemical oxygen demand (COD) from textile wastewater. From characteristic study, SBAC with 30% H3PO4 has shown the optimum value of bulk density, ash content, iodine adsorption and pore size diameter of 0.3023 g cm-3, 4.35%, 974.96 mg/g and 0.21-0.41 µm, respectively. These values are comparable to the characteristics of CAC. Experimental result from the batch study has been concluded that the SBAC has a promising potential in removing turbidity and COD of 75.5% and 66.3%, respectively which was a slightly lower than CAC which were able to remove 82.8% of turbidity and 70% of COD. As a conclusion, the SBAC is comparable with CAC in terms of their characteristics and the capability of removing contaminants from textile wastewater. Therefore, it has a commercial value to be used as an alternative of low-cost material in producing CAC.

  9. Statistical analysis of inhibitor concentrations for radioactive waste in carbon steel tanks

    International Nuclear Information System (INIS)

    Zapp, P.E.; Edwards, T.B.

    1993-01-01

    Based on a logistic regression approach, a model was developed using the explanatory variables log([NO 3 - ]), log([NO 2 - ]), and temperature to estimate the probability of pitting in a carbon steel exposed to high-level radioactive waste. Pitting susceptibility data obtained by the two techniques of cyclic potentiodynamic polarization and coupon immersion were separately and jointly analyzed with the model. Similar predictive ability is seen for equations based on both electrochemical and coupon immersion data. Using the theory associated with the determination of confidence intervals for the estimated probability, a methodology was developed to provide a lower bound for the nitrite concentration which inhibits pitting, i.e., which holds the estimated probability of pitting to a reasonably low level of 0.05

  10. Comparing carbon capture and storage (CCS) with concentrating solar power (CSP): Potentials, costs, risks, and barriers

    International Nuclear Information System (INIS)

    Lilliestam, Johan; Bielicki, Jeffrey M.; Patt, Anthony G.

    2012-01-01

    Coal power coupled with Carbon [Dioxide] Capture and Storage (CCS), and Concentrating Solar Power (CSP) technologies are often included in the portfolio of climate change mitigation options intended to decarbonize electricity systems. Both of these technologies can provide baseload electricity, are in early stages of maturity, and have benefits, costs, and obstacles. We compare and contrast CCS applied to coal-fired power plants with CSP. At present, both technologies are more expensive than existing electricity-generating options, but costs should decrease with large-scale deployment, especially in the case of CSP. For CCS, technological challenges still remain, storage risks must be clarified, and regulatory and legal uncertainties remain. For CSP, current challenges include electricity transmission and business models for a rapid and extensive expansion of high-voltage transmission lines. The need for international cooperation may impede CSP expansion in Europe. Highlights: ► Both technologies could provide low-carbon base load power. ► Both technologies require new networks, for either CO 2 or power transmission. ► CSP is closer to being a viable technology ready for pervasive diffusion. ► The costs associated with market saturation would be lower for CSP. ► The regulatory changes required for CSP diffusion are somewhat greater than for CCS.

  11. Photosynthetic responses to understory shade and elevated carbon dioxide concentration in 4 northern hardwood tree species

    International Nuclear Information System (INIS)

    Sefcik, L.T.; Zak, D.R.; Ellsworth, D.S.

    2006-01-01

    Stimulation of photosynthesis in response to elevated carbon dioxide (CO 2 ) varies among tree species and species groups. In this study, seedling responses to elevated atmospheric carbon dioxide (CO 2 ) concentrations and solar irradiance over 2 growing seasons were investigated for shade tolerant Acer saccharum Marsh.; Fagus grandifolia J.F. Ehrh; and shade-intolerant Prunus serotina. Seedlings were exposed to a combination of elevated and ambient concentrations of CO 2 and understory shade in open-top chambers placed in a forest understory. It was observed that the elevated CO 2 treatment increased mean light-saturated net photosynthetic rates by 63 per cent in the shade-tolerant species and 67 per cent in the shade-intolerant species. When measured at the elevated CO 2 , long-term enhancement of photosynthesis was 10 per cent lower than the instantaneous enhancement observed in ambient-CO 2 -grown plants. As the growth irradiance increased, proportional enhancement due to elevated CO 2 decreased from 97 per cent for plants grown in deep shade to 47 per cent for plants grown in moderate shade. Results indicated that in nitrogen (N) limited northern temperate forests, trees grown in deep shade may display greater photosynthetic gains from a CO 2 enriched atmosphere than trees growing in more moderate shade, due to greater down-regulation. It was concluded that if elevated CO 2 levels promote the survival of shade-intolerant species in dim understory light, the future composition and dynamics of successional forest communities may be altered. 70 refs., 2 tabs., 3 figs

  12. Geostatistical Analyses of Soil Organic Carbon Concentrations in Aligodarz Watershed, Lorestan Province

    Directory of Open Access Journals (Sweden)

    Masoud Davari

    2017-01-01

    statistically SOC content less than 1%. Lower SOC concentrations were associated with high altitude (r = −0.265**. The results of Pearson correlation analysis showed that soil organic carbon content has a significantly negative correlatiton with slope gradient (r = −0.217**. The results also indicated that the SOC content was variable for the different land use types. The irrigated lands had the highest SOC concentrations, while the pasture lands had the lowest SOC values. Conclusion: The square-root transformed data of SOC in Aligodarz watershed of Lorestan province, Iran, followed a normal distribution, with an arithmetic mean of 0.81%, and geometric mean of 0.73%. The coefficient of variation and nugget/sill ratio revealed a moderate spatial dependence of SOC in the study area. The results indicated that the major parts of the Aligodarz watershed have SOC content less than 1%. The land use type had a significant effect on the spatial variability of SOC and that lower SOC concentrations were associated with higher altitude and slope gradients. The irrigated and pasture lands had the highest and lowest SOC concentrations, respectively.

  13. Analytical strategy for the determination of various arsenic species in landfill leachate containing high concentrations of chlorine and organic carbon by HPLC-ICPMS

    Science.gov (United States)

    Bae, J.; An, J.; Kim, J.; Jung, H.; Kim, K.; Yoon, C.; Yoon, H.

    2012-12-01

    As a variety of wastes containing arsenic are disposed of in landfills, such facilities can play a prominent role in disseminating arsenic sources to the environment. Since it is widely recognized that arsenic toxicity is highly dependent on its species, accurate determination of various arsenic species should be considered as one of the essential goals to properly account for the potential health risk of arsenic in human and the environment. The inductively coupled plasma mass spectrometry linked to high performance liquid chromatography (HPLC-ICPMS) is acknowledged as one of the most important tools for the trace analysis of metallic speciation because of its superior separation capability and detectability. However, the complexity of matrices can cause severe interferences in the analysis results, which is the problem often encountered with HPLC-ICPMS system. High concentration of organic carbon in a sample solution causes carbon build-up on the skimmer and sampling cone, which reduces analytical sensitivity and requires a high maintenance level for its cleaning. In addition, argon from the plasma and chlorine from the sample matrix may combine to form 40Ar35Cl, which has the same nominal mass to charge (m/z) ratio as arsenic. In this respect, analytical strategy for the determination of various arsenic species (e.g., inorganic arsenite and arsenate, monomethylarsonic acid, dimethylarsinic acid, dimethyldithioarsinic acid, and arsenobetaine) in landfill leachate containing high concentrations of chlorine and organic carbon was developed in the present study. Solid phase extraction disk (i.e., C18 disk), which does not significantly adsorb any target arsenic species, was used to remove organic carbon in sample solutions. In addition, helium (He) gas was injected into the collision reaction cell equipped in ICPMS to collapse 40Ar35Cl into individual 40Ar and 35Cl. Although He gas also decreased arsenic intensity by blocking 75As, its signal to noise ratio

  14. Use of high concentrations of carbon dioxide for stunning rabbits reared for meat production

    Directory of Open Access Journals (Sweden)

    A. Dalmau

    2016-03-01

    Full Text Available Abstract: An investigation was performed to determine whether high concentrations of carbon dioxide (CO2 at 70-98% in atmospheric air are a suitable alternative for stunning rabbits compared to conventional approaches such as electronarcosis. Aversion to the gas and efficacy in causing prolonged unconsciousness and death were studied in a total of 480 rabbits by means of behavioural parameters, physiological indicators (presence of rhythmic breathing and corneal reflex and electroencephalography (EEG, brain function. The use of any of the 4 studied concentrations of the gas caused more nasal discomfort and vocalisations than the use of atmospheric air (P<0.001. EEG activity confirmed that loss of posture is a good indicator of the onset of unconsciousness in rabbits exposed to CO2, occurring earlier (P<0.05 at 90 and 98% than at 70 and 80%. Rabbits showed signs of aversion for 15 s before the onset of unconsciousness, which occurred around 30 s after the beginning of the exposure to the gas, similar to species such as swine in which high concentrations of CO2 are also used for stunning. CO2 at 80 to 98% is suggested as a reasonable concentration range to induce a long state of unconsciousness and death in rabbits, while 70% CO2 is not recommended because it requires too long duration of exposure (more than 360 s to ensure effectiveness. Despite the advantages in terms of pre-stun handling and irreversibility, CO2 is not free of animal welfare concerns. In consequence, a debate is necessary to ascertain if CO2 can be considered a suitable alternative to stun rabbits, considering the advantages and drawbacks cited, quantified in the present study as 15 s of aversion (nasal discomfort and vocalisations before losing posture.

  15. The design and realization of synthetic pathways for the fixation of carbon dioxide in vitro

    OpenAIRE

    Schwander, Thomas; Erb, Tobias (Dr.)

    2018-01-01

    The fixation of inorganic carbon and the conversion to organic molecules is a prerequisite for life and the foundation of the carbon cycle on Earth. Since the industrial revolution, this carbon cycle has become inbalanced and consequently the atmospheric carbon dioxide (CO2) concentration is increasing and is a major cause of global warming. On the contrary, atmospheric CO2 can also be considered as an important carbon feedstock o...

  16. Inorganic-whisker-reinforced polymer composites synthesis, properties and applications

    CERN Document Server

    Sun, Qiuju

    2015-01-01

    Inorganic-Whisker-Reinforced Polymer Composites: Synthesis, Properties and Applications gives a comprehensive presentation of inorganic microcrystalline fibers, or whiskers, a polymer composite filler. It covers whisker synthesis, surface modification, applications for reinforcing polymer-matrix composites, and analysis of resulting filled polymer composites. It focuses on calcium carbonate whiskers as a primary case study, introducing surface treatment methods for calcium carbonate whiskers and factors that influence them. Along with calcium carbonate, the book discusses potassium titanate and aluminum borate whiskers, which also comprise the new generation of inorganic whiskers. According to research results, composites filled by inorganic whiskers show improved strength, wear-resistance, thermal conductivity, and antistatic properties. It explains the importance of modifying polymer materials for use with inorganic whiskers and describes preparation and evaluation methods of polymers filled with inorganic ...

  17. Modeling uranium(VI) adsorption onto montmorillonite under varying carbonate concentrations: A surface complexation model accounting for the spillover effect on surface potential

    Science.gov (United States)

    Tournassat, C.; Tinnacher, R. M.; Grangeon, S.; Davis, J. A.

    2018-01-01

    The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonite edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites ('spillover' effect). A series of U(VI) - Na-montmorillonite batch adsorption experiments was conducted as a function of pH, with variable U(VI), Ca, and dissolved carbonate concentrations. Based on the experimental data, a new type of surface complexation model (SCM) was developed for montmorillonite, that specifically accounts for the spillover effect using the edge surface speciation model by Tournassat et al. (2016a). The SCM allows for a prediction of U(VI) adsorption under varying chemical conditions with a minimum number of fitting parameters, not only for our own experimental results, but also for a number of published data sets. The model agreed well with many of these datasets without introducing a second site type or including the formation of ternary U(VI)-carbonato surface complexes. The model predictions were greatly impacted by utilizing analytical measurements of dissolved inorganic carbon (DIC) concentrations in individual sample solutions rather than assuming solution equilibration with a specific partial pressure of CO2, even when the gas phase was

  18. Mercury Inhibits Soil Enzyme Activity in a Lower Concentration than the Guideline Value.

    Science.gov (United States)

    Mahbub, Khandaker Rayhan; Krishnan, Kannan; Megharaj, Mallavarapu; Naidu, Ravi

    2016-01-01

    Three soil types - neutral, alkaline and acidic were experimentally contaminated with nine different concentrations of inorganic mercury (0, 5, 10, 50, 100, 150, 200, 250, 300 mg/kg) to derive effective concentrations of mercury that exert toxicity on soil quality. Bioavailability of mercury in terms of water solubility was lower in acidic soil with higher organic carbon. Dehydrogenase enzyme activity and nitrification rate were chosen as indicators to assess soil quality. Inorganic mercury significantly inhibited (p mercury contents (EC10) were found to be less than the available safe limits for inorganic mercury which demonstrated inadequacy of existing guideline values.

  19. Does carbon isotope data help explain atmospheric CO2 concentrations during glacial periods?

    International Nuclear Information System (INIS)

    Alverson, K.; Le Grand, P.

    2002-01-01

    An inverse ocean box modeling approach is used to address the question of what may have caused decreased atmospheric CO 2 concentration during glacial periods. The inverse procedure seeks solutions that are consistent, within prescribed uncertainties, with both available paleodata constraints and box model conservation equations while relaxing traditional assumptions such as exact steady state and precise prescription of uncertain model parameters. Decreased ventilation of Southern Ocean deep water, decreased Southern Ocean air-sea gas exchange, and enhanced high latitude biological pumping are all shown to be individually capable of explaining available paleodata constraints provided that significant calcium carbonate compensation is allowed. None of the scenarios require more than a very minor (order 1 deg. C) glacial reduction in low to mid latitude sea surface temperature although scenarios with larger changes are equally plausible. One explanation for the fairly wide range of plausible solutions is that most paleo-data directly constrain the inventory of paleo-tracers but only indirectly constrain their fluxes. Because the various scenarios that have been proposed to explain pCO 2 levels during the last glacial maximum are distinguished primarily by different fluxes, the data, including ocean 13 C concentrations, do not allow one to confidently chose between them. Oceanic 14 C data for the last glacial maximum, which can constrain water mass fluxes, present an excellent potential solution to this problem if their reliability is demonstrated in the future. (author)

  20. Relation of whole blood carboxyhemoglobin concentration to ambient carbon monoxide exposure estimated using regression.

    Science.gov (United States)

    Rudra, Carole B; Williams, Michelle A; Sheppard, Lianne; Koenig, Jane Q; Schiff, Melissa A; Frederick, Ihunnaya O; Dills, Russell

    2010-04-15

    Exposure to carbon monoxide (CO) and other ambient air pollutants is associated with adverse pregnancy outcomes. While there are several methods of estimating CO exposure, few have been evaluated against exposure biomarkers. The authors examined the relation between estimated CO exposure and blood carboxyhemoglobin concentration in 708 pregnant western Washington State women (1996-2004). Carboxyhemoglobin was measured in whole blood drawn around 13 weeks' gestation. CO exposure during the month of blood draw was estimated using a regression model containing predictor terms for year, month, street and population densities, and distance to the nearest major road. Year and month were the strongest predictors. Carboxyhemoglobin level was correlated with estimated CO exposure (rho = 0.22, 95% confidence interval (CI): 0.15, 0.29). After adjustment for covariates, each 10% increase in estimated exposure was associated with a 1.12% increase in median carboxyhemoglobin level (95% CI: 0.54, 1.69). This association remained after exclusion of 286 women who reported smoking or being exposed to secondhand smoke (rho = 0.24). In this subgroup, the median carboxyhemoglobin concentration increased 1.29% (95% CI: 0.67, 1.91) for each 10% increase in CO exposure. Monthly estimated CO exposure was moderately correlated with an exposure biomarker. These results support the validity of this regression model for estimating ambient CO exposures in this population and geographic setting.

  1. Effect of exchangeable cation concentration on sorption and desorption of dissolved organic carbon in saline soils.

    Science.gov (United States)

    Setia, Raj; Rengasamy, Pichu; Marschner, Petra

    2013-11-01

    Sorption is a very important factor in stabilization of dissolved organic carbon (DOC) in soils and thus C sequestration. Saline soils have significant potential for C sequestration but little is known about the effect of type and concentration of cations on sorption and release of DOC in salt-affected soils. To close this knowledge gap, three batch sorption and desorption experiments were conducted using soils treated with solutions either low or high in salinity. In Experiment 1, salinity was developed with either NaCl or CaCl2 to obtain an electrical conductivity (EC) in a 1:5 soil: water extract (EC1:5) of 2 and 4 dS m(-1). In Experiments 2 and 3, NaCl and CaCl2 were added in various proportions (between 25 and 100%) to obtain an EC1:5 of 0.5 and 4 dS m(-1), respectively. At EC1:5 of 4 dS m(-1), the sorption of DOC (derived from wheat straw) was high even at a low proportion of added Ca(2+) and did not change with proportion of Ca added, but at EC1:5 of 0.5 dS m(-1) increasing proportion of Ca(2+) added increased DOC sorption. This can be explained by the differences in exchangeable Ca(2+) at the two salinity levels. At EC1:5 of 4 dS m(-1), the exchangeable Ca(2+) concentration did not increase beyond a proportion of 25% Ca(2+), whereas it increased with increasing Ca(2+) proportion in the treatments at EC1:5 of 0.5 dS m(-1). The DOC sorption was lowest with a proportion of 100% as Na(+). When Ca(2+) was added, DOC sorption was highest, but least was desorbed (with deionised water), thus sorption and desorption of added DOC were inversely related. The results of this study suggest that DOC sorption in salt-affected soils is mainly controlled by the levels of exchangeable Ca(2+) irrespective of the Ca(2+) concentration in the soil solution which has implications on carbon stabilization in salt-affected soils. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Dissolved black carbon in the global cryosphere: Concentrations and chemical signatures

    Science.gov (United States)

    Khan, Alia L.; Wagner, Sasha; Jaffe, Rudolf; Xian, Peng; Williams, Mark; Armstrong, Richard; McKnight, Diane

    2017-06-01

    Black carbon (BC) is derived from the incomplete combustion of biomass and fossil fuels and can enhance glacial recession when deposited on snow and ice surfaces. Here we explore the influence of environmental conditions and the proximity to anthropogenic sources on the concentration and composition of dissolved black carbon (DBC), as measured by benzenepolycaroxylic acid (BPCA) markers, across snow, lakes, and streams from the global cryosphere. Data are presented from Antarctica, the Arctic, and high alpine regions of the Himalayas, Rockies, Andes, and Alps. DBC concentrations spanned from 0.62 μg/L to 170 μg/L. The median and (2.5, 97.5) quantiles in the pristine samples were 1.8 μg/L (0.62, 12), and nonpristine samples were 21 μg/L (1.6, 170). DBC is susceptible to photodegradation when exposed to solar radiation. This process leads to a less condensed BPCA signature. In general, DBC across the data set was composed of less polycondensed DBC. However, DBC from the Greenland Ice Sheet (GRIS) had a highly condensed BPCA molecular signature. This could be due to recent deposition of BC from Canadian wildfires. Variation in DBC appears to be driven by a combination of photochemical processing and the source combustion conditions under which the DBC was formed. Overall, DBC was found to persist across the global cryosphere in both pristine and nonpristine snow and surface waters. The high concentration of DBC measured in supraglacial melt on the GRIS suggests that DBC can be mobilized across ice surfaces. This is significant because these processes may jointly exacerbate surface albedo reduction in the cryosphere.Plain Language SummaryHere we present dissolved black carbon (DBC) results for snow and glacial melt systems in Antarctica, the Arctic, and high alpine regions of the Himalayas, Rockies, Andes, and Alps. Across the global cryosphere, DBC composition appears to be a result of photochemical processes occurring en route in the atmosphere or in situ on the

  3. Influence of low water-vapour concentrations in air and carbon dioxide on the inflammability of magnesium in these media

    International Nuclear Information System (INIS)

    Darras, Raymond; Baque, Pierre; Leclercq, Daniel

    1960-01-01

    The temperatures at which live combustion starts in magnesium and certain of its alloys have been determined systematically in air and in carbon dioxide. In carbon dioxide, the ignition temperature is reduced by 130 to 140 deg. C for very low water-vapor concentrations. Reprint of a paper published in 'Comptes Rendus des Seances de l'Academie des Sciences', tome 240, p. 1647-1649, sitting of 28 October 1959 [fr

  4. Effect of Sodium Carbonate Concentrations on the Formation and Mechanism of Regenerated Silk Fibroin Nanofibers by Electrospinning

    Directory of Open Access Journals (Sweden)

    Hao Dou

    2014-01-01

    Full Text Available Degumming is the first process for the preparation of all silk-based products. In this paper, effect of sodium carbonate concentrations for silk degumming on the formation of electrospun silk fibroin nanofibers was investigated and the reason for the silk electrospinning process was explained for the first time by differences from the microstructure of regenerated silk fibroin. With increasing the sodium carbonate concentration, microstructure both in the aqueous solutions and in the electrospinning solutions transformed from nanofibrils to nanoparticles, leading to obvious changes on rheological property; electrospinning solutions with nanofibrils behaved like the native silk dope and owned remarkably higher viscosity than the solutions with nanoparticles showing very low viscosity. More interestingly, nanofibrils favored the formation of silk nanofibers with ease, and even nanofibers could be electrospun at concentration 2%. However, nanoparticles were completely unable to generate nanofibers at high spinning concentration 8%. Importance of sodium carbonate concentrations is heavily emphasized for impacting the microstructure types and further influencing the electrospinning performance of regenerated silk. Hence, sodium carbonate concentrations provide a controllable choice for the preparation of silk-based electrospun biomaterials with desired properties.

  5. Effect of sucralfate on total carbon dioxide concentration in horses subjected to a simulated race test.

    Science.gov (United States)

    Caltabilota, T J; Milizio, J G; Malone, S; Kenney, J D; McKeever, K H

    2010-02-01

    The purpose of this study was to test the hypothesis that sucralfate, a gastric ulcer medication, would alter plasma concentrations of total carbon dioxide (tCO2), lactate (LA), sodium (Na+), potassium (K+), chloride (Cl-) and total protein (TP), as well as calculated plasma strong ion difference (SID) and packed cell volume (PCV) in horses subjected to a simulated race test (SRT). Six unfit Standardbred mares (approximately 520 kg, 9-18 years) were used in a randomized crossover design with the investigators blinded to the treatment given. The horses were assigned to either a control (40-50 mL apple sauce administered orally (PO)) or a sucralfate (20 mg/kg bodyweight dissolved in 40-50 mL apple sauce administered PO) group. Each horse completed a series of SRTs during which blood samples were taken via jugular venipuncture at five sampling intervals (prior to receiving treatment, prior to SRT, immediately following exercise, and at 60 and 90 min post-SRT). During the SRTs, each horse ran on a treadmill fixed on a 6% grade for 2 min at a warm-up speed (4 m/s) and then for 2 min at a velocity predetermined to produce VO2max. Each horse then walked at 4 m/s for 2 min to complete the SRT. Plasma tCO2, electrolytes, LA, and blood PCV and TP were analysed at all intervals. No differences (P>0.05) were detected between control and sucralfate for any of the measured variables. There were differences (P<0.05) in tCO2, SID, PCV, TP, LA and electrolyte concentrations relative to sampling time. However, these differences were attributable to the physiological pressures associated with acute exercise and were not an effect of the medication. It was concluded that sucralfate did not alter plasma tCO2 concentration in this study. Copyright (c) 2008 Elsevier Ltd. All rights reserved.

  6. X-ray Absorption Spectroscopy Identifies Calcium-Uranyl-Carbonate Complexes at Environmental Concentrations

    International Nuclear Information System (INIS)

    Kelly, Shelly D.; Kemner, Kenneth M.; Brooks, Scott C.

    2007-01-01

    Current research on bioremediation of uranium-contaminated groundwater focuses on supplying indigenous metal-reducing bacteria with the appropriate metabolic requirements to induce microbiological reduction of soluble uranium(VI) to poorly soluble uranium(IV). Recent studies of uranium(VI) bioreduction in the presence of environmentally relevant levels of calcium revealed limited and slowed uranium(VI) reduction and the formation of a Ca-UO2-CO3 complex. However, the stoichiometry of the complex is poorly defined and may be complicated by the presence of a Na-UO2-CO3 complex. Such a complex might exist even at high calcium concentrations, as some UO2-CO3 complexes will still be present. The number of calcium and/or sodium atoms coordinated to a uranyl carbonate complex will determine the net charge of the complex. Such a change in aqueous speciation of uranium(VI) in calcareous groundwater may affect the fate and transport properties of uranium. In this paper, we present the results from X-ray absorption fine structure (XAFS) measurements of a series of solutions containing 50 lM uranium(VI) and 30 mM sodium bicarbonate, with various calcium concentrations of 0-5 mM. Use of the data series reduces the uncertainty in the number of calcium atoms bound to the UO2-CO3 complex to approximately 0.6 and enables spectroscopic identification of the Na-UO2-CO3 complex. At nearly neutral pH values, the numbers of sodium and calcium atoms bound to the uranyl triscarbonate species are found to depend on the calcium concentration, as predicted by speciation calculations

  7. Spatial and Seasonal Variation of dissolved organic carbon (DOC) concentrations in Irish streams: importance of soil and topography characteristics.

    Science.gov (United States)

    Liu, Wen; Xu, Xianli; McGoff, Nicola M; Eaton, James M; Leahy, Paul; Foley, Nelius; Kiely, Gerard

    2014-05-01

    Dissolved organic carbon (DOC) concentrations have increased in many sites in Europe and North America in recent decades. High DOC concentrations can damage the structure and functions of aquatic ecosystems by influencing water chemistry. This study investigated the spatial and seasonal variation of DOC concentrations in Irish streams across 55 sites at seven time occasions over 1 year (2006/2007). The DOC concentrations ranged from 0.9 to 25.9 mg/L with a mean value of 6.8 and a median value of 5.7 mg/L and varied significantly over the course of the year. The DOC concentrations from late winter (February: 5.2 ± 3.0 mg/L across 55 sites) and early spring (April: 4.5 ± 3.5 mg/L) had significantly lower DOC concentrations than autumn (October: mean 8.3 ± 5.6 mg/L) and early winter (December: 8.3 ± 5.1 mg/L). The DOC production sources (e.g., litterfall) or the accumulation of DOC over dry periods might be the driving factor of seasonal change in Irish stream DOC concentrations. Analysis of data using stepwise multiple linear regression techniques identified the topographic index (TI, an indication of saturation-excess runoff potential) and soil conditions (organic carbon content and soil drainage characteristics) as key factors in controlling DOC spatial variation in different seasons. The TI and soil carbon content (e.g., soil organic carbon; peat occurrence) are positively related to DOC concentrations, while well-drained soils are negatively related to DOC concentrations. The knowledge of spatial and seasonal variation of DOC concentrations in streams and their drivers are essential for optimum riverine water resources management.

  8. Effects of climate, CO2 concentration, nitrogen deposition, and stand age changes on the carbon budget of China's forests

    Science.gov (United States)

    Zhang, C.; Ju, W.; Zhang, F.; Mao, D.; Wang, X.

    2017-12-01

    Forests play an irreplaceable role in the Earth's terrestrial carbon budget which retard the atmospheric CO2 buildup. Understanding the factors controlling forest carbon budget is critical for reducing uncertainties in projections of future climate. The relative importance of climate, atmospheric CO2 concentration, nitrogen deposition, and stand age changes on carbon budget, however, remains unclear for China's forests. In this study, we quantify individual contribution of these drivers to the trends of forest carbon budget in China from 1901 to 2012 by integrating national datasets, the updated Integrated Terrestrial Ecosystem Carbon Cycle (InTEC) model and factorial simulations. Results showed that the average carbon sink in China's forests from 1982 to 2012 was 186.9 Tg C yr-1 with 68% (127.6 Tg C yr-1) of the sink in living biomass because of the integrated effects of climate, atmospheric CO2 concentration, nitrogen deposition, and stand age factors. Compared with the simulation of all factors combined, the estimated carbon sink during 1901-2012 would be reduced by 41.8 Tg C yr-1 if climate change, atmospheric CO2 concentration and nitrogen deposition factors were omitted, and reduced by 25.0 Tg C yr-1 if stand age factor was omitted. In most decades, these factors increased forest carbon sinks with the largest of 101.3, 62.9, and 44.0 Tg C yr-1 from 2000 to 2012 contributed by stand age, CO2 concentration and nitrogen deposition, respectively. During 1901-2012, climate change, CO2 concentration, nitrogen deposition and stand age contributed -13.3, 21.4, 15.4 and 25.0 Tg C yr-1 to the averaged carbon sink of China's forests, respectively. Our study also showed diverse regional patterns of forest carbon budget related to the importance of driving factors. Stand age effect was the largest in most regions, but the effects of CO2 concentration and nitrogen deposition were dominant in southern China.

  9. Desorption of Reactive Red 198 from activated carbon prepared from walnut shells: effects of temperature, sodium carbonate concentration and organic solvent dose

    Directory of Open Access Journals (Sweden)

    Zohreh Alimohamadi

    2017-04-01

    Full Text Available This study investigated the effect of temperature, different concentrations of sodium carbonate,and the dose of organic solvent on the desorption of Reactive Red 198 dye from dye-saturated activated carbon using batch and continuous systems. The results of the batch desorption test showed 60% acetone in water as the optimum amount. However, when the concentration of sodium carbonate was raised, the dye desorption percentage increased from 26% to 42% due to economic considerations; 15 mg/L of sodium carbonate was selected to continue the processof desorption. Increasing the desorption temperature can improve the dye desorption efficiency.According to the column test results, dye desorption concentration decreased gradually with the passing of time. The column test results showed that desorption efficiency and the percentage of dye adsorbed decreased; however, it seemed to stabilize after three repeated adsorption/desorption cycles. The repeated adsorption–desorption column tests (3 cycles showed that the activated carbon which was prepared from walnut shell was a suitable and economical adsorbent for dye removal.

  10. Tidal day organic and inorganic material flux of ponds in the Liberty Island freshwater tidal wetland.

    Science.gov (United States)

    Lehman, Peggy W; Mayr, Shawn; Liu, Leji; Tang, Alison

    2015-01-01

    The loss of inorganic and organic material export and habitat produced by freshwater tidal wetlands is hypothesized to be an important contributing factor to the long-term decline in fishery production in San Francisco Estuary. However, due to the absence of freshwater tidal wetlands in the estuary, there is little information on the export of inorganic and organic carbon, nutrient or phytoplankton community biomass and the associated mechanisms. A single-day study was conducted to assess the potential contribution of two small vegetated ponds and one large open-water pond to the inorganic and organic material flux within the freshwater tidal wetland Liberty Island in San Francisco Estuary. The study consisted of an intensive tidal day (25.5 h) sampling program that measured the flux of inorganic and organic material at three ponds using continuous monitoring of flow, chlorophyll a, turbidity and salt combined with discrete measurements of phytoplankton community carbon, total and dissolved organic carbon and nutrient concentration at 1.5 h intervals. Vegetated ponds had greater material concentrations than the open water pond and, despite their small area, contributed up to 81% of the organic and 61% of the inorganic material flux of the wetland. Exchange between ponds was important to wetland flux. The small vegetated pond in the interior of the wetland contributed as much as 72-87% of the total organic carbon and chlorophyll a and 10% of the diatom flux of the wetland. Export of inorganic and organic material from the small vegetated ponds was facilitated by small-scale topography and tidal asymmetry that produced a 40% greater material export on ebb tide. The small vegetated ponds contrasted with the large open water pond, which imported 29-96% of the inorganic and 4-81% of the organic material into the wetland from the adjacent river. This study identified small vegetated ponds as an important source of inorganic and organic material to the wetland and the

  11. Observations of the uptake of carbonyl sulfide (COS by trees under elevated atmospheric carbon dioxide concentrations

    Directory of Open Access Journals (Sweden)

    L. Sandoval-Soto

    2012-08-01

    Full Text Available Global change forces ecosystems to adapt to elevated atmospheric concentrations of carbon dioxide (CO2. We understand that carbonyl sulfide (COS, a trace gas which is involved in building up the stratospheric sulfate aerosol layer, is taken up by vegetation with the same triad of the enzymes which are metabolizing CO2, i.e. ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, phosphoenolpyruvate carboxylase (PEP-Co and carbonic anhydrase (CA. Therefore, we discuss a physiological/biochemical acclimation of these enzymes affecting the sink strength of vegetation for COS. We investigated the acclimation of two European tree species, Fagus sylvatica and Quercus ilex, grown inside chambers under elevated CO2, and determined the exchange characteristics and the content of CA after a 1–2 yr period of acclimation from 350 ppm to 800 ppm CO2. We demonstrate that a compensation point, by definition, does not exist. Instead, we propose to discuss a point of uptake affinity (PUA. The results indicate that such a PUA, the CA activity and the deposition velocities may change and may cause a decrease of the COS uptake by plant ecosystems, at least as long as the enzyme acclimation to CO2 is not surpassed by an increase of atmospheric COS. As a consequence, the atmospheric COS level may rise causing an increase of the radiative forcing in the troposphere. However, this increase is counterbalanced by the stronger input of this trace gas into the stratosphere causing a stronger energy reflection by the stratospheric sulfur aerosol into space (Brühl et al., 2012. These data are very preliminary but may trigger a discussion on COS uptake acclimation to foster measurements with modern analytical instruments.

  12. Effect of IX column maintenance on carbon-14 concentration in moderator systems

    International Nuclear Information System (INIS)

    Gallagher, C.L.; Tripple, A.W.

    2006-01-01

    The radionuclide 14 C is produced in CANDU reactors primarily by the (n,α) reaction with 17 O. Because of high neutron fluxes in the core, the majority of the 14 C (94.5%) is produced in the moderator. In the moderator system, 14 C is present mainly as CO 2 in the cover gas in dynamic equilibrium with dissolved carbonates, bicarbonates and CO 2 in the moderator water. Emissions of 14 C from reactors occur through venting or leakage of the cover gas. By controlling the dissolved carbonates in the moderator water with an ion exchange (IX) purification system, the amount of 14 C in the cover gas is minimized and thus the emissions of 14 C can be reduced. A study was conducted to measure the 14 C concentrations in the moderator system at Gentilly 2 in order to determine the effectiveness of the purification system in removing 14 C. Moderator water samples were obtained from the inlet and outlet of the purification system from 2004 January 14 to July 12, covering the operation of two IX columns (IX-1 and IX-3). The moderator water samples contained high levels of tritium (∼2 TBq·L -1 ). As both tritium and 14 C are β-radiation emitters, direct counting of moderator water for 14 C is impossible as the signal due to tritium dominates over that of other β-emitters. Therefore, a procedure developed by Caron et al. was used in this study, which involved acidifying the sample to release the dissolved 14 CO 2 as gas and collecting the 14 CO 2 in a base (NaOH), which could then be measured by liquid scintillation counting to determine the 14 C concentration. Both of the IX columns started with 14 C removal efficiencies of about 95%. The efficiency began to decrease almost immediately with the IX-1 column dropping to 80% efficiency after ∼1115 hours. This drop in efficiency also led to an increase in the inlet concentration over time. IX-1 column was removed from service after ∼1745 hours with a 14 C removal efficiency of ∼31%. IX-3 column was then placed in service

  13. Lysimeter experiments to determine the ability of soil to reduce concentrations of BOD, available P and inorganic N in dirty water.

    Science.gov (United States)

    Brookman, S K E; Chadwick; Retter, A R

    2005-11-01

    Lysimeter experiments were conducted to determine the ability of different soils to reduce levels of biochemical oxygen demand (BOD) and concentrations of molybdate reactive phosphorus (MRP) and ammonium-N (NH4(+)-N) in dirty water and the impact of applications on nitrate leaching. An additional experiment investigated the effect of dirty water components on leaching quality. This information is required to assess the potential risk of dirty water applications on polluting groundwater and to assess the use of such soils in the development of treatment systems for dirty water. Intact and disturbed soil lysimeters, 0.5 and 1m deep were constructed from four soils; a coarse free-draining sandy loam, a sandy loam over soft sandstone, a calcareous silty clay over chalk and a sandy loam over granite. For the coarse free-draining sandy loam, lysimeters were also constructed from disturbed soil with and without the addition of lime, to assess if this could increase phosphorus immobilisation. Levels of BOD and concentrations of MRP, NH4(+)-N and nitrate (NO3(-)-N) of leachates were measured following dirty water applications at 2 and 8 mm day(-1) under laboratory conditions. Under the daily 2mm application, all soils were effective at treating dirty water, reducing concentrations of BOD, MRP and NH4(+)- N by > or = 98% but NO3(-)-N concentrations increased up to 80 mg l(-1) from the 0.5 m deep lysimeters of the sandy loam over granite. Soils were less effective at reducing levels of BOD, MRP and NH4(+)- N at the 8 mm daily rate of application, with maximum NO3(-)-N concentrations of leachates of 200 mg l(-1) from disturbed soils.

  14. The Contribution of Black Carbon to Ice Nucleating Particle Concentrations from Prescribed Burns and Wildfires

    Science.gov (United States)

    Schill, G. P.; DeMott, P. J.; Suski, K. J.; Emerson, E. W.; Rauker, A. M.; Kodros, J.; Levin, E. J.; Hill, T. C. J.; Farmer, D.; Pierce, J. R.; Kreidenweis, S. M.

    2017-12-01

    Black carbon (BC) has been implicated as a potential immersion-mode ice nucleating particle (INP) because of its relative abundance in the upper troposphere. Furthermore, several field and aircraft measurements have observed positive correlations between BC and INP concentrations. Despite this, the efficiency of BC to act as an immersion-mode INP is poorly constrained. Indeed, previous results from laboratory studies are in conflict, with estimates of BC's impact on INP ranging from no impact to being efficient enough to rival the well-known INP mineral dust. It is, however, becoming clear that the ice nucleation activity of BC may depend on both its fuel type and combustion conditions. For example, previous work has shown that diesel exhaust BC is an extremely poor immersion-mode INP, but laboratory burns of biomass fuels indicate that BC can contribute up to 70% of all INP for some fuel types. Given these dependencies, we propose that sampling from real-world biomass burning sources would provide the most useful new information on the contribution of BC to atmospheric INP. In this work, we will present recent results looking at the sources of INP from prescribed burns and wildfires. To determine the specific contribution of refractory black carbon (rBC) to INP concentrations, we utilized a new technique that couples the Single Particle Soot Photometer (SP2) to the Colorado State University Continuous Flow Diffusion Chamber (CFDC). The SP2 utilizes laser-induced incandescence to quantify rBC mass on a particle-by-particle basis; in doing so, it also selectively destroys rBC particles by heating them to their vaporization temperature. Thus, the SP2 can be used as a selective pre-filter for rBC into the CFDC. Furthermore, we have also used a filter-based technique for measuring INP, the Ice Spectrometer, which can employ pretreatments such as heating and digestion by H2O2 to determine the contribution of heat-labile and organic particles, respectively.

  15. Effect of Photochemical Transformation on Dissolved Organic Carbon Concentration and Bioavailability from Watersheds with Varying Landcover

    Science.gov (United States)

    Vermilyea, A.; Sanders, A.; Vazquez, E.

    2017-12-01

    The transformation of freshwater dissolved organic carbon (DOC) can have important implications for water quality, aquatic ecosystem health, and our climate. DOC is an important nutrient for heterotrophic microorganisms near the base of the aquatic food chain and the extent of conversion of DOC to CO2 is a critical piece of the global carbon cycle. Photochemical pathways have the potential to transform recalcitrant DOC into more labile forms that can then be converted to smaller DOC molecules and eventually be completely mineralized to CO2. This may lead to a DOC pool with different bioavailability depending on the structural composition of the original DOC pool and the mechanistic pathways undergone during transformation. This study aimed to measure the changes in DOC concentration and bioavailability due solely to photochemical processes in three watersheds of northern Vermont, USA that have varied land cover, land use (LCLU) attributes. Our hypothesis was that photochemical transformations will lead to (1) an overall loss of DOC due to mineralization to CO2 and (2) a relative increase in the bioavailable fraction of DOC. Additionally, the influence of LCLU and base flow versus storm flow on both mineralization rates and changes in DOC bioavailability was investigated. Irradiation of filtered samples in quartz vessels under sunlight led to small changes in DOC concentration over time, but significant changes in DOC bioavailability. In general, fluorescence excitation-emission matrices (EEMs) showed a shift from an initially more humic-like DOC pool, to a more protein-like (bioavailable) DOC pool. Specific UV index (SUVA) along with bioavailable DOC (BDOC) incubations were also used to characterize DOC and its bioavailability. There were only small differences in the DOC transformation that took place among sites, possibly due to only small differences in the initial bioavailability and fluorescent properties between water samples. Photochemical transformation

  16. PRE-CONCENTRATION AND DETERMINATION OF HEAVY METALS ON MODIFIED ACTIVATED CARBON IN REAL SAMPLES

    Directory of Open Access Journals (Sweden)

    F. Ahmadi

    2010-06-01

    Full Text Available A sensitive and simple method for the simultaneous pre-concentration of nutritionally important minerals in real samples has been reported. The method is based on the formation of metal complexes by N, N'-diacetyl-4-bromo-2, 6-di (aminomethyl phenol (DBDP loaded on activated carbon. The metals content on the complexes are then eluted using 6mL 4M HNO3, which are detected by AAS at resonance line. In this procedure, minerals such as Ni, Cu, Co, Pb Zn and Cd can be analyzed in one run by caring out the simultaneous separation and quantification of them. At optimum condition the response are linear over concentration range of for 0.03-1.1 µg mL-1 for Ni2+ , 0.03-1.0 µg mL-1 for Cu2+, 0.02-1.0 µg mL-1 for  Pb2+ , 0.02-1.0 µg mL-1 for  Co2+,0.02-1.1 µg mL-1 Zn2+ and 0.05-1.3 µg mL-1for Cd2+. The detection limits of each element are expressed as the amount of analytes in µg mL-1 giving a signal to noise ratio of 3 are equal to 2.5, 2.4, 1.6, 2.4, 1.9 and 2.1 for Ni2+ , Cu2+, Pb2+ , Co2+,Zn2+ and Cd2+. The ability of method for repeatable recovery of trace ion are 99.9, 98.7, 99.2 , 98.7, 98.5and 95.6 with R.S.D of 1.3, 1.4, 1.2, 1.4, 1.7 and 1.4 for Ni2+ , Cu2+, Pb2+ , Co2+,Zn2+ and Cd2+. The method has been successfully applied for these metals content evaluation in some real samples including natural water and vegetable.     Keywords: Heavy Metals, N, N'-diacetyl-4-bromo-2,6-di(aminomethyl phenol (DBDP, Activated Carbon

  17. The interaction of the flux errors and transport errors in modeled atmospheric carbon dioxide concentrations

    Science.gov (United States)

    Feng, S.; Lauvaux, T.; Butler, M. P.; Keller, K.; Davis, K. J.; Jacobson, A. R.; Schuh, A. E.; Basu, S.; Liu, J.; Baker, D.; Crowell, S.; Zhou, Y.; Williams, C. A.

    2017-12-01

    Regional estimates of biogenic carbon fluxes over North America from top-down atmospheric inversions and terrestrial biogeochemical (or bottom-up) models remain inconsistent at annual and sub-annual time scales. While top-down estimates are impacted by limited atmospheric data, uncertain prior flux estimates and errors in the atmospheric transport models, bottom-up fluxes are affected by uncertain driver data, uncertain model parameters and missing mechanisms across ecosystems. This study quantifies both flux errors and transport errors, and their interaction in the CO2 atmospheric simulation. These errors are assessed by an ensemble approach. The WRF-Chem model is set up with 17 biospheric fluxes from the Multiscale Synthesis and Terrestrial Model Intercomparison Project, CarbonTracker-Near Real Time, and the Simple Biosphere model. The spread of the flux ensemble members represents the flux uncertainty in the modeled CO2 concentrations. For the transport errors, WRF-Chem is run using three physical model configurations with three stochastic perturbations to sample the errors from both the physical parameterizations of the model and the initial conditions. Additionally, the uncertainties from boundary conditions are assessed using four CO2 global inversion models which have assimilated tower and satellite CO2 observations. The error structures are assessed in time and space. The flux ensemble members overall overestimate CO2 concentrations. They also show larger temporal variability than the observations. These results suggest that the flux ensemble is overdispersive. In contrast, the transport ensemble is underdispersive. The averaged spatial distribution of modeled CO2 shows strong positive biogenic signal in the southern US and strong negative signals along the eastern coast of Canada. We hypothesize that the former is caused by the 3-hourly downscaling algorithm from which the nighttime respiration dominates the daytime modeled CO2 signals and that the latter

  18. Effect of the Carbon Concentration, Blend Concentration, and Renewal Rate in the Growth Kinetic of Chlorella sp.

    Directory of Open Access Journals (Sweden)

    Adriano Arruda Henrard

    2014-01-01

    Full Text Available The microalgae cultivation can be used as alternative sources of food, in agriculture, residual water treatment, and biofuels production. Semicontinuous cultivation is little studied but is more cost-effective than the discontinuous (batch cultivation. In the semicontinuous cultivation, the microalga is maintained in better concentration of nutrients and the photoinhibition by excessive cell is reduced. Thus, biomass productivity and biocompounds of interest, such as lipid productivity, may be higher than in batch cultivation. The objective of this study was to examine the influence of blend concentration, medium renewal rate, and concentration of sodium bicarbonate on the growth of Chlorella sp. during semicontinuous cultivation. The cultivation was carried out in Raceway type bioreactors of 6 L, for 40 d at 30°C, 41.6 µmol m−2 s−1, and a 12 h light/dark photoperiod. Maximum specific growth rate (0.149 d−1 and generating biomass (2.89 g L−1 were obtained when the blend concentration was 0.80 g L−1, the medium renewal rate was 40%, and NaHCO3 was 1.60 g L−1. The average productivity (0.091 g L−1 d−1 was achieved with 0.8 g L−1 of blend concentration and NaHCO3 concentration of 1.6 g L−1, independent of the medium renewal rate.

  19. Study of some modern carbonated marine organisms, using U234/U238 activities and its uranium concentration

    International Nuclear Information System (INIS)

    Pregnolatto, Y.

    1975-01-01

    Several types of alive carbonated organisms of marine fluvial or mixed environment origin were analized in its concentrations of Uranium and about its activity ratio U 234 /U 238 . In the same way measurements were made from the water of these three types of environments. The results indicate that the mollusks shells show a very low concentration compared with corals. Its concentration varies from 0.04 to 0.33 ppm. Inside the limit of errors we can say that the several types of carbonated organisms show the same disequilibrium U 234 /U 238 which was found in associated waters. An analysis of a piece of wood from long time immersed in the sea water was made. The result indicates that there was a marked high in concentration of Uranium due to chelatation with organic matter. (C.D.G.) [pt

  20. Carbon monoxide-induced delayed amnesia, delayed neuronal death and change in acetylcholine concentration in mice

    International Nuclear Information System (INIS)

    Nabeshima, T.; Katoh, A.; Ishimaru, H.; Yoneda, Y.; Ogita, K.; Murase, K.; Ohtsuka, H.; Inari, K.; Fukuta, T.; Kameyama, T.

    1991-01-01

    We investigated the interrelationship of delayed amnesia, delayed neuronal death and changes in acetylcholine concentration induced by carbon monoxide (CO)-exposure in mice. In the test for retention of the passive avoidance task, amnesia was observed 5 and 7 days after CO-exposure when the mice were exposed to CO 1 day after training; in the case when the mice were exposed to CO 5 and 7 days before training, amnesia was also observed in a retention test given 1 day after training. The number of pyramidal cells in the hippocampal CA1 subfield was lower than that of the control 3, 5 and 7 days after CO-exposure. But the neurodegeneration in the parietal cortex, area 1, was not observed until 7 days after CO-exposure. The findings indicated that the amnesia and the neuronal death were produced after a delay when the mice were exposed to CO. In addition, the delayed amnesia was closely related to the delayed neuronal death in the hippocampal CA1 subfield. Moreover, [3H]glutamate and [3H]glycine binding sites did not change after CO-exposure but, 7 days after CO-exposure, the concentration of acetylcholine and the binding of [3H]quinuclidinyl benzilate in the frontal cortex and the striatum were found to have significantly changed, but those in the hippocampus did not show significant change. Therefore, we suggest that delayed amnesia induced by CO-exposure may result from delayed neuronal death in the hippocampal CA1 subfield and dysfunction in the acetylcholinergic neurons, in the frontal cortex, the striatum and/or the hippocampus

  1. Carbon monoxide-induced delayed amnesia, delayed neuronal death and change in acetylcholine concentration in mice

    Energy Technology Data Exchange (ETDEWEB)

    Nabeshima, T.; Katoh, A.; Ishimaru, H.; Yoneda, Y.; Ogita, K.; Murase, K.; Ohtsuka, H.; Inari, K.; Fukuta, T.; Kameyama, T. (Meijo Univ., Nagoya (Japan))

    1991-01-01

    We investigated the interrelationship of delayed amnesia, delayed neuronal death and changes in acetylcholine concentration induced by carbon monoxide (CO)-exposure in mice. In the test for retention of the passive avoidance task, amnesia was observed 5 and 7 days after CO-exposure when the mice were exposed to CO 1 day after training; in the case when the mice were exposed to CO 5 and 7 days before training, amnesia was also observed in a retention test given 1 day after training. The number of pyramidal cells in the hippocampal CA1 subfield was lower than that of the control 3, 5 and 7 days after CO-exposure. But the neurodegeneration in the parietal cortex, area 1, was not observed until 7 days after CO-exposure. The findings indicated that the amnesia and the neuronal death were produced after a delay when the mice were exposed to CO. In addition, the delayed amnesia was closely related to the delayed neuronal death in the hippocampal CA1 subfield. Moreover, (3H)glutamate and (3H)glycine binding sites did not change after CO-exposure but, 7 days after CO-exposure, the concentration of acetylcholine and the binding of (3H)quinuclidinyl benzilate in the frontal cortex and the striatum were found to have significantly changed, but those in the hippocampus did not show significant change. Therefore, we suggest that delayed amnesia induced by CO-exposure may result from delayed neuronal death in the hippocampal CA1 subfield and dysfunction in the acetylcholinergic neurons, in the frontal cortex, the striatum and/or the hippocampus.

  2. Modelling reaustenitisation in Fe-C steels with concentration-dependent diffusivity of carbon

    Directory of Open Access Journals (Sweden)

    Mancini, R.

    2002-12-01

    Full Text Available A finite difference method used to model reaustenitisation from a ferrite/cementite mixture in Fe-C steels is presented in this paper. Concentration-dependent carbon diffusivity in austenite is taken into account in order to generalize our earlier numerical model. We select some parameters, such as cementite dissolution time, and compare their values as calculated by different approximations available in the literature (in particular at steady state for planar and spherical geometries. When the dependence of diffusivity on concentration or temperature is increased, the steady state approximation fails to predict correctly the above mentioned parameters and the use of numerical techniques becomes indispensable.

    En este trabajo se presenta un método numérico de diferencias finitas para modelar la reaustenización en aceros Fe-C a partir de una distribución inicial de ferrita y cementita. Se tiene en cuenta la dependencia de la difusividad en la austenita con la concentración de carbono, a fin de generalizar el propio modelo numérico previo. Se han seleccionado algunos parámetros, como el tiempo de disolución de la cementita, para comparar los valores obtenidos en este caso con los calculados con diferentes aproximaciones (en particular con la de estado estacionario para los casos de geometrías plana y esférica. Los resultados obtenidos muestran que, cuando la difusividad depende fuertemente de la concentración, la aproximación de estado estacionario no predice correctamente los parámetros calculados y se hace imprescindible la aplicación de métodos numéricos.

  3. Modeling Study of the Contribution of Wildfires to Ambient Black Carbon Concentrations

    Science.gov (United States)

    Chung, S. H.; Gonzalez-Abraham, R.; Lamb, B. K.; Larkin, N. K.; Strand, T.; O'Neill, S.

    2013-12-01

    Wildland fires are a major source of particulate emissions, including black carbon (BC). In combination with other emissions, these BC and particulate emissions can directly lead to air quality degradation, both locally and more regionally. BC and other particulate matter (PM) can also affect climate in various ways, including by scattering and absorbing radiation, modifying cloud formation and properties, and changing snow albedo. BC emissions reduction is a potential strategy for mitigating global warming because it is emitted in large quantities and has a relatively short lifetime in the atmosphere in comparison to long-live greenhouse gases. Due to the highly variable nature of wildland fires, both in terms of fire occurrences on the landscape and the high spatial and temporal variability of fuels, consumption, and emissions, the impact of wildfire emissions varies significantly over the period of the wildfire season as well as inter-annually. In the U.S., while anthropogenic emissions are projected to decrease, as the climate warms wildfire activity is predicted to increase along with the contribution of fire emissions. Thus, a robust analysis of the effects of BC from fire emissions on air quality and climate necessitates a comprehensive, multi-scale study of all fire-related pollutants and other emission sources spanning multiple years of fire data and weather conditions. In this study we apply the WRF-BlueSky-SMOKE-CMAQ regional air-quality modeling system for multi-year (1997-2005) summertime simulations to evaluate the contribution of fire emissions to atmospheric BC and total PM2.5 concentrations. Historical fire records from the Bureau of Land Management are used by the BlueSky framework to calculate fire emissions. Plume rise is calculated by the SMOKE emission processor, taking into account meteorology from the WRF model. These emissions are combined with anthropogenic emissions from the NEI 2002 and biogenic emissions from the MEGAN model. CMAQ is

  4. Uncertainties in neural network model based on carbon dioxide concentration for occupancy estimation

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Azimil Gani; Rahman, Haolia; Kim, Jung-Kyung; Han, Hwataik [Kookmin University, Seoul (Korea, Republic of)

    2017-05-15

    Demand control ventilation is employed to save energy by adjusting airflow rate according to the ventilation load of a building. This paper investigates a method for occupancy estimation by using a dynamic neural network model based on carbon dioxide concentration in an occupied zone. The method can be applied to most commercial and residential buildings where human effluents to be ventilated. An indoor simulation program CONTAMW is used to generate indoor CO{sub 2} data corresponding to various occupancy schedules and airflow patterns to train neural network models. Coefficients of variation are obtained depending on the complexities of the physical parameters as well as the system parameters of neural networks, such as the numbers of hidden neurons and tapped delay lines. We intend to identify the uncertainties caused by the model parameters themselves, by excluding uncertainties in input data inherent in measurement. Our results show estimation accuracy is highly influenced by the frequency of occupancy variation but not significantly influenced by fluctuation in the airflow rate. Furthermore, we discuss the applicability and validity of the present method based on passive environmental conditions for estimating occupancy in a room from the viewpoint of demand control ventilation applications.

  5. Concentrations and carbon isotope compositions of methane in the cored sediments from offshore SW Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, P.C.; Yang, T.F.; Hong, W.L. [National Taiwan Univ., Taipei, Taiwan (China). Dept. of Geosciences; Lin, S.; Chen, J.C. [National Taiwan Univ., Taipei, Taiwan (China). Inst. of Oceanography; Sun, C.H. [CPC Corp., Wen Shan, Miaoli, Taiwan (China). Exploration and Development Research Inst.; Wang, Y. [Central Geological Survey, MOEA, Taipei, Taiwan (China)

    2008-07-01

    Gas hydrates are natural occurring solids that contain natural gases, mainly methane, within a rigid lattice of water molecules. They are a type of non-stoichiometric clathrates and metastable crystal products in low temperature and high pressure conditions and are widely distributed in oceans and in permafrost regions around the world. Gas hydrates have been considered as potential energy resources for the future since methane is the major gas inside gas hydrates. Methane is also a greenhouse gas that might affect the global climates from the dissociations of gas hydrates. Bottom simulating reflections (BSRs) have been found to be widely distributed in offshore southwestern Taiwan therefore, inferring the existence of potential gas hydrates underneath the seafloor sediments. This paper presented a study that involved the systematic collection of sea waters and cored sediments as well as the analysis of the gas composition of pore-space of sediments through ten cruises from 2003 to 2006. The paper discussed the results in terms of the distribution of methane concentrations in bottom waters and cored sediments; methane fluxes in offshore southwestern Taiwan; and isotopic compositions of methane in pore spaces of cored sediments. It was concluded that the carbon isotopic compositions of methane demonstrated that biogenic gas source was dominated at shallower depth. However, some thermogenic gases might be introduced from deeper source in this region. 15 refs., 5 figs.

  6. Characterization of long-term and seasonal variations of black carbon (BC concentrations at Neumayer, Antarctica

    Directory of Open Access Journals (Sweden)

    R. Weller

    2013-02-01

    Full Text Available Continuous black carbon (BC observations were conducted from 1999 through 2009 by an Aethalometer (AE10 and from 2006 through 2011 by a Multi-Angle Absorption Photometer (MAAP at Neumayer Station (NM under stringent contamination control. Considering the respective observation period, BC concentrations measured by the MAAP were somewhat higher (median ± standard deviation: 2.1 ± 2.0 ng m−3 compared to the AE10 results (1.6 ± 2.1 ng m−3. Neither for the AE10 nor for the MAAP data set a significant long-term trend could be detected. Consistently a pronounced seasonality was observed with both instruments showing a primary annual maximum between October and November and a minimum in April with a maximum/minimum ratio of 4.5/1.6 = 3.8 and 2.7/0.64 = 4.2 for the MAAP and AE10 data, respectively. Occasionally a secondary summer maximum in January/February was visible. With the aim to assess the impact of BC on optical properties of the aerosol at NM, we evaluated the BC data along with particle scattering coefficients measured by an integrating nephelometer. We found the mean single scattering albedo of ω550 = 0.992 ± 0.0090 (median: 0.994 at a wavelength of 550 nm with a range of values from 0.95 to 1.0.

  7. Dissolved organic carbon (DOC) concentrations in UK soils and the influence of soil, vegetation type and seasonality.

    Science.gov (United States)

    van den Berg, Leon J L; Shotbolt, Laura; Ashmore, Mike R

    2012-06-15

    Given the lack of studies which measured dissolved organic carbon (DOC) over long periods, especially in non-forest habitat, the aim of this study was to expand the existing datasets with data of mainly non-forest sites that were representative of the major soil and habitat types in the UK. A further aim was to predict DOC concentrations from a number of biotic and abiotic explanatory variables such as rainfall, temperature, vegetation type and soil type in a multivariate way. Pore water was sampled using Rhizon or Prenart samplers at two to three week intervals for 1 year. DOC, pH, organic carbon, carbon/nitrogen (C:N) ratios of soils and slope were measured and data on vegetation, soil type, temperature and precipitation were obtained. The majority of the variation in DOC concentrations between the UK sites could be explained by simple empirical models that included annual precipitation, and soil C:N ratio with precipitation being negatively related to DOC concentrations and C:N ratio being positively related to DOC concentrations. Our study adds significantly to the data reporting DOC concentrations in soils, especially in grasslands, heathlands and moorlands. Broad climatic and site factors have been identified as key factors influencing DOC concentrations. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Dissolved inorganic carbon, total alkalinity, nutrients, and other variables collected from profile and discrete observations using CTD, Niskin bottle, and other instruments from R/V New Horizon and R/V Robert Gordon Sproul in the U.S. West Coast for calibration and validation of California Current Ecosystem (CCE) Moorings from 2009-12-15 to 2015-04-29 (NCEI Accession 0146024)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archive accession contains inorganic carbon, total alkalinity, nutrients, and other data collected from ships during servicing cruises to the California Current...

  9. Effect of atmospheric carbon dioxide concentration on the cultivation of bovine Mycoplasma species.

    Science.gov (United States)

    Lowe, J L; Fox, L K; Enger, B D; Progar, A Adams; Gay, J M

    2018-05-01

    Recommendations for bovine mycoplasma culture CO 2 concentrations are varied and were not empirically derived. The objective of this study was to determine whether the growth measures of bovine mycoplasma isolates differed when incubated in CO 2 concentrations of 10 or 5% or in candle jars (2.7 ± 0.2% CO 2 ). Growth of Mycoplasma bovis (n = 22), Mycoplasma californicum (n = 18), and other Mycoplasma spp. (n = 10) laboratory isolates was evaluated. Isolate suspensions were standardized to approximately 10 8 cfu/mL and serially diluted in pasteurized whole milk to achieve test suspensions of 10 2 and 10 6 cfu/mL. One hundred microliters of each test dilution was spread in duplicate onto the surface of a modified Hayflick's agar plate. Colony growth was enumerated on d 3, 5, and 7 of incubation. A mixed linear model included the fixed effects of CO 2 treatment (2.7, 5, or 10%), species, day (3, 5, or 7), and their interactions, with total colony counts as the dependent variable. Carbon dioxide concentration did not significantly affect overall mycoplasma growth differences, but differences between species and day were present. Colony counts (log 10 cfu/mL) of M. bovis were 2.6- and 1.6-fold greater than M. californicum and other Mycoplasma spp., respectively. Growth at 7 d of incubation was greater than d 3 and 5 for all species. These findings were confirmed using field isolates (n = 98) from a commercial veterinary diagnostic laboratory. Binary growth responses (yes/no) of the field isolates were not different between CO 2 treatments but did differ between species and day of incubation. On average, 57% of all field isolates were detected by 3 d of incubation compared with 93% on d 7. These results suggest that the range of suitable CO 2 culture conditions and incubation times for the common mastitis-causing Mycoplasma spp. may be broader than currently recommended. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Dependence of electrical resistance in nonstoichiometric titanium carbide TiCy on carbon vacancy concentration and distribution

    International Nuclear Information System (INIS)

    Lipatnikov, V.N.; Gusev, A.I.

    1999-01-01

    Electric conductivity in nonstoichiometric titanium carbide TiC y (0.5 ≤ y ≤ 0.98) is studied depending on concentration and distribution of carbon sublattice vacancies as well as on temperature. It is established that in TiC y at y y on the one hand and by the atom-vacancy interaction on the other hand [ru

  11. Characteristic and Prediction of Carbon Monoxide Concentration using Time Series Analysis in Selected Urban Area in Malaysia

    Directory of Open Access Journals (Sweden)

    Abdul Hamid Hazrul

    2017-01-01

    Full Text Available Carbon monoxide (CO is a poisonous, colorless, odourless and tasteless gas. The main source of carbon monoxide is from motor vehicles and carbon monoxide levels in residential areas closely reflect the traffic density. Prediction of carbon monoxide is important to give an early warning to sufferer of respiratory problems and also can help the related authorities to be more prepared to prevent and take suitable action to overcome the problem. This research was carried out using secondary data from Department of Environment Malaysia from 2013 to 2014. The main objectives of this research is to understand the characteristic of CO concentration and also to find the most suitable time series model to predict the CO concentration in Bachang, Melaka and Kuala Terengganu. Based on the lowest AIC value and several error measure, the results show that ARMA (1,1 is the most appropriate model to predict CO concentration level in Bachang, Melaka while ARMA (1,2 is the most suitable model with smallest error to predict the CO concentration level for residential area in Kuala Terengganu.

  12. Total and size-resolved particle number and black carbon concentrations in urban areas near Schiphol airport (the Netherlands)

    NARCIS (Netherlands)

    Keuken, M.P.; Moerman, M.; Zandveld, P.; Henzing, J.S.; Hoek, G.

    2015-01-01

    The presence of black carbon, and size-resolved and total particle number concentrations (PNC) were investigated in the vicinity of Schiphol airport in the Netherlands, the fourth busiest airport in Europe. Continuous measurements were conducted between March and May 2014at Adamse Bos, located 7km

  13. Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost

    DEFF Research Database (Denmark)

    Marchal, Geoffrey; Smith, Kilian E.C.; Rein, Arno

    2013-01-01

    can be degraded at all, the desorption and biodegradation of low concentrations of 14C-labelled phenanthrene (⩽5μgL−1) freshly sorbed to suspensions of the pure soil amendments activated carbon (AC), biochar (charcoal) and compost were compared. Firstly, the maximum abiotic desorption of phenanthrene...

  14. Black carbon concentrations and sources in the marine boundary layer of the tropical Atlantic Ocean using four methodologies

    Science.gov (United States)

    Combustion-derived aerosols in the marine boundary layer have been poorly studied, especially in remote environments such as the open Atlantic Ocean. The tropical Atlantic has the potential to contain a high concentration of aerosols, such as black carbon, due to the African emis...

  15. Collection/concentration of trace uranium for spectrophotometric detection using activated carbon and first-derivative spectrophotometry

    International Nuclear Information System (INIS)

    El-Sayed, A.A.; Hamed, M.M.; El-Reefy, S.; Hmmad, H.A.

    2007-01-01

    The need exists for preconcentration of trace and ultratrace amounts of uranium from environmental, geological and biological samples. The adsorption of uranium on various solids is important from the purification, environ