WorldWideScience

Sample records for inorganic analytical chemistry

  1. Integrating Bio-Inorganic and Analytical Chemistry into an Undergraduate Biochemistry Laboratory

    Science.gov (United States)

    Erasmus, Daniel J.; Brewer, Sharon E.; Cinel, Bruno

    2015-01-01

    Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by…

  2. Inorganic Analytical Chemistry

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    The book is a treatise on inorganic analytical reactions in aqueous solution. It covers about half of the elements in the periodic table, i.e. the most important ones : H, Li, B, C, N, O, Na, Mg, Al, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Sr, Mo, Ag, Cd, Sn, Sb, I, Ba, W,...

  3. Integrating bio-inorganic and analytical chemistry into an undergraduate biochemistry laboratory.

    Science.gov (United States)

    Erasmus, Daniel J; Brewer, Sharon E; Cinel, Bruno

    2015-01-01

    Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by atomic absorption spectroscopy exercise as part of a five-week long laboratory-based project on the purification of myoglobin from beef. Students were required to prepare samples for chemical analysis, operate an atomic absorption spectrophotometer, critically evaluate their iron data, and integrate these data into a study of myoglobin. © 2015 The International Union of Biochemistry and Molecular Biology.

  4. Proceedings of the 17. Annual Meeting of the Brazilian Chemistry Society; 7. National Symposium on Inorganic Chemistry. Abstracts

    International Nuclear Information System (INIS)

    1994-01-01

    These 17. Annual Meeting of the Brazilian Chemistry Society and 7. National Symposium on Inorganic Chemistry present several subjects of different interests for the participants, including sections about inorganic chemistry; organic chemistry; environmental chemistry; technological chemistry; electrochemistry; physical chemistry; photochemistry; chemical education; natural products; analytical chemistry and biological chemistry. (C.G.C.)

  5. Analytical Chemistry Division annual progress report for period ending December 31, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The Analytical Chemistry Division has programs in inorganic mass spectrometry, optical spectroscopy, organic mass spectrometry, and secondary ion mass spectrometry. It maintains a transuranium analytical laboratory and an environmental analytical laboratory. It carries out chemical and physical analysis in the fields of inorganic chemistry, organic spectroscopy, separations and synthesis. (WET)

  6. Development of a Research-Oriented Inorganic Chemistry Laboratory Course

    Science.gov (United States)

    Vallarino, L. M.; Polo, D. L.; Esperdy, K.

    2001-02-01

    We report the development of a research-oriented, senior-level laboratory course in inorganic chemistry, which is a requirement for chemistry majors who plan to receive the ACS-approved Bachelor of Science degree and is a recommended elective for other chemistry majors. The objective of this course is to give all students the advantage of a research experience in which questions stemming from the literature lead to the formulation of hypotheses, and answers are sought through experiment. The one-semester Inorganic Chemistry Laboratory is ideal for this purpose, since for most students it represents the last laboratory experience before graduation and can assume the role of "capstone" course--a course where students are challenged to recall previously learned concepts and skills and put them into practice in the performance of an individual, original research project. The medium chosen for this teaching approach is coordination chemistry, a branch of chemistry that involves the interaction of inorganic and organic compounds and requires the use of various synthetic and analytical methods. This paper presents an outline of the course organization and requirements, examples of activities performed by the students, and a critical evaluation of the first five years' experience.

  7. Welcome to Inorganics: A New Open Access, Inclusive Forum for Inorganic Chemistry

    Directory of Open Access Journals (Sweden)

    Duncan H. Gregory

    2013-06-01

    Full Text Available One of the beauties of inorganic chemistry is its sheer diversity. Just as chemistry sits at the centre of the sciences, inorganic chemistry sits at the centre of chemistry itself. Inorganic chemists are fortunate in having the entire periodic table at their disposal, providing a palette for the creation of a multitude of rich and diverse compounds and materials from the simplest salts to the most complex of molecular species. It follows that the language of inorganic chemistry can thus be a demanding one, accommodating sub-disciplines with very different perspectives and frames of reference. One could argue that it is the unequivocal breadth of inorganic chemistry that empowers inorganic chemists to work at the interfaces, not just between the traditional Inorganic-Organic-Physical boundaries of the discipline, but in the regions where chemistry borders the other physical and life sciences, engineering and socio-economics. [...

  8. Analytical Chemistry Division annual progress report: For period ending December 31, 1987

    International Nuclear Information System (INIS)

    1988-05-01

    This report is divided into analytical spectroscopy; radioactive materials analysis; inorganic chemistry; organic chemistry; ORNL environmental programs; quality assurance, safety, and training; supplementary activities; and presentation of research results

  9. Analytical Chemistry Division annual progress report: For period ending December 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    This report is divided into analytical spectroscopy; radioactive materials analysis; inorganic chemistry; organic chemistry; ORNL environmental programs; quality assurance, safety, and training; supplementary activities; and presentation of research results.

  10. Modern Trends in Inorganic Chemistry

    Indian Academy of Sciences (India)

    Administrator

    The series of symposia on 'Modern Trends in Inorganic Chemistry' (MTIC), which began in 1985 at the Indian Association for Cultivation of Science, Calcutta has evolved into a forum for the Inorganic Chemistry fraternity of the country to meet every two years and discuss the current status and future projections of research in.

  11. Analytical Chemistry Division annual progress report for period ending December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Shults, W.D.

    1993-04-01

    This report is divided into: Analytical spectroscopy (optical spectroscopy, organic mass spectrometry, inorganic mass spectrometry, secondary ion mass spectrometry), inorganic and radiochemistry (transuranium and activation analysis, low-level radiochemical analysis, inorganic analysis, radioactive materials analysis, special projects), organic chemistry (organic spectroscopy, separations and synthesis, special projects, organic analysis, ORNL/UT research program), operations (quality assurance/quality control, environmental protection, safety, analytical improvement, training, radiation control), education programs, supplementary activities, and presentation of research results. Tables are included for articles reviewed or refereed for periodicals, analytical service work, division manpower and financial summary, and organization chart; a glossary is also included.

  12. Degradation of Environmental Contaminants with Water-Soluble Cobalt Catalysts: An Integrative Inorganic Chemistry Investigation

    Science.gov (United States)

    Evans, Alexandra L.; Messersmith, Reid E.; Green, David B.; Fritsch, Joseph M.

    2011-01-01

    We present an integrative laboratory investigation incorporating skills from inorganic chemistry, analytical instrumentation, and physical chemistry applied to a laboratory-scale model of the environmental problem of chlorinated ethylenes in groundwater. Perchloroethylene (C[subscript 2]Cl[subscript 4], PCE) a common dry cleaning solvent,…

  13. Recent Advances in Bio-inorganic Chemistry

    Indian Academy of Sciences (India)

    Unknown

    Bio-inorganic chemistry has developed rapidly in recent years. A number of laboratories in India have made significant contributions to this area. The motivation in bringing out this special issue on Bio-inorganic. Chemistry is to highlight the recent work emerging from India in this important and fascinating interdisci-.

  14. Analytical chemistry instrumentation

    International Nuclear Information System (INIS)

    Laing, W.R.

    1986-01-01

    In nine sections, 48 chapters cover 1) analytical chemistry and the environment 2) environmental radiochemistry 3) automated instrumentation 4) advances in analytical mass spectrometry 5) fourier transform spectroscopy 6) analytical chemistry of plutonium 7) nuclear analytical chemistry 8) chemometrics and 9) nuclear fuel technology

  15. Industrial inorganic chemistry. 2. rev. ed.

    International Nuclear Information System (INIS)

    Buechner, W.; Schliebs, R.; Winter, G.; Buechel, K.H.

    1986-01-01

    Inorganic chemistry is a branch of considerable economic and technical importance. Apart from supplying the market with metals, fertilizers, building materials, pigments and glass it is one of the major suppliers of process materials to the organic chemical industry. Many modern products of other industrial sectors (video tapes, optical fibers or silicon chips) could not have been developed and manufactured without the achievements of industrial inorganic chemistry. The publication is the first of its kind to give a compact description of the inorganic chemistry sector. A clearly arranged survey facilitates access to production processes, economic aspects, ecological implications, energy consumption and raw material consumption as well as to many other data and facts. Due to its clear arrangement and the combination of technical and economic facts the book is a valuable source of information. (orig./EF) [de

  16. Inorganic and organic radiation chemistry: state and problems

    International Nuclear Information System (INIS)

    Kalyazin, E.P.; Bugaenko, L.T.

    1990-01-01

    Radiation inorganic and organic chemistry is presented on the basis of the general scheme and classification of radiolysis products and elementary processes, by which evolution of radiation-affected substances up to the final radiolysis products takes place. The evolution is traced for the representatives of inorganic and organic compounds. The contribution of radiation inorganic and organic chemistry to radiation technology, radiation materials technology, radiation ecology and medicine, is shown. Tendencies in the development of radiation chemistry and prediction of its certain directions are considered

  17. Foundation Coursework in Undergraduate Inorganic Chemistry: Results from a National Survey of Inorganic Chemistry Faculty

    Science.gov (United States)

    Raker, Jeffrey R.; Reisner, Barbara A.; Smith, Sheila R.; Stewart, Joanne L.; Crane, Johanna L.; Pesterfield, Les; Sobel, Sabrina G.

    2015-01-01

    A national survey of inorganic chemists explored the self-reported topics covered in foundation-level courses in inorganic chemistry at the postsecondary level; the American Chemical Society's Committee on Professional Training defines a foundation course as one at the conclusion of which, "a student should have mastered the vocabulary,…

  18. Analytical Chemistry Division annual progress report for period ending December 31, 1985

    International Nuclear Information System (INIS)

    Shultz, W.D.

    1986-05-01

    Progress reports are presented for the four major sections of the division: analytical spectroscopy, radioactive materials laboratories, inorganic chemistry, and organic chemistry. A brief discussion of the division's role in the Laboratory's Environmental Restoration and Facilities Upgrade is given. Information about quality assurance and safety programs is presented, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited

  19. Inorganic chemistry of earliest sediments

    International Nuclear Information System (INIS)

    Ochiai, E.I.

    1983-01-01

    A number of inorganic elements are now known to be essential to organisms. Chemical evolutionary processes involving carbon, hydrogen, nitrogen and oxygen have been studied intensively and extensively, but the other essential elements have been rather neglected in the studies of chemical and biological evolution. This article attempts to assess the significance of inorganic chemistry in chemical and biological evolutionary processes on the earth. Emphasis is placed on the catalytic effects of inorganic elements and compounds, and also on possible studies on the earliest sediments, especially banded iron formation and stratabound copper from the inorganic point of view in the hope of shedding some light on the evolution of the environment and the biological effects on it. (orig./WL)

  20. Analytical Chemistry Division annual progress report for period ending December 31, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Shultz, W.D.

    1986-05-01

    Progress reports are presented for the four major sections of the division: analytical spectroscopy, radioactive materials laboratories, inorganic chemistry, and organic chemistry. A brief discussion of the division's role in the Laboratory's Environmental Restoration and Facilities Upgrade is given. Information about quality assurance and safety programs is presented, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited.

  1. Inorganic chemistry and medicine

    International Nuclear Information System (INIS)

    Sadler, P.J.; Guo, Z.

    1999-01-01

    Inorganic chemistry is beginning to have a major impact on medicine. Not only does it offer the prospect of the discovery of truly novel drugs and diagnostic agents, but it promises to make a major contribution to our understanding of the mechanism of action of organic drugs too. Most of this article is concerned with recent developments in medicinal coordination chemistry. The role of metal organic compounds of platinum, titanium, ruthenium, gallium, bismuth, gold, gadolinium, technetium, silver, cobalt in the treatment or diagnosis of common diseases are briefly are examined

  2. Mendeleev-2013. VII All-Russian conference of young scientists, postgraduate students and students with international participation on chemistry and nanomaterials. Book of abstracts. Section 2. Analytic chemistry

    International Nuclear Information System (INIS)

    2013-01-01

    VII All-Russian conference of young scientists, postgraduate students and students with international participation on chemistry and nanomaterials was conducted on the Chemistry department of Saint-Petersburg University on April, 2-5, 2013. In the conference participants from 14 countries took part. There were five sections: Nanochemistry and nanomaterials, Analytic chemistry, Inorganic chemistry, Organic chemistry, Physical chemistry. In the collection (Section 2 - Analytic chemistry) there are the abstracts concerning determination of heavy metals in environmental samples, petroleum products, different biological active and toxic substances in human tissues, food products and water; usage of nanoparticles for modification of electrodes for electrochemical methods of analysis, etc [ru

  3. Analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Myeong Hu; Lee, Hu Jun; Kim, Ha Seok

    1989-02-15

    This book give explanations on analytical chemistry with ten chapters, which deal with development of analytical chemistry, the theory of error with definition and classification, sample and treatment gravimetry on general process of gravimetry in aqueous solution and non-aqueous solution, precipitation titration about precipitation reaction and types, complexometry with summary and complex compound, oxidation-reduction equilibrium on electrode potential and potentiometric titration, solvent extraction and chromatograph and experiment with basic operation for chemical experiment.

  4. Analytical chemistry

    International Nuclear Information System (INIS)

    Chae, Myeong Hu; Lee, Hu Jun; Kim, Ha Seok

    1989-02-01

    This book give explanations on analytical chemistry with ten chapters, which deal with development of analytical chemistry, the theory of error with definition and classification, sample and treatment gravimetry on general process of gravimetry in aqueous solution and non-aqueous solution, precipitation titration about precipitation reaction and types, complexometry with summary and complex compound, oxidation-reduction equilibrium on electrode potential and potentiometric titration, solvent extraction and chromatograph and experiment with basic operation for chemical experiment.

  5. Inorganic and geological materials

    International Nuclear Information System (INIS)

    Dinnin, J.I.

    1975-01-01

    Recently described methods for applied inorganic analysis are reviewed from an interdisciplinary standpoint. Abstracts and periodical literature up to Nov. 1974, are included for consideration. The following areas of interest are covered: general reviews of inorganic analytical techniques; analytical techniques, areas of application, and analysis of individual elements. Selected books, monographs, and review articles on the analytical chemistry of the elements are listed. (416 references.) (U.S.)

  6. Characterisation of the inorganic chemistry of surface waters in ...

    African Journals Online (AJOL)

    The main purpose of this study was to determine a simple inorganic chemistry index that can be used for all surface waters in South Africa, in order to characterise the inorganic chemistry of surface waters. Water quality data collected up until 1999 from all sample monitoring stations (2 068 monitoring stations, 364 659 ...

  7. Modern Trends in Inorganic Chemistry (MTIC-XIII)

    Indian Academy of Sciences (India)

    MAC 10

    Institute of Science, Bangalore during December 7–10, 2009. The MTIC series of ... The topics covered in this issue span a wide range from ... chemistry that reflect the current trends of research in inorganic chemistry in India. We thank the ...

  8. Division of Analytical Chemistry, 1998

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1999-01-01

    The article recounts the 1998 activities of the Division of Analytical Chemistry (DAC- formerly the Working Party on Analytical Chemistry, WPAC), which body is a division of the Federation of European Chemical Societies (FECS). Elo Harald Hansen is the Danish delegate, representing The Danish...... Chemical Society/The Society for Analytical Chemistry....

  9. Organization of a cognitive activity of students when teaching analytical chemistry

    Directory of Open Access Journals (Sweden)

    А. Tapalova

    2012-12-01

    Full Text Available Qualitative analysis allows using basic knowledge of general and inorganic chemistry for the solution of practical problems, disclosure the chemism of the processes that are fundamental for  the methods of analysis. Systematic qualitative analysis develops analytical thinking, establishes a scientific style of thinking of students.Сhemical analysis requires certain skills and abilities and develops the general chemical culture of the future teachers оn chemistry. The result can be evaluated in the course of self-control, peer review, and solving creative problems. Mastering the techniques of critical thinking (comparison, abstraction, generalization and their use in a particular chemical material - are necessary element in the formation of professional thinking of the future chemistry teacher.

  10. USSR Report Chemistry

    National Research Council Canada - National Science Library

    1986-01-01

    Contents: Adsorption, Chemistry,Alkaloids, Analytical Chemistry, Catalysis,Chemical Industry,,Coal Gasification, Combustion, Electrochemistry,Explosives and Explosions, Fertilizers, Free Radicals, Inorganic...

  11. Analytical Chemistry as Methodology in Modern Pure and Applied Chemistry

    OpenAIRE

    Honjo, Takaharu

    2001-01-01

    Analytical chemistry is an indispensable methodology in pure and applied chemistry, which is often compared to a foundation stone of architecture. In the home page of jsac, it is said that analytical chemistry is a learning of basic science, which treats the development of method in order to get usefull chemical information of materials by means of detection, separation, and characterization. Analytical chemistry has recently developed into analytical sciences, which treats not only analysis ...

  12. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry

    Directory of Open Access Journals (Sweden)

    Marek Tobiszewski

    2015-06-01

    Full Text Available The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-established and recently developed green analytical chemistry metrics, including NEMI labeling and analytical Eco-scale, are presented. Additionally, this paper focuses on the possibility of the use of multivariate statistics in evaluation of environmental impact of analytical procedures. All the above metrics are compared and discussed in terms of their advantages and disadvantages. The current needs and future perspectives in green chemistry metrics are also discussed.

  13. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry.

    Science.gov (United States)

    Tobiszewski, Marek; Marć, Mariusz; Gałuszka, Agnieszka; Namieśnik, Jacek

    2015-06-12

    The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-established and recently developed green analytical chemistry metrics, including NEMI labeling and analytical Eco-scale, are presented. Additionally, this paper focuses on the possibility of the use of multivariate statistics in evaluation of environmental impact of analytical procedures. All the above metrics are compared and discussed in terms of their advantages and disadvantages. The current needs and future perspectives in green chemistry metrics are also discussed.

  14. Analytical chemistry

    International Nuclear Information System (INIS)

    Choi, Jae Seong

    1993-02-01

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  15. Analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Seong

    1993-02-15

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  16. Modern Analytical Chemistry in the Contemporary World

    Science.gov (United States)

    Šíma, Jan

    2016-01-01

    Students not familiar with chemistry tend to misinterpret analytical chemistry as some kind of the sorcery where analytical chemists working as modern wizards handle magical black boxes able to provide fascinating results. However, this approach is evidently improper and misleading. Therefore, the position of modern analytical chemistry among…

  17. Industrial chemistry engineering

    International Nuclear Information System (INIS)

    1993-01-01

    This book on industrial chemistry engineering is divided in two parts. The first part deals with industrial chemistry, inorganic industrial chemistry, organic industrial chemistry, analytical chemistry and practical questions. The last parts explain the chemical industry, a unit parts and thermodynamics in chemical industry and reference. It reveals the test subjects for the industrial chemistry engineering with a written examination and practical skill.

  18. Computer information resources of inorganic chemistry and materials science

    International Nuclear Information System (INIS)

    Kiselyova, N N; Dudarev, V A; Zemskov, V S

    2010-01-01

    Information systems used in inorganic chemistry and materials science are considered. The following basic trends in the development of modern information systems in these areas are highlighted: access to information via the Internet, merging of documental and factual databases, involvement of experts in the evaluation of the data reliability, supplementing databases with information analysis tools on the properties of inorganic substances and materials.

  19. Computer information resources of inorganic chemistry and materials science

    Energy Technology Data Exchange (ETDEWEB)

    Kiselyova, N N; Dudarev, V A; Zemskov, V S [A.A.Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow (Russian Federation)

    2010-02-28

    Information systems used in inorganic chemistry and materials science are considered. The following basic trends in the development of modern information systems in these areas are highlighted: access to information via the Internet, merging of documental and factual databases, involvement of experts in the evaluation of the data reliability, supplementing databases with information analysis tools on the properties of inorganic substances and materials.

  20. USSR Report Chemistry

    National Research Council Canada - National Science Library

    1986-01-01

    THIS REPORT CONTAINS FOREIGN MEDIA INFORMATION FROM THE USSR CONCERNING Adsorption, Alkaloids, ANALYTICAL CHEMISTRY, CATALYSIS, ELECTROCHEMISTRY, Fertilizers, INORGANIC COMPOUNDS, ORGANOPHOSPHOROUS...

  1. NUCLEAR CHEMISTRY ANNUAL REPORT 1970

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    1971-05-01

    Papers are presented for the following topics: (1) Nuclear Structure and Nuclear Properties - (a) Nuclear Spectroscopy and Radioactivity; (b) Nuclear Reactions and Scattering; (c) Nuclear Theory; and (d) Fission. (2) Chemical and Atomic Physics - (a) Atomic and Molecular Spectroscopy; and (b) Hyperfine Interactions. (3) Physical, Inorganic, and Analytical Chemistry - (a) X-Ray Crystallography; (b) Physical and Inorganic Chemistry; (c) Radiation Chemistry; and (d) Chemical Engineering. (4) Instrumentation and Systems Development.

  2. Chemistry of the elements

    International Nuclear Information System (INIS)

    Greenwood, N.N.; Earnshaw, A.

    1984-01-01

    This textbook presents an account of the chemistry of the elements for both undergraduate and postgraduate students. It covers not only the 'inorganic' chemistry of the elements, but also analytical, theoretical, industrial, organometallic;, bio-inorganic and other areas of chemistry which apply. The following elements of special nuclear interest are included: Rb, Cs, Fr, Sr, Ba, Ra, Po, At, Rn, Sc, Y, Zr, Hf, V, Nb, Ta, Mo, Tc, Ru, the Lanthanide Elements, the Actinide Elements. (U.K.)

  3. Making Decisions by Analytical Chemistry

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    . These discrepancies are very unfortunate because erroneous conclusions may arise from an otherwise meticulous and dedicated effort of research staff. This may eventually lead to unreliable conclusions thus jeopardizing investigations of environmental monitoring, climate changes, food safety, clinical chemistry......It has been long recognized that results of analytical chemistry are not flawless, owing to the fact that professional laboratories and research laboratories analysing the same type of samples by the same type of instruments are likely to obtain significantly different results. The European......, forensics and other fields of science where analytical chemistry is the key instrument of decision making. In order to elucidate the potential origin of the statistical variations found among laboratories, a major program was undertaken including several analytical technologies where the purpose...

  4. Quo vadis, analytical chemistry?

    Science.gov (United States)

    Valcárcel, Miguel

    2016-01-01

    This paper presents an open, personal, fresh approach to the future of Analytical Chemistry in the context of the deep changes Science and Technology are anticipated to experience. Its main aim is to challenge young analytical chemists because the future of our scientific discipline is in their hands. A description of not completely accurate overall conceptions of our discipline, both past and present, to be avoided is followed by a flexible, integral definition of Analytical Chemistry and its cornerstones (viz., aims and objectives, quality trade-offs, the third basic analytical reference, the information hierarchy, social responsibility, independent research, transfer of knowledge and technology, interfaces to other scientific-technical disciplines, and well-oriented education). Obsolete paradigms, and more accurate general and specific that can be expected to provide the framework for our discipline in the coming years are described. Finally, the three possible responses of analytical chemists to the proposed changes in our discipline are discussed.

  5. Proceedings of the 11. ENQA: Brazilian meeting on analytical chemistry. Challenges for analytical chemistry in the 21st century. Book of Abstracts

    International Nuclear Information System (INIS)

    2001-01-01

    The 11th National Meeting on Analytical Chemistry was held from 18 to 21 September, 2001 at the Convention Center of UNICAMP, with the theme Challenges for Analytical Chemistry in the 21st Century. This meeting have discussed on the development of new methods and analytical tools needed to solve new challenges. The papers presented topics related to the different sub-areas of Analytical Chemistry such as Environmental Chemistry; Chemiometry techniques; X-ray Fluorescence Analysis; Spectroscopy; Separation Processes; Electroanalytic Chemistry and others. Were also included lectures on the Past and Future of Analytical Chemistry and on Ethics in Science

  6. Information theory in analytical chemistry

    National Research Council Canada - National Science Library

    Eckschlager, Karel; Danzer, Klaus

    1994-01-01

    Contents: The aim of analytical chemistry - Basic concepts of information theory - Identification of components - Qualitative analysis - Quantitative analysis - Multicomponent analysis - Optimum analytical...

  7. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research

  8. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  9. Special issue on Modern Trends in Inorganic Chemistry (MTIC-XV ...

    Indian Academy of Sciences (India)

    This Special Issue is based on the contributions from the invited speakers of the. Fifteenth Symposium on Modern Trends in Inorganic Chemistry (MTIC-XV) held at the Indian Institute of Technology, Roorkee during 13–16, December 2013. The MTIC series of biennial symposia has been an important forum for the inorganic ...

  10. Problem-based learning on quantitative analytical chemistry course

    Science.gov (United States)

    Fitri, Noor

    2017-12-01

    This research applies problem-based learning method on chemical quantitative analytical chemistry, so called as "Analytical Chemistry II" course, especially related to essential oil analysis. The learning outcomes of this course include aspects of understanding of lectures, the skills of applying course materials, and the ability to identify, formulate and solve chemical analysis problems. The role of study groups is quite important in improving students' learning ability and in completing independent tasks and group tasks. Thus, students are not only aware of the basic concepts of Analytical Chemistry II, but also able to understand and apply analytical concepts that have been studied to solve given analytical chemistry problems, and have the attitude and ability to work together to solve the problems. Based on the learning outcome, it can be concluded that the problem-based learning method in Analytical Chemistry II course has been proven to improve students' knowledge, skill, ability and attitude. Students are not only skilled at solving problems in analytical chemistry especially in essential oil analysis in accordance with local genius of Chemistry Department, Universitas Islam Indonesia, but also have skilled work with computer program and able to understand material and problem in English.

  11. Surface Chemistry and Spectroscopy of Chromium in Inorganic Oxides

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Wachs, I.E.; Schoonheydt, R.A.

    1996-01-01

    Focuses on the surface chemistry and spectroscopy of chromium in inorganic oxides. Characterization of the molecular structures of chromium; Mechanics of hydrogenation-dehydrogenation reactions; Mobility and reactivity on oxidic surfaces.

  12. Carboxylic acid exchangers in analytical chemistry

    International Nuclear Information System (INIS)

    Venkateswarlu, Ch.

    1976-01-01

    The literature on the use of carboxylic acid exchangers in inorganic analytical chemistry is reviewed. It is classified under two heads, based on the ionic form in which the exchanger is employed, viz., the salt form and the acid form. In the salt form, the separations reported in the beginning are mostly carried out in alkaline medium, employing ammonia and its derivatives as complexing agents to hold cations in solution. This was followed by the use of ammonium ion as an eluent from heavy weakly or neutral solutions. There are a few separations reported making use of EDTA as eluent. It appears that separation of some anions from cations can be achieved with greater ease with these exchangers than with sulphonic acid type. Contary to the general belief, carboxylic acid exchangers are used in H + form to achieve some analytical separations of cations of interest. These exchangers exhibit better sorption of some cations in presence of complexing agents containing basic nitrogen as a donor. In fact, a careful study of these exchangers with different matrices might yield really selective exchangers, than the chelating ones known commercially. From the separation cited, carboxylic acid exchangers appear to have greater potentialities in their applications, than what is normally expected. (author)

  13. Analytical Chemistry Laboratory: Progress report for FY 1988

    International Nuclear Information System (INIS)

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Erickson, M.D.

    1988-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for fiscal year 1988 (October 1987 through September 1988). The Analytical Chemistry Laboratory is a full-cost recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques

  14. Analytical Chemistry Laboratory progress report for FY 1989

    International Nuclear Information System (INIS)

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Erickson, M.D.

    1989-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1989 (October 1988 through September 1989). The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques

  15. Analytical Chemistry Laboratory: Progress report for FY 1988

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Erickson, M.D.

    1988-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for fiscal year 1988 (October 1987 through September 1988). The Analytical Chemistry Laboratory is a full-cost recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

  16. Modules for Introducing Organometallic Reactions: A Bridge between Organic and Inorganic Chemistry

    Science.gov (United States)

    Schaller, Chris P.; Graham, Kate J.; Johnson, Brian J.

    2015-01-01

    Transition metal organometallic reactions have become increasingly important in the synthesis of organic molecules. A new approach has been developed to introduce organometallic chemistry, along with organic and inorganic chemistry, at the foundational level. This change highlights applications of organometallic chemistry that have dramatically…

  17. Analytical Chemistry Laboratory progress report for FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Boparai, A.S.

    1991-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1991 (October 1990 through September 1991). This is the eighth annual report for the ACL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

  18. Consistent descriptions of metal–ligand bonds and spin-crossover in inorganic chemistry

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2013-01-01

    -scale DFT studies of inorganic systems in catalysis and bioinorganic chemistry rely directly on the ability to balance correlation effects in the involved bonds across the s-, p-, and d-blocks. This review concerns recent efforts to describe such bonds accurately and consistently across the s-, p-, and d......-blocks. Physical effects and ingredients in functionals, their systematic errors, and approaches to deal with them are discussed, in order to identify broadly applicable methods for inorganic chemistry....

  19. Analytical Chemistry and Measurement Science: (What Has DOE Done for Analytical Chemistry?)

    Science.gov (United States)

    Shults, W. D.

    1989-04-01

    Over the past forty years, analytical scientists within the DOE complex have had a tremendous impact on the field of analytical chemistry. This paper suggests six "high impact" research/development areas that either originated within or were brought to maturity within the DOE laboratories. "High impact" means they lead to new subdisciplines or to new ways of doing business.

  20. Analytical Chemistry Division's sample transaction system

    International Nuclear Information System (INIS)

    Stanton, J.S.; Tilson, P.A.

    1980-10-01

    The Analytical Chemistry Division uses the DECsystem-10 computer for a wide range of tasks: sample management, timekeeping, quality assurance, and data calculation. This document describes the features and operating characteristics of many of the computer programs used by the Division. The descriptions are divided into chapters which cover all of the information about one aspect of the Analytical Chemistry Division's computer processing

  1. Analytical Chemistry Laboratory

    Science.gov (United States)

    Anderson, Mark

    2013-01-01

    The Analytical Chemistry and Material Development Group maintains a capability in chemical analysis, materials R&D failure analysis and contamination control. The uniquely qualified staff and facility support the needs of flight projects, science instrument development and various technical tasks, as well as Cal Tech.

  2. 2010 INORGANIC CHEMISTRY GORDON RESEARCH CONFERENCE JUNE 20 - 25, 2010

    Energy Technology Data Exchange (ETDEWEB)

    JOHN LOCKEMEYER

    2010-06-25

    The Inorganic Chemistry GRC is one of the longest-standing of the GRCs, originating in 1951. Over the years, this conference has played a role in spawning many other GRCs in specialized fields, due to the involvement of elements from most of the periodic table. These include coordination, organometallic, main group, f-element, and solid state chemistries; materials science, catalysis, computational chemistry, nanotechnology, bioinorganic, environmental, and biomedical sciences just to name a few. The 2010 Inorganic Chemistry GRC will continue this tradition, where scientists at all levels from academic, industrial, and national laboratories meet to define the important problems in the field and to highlight emerging opportunities through exchange of ideas and discussion of unpublished results. Invited speakers will present on a wide variety of topics, giving attendees a look at areas both inside and outside of their specialized areas of interest. In addition to invited speakers, the poster sessions at GRCs are a key feature of the conference. All conferees at the Inorganic Chemistry GRC are invited to present a poster on their work, and here the informal setting promotes the free exchange of ideas and fosters new relationships. As in previous years, we will offer poster presenters the opportunity to compete for one of several program spots in which they can give an oral presentation based on the subject matter of their poster. This is a great way to get your work noticed by the scientists attending the meeting, especially for those early in their career path such as junior faculty members, postdoctoral fellows, and those at comparable ranks. Anyone interested in participating in the poster competition should bring an electronic slide presentation and a small hard copy of their poster to submit to the committee.

  3. Improving Conceptions in Analytical Chemistry: The Central Limit Theorem

    Science.gov (United States)

    Rodriguez-Lopez, Margarita; Carrasquillo, Arnaldo, Jr.

    2006-01-01

    This article describes the central limit theorem (CLT) and its relation to analytical chemistry. The pedagogic rational, which argues for teaching the CLT in the analytical chemistry classroom, is discussed. Some analytical chemistry concepts that could be improved through an understanding of the CLT are also described. (Contains 2 figures.)

  4. Nuclear analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.

  5. Nuclear analytical chemistry

    International Nuclear Information System (INIS)

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection

  6. Analytical chemistry

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The division for Analytical Chemistry continued to try and develope an accurate method for the separation of trace amounts from mixtures which, contain various other elements. Ion exchange chromatography is of special importance in this regard. New separation techniques were tried on certain trace amounts in South African standard rock materials and special ceramics. Methods were also tested for the separation of carrier-free radioisotopes from irradiated cyclotron discs

  7. Analytical chemistry: Principles and techniques

    International Nuclear Information System (INIS)

    Hargis, L.G.

    1988-01-01

    Although this text seems to have been intended for use in a one-semester course in undergraduate analytical chemistry, it includes the range of topics usually encountered in a two-semester introductory course in chemical analysis. The material is arranged logically for use in a two-semester course: the first 12 chapters contain the subjects most often covered in the first term, and the next 10 chapters pertain to the second (instrumental) term. Overall breadth and level of treatment are standards for an undergraduate text of this sort, and the only major omission is that of kinetic methods (which is a common omission in analytical texts). In the first 12 chapters coverage of the basic material is quite good. The emphasis on the underlying principles of the techniques rather than on specifics and design of instrumentation is welcomed. This text may be more useful for the instrumental portion of an analytical chemistry course than for the solution chemistry segment. The instrumental analysis portion is appropriate for an introductory textbook

  8. comparative assessment of university chemistry undergraduate

    African Journals Online (AJOL)

    Temechegn

    The areas of chemistry covered are Introductory, Inorganic, Physical, Organic, and Quantum and ... various specialisations like Pure and Applied Chemistry, Analytical ... even engineering disciplines, a degree in chemistry can be the starting point. .... It is also to show the relevance of the instructional methods relative to the.

  9. Adapting Advanced Inorganic Chemistry Lecture and Laboratory Instruction for a Legally Blind Student

    Science.gov (United States)

    Miecznikowski, John R.; Guberman-Pfeffer, Matthew J.; Butrick, Elizabeth E.; Colangelo, Julie A.; Donaruma, Cristine E.

    2015-01-01

    In this article, the strategies and techniques used to successfully teach advanced inorganic chemistry, in the lecture and laboratory, to a legally blind student are described. At Fairfield University, these separate courses, which have a physical chemistry corequisite or a prerequisite, are taught for junior and senior chemistry and biochemistry…

  10. International Congress on Analytical Chemistry. Abstracts. V. 1

    International Nuclear Information System (INIS)

    1997-01-01

    The collection of materials of the international congress on analytical chemistry taken place in Moscow in June 1997. The main directs of investigations in such regions of analytical chemistry as quantitative and qualitative analysis, microanalysis, sample preparation and preconcentration, analytical reagents, chromatography and related techniques, flow analysis, electroanalytical and kinetic methods sensors are elucidated

  11. Analytical Chemistry Laboratory. Progress report for FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    1996-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1996. This annual report is the thirteenth for the ACL. It describes effort on continuing and new projects and contributions of the ACL staff to various programs at ANL. The ACL operates in the ANL system as a full-cost-recovery service center, but has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support to solve research problems of our clients -- Argonne National Laboratory, the Department of Energy, and others -- and will conduct world-class research and development in analytical chemistry and its applications. Because of the diversity of research and development work at ANL, the ACL handles a wide range of analytical chemistry problems. Some routine or standard analyses are done, but the ACL usually works with commercial laboratories if our clients require high-volume, production-type analyses. It is common for ANL programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. Thus, much of the support work done by the ACL is very similar to our applied analytical chemistry research.

  12. A review of the inorganic and organometallic chemistry of zirconium

    International Nuclear Information System (INIS)

    Kalvins, A.K.

    1985-01-01

    The results of a literature review of the inorganic and organometallic chemistry of zirconium are presented. Compounds with physical and chemical properties compatible with the requirements of an ir laser zirconium isotope separation process have been identified

  13. Radionuclides in analytical chemistry

    International Nuclear Information System (INIS)

    Tousset, J.

    1984-01-01

    Applications of radionuclides in analytical chemistry are reviewed in this article: tracers, radioactive sources and activation analysis. Examples are given in all these fields and it is concluded that these methods should be used more widely [fr

  14. Analytical Chemistry Laboratory progress report for FY 1985

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.

    1985-12-01

    The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques. The purpose of this report is to summarize the technical and administrative activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1985 (October 1984 through September 1985). This is the second annual report for the ACL. 4 figs., 1 tab.

  15. Analytical Chemistry Laboratory progress report for FY 1985

    International Nuclear Information System (INIS)

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.

    1985-12-01

    The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques. The purpose of this report is to summarize the technical and administrative activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1985 (October 1984 through September 1985). This is the second annual report for the ACL. 4 figs., 1 tab

  16. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research

  17. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  18. The application of synthetic inorganic ion exchangers to analytical chemistry, 2

    International Nuclear Information System (INIS)

    Abe, Mitsuo

    1974-01-01

    Regarding acidic salts, description is made on the general behaviour of the acidic salts of tetravalent metals and each of zirconium salts, titanium salts, stannic salts, cerium salts, thorium salts, chromium salts, and others. On heteropolyacid salts, ammonium 12-molybdophosphated and phosphorus wolframate are described. On insoluble ferrocyanides, the behaviour of various complex salts is explained. In the discussion on the general behaviour of the acidic salts of tetravalent metals, the ideality of ion exchange, the stability and solubility of the acidic salts, thermal stability and radiation resistance, the ion sieving effect of various acidic salts, and the selectivity of the acidic salts are stated. Zirconium gives a number of acidic salts, such as zirconium phosphate, crystalline zirconium phosphate, zirconium phrophosphate, various polyphosphates of zirconium, zirconium phosphate-silicate, zirconium arsenate, zirconium antimonate, zirconium molybdate, zirconium tungstate, etc. Useful titanium salts for ion exchange are titanium phosphate, titanium aresenate, titanium antimonate, titanium tungstate, titanium molybdate, titanium vanadate, and titanium selenate. The distribution coefficients of metal ions, inorganic-separation of various inorganic ion exchangers, the exchange characteristics of various elements on various ion exchangers, and the selectivity of various inorganic ion-exchangers are tabulated. (Fukutomi, T.)

  19. Analytical spectroscopy. Analytical Chemistry Symposia Series, Volume 19

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1984-01-01

    This book contains papers covering several fields in analytical chemistry including lasers, mass spectrometry, inductively coupled plasma, activation analysis and emission spectroscopy. Separate abstracting and indexing was done for 64 papers in this book

  20. 4. Danish symposium in analytical chemistry

    International Nuclear Information System (INIS)

    1996-01-01

    At the 4th Danish Symposium of Analytical Chemistry 11 lectures and 32 posters were presented during two session days on the 20 and 21 August 1996. Various analytical techniques were discussed for foodstuff, pesticide, pharmaceutical, industrial and other analyses. (EG)

  1. Modelling iodide – iodate speciation in atmospheric aerosol: Contributions of inorganic and organic iodine chemistry

    Directory of Open Access Journals (Sweden)

    S. Pechtl

    2007-01-01

    Full Text Available The speciation of iodine in atmospheric aerosol is currently poorly understood. Models predict negligible iodide concentrations but accumulation of iodate in aerosol, both of which is not confirmed by recent measurements. We present an updated aqueous phase iodine chemistry scheme for use in atmospheric chemistry models and discuss sensitivity studies with the marine boundary layer model MISTRA. These studies show that iodate can be reduced in acidic aerosol by inorganic reactions, i.e., iodate does not necessarily accumulate in particles. Furthermore, the transformation of particulate iodide to volatile iodine species likely has been overestimated in previous model studies due to negligence of collision-induced upper limits for the reaction rates. However, inorganic reaction cycles still do not seem to be sufficient to reproduce the observed range of iodide – iodate speciation in atmospheric aerosol. Therefore, we also investigate the effects of the recently suggested reaction of HOI with dissolved organic matter to produce iodide. If this reaction is fast enough to compete with the inorganic mechanism, it would not only directly lead to enhanced iodide concentrations but, indirectly via speed-up of the inorganic iodate reduction cycles, also to a decrease in iodate concentrations. Hence, according to our model studies, organic iodine chemistry, combined with inorganic reaction cycles, is able to reproduce observations. The presented chemistry cycles are highly dependent on pH and thus offer an explanation for the large observed variability of the iodide – iodate speciation in atmospheric aerosol.

  2. Course on Advanced Analytical Chemistry and Chromatography

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Fristrup, Peter; Nielsen, Kristian Fog

    2011-01-01

    Methods of analytical chemistry constitute an integral part of decision making in chemical research, and students must master a high degree of knowledge, in order to perform reliable analysis. At DTU departments of chemistry it was thus decided to develop a course that was attractive to master...... students of different direction of studies, to Ph.D. students and to professionals that need an update of their current state of skills and knowledge. A course of 10 ECTS points was devised with the purpose of introducing students to analytical chemistry and chromatography with the aim of including theory...

  3. Analytical Chemistry Laboratory, progress report for FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1993 (October 1992 through September 1993). This annual report is the tenth for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has research programs in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require development or modification of methods and adaption of techniques to obtain useful analytical data. The ACL is administratively within the Chemical Technology Division (CMT), its principal ANL client, but provides technical support for many of the technical divisions and programs at ANL. The ACL has four technical groups--Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis--which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL.

  4. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry

    OpenAIRE

    Marek Tobiszewski; Mariusz Marć; Agnieszka Gałuszka; Jacek Namieśnik

    2015-01-01

    The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-establis...

  5. Nuclear techniques in analytical chemistry

    CERN Document Server

    Moses, Alfred J; Gordon, L

    1964-01-01

    Nuclear Techniques in Analytical Chemistry discusses highly sensitive nuclear techniques that determine the micro- and macro-amounts or trace elements of materials. With the increasingly frequent demand for the chemical determination of trace amounts of elements in materials, the analytical chemist had to search for more sensitive methods of analysis. This book accustoms analytical chemists with nuclear techniques that possess the desired sensitivity and applicability at trace levels. The topics covered include safe handling of radioactivity; measurement of natural radioactivity; and neutron a

  6. SAF line analytical chemistry system

    International Nuclear Information System (INIS)

    Gerber, E.W.; Sherrell, D.L.

    1983-10-01

    An analytical chemistry system dedicated to supporting the Secure Automated Fabrication (SAF) line is discussed. Several analyses are required prior to the fuel pellets being loaded into cladding tubes to assure certification requirements will be met. These analyses, which will take less than 15 minutes, are described. The automated sample transport system which will be used to move pellets from the fabriction line to the chemistry area is also described

  7. International Congress on Analytical Chemistry. Abstracts. V. 2

    International Nuclear Information System (INIS)

    1997-01-01

    The collection of materials of the international congress on analytical chemistry taken place in Moscow in June 1997 is presented. The main directs of investigations are elucidated in such regions of analytical chemistry as quantitative and qualitative chemical analysis, sample preparation, express test methods of environmental and biological materials, clinical analysis, analysis of food and agricultural products

  8. International Congress on Analytical Chemistry. Abstracts. V. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The collection of materials of the international congress on analytical chemistry taken place in Moscow in June 1997 is presented. The main directs of investigations are elucidated in such regions of analytical chemistry as quantitative and qualitative chemical analysis, sample preparation, express test methods of environmental and biological materials, clinical analysis, analysis of food and agricultural products

  9. Analytical Chemistry Laboratory Progress Report for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Boparai, A.S.; Bowers, D.L. [and others

    1994-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1994 (October 1993 through September 1994). This annual report is the eleventh for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has a research program in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis -- which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL. The Chemical Analysis Group uses wet- chemical and instrumental methods for elemental, compositional, and isotopic determinations in solid, liquid, and gaseous samples and provides specialized analytical services. Major instruments in this group include an ion chromatograph (IC), an inductively coupled plasma/atomic emission spectrometer (ICP/AES), spectrophotometers, mass spectrometers (including gas-analysis and thermal-ionization mass spectrometers), emission spectrographs, autotitrators, sulfur and carbon determinators, and a kinetic phosphorescence uranium analyzer.

  10. Synergistic relationships between Analytical Chemistry and written standards

    International Nuclear Information System (INIS)

    Valcárcel, Miguel; Lucena, Rafael

    2013-01-01

    Graphical abstract: -- Highlights: •Analytical Chemistry is influenced by international written standards. •Different relationships can be established between them. •Synergies can be generated when these standards are conveniently managed. -- Abstract: This paper describes the mutual impact of Analytical Chemistry and several international written standards (norms and guides) related to knowledge management (CEN-CWA 14924:2004), social responsibility (ISO 26000:2010), management of occupational health and safety (OHSAS 18001/2), environmental management (ISO 14001:2004), quality management systems (ISO 9001:2008) and requirements of the competence of testing and calibration laboratories (ISO 17025:2004). The intensity of this impact, based on a two-way influence, is quite different depending on the standard considered. In any case, a new and fruitful approach to Analytical Chemistry based on these relationships can be derived

  11. Synergistic relationships between Analytical Chemistry and written standards

    Energy Technology Data Exchange (ETDEWEB)

    Valcárcel, Miguel, E-mail: qa1vacam@uco.es; Lucena, Rafael

    2013-07-25

    Graphical abstract: -- Highlights: •Analytical Chemistry is influenced by international written standards. •Different relationships can be established between them. •Synergies can be generated when these standards are conveniently managed. -- Abstract: This paper describes the mutual impact of Analytical Chemistry and several international written standards (norms and guides) related to knowledge management (CEN-CWA 14924:2004), social responsibility (ISO 26000:2010), management of occupational health and safety (OHSAS 18001/2), environmental management (ISO 14001:2004), quality management systems (ISO 9001:2008) and requirements of the competence of testing and calibration laboratories (ISO 17025:2004). The intensity of this impact, based on a two-way influence, is quite different depending on the standard considered. In any case, a new and fruitful approach to Analytical Chemistry based on these relationships can be derived.

  12. Analytical chemistry department. Annual report, 1977

    International Nuclear Information System (INIS)

    Knox, E.M.

    1978-09-01

    The annual report describes the analytical methods, analyses and equipment developed or adopted for use by the Analytical Chemistry Department during 1977. The individual articles range from a several page description of development and study programs to brief one paragraph descriptions of methods adopted for use with or without some modification. This year, we have included a list of the methods incorporated into our Analytical Chemistry Methods Manual. This report is organized into laboratory sections within the Department as well as major programs within General Atomic Company. Minor programs and studies are included under Miscellaneous. The analytical and technical support activities for GAC include gamma-ray spectroscopy, radiochemistry, activation analysis, gas chromatography, atomic absorption, spectrophotometry, emission spectroscopy, x-ray diffractometry, electron microprobe, titrimetry, gravimetry, and quality control. Services are provided to all organizations throughout General Atomic Company. The major effort, however, is in support of the research and development programs within HTGR Generic Technology Programs ranging from new fuel concepts, end-of-life studies, and irradiated capsules to fuel recycle studies

  13. 8. All Polish Conference on Analytical Chemistry: Analytical Chemistry for the Community of the 21. Century

    International Nuclear Information System (INIS)

    Koscielniak, P.; Wieczorek, M.; Kozak, J.

    2010-01-01

    Book of Abstracts contains short descriptions of lectures, communications and posters presented during 8 th All Polish Conference on Analytical Chemistry (Cracow, 4-9.07.2010). Scientific programme consisted of: basic analytical problems, preparation of the samples, chemometry and metrology, miniaturization of the analytical procedures, environmental analysis, medicinal analyses, industrial analyses, food analyses, biochemical analyses, analysis of relicts of the past. Several posters were devoted to the radiochemical separations, radiochemical analysis, environmental behaviour of the elements important for the nuclear science and the professional tests.

  14. Mendeleev-2013. VII All-Russian conference of young scientists, postgraduate students and students with international participation on chemistry and nanomaterials. Book of abstracts. Section 4. Organic chemistry

    International Nuclear Information System (INIS)

    2013-01-01

    VII All-Russian conference of young scientists, postgraduate students and students with international participation on chemistry and nanomaterials was conducted on the Chemistry department of Saint-Petersburg University on April, 2-5, 2013. In the conference participants from 14 countries took part. There were five sections: Nanochemistry and nanomaterials, Analytic chemistry, Inorganic chemistry, Organic chemistry, Physical chemistry. In the collection (Section 2 - Organic chemistry) there are the abstracts concerning different aspects of organic chemistry: synthesis and study of properties of heterocyclic, organometallic, biologically active, medicinal compounds, new ion exchange materials, reagents for analytic chemistry, etc [ru

  15. A refuge for inorganic chemistry: Bunsen's Heidelberg laboratory.

    Science.gov (United States)

    Nawa, Christine

    2014-05-01

    Immediately after its opening in 1855, Bunsen's Heidelberg laboratory became iconic as the most modern and best equipped laboratory in Europe. Although comparatively modest in size, the laboratory's progressive equipment made it a role model for new construction projects in Germany and beyond. In retrospect, it represents an intermediate stage of development between early teaching facilities, such as Liebig's laboratory in Giessen, and the new 'chemistry palaces' that came into existence with Wöhler's Göttingen laboratory of 1860. As a 'transition laboratory,' Bunsen's Heidelberg edifice is of particular historical interest. This paper explores the allocation of spaces to specific procedures and audiences within the laboratory, and the hierarchies and professional rites of passage embedded within it. On this basis, it argues that the laboratory in Heidelberg was tailored to Bunsen's needs in inorganic and physical chemistry and never aimed at a broad-scale representation of chemistry as a whole. On the contrary, it is an example of early specialisation within a chemical laboratory preceding the process of differentiation into chemical sub-disciplines. Finally, it is shown that the relatively small size of this laboratory, and the fact that after ca. 1860 no significant changes were made within the building, are inseparably connected to Bunsen's views on chemistry teaching.

  16. Bias Assessment of General Chemistry Analytes using Commutable Samples.

    Science.gov (United States)

    Koerbin, Gus; Tate, Jillian R; Ryan, Julie; Jones, Graham Rd; Sikaris, Ken A; Kanowski, David; Reed, Maxine; Gill, Janice; Koumantakis, George; Yen, Tina; St John, Andrew; Hickman, Peter E; Simpson, Aaron; Graham, Peter

    2014-11-01

    Harmonisation of reference intervals for routine general chemistry analytes has been a goal for many years. Analytical bias may prevent this harmonisation. To determine if analytical bias is present when comparing methods, the use of commutable samples, or samples that have the same properties as the clinical samples routinely analysed, should be used as reference samples to eliminate the possibility of matrix effect. The use of commutable samples has improved the identification of unacceptable analytical performance in the Netherlands and Spain. The International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) has undertaken a pilot study using commutable samples in an attempt to determine not only country specific reference intervals but to make them comparable between countries. Australia and New Zealand, through the Australasian Association of Clinical Biochemists (AACB), have also undertaken an assessment of analytical bias using commutable samples and determined that of the 27 general chemistry analytes studied, 19 showed sufficiently small between method biases as to not prevent harmonisation of reference intervals. Application of evidence based approaches including the determination of analytical bias using commutable material is necessary when seeking to harmonise reference intervals.

  17. Six Impossible Mechanisms before Breakfast: Arrow Pushing as an Instructional Device in Inorganic Chemistry

    Science.gov (United States)

    Berg, Steffen; Ghosh, Abhik

    2013-01-01

    In a recent article by the authors, the suggestion was made that arrow pushing, a widely used tool in organic chemistry, could also be profitably employed in the teaching of introductory inorganic chemistry. A number of relatively simple reactions were used to illustrate this thesis, raising the question whether the same approach might rationalize…

  18. Analytic chemistry of molybdenum

    International Nuclear Information System (INIS)

    Parker, G.A.

    1983-01-01

    Electrochemical, colorimetric, gravimetric, spectroscopic, and radiochemical methods for the determination of molybdenum are summarized in this book. Some laboratory procedures are described in detail while literature citations are given for others. The reader is also referred to older comprehensive reviews of the analytical chemistry of molybdenum. Contents, abridged: Gravimetric methods. Titrimetric methods. Colorimetric methods. X-ray fluorescence. Voltammetry. Catalytic methods. Molybdenum in non-ferrous alloys. Molydbenum compounds

  19. Inorganic Chemistry in Hydrogen Storage and Biomass Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Thorn, David [Los Alamos National Laboratory

    2012-06-13

    Making or breaking C-H, B-H, C-C bonds has been at the core of catalysis for many years. Making or breaking these bonds to store or recover energy presents us with fresh challenges, including how to catalyze these transformations in molecular systems that are 'tuned' to minimize energy loss and in molecular and material systems present in biomass. This talk will discuss some challenging transformations in chemical hydrogen storage, and some aspects of the inorganic chemistry we are studying in the development of catalysts for biomass utilization.

  20. Application of ICT-based Learning Resources for University Inorganic Chemistry Course Training

    Directory of Open Access Journals (Sweden)

    Tatyana M. Derkach

    2013-01-01

    Full Text Available The article studies expediency and efficiency of various ICT-based learning resources use in university inorganic chemistry course training, detects difference of attitudes toward electronic resources between students and faculty members, which create the background for their efficiency loss

  1. Minimum Analytical Chemistry Requirements for Pit Manufacturing at Los Alamos National Laboratory; TOPICAL

    International Nuclear Information System (INIS)

    Moy, Ming M.; Leasure, Craig S.

    1998-01-01

    Analytical chemistry is one of several capabilities necessary for executing the Stockpile Stewardship and Management Program at Los Alamos National Laboratory (LANL). Analytical chemistry capabilities reside in the Chemistry Metallurgy Research (CMR) Facility and Plutonium Facility (TA-55). These analytical capabilities support plutonium recovery operations, plutonium metallurgy, and waste management. Analytical chemistry capabilities at both nuclear facilities are currently being configured to support pit manufacturing. This document summarizes the minimum analytical chemistry capabilities required to sustain pit manufacturing at LANL. By the year 2004, approximately$16 million will be required to procure analytical instrumentation to support pit manufacturing. In addition,$8.5 million will be required to procure glovebox enclosures. An estimated 50% increase in costs has been included for installation of analytical instruments and glovebox enclosures. However, no general and administrative (G and A) taxes have been included. If an additional 42.5/0 G and A tax were to be incurred, approximately$35 million would be required over the next five years to prepare analytical chemistry to support a 50-pit-per-year manufacturing capability by the year 2004

  2. Analytical chemistry experiment

    International Nuclear Information System (INIS)

    Park, Seung Jo; Paeng, Seong Gwan; Jang, Cheol Hyeon

    1992-08-01

    This book deals with analytical chemistry experiment with eight chapters. It explains general matters that require attention on experiment, handling of medicine with keep and class, the method for handling and glass devices, general control during experiment on heating, cooling, filtering, distillation and extraction and evaporation and dry, glass craft on purpose of the craft, how to cut glass tube and how to bend glass tube, volumetric analysis on neutralization titration and precipitation titration, gravimetric analysis on solubility product, filter and washing and microorganism experiment with necessary tool, sterilization disinfection incubation and appendixes.

  3. Arrow Pushing: A Rational, Participatory Approach to Teaching Descriptive Inorganic Chemistry

    Science.gov (United States)

    Berg, Steffen; Ghosh, Abhik

    2011-01-01

    Inorganic chemistry at core consists of a vast array of molecules and chemical reactions. To master the subject, students must learn to think intelligently about this vast body of facts, a feat seldom accomplished in an introductory course. All too often, young undergraduate students perceive the field as an amorphous and illogical body of…

  4. Mathematical methods for physical and analytical chemistry

    CERN Document Server

    Goodson, David Z

    2011-01-01

    Mathematical Methods for Physical and Analytical Chemistry presents mathematical and statistical methods to students of chemistry at the intermediate, post-calculus level. The content includes a review of general calculus; a review of numerical techniques often omitted from calculus courses, such as cubic splines and Newton's method; a detailed treatment of statistical methods for experimental data analysis; complex numbers; extrapolation; linear algebra; and differential equations. With numerous example problems and helpful anecdotes, this text gives chemistry students the mathematical

  5. Analytical Chemistry Section Chemistry Research Group, Winfrith. Report for 1982 and 1983

    International Nuclear Information System (INIS)

    Amey, M.D.H.; Capp, P.D.; James, H.

    1984-01-01

    This report reviews the principal activities of the Analytical Chemistry Section of Chemistry Research Group, Winfrith, during 1982 and 1983. The objectives of the report are to outline the range of chemical analysis support services available at Winfrith, indicate the research areas from which samples currently originate, and identify instrumental techniques where significant updating has occurred. (author)

  6. New trends in analytical chemistry. Volume 2

    International Nuclear Information System (INIS)

    Zyka, J.

    1984-01-01

    The book consists of 8 chapters and describes modern methods of analytical chemistry. The chapters Moessbauer spectroscopy, Neutron activation analysis, and Analytical uses of particle-induced characteristic X radiation (PIXE) describe the principles of these methods, the used experimental equip=-ment, methods of evaluation, modification of methods and examples of practical uses. (M.D.)

  7. Application of a macrocyclic compound, bambus[6]uril, in tailor-made liquid membranes for highly selective electromembrane extractions of inorganic anions

    Czech Academy of Sciences Publication Activity Database

    Šlampová, Andrea; Šindelář, V.; Kubáň, Pavel

    2017-01-01

    Roč. 950, JAN (2017), s. 49-56 ISSN 0003-2670 R&D Projects: GA ČR(CZ) GA16-09135S Institutional support: RVO:68081715 Keywords : bambus[6]uril * electromembrane extraction selectivity * inorganic anions Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.950, year: 2016

  8. An Alternative Educational Approach for an Inorganic Chemistry Laboratory Course in Industrial and Chemical Engineering

    Science.gov (United States)

    Garces, Andres; Sanchez-Barba, Luis Fernando

    2011-01-01

    We describe an alternative educational approach for an inorganic chemistry laboratory module named "Experimentation in Chemistry", which is included in Industrial Engineering and Chemical Engineering courses. The main aims of the new approach were to reduce the high levels of failure and dropout on the module and to make the content match the…

  9. Analytical Chemistry in the European Higher Education Area European Higher Education

    DEFF Research Database (Denmark)

    the more specialized degree of the Euromaster. The aim of the process, as a part of the fulfilment of the Bologna Declaration, is to propose a syllabus for education at the highest level of competence in academia. The proposal is an overarching framework that is supposed to promote mobility and quality......A Eurobachelor degree of Chemistry was endorsed by the EuCheMS division of analytical chemistry in 2004, and it has since then been adopted by many European universities. In the second stage of the European Higher Education Area (EHEA) process of harmonization, there is now focus on developing...... hold positions where analytical chemistry is the primary occupation. The education within the EHEA offers subjects related to chemical analysis but not all universities offer courses on analytical chemistry as an independent scientific discipline. Accordingly, the recent development of the analytical...

  10. The isfet in analytical chemistry

    NARCIS (Netherlands)

    van der Schoot, B.H.; Bergveld, Piet; Bousse, L.J.

    1982-01-01

    The fast chemical response of the pH-ISFET makes the device an excellent detector in analytical chemistry. The time response of ISFETs, with Al2O3 at the pH-sensitive gate insulator, is determined in a flow injection analysis system. Application of an ISFET and a glass electrode are compared in

  11. Lecture Notes and Exercises for Course 21240 (Basic Analytical Chemistry)

    DEFF Research Database (Denmark)

    1999-01-01

    The publication contains notes dealing with difficult topics in analytical chemistry (cfr. Course Descriptions, DTU), relevant exercises as well as final examination problems from the last years.......The publication contains notes dealing with difficult topics in analytical chemistry (cfr. Course Descriptions, DTU), relevant exercises as well as final examination problems from the last years....

  12. Lecture Notes and Exercises for Course 21240 (Basic Analytical Chemistry)

    DEFF Research Database (Denmark)

    1998-01-01

    The publication contains notes dealing with difficult topics in analytical chemistry (cfr. Course Descriptions, DTU), relevant exercises as well as final examination problems from the last years.......The publication contains notes dealing with difficult topics in analytical chemistry (cfr. Course Descriptions, DTU), relevant exercises as well as final examination problems from the last years....

  13. Role of analytical chemistry in environment and health

    International Nuclear Information System (INIS)

    Kushwaha, H.S.; Puranik, V.D.; Tripathi, R.M.

    2007-01-01

    Analytical chemistry plays an important role in the protection of human health from biological, chemical and radiological hazards in the environment. It is highly useful in the areas of environmental health sciences, such as air pollution, environmental chemistry, environmental management; environmental toxicology, industrial hygiene, and water quality

  14. Enhancing the Chemistry Curriculum, Teaching and Research Capabilities by the Implementation of Fourier Transform NMR Spectroscopy

    National Research Council Canada - National Science Library

    Yamaguchi, Kenneth

    2002-01-01

    .... Since the installation and training period, the NMR has been used for a number of courses (Analytical Chemistry, Advanced Inorganic Chemistry, Instrumental Analysis, Student Independent Projects and Undergraduate Research Projects...

  15. Green analytical chemistry introduction to chloropropanols determination at no economic and analytical performance costs?

    Science.gov (United States)

    Jędrkiewicz, Renata; Orłowski, Aleksander; Namieśnik, Jacek; Tobiszewski, Marek

    2016-01-15

    In this study we perform ranking of analytical procedures for 3-monochloropropane-1,2-diol determination in soy sauces by PROMETHEE method. Multicriteria decision analysis was performed for three different scenarios - metrological, economic and environmental, by application of different weights to decision making criteria. All three scenarios indicate capillary electrophoresis-based procedure as the most preferable. Apart from that the details of ranking results differ for these three scenarios. The second run of rankings was done for scenarios that include metrological, economic and environmental criteria only, neglecting others. These results show that green analytical chemistry-based selection correlates with economic, while there is no correlation with metrological ones. This is an implication that green analytical chemistry can be brought into laboratories without analytical performance costs and it is even supported by economic reasons. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. A New Project-Based Lab for Undergraduate Environmental and Analytical Chemistry

    Science.gov (United States)

    Adami, Gianpiero

    2006-01-01

    A new project-based lab was developed for third year undergraduate chemistry students based on real world applications. The experience suggests that the total analytical procedure (TAP) project offers a stimulating alternative for delivering science skills and developing a greater interest for analytical chemistry and environmental sciences and…

  17. Practical approaches to biological inorganic chemistry

    CERN Document Server

    Louro, Ricardo O

    2012-01-01

    The book reviews the use of spectroscopic and related methods to investigate the complex structures and mechanisms of biological inorganic systems that contain metals. Each chapter presents an overview of the technique including relevant theory, clearly explains what it is and how it works and then presents how the technique is actually used to evaluate biological structures. Practical examples and problems are included to illustrate each technique and to aid understanding. Designed for students and researchers who want to learn both the basics, and more advanced aspects of bioinorganic chemistry. It includes many colour illustrations enable easier visualization of molecular mechanisms and structures. It provides worked examples and problems that are included to illustrate and test the reader's understanding of each technique. It is written by a multi-author team who use and teach the most important techniques used today to analyse complex biological structures.

  18. Isotope dilution mass spectrometry of inorganic and organic substances

    International Nuclear Information System (INIS)

    Heumann, K.G.

    1986-01-01

    The aim of this short review of IDMS is to provide an introduction into the principles of this analytical method and to show possible applications of this accurate technique, e.g. negative thermal ionization IDMS for inorganic anion analysis or the analysis of organic compounds in the field of clinical chemistry. (orig./RB)

  19. Synthesis and Metalation of a Ligand: An Interdisciplinary Laboratory Experiment for Second-Year Organic and Introductory Inorganic Chemistry Students

    Science.gov (United States)

    Kasting, Benjamin J.; Bowser, Andrew K.; Anderson-Wile, Amelia M.; Wile, Bradley M.

    2015-01-01

    An interdisciplinary laboratory experiment involving second-year undergraduate organic chemistry and introductory inorganic chemistry undergraduate students is described. Organic chemistry students prepare a series of amine-bis(phenols) via a Mannich reaction, and characterize their products using melting point; FTIR; and [superscript 1]H,…

  20. Abstracts of the 1. Regional Meeting on Chemistry

    International Nuclear Information System (INIS)

    Abstracts from papers on Analytical, Inorganic and Organic Chemistry as well as on Physico-Chemistry are presented. Emphasis is given to the following subjects: use of nuclear techniques for chemical analysis, separation processes, studies about reaction kinetics and thermodynamic properties, radioisotopes production and applications, labelled compounds, electron-molecule collisions, construction of measuring instruments and data acquisition systems. (C.L.B.) [pt

  1. Analytical Chemistry Laboratory progress report for FY 1984

    International Nuclear Information System (INIS)

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.; Stetter, J.R.

    1985-03-01

    Technical and administrative activities of the Analytical Chemistry Laboratory (ACL) are reported for fiscal year 1984. The ACL is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL is administratively within the Chemical Technology Division, the principal user, but provides technical support for all of the technical divisions and programs at ANL. The ACL has three technical groups - Chemical Analysis, Instrumental Analysis, and Organic Analysis. Under technical activities 26 projects are briefly described. Under professional activities, a list is presented for publications and reports, oral presentations, awards and meetings attended. 6 figs., 2 tabs

  2. Synergistic relationships between Analytical Chemistry and written standards.

    Science.gov (United States)

    Valcárcel, Miguel; Lucena, Rafael

    2013-07-25

    This paper describes the mutual impact of Analytical Chemistry and several international written standards (norms and guides) related to knowledge management (CEN-CWA 14924:2004), social responsibility (ISO 26000:2010), management of occupational health and safety (OHSAS 18001/2), environmental management (ISO 14001:2004), quality management systems (ISO 9001:2008) and requirements of the competence of testing and calibration laboratories (ISO 17025:2004). The intensity of this impact, based on a two-way influence, is quite different depending on the standard considered. In any case, a new and fruitful approach to Analytical Chemistry based on these relationships can be derived. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Analytical chemistry in space

    CERN Document Server

    Wainerdi, Richard E

    1970-01-01

    Analytical Chemistry in Space presents an analysis of the chemical constitution of space, particularly the particles in the solar wind, of the planetary atmospheres, and the surfaces of the moon and planets. Topics range from space engineering considerations to solar system atmospheres and recovered extraterrestrial materials. Mass spectroscopy in space exploration is also discussed, along with lunar and planetary surface analysis using neutron inelastic scattering. This book is comprised of seven chapters and opens with a discussion on the possibilities for exploration of the solar system by

  4. European analytical column No. 37 from the Division of Analytical Chemistry (DAC) of the European Association for Chemical and Molecular Sciences (EuCheMS)

    DEFF Research Database (Denmark)

    Karlberg, Bo; Grasserbauer, Manfred; Andersen, Jens Enevold Thaulov

    2009-01-01

    The European Analytical Column again has a somewhat different format. We have once more invited a guest columnist to give his views on various matters related to analytical chemistry in Europe. This year we have invited Prof. Manfred Grasserbauer of Vienna University of Technology to present some...... representing a major branch of chemistry, namely, analytical chemistry. The global financial crisis is affecting all branches of chemistry, but analytical chemistry in particular since our discipline by tradition has many close links to industry. We are already noticing a decreased industrial commitment...... with respect to new research projects and sponsoring of conferences. It is therefore important that we strengthen our efforts and that we keep our presence at analytical chemistry meetings and conferences unchanged. Recent activities of the Division of Analytical Chemistry (DAC) and details regarding the major...

  5. European analytical column no. 37 (January 2009) Division of Analytical Chemistry (DAC) of the European Association for Chemical and Molecular Sciences (EuCheMS)

    DEFF Research Database (Denmark)

    Karlberg, Bo; Grasserbauer, Manfred; Andersen, Jens Enevold Thaulov

    2009-01-01

    This issue of the European Analytical Column has again a somewhat different format: once more DAC invited a guest columnist to give his views on various matters related to Analytical Chemistry in Europe. This year, Professor Manfred Grasserbauer of the Vienna University of Technology focuses...... representing a major branch of chemistry, namely analytical chemistry. The global financial crisis is affecting all branches of chemistry, especially analytical chemistry since our discipline by tradition has many close links to industry. Already now a decrease of industrial commitment with respect to new...... research projects and sponsoring of conferences can be observed. It is therefore important to strengthen all efforts and to keep the presence of analytical chemists at meetings and conferences unchanged. Recent activities of DAC and details regarding the major analytical-chemistry event this year in Europe...

  6. Analytical chemistry of nuclear materials

    International Nuclear Information System (INIS)

    1963-01-01

    The last two decades have witnessed an enormous development in chemical analysis. The rapid progress of nuclear energy, of solid-state physics and of other fields of modern industry has extended the concept of purity to limits previously unthought of, and to reach the new dimensions of these extreme demands, entirely new techniques have been invented and applied and old ones have been refined. Recognizing these facts, the International Atomic Energy Agency convened a Panel on Analytical Chemistry of Nuclear Materials to discuss the general problems facing the analytical chemist engaged in nuclear energy development, particularly in newly developing centre and countries, to analyse the represent situation and to advise as to the directions in which research and development appear to be most necessary. The Panel also discussed the analytical programme of the Agency's laboratory at Seibersdorf, where the Agency has already started a programme of international comparison of analytical methods which may lead to the establishment of international standards for many materials of interest. Refs and tabs

  7. Analytical chemistry of nuclear materials

    International Nuclear Information System (INIS)

    1966-01-01

    The second panel on the Analytical Chemistry of Nuclear Materials was organized for two purposes: first, to advise the Seibersdorf Laboratory of the Agency on its future programme, and second, to review the results of the Second International Comparison of routine analysis of trace impurities in uranium and also the action taken as a result of the recommendations of the first panel in 1962. Refs, figs and tabs

  8. Does leaf chemistry differentially affect breakdown in tropical vs temperate streams? Importance of standardized analytical techniques to measure leaf chemistry

    Science.gov (United States)

    Marcelo Ard& #243; n; Catherine M. Pringle; Susan L. Eggert

    2009-01-01

    Comparisons of the effects of leaf litter chemistry on leaf breakdown rates in tropical vs temperate streams are hindered by incompatibility among studies and across sites of analytical methods used to measure leaf chemistry. We used standardized analytical techniques to measure chemistry and breakdown rate of leaves from common riparian tree species at 2 sites, 1...

  9. Role of analytical chemistry in environmental monitoring

    International Nuclear Information System (INIS)

    Kayasth, S.; Swain, K.

    2004-01-01

    Basic aspects of pollution and the role of analytical chemistry in environmental monitoring are highlighted and exemplified, with emphasis on trace elements. Sources and pathways of natural and especially man-made polluting substances as well as physico-chemical characteristics are given. Attention is paid to adequate sampling in various compartments of the environment comprising both lithosphere and biosphere. Trace analysis is dealt with using a variety of analytical techniques, including criteria for choice of suited techniques, as well as aspects of analytical quality assurance and control. Finally, some data on trace elements levels in soil and water samples from India are presented. (author)

  10. Gatlinburg conference: barometer of progress in analytical chemistry

    International Nuclear Information System (INIS)

    Shults, W.D.

    1981-01-01

    Much progress has been made in the field of analytical chemistry over the past twenty-five years. The AEC-ERDA-DOE family of laboratories contributed greatly to this progress. It is not surprising then to find a close correlation between program content of past Gatlinburg conferences and developments in analytical methodology. These conferences have proved to be a barometer of technical status

  11. Essential Trends in Inorganic Chemistry (by D. M. P. Mingos)

    Science.gov (United States)

    Phillips, Reviewed By David A.

    2000-05-01

    The author has chosen to present his material in a distinctly different fashion from that of most inorganic chemistry textbook writers. Most texts are a mix of theory chapters and descriptive chapters, with the latter focusing on specific groups of elements. However, after a chapter laying out the quantum mechanical basis of the periodic table, Mingos has elected to organize the remaining chapters around vertical, horizontal, and diagonal relationships, or on isoelectronic and isostoichiometric relationships. I think this approach has worked remarkably well. Chapters 2-5 contain a wealth of information accompanied by clear, coherent discussions of the underlying principles that account for the observed trends and anomalies. Every serious inorganic chemist should have a copy of this text on his or her bookshelf. Chapter 1 is the least effective part of the book. Some of the quantum number notation is incorrect (m rather than ml , s rather than ms), some of the language is imprecise, and there are a few clear-cut errors. There is a nice discussion comparing the rmax of 2s and 2p vs 3s and 3p orbitals. However, most readers would be better served by the treatments in advanced inorganic texts such as those by Shriver or Huheey. Chapter 2 addresses vertical trends in the main-group elements. After discussing the influence of atomic size on atomic properties, Mingos describes and explains the second-row anomalies and the reversals in trends resulting from the addition of 3d and 4f subshells. He goes on to account for a variety of trends in the physical and chemical properties of main-group elements and their compounds. The chapter ends with tables summarizing a wide variety of properties, providing a wealth of information I have not seen presented in such a compact format anywhere else. Chapter 3 addresses the horizontal trends and diagonal relationships of the main-group elements. Among the highlights are discussions of the role of exchange energies in determining

  12. A golden future in medicinal inorganic chemistry : The promise of anticancer gold organometallic compounds

    NARCIS (Netherlands)

    Bertrand, B.; Casini, A.

    2014-01-01

    From wedding rings on fingers to stained glass windows, by way of Olympic medals, gold has been highly prized for millennia. Nowadays, organometallic gold compounds occupy an important place in the field of medicinal inorganic chemistry due to their unique chemical properties with respect to gold

  13. Green analytical chemistry - the use of surfactants as a replacement of organic solvents in spectroscopy

    Science.gov (United States)

    Pharr, Daniel Y.

    2017-07-01

    This chapter gives an introduction to the many practical uses of surfactants in analytical chemistry in replacing organic solvents to achieve greener chemistry. Taking a holistic approach, it covers some background of surfactants as chemical solvents, their properties and as green chemicals, including their environmental effects. The achievements of green analytical chemistry with micellar systems are reviewed in all the major areas of analytical chemistry where these reagents have been found to be useful.

  14. 35th International Symposium on Environmental Analytical Chemistry - ISEAC 35. Book of Abstracts

    International Nuclear Information System (INIS)

    Namiestnik, J.; Gdaniec-Pietryka, M.; Klimaszewska, K.; Gorecka, A.; Sagajdakow, A.; Jakubowska, N.

    2008-01-01

    The ISEAC 35 is organized by the International Association of Environmental Analytical Chemistry (IAEAC), the Committee on Analytical Chemistry of the Polish Academy of Science (PAS), and the Chemical Faculty of Gdansk University of Technology (GUT). The Symposium includes a number of invited lectures treating frontier topics of environmental analytical chemistry, such as: (a) miniaturized spectroscopic tools for environmental survey analysis, (b) remote sensing in marine research, (c) xenobiotics in natural waters, (d) sampling and sample handling for environmental analysis. Book of Abstracts contains abstracts of 9 invited lectures, 62 oral presentations and 250 posters.

  15. MAR flow mapping of Analytical Chemistry Operations (Preliminary Report)

    International Nuclear Information System (INIS)

    Barr, Mary E.; Farish, Thomas J.

    2012-01-01

    The recently released Supplemental Directive, NA-1 SD 1027, updates the radionuclide threshold values in DOE-STD-1027-92 CN1 to reflect the use of modern parameters for dose conversion factors and breathing rates. The directive also corrects several arithmetic errors within the original standard. The result is a roughly four-fold increase in the amount of weapons-grade nuclear material allowed within a designated radiological facility. Radiological laboratory space within the recently constructed Radiological Laboratory Office and Utility Building (RLUOB) is slated to house selected analytical chemistry support activities in addition to small-scale actinide R and D activities. RLUOB is within the same facility operations envelope as TA-55. Consolidation of analytical chemistry activities to RLUOB and PF-4 offers operational efficiency improvements relative to the current pre-CMRR plans of dividing these activities between RLUOB, PF-4, and CMR. RLUOB is considered a Radiological Facility under STD-1027 - 'Facilities that do not meet or exceed Category 3 threshold criteria but still possess some amount of radioactive material may be considered Radiological Facilities.' The supplemental directive essentially increases the allowable material-at-risk (MAR) within radiological facilities from 8.4 g to 38.6 g for 239 Pu. This increase in allowable MAR provides a unique opportunity to establish additional analytical chemistry support functions in RLUOB without negatively impacting either R and D activities or facility operations. Individual radiological facilities are tasked to determine MAR limits (up to the Category 3 thresholds) appropriate to their operational conditions. This study presents parameters that impact establishing MAR limits for RLUOB and an assessment of how various analytical chemistry support functions could operate within the established MAR limits.

  16. Combination of Cyclodextrin and Ionic Liquid in Analytical Chemistry: Current and Future Perspectives.

    Science.gov (United States)

    Hui, Boon Yih; Raoov, Muggundha; Zain, Nur Nadhirah Mohamad; Mohamad, Sharifah; Osman, Hasnah

    2017-09-03

    The growth in driving force and popularity of cyclodextrin (CDs) and ionic liquids (ILs) as promising materials in the field of analytical chemistry has resulted in an exponentially increase of their exploitation and production in analytical chemistry field. CDs belong to the family of cyclic oligosaccharides composing of α-(1,4) linked glucopyranose subunits and possess a cage-like supramolecular structure. This structure enables chemical reactions to proceed between interacting ions, radical or molecules in the absence of covalent bonds. Conversely, ILs are an ionic fluids comprising of only cation and anion often with immeasurable vapor pressure making them as green or designer solvent. The cooperative effect between CD and IL due to their fascinating properties, have nowadays contributed their footprints for a better development in analytical chemistry nowadays. This comprehensive review serves to give an overview on some of the recent studies and provides an analytical trend for the application of CDs with the combination of ILs that possess beneficial and remarkable effects in analytical chemistry including their use in various sample preparation techniques such as solid phase extraction, magnetic solid phase extraction, cloud point extraction, microextraction, and separation techniques which includes gas chromatography, high-performance liquid chromatography, capillary electrophoresis as well as applications of electrochemical sensors as electrode modifiers with references to recent applications. This review will highlight the nature of interactions and synergic effects between CDs, ILs, and analytes. It is hoped that this review will stimulate further research in analytical chemistry.

  17. Scientific conference on inorganic chemistry and radiochemistry devoted to centenary from birthday of academician V.I. Spitsyn. Program of conference and summary of reports

    International Nuclear Information System (INIS)

    2002-01-01

    Program and summaries of reports of the Scientific conference on inorganic chemistry and radiochemistry devoted to the centenary from the birthday of academician V.I. Spitsyn are presented. The conference took place at the Chemical department of the Moscow State University named for M.V. Lomonosov 17 - 18 April, 2002. Part of the reports was devoted to the work of academician V.I. Spitsyn, his investigations into radiochemistry and radiation chemistry. Scientific explorations in the fields of solid chemistry, inorganic and coordination chemistry, radiochemistry and chemical technology are discussed [ru

  18. Are there two decks on the analytical chemistry boat?

    Czech Academy of Sciences Publication Activity Database

    Plzák, Zbyněk

    2000-01-01

    Roč. 5, č. 1 (2000), s. 35-36 ISSN 0949-1775. [Quality Management in Analytical Chemical Research and Development. Münster, 31.05.1999-01.06.1999] Institutional research plan: CEZ:AV0Z4032918 Keywords : accredation * management * quality * assurance Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.894, year: 2000

  19. Process analytical chemistry applied to actinide waste streams

    International Nuclear Information System (INIS)

    Day, R.S.

    1994-01-01

    The Department of Energy is being called upon to clean up it's legacy of waste from the nuclear complex generated during the cold war period. Los Alamos National Laboratory is actively involved in waste minimization and waste stream polishing activities associated with this clean up. The Advanced Testing Line for Actinide Separations (ATLAS) at Los Alamos serves as a developmental test bed for integrating flow sheet development of nitric acid waste streams with process analytical chemistry and process control techniques. The wastes require processing in glove boxes because of the radioactive components, thus adding to the difficulties of making analytical measurements. Process analytical chemistry methods provide real-time chemical analysis in support of existing waste stream operations and enhances the development of new waste stream polishing initiatives. The instrumentation and methods being developed on ATLAS are designed to supply near-real time analyses on virtually all of the chemical parameters found in nitric acid processing of actinide waste. These measurements supply information on important processing parameters including actinide oxidation states, free acid concentration, interfering anions and metal impurities

  20. Review: Impacts of permafrost degradation on inorganic chemistry of surface fresh water

    Science.gov (United States)

    Colombo, Nicola; Salerno, Franco; Gruber, Stephan; Freppaz, Michele; Williams, Mark; Fratianni, Simona; Giardino, Marco

    2018-03-01

    Recent studies have shown that climate change is impacting the inorganic chemical characteristics of surface fresh water in permafrost areas and affecting aquatic ecosystems. Concentrations of major ions (e.g., Ca2 +, Mg2 +, SO42 -, NO3-) can increase following permafrost degradation with associated deepening of flow pathways and increased contributions of deep groundwater. In addition, thickening of the active layer and melting of near-surface ground ice can influence inorganic chemical fluxes from permafrost into surface water. Permafrost degradation has also the capability to modify trace element (e.g., Ni, Mn, Al, Hg, Pb) contents in surface water. Although several local and regional modifications of inorganic chemistry of surface fresh water have been attributed to permafrost degradation, a comprehensive review of the observed changes is lacking. The goal of this paper is to distil insight gained across differing permafrost settings through the identification of common patterns in previous studies, at global scale. In this review we focus on three typical permafrost configurations (pervasive permafrost degradation, thermokarst, and thawing rock glaciers) as examples and distinguish impacts on (i) major ions and (ii) trace elements. Consequences of warming climate have caused spatially-distributed progressive increases of major ion and trace element delivery to surface fresh water in both polar and mountain areas following pervasive permafrost degradation. Moreover, localised releases of major ions and trace elements to surface water due to the liberation of soluble materials sequestered in permafrost and ground ice have been found in ice-rich terrains both at high latitude (thermokarst features) and high elevation (rock glaciers). Further release of solutes and related transport to surface fresh water can be expected under warming climatic conditions. However, complex interactions among several factors able to influence the timing and magnitude of the impacts

  1. Analytical chemistry in nuclear science and technology: a scientometric mapping

    International Nuclear Information System (INIS)

    Kademani, B.S.; Kumar, Anil; Kumar, Vijai

    2007-01-01

    This paper attempts to analyse quantitatively the growth and development of Analytical Chemistry research in Nuclear Science and Technology in terms of publication output as reflected in International Nuclear Information System (INIS) database (1970-2005). During 1970-2005 a total of 8224 papers were published. There were only seven papers published in 1970. Thereafter, a tremendous explosion of literature was observed in this area. The highest number of papers (636) were published in 1985. The average number of publications published per year was 228.44. United States topped the list with 1811 publications followed by USSR with 1688 publications, Germany with 777 publications, India with 730 publications and Hungary with 519 publications. Authorship and collaboration trend was towards multi-authored papers as 80.3 percent of the papers were collaborative is indicative of the multidisciplinary nature of research activity. The most prolific authors were: B. F. Myasoedov, AN SSSR Moscow Inst. Geokhimii I Analitisheskoi Khimii, Russian Federation with 84 publications, M. Sudersanan, Bhabha Atomic Research Centre, Mumbai, India with 67 publications, P.Vanura and V. Jedinakova Krizova both from Institute of Chemical Technology, Prague, Czech Republic with 54 publications each, S. Gangadharan, Bhabha Atomic Research Centre, Mumbai, India with 47 publications, V.M. Ivanova , M.V. Lomonosov Moscow State University, Russian Federation with 45 publications and Yu. A Zolotov Lomonosov Moscow State University, Russian Federation with 40 publications. The journals most preferred by the scientists for publication of papers were : Zhurnal Analiticheskoj Khimii with 713 papers, Journal of Radioanalytical and Nuclear Chemistry with 409 papers, Analytical Chemistry Washington with 364 papers, Fresenius' Journal of Analytical Chemistry with 324 papers, Indian Journal of Chemistry, Section A with 251 papers, and Journal of Analytical Chemistry of the USSR with 145 papers. The high

  2. European analytical column No. 36 from the Division of Analytical Chemistry (DAC) of the European Association for Chemical and Molecular Sciences (EuCheMS)

    DEFF Research Database (Denmark)

    Karlberg, Bo; Emons, Hendrik; Andersen, Jens Enevold Thaulov

    2008-01-01

    European analytical column no. 36 from the division of analytical chemistry (DAC) of the European association for chemical and molecular sciences (EuCheMS)......European analytical column no. 36 from the division of analytical chemistry (DAC) of the European association for chemical and molecular sciences (EuCheMS)...

  3. Analytical Thinking, Analytical Action: Using Prelab Video Demonstrations and e-Quizzes to Improve Undergraduate Preparedness for Analytical Chemistry Practical Classes

    Science.gov (United States)

    Jolley, Dianne F.; Wilson, Stephen R.; Kelso, Celine; O'Brien, Glennys; Mason, Claire E.

    2016-01-01

    This project utilizes visual and critical thinking approaches to develop a higher-education synergistic prelab training program for a large second-year undergraduate analytical chemistry class, directing more of the cognitive learning to the prelab phase. This enabled students to engage in more analytical thinking prior to engaging in the…

  4. Chemometrics in analytical chemistry-part I: history, experimental design and data analysis tools.

    Science.gov (United States)

    Brereton, Richard G; Jansen, Jeroen; Lopes, João; Marini, Federico; Pomerantsev, Alexey; Rodionova, Oxana; Roger, Jean Michel; Walczak, Beata; Tauler, Romà

    2017-10-01

    Chemometrics has achieved major recognition and progress in the analytical chemistry field. In the first part of this tutorial, major achievements and contributions of chemometrics to some of the more important stages of the analytical process, like experimental design, sampling, and data analysis (including data pretreatment and fusion), are summarised. The tutorial is intended to give a general updated overview of the chemometrics field to further contribute to its dissemination and promotion in analytical chemistry.

  5. Mendeleev-2013. VII All-Russian conference of young scientists, postgraduate students and students with international participation on chemistry and nanomaterials. Book of abstracts. Section 1. Nanochemistry and nanomaterials

    International Nuclear Information System (INIS)

    2013-01-01

    VII All-Russian conference of young scientists, postgraduate students and students with international participation on chemistry and nanomaterials was conducted on the Chemistry department of Saint-Petersburg University on April, 2-5, 2013. In the conference participants from 14 countries took part. There were five sections: Nanochemistry and nanomaterials, Analytic chemistry, Inorganic chemistry, Organic chemistry, Physical chemistry. In the collection (Section 1 - Nanochemistry and nanomaterials) there are the abstracts concerning the different methods of preparation of various inorganic and organic nanomaterials, their structure and use [ru

  6. The Chemistry of Inorganic Precursors during the Chemical Deposition of Films on Solid Surfaces.

    Science.gov (United States)

    Barry, Seán T; Teplyakov, Andrew V; Zaera, Francisco

    2018-03-20

    The deposition of thin solid films is central to many industrial applications, and chemical vapor deposition (CVD) methods are particularly useful for this task. For one, the isotropic nature of the adsorption of chemical species affords even coverages on surfaces with rough topographies, an increasingly common requirement in microelectronics. Furthermore, by splitting the overall film-depositing reactions into two or more complementary and self-limiting steps, as it is done in atomic layer depositions (ALD), film thicknesses can be controlled down to the sub-monolayer level. Thanks to the availability of a vast array of inorganic and metalorganic precursors, CVD and ALD are quite versatile and can be engineered to deposit virtually any type of solid material. On the negative side, the surface chemistry that takes place in these processes is often complex, and can include undesirable side reactions leading to the incorporation of impurities in the growing films. Appropriate precursors and deposition conditions need to be chosen to minimize these problems, and that requires a proper understanding of the underlying surface chemistry. The precursors for CVD and ALD are often designed and chosen based on their known thermal chemistry from inorganic chemistry studies, taking advantage of the vast knowledge developed in that field over the years. Although a good first approximation, however, this approach can lead to wrong choices, because the reactions of these precursors at gas-solid interfaces can be quite different from what is seen in solution. For one, solvents often aid in the displacement of ligands in metalorganic compounds, providing the right dielectric environment, temporarily coordinating to the metal, or facilitating multiple ligand-complex interactions to increase reaction probabilities; these options are not available in the gas-solid reactions associated with CVD and ALD. Moreover, solid surfaces act as unique "ligands", if these reactions are to be

  7. Analytical Chemistry Core Capability Assessment - Preliminary Report

    International Nuclear Information System (INIS)

    Barr, Mary E.; Farish, Thomas J.

    2012-01-01

    The concept of 'core capability' can be nebulous one. Even at a fairly specific level, where core capability equals maintaining essential services, it is highly dependent upon the perspective of the requestor. Samples are submitted to analytical services because the requesters do not have the capability to conduct adequate analyses themselves. Some requests are for general chemical information in support of R and D, process control, or process improvement. Many analyses, however, are part of a product certification package and must comply with higher-level customer quality assurance requirements. So which services are essential to that customer - just those for product certification? Does the customer also (indirectly) need services that support process control and improvement? And what is the timeframe? Capability is often expressed in terms of the currently utilized procedures, and most programmatic customers can only plan a few years out, at best. But should core capability consider the long term where new technologies, aging facilities, and personnel replacements must be considered? These questions, and a multitude of others, explain why attempts to gain long-term consensus on the definition of core capability have consistently failed. This preliminary report will not try to define core capability for any specific program or set of programs. Instead, it will try to address the underlying concerns that drive the desire to determine core capability. Essentially, programmatic customers want to be able to call upon analytical chemistry services to provide all the assays they need, and they don't want to pay for analytical chemistry services they don't currently use (or use infrequently). This report will focus on explaining how the current analytical capabilities and methods evolved to serve a variety of needs with a focus on why some analytes have multiple analytical techniques, and what determines the infrastructure for these analyses. This information will be

  8. Abstracts of the 3. Brazilian Meeting on Analytical Chemistry

    International Nuclear Information System (INIS)

    1985-01-01

    Abstracts from experimental research works on analytical chemistry are presented. The following techniques were mainly used: differential pulse polarography, atomic absorption spectrophotometry, ion exchange chromatography and gamma spectroscopy. (C.L.B.) [pt

  9. Intracellular Chemistry: Integrating Molecular Inorganic Catalysts with Living Systems.

    Science.gov (United States)

    Ngo, Anh H; Bose, Sohini; Do, Loi H

    2018-03-23

    This concept article focuses on the rapid growth of intracellular chemistry dedicated to the integration of small-molecule metal catalysts with living cells and organisms. Although biological systems contain a plethora of biomolecules that can deactivate inorganic species, researchers have shown that small-molecule metal catalysts could be engineered to operate in heterogeneous aqueous environments. Synthetic intracellular reactions have recently been reported for olefin hydrogenation, hydrolysis/oxidative cleavage, azide-alkyne cycloaddition, allylcarbamate cleavage, C-C bond cross coupling, and transfer hydrogenation. Other promising targets for new biocompatible reaction discovery will also be discussed, with a special emphasis on how such innovations could lead to the development of novel technologies and chemical tools. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Analytical Chemistry at the Interface Between Materials Science and Biology

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Janese C. [Iowa State Univ., Ames, IA (United States)

    2000-09-21

    Likedlessentid sciences, anal~cd chetis~continues toreinvent itself. Moving beyond its traditional roles of identification and quantification, analytical chemistry is now expanding its frontiers into areas previously reserved to other disciplines. This work describes several research efforts that lie at the new interfaces between analytical chemistry and two of these disciplines, namely materials science and biology. In the materials science realm, the search for new materials that may have useful or unique chromatographic properties motivated the synthesis and characterization of electrically conductive sol-gels. In the biology realm, the search for new surface fabrication schemes that would permit or even improve the detection of specific biological reactions motivated the design of miniaturized biological arrays. Collectively, this work represents some of analytical chemistry’s newest forays into these disciplines. The introduction section to this dissertation provides a literature review on several of the key aspects of this work. In advance of the materials science discussion, a brief introduction into electrochemically-modulated liquid chromatography (EMLC) and sol-gel chemistry is provided. In advance of the biological discussions, brief overviews of scanning force microscopy (SFM) and the oxidative chemistry used to construct our biological arrays are provided. This section is followed by four chapters, each of which is presented as a separate manuscript, and focuses on work that describes some of our cross-disciplinary efforts within materials science and biology. This dissertation concludes with a general summary and future prospectus.

  11. Abstracts of the 2. Brazilian Meeting on Analytical Chemistry

    International Nuclear Information System (INIS)

    Curtius, A.J.

    1983-01-01

    Abstracts of theoretical and experimental works on Qualitative and Quantitative Analytical Chemistry are presented. Among the various analytical techniques used, emphasis is given to: neutron activation analysis, crystal doping and annealing, isotopic tracing, fission tracks detection, atomic absorption spectrophotometry, emission spectroscopy with induced coupled plasma, X-ray diffraction, nuclear magnetic resonance, mass spectrometry, polarography, ion exchange and/or thin-layer chromatography, electrodeposition, potentiometric titration and others. (C.L.B) [pt

  12. Speciation without chromatography using selective hydride generation: Inorganic arsenic in rice and samples of marine origin

    Czech Academy of Sciences Publication Activity Database

    Musil, Stanislav; Pétursdóttir, A. H.; Raab, A.; Gunnlaugsdóttir, H.; Krupp, E.; Feldmann, J.

    2014-01-01

    Roč. 86, č. 2 (2014), s. 993-999 ISSN 0003-2700 Grant - others:GA AV ČR(CZ) M200311271 Institutional support: RVO:68081715 Keywords : inorganic arsenic * hydride generation * inductively coupled plasma mass spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.636, year: 2014

  13. 75 FR 8147 - Notice of Consideration of Amendment Request for Decommissioning of Analytical Bio-Chemistry...

    Science.gov (United States)

    2010-02-23

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 030-05154; NRC-2010-0056] Notice of Consideration of Amendment Request for Decommissioning of Analytical Bio-Chemistry Laboratories, Inc. Sanitary Lagoon... license amendment to Byproduct Material License No. 24- 13365-01 issued to Analytical Bio-Chemistry...

  14. Layered inorganic solids

    Czech Academy of Sciences Publication Activity Database

    Čejka, Jiří; Morris, R. E.; Nachtigall, P.; Roth, Wieslaw Jerzy

    2014-01-01

    Roč. 43, č. 27 (2014), s. 10274-10275 ISSN 1477-9226 Institutional support: RVO:61388955 Keywords : layered inorganic solids * physical chemistry * catalysis Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.197, year: 2014

  15. Changes in Visual/Spatial and Analytic Strategy Use in Organic Chemistry with the Development of Expertise

    Science.gov (United States)

    Vlacholia, Maria; Vosniadou, Stella; Roussos, Petros; Salta, Katerina; Kazi, Smaragda; Sigalas, Michael; Tzougraki, Chryssa

    2017-01-01

    We present two studies that investigated the adoption of visual/spatial and analytic strategies by individuals at different levels of expertise in the area of organic chemistry, using the Visual Analytic Chemistry Task (VACT). The VACT allows the direct detection of analytic strategy use without drawing inferences about underlying mental…

  16. Analytical chemistry methods for boron carbide absorber material. [Standard

    Energy Technology Data Exchange (ETDEWEB)

    DELVIN WL

    1977-07-01

    This standard provides analytical chemistry methods for the analysis of boron carbide powder and pellets for the following: total C and B, B isotopic composition, soluble C and B, fluoride, chloride, metallic impurities, gas content, water, nitrogen, and oxygen. (DLC)

  17. Analytical capabilities and services of Lawrence Livermore Laboratory's General Chemistry Division

    International Nuclear Information System (INIS)

    Gutmacher, R.; Crawford, R.

    1978-01-01

    This comprehensive guide to the analytical capabilities of Lawrence Livermore Laboratory's General Chemistry Division describes each analytical method in terms of its principle, field of application, and qualitative and quantitative uses. Also described are the state and quantity of sample required for analysis, processing time, available instrumentation, and responsible personnel

  18. Proceedings of the DAE-BRNS theme meeting on recent trends in analytical chemistry: book of abstracts

    International Nuclear Information System (INIS)

    2012-01-01

    Analytical chemistry is the branch of science that deals with the determination of the identity and concentration of various elements and compounds in different matrices including living systems. The practice of analytical chemistry as a distinct discipline possibly began in the late eighteenth century with the work of the French chemist Antoine-Laurent Lavoisier and his contemporaries. Further progress was made in the nineteenth century by scientists like Carl Fresenius and Karl Friedrich Mohr. Fresenius developed the qualitative analysis method and it formed the topic of the first textbook of analytical chemistry. He also developed the gravimetric technique. Mohr developed many laboratory analytical procedures and devices. Most of the major advances in analytical chemistry, as in many other branches of science, took place in the twentieth century after the Second World War. The demand for new and increasingly sophisticated analytical techniques for bio-medical, regulatory and strategic requirements, along with the progress in electro-mechanical instrumentation, automation and computerization, has opened up new challenges and opportunities for analytical chemists and allied scientists in the years to come. Papers relevant to INIS are indexed separately

  19. Analytical Chemistry Division : annual report (for) 1985

    International Nuclear Information System (INIS)

    Mahadevan, N.

    1986-01-01

    An account of the various activities of the Analytical Chemistry Division of the Bhabha Atomic Research Centre, Bombay, during 1985 is presented. The main function of the Division is to provide chemical analysis support to India's atomic energy programme. In addition, the Division also offers its analytical services, mostly for measurement of concentrations at trace levels to Indian industries and other research organization in the country. A list of these determinations is given. The report also describes the research and development (R and D) activities - both completed and in progress, in the form of individual summaries. During the year an ultra trace analytical laboratory for analysis of critical samples without contamination was set up using indigenous material and technology. Publications and training activities of the staff, training of the staff from other institution, guidance by the staff for post-graduate degree and invited talks by the staff are listed in the appendices at the end of the report. (M.G.B.)

  20. Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 3, Inorganic instrumental methods

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The methods cover: C in solutions, F (electrode), elements by atomic emission spectrometry, inorganic anions by ion chromatography, Hg in water/solids/sludges, As, Se, Bi, Pb, data calculations for SST (single shell tank?) samples, Sb, Tl, Ag, Pu, O/M ratio, ignition weight loss, pH value, ammonia (N), Cr(VI), alkalinity, U, C sepn. from soil/sediment/sludge, Pu purif., total N, water, C and S, surface Cl/F, leachable Cl/F, outgassing of Ge detector dewars, gas mixing, gas isotopic analysis, XRF of metals/alloys/compounds, H in Zircaloy, H/O in metals, inpurity extraction, reduced/total Fe in glass, free acid in U/Pu solns, density of solns, Kr/Xe isotopes in FFTF cover gas, H by combustion, MS of Li and Cs isotopes, MS of lanthanide isotopes, GC operation, total Na on filters, XRF spectroscopy QC, multichannel analyzer operation, total cyanide in water/solid/sludge, free cyanide in water/leachate, hydrazine conc., ICP-MS, {sup 99}Tc, U conc./isotopes, microprobe analysis of solids, gas analysis, total cyanide, H/N{sub 2}O in air, and pH in soil.

  1. Inorganic soil and groundwater chemistry near Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Moore, G.K. [Tennessee Univ., Knoxville, TN (United States)

    1995-03-01

    Near-surface soils, boreholes, and sediments near the Paducah Gaseous Diffusion Plant (PGDP) were sampled in 1989-91 as were monitoring wells, TVA wells, and privately-owned wells. Most wells were sampled two or three times. The resulting chemical analyses have been published in previous reports and have been previously described (CH2M HILL 1991, 1992; Clausen et al. 1992). The two reports by CH2M HILL are controversial, however, because, the concentrations of some constituents were reported to exceed background levels or drinking water standards and because both on-site (within the perimeter fence at PGDP) and off-site pollution was reported to have occurred. The groundwater samples upon which these interpretations were based may not be representative, however. The CH2M HILL findings are discussed in the report. The purpose of this report is to characterize the inorganic chemistry of groundwater and soils near PGDP, using data from the CH2M HILL reports (1991, 1992), and to determine whether or not any contamination has occurred. The scope is limited to analysis and interpretation of data in the CH2M HILL reports because previous interpretations of these data may not be valid, because samples were collected in a relatively short period of time at several hundred locations, and because the chemical analyses are nearly complete. Recent water samples from the same wells were not considered because the characterization of inorganic chemistry for groundwater and soil requirements only one representative sample and an accurate analysis from each location.

  2. Inorganic soil and groundwater chemistry near Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    International Nuclear Information System (INIS)

    Moore, G.K.

    1995-03-01

    Near-surface soils, boreholes, and sediments near the Paducah Gaseous Diffusion Plant (PGDP) were sampled in 1989-91 as were monitoring wells, TVA wells, and privately-owned wells. Most wells were sampled two or three times. The resulting chemical analyses have been published in previous reports and have been previously described (CH2M HILL 1991, 1992; Clausen et al. 1992). The two reports by CH2M HILL are controversial, however, because, the concentrations of some constituents were reported to exceed background levels or drinking water standards and because both on-site (within the perimeter fence at PGDP) and off-site pollution was reported to have occurred. The groundwater samples upon which these interpretations were based may not be representative, however. The CH2M HILL findings are discussed in the report. The purpose of this report is to characterize the inorganic chemistry of groundwater and soils near PGDP, using data from the CH2M HILL reports (1991, 1992), and to determine whether or not any contamination has occurred. The scope is limited to analysis and interpretation of data in the CH2M HILL reports because previous interpretations of these data may not be valid, because samples were collected in a relatively short period of time at several hundred locations, and because the chemical analyses are nearly complete. Recent water samples from the same wells were not considered because the characterization of inorganic chemistry for groundwater and soil requirements only one representative sample and an accurate analysis from each location

  3. Analytical Chemistry in the Regulatory Science of Medical Devices.

    Science.gov (United States)

    Wang, Yi; Guan, Allan; Wickramasekara, Samanthi; Phillips, K Scott

    2018-06-12

    In the United States, regulatory science is the science of developing new tools, standards, and approaches to assess the safety, efficacy, quality, and performance of all Food and Drug Administration-regulated products. Good regulatory science facilitates consumer access to innovative medical devices that are safe and effective throughout the Total Product Life Cycle (TPLC). Because the need to measure things is fundamental to the regulatory science of medical devices, analytical chemistry plays an important role, contributing to medical device technology in two ways: It can be an integral part of an innovative medical device (e.g., diagnostic devices), and it can be used to support medical device development throughout the TPLC. In this review, we focus on analytical chemistry as a tool for the regulatory science of medical devices. We highlight recent progress in companion diagnostics, medical devices on chips for preclinical testing, mass spectrometry for postmarket monitoring, and detection/characterization of bacterial biofilm to prevent infections.

  4. Electrochemical sensors: a powerful tool in analytical chemistry

    Directory of Open Access Journals (Sweden)

    Stradiotto Nelson R.

    2003-01-01

    Full Text Available Potentiometric, amperometric and conductometric electrochemical sensors have found a number of interesting applications in the areas of environmental, industrial, and clinical analyses. This review presents a general overview of the three main types of electrochemical sensors, describing fundamental aspects, developments and their contribution to the area of analytical chemistry, relating relevant aspects of the development of electrochemical sensors in Brazil.

  5. Analytical Chemistry Laboratory progress report for FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Green, D. W.; Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.

    2000-06-15

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1999 (October 1998 through September 1999). This annual progress report, which is the sixteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  6. Analytical Chemistry Laboratory progress report for FY 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.; Green, D. W.; Lindahl, P. C.

    1999-03-29

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1998 (October 1997 through September 1998). This annual progress report, which is the fifteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  7. Analytical Chemistry Laboratory progress report for FY 1998

    International Nuclear Information System (INIS)

    Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.; Green, D. W.; Lindahl, P. C.

    1999-01-01

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1998 (October 1997 through September 1998). This annual progress report, which is the fifteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL

  8. Analytical Chemistry Division : annual report for the year 1980

    International Nuclear Information System (INIS)

    Sathe, R.M.

    1981-01-01

    The research and development activities of the Analytical Chemistry Division of the Bhabha Atomic Research Centre, during 1980 are reported in the form of abstracts. Various methods nuclear, spectral, thermal, electrochemical ion exchange developed for chemical analysis are described. Solvent extraction studies are also reviewed. (M.G.B.)

  9. Hydride generation ICP-MS as a simple method for determination of inorganic arsenic in rice for routine biomonitoring

    Czech Academy of Sciences Publication Activity Database

    Pétursdóttir, Á. H.; Friedrich, N.; Musil, Stanislav; Raab, A.; Gunnlaugsdóttir, H.; Krupp, E. M.; Feldmann, J.

    2014-01-01

    Roč. 6, č. 14 (2014), s. 5392-5396 ISSN 1759-9660 Grant - others:GA AV ČR(CZ) M200311271 Institutional support: RVO:68081715 Keywords : inorganic arsenic * hydride generation inductively coupled plasma mass spectrometry * rice samples Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.821, year: 2014

  10. Inorganic ion-exchangers. Their role in chromatographic radionuclide generators for the decade 1993-2002

    International Nuclear Information System (INIS)

    Mushtaq, A.

    2004-01-01

    Ion-exchangers are found not only in water purification processes, the original major application, but also in analytical chemistry for the separation and isolation of elements, hydrometallurgy, inorganic chemistry and biochemistry, in food technology, and of course in many specialized fields related to the utilization of atomic energy. The use of organic ion-exchangers is limited by virtue of their limited stability under harsh conditions, whereas inorganic ion-exchangers possess important properties, which make them very useful for chemical separation and purification in intense radiation fields. The availability of short-lived radionuclides from radionuclide generators provides an inexpensive and convenient alternative to in-house radioisotope production facilities such as accelerators and cyclotrons. Due to their simplicity of operation, chromatographic based generators have been the method of choice, although generators based on solvent extraction and on volatilization and sublimation have also been developed, and are routinely used. In this paper use of inorganic ion-exchangers for the development of radionuclide generators for the decade 1993-2002 has been compiled. (author)

  11. Procedure for hazards analysis of plutonium gloveboxes used in analytical chemistry operations

    International Nuclear Information System (INIS)

    Delvin, W.L.

    1977-06-01

    A procedure is presented to identify and assess hazards associated with gloveboxes used for analytical chemistry operations involving plutonium. This procedure is based upon analytic tree methodology and it has been adapted from the US Energy Research and Development Administration's safety program, the Management Oversight and Risk Tree

  12. Analytical chemistry laboratory. Progress report for FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Boparai, A.S.; Bowers, D.L. [and others

    1997-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1997 (October 1996 through September 1997). This annual progress report is the fourteenth in this series for the ACL, and it describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  13. The Breath of Chemistry

    DEFF Research Database (Denmark)

    Josephsen, Jens

    The present preliminary text is a short thematic presentation in biological inorganic chemistry meant to illustrate general and inorganic (especially coordination) chemistry in biochemistry. The emphasis is on molecular models to explain features of the complicated mechanisms essential to breathing...

  14. Nuclear activation analysis work at Analytical Chemistry Division: an overview

    International Nuclear Information System (INIS)

    Verma, R.; Swain, K.K.; Remya Devi, P.S.; Dalvi, Aditi A.; Ajith, Nicy; Ghosh, M.; Chowdhury, D.P.; Datta, J.; Dasgupta, S.

    2016-04-01

    Nuclear activation analysis using neutron and charged particles is used routinely for analysis and research at Analytical Chemistry Division (ACD), Bhabha Atomic Research Centre (BARC). Neutron activation analysis at ACD, BARC, Mumbai, India has been pursued since late fifties using Apsara, CIRUS, Dhruva and Critical facility Research reactors, 239 Pu-Be neutron source and neutron generator. Instrumental, Radiochemical, Chemical and Derivative neutron activation analysis approaches are adopted depending on the analyte and the matrix. Large sample neutron activation analysis as well as k 0 -based internal monostandard neutron activation analysis is also used. Charged particle activation analysis at ACD, Variable Energy Cyclotron Centre (VECC), Kolkata started in late eighties and is being used for industrial applications and research. Proton, alpha, deuteron and heavy ion beams from 224 cm room temperature Variable Energy Cyclotron are used for determination of trace elements, measurement of excitation function, thin layer activation and preparation of endohedral fullerenes encapsulated with radioactive isotopes. Analytical Chemistry Division regularly participates in Inter and Intra laboratory comparison exercises conducted by various organizations including International Atomic Energy Agency (IAEA) and the results invariably include values obtained by neutron activation analysis. (author)

  15. Croatian Analytical Terminology

    Directory of Open Access Journals (Sweden)

    Kastelan-Macan; M.

    2008-04-01

    Full Text Available Results of analytical research are necessary in all human activities. They are inevitable in making decisions in the environmental chemistry, agriculture, forestry, veterinary medicine, pharmaceutical industry, and biochemistry. Without analytical measurements the quality of materials and products cannot be assessed, so that analytical chemistry is an essential part of technical sciences and disciplines.The language of Croatian science, and analytical chemistry within it, was one of the goals of our predecessors. Due to the political situation, they did not succeed entirely, but for the scientists in independent Croatia this is a duty, because language is one of the most important features of the Croatian identity. The awareness of the need to introduce Croatian terminology was systematically developed in the second half of the 19th century, along with the founding of scientific societies and the wish of scientists to write their scientific works in Croatian, so that the results of their research may be applied in economy. Many authors of textbooks from the 19th and the first half of the 20th century contributed to Croatian analytical terminology (F. Rački, B. Šulek, P. Žulić, G. Pexidr, J. Domac, G. Janeček , F. Bubanović, V. Njegovan and others. M. DeŢelić published the first systematic chemical terminology in 1940, adjusted to the IUPAC recommendations. In the second half of 20th century textbooks in classic analytical chemistry were written by V. Marjanović-Krajovan, M. Gyiketta-Ogrizek, S. Žilić and others. I. Filipović wrote the General and Inorganic Chemistry textbook and the Laboratory Handbook (in collaboration with P. Sabioncello and contributed greatly to establishing the terminology in instrumental analytical methods.The source of Croatian nomenclature in modern analytical chemistry today are translated textbooks by Skoog, West and Holler, as well as by Günnzler i Gremlich, and original textbooks by S. Turina, Z.

  16. Nomenclature and spelling rules of chemistry in Hungary Pt. 1 Nomenclature of elements and inorganic compounds

    International Nuclear Information System (INIS)

    Fodorne Csanyi, P.

    1982-01-01

    The part of the updated edition of 'Nomenclature and spelling rules of chemistry in Hungary' (Budapest, 1972), referring to the isotopically modified inorganic compounds is presented. The rules are based on the proposals of IUPAC (1981). Spelling rules concerning the isotopically substituted, isotopically labelled, specifically labelled, selectively and non-selectively labelled compounds, and the positional and numbering rules of nuclides are treated. (Sz.J.)

  17. VII Russian annual conference of young scientists and postgraduate students Physical chemistry and technology of inorganic materials. Collection of materials

    International Nuclear Information System (INIS)

    Tsvetkov, Yu.V.

    2010-01-01

    The materials of the VII Russian annual conference of young scientists and postgraduate students Physical chemistry and technology of inorganic materials, held 8-11 November 2010 in Moscow, are presented. Structure and properties of high-strength nanostructured metal and composite materials, development of research methods and simulation of the structure and properties of materials and nanomaterials, functional ceramic and composite nanomaterials - in sight of the participants. The problems of physicochemical principles and processes for new technologies and forming powder materials and nanomaterials, physicochemical bases of production and processing of advanced inorganic materials, physical chemistry and technology of energy-, resource-saving and environmentally friendly processes for ferrous, non-ferrous and rare metals are under consideration. Promising composite coatings and nanostructured films of functional purposes, physicochemical bases of new processes of shaping and forming of materials and nanomaterials are discussed [ru

  18. Emanation thermal analysis. Application in solid state chemistry, analytical chemistry and engineering

    International Nuclear Information System (INIS)

    Balek, V.; Tel'deshi, Yu.

    1986-01-01

    Voluminous material on application of emenation thermal analysis for investigation of solids is systematized. General concepts and historical review of development of the method are given. Methods of introduction of inert gases into solids are considered. Theoretical aspects of inert gas evolution from solids labelled by radioactive gas or its maternal isotope are stated. The methods for measuring inert gases are considered. The possibilities, limitations and perspectives of development of radiometric emanation methods for the solution of various problems of analytical chemistry and thechnology are discussed

  19. The recent developments in dispersive liquid–liquid microextraction for preconcentration and determination of inorganic analytes

    Directory of Open Access Journals (Sweden)

    H.M. Al-Saidi

    2014-12-01

    Full Text Available Recently, increasing interest on the use of dispersive liquid–liquid microextraction (DLLME developed in 2006 by Rezaee has been found in the field of separation science. DLLME is miniaturized format of liquid–liquid extraction in which acceptor-to-donor phase ratio is greatly reduced compared with other methods. In the present review, the combination of DLLME with different analytical techniques such as atomic absorption spectrometry (AAS, inductively coupled plasma-optical emission spectrometry (ICP-OES, gas chromatography (GC, and high-performance liquid chromatography (HPLC for preconcentration and determination of inorganic analytes in different types of samples will be discussed. Recent developments in DLLME, e.g., displacement-DLLME, the use of an auxiliary solvent for adjustment of density of extraction mixture, and the application of ionic liquid-based DLLME in determination of inorganic species even in the presence of high content of salts are presented in the present review. Finally, comparison of DLLME with the other liquid-phase microextraction approaches and limitations of this technique are provided.

  20. Fifty years of continuous improvement: (What has DOE done for analytical chemistry?)

    Energy Technology Data Exchange (ETDEWEB)

    Shults, W.D.

    1993-11-01

    Over the past fifty years, analytical scientist within the DOE complex have had a tremendous impact on the field of analytical chemistry. This paper suggests six ``high impact`` research/development areas that either originated within or were brought to maturity within the DOE laboratories. ``High impact`` means they lead to new subdisciplines or to new ways of doing business.

  1. Proceedings of the 4. National Meeting on Analytical Chemistry - Abstracts

    International Nuclear Information System (INIS)

    1987-01-01

    The 4. National Meeting on Analytical Chemistry includes analysis of nuclear interest elements with nuclear and non nuclear methods and the elements not interest of nuclear energy with nuclear methods. The materials analysed are rocks, ores, metals alloys, waters, plants and biological materials. (C.G.C.)

  2. Influence of solution chemistry on the boron content in inorganic calcite grown in artificial seawater

    Science.gov (United States)

    Uchikawa, Joji; Harper, Dustin T.; Penman, Donald E.; Zachos, James C.; Zeebe, Richard E.

    2017-12-01

    The ratio of boron to calcium (B/Ca) in marine biogenic carbonates has been proposed as a proxy for properties of seawater carbonate chemistry. Applying this proxy to planktic foraminifera residing in the surface seawater largely in equilibrium with the atmosphere may provide a valuable handle on past atmospheric CO2 concentrations. However, precise controls on B/Ca in planktic foraminifera remain enigmatic because it has been shown to depend on multiple physicochemical seawater properties. To help establish a firm inorganic basis for interpreting the B/Ca records, we examined the effect of a suite of chemical parameters ([Ca2+], pH, [DIC], salinity and [PO43-]) on B/Ca in inorganic calcite precipitated in artificial seawater. These parameters were primarily varied individually while keeping all others constant, but we also tested the influence of pH and [DIC] at a constant calcite precipitation rate (R) by concurrent [Ca2+] adjustments. In the simple [Ca2+], pH and [DIC] experiments, both R and B/Ca increased with these parameters. In the pH-[Ca2+] and [DIC]-[Ca2+] experiments at constant R, on the other hand, B/Ca was invariant at different pH and decreased with [DIC], respectively. These patterns agree with the behavior of solution [BTotal/DIC] ratio such that, at a fixed [BTotal], it is independent of pH but decreases with [DIC]. Based on these results, R and [BTotal/DIC] ratio appear to be the primary controls on B/Ca in inorganic calcite, suggesting that both B(OH)4- and B(OH)3 are possibly involved in B incorporation. Moreover, B/Ca modestly increased with salinity and [PO43-]. Inorganic calcite precipitated at higher R and in the presence of oxyanions such as SO42- and PO43- in growth solutions often undergoes surface roughening due to formation of crystallographic defects, vacancies and, occasionally, amorphous/hydrous CaCO3. These non-lattice sites may provide additional space for B, particularly B(OH)3. Consequently, besides the macroscopic influence of

  3. Abstracts of the 1. Brazilian Meeting on Analytical Chemistry

    International Nuclear Information System (INIS)

    Curtius, A.J.

    1982-01-01

    Abstracts from experimental studies on analytical chemistry are presented. Several techniques have been used, such as: neutron activation analysis, potentiometry, optical emission spectroscopy, alpha and gamma spectroscopy, atomic absorption spectrophotometry, radiometric analysis, fission track detection, complexometry and others. Samples analysed are of various kinds: environmental materials (soil, water, air), rocks, coal, lanthanide complexes, polycarbonates and synthetic quartz. (C.L.B.) [pt

  4. Evaluating the Effectiveness of the Chemistry Education by Using the Analytic Hierarchy Process

    Science.gov (United States)

    Yüksel, Mehmet

    2012-01-01

    In this study, an attempt was made to develop a method of measurement and evaluation aimed at overcoming the difficulties encountered in the determination of the effectiveness of chemistry education based on the goals of chemistry education. An Analytic Hierarchy Process (AHP), which is a multi-criteria decision technique, is used in the present…

  5. Effects of Computer Based Learning on Students' Attitudes and Achievements towards Analytical Chemistry

    Science.gov (United States)

    Akcay, Husamettin; Durmaz, Asli; Tuysuz, Cengiz; Feyzioglu, Burak

    2006-01-01

    The aim of this study was to compare the effects of computer-based learning and traditional method on students' attitudes and achievement towards analytical chemistry. Students from Chemistry Education Department at Dokuz Eylul University (D.E.U) were selected randomly and divided into three groups; two experimental (Eg-1 and Eg-2) and a control…

  6. Proceedings of the BRNS-AEACI first symposium on current trends in analytical chemistry: book of abstracts

    International Nuclear Information System (INIS)

    Reddy, A.V.R.

    2015-01-01

    The symposium was very useful for the scientists on various aspects of current trends in analytical chemistry like separation science, speciation, nuclear analytical techniques, thermo analytical techniques, electro analytical techniques, spectrochemical and microscopic techniques, environmental studies, geochemical studies, chemical metrology, analytical instrumentation. Papers relevant to INIS are indexed separately

  7. Nuclear analytical chemistry 5. Tables, nomograms and schemes

    Energy Technology Data Exchange (ETDEWEB)

    Tolgyessy, J; Varga, S; Dillinger, P; Kyrs, M

    1976-01-01

    Tables, graphs and nomograms are given on aspects of nuclear analytical chemistry. The tables contain data on physical and chemical units and their conversion, exponential functions, the characteristics of radioactive nuclides, data on the interaction of nuclear radiation with matter, data useful in measuring nuclear radiation, in scintillation and semiconductor spectrometry, activation analysis, data on masking reactions of ions in chemical separation, on extraction, ion exchange, accuracy in applying the method of isotope dilution, on radiochemical analysis.

  8. Analytical Chemistry (edited by R. Kellner, J.- M. Mermet, M. Otto, and H. M. Widmer)

    Science.gov (United States)

    Thompson, Reviewed By Robert Q.

    2000-04-01

    This text, written in English, was developed by the Division of Analytical Chemistry of the Federation of European Chemical Societies to support the university-level Eurocurriculum in analytical chemistry, a major effort of academics and other analytical scientists throughout Europe and an outgrowth of the economic unification of European countries. The goal of a uniform curriculum and text for analytical chemistry across national borders is laudable, and the editors, led by the late Robert Kellner, deserve commendation for their accomplishments. (The U.S., in contrast, has been late in considering the analytical chemistry curriculum and only recently has published a pamphlet, Curricular Developments in the Analytical Sciences, an outgrowth of several NSF-sponsored workshops.) I can't remember another analytical text that begins with mention of the "big bang" and the beginnings of the universe (!), but I don't believe that the authors and publisher are looking to export their curriculum to neighboring planets. However, I am sure that they are interested in the North American market and its strong analytical chemistry community. It is in this context and in comparison with leading analytical texts in the U.S. that I write this review. At first glance, Analytical Chemistry overwhelms. It is a large book of more than 900 pages, a mass of 2.3 kg, and a volume of nearly 3 L. It is not a book that is easy to stuff into a backpack for the trip to class or lab. Students also may resent paying top dollar for a book that might not last the semester, given that the pages of my review copy began to pull away from the binding after only a few days of gentle use. Beneath the snazzy cover there is a dearth of color printing and photographs. This, combined with a smallish font and figures that are inconsistent in size, quality, and font, makes for a book that is not especially easy on the eyes. The large margins provide ample space for the numerous figures, figure captions, and

  9. Annual reports in inorganic and general syntheses 1974

    CERN Document Server

    Niedenzu, Kurt

    1975-01-01

    Annual Reports in Inorganic and General Syntheses-1974 presents an organized annual summary of synthetic developments in inorganic chemistry and its related areas. The book discusses the chemistry of simple and complex metal hydrides of main groups I, II, and III, boron, aluminium, gallium, indium, thallium, silicon, germanium, tin, lead, phosphorus, arsenic, antimony, bismuth, chalcogens, halogens, and pseudohalogens. The text also describes the chemistry of scandium, yttrium, lanthanides, actinides, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, ma

  10. Fundamentals of analytical chemistry, 5th edition

    International Nuclear Information System (INIS)

    Skoog, D.A.; West, D.M.; Holler, F.J.

    1988-01-01

    Fundamentals of Analytical Chemistry is divided into three roughly equal parts. The first 14 chapters cover classical methods of analysis, including titrimetry and gravimetry as well as solution equilibria and statistical analysis. The next 11 chapters address electroanalytical, optical, and chromatographic methods of analysis. The remainder of the text is devoted to discussions of sample manipulation and pretreatment, good laboratory practices, and detailed directions for performing examples of 17 different types of classical and instrumental analyses. Like its predecessors, this fifth edition provides comprehensive coverage of classical analytical methods and the major instrumental ones in a literary style that is clear, straightforward, and readable. New terms are carefully defined as they are introduced, and each term is italicized for emphasis and for ease of relocation by the student who may forget its meaning. The chapters on analyses of real-world samples, on avoiding interferences, and on techniques for sample preparation should prove especially useful for the practicing chemist

  11. [60]Fullerene Displacement from (Dihapto-Buckminster-Fullerene) Pentacarbonyl Tungsten(0): An Experiment for the Inorganic Chemistry Laboratory, Part II

    Science.gov (United States)

    Cortes-Figueroa, Jose E.; Moore-Russo, Deborah A.

    2006-01-01

    The kinetics experiments on the ligand-C[subscript 60] exchange reactions on (dihapto-[60]fullerene) pentacarbonyl tungsten(0), ([eta][superscript 2]-C[subscript 60])W(CO)[subscript 5], form an educational activity for the inorganic chemistry laboratory that promotes graphical thinking as well as the understanding of kinetics, mechanisms, and the…

  12. Nuclear analytical chemistry: recent developments and applications

    International Nuclear Information System (INIS)

    Acharya, R.

    2013-01-01

    Recent R and D studies on Nuclear Analytical Chemistry utilizing techniques like Neutron Activation Analysis (NAA), Prompt Gamma-ray NAA (PGNAA), Particle Induced Gamma Ray and X-Ray Emission (PICE/PIXE) for compositional analysis of materials have been summarized. The work includes developments and applications of (i) single comparator NAA, called as k 0 -NAA, (ii) k 0 -based internal monostandard NAA (IM-NAA), (iii) k 0 -based prompt gamma ray NAA (PGNAA) and (iv) instrumental NAA using thermal and epithermal neutrons and (v) PIGE and PIXE methods using proton beam for low Z and medium Z elements, respectively. (author)

  13. Interactions of Native Cyclodextrins with Metal Ions and Inorganic Nanoparticles: Fertile Landscape for Chemistry and Materials Science.

    Science.gov (United States)

    Prochowicz, Daniel; Kornowicz, Arkadiusz; Lewiński, Janusz

    2017-11-22

    Readily available cyclodextrins (CDs) with an inherent hydrophobic internal cavity and hydrophilic external surface are macrocyclic entities that display a combination of molecular recognition and complexation properties with vital implications for host-guest supramolecular chemistry. While the host-guest chemistry of CDs has been widely recognized and led to their exploitation in a variety of important functions over the last five decades, these naturally occurring macrocyclic systems have emerged only recently as promising macrocyclic molecules to fabricate environmentally benign functional nanomaterials. This review surveys the development in the field paying special attention to the synthesis and emerging uses of various unmodified CD-metal complexes and CD-inorganic nanoparticle systems and identifies possible future directions. The association of a hydrophobic cavity of CDs with metal ions or various inorganic nanoparticles is a very appealing strategy for controlling the inorganic subunits properties in the very competitive water environment. In this review we provide the most prominent examples of unmodified CDs' inclusion complexes with organometallic guests and update the research in this field from the past decade. We discuss also the coordination flexibility of native CDs to metal ions in CD-based metal complexes and summarize the progress in the synthesis and characterization of CD-metal complexes and their use in catalysis and sensing as well as construction of molecular magnets. Then we provide a comprehensive overview of emerging applications of native CDs in materials science and nanotechnology. Remarkably, in the past few years CDs have appeared as attractive building units for the synthesis of carbohydrate metal-organic frameworks (CD-MOFs) in a combination of alkali-metal cations. The preparation of this new class of highly porous materials and their applications in the separation of small molecules, the loading of drug molecules, as well as

  14. Analytical Chemistry Division annual progress report for period ending December 31, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1988-05-01

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: (1) Analytical Research, Development, and Implementation. The division maintains a program to conceptualize, investigate, develop, assess, improve, and implement advanced technology for chemical and physicochemical measurements. Emphasis is on problems and needs identified with ORNL and Department of Energy (DOE) programs; however, attention is also given to advancing the analytical sciences themselves. (2) Programmatic Research, Development, and Utilization. The division carries out a wide variety of chemical work that typically involves analytical research and/or development plus the utilization of analytical capabilities to expedite programmatic interests. (3) Technical Support. The division performs chemical and physicochemical analyses of virtually all types. The Analytical Chemistry Division is organized into four major sections, each of which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1988. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8.

  15. Analytical Chemistry Division annual progress report for period ending December 31, 1988

    International Nuclear Information System (INIS)

    1988-05-01

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: (1) Analytical Research, Development, and Implementation. The division maintains a program to conceptualize, investigate, develop, assess, improve, and implement advanced technology for chemical and physicochemical measurements. Emphasis is on problems and needs identified with ORNL and Department of Energy (DOE) programs; however, attention is also given to advancing the analytical sciences themselves. (2) Programmatic Research, Development, and Utilization. The division carries out a wide variety of chemical work that typically involves analytical research and/or development plus the utilization of analytical capabilities to expedite programmatic interests. (3) Technical Support. The division performs chemical and physicochemical analyses of virtually all types. The Analytical Chemistry Division is organized into four major sections, each of which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1988. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8

  16. Analytical chemistry in semiconductor manufacturing: Techniques, role of nuclear methods and need for quality control

    International Nuclear Information System (INIS)

    1989-06-01

    This report is the result of a consultants meeting held in Gaithersburg, USA, 2-3 October 1987. The meeting was hosted by the National Bureau of Standards and Technology, and it was attended by 18 participants from Denmark, Finland, India, Japan, Norway, People's Republic of China and the USA. The purpose of the meeting was to assess the present status of analytical chemistry in semiconductor manufacturing, the role of nuclear analytical methods and the need for internationally organized quality control of the chemical analysis. The report contains the three presentations in full and a summary report of the discussions. Thus, it gives an overview of the need of analytical chemistry in manufacturing of silicon based devices, the use of nuclear analytical methods, and discusses the need for quality control. Refs, figs and tabs

  17. Theoretical chemistry periodicities in chemistry and biology

    CERN Document Server

    Eyring, Henry

    1978-01-01

    Theoretical Chemistry: Periodicities in Chemistry and Biology, Volume 4 covers the aspects of theoretical chemistry. The book discusses the stably rotating patterns of reaction and diffusion; the chemistry of inorganic systems exhibiting nonmonotonic behavior; and population cycles. The text also describes the mathematical modeling of excitable media in neurobiology and chemistry; oscillating enzyme reactions; and oscillatory properties and excitability of the heart cell membrane. Selected topics from the theory of physico-chemical instabilities are also encompassed. Chemists, mechanical engin

  18. James Moir as Inorganic Chemist

    African Journals Online (AJOL)

    NICO

    KEYWORDS. Inorganic chemistry, gold, atomic theory, history of chemistry. .... Figure 2 (a) shows Moir's model for the C atom, where the black circles represent the ..... Na filled the hole in the F atom, both becoming ions even in the crystal state ...

  19. Methods for the calculation of uncertainty in analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Suh, M. Y.; Sohn, S. C.; Park, Y. J.; Park, K. K.; Jee, K. Y.; Joe, K. S.; Kim, W. H

    2000-07-01

    This report describes the statistical rules for evaluating and expressing uncertainty in analytical chemistry. The procedures for the evaluation of uncertainty in chemical analysis are illustrated by worked examples. This report, in particular, gives guidance on how uncertainty can be estimated from various chemical analyses. This report can be also used for planning the experiments which will provide the information required to obtain an estimate of uncertainty for the method.

  20. Proceedings of BARC golden jubilee year DAE-BRNS topical symposium on role of analytical chemistry in nuclear technology

    International Nuclear Information System (INIS)

    Swain, K.K.; Venkataramani, B.

    2007-01-01

    Among the various disciplines in Chemistry, Analytical Chemistry is unique, because it is an integral part of every aspect of technology- product and process development and deployment. In Nuclear Industry, the quality assurance criteria are very stringent. And truly, Analytical Chemistry has continued to play a pivotal role in the entire nuclear fuel cycle, since the beginning of the Indian Atomic Energy Programme. The conference covers invited talk, nuclear materials, reactor systems, thorium technology, alternate energy sources, biology, agriculture and environment, water technology, isotope, radiation and laser technology, development of analytical instruments, and reference materials and inter-comparison exercises. Papers relevant to INIS are indexed separately. (author)

  1. Proceedings of the 8. Brazilian meeting on analytical chemistry. Abstracts

    International Nuclear Information System (INIS)

    1995-01-01

    Abstracts from theoretical and experimental works on qualitative and quantitative analytical chemistry are presented. Several nuclear and non nuclear techniques have been used, such as neutron activation analysis, absorption spectroscopy, x-ray fluorescence analysis and others. The materials analysed were rocks, rare earths, environmental materials (soil, water, air), complexes and so on. Synthesis, kinetics and radiochemistry were also discussed

  2. Analytical Chemistry Division annual progress report for period ending December 31, 1989

    International Nuclear Information System (INIS)

    1990-04-01

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: Analytical Research, Development and Implementation; Programmatic Research, Development, and Utilization; and Technical Support. The Analytical Chemistry Division is organized into four major sections, each which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1989. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8. Approximately 69 articles, 41 proceedings, and 31 reports were published, and 151 oral presentations were given during this reporting period. Some 308,981 determinations were performed

  3. Does leaf chemistry differentially affect breakdown in tropical versus temperate streams? Importance of standardized analytical techniques to measure leaf chemistry

    Science.gov (United States)

    Marcelo Ardon; Catherine M. Pringle; Susan L. Eggert

    2009-01-01

    Comparisons of the effects of leaf litter chemistry on leaf breakdown rates in tropical vs temperate streams are hindered by incompatibility among studies and across sites of analytical methods used to...

  4. Radiation chemistry

    International Nuclear Information System (INIS)

    Swallow, A.J.

    1983-01-01

    The subject is covered in chapters, entitled: introduction (defines scope of article as dealing with the chemistry of reactive species, (e.g. excess electrons, excited states, free radicals and inorganic ions in unusual valency states) as studied using radiation with radiation chemistry in its traditional sense and with biological and industrial applications); gases; water and simple inorganic systems; aqueous metallo-organic compounds and metalloproteins; small organic molecules in aqueous solution; microheterogeneous systems; non-aqueous liquids and solutions; solids; biological macromolecules; synthetic polymers. (U.K.)

  5. Materials of the yearly scientific assembly of the Polish Chemical Society - Torun'93: chemistry of new materials

    International Nuclear Information System (INIS)

    1993-01-01

    Scientific conference accompanied the assembly of Polish Chemical Society has been held in 1993 in Torun. The conference has been divided into 12 sections and 4 symposia covering the most important research fields in chemistry. The general view on scientific progress has been presented during the plenary session. Then proceedings have performed in specialist sessions on: contemporary methods in organic chemistry chemistry, chemistry and physico-chemistry of polymers, coordination chemistry state-of-the-art prospects, absorption and absorbents, new chemical technologies of organic compounds, new chemical technologies of inorganic compounds, environment protection, new methods in analytical chemistry, photochemistry and chemical kinetics, crystallochemistry, history of chemistry and didactics, new substances in health protection, membranes and membrane techniques, electroactive organic compounds, zeolites - material properties

  6. Reference Intervals of Common Clinical Chemistry Analytes for Adults in Hong Kong.

    Science.gov (United States)

    Lo, Y C; Armbruster, David A

    2012-04-01

    Defining reference intervals is a major challenge because of the difficulty in recruiting volunteers to participate and testing samples from a significant number of healthy reference individuals. Historical literature citation intervals are often suboptimal because they're be based on obsolete methods and/or only a small number of poorly defined reference samples. Blood donors in Hong Kong gave permission for additional blood to be collected for reference interval testing. The samples were tested for twenty-five routine analytes on the Abbott ARCHITECT clinical chemistry system. Results were analyzed using the Rhoads EP evaluator software program, which is based on the CLSI/IFCC C28-A guideline, and defines the reference interval as the 95% central range. Method specific reference intervals were established for twenty-five common clinical chemistry analytes for a Chinese ethnic population. The intervals were defined for each gender separately and for genders combined. Gender specific or combined gender intervals were adapted as appropriate for each analyte. A large number of healthy, apparently normal blood donors from a local ethnic population were tested to provide current reference intervals for a new clinical chemistry system. Intervals were determined following an accepted international guideline. Laboratories using the same or similar methodologies may adapt these intervals if deemed validated and deemed suitable for their patient population. Laboratories using different methodologies may be able to successfully adapt the intervals for their facilities using the reference interval transference technique based on a method comparison study.

  7. Complex chemistry

    International Nuclear Information System (INIS)

    Kim, Bong Gon; Kim, Jae Sang; Kim, Jin Eun; Lee, Boo Yeon

    2006-06-01

    This book introduces complex chemistry with ten chapters, which include development of complex chemistry on history coordination theory and Warner's coordination theory and new development of complex chemistry, nomenclature on complex with conception and define, chemical formula on coordination compound, symbol of stereochemistry, stereo structure and isomerism, electron structure and bond theory on complex, structure of complex like NMR and XAFS, balance and reaction on solution, an organo-metallic chemistry, biology inorganic chemistry, material chemistry of complex, design of complex and calculation chemistry.

  8. Analytical Chemistry Division, annual report for the year 1973

    International Nuclear Information System (INIS)

    1974-01-01

    Research and development activities of the Analytical Chemistry Division of the Bhabha Atomic Research Centre, Bombay (India), for the year 1973 are reported. From the point of view of nuclear science and technology, the following are worth mentioning: (1) radiochemical analysis of mercury in marine products (2) rapid anion exchange separation and spectrophotometric determination of gadolinium in uranium dioxide-gadolinium oxide blend and (3) neutron activation analysis for forensic purpose. (M.G.B.)

  9. Analysis of a Natural Yellow Dye: An Experiment for Analytical Organic Chemistry

    NARCIS (Netherlands)

    Villela, A.; Derksen, G.C.H.; Beek, van T.A.

    2014-01-01

    This experiment exposes second-year undergraduate students taking a course in analytical organic chemistry to high-performance liquid chromatography (HPLC) and quantitative analysis using the internal standard method. This is accomplished using the real-world application of natural dyes for

  10. Advances in organic-inorganic hybrid sorbents for the extraction of organic and inorganic pollutants in different types of food and environmental samples.

    Science.gov (United States)

    Ng, Nyuk-Ting; Kamaruddin, Amirah Farhan; Wan Ibrahim, Wan Aini; Sanagi, Mohd Marsin; Abdul Keyon, Aemi S

    2018-01-01

    The efficiency of the extraction and removal of pollutants from food and the environment has been an important issue in analytical science. By incorporating inorganic species into an organic matrix, a new material known as an organic-inorganic hybrid material is formed. As it possesses high selectivity, permeability, and mechanical and chemical stabilities, organic-inorganic hybrid materials constitute an emerging research field and have become popular to serve as sorbents in various separaton science methods. Here, we review recent significant advances in analytical solid-phase extraction employing organic-inorganic composite/nanocomposite sorbents for the extraction of organic and inorganic pollutants from various types of food and environmental matrices. The physicochemical characteristics, extraction properties, and analytical performances of sorbents are discussed; including morphology and surface characteristics, types of functional groups, interaction mechanism, selectivity and sensitivity, accuracy, and regeneration abilities. Organic-inorganic hybrid sorbents combined with extraction techniques are highly promising for sample preparation of various food and environmental matrixes with analytes at trace levels. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Analytical Chemistry Division annual progress report for period ending December 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-04-01

    The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: Analytical Research, Development and Implementation; Programmatic Research, Development, and Utilization; and Technical Support. The Analytical Chemistry Division is organized into four major sections, each which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1989. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8. Approximately 69 articles, 41 proceedings, and 31 reports were published, and 151 oral presentations were given during this reporting period. Some 308,981 determinations were performed.

  12. 现代信息技术在无机化学实验中的应用%The Application of Modern Information Technology in Inorganic Chemistry Experiment

    Institute of Scientific and Technical Information of China (English)

    张海蓉

    2012-01-01

    传统的无机化学实验的教学模式已不能适应当代大学生的需要,为充分发挥无机实验教学在化学专业课程教学中的基础作用,培养适应社会需求的"创新型"、"应用型"人才,本文探讨了现代信息技术在无机化学实验教学上的应用,研究了多媒体技术和网络资源在无机化学实验教学中的应用。%The traditional teaching mode of Inorganic Chemistry Experiment can't meet the needs of university students.In order to make full use of the basic function of Inorganic Chemistry Experiment teaching in chemical professional teaching,and train innovative and practical talents,whom the social needs,the application of the modern information technology including multimedia technology and cyber source in teaching of Inorganic Chemistry Experiment were studied.

  13. Linking the Lab Experience with Everyday Life: An Analytical Chemistry Experiment for Agronomy Students

    Science.gov (United States)

    Gimenez, Sônia Maria N.; Yabe, Maria Josefa S.; Kondo, Neide K.; Mouriño, Rodrigo O.; Moura, Graziela Cristina R.

    2000-02-01

    Agronomy students generally lack interest in chemistry. The objective of this work was to modify the analytical chemistry curriculum to increase student interest. Samples of soils and plants prepared by students were introduced. Soil was treated with molasses residue, organic matter (chicken manure and humus obtained from goat excrement), and lime. The response of plants to the different soil treatments increased student interest in chemical analyses. Evaluation of several chemical and physicochemical parameters of samples demonstrated in a clear way the application of the theoretical and practical concepts of chemistry.

  14. Methods for Introducing Inorganic Polymer Concepts throughout the Undergraduate Curriculum

    Science.gov (United States)

    de Lill, Daniel T.; Carraher, Charles E., Jr.

    2017-01-01

    Inorganic polymers can be introduced in a variety of undergraduate courses to discuss concepts related to polymer chemistry. Inorganic polymers such as silicates and polysiloxanes are simple materials that can be incorporated into an introductory or descriptive inorganic course. Polymers based on inorganic carbon, including diamond and graphite,…

  15. Multifunctional nanoparticles: Analytical prospects

    International Nuclear Information System (INIS)

    Dios, Alejandro Simon de; Diaz-Garcia, Marta Elena

    2010-01-01

    Multifunctional nanoparticles are among the most exciting nanomaterials with promising applications in analytical chemistry. These applications include (bio)sensing, (bio)assays, catalysis and separations. Although most of these applications are based on the magnetic, optical and electrochemical properties of multifunctional nanoparticles, other aspects such as the synergistic effect of the functional groups and the amplification effect associated with the nanoscale dimension have also been observed. Considering not only the nature of the raw material but also the shape, there is a huge variety of nanoparticles. In this review only magnetic, quantum dots, gold nanoparticles, carbon and inorganic nanotubes as well as silica, titania and gadolinium oxide nanoparticles are addressed. This review presents a narrative summary on the use of multifuncional nanoparticles for analytical applications, along with a discussion on some critical challenges existing in the field and possible solutions that have been or are being developed to overcome these challenges.

  16. X-ray fluorescence in Member States (Spain): Main activities related to the use of XRF techniques at the Analytical and Environmental Chemistry Research Group of the University of Girona (UdG)

    International Nuclear Information System (INIS)

    Marguí, Eva; Hidalgo, Manuela

    2014-01-01

    The Analytical and Environmental Chemistry Group (QAA) is a consolidated research group of the Department of Chemistry of the University of Girona (North- East Spain). The main research topics of the group are related to the development and application of analytical methodologies for the determination of inorganic and organic species in different kind of environmental, clinical and industrial samples. From the beginning of the 2000’s, one of the research focuses of the group, is the use of X-ray fluorescence spectrometry (XRF) for the determination of trace amounts of metals and metalloids mostly in samples related to the environmental and industrial fields. For instance, in collaboration with the Institute of Earth Sciences “Jaume Almera” (ICTJA-CSIC, Spain), we have developed and successfully applied several analytical approaches based on the use of EDXRF (Energy dispersive XRF), WDXRF (Wavelength dispersive XRF) and PEDXRF (Polarised EDXRF) for the determination of metals at trace levels in complex liquid samples such as sea water or electroplating waters in vegetation samples collected around mining environments or in active pharmaceutical ingredients. At present, the evaluation of the analytical possibilities of TXRF (Total reflection XRF) in the chemical analysis field is also one of the research topics of QAA. In this sense, several contributions related to the use of this technique for element determination in liquid and solid samples have been developed. A summary of these contributions is summarized in the last section of this review

  17. Annual reports in inorganic and general syntheses 1972

    CERN Document Server

    Niedenzu, Kurt

    1973-01-01

    Annual Reports in Inorganic and General Syntheses-1972 presents an organized annual summary of synthetic developments in inorganic chemistry and its related areas. The book discusses alkali and alkaline earth elements, alloys, silver, gold, zinc, cadmium, mercury, boron, aluminum, gallium, indium, thallium, yttrium, scandium, lanthanides, actinides, titanium, zirconium, hafnium, Group V and VI transition elements, manganese, technetium, rhenium, iron, cobalt, nickel, ruthenium, osmium, rhodium, and iridium. The text also describes the chemistry of palladium, platinum, silicon, germanium, tin,

  18. Ultrasound exfoliation of inorganic analogues of graphene

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Henych, Jiří; Slušná, Michaela; Ecorchard, Petra

    2014-01-01

    Roč. 9, APR (2014), s. 1-14 ISSN 1556-276X R&D Projects: GA ČR(CZ) GA14-05146S Institutional support: RVO:61388980 Keywords : Ultrasound * Exfoliation * Graphene inorganic analogues Subject RIV: CA - Inorganic Chemistry Impact factor: 2.779, year: 2014

  19. Priority survey between indicators and analytic hierarchy process analysis for green chemistry technology assessment.

    Science.gov (United States)

    Kim, Sungjune; Hong, Seokpyo; Ahn, Kilsoo; Gong, Sungyong

    2015-01-01

    This study presents the indicators and proxy variables for the quantitative assessment of green chemistry technologies and evaluates the relative importance of each assessment element by consulting experts from the fields of ecology, chemistry, safety, and public health. The results collected were subjected to an analytic hierarchy process to obtain the weights of the indicators and the proxy variables. These weights may prove useful in avoiding having to resort to qualitative means in absence of weights between indicators when integrating the results of quantitative assessment by indicator. This study points to the limitations of current quantitative assessment techniques for green chemistry technologies and seeks to present the future direction for quantitative assessment of green chemistry technologies.

  20. General aspects of research in inorganic and solid-state recoil chemistry - a critical survey

    International Nuclear Information System (INIS)

    Mueller, H.

    1986-01-01

    Following a condensed review of the main features of hot-atom chemistry in inorganic solids a fictitious investigation is examined for some shortcomings which appear in the literature. Popper's basic concepts of scientific research are recommended to guide future work. Using Rossler's 'ligand abstraction model' as an example, it has been shown that (1) new correlations may be found between experimental parameters even if very good correlations already exist: (2) existing experimental facts may not be sufficient to falsify one of the correlations; and (3) new experiments can be suggested, the results of which may make one of the models more probable than the other or even falsify one of them. (author)

  1. Physical chemistry and the environment

    International Nuclear Information System (INIS)

    Dunning, T.H. Jr.; Garrett, B.C.; Kolb, C.E. Jr.; Shaw, R.W.; Choppin, G.R.; Wagner, A.F.

    1994-08-01

    From the ozone hole and the greenhouse effect to plastics recycling and hazardous waste disposal, society faces a number of issues, the solutions to which require an unprecedented understanding of the properties of molecules. We are coming to realize that the environment is a coupled set of chemical systems, its dynamics determining the welfare of the biosphere and of humans in particular. These chemical systems are governed by fundamental molecular interactions, and they present chemists with an unparalleled challenge. The application of current concepts of molecular behavior and of up-to-date experimental and computational techniques can provide us with insights into the environment that are needed to mitigate past damage, to anticipate the impact of current human activity, and to avoid future insults to the environment. Environmental chemistry encompasses a number of separate, yet interlocking, areas of research. In all of these areas progress is limited by an inadequate understanding of the underlying chemical processes involved. Participation of all chemical approaches -- experimental, theoretical and computational -- and of all disciplines of chemistry -- organic, inorganic, physical, analytical and biochemistry -- will be required to provide the necessary fundamental understanding. The Symposium on ''Physical Chemistry and the Environment'' was designed to bring the many exciting and challenging physical chemistry problems involved in environmental chemistry to the attention of a larger segment of the physical chemistry community

  2. Karlsruhe international conference on analytical chemistry in nuclear technology

    International Nuclear Information System (INIS)

    1985-01-01

    This volume presents 218 abstracts of contributions by researchers working in the analytical chemistry field of nuclear technology. The majority of the papers deal with analysis with respect to process control in fuel reprocessing plants, fission and corrosion product characterization throughout the fuel cycle as well as studies of the chemical composition of radioactive wastes. Great interest is taken in the development and optimization of methods and instrumentation especially for in-line process control. About 3/4 of the papers have been entered into the data base separately. (RB)

  3. XIX Mendeleev Congress on general and applied chemistry. Abstract book in 4 volumes. Volume 4. Chemistry aspects of modern energy and alternative energy resources. Chemistry of fossil and renewable hydrocarbon raw materials. Analytical chemistry: novel methods and devices for chemical research and analysis. Chemical education

    International Nuclear Information System (INIS)

    2011-01-01

    The abstracts of the XIX Mendeleev Congress on general and applied chemistry held 25-30 September 2011 in Volgograd are presented. The program includes the Congress plenary and section reports, poster presentations, symposia and round tables on key areas of chemical science and technology, and chemical education. The work of the Congress was held the following sections: 1. Fundamental problems of chemical sciences; 2. Chemistry and technology of materials, including nanomaterials; 3. Physicochemical basis of metallurgical processes; 4. Current issues of chemical production, technical risk assessment; 5. Chemical aspects of modern power and alternative energy sources; 6. Chemistry of fossil and renewable hydrocarbons; 7. Analytical chemistry: new methods and instruments for chemical research and analysis; 8. Chemical education. Volume 4 includes abstracts of oral and poster presentations and presentations of correspondent participants of the sections: Chemistry aspects of modern energy and alternative energy resources; Chemistry of fossil and renewable hydrocarbon raw materials; Analytical chemistry: novel methods and devices for chemical research and analysis; Chemical education, and author index [ru

  4. The Use and Abuse of Limits of Detection in Environmental Analytical Chemistry

    Directory of Open Access Journals (Sweden)

    Richard J. C. Brown

    2008-01-01

    Full Text Available The limit of detection (LoD serves as an important method performance measure that is useful for the comparison of measurement techniques and the assessment of likely signal to noise performance, especially in environmental analytical chemistry. However, the LoD is only truly related to the precision characteristics of the analytical instrument employed for the analysis and the content of analyte in the blank sample. This article discusses how other criteria, such as sampling volume, can serve to distort the quoted LoD artificially and make comparison between various analytical methods inequitable. In order to compare LoDs between methods properly, it is necessary to state clearly all of the input parameters relating to the measurements that have been used in the calculation of the LoD. Additionally, the article discusses that the use of LoDs in contexts other than the comparison of the attributes of analytical methods, in particular when reporting analytical results, may be confusing, less informative than quoting the actual result with an accompanying statement of uncertainty, and may act to bias descriptive statistics.

  5. Using Mathematical Software to Introduce Fourier Transforms in Physical Chemistry to Develop Improved Understanding of Their Applications in Analytical Chemistry

    Science.gov (United States)

    Miller, Tierney C.; Richardson, John N.; Kegerreis, Jeb S.

    2016-01-01

    This manuscript presents an exercise that utilizes mathematical software to explore Fourier transforms in the context of model quantum mechanical systems, thus providing a deeper mathematical understanding of relevant information often introduced and treated as a "black-box" in analytical chemistry courses. The exercise is given to…

  6. Laser ablation in analytical chemistry - A review

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S.

    2001-10-10

    Laser ablation is becoming a dominant technology for direct solid sampling in analytical chemistry. Laser ablation refers to the process in which an intense burst of energy delivered by a short laser pulse is used to sample (remove a portion of) a material. The advantages of laser ablation chemical analysis include direct characterization of solids, no chemical procedures for dissolution, reduced risk of contamination or sample loss, analysis of very small samples not separable for solution analysis, and determination of spatial distributions of elemental composition. This review describes recent research to understand and utilize laser ablation for direct solid sampling, with emphasis on sample introduction to an inductively coupled plasma (ICP). Current research related to contemporary experimental systems, calibration and optimization, and fractionation is discussed, with a summary of applications in several areas.

  7. Role of analytical chemistry in the development of nuclear fuels

    International Nuclear Information System (INIS)

    Ramakumar, K.L.

    2012-01-01

    Analytical chemistry is indispensable and plays a pivotal role in the entire gamut of nuclear fuel cycle activities starting from ore refining, conversion, nuclear fuel fabrication, reactor operation, nuclear fuel reprocessing to waste management. As the fuel is the most critical component of the reactor where the fissions take place to produce power, extreme care should be taken to qualify the fuel. For example, in nuclear fuel fabrication, depending upon the reactor system, selection of nuclear fuel has to be made. The fuel for thermal reactors is normally uranium oxide either natural or slightly enriched. For research reactors it can be uranium metal or alloy. The fuel for FBR can be metal, alloy, oxide, carbide or nitride. India is planning an advanced heavy water reactor for utilization of vast resources of thorium in the country. Also research is going on to identify suitable metallic/alloy fuels for our future fast reactors and possible use in fast breeder test reactor. Other advanced fuel materials are also being investigated for thermal reactors for realizing increased performance levels. For example, advanced fuels made from UO 2 doped with Cr 2 O 3 and Al 2 O 3 are being suggested in LWR applications. These have shown to facilitate pellet densification during sintering and enlarge the pellet grain size. The chemistry of these materials has to be understood during the preparation to the stringent specification. A number of analytical parameters need to be determined as a part of chemical quality control of nuclear materials. Myriad of analytical techniques starting from the classical to sophisticated instrumentation techniques are available for this purpose. Insatiable urge of the analytical chemist enables to devise and adopt new superior methodologies in terms of reduction in the time of analysis, improvement in the measurement precision and accuracy, simplicity of the technique itself etc. Chemical quality control provides a means to ensure that the

  8. Recent developments in computer vision-based analytical chemistry: A tutorial review.

    Science.gov (United States)

    Capitán-Vallvey, Luis Fermín; López-Ruiz, Nuria; Martínez-Olmos, Antonio; Erenas, Miguel M; Palma, Alberto J

    2015-10-29

    Chemical analysis based on colour changes recorded with imaging devices is gaining increasing interest. This is due to its several significant advantages, such as simplicity of use, and the fact that it is easily combinable with portable and widely distributed imaging devices, resulting in friendly analytical procedures in many areas that demand out-of-lab applications for in situ and real-time monitoring. This tutorial review covers computer vision-based analytical (CVAC) procedures and systems from 2005 to 2015, a period of time when 87.5% of the papers on this topic were published. The background regarding colour spaces and recent analytical system architectures of interest in analytical chemistry is presented in the form of a tutorial. Moreover, issues regarding images, such as the influence of illuminants, and the most relevant techniques for processing and analysing digital images are addressed. Some of the most relevant applications are then detailed, highlighting their main characteristics. Finally, our opinion about future perspectives is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Fitting It All In: Adapting a Green Chemistry Extraction Experiment for Inclusion in an Undergraduate Analytical Laboratory

    Science.gov (United States)

    Buckley, Heather L.; Beck, Annelise R.; Mulvihill, Martin J.; Douskey, Michelle C.

    2013-01-01

    Several principles of green chemistry are introduced through this experiment designed for use in the undergraduate analytical chemistry laboratory. An established experiment of liquid CO2 extraction of D-limonene has been adapted to include a quantitative analysis by gas chromatography. This facilitates drop-in incorporation of an exciting…

  10. Reference Intervals of Hematology and Clinical Chemistry Analytes for 1-Year-Old Korean Children.

    Science.gov (United States)

    Lee, Hye Ryun; Shin, Sue; Yoon, Jong Hyun; Roh, Eun Youn; Chang, Ju Young

    2016-09-01

    Reference intervals need to be established according to age. We established reference intervals of hematology and chemistry from community-based healthy 1-yr-old children and analyzed their iron status according to the feeding methods during the first six months after birth. A total of 887 children who received a medical check-up between 2010 and 2014 at Boramae Hospital (Seoul, Korea) were enrolled. A total of 534 children (247 boys and 287 girls) were enrolled as reference individuals after the exclusion of data obtained from children with suspected iron deficiency. Hematology and clinical chemistry analytes were measured, and the reference value of each analyte was estimated by using parametric (mean±2 SD) or nonparametric methods (2.5-97.5th percentile). Iron, total iron-binding capacity, and ferritin were measured, and transferrin saturation was calculated. As there were no differences in the mean values between boys and girls, we established the reference intervals for 1-yr-old children regardless of sex. The analysis of serum iron status according to feeding methods during the first six months revealed higher iron, ferritin, and transferrin saturation levels in children exclusively or mainly fed formula than in children exclusively or mainly fed breast milk. We established reference intervals of hematology and clinical chemistry analytes from community-based healthy children at one year of age. These reference intervals will be useful for interpreting results of medical check-ups at one year of age.

  11. Advanced inorganic fluorides. Proceedings of the Second International Siberian workshop INTERSIBFLUORINE-2006

    International Nuclear Information System (INIS)

    Volkov, V.V.; Mit'kin, V.N.; Bujnovskij, A.S.; Sofronov, V.L.

    2006-01-01

    Proceedings of the Second International Siberian workshop ISIF-2006 on modern inorganic fluorides contain full author's texts of 82 plenary reports and posters on the main trends in chemistry and technology of inorganic fluorides and their various applications. The following new trends are reflected in the ISIF-2006 Proceedings versus the ISIF-2003 ones: production and use of of nano-sized systems and materials based on fluoride phases and fluorinating systems; chemistry of fluorofullerenes, fluorides of graphite and carbon materials; development of research and technical principles of economically viable process of depleted uranium hexafluoride conversion; vitrifying systems based on metal fluorides possessing valuable functional optical properties; mechanochemical processes and phenomena in chemistry of inorganic fluorides [ru

  12. Molecularly imprinted polymers--potential and challenges in analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mahony, J.O. [Dublin City University, School of Chemical Sciences, Glasnevin, Dublin 9 (Ireland); Nolan, K. [Dublin City University, School of Chemical Sciences, Glasnevin, Dublin 9 (Ireland); Smyth, M.R. [Dublin City University, School of Chemical Sciences, Glasnevin, Dublin 9 (Ireland); Mizaikoff, B. [Georgia Institute of Technology, School of Chemistry and Biochemistry, 770 State Street, Boggs Building, Atlanta, GA 30332-0400 (United States)]. E-mail: boris.mizaikoff@chemistry.gatech.edu

    2005-04-04

    Among the variety of biomimetic recognition schemes utilizing supramolecular approaches molecularly imprinted polymers (MIPs) have proven their potential as synthetic receptors in numerous applications ranging from liquid chromatography to assays and sensor technology. Their inherent advantages compared to biochemical/biological recognition systems include robustness, storage endurance and lower costs. However, until recently only few contributions throughout the relevant literature describe quantitative analytical applications of MIPs for practically relevant analyte molecules and real-world samples. Increased motivation to thoroughly evaluate the true potential of MIP technology is clearly attributed to the demands of modern analytical chemistry, which include enhanced sensitivity, selectivity and applicability of molecular recognition building blocks at decreasing costs. In particular, the areas of environmental monitoring, food and beverage analysis and industrial process surveillance require analytical tools capable of discriminating chemicals with high molecular specificity considering increasing numbers of complex environmental contaminants, pollution of raw products and rigorous quality control requested by legislation and consumer protection. Furthermore, efficient product improvement and development of new products requires precise qualitative and quantitative analytical methods. Finally, environmental, food and process safety control issues favor the application of on-line in situ analytical methods with high molecular selectivity. While biorecognition schemes frequently suffer from degrading bioactivity and long-term stability when applied in real-world sample environments, MIPs serving as synthetic antibodies have successfully been applied as stationary phase separation matrix (e.g. HPLC and SPE), recognition component in bioassays (e.g. ELISA) or biomimetic recognition layer in chemical sensor systems. Examples such as MIP-based selective analysis of

  13. Molecularly imprinted polymers--potential and challenges in analytical chemistry

    International Nuclear Information System (INIS)

    Mahony, J.O.; Nolan, K.; Smyth, M.R.; Mizaikoff, B.

    2005-01-01

    Among the variety of biomimetic recognition schemes utilizing supramolecular approaches molecularly imprinted polymers (MIPs) have proven their potential as synthetic receptors in numerous applications ranging from liquid chromatography to assays and sensor technology. Their inherent advantages compared to biochemical/biological recognition systems include robustness, storage endurance and lower costs. However, until recently only few contributions throughout the relevant literature describe quantitative analytical applications of MIPs for practically relevant analyte molecules and real-world samples. Increased motivation to thoroughly evaluate the true potential of MIP technology is clearly attributed to the demands of modern analytical chemistry, which include enhanced sensitivity, selectivity and applicability of molecular recognition building blocks at decreasing costs. In particular, the areas of environmental monitoring, food and beverage analysis and industrial process surveillance require analytical tools capable of discriminating chemicals with high molecular specificity considering increasing numbers of complex environmental contaminants, pollution of raw products and rigorous quality control requested by legislation and consumer protection. Furthermore, efficient product improvement and development of new products requires precise qualitative and quantitative analytical methods. Finally, environmental, food and process safety control issues favor the application of on-line in situ analytical methods with high molecular selectivity. While biorecognition schemes frequently suffer from degrading bioactivity and long-term stability when applied in real-world sample environments, MIPs serving as synthetic antibodies have successfully been applied as stationary phase separation matrix (e.g. HPLC and SPE), recognition component in bioassays (e.g. ELISA) or biomimetic recognition layer in chemical sensor systems. Examples such as MIP-based selective analysis of

  14. Engineered inorganic core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mélinon, Patrice, E-mail: patrice.melinon@univ-lyon1.fr [Institut Lumière matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Léon Brillouin, 43 Boulevard du 11 Novembre 1918, F 69622 Villeurbanne (France); Begin-Colin, Sylvie [IPCMS et OMNT, 23 rue du Loess BP 43, 67034 STRASBOURG Cedex 2 (France); Duvail, Jean Luc [IMN UMR 6502 et OMNT Campus Sciences : 2 rue de la Houssinire, BP32229, 44322 Nantes Cedex3 (France); Gauffre, Fabienne [SPM et OMNT : Institut des sciences chimiques de Rennes - UMR 6226, 263 Avenue du General Leclerc, CS 74205, 35042 RENNES Cedex (France); Boime, Nathalie Herlin [IRAMIS-NIMBE, Laboratoire Francis Perrin (CEA CNRS URA 2453) et OMNT, Bat 522, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Ledoux, Gilles [Institut Lumière Matière Université Claude Bernard Lyon 1 et CNRS et OMNT, Domaine Scientifique de la Doua, Bâtiment Alfred Kastler 43 Boulevard du 11 Novembre 1918 F 69622 Villeurbanne (France); Plain, Jérôme [Universit de technologie de Troyes LNIO-ICD, CNRS et OMNT 12 rue Marie Curie - CS 42060 - 10004 Troyes cedex (France); Reiss, Peter [CEA Grenoble, INAC-SPrAM, UMR 5819 CEA-CNRS-UJF et OMNT, Grenoble cedex 9 (France); Silly, Fabien [CEA, IRAMIS, SPEC, TITANS, CNRS 2464 et OMNT, F-91191 Gif sur Yvette (France); Warot-Fonrose, Bénédicte [CEMES-CNRS, Université de Toulouse et OMNT, 29 rue Jeanne Marvig F 31055 Toulouse (France)

    2014-10-20

    It has been for a long time recognized that nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic structures. At first, size effects occurring in single elements have been studied. More recently, progress in chemical and physical synthesis routes permitted the preparation of more complex structures. Such structures take advantages of new adjustable parameters including stoichiometry, chemical ordering, shape and segregation opening new fields with tailored materials for biology, mechanics, optics magnetism, chemistry catalysis, solar cells and microelectronics. Among them, core/shell structures are a particular class of nanoparticles made with an inorganic core and one or several inorganic shell layer(s). In earlier work, the shell was merely used as a protective coating for the core. More recently, it has been shown that it is possible to tune the physical properties in a larger range than that of each material taken separately. The goal of the present review is to discuss the basic properties of the different types of core/shell nanoparticles including a large variety of heterostructures. We restrict ourselves on all inorganic (on inorganic/inorganic) core/shell structures. In the light of recent developments, the applications of inorganic core/shell particles are found in many fields including biology, chemistry, physics and engineering. In addition to a representative overview of the properties, general concepts based on solid state physics are considered for material selection and for identifying criteria linking the core/shell structure and its resulting properties. Chemical and physical routes for the synthesis and specific methods for the study of core/shell nanoparticle are briefly discussed.

  15. Analytical Chemistry Division. Annual progress report for period ending December 31, 1981

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1982-04-01

    The functions of the Analytical Chemistry Division fall into three general categories: (1) analytical research, development, and implementation; (2) programmatic research, development and utilization; (3) technical support. The Division is organized into five major sections each of which may carry out any type of work falling into the thre categories mentioned above. Chapters 1 through 5 of this report highlight progress within the five sections which are: analytical methodology; mass and emission spectrometry; analytical technical support; bio/organic analysis section; and nuclear and radiochemical analysis. A short summary introduces each chapter to indicate work scope. Information about quality assurance and safety programs is presented in Chapter 6, along with a tabulation of analyses rendered. Chapter 7 covers supplementary activities. Chapter 8 is on presentation of research results (publications, articles reviewed or referred for periodicals). Approximately 56 articles, 31 proceedings publications and 33 reports have been published, and 119 oral presentations given during this reporting period

  16. Analytical Chemistry Division. Annual progress report for period ending December 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, W. S. [ed.

    1982-04-01

    The functions of the Analytical Chemistry Division fall into three general categories: (1) analytical research, development, and implementation; (2) programmatic research, development and utilization; (3) technical support. The Division is organized into five major sections each of which may carry out any type of work falling into the thre categories mentioned above. Chapters 1 through 5 of this report highlight progress within the five sections which are: analytical methodology; mass and emission spectrometry; analytical technical support; bio/organic analysis section; and nuclear and radiochemical analysis. A short summary introduces each chapter to indicate work scope. Information about quality assurance and safety programs is presented in Chapter 6, along with a tabulation of analyses rendered. Chapter 7 covers supplementary activities. Chapter 8 is on presentation of research results (publications, articles reviewed or referred for periodicals). Approximately 56 articles, 31 proceedings publications and 33 reports have been published, and 119 oral presentations given during this reporting period.

  17. Innovative methods for data analysis in analytical chemistry using Bayesian statistics and machine learning

    NARCIS (Netherlands)

    Woldegebriel, M.T.

    2017-01-01

    In analytical chemistry, rapid advancement in instrumentation, especially in high resolution mass-spectrometry is making a significant contribution for further developments of the field. As such, in separation science, nowadays, several hyphenated techniques have proven to be the state-of-the-art

  18. Alkaline-earth metal phenylphosphonates and their intercalation chemistry

    Czech Academy of Sciences Publication Activity Database

    Melánová, Klára; Beneš, L.; Svoboda, J.; Zima, Vítězslav; Pospíšil, M.; Kovář, P.

    2018-01-01

    Roč. 47, č. 9 (2018), s. 2867-2880 ISSN 1477-9226 R&D Projects: GA ČR(CZ) GA17-10639S Institutional support: RVO:61389013 Keywords : intercalation * layered compounds * alkaline-earth metal phenylphosphonates Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 4.029, year: 2016

  19. Magnetic relaxation in analytical, coordination and bioinorganic chemistry

    International Nuclear Information System (INIS)

    Mikhajlov, O.

    1982-01-01

    Nuclear magnetic relaxation is a special type of nuclear magnetic resonance in which the rate is measured of energy transfer between the excited nuclei and their molecular medium (spin-lattice relaxation) or the whole nuclear spin system (spin-spin relaxation). Nuclear magnetic relaxation relates to nuclei with a spin of 1/2, primarily H 1 1 , and is mainly measured in water solutions. It is suitable for (1) analytical chemistry because the relaxation time rapidly reduces in the presence of paramagnetic ions, (2) the study of complex compounds, (3) the study of biochemical reactions in the presence of different metal ions. It is also suitable for testing the composition of a flowing liquid. Its disadvantage is that it requires complex and expensive equipment. (Ha)

  20. Redox chemistry and natural organic matter (NOM): Geochemists' dream, analytical chemists' nightmare

    Science.gov (United States)

    Macalady, Donald L.; Walton-Day, Katherine

    2011-01-01

    Natural organic matter (NOM) is an inherently complex mixture of polyfunctional organic molecules. Because of their universality and chemical reversibility, oxidation/reductions (redox) reactions of NOM have an especially interesting and important role in geochemistry. Variabilities in NOM composition and chemistry make studies of its redox chemistry particularly challenging, and details of NOM-mediated redox reactions are only partially understood. This is in large part due to the analytical difficulties associated with NOM characterization and the wide range of reagents and experimental systems used to study NOM redox reactions. This chapter provides a summary of the ongoing efforts to provide a coherent comprehension of aqueous redox chemistry involving NOM and of techniques for chemical characterization of NOM. It also describes some attempts to confirm the roles of different structural moieties in redox reactions. In addition, we discuss some of the operational parameters used to describe NOM redox capacities and redox states, and describe nomenclature of NOM redox chemistry. Several relatively facile experimental methods applicable to predictions of the NOM redox activity and redox states of NOM samples are discussed, with special attention to the proposed use of fluorescence spectroscopy to predict relevant redox characteristics of NOM samples.

  1. Twenty-ninth ORNL/DOE conference on analytical chemistry in energy technology. Abstracts of papers

    International Nuclear Information System (INIS)

    1986-01-01

    This booklet contains separate abstracts of 55 individual papers presented at this conference. Different sections in the book are titled as follows: laser techniques; resonance ionization spectroscopy; laser applications; new developments in mass spectrometry; analytical chemistry of hazardous waste; and automation and data management

  2. Biomedical inorganic polymers bioactivity and applications of natural and synthetic polymeric inorganic molecules

    CERN Document Server

    Müller, Werner E G; Schröder, Heinz C; Schroder, Heinz C

    2014-01-01

    In recent years, inorganic polymers have attracted much attention in nano-biomedicine, in particular in the area of regenerative medicine and drug delivery. This growing interest in inorganic polymers has been further accelerated by the development of new synthetic and analytical methods in the field of nanotechnology and nanochemistry. Examples for biomedical inorganic polymers that had been proven to exhibit biomedical effects and/or have been applied in preclinical or clinical trials are polysilicate / silica glass (such as naturally formed "biosilica" and synthetic "bioglass") and inorganic polyphosphate. Some members of the mentioned biomedical inorganic polymers have already been applied e.g. as "bioglass" for bone repair and bone tissue engineering, or they are used in food processing and in dental care (inorganic polyphosphates). However, there are a number of further biological and medicinal properties of these polymers, which have been elucidated in the last few years but not yet been applied for tr...

  3. Radwaste issues belong in the inorganic classroom

    International Nuclear Information System (INIS)

    Williams, D.H.

    1991-01-01

    The safe isolation of high level radioactive wastes is a matter of significant importance. This material is derived primarily from spent nuclear fuel and defense weapon production. Every element on the periodic chart is represented. The majority are metallic elements. Over the thousands of years that they are to be isolated the primary chemistry will be oxidation. The mobility and fate of particular inner and outer transition element ions become very important. For that, one must understand their hydrolytic nature, their complexing tendencies and the solubilities of various compounds. This topic could easily serve as a centerpiece for an inorganic chemistry course. At the very least, it demands the attention of every teacher of inorganic chemistry and consideration by those whose research is directed to tangible problems. The discussion includes notes on the abundance and lifetimes of particular radioisotopes. The positive student responses to this approach are also shared

  4. Critical review of the chemistry and thermodynamics of technetium and some of its inorganic compounds and aqueous species

    International Nuclear Information System (INIS)

    Rard, J.A.

    1983-01-01

    Chemical and thermodynamic data for Technetium (Tc) and some of its inorganic compounds and aqueous species are reviewed here. Major emphasis is given to systems with potential geochemical applications, especially the geochemistry of radioactive waste disposal. Compounds considered include oxides, hydroxides, hydrates oxides, halides, oxyhalides, double halides, and sulfides. The aqueous species considered include those in both noncomplexing media (pertechnetates, technetates, aquo-ions, and hydrolyzed cations) and complexing media (halides, sulfates, and phosphates). Thermodynamic values are recommended for specific compounds and aqueous ions when reliable experimental data are available. Where thermodynamic data are inadequate or unavailable, the chemistry is still discussed to provide information about what needs to be measured, and which chemistry needs to be clarified. A major application of these thermodynamic data will be for chemical equilibrium modeling and for construction of potential-pH diagrams for aqueous solutions. Unfortunately, the present lack of data precludes such calculations for complexing aqueous media. The situation is much better for noncomplexing aqueous media, but the chemistry and thermodynamics of cationic Tc(V) species and hydrolyzed Tc(III) species are poorly understood. 240 references, 6 tables

  5. Annual report 1985 Chemistry Department

    International Nuclear Information System (INIS)

    1987-01-01

    This annual report describes the activities carried out in 1985 by the Chemistry Department in the following fields: Chemistry, Inorganic Chemistry, Physicochemistry (Interphases, Surfaces), General Chemical Analysis, Active Materials Analysis, X Ray Fluorescence Analysis, Mass Spectroscopy (Isotopic Analysis, Instrumentation) and Optical Spectroscopy. A list of publications is enclosed. (M.E.L.) [es

  6. Analytical Chemistry: A retrospective view on some current trends.

    Science.gov (United States)

    Niessner, Reinhard

    2018-04-01

    In a retrospective view some current trends in Analytical Chemistry are outlined and connected to work published more than a hundred years ago in the same field. For example, gravimetric microanalysis after specific precipitation, once the sole basis for chemical analysis, has been transformed into a mass-sensitive transducer in combination with compound-specific receptors. Molecular spectroscopy, still practising the classical absorption/emission techniques for detecting elements or molecules experiences a change to Raman spectroscopy, is now allowing analysis of a multitude of additional features. Chemical sensors are now used to perform a vast number of analytical measurements. Especially paper-based devices (dipsticks, microfluidic pads) celebrate a revival as they can potentially revolutionize medicine in the developing world. Industry 4.0 will lead to a further increase of sensor applications. Preceding separation and enrichment of analytes from complicated matrices remains the backbone for a successful analysis, despite increasing attempts to avoid clean-up. Continuous separation techniques will become a key element for 24/7 production of goods with certified quality. Attempts to get instantaneous and specific chemical information by optical or electrical transduction will need highly selective receptors in large quantities. Further understanding of ligand - receptor complex structures is the key for successful generation of artificial bio-inspired receptors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Abstracts of the 26. Brazilian Congress on Chemistry

    International Nuclear Information System (INIS)

    1985-01-01

    It is presented the short communications of papers presented at the 26. Brazilian Congress on Chemistry, of nuclear interest. The papers are classified in four areas: isotope chemistry, organic chemistry, inorganic chemistry and physico-chemical. (E.G.) [pt

  8. Island Explorations: Discovering Effects of Environmental Research-Based Lab Activities on Analytical Chemistry Students

    Science.gov (United States)

    Tomasik, Janice Hall; LeCaptain, Dale; Murphy, Sarah; Martin, Mary; Knight, Rachel M.; Harke, Maureen A.; Burke, Ryan; Beck, Kara; Acevedo-Polakovich, I. David

    2014-01-01

    Motivating students in analytical chemistry can be challenging, in part because of the complexity and breadth of topics involved. Some methods that help encourage students and convey real-world relevancy of the material include incorporating environmental issues, research-based lab experiments, and service learning projects. In this paper, we…

  9. Online Video Tutorials Increase Learning of Difficult Concepts in an Undergraduate Analytical Chemistry Course

    Science.gov (United States)

    He, Yi; Swenson, Sandra; Lents, Nathan

    2012-01-01

    Educational technology has enhanced, even revolutionized, pedagogy in many areas of higher education. This study examines the incorporation of video tutorials as a supplement to learning in an undergraduate analytical chemistry course. The concepts and problems in which students faced difficulty were first identified by assessing students'…

  10. 8. Seminar of the IMP-IIE-ININ on technological specialties. Topic 9: Analytical Chemistry

    International Nuclear Information System (INIS)

    1996-01-01

    The document includes four papers considered within the INIS subject scope, which were presented at the 8th Seminar of the IMP-IIE-ININ on technological specialities (Section Analytical Chemistry), held on 26 June 1996 in Cuernavaca (Mexico). A separate abstract and indexing were provided for each paper

  11. Gothic green glazed tile from Malbork Castle: Multi-analytical study

    Czech Academy of Sciences Publication Activity Database

    Svorová Pawełkowicz, S.; Rohanová, D.; Svora, Petr

    2017-01-01

    Roč. 5, č. 1 (2017), č. článku 27. ISSN 2050-7445 Institutional support: RVO:61388980 Keywords : Antimony-doped tin oxide (ATO) * Green glazed tile * Malbork Castle * Medieval technology * Opacifiers * Silica-lead glaze Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry

  12. Identification of Water Diffusivity of Inorganic Porous Materials Using Evolutionary Algorithms

    Czech Academy of Sciences Publication Activity Database

    Kočí, J.; Maděra, J.; Jerman, M.; Keppert, M.; Svora, Petr; Černý, R.

    2016-01-01

    Roč. 113, č. 1 (2016), s. 51-66 ISSN 0169-3913 Institutional support: RVO:61388980 Keywords : Evolutionary algorithms * Water transport * Inorganic porous materials * Inverse analysis Subject RIV: CA - Inorganic Chemistry Impact factor: 2.205, year: 2016

  13. Electrochemical determination of inorganic mercury and arsenic--A review.

    Science.gov (United States)

    Zaib, Maria; Athar, Muhammad Makshoof; Saeed, Asma; Farooq, Umar

    2015-12-15

    Inorganic mercury and arsenic encompasses a term which includes As(III), As(V) and Hg(II) species. These metal ions have been extensively studied due to their toxicity related issues. Different analytical methods are used to monitor inorganic mercury and arsenic in a variety of samples at trace level. The present study reviews various analytical techniques available for detection of inorganic mercury and arsenic with particular emphasis on electrochemical methods especially stripping voltammetry. A detailed critical evaluation of methods, advantages of electrochemical methods over other analytical methods, and various electrode materials available for mercury and arsenic analysis is presented in this review study. Modified carbon paste electrode provides better determination due to better deposition with linear and improved response under studied set of conditions. Biological materials may be the potent and economical alternative as compared to macro-electrodes and chemically modified carbon paste electrodes in stripping analysis of inorganic mercury and arsenic. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Summary report for April, May, and June 1950. Chemistry Divison

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, D. W. [ed.

    1950-07-27

    A summary of activities for the Chemistry Division is reported for April-June 1950. Areas reporting activity include: Nuclear and Radiation Chemistry, Physical and Inorganic Chemistry, and Process Chemistry.

  15. 2013 Gordon Research Conference, Inorganic reaction mechanisms, Galveston, TX, March 3-8 2013

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Omar, Mahdi M. [Purdue Univ., West Lafayette, IN (United States)

    2012-12-08

    The 2013 Gordon Conference on Inorganic Reaction Mechanisms will present cutting-edge research on the molecular aspects of inorganic reactions involving elements from throughout the periodic table and state-of-the art techniques that are used in the elucidation of reaction mechanisms. The Conference will feature a wide range of topics, such as homogeneous and heterogeneous catalysis, metallobiochemistry, electron-transfer in energy reactions, polymerization, nitrogen fixation, green chemistry, oxidation, solar conversion, alkane functionalization, organotransition metal chemistry, and computational chemistry. The talks will cover themes of current interest including energy, materials, and bioinorganic chemistry. Sections cover: Electron-Transfer in Energy Reactions; Catalytic Polymerization and Oxidation Chemistry; Kinetics and Spectroscopy of Heterogeneous Catalysts; Metal-Organic Chemistry and its Application in Synthesis; Green Energy Conversion;Organometallic Chemistry and Activation of Small Molecules; Advances in Kinetics Modeling and Green Chemistry; Metals in Biology and Disease; Frontiers in Catalytic Bond Activation and Cleavage.

  16. Development of collaborative-creative learning model using virtual laboratory media for instrumental analytical chemistry lectures

    Science.gov (United States)

    Zurweni, Wibawa, Basuki; Erwin, Tuti Nurian

    2017-08-01

    The framework for teaching and learning in the 21st century was prepared with 4Cs criteria. Learning providing opportunity for the development of students' optimal creative skills is by implementing collaborative learning. Learners are challenged to be able to compete, work independently to bring either individual or group excellence and master the learning material. Virtual laboratory is used for the media of Instrumental Analytical Chemistry (Vis, UV-Vis-AAS etc) lectures through simulations computer application and used as a substitution for the laboratory if the equipment and instruments are not available. This research aims to design and develop collaborative-creative learning model using virtual laboratory media for Instrumental Analytical Chemistry lectures, to know the effectiveness of this design model adapting the Dick & Carey's model and Hannafin & Peck's model. The development steps of this model are: needs analyze, design collaborative-creative learning, virtual laboratory media using macromedia flash, formative evaluation and test of learning model effectiveness. While, the development stages of collaborative-creative learning model are: apperception, exploration, collaboration, creation, evaluation, feedback. Development of collaborative-creative learning model using virtual laboratory media can be used to improve the quality learning in the classroom, overcome the limitation of lab instruments for the real instrumental analysis. Formative test results show that the Collaborative-Creative Learning Model developed meets the requirements. The effectiveness test of students' pretest and posttest proves significant at 95% confidence level, t-test higher than t-table. It can be concluded that this learning model is effective to use for Instrumental Analytical Chemistry lectures.

  17. Current organic chemistry

    National Research Council Canada - National Science Library

    1997-01-01

    Provides in depth reviews on current progress in the fields of asymmetric synthesis, organometallic chemistry, bioorganic chemistry, heterocyclic chemistry, natural product chemistry, and analytical...

  18. Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation.

    Science.gov (United States)

    Gu, Zhi-Yuan; Yang, Cheng-Xiong; Chang, Na; Yan, Xiu-Ping

    2012-05-15

    In modern analytical chemistry researchers pursue novel materials to meet analytical challenges such as improvements in sensitivity, selectivity, and detection limit. Metal-organic frameworks (MOFs) are an emerging class of microporous materials, and their unusual properties such as high surface area, good thermal stability, uniform structured nanoscale cavities, and the availability of in-pore functionality and outer-surface modification are attractive for diverse analytical applications. This Account summarizes our research on the analytical applications of MOFs ranging from sampling to chromatographic separation. MOFs have been either directly used or engineered to meet the demands of various analytical applications. Bulk MOFs with microsized crystals are convenient sorbents for direct application to in-field sampling and solid-phase extraction. Quartz tubes packed with MOF-5 have shown excellent stability, adsorption efficiency, and reproducibility for in-field sampling and trapping of atmospheric formaldehyde. The 2D copper(II) isonicotinate packed microcolumn has demonstrated large enhancement factors and good shape- and size-selectivity when applied to on-line solid-phase extraction of polycyclic aromatic hydrocarbons in water samples. We have explored the molecular sieving effect of MOFs for the efficient enrichment of peptides with simultaneous exclusion of proteins from biological fluids. These results show promise for the future of MOFs in peptidomics research. Moreover, nanosized MOFs and engineered thin films of MOFs are promising materials as novel coatings for solid-phase microextraction. We have developed an in situ hydrothermal growth approach to fabricate thin films of MOF-199 on etched stainless steel wire for solid-phase microextraction of volatile benzene homologues with large enhancement factors and wide linearity. Their high thermal stability and easy-to-engineer nanocrystals make MOFs attractive as new stationary phases to fabricate MOF

  19. Foreword of the Fifth Symposium on Nuclear Analytical Chemistry (NAC-V)

    International Nuclear Information System (INIS)

    Acharya, R.; Goswami, A.; Reddy, A.V.R.

    2014-01-01

    The Fifth Symposium on Nuclear Analytical Chemistry (NAC-V) was organized at BARC, Mumbai during January 20-24, 2014 with more than 300 participants. It was sponsored by the Board of Research in Nuclear Sciences, Department of Atomic Energy (DAE), India and organized in cooperation with the IAEA and coorganized by the IANCAS. A total of 240 contributed abstracts along with 27 invited talks and 10 invited short talks were presented in 15 technical sessions. Selected 54 full papers of NAC-V have been accepted after review for publication in special issue of JRNC. (author)

  20. Does the determination of inorganic arsenic in rice depend on the method?

    DEFF Research Database (Denmark)

    de la Calle, Maria Beatriz; Emteborg, Håkan; Linsinger, Thomas P.J.

    2011-01-01

    , on the determination of total and inorganic arsenic (As) in rice. The main aim of this PT was to judge the state of the art of analytical capability for the determination of total and inorganic As in rice. For this reason, participation in this exercise was open to laboratories from all over the world. Some 98...... laboratories reported results for total As and 32 for inorganic As. The main conclusions of IMEP-107 were that the concentration of inorganic As determined in rice does not depend on the analytical method applied and that introduction of a maximum level for inorganic As in rice should not be postponed because...

  1. Voltammetric methods for determination and speciation of inorganic arsenic in the environment-A review

    Energy Technology Data Exchange (ETDEWEB)

    Mays, Douglas E. [Centre for Clean Water and Sustainable Technologies, Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 20120 (United States); Hussam, Abul, E-mail: ahussam@gmu.edu [Centre for Clean Water and Sustainable Technologies, Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 20120 (United States)

    2009-07-30

    The measurement of inorganic arsenic in the environment has received considerable attention over the past 40+ years due to its toxicity and prevalence in drinking water. This paper provides an overview of voltammetric techniques used since 2001. More than fifty papers from refereed analytical chemistry journals on the speciation and measurement of inorganic arsenic (As(III) and As(V)) in practical and environmental samples are included. The present review shows that stripping voltammetry is a sensitive and inexpensive technique. The new approaches include development of novel measurement protocols through media variation, development and use of new boron doped diamond electrodes modified with metals, nano Au-modified electrodes on carbon or carbon nano-tubes, novel rotating disc and vibrating electrodes to enhance mass transfer, and modified Hg(l) and thin film Bi on carbon for cathodic stripping voltammetry are discussed. Although, majority of the papers were of exploratory in nature, the trend towards developing a commercial standalone instrument for field use is still in progress.

  2. Heavy element stable isotope ratios. Analytical approaches and applications

    International Nuclear Information System (INIS)

    Tanimizu, Masaharu; Sohrin, Yoshiki; Hirata, Takafumi

    2013-01-01

    Continuous developments in inorganic mass spectrometry techniques, including a combination of an inductively coupled plasma ion source and a magnetic sector-based mass spectrometer equipped with a multiple-collector array, have revolutionized the precision of isotope ratio measurements, and applications of inorganic mass spectrometry for biochemistry, geochemistry, and marine chemistry are beginning to appear on the horizon. Series of pioneering studies have revealed that natural stable isotope fractionations of many elements heavier than S (e.g., Fe, Cu, Zn, Sr, Ce, Nd, Mo, Cd, W, Tl, and U) are common on Earth, and it had been widely recognized that most physicochemical reactions or biochemical processes induce mass-dependent isotope fractionation. The variations in isotope ratios of the heavy elements can provide new insights into past and present biochemical and geochemical processes. To achieve this, the analytical community is actively solving problems such as spectral interference, mass discrimination drift, chemical separation and purification, and reduction of the contamination of analytes. This article describes data calibration and standardization protocols to allow interlaboratory comparisons or to maintain traceability of data, and basic principles of isotope fractionation in nature, together with high-selectivity and high-yield chemical separation and purification techniques for stable isotope studies.

  3. The Influence of Modern Instrumentation on the Analytical and General Chemistry Curriculum at Bates College

    Science.gov (United States)

    Wenzel, Thomas J.

    2001-09-01

    The availability of state-of-the-art instruments such as high performance liquid chromatograph, gas chromatograph-mass spectrometer, inductively coupled plasma-atomic emission spectrometer, capillary electrophoresis system, and ion chromatograph obtained through four Instructional Laboratory Improvement and one Course, Curriculum, and Laboratory Improvement grants from the National Science Foundation has led to a profound change in the structure of the analytical and general chemistry courses at Bates College. Students in both sets of courses now undertake ambitious, semester-long, small-group projects. The general chemistry course, which fulfills the prerequisite requirement for all upper-level chemistry courses, focuses on the connection between chemistry and the study of the environment. The projects provide students with an opportunity to conduct a real scientific investigation. The projects emphasize problem solving, team work, and communication, while still fostering the development of important laboratory skills. Cooperative learning is also used extensively in the classroom portion of these courses.

  4. Analytical performance of centrifuge-based device for clinical chemistry testing.

    Science.gov (United States)

    Suk-Anake, Jamikorn; Promptmas, Chamras

    2012-01-01

    A centrifuge-based device has been introduced to the Samsung Blood Analyzer (SBA). The verification of this analyzer is essential to meet the ISO15189 standard. Analytical performance was evaluated according to the NCCLS EP05-A method. The results of plasma samples were compared between the SBA and a Hitachi 917 analyzer according to the NCCLS EP09-A2-IR method. Percent recovery was determined via analysis of original control serum and spiked serum. Within-run precision was found to be 0.00 - 6.61% and 0.96 - 5.99% in normal- and abnormal-level assays, respectively, while between-run precision was 1.31 - 9.09% and 0.89 - 6.92%, respectively. The correlation coefficients (r) were > 0.990. The SBA presented analytical accuracy at 96.64 +/- 3.39% to 102.82 +/- 2.75% and 98.31 +/- 4.04% to 103.61 +/- 8.28% recovery, respectively. The results obtained verify that all of the 13 tests performed using the SBA demonstrates good and reliable precision suitable for use in qualified clinical chemistry laboratory service.

  5. Modern state of radiation chemistry of inorganic solids

    International Nuclear Information System (INIS)

    Zakharov, Yu.A.; Nevostruev, V.A.; Ryabykh, S.M.; Safonov, Yu.N.

    1985-01-01

    Regularities of radiolysis of different metal salts and inorganic acid complex anions are considered taking account of the nature of electron states and radiation transformations in them. By chemical processes during irradiation the solid salts considered are divided into 2 groups: salts in which the processes stimulated by radiation lead to chemical transformations in anion and cation subsystems, their valency changed, (1st group); salts in which radiation-chemical transformations influence anion sublattice and cation valency is without any change (2nd group). It is shown that the main part of secondary chemical transformations is realized from low-energy excited electron states. For first group salts these states are of cation nature, at this secondary reactions are determined by ionization processes. For second group salts low-energy electron terms are mostly of anion nature. Classification of inorganic salts by the character of transformations in anion sublattices is marked to be developed

  6. Analytical Chemistry Division annual progress report for period ending December 31, 1982

    International Nuclear Information System (INIS)

    Lyon, W.S.

    1983-05-01

    The Analytical Chemistry Dvision of Oak Ridge National laboratory (ORNL) serves a multitude of functions for a clientele that exists both in and outside ORNL. These functions fall into the following general categories: (1) analytical research, development, and implementation; (2) programmatic research, development, and utilization; and (3) technical support. The Division is organized into five major sections, each of which may carry out any type of work falling in the three categories mentioned above. Chapters 1 through 5 of this report highlight progress within the five sections (analytical methodology, mass and emission spectrometry, radioactive materials, bio/organic analysis, and general and environmental analysis) during the period January 1, 1982 to December 31, 1982. A short summary introduces each chapter to indicate work scope. Information about quality assurance and safety programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8. Approximately 61 articles, 32 proceedings publications and 37 reports have been published, and 107 oral presentations were given during this reporting period

  7. Polymer chemistry (revised edition)

    International Nuclear Information System (INIS)

    Kim, Jae Mum

    1987-02-01

    This book deals with polymer chemistry, which is divided into fourteen chapters. The contents of this book are development of polymer chemistry, conception of polymer, measurement of polymer chemistry, conception of polymer, measurement of polymer, molecule structure of polymer, thermal prosperities of solid polymer, basic theory of polymerization, radical polymerization, ion polymerization, radical polymerization, copolymerization, polymerization by step-reaction, polymer reaction, crown polymer and inorganic polymer on classification and process of creation such as polymeric sulfur and carbon fiber.

  8. Inorganic-organic hybrid polymers for food packaging

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2015-09-01

    Full Text Available packaging application. Numerous hybrid inorganic-organic materials have been developed using low temperature sol-gel chemistry, which enables the tailoring of the nanostructure and the resulting material is often multifunctional, offering a wide range...

  9. Environmental Contaminants, Metabolites, Cells, Organ Tissues, and Water: All in a Day’s Work at the EPA Analytical Chemistry Research Core

    Science.gov (United States)

    The talk will highlight key aspects and results of analytical methods the EPA National Health and Environmental Effects Research Laboratory (NHEERL) Analytical Chemistry Research Core (ACRC) develops and uses to provide data on disposition, metabolism, and effects of environmenta...

  10. [Final goal and problems in clinical chemistry examination measured by advanced analytical instruments].

    Science.gov (United States)

    Sasaki, M; Hashimoto, E

    1993-07-01

    In the field of clinical chemistry of Japan, the automation of analytical instruments first appeared in the 1960's with the rapid developments in electronics industry. After a series of improvements and modifications in the past thirty years, these analytical instruments became excellent with multifunctions. From the results of these developments, it is now well recognized that automated analytical instruments are indispensable to manage the modern clinical Laboratory. On the other hand, these automated analytical instruments uncovered the various problems which had been hitherto undetected when the manually-operated instruments were used. For instances, the variation of commercially available standard solutions due to the lack of government control causes the different values obtained in institutions. In addition, there are many problems such as a shortage of medical technologists, a complication to handle the sampling and an increased labor costs. Furthermore, the inadequacies in maintenance activities cause the frequent erroneous reports of laboratory findings in spite of the latest and efficient analytical instruments equipped. Thus, the working process in clinical laboratory must be systematized to create the rapidity and the effectiveness. In the present report, we review the developmental history of automation system for analytical instruments, discuss the problems to create the effective clinical laboratory and explore the ways to deal with these emerging issues for the automation technology in clinical laboratory.

  11. Metformin: A Review of Characteristics, Properties, Analytical Methods and Impact in the Green Chemistry.

    Science.gov (United States)

    da Trindade, Mariana Teixeira; Kogawa, Ana Carolina; Salgado, Hérida Regina Nunes

    2018-01-02

    Diabetes mellitus (DM) is considered a public health problem. The initial treatment consists of improving the lifestyle and making changes in the diet. When these changes are not enough, the use of medication becomes necessary. The metformin aims to reduce the hepatic production of glucose and is the preferred treatment for type 2. The objective is to survey the characteristics and properties of metformin, as well as hold a discussion on the existing analytical methods to green chemistry and their impacts for both the operator and the environment. For the survey, data searches were conducted by scientific papers in the literature as well as in official compendium. The characteristics and properties are shown, also, methods using liquid chromatography techniques, titration, absorption spectrophotometry in the ultraviolet and the infrared region. Most of the methods presented are not green chemistry oriented. It is necessary the awareness of everyone involved in the optimization of the methods applied through the implementation of green chemistry to determine the metformin.

  12. Nuclear forensics and nuclear analytical chemistry - iridium determination in a referred forensic sample

    International Nuclear Information System (INIS)

    Basu, A.K.; Bhadkambekar, C.A.; Tripathi, A.B.R.; Chattopadhyay, N.; Ghosh, P.

    2010-01-01

    Nuclear approaches for compositional characterization has bright application prospect in forensic perspective towards assessment of nature and origin of seized material. The macro and micro physical properties of nuclear materials can be specifically associated with a process or type of nuclear activity. Under the jurisdiction of nuclear analytical chemistry as well as nuclear forensics, thrust areas of scientific endeavor like determination of radioisotopes, isotopic and mass ratios, analysis for impurity contents, arriving at chemical forms/species and physical parameters play supporting evidence in forensic investigations. The analytical methods developed for this purposes can be used in international safeguards as well for nuclear forensics. Nuclear material seized in nuclear trafficking can be identified and a profile of the nuclear material can be created

  13. Applications of ICP-MS in marine analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, J W; Siu, K W.M.; Lam, J W; Willie, S N; Maxwell, P S; Palepu, A; Koether, M; Berman, S S [National Research Council of Canada, Ottawa, ON (Canada). Analytical Chemistry Section

    1990-07-01

    The versatility of ICP-MS in marine analytical chemistry is illustrated with applications to the multielement trace analysis of two recently released marine reference materials, the coastal seawater CASS-2 and the non-defatted lobster hepatopancreas tissue LUTS-1, and to the determination of tributyltin and dibutyltin in the harbour sediment reference material PACS-1 by HPLC-ICP-MS. Seawater analyses were performed after separation of the trace elements either by adsorption on immobilized 8-hydroxyquinoline or by reductive coprecipitation with iron and palladium. Simultaneous determination of seven trace elements in LUTS-1, including mercury, by isotope dilution ICP-MS, was achieved after dissolution by microwave digestion with nitric acid and hydrogen peroxide. Butyltin species in PACS-1 were separated by cation exchange HPLC of an extract of the sediment; method detection limits for tributyltin and dibutyltin in sediment samples are estimated to be 5 ng Sn/g and 12 ng Sn/g, respectively. (orig.).

  14. The Efficacy of Problem-based Learning in an Analytical Laboratory Course for Pre-service Chemistry Teachers

    Science.gov (United States)

    Yoon, Heojeong; Woo, Ae Ja; Treagust, David; Chandrasegaran, AL

    2014-01-01

    The efficacy of problem-based learning (PBL) in an analytical chemistry laboratory course was studied using a programme that was designed and implemented with 20 students in a treatment group over 10 weeks. Data from 26 students in a traditional analytical chemistry laboratory course were used for comparison. Differences in the creative thinking ability of students in both the treatment and control groups were evaluated before and at the end of the implementation of the programme, using the Torrance Tests of Creative Thinking. In addition, changes in students' self-regulated learning skills using the Self-Regulated Learning Interview Schedule (SRLIS) and their self-evaluation proficiency were evaluated. Analysis of covariance showed that the creative thinking ability of the treatment group had improved statistically significantly after the PBL course (p effect on creative thinking ability. The SRLIS test showed that students in the treatment group used self-regulated learning strategies more frequently than students in the comparison group. According to the results of the self-evaluation, students became more positive and confident in problem-solving and group work as the semester progressed. Overall, PBL was shown to be an effective pedagogical instructional strategy for enhancing chemistry students' creative thinking ability, self-regulated learning skills and self-evaluation.

  15. Pentafluorobenzyl bromide-A versatile derivatization agent in chromatography and mass spectrometry: I. Analysis of inorganic anions and organophosphates.

    Science.gov (United States)

    Tsikas, Dimitrios

    2017-02-01

    Pentafluorobenzyl bromide (PFB-Br) is a versatile derivatization agent. It is widely used in chromatography and mass spectrometry since several decades. The bromide atom is largely the single leaving group of PFB-Br. It is substituted by wide a spectrum of nucleophiles in aqueous and non-aqueous systems to form electrically neutral, in most organic solvents soluble, generally thermally stable, volatile, strongly electron-capturing and ultraviolet light-absorbing derivatives. Because of these greatly favoured physicochemical properties, PFB-Br emerged an ideal derivatization agent for highly sensitive analysis of endogenous and exogenous substances including various inorganic and organic anions by electron capture detection or after electron-capture negative-ion chemical ionization in GC-MS. The present article attempts an appraisal of the utility of PFB-Br in analytical chemistry. It reviews and discusses papers dealing with the use of PFB-Br as the derivatization reagent in the qualitative and quantitative analysis of endogenous and exogenous inorganic anions in various biological samples, notably plasma, urine and saliva. These analytes include nitrite, nitrate, cyanide and dialkyl organophosphates. Special emphasis is given to mass spectrometry-based approaches and stable-isotope dilution techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Potential Role of Inorganic Confined Environments in Prebiotic Phosphorylation.

    Science.gov (United States)

    Dass, Avinash Vicholous; Jaber, Maguy; Brack, André; Foucher, Frédéric; Kee, Terence P; Georgelin, Thomas; Westall, Frances

    2018-03-05

    A concise outlook on the potential role of confinement in phosphorylation and phosphate condensation pertaining to prebiotic chemistry is presented. Inorganic confinement is a relatively uncharted domain in studies concerning prebiotic chemistry, and even more so in terms of experimentation. However, molecular crowding within confined dimensions is central to the functioning of contemporary biology. There are numerous advantages to confined environments and an attempt to highlight this fact, within this article, has been undertaken, keeping in context the limitations of aqueous phase chemistry in phosphorylation and, to a certain extent, traditional approaches in prebiotic chemistry.

  17. Inorganic Arsenic Determination in Food: A Review of Analytical Proposals and Quality Assessment Over the Last Six Years.

    Science.gov (United States)

    Llorente-Mirandes, Toni; Rubio, Roser; López-Sánchez, José Fermín

    2017-01-01

    Here we review recent developments in analytical proposals for the assessment of inorganic arsenic (iAs) content in food products. Interest in the determination of iAs in products for human consumption such as food commodities, wine, and seaweed among others is fueled by the wide recognition of its toxic effects on humans, even at low concentrations. Currently, the need for robust and reliable analytical methods is recognized by various international safety and health agencies, and by organizations in charge of establishing acceptable tolerance levels of iAs in food. This review summarizes the state of the art of analytical methods while highlighting tools for the assessment of quality assessment of the results, such as the production and evaluation of certified reference materials (CRMs) and the availability of specific proficiency testing (PT) programmes. Because the number of studies dedicated to the subject of this review has increased considerably over recent years, the sources consulted and cited here are limited to those from 2010 to the end of 2015.

  18. The analytic impact of a reduced centrifugation step on chemistry and immunochemistry assays: an evaluation of the Modular Pre-Analytics.

    Science.gov (United States)

    Koenders, Mieke M J F; van Hurne, Marco E J F; Glasmacher-Van Zijl, Monique; van der Linde, Geesje; Westerhuis, Bert W J J M

    2012-09-01

    The COBAS 6000 system can be completed by a Modular Pre-Analytics (MPA), an integrated laboratory automation system that streamlines preanalysis. For an optimal throughput, the MPA centrifuges blood collection tubes for 5 min at 1885 × g - a centrifugation time that is not in concordance with the World Health Organization guidelines which suggest centrifugation for 10/15 min at 2000-3000 × g. In this study, the analytical outcome of 50 serum and 50 plasma samples centrifuged for 5 or 10 min at 1885 × g was investigated. The study included routine chemistry and immunochemistry assays on the COBAS 6000 and the Minicap capillary electrophoresis. Deming-fit and Bland-Altman plots of the 5-min and 10-min centrifugation steps indicated a significant correlation in serum samples. The lipaemia index in plasma samples centrifuged for 5 min displayed a statistically significant variation when compared with the 10-min centrifugation. Preanalytical centrifugation can be successfully down-scaled to a duration of 5 min for most routine chemistry and immunochemistry assays in serum and plasma samples. To prevent inaccurate results in plasma samples with an increased lipaemia index from being reported, the laboratory information system was programmed to withhold results above certain lipaemia indices. The presented data support the use of a 5-min centrifugation step to improve turnaround times, thereby meeting one of the desires of the requesting clinicians.

  19. Radiation chemistry of the liquid state

    International Nuclear Information System (INIS)

    Buxton, G.V.

    1987-01-01

    More is known about the radiation chemistry of water than any other liquid. From a practical viewpoint out knowledge is virtually complete, and water radiolysis now provides a very convenient way of generating an enormous variety of unstable species under well-defined conditions. This facility, coupled with the techniques of pulse radiolysis, has opened up new areas in aqueous inorganic, organic, and biochemistry that cannot be readily studied by thermal or photochemical methods. This chapter is aimed, therefore, at those who wish to use radiolytic methods to generate and study unstable species in aqueous solution. The basic features of the radiation chemistry of water are described first to show how the primary radical and molecular products evolve with time and to delineate the bounds of useful experimental conditions. Next, the properties of the primary radicals are summarized, and examples are given to show how the primary radicals can be converted into secondary radicals, often of a single kind. This is an important aspect of the radiation chemistry of aqueous solutions. Lastly, the impact of our knowledge of the radiation chemistry of water on advances in general chemistry is illustrated by examples from the fields of inorganic and organic chemistry

  20. Third Chemistry Conference on Recent Trends in Chemistry

    International Nuclear Information System (INIS)

    Saeed, M.M.; Wheed, S.

    2011-01-01

    The third chemistry conference 2011 on recent trends in chemistry was held from October 17-19, 2001 at Islamabad, Pakistan. More than 65 papers and oral presentation. The scope of the conference was wide open and provides and opportunity for participation of broad spectrum of chemists. This forum provided a platform for the dissemination of the latest research followed by discussion pertaining to new trends in chemistry. This con fence covered different aspects of subjects including analytical chemistry, environmental chemistry, polymer chemistry, industrial chemistry, biochemistry and nano chemistry etc. (A.B.)

  1. Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment

    Science.gov (United States)

    Armenta, Sergio; de la Guardia, Miguel

    2011-01-01

    Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…

  2. Excitation in the radiation chemistry of inorganic gases

    International Nuclear Information System (INIS)

    Willis, C.; Boyd, A.W.

    1976-01-01

    Gas phase radiation chemistry yield data and electron impact cross-section data are used to derive excitation mechanisms and to discuss the role of excited states in the radiation chemistry of O 2 , N 2 , N 2 O, CO, CO 2 , H 2 S, H 2 O and NH 3 . For each of these systems available cross-sections for ionization and neutral excitation are listed, together with relevant reaction rate data and a summary of the radiation chemistry studies at both high and low dose rates. In general, fairly complete mechanisms are derived and further tested by energy balance calculations. In order to present as complete a picture as possible, a summary of rates and products of ion-neutralization reactions is given at the end of the paper. (author)

  3. Solid state chemistry and its applications

    CERN Document Server

    West, Anthony R

    2013-01-01

    Solid State Chemistry and its Applications, 2nd Edition: Student Edition is an extensive update and sequel to the bestselling textbook Basic Solid State Chemistry, the classic text for undergraduate teaching in solid state chemistry worldwide. Solid state chemistry lies at the heart of many significant scientific advances from recent decades, including the discovery of high-temperature superconductors, new forms of carbon and countless other developments in the synthesis, characterisation and applications of inorganic materials. Looking forward, solid state chemistry will be crucial for the

  4. 15th International Conference on Boron Chemistry (IMEBORON XV)

    Czech Academy of Sciences Publication Activity Database

    Grüner, Bohumír; Štíbr, Bohumil

    2015-01-01

    Roč. 87, č. 2 (2015), s. 121 ISSN 0033-4545 Institutional support: RVO:61388980 Keywords : boranes * boron * boron materials * carboranes * IMEBORON XV * medicinal chemistry Subject RIV: CA - Inorganic Chemistry

  5. Effect of virtual analytical chemistry laboratory on enhancing student research skills and practices

    Directory of Open Access Journals (Sweden)

    Boris Bortnik

    2017-12-01

    Full Text Available This article aims to determine the effect of a virtual chemistry laboratory on university student achievement. The article describes a model of a laboratory course that includes a virtual component. This virtual component is viewed as a tool of student pre-lab autonomous learning. It presents electronic resources designed for a virtual laboratory and outlines the methodology of e-resource application. To find out how virtual chemistry laboratory affects student scientific literacy, research skills and practices, a pedagogical experiment has been conducted. Student achievement was compared in two learning environments: traditional – in-class hands-on – learning (control group and blended learning – online learning combined with in-person learning (experimental group. The effectiveness of integrating an e-lab in the laboratory study was measured by comparing student lab reports of the two groups. For that purpose, a set of 10 criteria was developed. The experimental and control student groups were also compared in terms of test results and student portfolios. The study showed that the adopted approach blending both virtual and hands-on learning environments has the potential to enhance student research skills and practices in analytical chemistry studies.

  6. Postsynthetic modification of a zirconium metal-organic framework at the inorganic secondary building unit with diphenylphosphinic acid for increased photosensitizing properties and stability

    Czech Academy of Sciences Publication Activity Database

    Hynek, Jan; Ondrušová, Soňa; Bůžek, Daniel; Kovář, P.; Rathouský, Jiří; Demel, Jan

    2017-01-01

    Roč. 53, č. 61 (2017), s. 8557-8560 ISSN 1359-7345 R&D Projects: GA ČR(CZ) GA16-02098S Institutional support: RVO:61388980 ; RVO:61388955 Keywords : assisted ligand incorporation * photodynamic therapy * functional-groups * adsorption Subject RIV: CA - Inorganic Chemistry ; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Inorganic and nuclear chemistry ; Physical chemistry (UFCH-W) Impact factor: 6.319, year: 2016

  7. Annual Report 1982

    International Nuclear Information System (INIS)

    1983-06-01

    This report describes the activities performed during 1982 by the Chemistry Department of CNEA's Research and Development Branch, distributed into the following divisions: Analytic Chemistry (mass spectrometry, general analysis, X-ray fluorescence spectrometry, optical spectrometry, electrochemistry, analytical chemistry of active materials, statistical methods); Physico-Chemistry (experimental developments, physico-chemistry of interphases, physico-chemistry of surfaces) and Inorganic Chemistry. (M.E.L.) [es

  8. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, K.

    1982-01-01

    The textbook is a Czech-to-German translation of the second revised edition and covers the subject under the headings: general nuclear chemistry, methods of nuclear chemistry, preparative nuclear chemistry, analytical nuclear chemistry, and applied chemistry. The book is especially directed to students

  9. Annual reports in inorganic and general syntheses 1973

    CERN Document Server

    Niedenzu, Kurt

    1974-01-01

    Annual Reports in Inorganic and General Syntheses-1973 presents an organized annual summary of synthetic developments in inorganic chemistry and its related areas. The book covers the synthetic aspects and structural or mechanistic features of elements, including the main group hydrides, alkali and alkaline earth elements, boron, aluminium, gallium, indium, thallium, silicon, germanium, tin, and lead, nitrogen, phosphorus, arsenic, antimony, bismuth, chalcogens, halogens and pseudohalogens, and noble gases. The text also discusses the synthetic aspects and structural or mechanistic features of

  10. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry.

    Science.gov (United States)

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek

    2013-12-20

    Solid phase microextraction find increasing applications in the sample preparation step before chromatographic determination of analytes in samples with a complex composition. These techniques allow for integrating several operations, such as sample collection, extraction, analyte enrichment above the detection limit of a given measuring instrument and the isolation of analytes from sample matrix. In this work the information about novel methodological and instrumental solutions in relation to different variants of solid phase extraction techniques, solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE) and magnetic solid phase extraction (MSPE) is presented, including practical applications of these techniques and a critical discussion about their advantages and disadvantages. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore, particular attention was paid to the description of possible uses of novel, selective stationary phases in extraction techniques, inter alia, polymeric ionic liquids, carbon nanotubes, and silica- and carbon-based sorbents. The methodological solutions, together with properly matched sampling devices for collecting analytes from samples with varying matrix composition, enable us to reduce the number of errors during the sample preparation prior to chromatographic analysis as well as to limit the negative impact of this analytical step on the natural environment and the health of laboratory employees. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: the effect of pH-induced changes in the seawater carbonate chemistry

    DEFF Research Database (Denmark)

    Trimborn, S; Lundholm, Nina; Thoms, S

    2008-01-01

    . In terms of carbon source, all species took up both CO2 and HCO3-. K-1/2 values for inorganic carbon uptake decreased with increasing pH in two species, while in N. navis-varingica apparent affinities did not change. While the contribution of HCO3- to net fixation was more than 85% in S. stellaris......The effects of pH-induced changes in seawater carbonate chemistry on inorganic carbon (C-i) acquisition and domoic acid (DA) production were studied in two potentially toxic diatom species, Pseudo-nitzschia multiseries and Nitzschia navis-varingica, and the non-toxic Stellarima stellaris. In vivo...... activities of carbonic anhydrase (CA), photosynthetic O-2 evolution and CO2 and HCO3- uptake rates were measured by membrane inlet MS in cells acclimated to low (7.9) and high pH (8.4 or 8.9). Species-specific differences in the mode of carbon acquisition were found. While extracellular carbonic anhydrase (e...

  12. Materials Chemistry

    CERN Document Server

    Fahlman, Bradley D

    2011-01-01

    The 2nd edition of Materials Chemistry builds on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field. The 2nd edition continues to offer innovative coverage and practical perspective throughout. After briefly defining materials chemistry and its history, seven chapters discuss solid-state chemistry, metals, semiconducting materials, organic "soft" materials, nanomaterials, and materials characterization. All chapters have been thoroughly updated and expanded with, for example, new sections on ‘soft lithographic’ patterning, ‘click chemistry’ polymerization, nanotoxicity, graphene, as well as many biomaterials applications. The polymer and ‘soft’ materials chapter represents the largest expansion for the 2nd edition. Each ch...

  13. Physics, radiology, and chemistry. 7. rev. ed.

    International Nuclear Information System (INIS)

    Linde, O.K.; Knigge, H.J.

    1986-01-01

    This book is an introduction to physics and chemistry especially for medical personnel. After a general introduction, measurement methods, mechanics including mechanics of solid bodies, fluids and gases, heat, optics, acoustics, electricity, radiations including their biological effects, general chemistry, inorganic and organic chemistry are treated. Every chapter contains exercises mostly in connection with medical and biological effects. Furthermore, connections with biology and medicine are considered. The chapters on physiological chemistry, computer and information theory, chemistry and ecology, and metabolism have been rewritten. (orig./HP) [de

  14. Portable microwave assisted extraction: An original concept for green analytical chemistry.

    Science.gov (United States)

    Perino, Sandrine; Petitcolas, Emmanuel; de la Guardia, Miguel; Chemat, Farid

    2013-11-08

    This paper describes a portable microwave assisted extraction apparatus (PMAE) for extraction of bioactive compounds especially essential oils and aromas directly in a crop or in a forest. The developed procedure, based on the concept of green analytical chemistry, is appropriate to obtain direct in-field information about the level of essential oils in natural samples and to illustrate green chemical lesson and research. The efficiency of this experiment was validated for the extraction of essential oil of rosemary directly in a crop and allows obtaining a quantitative information on the content of essential oil, which was similar to that obtained by conventional methods in the laboratory. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Sol-gel Synthesis of a Biotemplated Inorganic Photocatalyst

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Yue, Yuanzheng; He, Wen

    2012-01-01

    chemistry and photocatalysis, provides an opportunity to teach valuable laboratory skills and to introduce students to the synthesis, isolation, and characterization of inorganic materials. This laboratory activity is adaptable to a range of educational levels and to various instrumental techniques....

  16. Chemistry of Technetium

    International Nuclear Information System (INIS)

    Omori, Takashi

    2001-01-01

    Since the late 1970's the coordination chemistry of technetium has been developed remarkably. The background of the development is obviously related to the use of technetium radiopharmaceuticals for diagnosis in nuclear medicine. Much attention has also been denoted to the chemical behavior of environmental 99 Tc released from reprocessing plants. This review covers the several aspects of technetium chemistry, including production of radioisotopes, analytical chemistry and coordination chemistry. In the analytical chemistry, separation of technetium, emphasizing chromatography and solvent extraction, is described together with spectrophotometric determination of technetium. In the coordination chemistry of technetium, a characteristic feature of the chemistry of Tc(V) complexes is referred from the view point of the formation of a wide variety of highly stable complexes containing the Tc=O or Tc≡N bond. Kinetic studies of the preparation of Tc(III) complexes using hexakis (thiourea) technetium(III) ion as a starting material are summarized, together with the base hydrolysis reactions of Tc(III), Tc(IV) and Tc(V) complexes. (author)

  17. Mass and emission spectrometry in the Analytical Chemistry Division of Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.H. (ed.)

    1978-11-01

    The capabilities of the Mass and Emission Spectrometry Section of the Analytical Chemistry Division of Oak Ridge National Laboratory are described. Many different areas of mass spectrometric expertise are represented in the section: gas analysis, high abundance sensitivity measurements, high- and low-resolution organic analyses, spark source trace constituent analysis, and ion microprobe analysis of surfaces. These capabilities are complemented by emission spectrometry. The instruments are described along with a few applications, some of which are unique.

  18. Mass and emission spectrometry in the Analytical Chemistry Division of Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Smith, D.H.

    1978-11-01

    The capabilities of the Mass and Emission Spectrometry Section of the Analytical Chemistry Division of Oak Ridge National Laboratory are described. Many different areas of mass spectrometric expertise are represented in the section: gas analysis, high abundance sensitivity measurements, high- and low-resolution organic analyses, spark source trace constituent analysis, and ion microprobe analysis of surfaces. These capabilities are complemented by emission spectrometry. The instruments are described along with a few applications, some of which are unique

  19. Advances in electron transfer chemistry

    CERN Document Server

    Mariano, Patrick S

    1993-01-01

    Advances in Electron Transfer Chemistry, Volume 3 presents studies that discuss findings in the various aspects of electron chemistry. The book is comprised of four chapters; each chapter reviews a work that tackles an issue in electron transfer chemistry. Chapter 1 discusses the photoinduced electron transfer in flexible biaryl donor-acceptor molecules. Chapter 2 tackles light-induced electron transfer in inorganic systems in homogeneous and heterogeneous phases. The book also covers internal geometry relaxation effects on electron transfer rates of amino-centered systems. The sequential elec

  20. Chemistry WebBook

    Science.gov (United States)

    SRD 69 NIST Chemistry WebBook (Web, free access)   The NIST Chemistry WebBook contains: Thermochemical data for over 7000 organic and small inorganic compounds; thermochemistry data for over 8000 reactions; IR spectra for over 16,000 compounds; mass spectra for over 33,000 compounds; UV/Vis spectra for over 1600 compounds; electronic and vibrational spectra for over 5000 compounds; constants of diatomic molecules(spectroscopic data) for over 600 compounds; ion energetics data for over 16,000 compounds; thermophysical property data for 74 fluids.

  1. Analytical performance of 17 general chemistry analytes across countries and across manufacturers in the INPUtS project of EQA organizers in Italy, the Netherlands, Portugal, United Kingdom and Spain.

    Science.gov (United States)

    Weykamp, Cas; Secchiero, Sandra; Plebani, Mario; Thelen, Marc; Cobbaert, Christa; Thomas, Annette; Jassam, Nuthar; Barth, Julian H; Perich, Carmen; Ricós, Carmen; Faria, Ana Paula

    2017-02-01

    Optimum patient care in relation to laboratory medicine is achieved when results of laboratory tests are equivalent, irrespective of the analytical platform used or the country where the laboratory is located. Standardization and harmonization minimize differences and the success of efforts to achieve this can be monitored with international category 1 external quality assessment (EQA) programs. An EQA project with commutable samples, targeted with reference measurement procedures (RMPs) was organized by EQA institutes in Italy, the Netherlands, Portugal, UK, and Spain. Results of 17 general chemistry analytes were evaluated across countries and across manufacturers according to performance specifications derived from biological variation (BV). For K, uric acid, glucose, cholesterol and high-density density (HDL) cholesterol, the minimum performance specification was met in all countries and by all manufacturers. For Na, Cl, and Ca, the minimum performance specifications were met by none of the countries and manufacturers. For enzymes, the situation was complicated, as standardization of results of enzymes toward RMPs was still not achieved in 20% of the laboratories and questionable in the remaining 80%. The overall performance of the measurement of 17 general chemistry analytes in European medical laboratories met the minimum performance specifications. In this general picture, there were no significant differences per country and no significant differences per manufacturer. There were major differences between the analytes. There were six analytes for which the minimum quality specifications were not met and manufacturers should improve their performance for these analytes. Standardization of results of enzymes requires ongoing efforts.

  2. Water analysis

    International Nuclear Information System (INIS)

    Garbarino, J.R.; Steinheimer, T.R.; Taylor, H.E.

    1985-01-01

    This is the twenty-first biennial review of the inorganic and organic analytical chemistry of water. The format of this review differs somewhat from previous reviews in this series - the most recent of which appeared in Analytical Chemistry in April 1983. Changes in format have occurred in the presentation of material concerning review articles and the inorganic analysis of water sections. Organic analysis of water sections are organized as in previous reviews. Review articles have been compiled and tabulated in an Appendix with respect to subject, title, author(s), citation, and number of references cited. The inorganic water analysis sections are now grouped by constituent using the periodic chart; for example, alkali, alkaline earth, 1st series transition metals, etc. Within these groupings the references are roughly grouped by instrumental technique; for example, spectrophotometry, atomic absorption spectrometry, etc. Multiconstituent methods for determining analytes that cannot be grouped in this manner are compiled into a separate section sorted by instrumental technique. References used in preparing this review were compiled from nearly 60 major journals published during the period from October 1982 through September 1984. Conference proceedings, most foreign journals, most trade journals, and most government publications are excluded. References cited were obtained using the American Chemical Society's Chemical Abstracts for sections on inorganic analytical chemistry, organic analytical chemistry, water, and sewage waste. Cross-references of these sections were also included. 860 references

  3. Analytical applications of resonance ionization mass spectrometry (RIMS)

    International Nuclear Information System (INIS)

    Fassett, J.D.; Travis, J.C.

    1988-01-01

    A perspective on the role of resonance ionization mass spectrometry (RIMS) in the field of analytical chemistry is presented. RIMS provides new, powerful, and complementary capabilities relative to traditional methods of inorganic mass spectrometry. Much of the initial work in RIMS has been to illustrate these capabilities and define the potential of RIMS in the generalized field of chemical analysis. Three areas of application are reviewed here: (1) noble gas measurements; (2) materials analysis using isotope dilution (IDMS); and, (3) solids analysis using direct sampling. The role of RIMS is discussed relative to the more traditional mass spectrometric methods of analysis in these areas. The applications are meant to illustrate the present state-of-the-art as well as point to the future state-of-the-art of RIMS in chemical analysis. (author)

  4. Chemistry Division annual progress report for period ending July 31, 1981

    International Nuclear Information System (INIS)

    1982-01-01

    Research is reported on: chemistry of coal liquefaction, aqueous chemistry at high temperatures, geosciences, high-temperature chemistry and thermodynamics of structural materials, chemistry of TRU elements and compounds, separations chemistry, electrochemistry, nuclear waste chemistry, chemical physics, theoretical chemistry, inorganic chemistry of hydrogen cycles, molten salt systems, and enhanced oil recovery. Separate abstracts were prepared for the sections dealing with coal liquefaction, TRU elements and compounds, separations, nuclear wastes, and enhanced oil recovery

  5. Chemistry Division annual progress report for period ending July 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Research is reported on: chemistry of coal liquefaction, aqueous chemistry at high temperatures, geosciences, high-temperature chemistry and thermodynamics of structural materials, chemistry of TRU elements and compounds, separations chemistry, electrochemistry, nuclear waste chemistry, chemical physics, theoretical chemistry, inorganic chemistry of hydrogen cycles, molten salt systems, and enhanced oil recovery. Separate abstracts were prepared for the sections dealing with coal liquefaction, TRU elements and compounds, separations, nuclear wastes, and enhanced oil recovery. (DLC)

  6. Moessbauer spectroscopy and transition metal chemistry. Fundamentals and applications

    International Nuclear Information System (INIS)

    Guetlich, Philipp; Trautwein, Alfred X.

    2011-01-01

    Moessbauer spectroscopy is a profound analytical method which has nevertheless continued to develop. The authors now present a state-of-the art book which consists of two parts. The first part details the fundamentals of Moessbauer spectroscopy and is based on a book published in 1978 in the Springer series 'Inorganic Chemistry Concepts' by P. Guetlich, R. Link and A.X. Trautwein. The second part covers useful practical aspects of measurements, and the application of the techniques to many problems of materials characterization. The update includes the use of synchroton radiation and many instructive and illustrative examples in fields such as solid state chemistry, biology and physics, materials and the geosciences, as well as industrial applications. Special chapters on magnetic relaxation phenomena (S. Morup) and computation of hyperfine interaction parameters (F. Neese) are also included. An attached CD-ROM with more than 400 full-color PowerPoint images provides self-explanatory examples. The book concentrates on teaching the technique using theory as much as needed and as little as possible. The reader will learn the fundamentals of the technique and how to apply it to many problems of materials characterization. Transition metal chemistry, studied on the basis of the most widely used Moessbauer isotopes, is in the foreground. (orig.)

  7. Intercalation compounds involving inorganic layered structures

    Directory of Open Access Journals (Sweden)

    CONSTANTINO VERA R. L.

    2000-01-01

    Full Text Available Two-dimensional inorganic networks can shown intracrystalline reactivity, i.e., simple ions, large species as Keggin ions, organic species, coordination compounds or organometallics can be incorporated in the interlayer region. The host-guest interaction usually causes changes in their chemical, catalytic, electronic and optical properties. The isolation of materials with interesting properties and making use of soft chemistry routes have given rise the possibility of industrial and technological applications of these compounds. We have been using several synthetic approaches to intercalate porphyrins and phthalocyanines into inorganic materials: smectite clays, layered double hydroxides and layered niobates. The isolated materials have been characterized by elemental and thermal analysis, X-ray diffraction, surface area measurements, scanning electronic microscopy, electronic and resonance Raman spectroscopies and EPR. The degree of layer stacking and the charge density of the matrices as well their acid-base nature were considered in our studies on the interaction between the macrocycles and inorganic hosts.

  8. Elucidation of molecular and elementary composition of organic and inorganic substances involved in 19th century wax sculptures using an integrated analytical approach

    International Nuclear Information System (INIS)

    Regert, M.; Langlois, J.; Laval, E.; Le Ho, A.-S.; Pages-Camagna, S.

    2006-01-01

    Wax sculptures contain several materials from both organic and inorganic nature. These works of art are particularly fragile. Determining their chemical composition is thus of prime importance for their preservation. The identification of the recipes of waxy pastes used through time also provides valuable information in the field of art history. The aim of the present research was to develop a convenient analytical strategy, as non-invasive as possible, that allows to identify the wide range of materials involved in wax sculptures. A multi-step analytical methodology, based on the use of complementary techniques, either non- or micro-destructive, was elaborated. X-ray fluorescence and micro-Raman spectroscopy were used in a non-invasive way to identify inorganic pigments, opacifiers and extenders. The combination of structural and separative techniques, namely infrared spectroscopy, direct inlet electron ionisation mass spectrometry and high temperature gas chromatography, was shown to be appropriate for unravelling the precise composition of the organic substances. A micro-chemical test was also performed for the detection of starch. From this study it has been possible to elucidate the composition of the waxy pastes used by three different sculptors at the end of the 19th century. Complex and elaborated recipes, in which a large range of natural substances were combined, were highlighted

  9. Feasibility study for automating the analytical laboratories of the Chemistry Branch, National Enforcement Investigation Center, Environmental Protection Agency

    International Nuclear Information System (INIS)

    Morris, W.F.; Fisher, E.R.; Barton, G.W. Jr.

    1978-01-01

    The feasibility of automating the analytical laboratories of the Chemistry Branch of the National Enforcement Investigation Center, Environmental Protection Agency, Denver, Colorado, is explored. The goals of the chemistry laboratory are defined, and instrumental methods and other tasks to be automated are described. Five optional automation systems are proposed to meet these goals and the options are evaluated in terms of cost effectiveness and other specified criteria. The instruments to be automated include (1) a Perkin-Elmer AA spectrophotometer 403, (2) Perkin-Elmer AA spectrophotometer 306, (3) Technicon AutoAnalyzer II, (4) Mettler electronic balance, and a (5) Jarrell-Ash ICP emission spectrometer

  10. Eleventh international symposium on radiopharmaceutical chemistry

    International Nuclear Information System (INIS)

    1995-01-01

    This document contains abstracts of papers which were presented at the Eleventh International Symposium on Radiopharmaceutical Chemistry. Sessions included: radiopharmaceuticals for the dopaminergic system, strategies for the production and use of labelled reactive small molecules, radiopharmaceuticals for measuring metabolism, radiopharmaceuticals for the serotonin and sigma receptor systems, labelled probes for molecular biology applications, radiopharmaceuticals for receptor systems, radiopharmaceuticals utilizing coordination chemistry, radiolabelled antibodies, radiolabelling methods for small molecules, analytical techniques in radiopharmaceutical chemistry, and analytical techniques in radiopharmaceutical chemistry

  11. Eleventh international symposium on radiopharmaceutical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This document contains abstracts of papers which were presented at the Eleventh International Symposium on Radiopharmaceutical Chemistry. Sessions included: radiopharmaceuticals for the dopaminergic system, strategies for the production and use of labelled reactive small molecules, radiopharmaceuticals for measuring metabolism, radiopharmaceuticals for the serotonin and sigma receptor systems, labelled probes for molecular biology applications, radiopharmaceuticals for receptor systems, radiopharmaceuticals utilizing coordination chemistry, radiolabelled antibodies, radiolabelling methods for small molecules, analytical techniques in radiopharmaceutical chemistry, and analytical techniques in radiopharmaceutical chemistry.

  12. Hybrid organic-inorganic rotaxanes and molecular shuttles.

    Science.gov (United States)

    Lee, Chin-Fa; Leigh, David A; Pritchard, Robin G; Schultz, David; Teat, Simon J; Timco, Grigore A; Winpenny, Richard E P

    2009-03-19

    The tetravalency of carbon and its ability to form covalent bonds with itself and other elements enables large organic molecules with complex structures, functions and dynamics to be constructed. The varied electronic configurations and bonding patterns of inorganic elements, on the other hand, can impart diverse electronic, magnetic, catalytic and other useful properties to molecular-level structures. Some hybrid organic-inorganic materials that combine features of both chemistries have been developed, most notably metal-organic frameworks, dense and extended organic-inorganic frameworks and coordination polymers. Metal ions have also been incorporated into molecules that contain interlocked subunits, such as rotaxanes and catenanes, and structures in which many inorganic clusters encircle polymer chains have been described. Here we report the synthesis of a series of discrete rotaxane molecules in which inorganic and organic structural units are linked together mechanically at the molecular level. Structural units (dialkyammonium groups) in dumb-bell-shaped organic molecules template the assembly of essentially inorganic 'rings' about 'axles' to form rotaxanes consisting of various numbers of rings and axles. One of the rotaxanes behaves as a 'molecular shuttle': the ring moves between two binding sites on the axle in a large-amplitude motion typical of some synthetic molecular machine systems. The architecture of the rotaxanes ensures that the electronic, magnetic and paramagnetic characteristics of the inorganic rings-properties that could make them suitable as qubits for quantum computers-can influence, and potentially be influenced by, the organic portion of the molecule.

  13. Chemistry Division: Annual progress report for period ending March 31, 1987

    International Nuclear Information System (INIS)

    1987-08-01

    This report is divided into the following sections: coal chemistry; aqueous chemistry at high temperatures and pressures; geochemistry of crustal processes to high temperatures and pressures; chemistry of advanced inorganic materials; structure and dynamics of advanced polymeric materials; chemistry of transuranium elements and compounds; separations chemistry; reactions and catalysis in molten salts; surface science related to heterogeneous catalysis; electron spectroscopy; chemistry related to nuclear waste disposal; computational modeling of security document printing; and special topics

  14. Ninth international symposium on hot atom chemistry. Abstracts

    International Nuclear Information System (INIS)

    1977-01-01

    Abstracts of the papers presented at the Symposium are compiled. The topics considered were chemical dynamics of high energy reactions, hot atom chemistry in organic compounds of tritium, nitrogen, oxygen, and halogens, theory and chemical dynamics of hot atom reactions as determined by beam studies, solid state reactions of recoil atoms and implanted ions, hot atom chemistry in energy-related research, hot atom chemistry in inorganic compounds of oxygen and tritium, hot positronium chemistry, applied hot atom chemistry in labelling, chemical effects of radioactive decay, decay-induced reactions and excitation labelling, physical methods in hot atom chemistry, and hot atom reactions in radiation and stratospheric chemistry

  15. Influence of surface chemistry of carbon materials on their interactions with inorganic nitrogen contaminants in soil and water.

    Science.gov (United States)

    Sumaraj; Padhye, Lokesh P

    2017-10-01

    Inorganic nitrogen contaminants (INC) (NH 4 + , NO 3 - , NO 2 - , NH 3 , NO, NO 2 , and N 2 O) pose a growing risk to the environment, and their remediation methods are highly sought after. Application of carbon materials (CM), such as biochar and activated carbon, to remediate INC from agricultural fields and wastewater treatment plants has gained a significant interest since past few years. Understanding the role of surface chemistry of CM in adsorption of various INC is highly critical to increase adsorption efficiency as well as to assess the long term impact of using these highly recalcitrant CM for remediation of INC. Critical reviews of adsorption studies related to INC have revealed that carbon surface chemistry (surface functional groups, pH, Eh, elemental composition, and mineral content) has significant influence on adsorption of INC. Compared to basic functional groups, oxygen containing surface functional groups have been found to be more influential for adsorption of INC. However, basic sites on carbon materials still play an important role in chemisorption of anionic INC. Apart from surface functional groups, pH, Eh and pH zpc of CM and elemental and mineral composition of its surface are important properties capable of altering INC interactions with CM. This review summarizes our current understanding of INC interactions with CM's surface through the known chemisorption mechanisms: electrostatic interaction, hydrogen bonding, electron donor-acceptor mechanism, hydrophobic and hydrophilic interaction, chemisorption aided by minerals, and interactions influenced by pH and elemental composition. Change in surface chemistry of CM in soil during aging is also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Description and principles of use of an automatic control device usable, in particular, in analytical chemistry

    International Nuclear Information System (INIS)

    Rigaudiere, Roger; Jeanmaire, Lucien

    1969-01-01

    This note describes an automatic control device for the programming of about 20 different functions, chronologically and during a given time. Any voltage can be chosen at the output to perform the different functions. Three examples of utilisation taken in analytical chemistry are given to illustrate the possibilities offered by this device, but its domain of use is much more universal and independent of the type of functions [fr

  17. Forensic Chemistry

    Science.gov (United States)

    Bell, Suzanne

    2009-07-01

    Forensic chemistry is unique among chemical sciences in that its research, practice, and presentation must meet the needs of both the scientific and the legal communities. As such, forensic chemistry research is applied and derivative by nature and design, and it emphasizes metrology (the science of measurement) and validation. Forensic chemistry has moved away from its analytical roots and is incorporating a broader spectrum of chemical sciences. Existing forensic practices are being revisited as the purview of forensic chemistry extends outward from drug analysis and toxicology into such diverse areas as combustion chemistry, materials science, and pattern evidence.

  18. Comparative study of inorganic elements determined in whole blood from Dmd(mdx)/J mice strain by EDXRF and NAA analytical techniques.

    Science.gov (United States)

    Redígolo, M M; Sato, I M; Metairon, S; Zamboni, C B

    2016-04-01

    Several diseases can be diagnosed observing the variation of specific elements concentration in body fluids. In this study the concentration of inorganic elements in blood samples of dystrophic (Dmd(mdx)/J) and C57BL/6J (control group) mice strain were determined. The results obtained from Energy Dispersive X-ray Fluorescence (EDXRF) were compared with Neutron Activation Analysis (NAA) technique. Both analytical techniques showed to be appropriate and complementary offering a new contribution for veterinary medicine as well as detailed knowledge of this pathology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. African Journal of Chemical Education

    African Journals Online (AJOL)

    More specifically, papers on any aspect of Chemistry Education such as teaching organic, analytical, physical, inorganic, polymer, green, climate change, environmental chemistry and chemistry curricula as well as assessment in chemistry are acceptable for publications. AJCE also encourages issues on chemistry and ...

  20. Topological data analysis: A promising big data exploration tool in biology, analytical chemistry and physical chemistry.

    Science.gov (United States)

    Offroy, Marc; Duponchel, Ludovic

    2016-03-03

    An important feature of experimental science is that data of various kinds is being produced at an unprecedented rate. This is mainly due to the development of new instrumental concepts and experimental methodologies. It is also clear that the nature of acquired data is significantly different. Indeed in every areas of science, data take the form of always bigger tables, where all but a few of the columns (i.e. variables) turn out to be irrelevant to the questions of interest, and further that we do not necessary know which coordinates are the interesting ones. Big data in our lab of biology, analytical chemistry or physical chemistry is a future that might be closer than any of us suppose. It is in this sense that new tools have to be developed in order to explore and valorize such data sets. Topological data analysis (TDA) is one of these. It was developed recently by topologists who discovered that topological concept could be useful for data analysis. The main objective of this paper is to answer the question why topology is well suited for the analysis of big data set in many areas and even more efficient than conventional data analysis methods. Raman analysis of single bacteria should be providing a good opportunity to demonstrate the potential of TDA for the exploration of various spectroscopic data sets considering different experimental conditions (with high noise level, with/without spectral preprocessing, with wavelength shift, with different spectral resolution, with missing data). Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Chemistry Division: Annual progress report for period ending March 31, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This report is divided into the following sections: coal chemistry; aqueous chemistry at high temperatures and pressures; geochemistry of crustal processes to high temperatures and pressures; chemistry of advanced inorganic materials; structure and dynamics of advanced polymeric materials; chemistry of transuranium elements and compounds; separations chemistry; reactions and catalysis in molten salts; surface science related to heterogeneous catalysis; electron spectroscopy; chemistry related to nuclear waste disposal; computational modeling of security document printing; and special topics. (DLC)

  2. Reaction chemistry of cerium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    It is truly ironic that a synthetic organic chemist likely has far greater knowledge of the reaction chemistry of cerium(IV) than an inorganic colleague. Cerium(IV) reagents have long since been employed as oxidants in effecting a wide variety of organic transformations. Conversely, prior to the late 1980s, the number of well characterized cerium(IV) complexes did not extend past a handful of known species. Though in many other areas, interest in the molecular chemistry of the 4f-elements has undergone an explosive growth over the last twenty years, the chemistry of cerium(IV) has for the most part been overlooked. This report describes reactions of cerium complexes and structure.

  3. Annual report 1986 chemistry department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1987-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1986 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, radical chemistral, mineral processing, and general. (author)

  4. Annual report 1984 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1985-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry , environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general. (author)

  5. Annual report 1987 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1988-04-01

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1987 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, radical chemistry, mineral processing, and general. 13 ills., (author)

  6. Annual report 1985 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1986-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. All particles and reports published and lectures given in 1985 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general. (author)

  7. Annual report 1982 chemistry department

    International Nuclear Information System (INIS)

    Larsen, E.; Nielsen, O.J.

    1983-04-01

    The work going on in the Risoe National Laboratory, Chemistry Department is briefly surveyed by a presentation of all articles and reports published in 1982. The facilities and equipment are barely mentioned. The papers are divided into eight activities: 1. neutron activation analysis 2. analytical- and organic chemistry 3. environmental chemistry 4. polymer chemistry 5. geochemistry 6. radical chemistry 7. poitron annihilation 8. uranium process chemistry. (author)

  8. CIEQUI: An oracle database for information management in the analytical chemistry unit of CIEMAT

    International Nuclear Information System (INIS)

    Rucandio, M.I.; Roca, M.

    1997-01-01

    An in-house software product named CIEQUI has been developed in CIEMAT, with purpose-written programs as a laboratory information management system (LIMS). It is grounded upon relational data base from ORACLE, with the supported languages SQL, PL/SQL, SQL*Plus, and DEC BASIS, and with the tools SQL*Loader, SQL*Forms and SQL*Menu. Its internal organization and functional structure are schematically represented and the advantages and disadvantages of a tailored management system are described. Although it is difficult to unity the analysis criteria in a R AND D organization such as CIEMAT, because of the wide variety in the sample type and in the involved determinations, our system provides remarkable advantages. CIEQUI reflects the complexity of the laboratories it serves. It is a system easily accessible to all, that help us in many tasks about organization and management of the analytical service provided through the different laboratories of the CIEMAT Analytical Chemistry Unit. (Author)

  9. The Quantitative Resolution of a Mixture of Group II Metal Ions by Thermometric Titration with EDTA. An Analytical Chemistry Experiment.

    Science.gov (United States)

    Smith, Robert L.; Popham, Ronald E.

    1983-01-01

    Presents an experiment in thermometric titration used in an analytic chemistry-chemical instrumentation course, consisting of two titrations, one a mixture of calcium and magnesium, the other of calcium, magnesium, and barium ions. Provides equipment and solutions list/specifications, graphs, and discussion of results. (JM)

  10. Where is the future of nuclear chemistry

    International Nuclear Information System (INIS)

    1980-01-01

    The future potentials of nuclear chemistry as a natural science with a strong orientation towards practical applications has been discussed at this meeting of 45 experts coming from research institutes and laboratories working in the fields of radiochemistry, nuclear chemistry, inorganic and applied chemistry, hot-atom chemistry, radiobiology, and nuclear biology, and from the two nuclear research centres at Juelich and Karlsruhe. The discussion centred around the four main aspects of future work, namely 1. basic research leading to an extension of the periodic table, nuclear reactions, the chemistry of superheavy elements, cosmochemistry; 2. radionuclide technology and activation analysis; 3. nuclear fuel cycle and reprocessing processes together with ultimate disposal methods; 4. radiochemistry in the life sciences, including nuclear chemistry and applications. (HK) [de

  11. Activities of the INCT, Warsaw, in the domain of quality assurance for inorganic analysis

    International Nuclear Information System (INIS)

    Polkowska-Motrenko, H.; Dybczynski, R.

    2006-01-01

    The paper summarizes the work done by the Institute of Nuclear Chemistry and Technology, Warsaw (INCT), in the field of QA/QC with the special emphasis on the role of NAA. This work consists of preparation and certification of CRMs, development of high-accuracy RNAA methods for selected elements in biological matrices and organization of proficiency test rounds (PT). The INCT has been involved in the preparation and certification of CRMs for inorganic trace analysis since 1986. The adopted certification philosophy is presented. Comparison of analytical data on the same material available from interlaboratory comparisons organized in different years is presented. The paper summarizes also the work on the development of high-accuracy RNAA methods. It has been demonstrated that the high-accuracy RNAA methods devised according the concept formulated in INCT can meet requirements of primary ratio method of measurement (PMM). (author)

  12. Annual report 1988 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Neve Larsen, Aa.; Larsen, E.; Nielsen, O.J.

    1989-05-01

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1988 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, chemical reactivity, mineral processing, and general. (author)

  13. Annual report 1989 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Neve Larsen, Aa.; Larsen, E.; Nielsen, O.J.

    1990-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1989 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, chemical reactivity, mineral processing, and general. (author)

  14. Evaluation of a reduced centrifugation time and higher centrifugal force on various general chemistry and immunochemistry analytes in plasma and serum.

    Science.gov (United States)

    Møller, Mette F; Søndergaard, Tove R; Kristensen, Helle T; Münster, Anna-Marie B

    2017-09-01

    Background Centrifugation of blood samples is an essential preanalytical step in the clinical biochemistry laboratory. Centrifugation settings are often altered to optimize sample flow and turnaround time. Few studies have addressed the effect of altering centrifugation settings on analytical quality, and almost all studies have been done using collection tubes with gel separator. Methods In this study, we compared a centrifugation time of 5 min at 3000 ×  g to a standard protocol of 10 min at 2200 ×  g. Nine selected general chemistry and immunochemistry analytes and interference indices were studied in lithium heparin plasma tubes and serum tubes without gel separator. Results were evaluated using mean bias, difference plots and coefficient of variation, compared with maximum allowable bias and coefficient of variation used in laboratory routine quality control. Results For all analytes except lactate dehydrogenase, the results were within the predefined acceptance criteria, indicating that the analytical quality was not compromised. Lactate dehydrogenase showed higher values after centrifugation for 5 min at 3000 ×  g, mean bias was 6.3 ± 2.2% and the coefficient of variation was 5%. Conclusions We found that a centrifugation protocol of 5 min at 3000 ×  g can be used for the general chemistry and immunochemistry analytes studied, with the possible exception of lactate dehydrogenase, which requires further assessment.

  15. Analytical assessment about the simultaneous quantification of releasable pharmaceutical relevant inorganic nanoparticles in tap water and domestic waste water.

    Science.gov (United States)

    Krystek, Petra; Bäuerlein, Patrick S; Kooij, Pascal J F

    2015-03-15

    For pharmaceutical applications, the use of inorganic engineered nanoparticles is of growing interest while silver (Ag) and gold (Au) are the most relevant elements. A few methods were developed recently but the validation and the application testing were quite limited. Therefore, a routinely suitable multi element method for the identification of nanoparticles of different sizes below 100 nm and elemental composition by applying asymmetric flow field flow fraction (AF4) - inductively coupled plasma mass spectrometry (ICPMS) is developed. A complete validation model of the quantification of releasable pharmaceutical relevant inorganic nanoparticles based on Ag and Au is presented for the most relevant aqueous matrices of tap water and domestic waste water. The samples are originated from locations in the Netherlands and it is of great interest to study the unwanted presence of Ag and Au as nanoparticle residues due to possible health and environmental risks. During method development, instability effects are observed for 60 nm and 70 nm Ag ENPs with different capping agents. These effects are studied more closely in relation to matrix effects. Besides the methodological aspects, the obtained analytical results and relevant performance characteristics (e.g. measuring range, limit of detection, repeatability, reproducibility, trueness, and expanded uncertainty of measurement) are determined and discussed. For the chosen aqueous matrices, the results of the performance characteristics are significantly better for Au ENPs in comparison to Ag ENPs; e.g. repeatability and reproducibility are below 10% for all Au ENPs respectively maximal 27% repeatability for larger Ag ENPs. The method is a promising tool for the simultaneous determination of releasable pharmaceutical relevant inorganic nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Technical note: An inorganic water chemistry dataset (1972–2011 ...

    African Journals Online (AJOL)

    A national dataset of inorganic chemical data of surface waters (rivers, lakes, and dams) in South Africa is presented and made freely available. The dataset comprises more than 500 000 complete water analyses from 1972 up to 2011, collected from more than 2 000 sample monitoring stations in South Africa. The dataset ...

  17. Heavy metal, total arsenic, and inorganic arsenic contents of algae food products.

    Science.gov (United States)

    Almela, C; Algora, S; Benito, V; Clemente, M J; Devesa, V; Súñer, M A; Vélez, D; Montoro, R

    2002-02-13

    The total arsenic, inorganic arsenic, lead, cadmium, and mercury contents of 18 algae food products currently on sale in Spain were determined. The suitability of the analytical methodologies for this type of matrix was confirmed by evaluating their analytical characteristics. The concentration ranges found for each contaminant, expressed in milligrams per kilogram of dry weight, were as follows: total arsenic, 2.3-141; inorganic arsenic, 0.15-88; lead, mercury, 0.004-0.04. There is currently no legislation in Spain regarding contaminants in algae food products, but some of the samples analyzed revealed Cd and inorganic As levels higher than those permitted by legislation in other countries. Given the high concentrations of inorganic As found in Hizikia fusiforme, a daily consumption of 1.7 g of the product would reach the Provisional Tolerable Weekly Intake recommended by the WHO for an average body weight of 68 kg. A more comprehensive study of the contents and toxicological implications of the inorganic As present in the algae food products currently sold in Spain may be necessary, which might then be the basis for the introduction of specific sales restrictions.

  18. Atom-at-a-time chemistry

    International Nuclear Information System (INIS)

    Nagame, Yuichiro

    2009-01-01

    Several techniques of the analytical chemistry in 'Atom-at-a-time chemistry' for transactinide elements have been developed. In this report a representative example in these techniques is introduced with the results. The contents are the single-atom chemistry, the chemical experiments on transactinide elements, liquid phase chemistry (the ion exchange behavior of Rutherfordium), gas phase chemistry (the chemistry of atomic No.112 element), and future development. (M.H.)

  19. Mechanism study on inorganic oxidants induced inhibition of Ru(bpy)₃²+ electrochemiluminescence and its application for sensitive determination of some inorganic oxidants.

    Science.gov (United States)

    Qiu, Bin; Xue, Lingling; Wu, Yanping; Lin, Zhenyu; Guo, Longhua; Chen, Guonan

    2011-07-15

    Inhibited Ru(bpy)(3)(2+) electrochemiluminescence by inorganic oxidants is investigated. Results showed that a number of inorganic oxidants can quench the ECL of Ru(bpy)(3)(2+)/tri-n-propylamine (TPrA) system, and the logarithm of the decrease in ECL intensity (ΔI) was proportional to the logarithm of analyte concentrations. Based on which, a sensitive approach for detection of these inorganic oxidants was established, e.g. the log-log plots of ΔI versus the concentration of MnO(4)(-), Cr(2)O(7)(2-) and Fe(CN)(6)(3-) are linear in the range of 1×10(-7) to 3×10(-4)M for MnO(4)(-) and Cr(2)O(7)(2-), and 1×10(-7) to 1×10(-4)M for Fe(CN)(6)(3-), with the limit of detection (LOD) of 8.0×10(-8)M, 2×10(-8)M, and 1×10(-8)M, respectively. A series of experiments such as a comparison of the inhibitory effect of different compounds on Ru(bpy)(3)(2+)/TPrA ECL, ECL emission spectra, UV-Vis absorption spectra etc. were investigated in order to discover how these inorganic analytes quench the ECL of Ru(bpy)(3)(2+)/TPrA system. A mechanism based on consumption of TPrA intermediate (TPrA(·)) by inorganic oxidants was proposed. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. High-performance liquid ion-pair chromatography in inorganic analysis

    International Nuclear Information System (INIS)

    Alimarin, I.P.; Basova, E.M.; Bol'shova, T.A.; Ivanov, V.M.

    1990-01-01

    In literature review for the recent 15 years theoretical foundations, regularities and mechanisms of ionized compound retention in reverse-phase ion-pair chromatography are considered, possibilities and prospects of its application in inorganic analysis being demonstrated. Analytic characteristics of the methods for the determination of inorganic anions (I - , IO 3 - , MoO 4 2- , etc.), as well as metals (Zr, Hf, V, Nb, Mo, W, Ru, lanthanides, etc.) in the form of chelates, are given

  1. General Procedure for the Easy Calculation of pH in an Introductory Course of General or Analytical Chemistry

    Science.gov (United States)

    Cepriá, Gemma; Salvatella, Luis

    2014-01-01

    All pH calculations for simple acid-base systems used in introductory courses on general or analytical chemistry can be carried out by using a general procedure requiring the use of predominance diagrams. In particular, the pH is calculated as the sum of an independent term equaling the average pK[subscript a] values of the acids involved in the…

  2. Analytical Chemistry Laboratory (ACL) procedure compendium

    International Nuclear Information System (INIS)

    1992-06-01

    Covered are: analytical laboratory operations (ALO) sample receipt and control, ALO data report/package preparation review and control, single shell tank (PST) project sample tracking system, sample receiving, analytical balances, duties and responsibilities of sample custodian, sample refrigerator temperature monitoring, security, assignment of staff responsibilities, sample storage, data reporting, and general requirements for glassware

  3. Inorganic Materials Division annual report, 1975

    International Nuclear Information System (INIS)

    Duba, A.; Hornady, B.

    1976-01-01

    This compilation lists abstracts of papers, internal reports, and talks presented during 1975 at national and international meetings by members of the Geoscience and Engineering Section, Inorganic Materials Division, Chemistry and Materials Science Department, Lawrence Livermore Laboratory. Titles of talks at university and local meetings are also listed when available. The subjects range from the in situ retorting of coal to the temperature profile of the moon. A subject classification is included

  4. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Area of Analytical Chemistry, Faculty of Experimental Sciences, University of Huelva, Agrifood Campus of International Excellence, ceiA3. Avd. Tres de Marzo S/N, 21007 Huelva, Spain; Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, ...

  5. Standard guide for establishing a quality assurance program for analytical chemistry laboratories within the nuclear industry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This guide covers the establishment of a quality assurance (QA) program for analytical chemistry laboratories within the nuclear industry. Reference to key elements of ANSI/ISO/ASQC Q9001, Quality Systems, provides guidance to the functional aspects of analytical laboratory operation. When implemented as recommended, the practices presented in this guide will provide a comprehensive QA program for the laboratory. The practices are grouped by functions, which constitute the basic elements of a laboratory QA program. 1.2 The essential, basic elements of a laboratory QA program appear in the following order: Section Organization 5 Quality Assurance Program 6 Training and Qualification 7 Procedures 8 Laboratory Records 9 Control of Records 10 Control of Procurement 11 Control of Measuring Equipment and Materials 12 Control of Measurements 13 Deficiencies and Corrective Actions 14

  6. An Advanced Analytical Chemistry Experiment Using Gas Chromatography-Mass Spectrometry, MATLAB, and Chemometrics to Predict Biodiesel Blend Percent Composition

    Science.gov (United States)

    Pierce, Karisa M.; Schale, Stephen P.; Le, Trang M.; Larson, Joel C.

    2011-01-01

    We present a laboratory experiment for an advanced analytical chemistry course where we first focus on the chemometric technique partial least-squares (PLS) analysis applied to one-dimensional (1D) total-ion-current gas chromatography-mass spectrometry (GC-TIC) separations of biodiesel blends. Then, we focus on n-way PLS (n-PLS) applied to…

  7. Historical Analysis of the Inorganic Chemistry Curriculum Using ACS Examinations as Artifacts

    Science.gov (United States)

    Srinivasan, Shalini; Reisner, Barbara A.; Smith, Sheila R.; Stewart, Joanne L.; Johnson, Adam R.; Lin, Shirley; Marek, Keith A.; Nataro, Chip; Murphy, Kristen L.; Raker, Jeffrey R.

    2018-01-01

    ACS Examinations provide a lens through which to examine historical changes in topic coverage via analyses of course-specific examinations. This study is an extension of work completed previously by the ACS Exams Research Staff and collaborators in general chemistry, organic chemistry, and physical chemistry to explore content changes in the…

  8. Combustion chemistry - activities in the CHEK research programme

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Johansen, K.; Johnsson, J.E.; Glarborg, P.; Frandsen, F.; Jensen, A.; Oestberg, M. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemical Engineering

    1997-10-01

    The combustion chemistry in the oxidation of fossil fuels and biofuels determines together with mixing and heat transfer the required size of a furnace, the emission of gaseous pollutants, and the formation of ash and deposits on surfaces. This presentation describes technologies for solid fuels combustion and gives a summary of the fuels, the pollutant chemistry and the inorganic chemistry in combustion processes. Emphasis is put on the work carried out in the CHEC (Combustion and Harmful Emission Control) Research Programme. (orig.)

  9. High power deep UV-LEDs for analytical optical instrumentation

    Czech Academy of Sciences Publication Activity Database

    Li, Y.; Dvořák, Miloš; Nesterenko, P. N.; Nuchtavorn, N.; Macka, M.

    2018-01-01

    Roč. 255, č. 2 (2018), s. 1238-1243 ISSN 0925-4005 Institutional support: RVO:68081715 Keywords : deep UV Light emitting diodes (LEDs) * optical detection * portable analytical instrumentation Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 5.401, year: 2016

  10. Separation chemistry for the nuclear industry

    International Nuclear Information System (INIS)

    Musikas, C.; Condamines, N.; Cuillerdier, C.

    1991-01-01

    A review of the actinide and Lanthanide extraction chemistry by N,N-dialkylamides and N,N'-tetraalkylamides is given. It includes the extraction equilibria of inorganic acids. The prospects of using these completely incinerable extractants in the nuclear fuels cycle is discussed

  11. American Chemical Society, 1991 Joint Central-Great Lakes Regional Meeting

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The proceedings contain papers on the following topics: agricultural and food chemistry; analytical chemistry; biological chemistry; chemical education; colloid chemistry; computers in chemistry; inorganic chemistry; medicinal chemistry; organic chemistry; petroleum and fuel chemistry; physical chemistry; polymer chemistry; professional relations; small chemical business; and OSHA laboratory standards workshop. Papers within the scope of the Energy Data Base have been processed separately

  12. Analytical chemistry of actinides

    International Nuclear Information System (INIS)

    Chollet, H.; Marty, P.

    2001-01-01

    Different characterization methods specifically applied to the actinides are presented in this review such as ICP/OES (inductively coupled plasma-optical emission spectrometry), ICP/MS (inductively coupled plasma spectroscopy-mass spectrometry), TIMS (thermal ionization-mass spectrometry) and GD/OES (flow discharge optical emission). Molecular absorption spectrometry and capillary electrophoresis are also available to complete the excellent range of analytical tools at our disposal. (authors)

  13. Composite sorbents of inorganic ion-exchangers and polyacrylonitrile binding matrix. Methods of modification of properties of inorganic ion-exchangers for application in column packed beds

    International Nuclear Information System (INIS)

    Sebesta, F.

    1997-01-01

    Methods of preparation of granules of inorganic ion exchangers as well as methods for improvement of granular strength of these materials are reviewed. The resulting ion exchangers are classified in three groups - 'intrinsic', supported and composite ion exchangers. Their properties are compared and possibilities of their technological application are evaluated. A new method of preparation of inorganic-organic composite sorbents of inorganic ion-exchangers and polyacrylonitrile binding matrix is described, advantages and disadvantages of such sorbents are discussed. Proposed fields of application include tratment of liquid radioactive and/or hazardous wastes, decontamination of natural water as well as analytical applications. (author)

  14. Annual report 1983 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1984-05-01

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1983 are presented. The facilities and equipment are barely mentioned. The activities are divided into nine groups: 1. radioisotope chemistry 2. analytical- and organic chemistry 3. environmental chemistry 4. polymer chemistry 5. geochemistry and waste disposal 6. radical chemstry 7. positron annihilation 8. mineral processing 9. general. (author)

  15. Chemistry in South Africa - yesterday, today and tomorrow

    International Nuclear Information System (INIS)

    1987-01-01

    The jubilee convention of the South African Chemical Institute covered the development of chemistry in South Africa. Specialists in the field of chemistry covered topics with reference to organic chemistry, extraction metallurgy, analytical chemistry, mass spectroscopy, instrumentation, theoretical chemistry, physical chemistry, chromatography, industrial chemistry and solid state chemistry

  16. Computer controlled quality of analytical measurements

    International Nuclear Information System (INIS)

    Clark, J.P.; Huff, G.A.

    1979-01-01

    A PDP 11/35 computer system is used in evaluating analytical chemistry measurements quality control data at the Barnwell Nuclear Fuel Plant. This computerized measurement quality control system has several features which are not available in manual systems, such as real-time measurement control, computer calculated bias corrections and standard deviation estimates, surveillance applications, evaluaton of measurement system variables, records storage, immediate analyst recertificaton, and the elimination of routine analysis of known bench standards. The effectiveness of the Barnwell computer system has been demonstrated in gathering and assimilating the measurements of over 1100 quality control samples obtained during a recent plant demonstration run. These data were used to determine equaitons for predicting measurement reliability estimates (bias and precision); to evaluate the measurement system; and to provide direction for modification of chemistry methods. The analytical chemistry measurement quality control activities represented 10% of the total analytical chemistry effort

  17. Collections for terminology in chemistry

    International Nuclear Information System (INIS)

    1974-08-01

    This book describes terminology in chemistry, which is divided into seven chapters. The contents of this book are element name, names of an inorganic compound such as ion and radical and polyacid, an organic compound on general principle and names, general terminology 1 and 2, unit and description method on summary, unit and the symbol for unit, number and pH, Korean mark for people's name in chemistry, names of JUPAC organic compound of summary, hydrocarbons, fused polycyclic hydrocarbons, bridged hydrocarbons, cyclic hydrocarbons with side chains, terpenes hydrocarbons, fundamental heterocyclic systems and heterocyclic spiro compounds.

  18. Combustion chemistry. Activities in the CHEC research programme

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Johansen, K; Johnsson, J E; Glarborg, P; Frandsen, F; Jensen, A; Oestberg, M [Technical Univ. of Denmark, Dept. of Chemical Engineering, Lyngby (Denmark)

    1996-12-01

    The combustion chemistry in the oxidation of fossil fuels and biofuels determines together with mixing and heat transfer the required size of a furnace, the emission of gaseous pollutants, and the formation of ash and deposits on surfaces. This paper describes technologies for solid fuels combustion and gives a summary of the fuels, the pollutant chemistry and the inorganic chemistry in combustion processes. Emphasis is put on the work carried out in the CHEC (Combustion and Harmful Emission Control Research Programme). (au) 173 refs.

  19. Synthesis of polymer/inorganic nanocomposite films using highly porous inorganic scaffolds.

    Science.gov (United States)

    Zhang, Huanjun; Popp, Matthias; Hartwig, Andreas; Mädler, Lutz

    2012-04-07

    Polymeric/inorganic nanocomposite films have been fabricated through a combination of flame-spray-pyrolysis (FSP) made inorganic scaffold and surface initiated polymerization of cyanoacrylate. The highly porous structure of pristine SnO(2) films allows the uptake of cyanoacrylate and the polymerization is surface initiated by the water adsorbed onto the SnO(2) surface. Scanning electron microscopy study reveals a nonlinear increase in the composite particle size and the film thickness with polymerization time. The structural change is rather homogeneous throughout the whole layer. The composite is formed mainly by an increase of the particle size and not by just filling the existing pores. High-resolution transmission electron microscopy imaging shows SnO(2) nanoparticles embedded in the polymeric matrix, constituting the nanocomposite material. Thermogravimetric analysis indicates that the porosity of the nanocomposite films decreases from 98% to 75%, resulting in a significant enhancement of the hardness of the films. DC conductivity measurements conducted in situ on the nanocomposite layer suggest a gradual increase in the layer resistance, pointing to a loss of connectivity between the SnO(2) primary particles as the polymerization proceeds. This journal is © The Royal Society of Chemistry 2012

  20. ASVCP quality assurance guidelines: control of preanalytical, analytical, and postanalytical factors for urinalysis, cytology, and clinical chemistry in veterinary laboratories.

    Science.gov (United States)

    Gunn-Christie, Rebekah G; Flatland, Bente; Friedrichs, Kristen R; Szladovits, Balazs; Harr, Kendal E; Ruotsalo, Kristiina; Knoll, Joyce S; Wamsley, Heather L; Freeman, Kathy P

    2012-03-01

    In December 2009, the American Society for Veterinary Clinical Pathology (ASVCP) Quality Assurance and Laboratory Standards committee published the updated and peer-reviewed ASVCP Quality Assurance Guidelines on the Society's website. These guidelines are intended for use by veterinary diagnostic laboratories and veterinary research laboratories that are not covered by the US Food and Drug Administration Good Laboratory Practice standards (Code of Federal Regulations Title 21, Chapter 58). The guidelines have been divided into 3 reports: (1) general analytical factors for veterinary laboratory performance and comparisons; (2) hematology, hemostasis, and crossmatching; and (3) clinical chemistry, cytology, and urinalysis. This particular report is one of 3 reports and documents recommendations for control of preanalytical, analytical, and postanalytical factors related to urinalysis, cytology, and clinical chemistry in veterinary laboratories and is adapted from sections 1.1 and 2.2 (clinical chemistry), 1.3 and 2.5 (urinalysis), 1.4 and 2.6 (cytology), and 3 (postanalytical factors important in veterinary clinical pathology) of these guidelines. These guidelines are not intended to be all-inclusive; rather, they provide minimal guidelines for quality assurance and quality control for veterinary laboratory testing and a basis for laboratories to assess their current practices, determine areas for improvement, and guide continuing professional development and education efforts. © 2012 American Society for Veterinary Clinical Pathology.

  1. Participation in BCR - certifications by the Laboratory of Analytical Chemistry, Institute for Nuclear Sciences, University of Gent, Belgium

    International Nuclear Information System (INIS)

    Cornelis, R.; Dyg, S.; Dams, R.; Griepink, B.

    1990-01-01

    During the last decade the Laboratory of Analytical Chemistry assisted in the certification of 31 environmental and food reference materials issued by the BCR (Bureau of Reference Materials of the European Communities). The efforts spent can be translated into the following statistics: the 10 most frequently certified elements assisted by the Gent Laboratory are As, Cd, Co, Cu, Fe, Hg, Mn, Pb, Se and Zn. They cover 70% of the certification work. The Gent Laboratory cooperated in 74% of the latter. There are 21 more major and trace elements certified, some in a single product only. Activation analysis was the main analytical technique applied by the Gent Laboratory. In many instances radiochemical separations were involved. (orig.)

  2. Conference 'Chemistry of hydrides' Proceedings

    International Nuclear Information System (INIS)

    1991-07-01

    This collection of thesis of conference of Chemistry hydrides presents the results of investigations concerning of base questions of chemistry of nonorganic hydrides, including synthesis questions, studying of physical and chemical properties, thermodynamics, analytical chemistry, investigation of structure, equilibriums in the systems of metal-hydrogen, behaviour of nonorganic hydrides in non-water mediums and applying investigations in the chemistry area and technology of nonorganic hydrides

  3. Chemistry Division annual progress report for period ending April 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Poutsma, M.L.; Ferris, L.M.; Mesmer, R.E.

    1993-08-01

    The Chemistry Division conducts basic and applied chemical research on projects important to DOE`s missions in sciences, energy technologies, advanced materials, and waste management/environmental restoration; it also conducts complementary research for other sponsors. The research are arranged according to: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, chemistry of advanced inorganic materials, structure and dynamics of advanced polymeric materials, chemistry of transuranium elements and compounds, chemical and structural principles in solvent extraction, surface science related to heterogeneous catalysis, photolytic transformations of hazardous organics, DNA sequencing and mapping, and special topics.

  4. Hybrid Organic/Inorganic Thiol-ene-Based Photopolymerized Networks

    OpenAIRE

    Schreck, Kathleen M.; Leung, Diana; Bowman, Christopher N.

    2011-01-01

    The thiol-ene reaction serves as a more oxygen tolerant alternative to traditional (meth)acrylate chemistry for forming photopolymerized networks with numerous desirable attributes including energy absorption, optical clarity, and reduced shrinkage stress. However, when utilizing commercially available monomers, many thiol-ene networks also exhibit decreases in properties such as glass transition temperature (Tg) and crosslink density. In this study, hybrid organic/inorganic thiol-ene resins ...

  5. Thermochromic Fluorescence from B18H20(NC5H5)(2): An Inorganic-Organic Composite Luminescent Compound with an Unusual Molecular Geometry

    Czech Academy of Sciences Publication Activity Database

    Londesborough, Michael Geoffrey Stephen; Dolanský, Jiří; Cerdán, L.; Lang, Kamil; Jelínek, Tomáš; Oliva, J. M.; Hnyk, Drahomír; Roca-Sanjuan, D.; Frances-Monerris, A.; Martinčík, Jiří; Nikl, Martin; Kennedy, John David

    2017-01-01

    Roč. 5, č. 6 (2017), č. článku UNSP 1600694. ISSN 2195-1071 R&D Projects: GA ČR(CZ) GA13-09876S Institutional support: RVO:61388980 ; RVO:68378271 Keywords : boranes * energy transfer * fluorescence * solar concentrators * thermochromicity Subject RIV: CA - Inorganic Chemistry ; BH - Optics, Masers, Lasers (FZU-D) OBOR OECD: Inorganic and nuclear chemistry ; Optics (including laser optics and quantum optics) (FZU-D) Impact factor: 6.875, year: 2016

  6. News for analytical chemists

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Karlberg, Bo

    2009-01-01

    welfare. In conjunction with the meeting of the steering committee in Tallinn, Estonia, in April, Mihkel Kaljurand and Mihkel Koel of Tallinn University of Technology organised a successful symposium attended by 51 participants. The symposium illustrated the scientific work of the steering committee...... directed to various topics of analytical chemistry. Although affected by the global financial crisis, the Euroanalysis Conference will be held on 6 to 10 September in Innsbruck, Austria. For next year, the programme for the analytical section of the 3rd European Chemistry Congress is in preparation...

  7. AECL research programs in chemistry

    International Nuclear Information System (INIS)

    Crocker, I.H.; Eastwood, T.A.; Smith, D.R.; Stewart, R.B.; Tomlinson, M.; Torgerson, D.F.

    1980-09-01

    Fundamental or underlying research in chemistry is being done in AECL laboratories to further the understanding of processes involved in current nuclear energy systems and maintain an awareness of progress at the frontiers of chemical research so that new advances can be turned to advantage in future AECL endeavours. The report introduces the current research topics and describes them briefly under the following headings: radiation chemistry, isotope separation, high temperature solution chemistry, fuel reprocessing chemistry, and analytical chemistry. (auth)

  8. 12. 'Tihany' symposium on radiation chemistry. Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The 12th 'Tihany' symposium on radiation chemistry was held in Zalakaros in the organization of the Hungarian Academy of Sciences, Institute of Isotope and Surface Chemistry. The scientific program of the Symposium will cover all the major disciplines of both basic and applied radiation chemistry. The topics were the fundamental processes in radiation chemistry, the different irradiations ways, radiolysis of inorganic and organic systems, nanoscale and the macromolecular systems. Also could be seen presentations in the subject of the food irradiation, the environmental protection, biomedical materials radiation, about the resistant materials, the radiation sterilization and the dosimetry. (S.I.)

  9. 12. 'Tihany' symposium on radiation chemistry. Program and abstracts

    International Nuclear Information System (INIS)

    2011-01-01

    The 12th 'Tihany' symposium on radiation chemistry was held in Zalakaros in the organization of the Hungarian Academy of Sciences, Institute of Isotope and Surface Chemistry. The scientific program of the Symposium will cover all the major disciplines of both basic and applied radiation chemistry. The topics were the fundamental processes in radiation chemistry, the different irradiations ways, radiolysis of inorganic and organic systems, nanoscale and the macromolecular systems. Also could be seen presentations in the subject of the food irradiation, the environmental protection, biomedical materials radiation, about the resistant materials, the radiation sterilization and the dosimetry. (S.I.)

  10. Actinide Sciences at ITN - Basic Studies in Chemistry with Potential Interest for Partitioning, Fuel Fabrication and More

    International Nuclear Information System (INIS)

    Almeida, M.; Dias, M.; Goncalves, A.P.; Henriques, M.S.; Lopes, E.B.; Pereira, L.C.J.; Santos, I.C.; Verbovytskyy, Y.; Waerenborgh, J.C.; Branco, J.B.; Carretas, J.M.; Cruz, A.; Ferreira, A.C.; Gasche, T.A.; Leal, J.P.; Lopes, G.; Lourenco, C.; Marcalo, J.; Maria, L.; Monteiro, B.; Mora, E.; Pereira, C.C.L.; Paiva, I.

    2010-01-01

    The current activities in the area of actinide chemistry at ITN, comprising basic research studies in inorganic and organometallic chemistry, catalysis, gas-phase ion chemistry, thermochemistry, and solid state chemistry, are briefly described. Actinide (and lanthanide) chemistry studies at ITN will be pursued connecting basic research with potential applications in nuclear and non-nuclear areas. (authors)

  11. Polyhedral boron-containing cluster chemistry: Aspects of architecture beyond the icosahedron

    Czech Academy of Sciences Publication Activity Database

    Shea, S. L.; Bould, J.; Londesborough, M. G. S.; Perea, S. D.; Franken, A.; Ormsby, D. L.; Jelínek, Tomáš; Štíbr, Bohumil; Holub, Josef; Kilner, C. A.; Thorton-Pett, M.; Kennedy, J. D.

    2003-01-01

    Roč. 75, č. 9 (2003), s. 1239-1248 ISSN 0033-4545 R&D Projects: GA MŠk LN00A028 Grant - others:UK EPRC(GB) J56929 Institutional research plan: CEZ:AV0Z4032918 Keywords : molecular chemistry * carbon hydrides Subject RIV: CA - Inorganic Chemistry Impact factor: 1.471, year: 2003

  12. the need for a “bologna declaration” pronouncement for africa's ...

    African Journals Online (AJOL)

    Temechegn

    lecturers, academics and leaders in chemical industries and research. .... Related topics per sub-discipline of chemistry which build on each other and that could have ... disciplines of chemistry, viz., analytical, inorganic, organic and physical ...

  13. Inorganic Halogen Oxidizer Research

    Science.gov (United States)

    1979-02-16

    Inorganic Chemistry. Vol. 14. No. 9. 1975 Karl 0. Christ¢ (21) L. J. Basile . P. LaBonvillk. J. R. Ferraro, and J. M. Williams. J. Claim. (38) K. 0. Chriae. E... basils of a nonplanar structure of symmetry CI, are revised for six fundamental frequencies. Imalredetle either the 1:2 adduct N 2F4.2SbF5 or the 1:3...8217 in mT are 7 2.1 for B, facility. We aba thank L. K. White and R. L. Belford 111.0 for C, 55.0 for N, and 17100 for F, and the atomic aniso- trop’c

  14. Curriculum Outline for Introduction to Engineering Chemistry. First Edition. Review Cycle-Annual.

    Science.gov (United States)

    Schlenker, Richard M.

    This curriculum outline consists of behavioral objectives (called terminal and enabling objectives) for Introduction to Engineering Chemistry, a one-semester, post-secondary course consisting of four 1-hour lectures each week. Course goal is to introduce marine engineering students to the rudiments of basic/introductory inorganic chemistry. The…

  15. Artificial inorganic Biohybrids: the functional combination of microorganisms and cells with inorganic materials.

    Science.gov (United States)

    Holzmeister, Ib; Schamel, Martha; Groll, Jürgen; Gbureck, Uwe; Vorndran, Elke

    2018-04-23

    Biohybrids can be defined as the functional combination of proteins, viable cells or microorganisms with non-biological materials. This article reviews recent findings on the encapsulation of microorganisms and eukaryotic cells in inorganic matrices such as silica gels or cements. The entrapment of biological entities into a support material is of great benefit for processing since the encapsulation matrix protects sensitive cells from shear forces, unfavourable pH changes, or cytotoxic solvents, avoids culture-washout, and simplifies the separation of formed products. After reflecting general aspects of such an immobilization as well as the chemistry of the inorganic matrices, we focused on manufacturing aspects and the application of such biohybrids in biotechnology, medicine as well as in environmental science and for civil engineering purpose. The encapsulation of living cells and microorganisms became an intensively studied and rapidly expanding research field with manifold applications in medicine, bio- and environmental technology, or civil engineering. Here, the use of silica or cements as encapsulation matrices have the advantage of a higher chemical and mechanical resistance towards harsh environmental conditions during processing compared to their polymeric counterparts. In this perspective, the article gives an overview about the inorganic material systems used for cell encapsulation, followed by reviewing the most important applications. The future may lay in a combination of the currently achieved biohybrid systems with additive manufacturing techniques. In a longer perspective, this would enable the direct printing of cell loaded bioreactor components. Copyright © 2018. Published by Elsevier Ltd.

  16. Annual Report 1984. Chemistry Department

    DEFF Research Database (Denmark)

    Funck, Jytte; Nielsen, Ole John

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, an......, analytical- and organic chemistry, environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general.......This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry...

  17. SPECIAL ISSUE DEDICATED TO THE 10TH ANNIVERSARY OF THE CHEMISTRY JOURNAL OF MOLDOVA. GENERAL, INDUSTRIAL AND ECOLOGICAL CHEMISTRY

    OpenAIRE

    Gheorghe DUCA

    2016-01-01

    Ten years ago, in 2006, CHEMISTRY JOURNAL OF MOLDOVA. General, Industrial and Ecological Chemistry was founded by the Institute of Chemistry of Academy of Sciences of Moldova and Moldova State University. Chemistry Journal of Moldova is an open access, international indexed and peer-reviewed journal that publishes papers of high quality containing original results in the areas of Chemical Sciences, such as analytical chemistry, ecological chemistry, food chemistry, industrial chem...

  18. Supplemental Instruction in Physical Chemistry I

    Science.gov (United States)

    Toby, Ellen; Scott, Timothy P.; Migl, David; Kolodzeji, Elizabeth

    2016-01-01

    Physical chemistry I at Texas A&M University is an upper division course requiring mathematical and analytical skills. As such, this course poses a major problem for many Chemistry, Engineering, Biochemistry and Genetics majors. Comparisons between participants and non-participants in Supplemental Instruction for physical chemistry were made…

  19. Goldilocks and the three inorganic equilibria: how Earth's chemistry and life coevolve to be nearly in tune.

    Science.gov (United States)

    Rickaby, R E M

    2015-03-13

    Life and the chemical environment are united in an inescapable feedback cycle. The periodic table of the elements essential for life has transformed over Earth's history, but, as today, evolved in tune with the elements available in abundance in the environment. The most revolutionary time in life's history was the advent and proliferation of oxygenic photosynthesis which forced the environment towards a greater degree of oxidation. Consideration of three inorganic chemical equilibria throughout this gradual oxygenation prescribes a phased release of trace metals to the environment, which appear to have coevolved with employment of these new chemicals by life. Evolution towards complexity was chemically constrained, and changes in availability of notably Fe, Zn and Cu paced the systematic development of complex organisms. Evolving life repeatedly catalysed its own chemical challenges via the unwitting release of new and initially toxic chemicals. Ultimately, the harnessing of these allowed life to advance to greater complexity, though the mechanism responsible for translating novel chemistry to heritable use remains elusive. Whether a chemical acts as a poison or a nutrient lies both in the dose and in its environmental history. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. Analytical mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  1. Post-analytical stability of 23 common chemistry and immunochemistry analytes in incurred samples

    DEFF Research Database (Denmark)

    Nielsen, Betina Klint; Frederiksen, Tina; Friis-Hansen, Lennart

    2017-01-01

    BACKGROUND: Storage of blood samples after centrifugation, decapping and initial sampling allows ordering of additional blood tests. The pre-analytic stability of biochemistry and immunochemistry analytes has been studied in detail, but little is known about the post-analytical stability...... in incurred samples. METHODS: We examined the stability of 23 routine analytes on the Dimension Vista® (Siemens Healthineers, Denmark): 42-60 routine samples in lithium-heparin gel tubes (Vacutainer, BD, USA) were centrifuged at 3000×g for 10min. Immediately after centrifugation, initial concentration...... of analytes were measured in duplicate (t=0). The tubes were stored decapped at room temperature and re-analyzed after 2, 4, 6, 8 and 10h in singletons. The concentration from reanalysis were normalized to initial concentration (t=0). Internal acceptance criteria for bias and total error were used...

  2. Redox-responsive theranostic nanoplatforms based on inorganic nanomaterials.

    Science.gov (United States)

    Han, Lu; Zhang, Xiao-Yong; Wang, Yu-Long; Li, Xi; Yang, Xiao-Hong; Huang, Min; Hu, Kun; Li, Lu-Hai; Wei, Yen

    2017-08-10

    Spurred on by advances in materials chemistry and nanotechnology, scientists have developed many novel nanopreparations for cancer diagnosis and therapy. To treat complex malignant tumors effectively, multifunctional nanomedicines with targeting ability, imaging properties and controlled drug release behavior should be designed and exploited. The therapeutic efficiency of loaded drugs can be dramatically improved using redox-responsive nanoplatforms which can sense the differences in the redox status of tumor tissues and healthy ones. Redox-sensitive nanocarriers can be constructed from both organic and inorganic nanomaterials; however, at present, drug delivery nanovectors progressively lean towards inorganic nanomaterials because of their facile synthesis/modification and their unique physicochemical properties. In this review, we focus specifically on the preparation and application of redox-sensitive nanosystems based on mesoporous silica nanoparticles (MSNs), carbon nanomaterials, magnetic nanoparticles, gold nanomaterials and other inorganic nanomaterials. We discuss relevant examples of redox-sensitive nanosystems in each category. Finally, we discuss current challenges and future strategies from the aspect of material design and practical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Analytical applications of ICP-FTS

    International Nuclear Information System (INIS)

    Faires, L.M.; Palmer, B.A.; Cunningham, P.T.

    1986-01-01

    The Analytical Chemistry Group of the Chemistry Division at Los Alamos National Laboratory has been investigating the analytical utility of the inductively coupled plasma (ICP) - Fourier transform spectrometer (FTS) combination. While a new state-of-the-art FTS facility is under construction at Los Alamos, preliminary data has been obtained on the one-meter FTS at the National Solar Observatory at Kitt Peak, Arizona. This paper presents an update of the Los Alamos FTS facility, which is expected to be completed in 1986, and presents data showing the analytical potential of an ICP-FTS system. Some of the potential problems of the multiplex disadvantage are discussed, and the advantages of the high resolution obtainable with the FTS are illustrated

  4. Spotlight on medicinal chemistry education.

    Science.gov (United States)

    Pitman, Simone; Xu, Yao-Zhong; Taylor, Peter; Turner, Nicholas; Coaker, Hannah; Crews, Kasumi

    2014-05-01

    The field of medicinal chemistry is constantly evolving and it is important for medicinal chemists to develop the skills and knowledge required to succeed and contribute to the advancement of the field. Future Medicinal Chemistry spoke with Simone Pitman (SP), Yao-Zhong Xu (YX), Peter Taylor (PT) and Nick Turner (NT) from The Open University (OU), which offers an MSc in Medicinal Chemistry. In the interview, they discuss the MSc course content, online teaching, the future of medicinal chemistry education and The OU's work towards promoting widening participation. SP is a Qualifications Manager in the Science Faculty at The OU. She joined The OU in 1993 and since 1998 has been involved in the Postgraduate Medicinal Chemistry provision at The OU. YX is a Senior Lecturer in Bioorganic Chemistry at The OU. He has been with The OU from 2001, teaching undergraduate courses of all years and chairing the master's course on medicinal chemistry. PT is a Professor of Organic Chemistry at The OU and has been involved with the production and presentation of The OU courses in Science and across the university for over 30 years, including medicinal chemistry modules at postgraduate level. NT is a Lecturer in Analytical Science at The OU since 2009 and has been involved in the production of analytical sciences courses, as well as contributing to the presentation of a number of science courses including medicinal chemistry.

  5. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, V.

    1982-01-01

    The author of the book has had 25 years of experience at the Nuclear Chemistry of Prague Technical University. In consequence, the book is intended as a basic textbook for students of this field. Its main objectives are an easily understandable presentation of the complex subject and in spite of the uncertainty which still characterizes the definition and subjects of nuclear chemistry - a systematic classification and logical structure. Contents: 1. Introduction (history and definition); 2. General nuclear chemistry (physical fundamentals, hot atom chemistry, interaction of nuclear radiation with matter, radioactive elements, isotope effects, isotope exchange, chemistry of radioactive trace elements); 3. Methods of nuclear chemistry of nuclear chemistry (radiochemical methods, activation, separation and enrichment chemistry); 4. Preparative nuclear chemistry (isotope production, labelled compounds); 5. Analytival nuclear chemistry; 6. Applied nuclear chemistry (isotope applications in general physical and analytical chemistry). The book is supplemented by an annex with tables, a name catalogue and a subject index which will facilitate access to important information. (RB) [de

  6. Curriculum Outline for Introduction to Engineering Chemistry. Second Edition. Review Cycle-Annual.

    Science.gov (United States)

    Schlenker, Richard M.

    Introduction to Engineering Chemistry is a four-credit hour (one semester) course designed to introduce marine engineering students to the rudiments of basic (introductory) inorganic chemistry. The course consists of 18 units (numbered 1.0 through 18.0) focusing on these subject areas: fundamental concepts; structure of the atom and the periodic…

  7. Analytical Chemistry Division annual progress report for period ending December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-01-01

    The following sentences highlight some of the technical activities carried out during 1991. They illustrate the diversity of programs and technical work performed within the Analytical Chemistry Division. Our neutron activation analysis laboratory at HFIR was placed into operation during 1991. We have combined inductively coupled plasma mass spectrometry (ICP/MS) with a preparation procedure developed at the Argonne National Laboratory to measure ultra-trace levels of U, Pu, Np, and Am in body fluids, primarily urine. Much progress has been made over the last year in the interfacing of an rf-powered glow discharge source to a double-focusing mass spectrometer. Preliminary experiments using electrospray ionization combined with ion trap mass spectrometry show much promise for the analysis of metals in solution. A secondary ion microprobe has been constructed that permits determination of the distribution of organic compounds less than a monolayer thick on samples as large as 1 cm diameter. Fourier transform mass spectrometry has been demonstrated to be a highly effective tool for the detailed characterization of biopolymers, especially normal and modified oligonucleotides. Much has been accomplished in understanding the fundamentals of quadrupole ion trap mass spectrometry. Work with ITMS instrumentation has led to the development of rapid methods for the detection of trace organics in environmental and physiological samples. A new type of time-of-flight mass spectrometer was designed for use with our positron ionization experiments. Fundamental research on chromatography at high concentrations and on gas-solid adsorption has continued. The preparation of a monograph on the chemistry of environmental tobacco smoke was completed this year.

  8. Synthesis of tetravalent actinide chlorides. Versatile compounds for actinide chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Maerz, Juliane [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Chemistry of the F-Elements

    2016-07-01

    Anhydrous actinide tetrachlorides (AnCl{sub 4}) were synthesized under mild conditions to provide versatile compounds for actinide chemistry. They enable a direct access to actinide complexes with organic and inorganic ligands.

  9. Quality assurance for health and environmental chemistry: 1986

    International Nuclear Information System (INIS)

    Gautier, M.A.; Gladney, E.S.; Moss, W.D.; Phillips, M.B.; O'Malley, B.T.

    1987-11-01

    This report documents the continuing quality assurance efforts of the Health and Environmental Chemistry Group at the Los Alamos National Laboratory. The philosophy, methodology, and computing resources used by the quality assurance program to encompass the diversity of analytical chemistry practiced in the group are described. Included in the report are all quality assurance reference materials used, along with their certified or consensus concentrations, and all analytical chemistry quality assurance measurements made by HSE-9 during 1986. 27 refs., 3 figs

  10. Experimental and Theoretical Studies of Atmosphereic Inorganic Chlorine Chemistry

    Science.gov (United States)

    Sander, Stanley P.; Friedl, Randall R.

    1993-01-01

    Over the last five years substantial progress has been made in defining the realm of new chlorine chemistry in the polar stratosphere. Application of existing experimental techniques to potentially important chlorine-containing compounds has yielded quantitative kinetic and spectroscopic data as well as qualitative mechanistic insights into the relevant reactions.

  11. Radioanalytical Chemistry for Automated Nuclear Waste Process Monitoring

    International Nuclear Information System (INIS)

    Egorov, Oleg B.; Grate, Jay W.; DeVol, Timothy A.

    2004-01-01

    This research program is directed toward rapid, sensitive, and selective determination of beta and alpha-emitting radionuclides such as 99Tc, 90Sr, and trans-uranium (TRU) elements in low activity waste (LAW) processing streams. The overall technical approach is based on automated radiochemical measurement principles, which entails integration of sample treatment and separation chemistries and radiometric detection within a single functional analytical instrument. Nuclear waste process streams are particularly challenging for rapid analytical methods due to the complex, high-ionic-strength, caustic brine sample matrix, the presence of interfering radionuclides, and the variable and uncertain speciation of the radionuclides of interest. As a result, matrix modification, speciation control, and separation chemistries are required for use in automated process analyzers. Significant knowledge gaps exist relative to the design of chemistries for such analyzers so that radionuclides can be quantitatively and rapidly separated and analyzed in solutions derived from low-activity waste processing operations. This research is addressing these knowledge gaps in the area of separation science, nuclear detection, and analytical chemistry and instrumentation. The outcome of these investigations will be the knowledge necessary to choose appropriate chemistries for sample matrix modification and analyte speciation control and chemistries for rapid and selective separation and preconcentration of target radionuclides from complex sample matrices. In addition, new approaches for quantification of alpha emitters in solution using solid-state diode detectors, as well as improved instrumentation and signal processing techniques for use with solid-state and scintillation detectors, will be developed. New knowledge of the performance of separation materials, matrix modification and speciation control chemistries, instrument configurations, and quantitative analytical approaches will

  12. SHORT COMMUNICATION

    African Journals Online (AJOL)

    a

    ______. *Corresponding author. E-mail: vani_chem@yahoo.com. SHORT COMMUNICATION. OXIDATION OF L-CYSTINE BY CHROMIUM(VI) - A KINETIC STUDY. Kalyan Kumar Adari, Annapurna Nowduri and Vani Parvataneni*. Department of Inorganic and Analytical Chemistry, School of Chemistry, Andhra University,.

  13. Physics, radiology, and chemistry. An introduction to natural science. 8. rev. ed.

    International Nuclear Information System (INIS)

    Linde, O.K.; Knigge, H.J.

    1991-01-01

    This book is an introduction to physics and chemistry especially for medical personnel. After a general introduction, measurement methods, mechanics including mechanics of solid bodies, fluids and gases, heat, optics, acoustics, electricity, radiations including their biological effects, general chemistry, inorganic and organic chemistry are treated. Every chapter contains exercises mostly in connection with medical and biological effects. Furthermore connections with biology and medicine are considered. (orig./HP) With 104 figs., 51 tabs [de

  14. A handbook of decomposition methods in analytical chemistry

    International Nuclear Information System (INIS)

    Bok, R.

    1984-01-01

    Decomposition methods of metals, alloys, fluxes, slags, calcine, inorganic salts, oxides, nitrides, carbides, borides, sulfides, ores, minerals, rocks, concentrates, glasses, ceramics, organic substances, polymers, phyto- and biological materials from the viewpoint of sample preparation for analysis have been described. The methods are systemitized according to decomposition principle: thermal with the use of electricity, irradiation, dissolution with participation of chemical reactions and without it. Special equipment for different decomposition methods is described. Bibliography contains 3420 references

  15. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Matel, L.; Dulanska, S.

    2013-01-01

    This text-book is an introductory text in nuclear chemistry and radiochemistry, aimed on university undergraduate students in chemistry and related disciplines (physics, nuclear engineering). It covers the key aspects of modern nuclear chemistry. The text begins with basic theories in contemporary physics. It relates nuclear phenomena to key divisions of chemistry such as atomic structure, spectroscopy, equilibria and kinetics. It also gives an introduction to sources of ionizing radiation, detection of ionizing radiation, nuclear power industry and accident on nuclear installations as well as basic knowledge's of radiobiology. This book is essential reading for those taking a first course in nuclear chemistry and is a useful companion to other volumes in physical and analytical chemistry. It will also be of use to those new to working in nuclear chemistry or radiochemistry.

  16. Inorganic Constituents in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović A.

    2006-02-01

    Full Text Available Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates,minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fractions of trace elements usually decrease when the rank of coal increases.Fractions of the inorganic elements are different, depending on the coal bed and basin. A varietyof analytical methods and techniques can be used to determine the mass fractions, mode ofoccurrence, and distribution of organic constituents in coal. There are many different instrumentalmethods for analysis of coal and coal products but atomic absorption spectroscopy – AAS is theone most commonly used. Fraction and mode of occurrence are one of the main factors that haveinfluence on transformation and separation of inorganic constituents during coal conversion.Coal, as an important world energy source and component for non-fuels usage, will be continuouslyand widely used in the future due to its relatively abundant reserves. However, there is aconflict between the requirements for increased use of coal on the one hand and less pollution onthe other. It’s known that the environmental impacts, due to either coal mining or coal usage, canbe: air, water and land pollution. Although, minor components, inorganic constituents can exert asignificant influence on the economic value, utilization, and environmental impact of the coal.

  17. Popular Science Articles for Chemistry Teaching

    Directory of Open Access Journals (Sweden)

    Ketevan Kupatadze

    2017-07-01

    Full Text Available The presented paper reviews popular science articles (these articles are published in online magazine “The Teacher” as one of the methods of chemistry teaching. It describes which didactic principles they are in line with and how this type of articles can be used in order to kindle the interest of pupils, students and generally, the readers of other specialties, in chemistry.  The articles review the main topics of inorganic/organic chemistry, biochemistry and ecological chemistry in a simple and entertaining manner. A part of the articles is about "household" chemistry. Chemical topics are related to poetry, literature, history of chemistry or simply, to fun news. The paper delineates the structure of popular science articles and the features of engaging students. It also reviews the teachers' and students' interview results about the usage of popular science articles in chemistry teaching process. The aforementioned pedagogical study revealed that the popular science articles contain useful information not only for the students of other specialties, but also for future biologists and ecologists (having chemistry as a mandatory subject at their universities. The articles are effectively used by teachers on chemistry lessons to kindle students' interest in this subject. DOI: http://dx.doi.org/10.17807/orbital.v9i3.960 

  18. Recent analytical applications of magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Mohammad Faraji

    2016-07-01

    Full Text Available Analytical chemistry has experienced, as well as other areas of science, a big change due to the needs and opportunities provided by analytical nanoscience and nanotechnology. Now, nanotechnology is increasingly proving to be a powerful ally of analytical chemistry to achieve its objectives, and to simplify analytical processes. Moreover, the information needs arising from the growing nanotechnological activity are opening an exciting new field of action for analytical chemists. Magnetic nanoparticles have been used in various fields owing to their unique properties including large specific surface area and simple separation with magnetic fields. For Analytical applications, they have been used mainly for sample preparation techniques (magnetic solid phase extraction with different advanced functional groups (layered double hydroxide, β-cyclodextrin, carbon nanotube, graphen, polymer, octadecylsilane and automation of it, microextraction techniques enantioseparation and chemosensors. This review summarizes the basic principles and achievements of magnetic nanoparticles in sample preparation techniques, enantioseparation and chemosensors. Also, some selected articles recently published (2010-2016 have been reviewed and discussed.

  19. Control of the interphase interaction and morphology in the organic-inorganic polymer nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Matějka, Libor; Murias, Piotr

    2010-01-01

    Roč. 4, č. 10 (2010), s. 45-50 ISSN 1934-8959 R&D Projects: GA AV ČR IAA400500701 Institutional research plan: CEZ:AV0Z40500505 Keywords : organic-inorganic polymer * interphase interaction * nanocomposite Subject RIV: CD - Macromolecular Chemistry http://www.davidpublishing.com

  20. Technetium in chemistry and nuclear medicine

    International Nuclear Information System (INIS)

    Deutsch, E.; Nicolini, M.; Wagner, H.N.

    1983-01-01

    This volume explores the potential of technetium radiopharmaceuticals in clinical nuclear medicine. The authors examine the capabilities of synthetic inorganic chemists to synthesize technetium radiopharmaceuticals and the specific requirements of the nuclear medicine practitioner. Sections cover the chemistry of technetium, the production of radiopharmaceuticals labeled with technetium, and the use of technetium radiopharmaceuticals in nuclear medicine

  1. Radioanalytical Chemistry for Automated Nuclear Waste Process Monitoring

    International Nuclear Information System (INIS)

    Egorov, Oleg B.; Grate, Jay W.; DeVol, Timothy A.

    2003-01-01

    This research program is directed toward rapid, sensitive, and selective determination of beta and alpha-emitting radionuclides such as 99Tc, 90Sr, and trans-uranium (TRU) elements in low activity waste (LAW) processing streams. The overall technical approach is based on automated radiochemical measurement principles. Nuclear waste process streams are particularly challenging for rapid analytical methods due to the complex, high- ionic-strength, caustic brine sample matrix, the presence of interfering radionuclides, and the variable and uncertain speciation of the radionuclides of interest. As a result, matrix modification, speciation control, and separation chemistries are required for use in automated process analyzers. Significant knowledge gaps exist relative to the design of chemistries for such analyzers so that radionuclides can be quantitatively and rapidly separated and analyzed in solutions derived from low-activity waste processing operations. This research is addressing these knowledge gaps in the area of separation science, nuclear detection, and analytical chemistry and instrumentation. The outcome of these investigations will be the knowledge necessary to choose appropriate chemistries for sample matrix modification and analyte speciation control and chemistries for rapid and selective separation and preconcentration of target radionuclides from complex sample matrices. In addition, new approaches for quantification of alpha emitters in solution using solid state diode detectors, as well as improved instrumentation and signal processing techniques for use with solid-state and scintillation detectors, will be developed. New knowledge of the performance of separation materials, matrix modification and speciation control chemistries, instrument configurations, and quantitative analytical approaches will provide the basis for designing effective instrumentation for radioanalytical process monitoring. Specific analytical targets include 99 Tc, 90Sr and

  2. Handbook of soil analysis. Mineralogical, organic and inorganic methods

    Energy Technology Data Exchange (ETDEWEB)

    Pansu, M. [Centre IRD, 34 - Montpellier (France); Gautheyrou, J.

    2006-07-01

    This handbook is a reference guide for selecting and carrying out numerous methods of soil analysis. It is written in accordance with analytical standards and quality control approaches.It covers a large body of technical information including protocols, tables, formulae, spectrum models, chromatograms and additional analytical diagrams. The approaches are diverse, from the simplest tests to the most sophisticated determination methods in the physical chemistry of mineralogical and organic structures, available and total elements, soil exchange complex, pesticides and contaminants, trace elements and isotopes.As a basic reference, it will be particularly useful to scientists, engineers, technicians, professors and students, in the areas of soil science, agronomy, earth and environmental sciences as well as in related fields such as analytical chemistry, geology, hydrology, ecology, climatology, civil engineering and industrial activities associated with soil. (orig.)

  3. Analytical Chemistry Department annual report, 1975

    International Nuclear Information System (INIS)

    Mosen, A.W.

    1976-01-01

    The analytical methods developed or adopted for use in support of radiochemistry and gamma ray spectroscopy, HTGR fuel reprocessing, HTGR fuel development, TRIGA fuel fabrication, and miscellaneous projects are reported

  4. Application of californium-252 neutron sources for analytical chemistry

    International Nuclear Information System (INIS)

    Ishii, Daido

    1976-01-01

    The researches made for the application of Cf-252 neutron sources to analytical chemistry during the period from 1970 to 1974 including partly 1975 are reviewed. The first part is the introduction to the above. The second part deals with general review of symposia, publications and the like. Attention is directed to ERDA publishing the periodical ''Californium-252 Progress'' and to a study group of Cf-252 utilization held by Japanese Radioisotope Association in 1974. The third part deals with its application for radio activation analysis. The automated absolute activation analysis (AAAA) of Savannha River is briefly explained. The joint experiment of Savannha River operation office with New Brunswick laboratory is mentioned. Cf-252 radiation source was used for the non-destructive analysis of elements in river water. East neutrons of Cf-252 were used for the quantitative analysis of lead in paints. Many applications for industrial control processes have been reported. Attention is drawn to the application of Cf-252 neutron sources for the field search of neutral resources. For example, a logging sonde for searching uranium resources was developed. the fourth part deals with the application of the analysis with gamma ray by capturing neutrons. For example, a bore hole sonde and the process control analysis of sulfur in fuel utilized capture gamma ray. The prompt gamma ray by capturing neutrons may be used for the nondestructive analysis of enrivonment. (Iwakiri, K.)

  5. A combinatorial chemistry approach to the investigation of cerium oxide and plutonium oxide reactions with small molecules

    Science.gov (United States)

    Brady, John T.; Warner, Benjamin P.; Bridgewater, Jon S.; Havrilla, George J.; Morris, David E.; Buscher, C. Thomas

    2000-07-01

    We are currently investigating the potential chemistry of the 3013 Standard waste storage containers. These containers are filled with waste that is a mixture of inorganic salts and plutonium oxide that has been calcined to remove water and other volatiles. There has been concern about possible pressure buildup due to the formation of hydrogen or other gases. We are utilizing a combinatorial chemistry approach to investigate a range of possible reactions that may occur in the containers with various concentrations of metal oxides and inorganic salts.

  6. Quality assurance for health and environmental chemistry: 1989

    International Nuclear Information System (INIS)

    Gautier, M.A.; Gladney, E.S.; Koski, N.L.; Jones, E.A.; Phillips, M.B.; O'Malley, B.T.

    1990-12-01

    This report documents the continuing quality assurance efforts of the Health and Environmental Chemistry Group (HSE-9) at the Los Alamos National Laboratory. The philosophy, methodology, computing resources, and laboratory information management system used by the quality assurance program to encompass the diversity of analytical chemistry practiced in the group are described. Included in the report are all quality assurance reference materials used, along with their certified or consensus concentrations, and all analytical chemistry quality assurance measurements made by HSE-9 during 1989. 38 refs., 8 figs., 3 tabs

  7. Multi length-scale characterisation inorganic materials series

    CERN Document Server

    Bruce, Duncan W; Walton, Richard I

    2013-01-01

    Whereas the first five volumes in the Inorganic Materials Series focused on particular classes of materials (synthesis, structures, chemistry, and properties), it is now very timely to provide complementary volumes that introduce and review state-of-the-art techniques for materials characterization. This is an important way of emphasizing the interplay of chemical synthesis and physical characterization. The methods reviewed include spectroscopic, diffraction, and surface techniques that examine the structure of materials on all length scales, from local atomic structure to long-range crystall

  8. Analytical capillary isotachophoresis after 50 years of development: Recent progress 2014-2016

    Czech Academy of Sciences Publication Activity Database

    Malá, Zdeňka; Gebauer, Petr; Boček, Petr

    2017-01-01

    Roč. 38, č. 1 (2017), s. 9-19 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA13-05762S Institutional support: RVO:68081715 Keywords : analytical electrophoresis * isotachophoresis (ITP) * review Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.744, year: 2016

  9. Annual Report of Institute of Nuclear Chemistry and Technology 2001

    International Nuclear Information System (INIS)

    2002-06-01

    The INCT 2001 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology in Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators and nuclear analytical methods

  10. Annual Report 2004 of Institute of Nuclear Chemistry and Technology

    International Nuclear Information System (INIS)

    Michalik, J.; Smulek, W.; Godlewska-Para, E.

    2005-06-01

    The INCT 2004 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators, radiobiology and nuclear analytical methods

  11. Annual Report 2004 of Institute of Nuclear Chemistry and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Michalik, J; Smulek, W; Godlewska-Para, E [eds.

    2005-06-01

    The INCT 2004 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators, radiobiology and nuclear analytical methods.

  12. Annual Report of Institute of Nuclear Chemistry and Technology 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    The INCT 2001 Annual Report is the review of scientific activities in all branches being developed in the Institute of Nuclear Chemistry and Technology in Warsaw. The studies are connected in general with the following fields: radiation chemistry and physics, radiation technologies, radiochemistry, stable isotopes, nuclear analytical methods, chemistry in general, radiobiology, process engineering, material engineering, structural studies and diagnostics, nucleonic control systems and accelerators and nuclear analytical methods.

  13. Identification of inorganic anions by gas chromatography/mass spectrometry.

    Science.gov (United States)

    Sakayanagi, Masataka; Yamada, Yaeko; Sakabe, Chikako; Watanabe, Kunio; Harigaya, Yoshihiro

    2006-03-10

    Inorganic anions were identified by using gas chromatography/mass spectrometry (GC/MS). Derivatization of the anions was achieved with pentafluorobenzyl p-toluenesulphonate (PFB-Tos) as the reaction reagent and a crown ether as a phase transfer catalyst. When PFB-Br was used as the reaction reagent, the retention time of it was close to those of the derivatized inorganic anions and interfered with the analysis. In contrast, the retention time of PFB-Tos differed greatly from the PFB derivatives of the inorganic anions and the compounds of interest could be detected without interference. Although the PFB derivatives of SO4, S2O3, CO3, ClO4, and ClO3 could not be detected, the derivatives of F, Cl, Br, I, CN, OCN, SCN, N3, NO3, and NO2 were detected using PFB-Tos as the derivatizing reagent. The inorganic anions were detectable within 30 ng approximately, which is of sufficient sensitivity for use in forensic chemistry. Accurate mass number was measured for each PFB derivative by high-resolution mass spectrometry (HRMS) within a measurement error of 2 millimass units (mmu), which allowed determination of the compositional formula from the mass number. In addition, actual analysis was performed successively by our method using trial samples of matrix.

  14. Materials of 47. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry. Volume 3

    International Nuclear Information System (INIS)

    2004-01-01

    Scientific assemblies of Polish Chemical Society are the most important chemical meeting organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects was proposed as scientific sessions and symposia topics: organic chemistry, inorganic chemistry, physical chemistry, analytical chemistry, technology and chemical engineering, polymer chemistry, solid state chemistry, catalysis, biological chemistry, chemistry and technology of coal, environmental protection, didactics of chemistry, history of chemistry, young scientist forum

  15. A new inorganic-organic nanohybrid based on a copper(II) semicarbazone complex and the PMo.sub.12./sub.O.sup.3-./sup..sub.40./sub. polyanion: synthesis, characterization, crystal structure and photocatalytic activity for degradation of cationic dyes

    Czech Academy of Sciences Publication Activity Database

    Farhadi, S.; Mahmoudi, F.; Dušek, Michal; Eigner, Václav; Kučeráková, Monika

    2017-01-01

    Roč. 122, Jan (2017), s. 247-256 ISSN 0277-5387 R&D Projects: GA ČR(CZ) GA14-03276S; GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : inorganic-organic hybrid * semicarbazone complex * nanohybrid * photodegradation * cationic dyes Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.926, year: 2016

  16. Enrichment of lithium isotope .sup.6./sup.Li by ion exchange resin with specific particle size

    Czech Academy of Sciences Publication Activity Database

    Mikeš, J.; Ďurišová, Jana; Jelínek, L.

    2017-01-01

    Roč. 312, č. 1 (2017), s. 13-18 ISSN 0236-5731 Institutional support: RVO:67985831 Keywords : lithium * isotope separation * elution chromatography * ion exchange chromatography Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.282, year: 2016

  17. Development of Distributed System for Informational Location and Control on the Corporate Web Portal "Analytical Chemistry in Russia"

    Science.gov (United States)

    Shirokova, V. I.; Kolotov, V. P.; Alenina, M. V.

    A new Internet portal developed by community of Russian analysts has been launched in 2001 (http://www.geokhi.ru/~rusanalytchem, http://www.rusanalytchem.org) Corporate Web Portal information, "Analytical Chemistry in Russia" , Corporate Web Portal information, "Analytical Chemistry in Russia" ). Now the portal contains a large amount of information, great part of it is stored in the form of SQL data base (MS SQL). The information retrieval is made by means of ASP pages, containing VB Scripts. The obtained experience of work with such topical portal has detected some weak points, related with its centralized administration and updating. It has been found that urgent supporting of all requests from different persons/organizations on information allocation on the portal's server takes a lot of efforts and time. That is why, the further development of portal we relate with development of a distributed system for information allocation and control, under preserving of centralized administration for ensuring of security and stable working of the portal. Analysis and testing of some available technologies lead us to conclusion to apply MS Share Point technologies. A MS Share Point Team Services (SPTS) has been selected as a technology supporting relatively small groups, where MS SQL is used for storage data and metadata. The last feature was considered as decisive one for SPTS selection, allowing easy integration with data base of the whole portal. SPTS was launched as an independent Internet site accessible from home page of the portal. It serves as a root site to exit to dozens of subsites serving different bodies of Russian Scientific Council on analytical chemistry and external organizations located over the whole Russia. The secure functioning of such hierarchical system, which includes a lot of remote information suppliers, based on use of roles to manage user rights independently for each subsite. The root site is controlled by portal administrator, whereas the

  18. Analytical Chemistry Laboratory (ACL) procedure compendium

    International Nuclear Information System (INIS)

    1993-01-01

    This interim notice covers the following: extractable organic halides in solids, total organic halides, analysis by gas chromatography/Fourier transform-infrared spectroscopy, hexadecane extracts for volatile organic compounds, GC/MS analysis of VOCs, GC/MS analysis of methanol extracts of cryogenic vapor samples, screening of semivolatile organic extracts, GPC cleanup for semivolatiles, sample preparation for GC/MS for semi-VOCs, analysis for pesticides/PCBs by GC with electron capture detection, sample preparation for pesticides/PCBs in water and soil sediment, report preparation, Florisil column cleanup for pesticide/PCBs, silica gel and acid-base partition cleanup of samples for semi-VOCs, concentrate acid wash cleanup, carbon determination in solids using Coulometrics' CO 2 coulometer, determination of total carbon/total organic carbon/total inorganic carbon in radioactive liquids/soils/sludges by hot persulfate method, analysis of solids for carbonates using Coulometrics' Model 5011 coulometer, and soxhlet extraction

  19. Chemistry Division. Quarterly progress report for period ending June 30, 1949

    Energy Technology Data Exchange (ETDEWEB)

    1949-09-14

    Progress reports are presented for the following tasks: (1) nuclear and chemical properties of heavy elements (solution chemistry, phase rule studies); (2) nuclear and chemical properties of elements in the fission product region; (3) general nuclear chemistry; (4) radio-organic chemistry; (5) chemistry of separations processes; (6) physical chemistry and chemical physics; (7) radiation chemistry; (8) physical measurements and instrumentation; and (9) analytical chemistry. The program of the chemistry division is divided into two efforts of approximately equal weight with respect to number of personnel, chemical research, and analytical service for the Laboratory. The various research problems fall into the following classifications: (1) chemical separation processes for isolation and recovery of fissionable material, production of radioisotopes, and military applications; (2) reactor development; and (3) fundamental research.

  20. Size and Crystallinity in Protein-Templated Inorganic Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jolley, Craig C.; Uchida, Masaki; Reichhardt, Courtney; Harrington, Richard; Kang, Sebyung; Klem, Michael T.; Parise, John B.; Douglas, Trevor (SBU); (Montana)

    2010-12-01

    Protein cages such as ferritins and virus capsids have been used as containers to synthesize a wide variety of protein-templated inorganic nanoparticles. While identification of the inorganic crystal phase has been successful in some cases, very little is known about the detailed nanoscale structure of the inorganic component. We have used pair distribution function analysis of total X-ray scattering to measure the crystalline domain size in nanoparticles of ferrihydrite, {gamma}-Fe{sub 2}O{sub 3}, Mn{sub 3}O{sub 4}, CoPt, and FePt grown inside 24-meric ferritin cages from H. sapiens and P. furiosus. The material properties of these protein-templated nanoparticles are influenced by processes at a variety of length scales: the chemistry of the material determines the precise arrangement of atoms at very short distances, while the interior volume of the protein cage constrains the maximum nanoparticle size attainable. At intermediate length scales, the size of coherent crystalline domains appears to be constrained by the arrangement of crystal nucleation sites on the interior of the cage. On the basis of these observations, some potential synthetic strategies for the control of crystalline domain size in protein-templated nanoparticles are suggested.

  1. Reactivity II: A Second Foundation-Level Course in Integrated Organic, Inorganic, and Biochemistry

    Science.gov (United States)

    Schaller, Chris P.; Graham, Kate J.; McIntee, Edward J.; Jones, T. Nicholas; Johnson, Brian J.

    2016-01-01

    A foundation-level course is described that integrates material related to reactivity in organic, inorganic, and biochemistry. Designed for second-year students, the course serves majors in chemistry, biochemistry, and biology, as well as prehealth-professions students. Building on an earlier course that developed concepts of nucleophiles and…

  2. Neutron Diffraction and Inorganic Materials Discovery

    International Nuclear Information System (INIS)

    Rosseinsky, M.J.

    2005-01-01

    Full text: The discovery of complex inorganic materials is an important academic and technological challenge because of the opportunities these systems offer for observation of new phenomena, and the questions they pose for fundamental understanding. This presentation will illustrate the key role of neutron powder diffraction in enabling the discovery of new classes of materials, and in evaluating their properties and the conditions under which they need to be processed to optimise their behaviour in devices for applications. New chemistry is illustrated by the transition metal oxide hydrides, where both structure and ionic mobility required neutron scattering characterisation. The relationship between chemistry, structure and properties will be addressed by considering the difficulties in inducing superconductivity in analogues of magnesium diboride. The role of both neutron and X-ray diffraction in evaluating the processing of microwave dielectric ceramics will be highlighted, with the discovery of new phases shown to be a useful bonus in this type of in-situ study. (author)

  3. Analytical mass spectrometry. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  4. Bio- and chemiluminescence imaging in analytical chemistry

    International Nuclear Information System (INIS)

    Roda, Aldo; Guardigli, Massimo; Pasini, Patrizia; Mirasoli, Mara; Michelini, Elisa; Musiani, Monica

    2005-01-01

    Bio- and chemiluminescence imaging techniques combine the high sensitivity of bio- and chemiluminescence detection with the ability of current light imaging devices to localize and quantify light emission down to the single-photon level. These techniques have been successfully exploited for the development of sensitive analytical methods relying on the evaluation of the spatial distribution of the light emitted from a target sample. In this paper, we report on recent applications of bio- and chemiluminescence imaging for in vitro and in vivo assays, including: quantitative assays performed in various analytical formats, such as microtiter plates, microarrays and miniaturized analytical devices, used in the pharmaceutical, clinical, diagnostic and environmental fields; luminescence imaging microscopy based on enzymatic, immunohistochemical and in situ hybridization reactions for the localization of metabolites, enzymes, antigens and gene sequences in cells and tissues; whole-body luminescence imaging in live animals for evaluating biological and pathological processes and for pharmacological studies

  5. Pure white-light emitting ultrasmall organic-inorganic hybrid perovskite nanoclusters.

    Science.gov (United States)

    Teunis, Meghan B; Lawrence, Katie N; Dutta, Poulami; Siegel, Amanda P; Sardar, Rajesh

    2016-10-14

    Organic-inorganic hybrid perovskites, direct band-gap semiconductors, have shown tremendous promise for optoelectronic device fabrication. We report the first colloidal synthetic approach to prepare ultrasmall (∼1.5 nm diameter), white-light emitting, organic-inorganic hybrid perovskite nanoclusters. The nearly pure white-light emitting ultrasmall nanoclusters were obtained by selectively manipulating the surface chemistry (passivating ligands and surface trap-states) and controlled substitution of halide ions. The nanoclusters displayed a combination of band-edge and broadband photoluminescence properties, covering a major part of the visible region of the solar spectrum with unprecedentedly large quantum yields of ∼12% and photoluminescence lifetime of ∼20 ns. The intrinsic white-light emission of perovskite nanoclusters makes them ideal and low cost hybrid nanomaterials for solid-state lighting applications.

  6. Inorganic-Organic Hybrid Materials: Layered Zinc Hydroxide Salts with Intercalated Porphyrin Sensitizers

    Czech Academy of Sciences Publication Activity Database

    Demel, Jan; Kubát, Pavel; Jirka, Ivan; Kovář, P.; Pospíšil, M.; Lang, Kamil

    2010-01-01

    Roč. 114, č. 39 (2010), s. 16321-16328 ISSN 1932-7447 R&D Projects: GA ČR GAP207/10/1447 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40400503 Keywords : molecular-dynamics simulations * photophysical properties * meso-tetratolylporphyrins Subject RIV: CA - Inorganic Chemistry Impact factor: 4.520, year: 2010

  7. Creating a computer game suitable for practice of nomenclature of inorganic compounds

    OpenAIRE

    NEČEDA, Luboš

    2017-01-01

    This thesis is focused on usage of computer game (adventure game) in teaching of chemismy (posted on internet since 2017). Game is situated to the town of České Budějovice and contains set of tests from Inorganic chemisty. This game can be used to motivate students to study chemistry on primary schools.

  8. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1975-01-01

    The chemical research and development efforts related to the design and ultimate operation of molten-salt breeder reactor systems are concentrated on fuel- and coolant-salt chemistry, including the development of analytical methods for use in these systems. The chemistry of tellurium in fuel salt is being studied to help elucidate the role of this element in the intergranular cracking of Hastelloy N. Studies were continued of the effect of oxygen-containing species on the equilibrium between dissolved UF 3 and dissolved UF 4 , and, in some cases, between the dissolved uranium fluorides and graphite, and the UC 2 . Several aspects of coolant-salt chemistry are under investigation. Hydroxy and oxy compounds that could be formed in molten NaBF 4 are being synthesized and characterized. Studies of the chemistry of chromium (III) compounds in fluoroborate melts were continued as part of a systematic investigation of the corrosion of structural alloys by coolant salt. An in-line voltammetric method for determining U 4+ /U 3+ ratios in fuel salt was tested in a forced-convection loop over a six-month period. (LK)

  9. Abstracts Book of 41. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    1998-01-01

    Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry is the most important scientific forum of Polish Chemists. The state of the art in many basic, fundamental and applied investigations has been presented and discussed. The following scientific sessions and microsymposia have been proposed: theoretical chemistry; molecular interactions; metal compounds - chemical, physical, electronic and biological aspects; catalysis and surface physico-chemistry; polymers - radiochemistry, modifications, physics and analytical methods; organic and bioorganic chemistry; physico-chemistry of condensed matter; chemical metallurgy; environmental protection; inorganic technology; chemistry and technology of coal; radiation chemistry; analytical chemistry; chemical engineering; young scientists forum; chemical didactics; petrochemistry; energetic materials; membranes and membrane processes; medical chemistry

  10. Metrology and analytical chemistry: Bridging the cultural gap

    International Nuclear Information System (INIS)

    King, Bernard

    2002-01-01

    Metrology in general and issues such as traceability and measurement uncertainty in particular are new to most analytical chemists and many remain to be convinced of their value. There is a danger of the cultural gap between metrologists and analytical chemists widening with unhelpful consequences and it is important that greater collaboration and cross-fertilisation is encouraged. This paper discusses some of the similarities and differences in the approaches adopted by metrologists and analytical chemists and indicates how these approaches can be combined to establish a unique metrology of chemical measurement which could be accepted by both cultures. (author)

  11. Analytical Chemistry Laboratory (ACL) procedure compendium

    International Nuclear Information System (INIS)

    1993-01-01

    This volume contains the interim change notice for sample preparation methods. Covered are: acid digestion for metals analysis, fusion of Hanford tank waste solids, water leach of sludges/soils/other solids, extraction procedure toxicity (simulate leach in landfill), sample preparation for gamma spectroscopy, acid digestion for radiochemical analysis, leach preparation of solids for free cyanide analysis, aqueous leach of solids for anion analysis, microwave digestion of glasses and slurries for ICP/MS, toxicity characteristic leaching extraction for inorganics, leach/dissolution of activated metal for radiochemical analysis, extraction of single-shell tank (SST) samples for semi-VOC analysis, preparation and cleanup of hydrocarbon- containing samples for VOC and semi-VOC analysis, receiving of waste tank samples in onsite transfer cask, receipt and inspection of SST samples, receipt and extrusion of core samples at 325A shielded facility, cleaning and shipping of waste tank samplers, homogenization of solutions/slurries/sludges, and test sample preparation for bioassay quality control program

  12. Materials of 45. Scientific Assembly of Polish Chemical Society. Volumes 1-3

    International Nuclear Information System (INIS)

    2002-01-01

    Scientific assemblies of Polish Chemical Society are the most important chemical meeting organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects was proposed as scientific sessions and symposia topics: organic chemistry, inorganic chemistry, physical chemistry, analytical chemistry, technology and chemical engineering, polymer chemistry, solid state chemistry, catalysis, biological chemistry, chemistry and technology of coal, environmental protection, didactics of chemistry, history of chemistry, young scientist forum, flow analysis, and high-energy materials

  13. Silica- and germania-based dual-ligand sol-gel organic-inorganic hybrid sorbents combining superhydrophobicity and π-π interaction. The role of inorganic substrate in sol-gel capillary microextraction.

    Science.gov (United States)

    Seyyal, Emre; Malik, Abdul

    2017-04-29

    Principles of sol-gel chemistry were utilized to create silica- and germania-based dual-ligand surface-bonded sol-gel coatings providing enhanced performance in capillary microextraction (CME) through a combination of ligand superhydrophobicity and π-π interaction. These organic-inorganic hybrid coatings were prepared using sol-gel precursors with bonded perfluorododecyl (PF-C 12 ) and phenethyl (PhE) ligands. Here, the ability of the PF-C 12 ligand to provide enhanced hydrophobic interaction was advantageously combined with π-π interaction capability of the PhE moiety to attain the desired sorbent performance in CME. The effect of the inorganic sorbent component on microextraction performance of was explored by comparing microextraction characteristics of silica- and germania-based sol-gel sorbents. The germania-based dual-ligand sol-gel sorbent demonstrated superior CME performance compared to its silica-based counterpart. Thermogravimetric analysis (TGA) of the created silica- and germania-based dual-ligand sol-gel sorbents suggested higher carbon loading on the germania-based sorbent. This might be indicative of more effective condensation of the organic ligand-bearing sol-gel-active chemical species to the germania-based sol-gel network (than to its silica-based counterpart) evolving in the sol solution. The type and concentration of the organic ligands were varied in the sol-gel sorbents to fine-tune extraction selectivity toward different classes of analytes. Specific extraction (SE) values were used for an objective comparison of the prepared sol-gel CME sorbents. The sorbents with higher content of PF-C 12 showed remarkable affinity for aliphatic hydrocarbons. Compared to their single-ligand sol-gel counterparts, the dual-ligand sol-gel coatings demonstrated significantly superior CME performance in the extraction of alkylbenzenes, providing up to ∼65.0% higher SE values. The prepared sol-gel CME coatings provided low ng L -1 limit of detections (LOD

  14. Contactless conductivity detection for analytical techniques — Developments from 2014 to 2016

    Czech Academy of Sciences Publication Activity Database

    Kubáň, Pavel; Hauser, P.C.

    2017-01-01

    Roč. 38, č. 1 (2017), s. 95-114 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA16-09135S Institutional support: RVO:68081715 Keywords : capacitively coupled contactless conductivity detection * capillary electrophoresis * contactless conductivity detection * analytical techniques * review Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.744, year: 2016

  15. Environmental Chemistry in the Undergraduate Laboratory.

    Science.gov (United States)

    Wenzel, Thomas J.; Austin, Rachel N.

    2001-01-01

    Discusses the importance of environmental chemistry and the use of laboratory exercises in analytical and general chemistry courses. Notes the importance of lab work in heightening student interest in coursework including problem-based learning in undergraduate curricula, ready adaptability of environmental coursework to existing curricula, and…

  16. Polyhedral monocarbaborane chemistry. Some C-phenylated seven, eight, nine, ten, eleven and twelve-vertex species

    Czech Academy of Sciences Publication Activity Database

    Franken, A.; Jelínek, Tomáš; Taylor, R.G.; Ormsby, D. L.; Kilner, C. A.; Clegg, W.; Kennedy, D. J.

    -, č. 48 (2006), s. 5733-5769 ISSN 1477-9226 Grant - others:EPSRC(GB) J/56929; EPSRC(GB) GR/L/49505; EPSRC(GB) R/61949 Institutional research plan: CEZ:AV0Z40320502 Keywords : magnetic-resonance spectroscopy * anion chemistry * molecular structure Subject RIV: CA - Inorganic Chemistry Impact factor: 3.012, year: 2006

  17. Preparation of novel, nanocomposite stannoxane-based organic-inorganic epoxy polymers containing ionic bonds

    Czech Academy of Sciences Publication Activity Database

    Strachota, Adam; Ribot, F.; Matějka, Libor; Whelan, P.; Starovoytova, Larisa; Pleštil, Josef; Steinhart, Miloš; Šlouf, Miroslav; Hromádková, Jiřina; Kovářová, Jana; Špírková, Milena; Strachota, Beata

    2012-01-01

    Roč. 45, č. 1 (2012), s. 221-237 ISSN 0024-9297 R&D Projects: GA AV ČR IAA400500701; GA ČR GAP108/11/2151 Institutional research plan: CEZ:AV0Z40500505 Keywords : stannoxane * organic-inorganic hybrid * epoxy Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.521, year: 2012

  18. All-union conference on theoretical and applied radiation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Putilov, A.V.; Barashkov, N.N.

    1985-01-01

    The All-Union Conference on Theoretical and Applied Radiation Chemistry was held in Obninsk in October 1984. The subjects covered by the all-union conference included practically all urgent problems of modern radiation chemistry: theoretical principles of radiation chemistry, solid state radiation chemistry, radiation chemistry of heterogeneous processes, radiolysis of organic and inorganic substances, radiation polymerization and hardening, radiation chemistry of polymers, the technology of radiation chemistry and instrument making. Twenty-three plenary reports given by scientists representing the corresponding directions were devoted to an examination of the basic problems of modern radiation chemistry. Around 100 oral communications were heard and discussed at meetings of six sections operating within the framework of the conference. In addition the conference participants were able to acquaint themselves with and discuss more than 230 displays in parallel with the oral reports. Abstracts of all of the section oral reports and displays were published by the organizing committee in the form of a separate collection. The texts of the plenary reports were published in the journal Khimiya Vysokikh Energiy in 1985.

  19. Annual Report 1981

    International Nuclear Information System (INIS)

    1982-02-01

    This report describes the research and development activities performed by CNEA's Chemistry Department during 1981, distributed into the following fields: Analytic Chemistry (mass spectrometry, general analysis, X-ray spectrometry, optical spectrometry, electrochemistry, active materials), Physical Chemistry (interphases, surfaces, experimental developments) and Inorganic Chemistry (preparative processes, special treatments). A list of publications made during this period on the above mentioned subjects is attached. (M.E.L.) [es

  20. Incorporating Sustainability and Life Cycle Assessment into First-Year Inorganic Chemistry Major Laboratories

    Science.gov (United States)

    Guron, Marta; Paul, Jared J.; Roeder, Margaret H.

    2016-01-01

    Although much of the scientific community concerns itself with ideas of a sustainable future, very little of this interest and motivation has reached the classroom experience of the average chemistry major, and therefore, it is imperative to expose students to these ideas early in their careers. The focus of most undergraduate chemistry curricula…

  1. Oxidation Kinetics of Copper: An Experiment in Solid State Chemistry.

    Science.gov (United States)

    Ebisuzaki, Y.; Sanborn, W. B.

    1985-01-01

    Oxidation kinetics in metals and the role defects play in diffusion-controlled reactions are discussed as background for a junior/senior-level experiment in the physical or inorganic chemistry laboratory. Procedures used and typical data obtained are provided for the experiment. (JN)

  2. Determination of Total Arsenic and Speciation in Apple Juice by Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry: An Experiment for the Analytical Chemistry Laboratory

    Science.gov (United States)

    He, Ping; Colon, Luis A.; Aga, Diana S.

    2016-01-01

    A two-part laboratory experiment was designed for upper-level analytical chemistry students to provide hands-on experience in the use of high performance liquid chromatography (HPLC) for separation and inductively coupled plasma mass spectrometry (ICP-MS) for detection. In the first part of the experiment, the students analyze total arsenic in…

  3. Determination of the Acid Dissociation Constant of a Phenolic Acid by High Performance Liquid Chromatography: An Experiment for the Upper Level Analytical Chemistry Laboratory

    Science.gov (United States)

    Raboh, Ghada

    2018-01-01

    A high performance liquid chromatography (HPLC) experiment for the upper level analytical chemistry laboratory is described. The students consider the effect of mobile-phase composition and pH on the retention times of ionizable compounds in order to determine the acid dissociation constant, K[subscript a], of a phenolic acid. Results are analyzed…

  4. The redox chemistry of neptunium in gamma-irradiated aqueous nitric acid in the presence of an organic phase

    Czech Academy of Sciences Publication Activity Database

    Mincher, B.J.; Přeček, Martin; Paulenova, A.

    2016-01-01

    Roč. 308, č. 3 (2016), s. 1005-1009 ISSN 0236-5731 R&D Projects: GA MŠk EE2.3.30.0057 Grant - others:OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : neptunium * redox chemistry * radiation chemistry * solvent extraction Subject RIV: CH - Nuclear ; Quantum Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.282, year: 2016

  5. Proceedings of 4. Meeting on Chemistry in Northeast

    International Nuclear Information System (INIS)

    1989-01-01

    The works of IV Meeting on Chemistry in Northeast are presented, including topics about compounds determination by nuclear analytical techniques and the non-nuclear techniques and physical-chemistry studies of chemical compounds. (C.G.C.)

  6. Influence of centrifugation conditions on the results of 77 routine clinical chemistry analytes using standard vacuum blood collection tubes and the new BD-Barricor tubes.

    Science.gov (United States)

    Cadamuro, Janne; Mrazek, Cornelia; Leichtle, Alexander B; Kipman, Ulrike; Felder, Thomas K; Wiedemann, Helmut; Oberkofler, Hannes; Fiedler, Georg M; Haschke-Becher, Elisabeth

    2018-02-15

    Although centrifugation is performed in almost every blood sample, recommendations on duration and g-force are heterogeneous and mostly based on expert opinions. In order to unify this step in a fully automated laboratory, we aimed to evaluate different centrifugation settings and their influence on the results of routine clinical chemistry analytes. We collected blood from 41 healthy volunteers into BD Vacutainer PST II-heparin-gel- (LiHepGel), BD Vacutainer SST II-serum-, and BD Vacutainer Barricor heparin-tubes with a mechanical separator (LiHepBar). Tubes were centrifuged at 2000xg for 10 minutes and 3000xg for 7 and 5 minutes, respectively. Subsequently 60 and 21 clinical chemistry analytes were measured in plasma and serum samples, respectively, using a Roche COBAS instrument. High sensitive Troponin T, pregnancy-associated plasma protein A, ß human chorionic gonadotropin and rheumatoid factor had to be excluded from statistical evaluation as many of the respective results were below the measuring range. Except of free haemoglobin (fHb) measurements, no analyte result was altered by the use of shorter centrifugation times at higher g-forces. Comparing LiHepBar to LiHepGel tubes at different centrifugation setting, we found higher lactate-dehydrogenase (LD) (P = 0.003 to centrifuged at higher speed (3000xg) for a shorter amount of time (5 minutes) without alteration of the analytes tested in this study. When using LiHepBar tubes for blood collection, a separate LD reference value might be needed.

  7. Analytical Chemistry Laboratory (ACL) procedure compendium

    International Nuclear Information System (INIS)

    1993-01-01

    The methods cover: C in solutions, F (electrode), elements by atomic emission spectrometry, inorganic anions by ion chromatography, Hg in water/solids/sludges, As, Se, Bi, Pb, data calculations for SST (single shell tank?) samples, Sb, Tl, Ag, Pu, O/M ratio, ignition weight loss, pH value, ammonia (N), Cr(VI), alkalinity, U, C sepn. from soil/sediment/sludge, Pu purif., total N, water, C and S, surface Cl/F, leachable Cl/F, outgassing of Ge detector dewars, gas mixing, gas isotopic analysis, XRF of metals/alloys/compounds, H in Zircaloy, H/O in metals, inpurity extraction, reduced/total Fe in glass, free acid in U/Pu solns, density of solns, Kr/Xe isotopes in FFTF cover gas, H by combustion, MS of Li and Cs isotopes, MS of lanthanide isotopes, GC operation, total Na on filters, XRF spectroscopy QC, multichannel analyzer operation, total cyanide in water/solid/sludge, free cyanide in water/leachate, hydrazine conc., ICP-MS, 99 Tc, U conc./isotopes, microprobe analysis of solids, gas analysis, total cyanide, H/N 2 O in air, and pH in soil

  8. Research laboratories annual report. 1973 and 1974

    International Nuclear Information System (INIS)

    1975-02-01

    This report presents brief summaries of the research carried out at the Israel A.E.C. laboratories during the two years 1973 and 1974 in the following fields: theoretical physics and chemistry, neutron and reactor physics, solid state physics and metallurgy, laser-induced plasma research, nuclear physics and chemistry, radiation chemistry and applications of radiation and radioisotopes, physical and inorganic chemistry, analytical chemistry, health physics, environmental studies, instrumentation and techniques. (B.G.)

  9. A laboratory manual for the determination of inorganic chemical contaminants and nutrients in sewage sludges

    International Nuclear Information System (INIS)

    Smith, R.

    1984-01-01

    In addition to a brief discussion on sewage sludge disposal, sludge contaminants, and the potential beneficial and adverse effects of the various inorganic chemical contaminants and nutrients commonly present in sewage sludge, this technical guide presents a scheme of analysis for the determination of the major inorganic contaminants and nutrients. Safety and simplicity were the main criteria considered in the selection of the various sample pretreatment procedures and analytical techniques

  10. Black Boxes in Analytical Chemistry: University Students' Misconceptions of Instrumental Analysis

    Science.gov (United States)

    Carbo, Antonio Domenech; Adelantado, Jose Vicente Gimeno; Reig, Francisco Bosch

    2010-01-01

    Misconceptions of chemistry and chemical engineering university students concerning instrumental analysis have been established from coordinated tests, tutorial interviews and laboratory lessons. Misconceptions can be divided into: (1) formal, involving specific concepts and formulations within the general frame of chemistry; (2)…

  11. Carbon nanotubes and graphene in analytical sciences

    International Nuclear Information System (INIS)

    Perez-Lopez, B.; Merkoci, A.

    2012-01-01

    Nanosized carbon materials are offering great opportunities in various areas of nanotechnology. Carbon nanotubes and graphene, due to their unique mechanical, electronic, chemical, optical and electrochemical properties, represent the most interesting building blocks in various applications where analytical chemistry is of special importance. The possibility of conjugating carbon nanomaterials with biomolecules has received particular attention with respect to the design of chemical sensors and biosensors. This review describes the trends in this field as reported in the last 6 years in (bio)analytical chemistry in general, and in biosensing in particular. (author)

  12. Enhancing first year chemistry student's participation in practical ...

    African Journals Online (AJOL)

    In this study, enhancing student's participation in practical analytical ... The data were collected from I year chemistry undergraduate students of class size 56 of ... learning practical Chemistry were mainly due to problems in preparing a flow ...

  13. Haematology and serum chemistry of finisher broiler chickens fed ...

    African Journals Online (AJOL)

    This study was conducted to assess the haematology and serum chemistry of broiler chickens fed maize-cassava diets supplemented with methionine and inorganic sulphur. A total of 270 day-old broiler chicks were randomly assigned to nine treatment groups of 30 birds making 10 birds per replicate group. Starter and ...

  14. Synthesis, Properties and Mineralogy of Important Inorganic Materials

    CERN Document Server

    Warner, Terence E

    2010-01-01

    Intended as a textbook for courses involving preparative solid-state chemistry, this book offers clear and detailed descriptions on how to prepare a selection of inorganic materials that exhibit important optical, magnetic and electrical properties, on a laboratory scale. The text covers a wide range of preparative methods and can be read as separate, independent chapters or as a unified coherent body of work. Discussions of various chemical systems reveal how the properties of a material can often be influenced by modifications to the preparative procedure, and vice versa. References to miner

  15. Determination of inorganic arsenic in food and feed – European initiatives in research and standardization of methods

    DEFF Research Database (Denmark)

    Sloth, Jens Jørgen; Rasmussen, Rie Romme

    determination of inorganic arsenic are required in order to perform a correct risk assessment of dietary exposure. The lecture will provide the current status for recent and ongoing European initiatives and projects on methods for specific determination of inorganic arsenic in foodstuffs and feedingstuffs...... detailed toxicological knowledge on the individual chemical elemental species should lead to more specific legislation. The present lecture will use arsenic as an illustrative example, where inorganic arsenic is considered much more toxic than organic bound and analytical methods for selective...

  16. PWR secondary water chemistry guidelines

    International Nuclear Information System (INIS)

    Bell, M.J.; Blomgren, J.C.; Fackelmann, J.M.

    1982-10-01

    Steam generators in pressurized water reactor (PWR) nuclear power plants have experienced tubing degradation by a variety of corrosion-related mechanisms which depend directly on secondary water chemistry. As a result of this experience, the Steam Generator Owners Group and EPRI have sponsored a major program to provide solutions to PWR steam generator problems. This report, PWR Secondary Water Chemistry Guidelines, in addition to presenting justification for water chemistry control parameters, discusses available analytical methods, data management and surveillance, and the management philosophy required to successfully implement the guidelines

  17. New approaches to chemical reaction mechanisms by means of radiation chemistry

    International Nuclear Information System (INIS)

    Fujitsuka, Mamoru; Majima, Tetsuro

    2009-01-01

    Since active species generated during radiolysis can be used as oxidative or reductive regents of various organic and inorganic compounds, radiation chemistry has been applied to wide range of research fields. We have studied charge-delocalization process in molecular systems, properties of intermediates in the excited states, mechanism of light emitting device, photo-catalyst for degradation of toxic compounds and so on by means of radiation chemistry. In the present paper, we summarize our recent research results. (author)

  18. Teaching Analytical Method Transfer through Developing and Validating Then Transferring Dissolution Testing Methods for Pharmaceuticals

    Science.gov (United States)

    Kimaru, Irene; Koether, Marina; Chichester, Kimberly; Eaton, Lafayette

    2017-01-01

    Analytical method transfer (AMT) and dissolution testing are important topics required in industry that should be taught in analytical chemistry courses. Undergraduate students in senior level analytical chemistry laboratory courses at Kennesaw State University (KSU) and St. John Fisher College (SJFC) participated in development, validation, and…

  19. American Chemical Society, Division of Environmental Chemistry

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Separate abstracts were prepared for 161 papers of this divisional meeting for the US Department of Energy's Database. Main topics discussed included: acid rain mitigation - liming technologies and environmental considerations; biotechnology for wastewater treatment; environmental chemistry of lakes and reservoirs and pollution prevention and process analytical chemistry

  20. Materials of 46. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical. Volume 1,2,3

    International Nuclear Information System (INIS)

    2003-01-01

    Scientific assemblies of Polish Chemical Society are the most important chemical meetings organised annually in Poland. Basic as well as application studies in all chemical branches have been extensively presented. The next subjects were proposed as scientific sessions and symposia topics: organic chemistry, inorganic chemistry, physical chemistry, analytical chemistry, technology and chemical engineering, polymer chemistry, solid state chemistry, catalysis, biological chemistry, chemistry and technology of coal, environmental protection, didactics of chemistry, history of chemistry, young scientist forum as well as the reports of results of works sponsored by Committee of Scientific Research

  1. Yearly scientific meeting: chemistry in human health and environment protection. Bialystok'92

    International Nuclear Information System (INIS)

    1992-01-01

    The conference has been divided into 12 sections devoted to following topics: analytical chemistry; environmental chemistry; chemistry of natural compounds; chemistry of pharmaceutics and toxic compounds; chemistry in medicine; electrochemistry; young scientists forum; didactics and history of chemistry; chemistry and industry - technologies environment friendly; new trends in polymer science; crystallochemistry; pro-ecological actions in leather industry. Different analytical methods for determination of heavy methods and rare earths have been presented. Some of them have been successfully applied for the examination of environmental and biological materials. The basic chemical and physico-chemical studies including thermodynamic, crystal structure, coordination chemistry, sorption properties etc. have been extensively resented. The existence of radioactive elements in environment has been also investigated, especially in respect to municipal and industrial wastes and products of their processing. The radiation effects for different materials have been reported and discussed as well

  2. Establishment of reference intervals of clinical chemistry analytes for the adult population in Saudi Arabia: a study conducted as a part of the IFCC global study on reference values.

    Science.gov (United States)

    Borai, Anwar; Ichihara, Kiyoshi; Al Masaud, Abdulaziz; Tamimi, Waleed; Bahijri, Suhad; Armbuster, David; Bawazeer, Ali; Nawajha, Mustafa; Otaibi, Nawaf; Khalil, Haitham; Kawano, Reo; Kaddam, Ibrahim; Abdelaal, Mohamed

    2016-05-01

    This study is a part of the IFCC-global study to derive reference intervals (RIs) for 28 chemistry analytes in Saudis. Healthy individuals (n=826) aged ≥18 years were recruited using the global study protocol. All specimens were measured using an Architect analyzer. RIs were derived by both parametric and non-parametric methods for comparative purpose. The need for secondary exclusion of reference values based on latent abnormal values exclusion (LAVE) method was examined. The magnitude of variation attributable to gender, ages and regions was calculated by the standard deviation ratio (SDR). Sources of variations: age, BMI, physical exercise and smoking levels were investigated by using the multiple regression analysis. SDRs for gender, age and regional differences were significant for 14, 8 and 2 analytes, respectively. BMI-related changes in test results were noted conspicuously for CRP. For some metabolic related parameters the ranges of RIs by non-parametric method were wider than by the parametric method and RIs derived using the LAVE method were significantly different than those without it. RIs were derived with and without gender partition (BMI, drugs and supplements were considered). RIs applicable to Saudis were established for the majority of chemistry analytes, whereas gender, regional and age RI partitioning was required for some analytes. The elevated upper limits of metabolic analytes reflects the existence of high prevalence of metabolic syndrome in Saudi population.

  3. Synthesis of inorganic polymers using fly ash and primary lead slag.

    Science.gov (United States)

    Onisei, S; Pontikes, Y; Van Gerven, T; Angelopoulos, G N; Velea, T; Predica, V; Moldovan, P

    2012-02-29

    The present work reports on the synthesis and properties of inorganic polymers ("geopolymers") made of 100% fly ash from lignite's combustion, 100% primary lead slag and mixtures of the two. In the inorganic polymers with both fly ash and lead slag the main crystalline phases detected are wüstite, magnetite, sodium zinc silicate, quartz, anorthite, and gehlenite; litharge partially dissolves. FTIR analysis in these samples revealed that the main peaks and bands of end members also exist, along with a new amorphous reaction product. In terms of microstructure, both fly ash and lead slag dissolve and contribute in the binding phase whereas the larger particles act as aggregates. For an increasing lead slag in the composition, the binding phase is changing in chemistry and reaches PbO values higher than 50 wt.% for the 100% lead slag inorganic polymer. Regarding the properties of fly ash and lead slag inorganic polymers, compressive strength is higher than 35 MPa in all cases and water absorption diminishes as the lead slag content increases. A comparison of leaching results before and after polymerisation reveals that pH is an important factor as Pb is immobilised in the binding phase, unlike Zn and As. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Hanford Site background: Part 1, Soil background for nonradioactive analytes

    International Nuclear Information System (INIS)

    1993-04-01

    The determination of soil background is one of the most important activities supporting environmental restoration and waste management on the Hanford Site. Background compositions serve as the basis for identifying soil contamination, and also as a baseline in risk assessment processes used to determine soil cleanup and treatment levels. These uses of soil background require an understanding of the extent to which analytes of concern occur naturally in the soils. This report documents the results of sampling and analysis activities designed to characterize the composition of soil background at the Hanford Site, and to evaluate the feasibility for use as Sitewide background. The compositions of naturally occurring soils in the vadose Zone have been-determined for-nonradioactive inorganic and organic analytes and related physical properties. These results confirm that a Sitewide approach to the characterization of soil background is technically sound and is a viable alternative to the determination and use of numerous local or area backgrounds that yield inconsistent definitions of contamination. Sitewide soil background consists of several types of data and is appropriate for use in identifying contamination in all soils in the vadose zone on the Hanford Site. The natural concentrations of nearly every inorganic analyte extend to levels that exceed calculated health-based cleanup limits. The levels of most inorganic analytes, however, are well below these health-based limits. The highest measured background concentrations occur in three volumetrically minor soil types, the most important of which are topsoils adjacent to the Columbia River that are rich in organic carbon. No organic analyte levels above detection were found in any of the soil samples

  5. Inorganic trace analysis by laser ionization mass spectrometry

    International Nuclear Information System (INIS)

    Becker, S.; Dietze, H.J.

    1991-01-01

    Among the different spectrometric techniques for trace analysis Laser Ionization Mass Spectrometry (LIMS) is well established as a trace analytic method with a wide coverage. In the LIMS the sample material is evaporated and ionized by means of a focused pulsed laser beam in a laser microplasma, which is formed in the spot area of the irradiated sample. All chemical elements in the sample materials are evaporated and ionized in the laser plasma. The formed ions are separated according to mass and energy by a time-of-flight, quadrupole or double focusing mass spectrometer. In this review the characteristics and analytical features, some recent developments, and applications of laser ionization mass spectrometry in inorganic trace analysis are described. (orig.)

  6. Laser ionization mass spectrometry in inorganic trace analysis

    International Nuclear Information System (INIS)

    Becker, J.S.; Dietze, H.J.

    1992-01-01

    Among the different spectrometric techniques for trace analysis Laser Ionization Mass Spectrometry (LIMS) is well established as a trace analytical method. With the LIMS technique the sample material is evaporated and ionized by means of a focused pulsed laser in a laser microplasma, which is formed in the spot area of the irradiated sample. All chemical elements in the sample materials are evaporated and ionized in the laser plasma. The ions formed are separated according to their mass and energy by a time-of-flight, quadrupole or double focusing mass spectrometer. In this review the characteristics and analytical features, some recent developments and applications of laser ionization mass spectrometry in inorganic trace analysis are described. (orig.)

  7. Constraining wintertime sources of inorganic chlorine over the northeast United States

    Science.gov (United States)

    Haskins, J.; Jaegle, L.; Shah, V.; Lopez-Hilfiker, F.; Lee, B. H.; Campuzano Jost, P.; Schroder, J. C.; Day, D. A.; Fiddler, M. N.; Holloway, J. S.; Sullivan, A.; Veres, P. R.; Weber, R. J.; Dibb, J. E.; Brown, S. S.; Jimenez, J. L.; Thornton, J. A.

    2017-12-01

    Wintertime multiphase chlorine chemistry is thought to play a significant role in the regional distribution of oxidants, the lifetime of VOCs, and the transport of NOx downwind of urban sources. However, the sources and chemistry of reactive chlorine remain highly uncertain. During the WINTER 2015 aircraft campaign, the inorganic chlorine budget was dominated by HCl (g) and total particulate chloride, accounting for greater than 85% of the total chlorine budget within the boundary layer. The total concentration of inorganic chlorine compounds found over marine regions was 1014 pptv and 609 pptv over continental regions with variability found to be driven by changes in meteorological conditions, particle liquid water content, particle pH, and proximity to large anthropogenic sources. However, displacement of particle chloride was often not a large enough source to fully explain the concentrations of gas phase Cly compounds. We use the GEOS-Chem global chemical transport model to simulate the emissions, gas-particle partitioning, and downwind transport and deposition of Cly during winter. Simulated concentrations of HCl, particle chloride, and other dominant Cly compounds are compared to measurements made during the WINTER aircraft campaign. The relative roles of Cly sources from sea-salt aerosol and anthropogenic sources such as power plants, biomass burning and road salt are explored.

  8. Analytical simulation of two dimensional advection dispersion ...

    African Journals Online (AJOL)

    The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would migrate ...

  9. Analytical Simulation of Two Dimensional Advection Dispersion ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: The study was designed to investigate the analytical simulation of two dimensional advection dispersion equation of contaminant transport. The steady state flow condition of the contaminant transport where inorganic contaminants in aqueous waste solutions are disposed of at the land surface where it would ...

  10. Overview of VVER water chemistry

    International Nuclear Information System (INIS)

    Ganesh, S.; Selvaraj, S.; Balasubramanian, M.R.; Selvavinayagam, P.; Sundar, R.S.

    2007-01-01

    Kudankulam Nuclear Power project is having twin units of 1000MWe of VVER type. This paper highlights the different analytical techniques that are followed to maintain the system chemistry within the technical specifications. This paper also briefs the different chemicals that are added to the systems and how they are monitored. Basic differences with respect to chemistry between a PHWR and VVER are also highlighted in this paper. (author)

  11. Airborne chemistry: acoustic levitation in chemical analysis.

    Science.gov (United States)

    Santesson, Sabina; Nilsson, Staffan

    2004-04-01

    This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shape()and stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications. The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL-2 microL volume range and additions to the levitated drop can be made in the pL-volume range. The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell-cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals.

  12. European Analytical Column

    DEFF Research Database (Denmark)

    Karlberg, B.; Grasserbauer, M.; Andersen, Jens Enevold Thaulov

    2009-01-01

    for European analytical chemistry. During the period 2002–07, Professor Grasserbauer was Director of the Institute for Environment and Sustainability, Joint Research Centre of the European Commission (EC), Ispra, Italy. There is no doubt that many challenges exist at the present time for all of us representing...

  13. Abstracts of the 16. Latin-American Congress of Chemistry

    International Nuclear Information System (INIS)

    1984-01-01

    Abstracts of experimental works on analytical chemistry, physical-chemistry, medical chemistry and technology of chemical processes are presented. Those papers dealing with the application of nuclear techniques for the analysis of various substances and also those concerned with the study of materials and/or elements of nuclear interest, are indexed. (C.L.B.) [pt

  14. Supercritical water-treated fused silica capillaries in analytical separations: Status review

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Horká, Marie; Šlais, Karel; Planeta, Josef; Roth, Michal

    2018-01-01

    Roč. 1539, MAR (2018), s. 1-11 ISSN 0021-9673 R&D Projects: GA MV VI20172020069; GA ČR(CZ) GA16-03749S; GA MZd(CZ) NV16-29916A Institutional support: RVO:68081715 Keywords : supercritical water * fused silica capillary * surface treatment Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 3.981, year: 2016

  15. 69. Congress of Chemists. Proceeding of Abstracts

    International Nuclear Information System (INIS)

    Drabik, M.; Gyepessova, D.; Brezova, V.; Karlubik, R; Hudec, I.; Tatiersky, I.; Mastihuba, V.; Florian, K.; Koman, M.; Moncol, J.; Hives, J.; Korenko, M.; Danko, M.; Bohac, A.; Vrska, M.; Hutta, M.; Kuruc, J.; Sebesta, R.; Schmidt, S.; Svorc, L.; Hirsch, J.; Koprda, V.; Reguli, J.; Putala, M.; Vargova, Z.; Reiffova, K.; Orinakova, R.; Stevulova, N.; Hamulakova, S.; Ganajova, M.; Balintova, M.; Kulichova, E.; Vicenova, H.; Vranovicova, B.

    2017-01-01

    In the work of the meeting of the Slovak chemical society and the Czech chemical society was attended by around 350 chemists. Scientific conference deals with the following problems of chemistry: (1) Analytical chemistry; (2) Physical chemistry; (3) Nanomaterial chemistry; (4) Inorganic and material chemistry; (5) Organic chemistry; (6) Polymers; (7) Nuclear Chemistry; (8) Didactics and history of chemistry; (9) Environmental science, food-processing, and biotechnology; (6) Chemprogresss - chemical technologies. Prize of Shimadzu. These conference proceedings contains 131 papers a nd 271 posters (from which 52 contributions are in the scope of INIS),

  16. Inorganic chemistry. Vol. 2. Subgroup elements, lanthanoids, actinoids, transactinoids. 103. ed.; Anorganische Chemie. Bd. 2. Nebengruppenelemente, Lanthanoide, Actinoide, Transactinoide

    Energy Technology Data Exchange (ETDEWEB)

    Holleman, Arnold Frederik; Wiberg, Egon; Wiberg, Nils

    2017-06-01

    For decades, the ''Holleman/Wiberg '' has offered a comprehensive knowledge of inorganic and organometallic chemistry. With the 103rd edition, a new work has been created, which has been designed for the comprehensive preparation of the examination and as a reference book. This second volume comprises the parts C (''subgroups of the periodic system'', the ''d-block elements'') that of the outer transition elements (expansion of the second outermost electron shells) and in the part D (''lanthanides and actinoids''; f-block elements) of the inner transition elements (expansion of the third outermost electron shells). [German] Das ''Holleman/Wiberg'' bietet seit Jahrzehnten ein umfassendes Stoffwissen der anorganischen und metallorganischen Chemie. Mit der 103. Auflage ist nach umfangreicher Umgestaltung der Vorauflage ein neues Werk entstanden, das zur umfassenden Pruefungsvorbereitung und als Nachschlagewerk bestimmt ist. Dieser 2. Band fasst die Teile C (''Nebengruppen des Periodensystems''; ''d-Block-Elemente'') die der aeusseren Uebergangselemente (Ausbau der zweitaeussersten Elektronenschalen) und im Teil D (''Lanthanoide und Actinoide''; ''f-Block-Elemente) die der inneren Uebergangselemente (Ausbau der drittaeussersten Elektronenschalen) zusammen.

  17. Physics-informed machine learning for inorganic scintillator discovery

    Science.gov (United States)

    Pilania, G.; McClellan, K. J.; Stanek, C. R.; Uberuaga, B. P.

    2018-06-01

    Applications of inorganic scintillators—activated with lanthanide dopants, such as Ce and Eu—are found in diverse fields. As a strict requirement to exhibit scintillation, the 4f ground state (with the electronic configuration of [Xe]4fn 5d0) and 5d1 lowest excited state (with the electronic configuration of [Xe]4fn-1 5d1) levels induced by the activator must lie within the host bandgap. Here we introduce a new machine learning (ML) based search strategy for high-throughput chemical space explorations to discover and design novel inorganic scintillators. Building upon well-known physics-based chemical trends for the host dependent electron binding energies within the 4f and 5d1 energy levels of lanthanide ions and available experimental data, the developed ML model—coupled with knowledge of the vacuum referred valence and conduction band edges computed from first principles—can rapidly and reliably estimate the relative positions of the activator's energy levels relative to the valence and conduction band edges of any given host chemistry. Using perovskite oxides and elpasolite halides as examples, the presented approach has been demonstrated to be able to (i) capture systematic chemical trends across host chemistries and (ii) effectively screen promising compounds in a high-throughput manner. While a number of other application-specific performance requirements need to be considered for a viable scintillator, the scheme developed here can be a practically useful tool to systematically down-select the most promising candidate materials in a first line of screening for a subsequent in-depth investigation.

  18. Hybrid organic-inorganic coatings based on alkoxy-terminated macromonomers

    Energy Technology Data Exchange (ETDEWEB)

    Kaddami, H. [Laboratoire des Materiaux Macromoleculaires---URA CNRS 507, Institut National des Sciences Appliquees de Lyon---Bat 403, 69621 Villeurbanne (France); Cuney, S. [Laboratoire des Materiaux Macromoleculaires---URA CNRS 507, Institut National des Sciences Appliquees de Lyon---Bat 403, 69621 Villeurbanne (France)]|[BSN Emballage-Centre de Recherche de Saint-Romain-en-Gier, 69700 Givors Cedex (France); Pascault, J.P. [Laboratoire des Materiaux Macromoleculaires---URA CNRS 507, Institut National des Sciences Appliquees de Lyon-Bat 403, 69621 Villeurbanne (France); Gerard, J.F. [Laboratoire des Materiaux Macromoleculaires---URA CNRS 507, Institut National des Sciences Appliquees de Lyon-Bat 403, 69621 Villeurbanne (France)

    1996-01-01

    From the use of alkoxysilane-terminated macromonomers based on hydrogenated polybutadiene and polycaprolactone oligomers and by using the polyurethane chemistry, hybrid organic{emdash}inorganic materials are prepared. These ones are two-phases systems in which the continuous phase is organic reinforced by silicon rich dispersed particles. These nanosized dispersed particles are formed {ital in} {ital situ} during the hydrolysis and condensation of the sol-gel process according to the phase separation process occurring between the organic and inorganic phases. The gelation process and the final morphologies were found to be very dependent on the acid(catalyst)-to-silicon ratio, on the molar mass of the oligomers, and on the solubility parameter of the soft segment. In fact, during the synthesis, there is a competition between the gelation and the phase separation process which could be perturbated by the vitrification of the silicon-rich clusters. The final morphologies observed by TEM and SAXS are discussed on the basis of the microstructural model proposed by Wilkes and Huang. Such hybrid organic-inorganic materials are applied as coatings on glass float plates tested in a bi-axial mode. The reinforcement is discussed as a function of the morphology of the coatings. {copyright} {ital 1996 American Institute of Physics.}

  19. Hair elemental analysis for forensic science using nuclear and related analytical methods

    Czech Academy of Sciences Publication Activity Database

    Kučera, Jan; Kameník, Jan; Havránek, Vladimír

    2018-01-01

    Roč. 7, č. 3 (2018), s. 65-74 ISSN 2468-1709 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : hair * forensic analysis * neutron activation analysis * particle induced X-ray emission Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry

  20. Inorganic Fullerene-Like Nanoparticles and Inorganic Nanotubes

    Directory of Open Access Journals (Sweden)

    Reshef Tenne

    2014-11-01

    Full Text Available Fullerene-like nanoparticles (inorganic fullerenes; IF and nanotubes of inorganic layered compounds (inorganic nanotubes; INT combine low dimensionality and nanosize, enhancing the performance of corresponding bulk counterparts in their already known applications, as well as opening new fields of their own [1]. This issue gathers articles from the diverse area of materials science and is devoted to fullerene-like nanoparticles and nanotubes of layered sulfides and boron nitride and collects the most current results obtained at the interface between fundamental research and engineering.[...

  1. Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures.

    Science.gov (United States)

    Bäuerlein, Edmund

    2003-02-10

    With evolution, Nature has ingeniously succeeded in giving rise to an impressive variety of inorganic structures. Every organism that synthesizes biogenic minerals does so in a form that is unique to that species. This biomineralization is apparently biologically controlled. It is thus expected that both the synthesis and the form of every specific biogenic mineral is genetically determined and controlled. An investigation of the mechanism of biomineralization has only become possible with the development of modern methods in molecular biology. Unicellular organisms such as magnetic bacteria, calcareous algae, and diatoms, all of which are amongst the simplest forms of life, are particularly suited to be investigated by these methods. Crystals and composites of proteins and amorphous inorganic polymers are formed as complex structures within these organisms; these structures are not known in conventional inorganic chemistry.

  2. Inorganic nutrients, sulfide and oxygen profiles from R/V KNORR in the Black Sea from 19880514 to 19880725 (NODC Accession 9400101)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data collection contains inorganic nutrient chemistry, sulfide and oxygen data collected during cruises 2 through 5 of the 1988 Black Sea Oceanographic...

  3. Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics

    Science.gov (United States)

    The magic of microwave (MW) heating technique, termed as the Bunsen burner of the 21th Century, has emerged as valuable alternative in synthesis of organics, polymers, inorganics, and nanomaterials. Important innovations in MW-assisted chemistry now enable chemists to prepare cat...

  4. Hybrid Organic/Inorganic Thiol-ene-Based Photopolymerized Networks.

    Science.gov (United States)

    Schreck, Kathleen M; Leung, Diana; Bowman, Christopher N

    2011-09-15

    The thiol-ene reaction serves as a more oxygen tolerant alternative to traditional (meth)acrylate chemistry for forming photopolymerized networks with numerous desirable attributes including energy absorption, optical clarity, and reduced shrinkage stress. However, when utilizing commercially available monomers, many thiol-ene networks also exhibit decreases in properties such as glass transition temperature (T(g)) and crosslink density. In this study, hybrid organic/inorganic thiol-ene resins incorporating silsesquioxane (SSQ) species into the photopolymerized networks were investigated as a route to improve these properties. Thiol- and ene-functionalized SSQs (SH-SSQ and allyl-SSQ, respectively) were synthesized via alkoxysilane hydrolysis/condensation chemistry, using a photopolymerizable monomer [either pentaerythriol tetrakis(3-mercaptopropionate) (PETMP) or 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TATATO)] as the reaction solvent. The resulting SSQ-containing solutions (SSQ-PETMP and SSQ-TATATO) were characterized, and their incorporation into photopolymerized networks was evaluated.

  5. Matrices for Sensors from Inorganic, Organic, and Biological Nanocomposites

    Directory of Open Access Journals (Sweden)

    Eugenia Pechkova

    2011-08-01

    Full Text Available Matrices and sensors resulting from inorganic, organic and biological nanocomposites are presented in this overview. The term nanocomposite designates a solid combination of a matrix and of nanodimensional phases differing in properties from the matrix due to dissimilarities in structure and chemistry. The nanoocomposites chosen for a wide variety of health and environment sensors consist of Anodic Porous Allumina and P450scc, Carbon nanotubes and Conductive Polymers, Langmuir Blodgett Films of Lipases, Laccases, Cytochromes and Rhodopsins, Three-dimensional Nanoporous Materials and Nucleic Acid Programmable Protein Arrays.

  6. Summaries of the 40. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    1997-01-01

    Annual 40. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry has been held in Gdansk on 22-26 September 1997. The most valuable scientific results obtained in Polish Laboratories have been presented in 22 main sections and 7 symposia directed especially at following subjects: analytical chemistry, biochemistry, solid state chemistry and material science, physical chemistry, heteroorganic and coordination chemistry, medical and pharmaceutical chemistry, metalorganic chemistry, inorganic and organic chemistry, polymers chemistry, chemistry and environment protection, theoretical chemistry, chemical didactics, photochemistry, radiation chemistry and chemical kinetics, chemical engineering, catalysis, crystallochemistry, chemical technology, electrochemistry, and instrumental methods

  7. Effects of two types of medical contrast media on routine chemistry results by three automated chemistry analyzers.

    Science.gov (United States)

    Park, Yu Jin; Rim, John Hoon; Yim, Jisook; Lee, Sang-Guk; Kim, Jeong-Ho

    2017-08-01

    The use of iodinated contrast media has grown in popularity in the past two decades, but relatively little attention has been paid to the possible interferential effects of contrast media on laboratory test results. Herein, we investigate medical contrast media interference with routine chemistry results obtained by three automated chemistry analyzers. Ten levels of pooled serum were used in the study. Two types of medical contrast media [Iopamiro (iopamidol) and Omnipaque (iohexol)] were evaluated. To evaluate the dose-dependent effects of the contrast media, iopamidol and iohexol were spiked separately into aliquots of serum for final concentrations of 1.8%, 3.6%, 5.5%, 7.3%, and 9.1%. The 28 analytes included in the routine chemistry panel were measured by using Hitachi 7600, AU5800, and Cobas c702 analyzers. We calculated the delta percentage difference (DPD) between the samples and the control, and examined dose-dependent trends. When the mean DPD values were compared with the reference cut-off criteria, the only uniformly interferential effect observed for all analyzers was in total protein with iopamidol. Two additional analytes that showed trends toward interferential effects only in few analyzers and exceeded the limits of the allowable error were the serum iron and the total CO 2 . The other combinations of analyzer and contrast showed no consistent dose-dependent propensity for change in any analyte level. Our study suggests that many of the analytes included in routine chemistry results, except total protein and serum iron, are not significantly affected by iopamidol and iohexol. These results suggest that it would be beneficial to apply a flexible medical evaluation process for patients requiring both laboratory tests and imaging studies, minimizing the need for strict regulations for sequential tests. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  8. Total and inorganic arsenic in fish, seafood and seaweeds--exposure assessment.

    Science.gov (United States)

    Mania, Monika; Rebeniak, Małgorzata; Szynal, Tomasz; Wojciechowska-Mazurek, Maria; Starska, Krystyna; Ledzion, Ewa; Postupolski, Jacek

    2015-01-01

    According to the European Food Safety Authority (EFSA), fish, seafood and seaweeds are foodstuffs that significantly contribute to dietary arsenic intake. With the exception of some algal species, the dominant compounds of arsenic in such food products are the less toxic organic forms. Both the Joint FAO/WHO Expert Committee on Food Additives (JECFA) and EFSA recommend that speciation studies be performed to determine the different chemical forms in which arsenic is present in food due to the differences in their toxicity. Knowing such compositions can thus enable a complete exposure assessment to be made. Determination of total and inorganic arsenic contents in fish, their products, seafood and seaweeds present on the Polish market. This was then followed by an exposure assessment of consumers to inorganic arsenic in these foodstuffs. Total and inorganic arsenic was determined in 55 samples of fish, their products, seafood as well as seaweeds available on the market. The analytical method was hydride generation atomic absorption spectrometry (HGAAS), after dry ashing of samples and reduction of arsenic to arsenic hydride using sodium borohydride. In order to isolate only the inorganic forms of arsenic prior to mineralisation, samples were subjected to concentrated HCl hydrolysis, followed by reduction with hydrobromic acid and hydrazine sulphate after which triple chloroform extractions and triple 1M HCl re-extractions were performed. Exposure of adults was estimated in relation to the Benchmark Dose Lower Confidence Limit (BMDL0.5) as set by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) that resulted in a 0.5% increase in lung cancer (3.0 μg/kg body weight (b.w.) per day). Mean total arsenic content from all investigated fish samples was 0.46 mg/kg (90th percentile 0.94 mg/kg), whilst the inorganic arsenic content never exceeded the detection limit of the analytical method used (0.025 mg/kg). In fish products, mean total arsenic concentration was

  9. Impact of seawater carbonate chemistry on the calcification of marine bivalves

    Science.gov (United States)

    Thomsen, J.; Haynert, K.; Wegner, K. M.; Melzner, F.

    2015-07-01

    Bivalve calcification, particularly of the early larval stages, is highly sensitive to the change in ocean carbonate chemistry resulting from atmospheric CO2 uptake. Earlier studies suggested that declining seawater [CO32-] and thereby lowered carbonate saturation affect shell production. However, disturbances of physiological processes such as acid-base regulation by adverse seawater pCO2 and pH can affect calcification in a secondary fashion. In order to determine the exact carbonate system component by which growth and calcification are affected it is necessary to utilize more complex carbonate chemistry manipulations. As single factors, pCO2 had no effects and [HCO3-] and pH had only limited effects on shell growth, while lowered [CO32-] strongly impacted calcification. Dissolved inorganic carbon (CT) limiting conditions led to strong reductions in calcification, despite high [CO32-], indicating that [HCO3-] rather than [CO32-] is the inorganic carbon source utilized for calcification by mytilid mussels. However, as the ratio [HCO3-] / [H+] is linearly correlated with [CO32-] it is not possible to differentiate between these under natural seawater conditions. An equivalent of about 80 μmol kg-1 [CO32-] is required to saturate inorganic carbon supply for calcification in bivalves. Below this threshold biomineralization rates rapidly decline. A comparison of literature data available for larvae and juvenile mussels and oysters originating from habitats differing substantially with respect to prevailing carbonate chemistry conditions revealed similar response curves. This suggests that the mechanisms which determine sensitivity of calcification in this group are highly conserved. The higher sensitivity of larval calcification seems to primarily result from the much higher relative calcification rates in early life stages. In order to reveal and understand the mechanisms that limit or facilitate adaptation to future ocean acidification, it is necessary to better

  10. Proceedings of the 5. Brazilian Meeting on Analytical Chemistry

    International Nuclear Information System (INIS)

    1989-01-01

    The works of 5 0 Brazilian Meeting on Analitycal Chemistry are presented, including topics about elements determination with instrumental technique. The use of these techniques in soil and food are also cited. (C.G.C.) [pt

  11. Instrumentation and analytical methods in carbon balance studies - inorganic components in a marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Skjelvan, I.; Johannessen, T.; Miller, L.; Stoll, M.

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. Substantial amounts of anthropogenic CO{sub 2} enters the atmosphere. The land biota acts as a sink for CO{sub 2}, with uncertain consequences. About 30% of the anthropogenic CO{sub 2} added to the atmosphere is absorbed by the ocean and how the ocean acts as a sink is central in understanding the carbon cycle. In their project the authors investigate the inorganic carbon in the ocean, especially total dissolved inorganic carbon, alkalinity, and partial pressure of CO{sub 2} (pCO{sub 2}) in surface ocean and atmosphere. To determine total dissolved inorganic carbon, coulometric analysis is used in which an exact amount of sea water is acidified and the amount of carbon extracted is determined by a coulometer. Alkalinity is determined by potentiometric titration. In the pCO{sub 2} measurement, a small amount of air is circulated in a large amount of sea water and when after some time the amount of CO{sub 2} in the air reflects the CO{sub 2} concentration in the water, the pCO{sub 2} in the gas phase is determined by infra-red detection. The atmospheric pCO{sub 2} is also determined, and the difference between the two partial pressures gives information about source or sink activities. Total carbon and alkalinity measurements are done on discrete samples taken from all depths in the ocean, but for partial pressure detection an underway system is used, which determines the pCO{sub 2} in the surface ocean continuously

  12. Using an innovative combination of quality-by-design and green analytical chemistry approaches for the development of a stability indicating UHPLC method in pharmaceutical products.

    Science.gov (United States)

    Boussès, Christine; Ferey, Ludivine; Vedrines, Elodie; Gaudin, Karen

    2015-11-10

    An innovative combination of green chemistry and quality by design (QbD) approach is presented through the development of an UHPLC method for the analysis of the main degradation products of dextromethorphan hydrobromide. QbD strategy was integrated to the field of green analytical chemistry to improve method understanding while assuring quality and minimizing environmental impacts, and analyst exposure. This analytical method was thoroughly evaluated by applying risk assessment and multivariate analysis tools. After a scouting phase aimed at selecting a suitable stationary phase and an organic solvent in accordance with green chemistry principles, quality risk assessment tools were applied to determine the critical process parameters (CPPs). The effects of the CPPs on critical quality attributes (CQAs), i.e., resolutions, efficiencies, and solvent consumption were further evaluated by means of a screening design. A response surface methodology was then carried out to model CQAs as function of the selected CPPs and the optimal separation conditions were determined through a desirability analysis. Resulting contour plots enabled to establish the design space (DS) (method operable design region) where all CQAs fulfilled the requirements. An experimental validation of the DS proved that quality within the DS was guaranteed; therefore no more robustness study was required before the validation. Finally, this UHPLC method was validated using the concept of total error and was used to analyze a pharmaceutical drug product. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Abstracts Book of 42. Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry

    International Nuclear Information System (INIS)

    1999-01-01

    Scientific Assembly of Polish Chemical Society and Association of Engineers and Technicians of Chemical Industry is the most important chemical forum of Polish chemists organised annually. The state of art of many fundamental and applied investigations have been presented and discussed. The following scientific sessions and microsymposia have been proposed: plenary session, analytical chemistry, inorganic chemistry, organic chemistry, chemistry and environment, chemistry and technology of polymers, chemistry didactics, electrochemistry, young scientists forum, chemical technology, chemical engineering, high energetics materials, computers in research and teaching of chemistry, structure modelling and polymer properties, silicon-organic compounds

  14. Progress report, Chemistry and Materials Division, October 1 to December 31, 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Interim research results are reported in solid state science (ion penetration, electron microscopy, radiation damage and metal physics, nuclear methods of analysis), general chemistry (analytical chemistry, hydrogen-water exchange, radioactivity measurements, electrochemistry), physical chemistry (radiation and isotope chemistry), materials science (surface chemistry and metal physics), and university research (deuterium exchange and zirconium alloy properties). (E.C.B.)

  15. Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 1, Administrative

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    Covered are: analytical laboratory operations (ALO) sample receipt and control, ALO data report/package preparation review and control, single shell tank (PST) project sample tracking system, sample receiving, analytical balances, duties and responsibilities of sample custodian, sample refrigerator temperature monitoring, security, assignment of staff responsibilities, sample storage, data reporting, and general requirements for glassware.

  16. Solid phase extraction for the speciation and preconcentration of inorganic selenium in water samples: a review.

    Science.gov (United States)

    Herrero Latorre, C; Barciela García, J; García Martín, S; Peña Crecente, R M

    2013-12-04

    Selenium is an essential element for the normal cellular function of living organisms. However, selenium is toxic at concentrations of only three to five times higher than the essential concentration. The inorganic forms (mainly selenite and selenate) present in environmental water generally exhibit higher toxicity (up to 40 times) than organic forms. Therefore, the determination of low levels of different inorganic selenium species in water is an analytical challenge. Solid-phase extraction has been used as a separation and/or preconcentration technique prior to the determination of selenium species due to the need for accurate measurements for Se species in water at extremely low levels. The present paper provides a critical review of the published methods for inorganic selenium speciation in water samples using solid phase extraction as a preconcentration procedure. On the basis of more than 75 references, the different speciation strategies used for this task have been highlighted and classified. The solid-phase extraction sorbents and the performance and analytical characteristics of the developed methods for Se speciation are also discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Selective inorganic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T. [Sandia National Laboratories, Albuquerque, NM (United States)] [and others

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  18. PWR secondary water chemistry study

    International Nuclear Information System (INIS)

    Pearl, W.L.; Sawochka, S.G.

    1977-02-01

    Several types of corrosion damage are currently chronic problems in PWR recirculating steam generators. One probable cause of damage is a local high concentration of an aggressive chemical even though only trace levels are present in feedwater. A wide variety of trace chemicals can find their way into feedwater, depending on the sources of condenser cooling water and the specific feedwater treatment. In February 1975, Nuclear Water and Waste Technology Corporation (NWT), was contracted to characterize secondary system water chemistry at five operating PWRs. Plants were selected to allow effects of cooling water chemistry and operating history on steam generator corrosion to be evaluated. Calvert Cliffs 1, Prairie Island 1 and 2, Surry 2, and Turkey Point 4 were monitored during the program. Results to date in the following areas are summarized: (1) plant chemistry variations during normal operation, transients, and shutdowns; (2) effects of condenser leakage on steam generator chemistry; (3) corrosion product transport during all phases of operation; (4) analytical prediction of chemistry in local areas from bulk water chemistry measurements; and (5) correlation of corrosion damage to chemistry variation

  19. Modeling the inorganic bromine partitioning in the tropical tropopause layer over the eastern and western Pacific Ocean

    Directory of Open Access Journals (Sweden)

    M. A. Navarro

    2017-08-01

    Full Text Available The stratospheric inorganic bromine (Bry burden arising from the degradation of brominated very short-lived organic substances (VSLorg and its partitioning between reactive and reservoir species is needed for a comprehensive assessment of the ozone depletion potential of brominated trace gases. Here we present modeled inorganic bromine abundances over the Pacific tropical tropopause based on aircraft observations of VSLorg from two campaigns of the Airborne Tropical TRopopause EXperiment (ATTREX 2013, carried out over the eastern Pacific, and ATTREX 2014, carried out over the western Pacific and chemistry-climate simulations (along ATTREX flight tracks using the specific meteorology prevailing. Using the Community Atmosphere Model with Chemistry (CAM-Chem we model that BrO and Br are the daytime dominant species. Integrated across all ATTREX flights, BrO represents ∼ 43 and 48 % of daytime Bry abundance at 17 km over the western and eastern Pacific, respectively. The results also show zones where Br / BrO > 1 depending on the solar zenith angle (SZA, ozone concentration, and temperature. On the other hand, BrCl and BrONO2 were found to be the dominant nighttime species with ∼  61 and 56 % of abundance at 17 km over the western and eastern Pacific, respectively. The western-to-eastern differences in the partitioning of inorganic bromine are explained by different abundances of ozone (O3, nitrogen dioxide (NO2, total inorganic chlorine (Cly, and the efficiency of heterogeneous reactions of bromine reservoirs (mostly BrONO2 and HBr occurring on ice crystals.

  20. Handbook on the physics and chemistry of rare earths

    International Nuclear Information System (INIS)

    Gschneidner, K.A. Jr.; Eyring, L.

    1982-01-01

    This handbook is a six-volume work which covers the entire rare earth field in an integrated manner. Each chapter is a comprehensive, up-to-date, critical review of a particular segment of the field. The first volume is devoted to the rare earth metals, the second to rare earth alloys and intermetallics, and the third and fourth volumes to the non-metallic rare earth materials, including solutions, complexes and bioinorganic substances, in addition to solid inorganic compounds. The electronic structure of these unique elements is the primary basis of understanding their physical, metallurgical and chemical natures. The interrelationship of the 4f and valence electrons and the observed optical, electrical, magnetic, crystallographic, elastic, thermal, mechanical, chemical, geochemical and biological behaviors is brought forth time and again throughout the chapters. Also discussed are the preparative, separation and solution chemistry of the elements and their compounds and the various chemical and physical analytical methods for determining the rare earths in various materials and impurities in a rare earth matrix. Vol. 5 is a update complement of the previous volumes. Volume 6 is concerned with ternary and higher order materials. (Auth.)