WorldWideScience

Sample records for inorganic acid based

  1. Ionisation constants of inorganic acids and bases in aqueous solution

    CERN Document Server

    Perrin, D D

    2013-01-01

    Ionisation Constants of Inorganic Acids and Bases in Aqueous Solution, Second Edition provides a compilation of tables that summarize relevant data recorded in the literature up to the end of 1980 for the ionization constants of inorganic acids and bases in aqueous solution. This book includes references to acidity functions for strong acids and bases, as well as details about the formation of polynuclear species. This text then explains the details of each column of the tables, wherein column 1 gives the name of the substance and the negative logarithm of the ionization constant and column 2

  2. Lewis Acid-Base, Molecular Modeling, and Isotopic Labeling in a Sophomore Inorganic Chemistry Laboratory

    Science.gov (United States)

    Nataro, Chip; Ferguson, Michelle A.; Bocage, Katherine M.; Hess, Brian J.; Ross, Vincent J.; Swarr, Daniel T.

    2004-01-01

    An experiment to prepare a deuterium labeled adduct of a Lewis acid and Lewis base, to use computational methods allowing students to visualize the LUMO of Lewis acids, the HOMO of Lewis bases and the molecular orbitals of the adduct that is formed is developed. This allows students to see the interplay between calculated and experimental results.

  3. Synthesis,crystal structure and properties of inorganic-organic hybrid polymers based on 8-hydroxylquinoline-5-sulfonic acid

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Two new inorganic-organic hybrid polymers, Mn(QS)(H2O) (1) and Co(QS)(H2O)2 (2) (H2QS=8-hydroxyl-quinoline-5-sulfonic acid), based on 8-hydroxylquinoline-5-sulfonate ligand, have been synthesized under solvothermal conditions and their structures were solved by single-crystal X-ray diffraction analysis. Compound 1 is a three-dimensional open framework with rutile topology structure, and compound 2 is a three-dimensional supramolecular structure. These compounds were characterized by powder XRD, infrared spectroscopy, thermogravimetric analysis, fluorescence properties and magnetism properties.

  4. Synthesis, crystal structure and properties of inorganic-organic hybrid polymers based on 8-hydroxylquinoline-5-sulfonic acid

    Institute of Scientific and Technical Information of China (English)

    WANG Ying; XUE Ming; XU JiaNing; ZHU GuangShan; QIU ShiLun

    2009-01-01

    Two new inorganic-organic hybrid polymers, Mn(QS)(H_2O) (1) and Co(QS)(H_2O)2 (2) (H2QS=8-hydroxylquinoline-5-sulfonic acid), based on 8-hydroxylquinoline-5-sulfonate ligand, have been synthesized under solvothermal conditions and their structures were solved by single-crystal X-ray diffraction analysis. Compound 1 is a three-dimensional open framework with rutile topology structure, and compound 2 is a three-dimensional supramolecular structure. These compounds were characterized by powder XRD, infrared spectroscopy, thermogravimetric analysis, fluorescence properties and magnetism properties.

  5. Inorganic acid emission factors of semiconductor manufacturing processes.

    Science.gov (United States)

    Chein, HungMin; Chen, Tzu Ming; Aggarwal, Shankar Gopala; Tsai, Chuen-Jinn; Huang, Chun-Chao

    2004-02-01

    A huge amount of inorganic acids can be produced and emitted with waste gases from integrated circuit manufacturing processes such as cleaning and etching. Emission of inorganic acids from selected semiconductor factories was measured in this study. The sampling of the inorganic acids was based on the porous metal denuders, and samples were then analyzed by ion chromatography. The amount of chemical usage was adopted from the data that were reported to the Environmental Protection Bureau in Hsin-chu County according to the Taiwan Environmental Protection Agency regulation. The emission factor is defined as the emission rate (kg/month) divided by the amount of chemical usage (L/month). Emission factors of three inorganic acids (i.e., hydrofluoric acid [HF], hydrochloric acid [HCl], and sulfuric acid [H2SO4]) were estimated by the same method. The emission factors of HF and HCl were determined to be 0.0075 kg/L (coefficient of variation [CV] = 60.7%, n = 80) and 0.0096 kg/L (CV = 68.2%, n = 91), respectively. Linear regression equations are proposed to fit the data with correlation coefficient square (R2) = 0.82 and 0.9, respectively. The emission factor of H2SO4, which is in the droplet form, was determined to be 0.0016 kg/L (CV = 99.2%, n = 107), and its R2 was 0.84. The emission profiles of gaseous inorganic acids show that HF is the dominant chemical in most of the fabricators.

  6. Recent developments in Inorganic polymers: A Review with focus on Si-Al based inorganic polymers

    Directory of Open Access Journals (Sweden)

    Shrray Srivastava

    2015-12-01

    Full Text Available Inorganic polymers are a unique classification of polymers. They contain inorganic atoms in the main chain. Hybrids with organic polymers as well as those chains that contain metals as pendant groups are considered in a special sub-classification as organo-metallic polymers. The networks containing only inorganic elements in main chain are called inorganic polymers. The silicone rubber is the most commercial inorganic polymer. The organo-metallic and inorganic polymers have a different set of applications. The current paper is a review of current applications of polymers with inorganic back-bone networks, especially focusing on Si and Al based inorganic polymeric materials.

  7. Research progress in inorganic-organic hybrid proton exchange membrane based on phosphonic(phosphoric) acid%膦(磷)酸基无机-有机杂化质子交换膜的研究进展

    Institute of Scientific and Technical Information of China (English)

    郭芷含; 沈春晖; 陈成; 孔更金

    2012-01-01

    综述了通过溶胶-凝胶法制备的质子交换膜(PEM),即膦(磷)酸基无机-有机杂化PEM的发展状况.对比分析了掺杂磷酸和键合膦酸无机-有机杂化膜的稳定性以及膦(磷)酸与聚硅氧烷网络结构的连接方式对膜性能的影响.对膦酸基无机.有机杂化膜的发展前景进行了展望.%The development of inorganic-organic hybrid proton exchange membrane(PEM) based on phosphonic(phosphoric) acid was summarized, which were prepared from organosiloxane by sol-gel method. The stability between inorganic-organic hybrid membranes doped phosphoric acid and inorganic-organic hybrid membranes chemically grafted phosphonic acid was compared, then effect of connection ways of phosphonic (phosphoric) acid with the polysiloxane network structure on the membrane performance was discussed. The prospect development of inorganic-organic hybrid membranes based on phosphoric acid was described.

  8. Water-free Alkaline Polymer-inorganic Acid Complexes with High Conductivity at Ambient Temperature

    Institute of Scientific and Technical Information of China (English)

    O.V.Chervakov; M.V.Andriianova; V.V.Riabenko; A.V.Markevich; E.M.Shembel; D.Meshri

    2007-01-01

    1 Results Recently increased interest is shown to proton conducting materials based on the alkaline polymer-inorganic acid complexes that is caused by a possibility of their application as the high-temperature electrolyte systems for various electrochemical devices (fuel cells,sensors,lithium power sources etc.).Complexes of inorganic acids with the alkaline polymers (polybenzimidazoles[1],polyvinylpyridines[2]) are characterized by high ionic conductivity at ambient temperatures (up to 10-2 Ω-1·cm-1) a...

  9. Organic-inorganic hybrid materials based on polyaniline/TiO(2) nanocomposites for ascorbic acid fuel cell systems.

    Science.gov (United States)

    Ganesan, Raman; Gedanken, Aharon

    2008-10-29

    Polyaniline was grafted onto a mixture of rutile and anatase TiO(2) nanoparticles by in situ chemical oxidative polymerization. These nanocomposites were characterized by carbon, hydrogen and nitrogen (CHN) analysis, x-ray diffraction (XRD), Fourier transform infrared (FTIR), ultraviolet-visible (UV-vis), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. FTIR and UV-vis confirm the formation of polyaniline on TiO(2) nanoparticles. The TEM shows that the composites consist of PANI and TiO(2) nanoparticles. Compared to the neat polyaniline, PANI/TiO(2) composites show a higher capacitance and also a higher activity per mass of polyaniline. Since the PANI/TiO(2) composites are stable during the electrooxidation of ascorbic acid, they can be used as an alternative catalyst for direct ascorbic acid fuel cells.

  10. Role of inorganic carbon in lactic acid bacteria metabolism

    OpenAIRE

    Arsène-Ploetze, Florence; Bringel, Françoise

    2004-01-01

    International audience; Capnophiles are bacteria stimulated by bicarbonate and CO$_2$, the two major forms of inorganic carbon (IC) in physiological neutral liquids. Capnophiles are often pathogenic heterotrophs found in IC-rich ecological niches such as human cavities. Like capnophiles, the growth of lactic acid bacteria (LAB) such as Lactobacillus plantarum and Enterococcus faecalis is stimulated by IC. CO$_2$ or HCO$^{-}_3$ are substrates in carbamoyl phosphate (CP) synthesis and other car...

  11. Catalytic effects of inorganic acids on the decomposition of ammonium nitrate.

    Science.gov (United States)

    Sun, Jinhua; Sun, Zhanhui; Wang, Qingsong; Ding, Hui; Wang, Tong; Jiang, Chuansheng

    2005-12-09

    In order to evaluate the catalytic effects of inorganic acids on the decomposition of ammonium nitrate (AN), the heat releases of decomposition or reaction of pure AN and its mixtures with inorganic acids were analyzed by a heat flux calorimeter C80. Through the experiments, the different reaction mechanisms of AN and its mixtures were analyzed. The chemical reaction kinetic parameters such as reaction order, activation energy and frequency factor were calculated with the C80 experimental results for different samples. Based on these parameters and the thermal runaway models (Semenov and Frank-Kamenestkii model), the self-accelerating decomposition temperatures (SADTs) of AN and its mixtures were calculated and compared. The results show that the mixtures of AN with acid are more unsteady than pure AN. The AN decomposition reaction is catalyzed by acid. The calculated SADTs of AN mixtures with acid are much lower than that of pure AN.

  12. Methods development for separation of inorganic anions, organic acids and bases, and neutral organic compounds by ion chromatography and capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie [Iowa State Univ., Ames, IA (United States)

    1999-04-01

    A novel anion-exchange resin containing three amine groups was prepared by reaction of a chloromethylated polystyrene-divinylbenzene (PS-DVB) resin with diethylenetriamine. After being protonated by contact with an aqueous acid, this resin can be used for ion chromatographic separation of anions. The charge on the resins can be varied from +1 to +3 by changing the mobile phase pH. The selectivity of the new ion exchangers for various inorganic anions was quite different from that of conventional anion exchangers. The performance of this new anion exchanger was studied by changing the pH and the concentration of the eluent, and several different eluents were used with some common anions as testing analytes. Conductivity detection and UV-visible detection were applied to detect the anions after separation. The new resin can also be used for HPLC separation of neutral organic compounds. Alkylphenols and alkylbenzenes were separated with this new polymeric resin, and excellent separations were obtained under simple conditions. This report contains Chapter 1: General introduction and Chapter 6: General conclusions.

  13. The effectiveness of organic PCM based on lauric acid from coconut oil and inorganic PCM based on salt hydrate CaCl2.6H2o as latent heat energy storage system in Indonesia

    Science.gov (United States)

    U, Sri Rahayu A.; Putri, Widya A.; Sutjahja, I. M.; Kurnia, D.; Wonorahardjo, S.

    2016-08-01

    A latent heat energy storage system utilizing phase change materials (PCM) is an alternative strategy to reduce the use of Air Conditioning (AC) system in big cities in Indonesia in order for energy conservation in the future. In this research we used two kinds of materials, namely organic PCM based on lauric acid from coconut oil (CO) and inorganic PCM based on salt hydrate CaCl2.6H2O, because they have thermophysical parameters suitable for human's thermal comfort application in the building. The CO which contained more than 50% lauric acid has the melting temperature (Tm ) of about 26 °C and heat entalphy (ΔH) around 103 kJ/kg, while CaCl2.6H2O has the melting point of 29 °C and heat entalphy of 190 kJ/kg. In this paper we report the effectiveness of those two kinds of PCM in reducing the air temperature as one of some criteria for human's thermal comfort. The experiments were performed in a close and adiabatic room and the time-temperature measurements were done automatically using Arduino microcontroller and LM35 temperature sensor connected to the PC.

  14. Effects of Inorganic acid catalysts on liquefaction of wood In phenol

    Institute of Scientific and Technical Information of China (English)

    Zhang Qiuhui; Zhao Guangjie; Chen Jinpeng

    2006-01-01

    In order to obtain the effects of acid catalysts on wood liquefaction in phenol, we investigated the liquefaction of wood powder from Chinese fir (Cunninghamia lanceolata) and poplar (Triploid Populus tomentosa Carr) in the presence of phenol with the following weak inorganic acids as catalysts: phosphoric acid (85%),sulfuric acid (36%),hydrochloric acid (37%)and oxalic acid (99.5%).Results show that phosphoric acid (85%) and sulfuric acid (36%) are better than the other catalysts.It was found that lower residue ratios can be obtained under defined reaction conditions: phenol/wood ratio is 4,a 10% catalyst based on the weight of phenol,a temperature of 150℃ for 2 h and phosphoric or sulfuric acid.The residue ratios are 3.2% and 4.0%,respectively.

  15. Joint effect of organic acids and inorganic salts on cloud droplet activation

    Directory of Open Access Journals (Sweden)

    M. Frosch

    2011-04-01

    Full Text Available We have investigated CCN properties of internally mixed particles composed of one organic acid (oxalic acid dihydrate, succinic acid, adipic acid, citric acid, cis-pinonic acid, or Nordic reference fulvic acid and one inorganic salt (sodium chloride or ammonium sulphate. Surface tension and water activity of aqueous model solutions with concentrations relevant for CCN activation were measured using a tensiometer and osmometry, respectively. The measurements were used to calculate Köhler curves and critical supersaturations, which were compared to measured critical supersaturations of particles with the same chemical compositions, determined with a cloud condensation nucleus counter. Surfactant surface partitioning was not accounted for. For the aqueous solutions containing cis-pinonic acid and fulvic acid, a depression of surface tension was observed, but for the remaining solutions the effect on surface tension was negligible at concentrations relevant for cloud droplet activation. The surface tension depression of aqueous solutions containing both organic acid and inorganic salt was approximately the same as or smaller than that of aqueous solutions containing the same mass of the corresponding pure organic acids. Water activity was found to be highly dependent on the type and amount of inorganic salt. Sodium chloride was able to decrease water activity more than ammonium sulphate and both inorganic salts are predicted to have a smaller Raoult term than the studied organic acids. Increasing the mass ratio of the inorganic salt led to a decrease in water activity. Water activity measurements were compared to results from the E-AIM model and values estimated from both constant and variable van't Hoff factors. The correspondence between measurements and estimates was overall good, except for highly concentrated solutions. Critical supersaturations calculated with Köhler theory based on measured water activity and surface tension, but not

  16. Joint effect of organic acids and inorganic salts on cloud droplet activation

    Directory of Open Access Journals (Sweden)

    M. Frosch

    2010-07-01

    Full Text Available We have investigated CCN properties of internally mixed particles composed of one organic acid (oxalic acid, succinic acid, adipic acid, citric acid, cis-pinonic acid, or nordic reference fulvic acid and one inorganic salt (sodium chloride or ammonium sulphate. Surface tension and water activity of aqueous model solutions with concentrations relevant for CCN activation were measured using a tensiometer and osmometry, respectively. The measurements were used to calculate Köhler curves, which were compared to measured critical supersaturations of particles with the same chemical compositions, determined with a cloud condensation nucleus counter. Surfactant surface partitioning was not accounted for. For the mixtures containing cis-pinonic acid or fulvic acid, a depression of surface tension was observed, but for the remaining mixtures the effect on surface tension was negligle at concentrations relevant for cloud droplet activation, and water activity was the more significant term in the Köhler equation. The surface tension depression of aqueous solutions containing both organic acid and inorganic salt was approximately the same as or smaller than that of aqueous solutions containing the same mass of the corresponding pure organic acids. Water activity was found to be highly dependent on the type and amount of inorganic salt. Sodium chloride was able to decrease water activity more than ammonium sulphate and both inorganic compounds had a higher effect on water activity than the studied organic acids, and increasing the mass ratio of the inorganic compound led to a decrease in water activity. Water activity measurements were compared to results from the E-AIM model and values estimated from both constant and variable van't Hoff factors to evaluate the performance of these approaches. The correspondence between measuments and estimates was overall good, except for highly concentrated solutions. Critical supersaturations calculated with K

  17. Thermoplastic Polymer Nanocomposites Based on Inorganic Fullerene-like Nanoparticles and Inorganic Nanotubes

    Directory of Open Access Journals (Sweden)

    Mohammed Naffakh

    2014-06-01

    Full Text Available Using inorganic fullerene-like (IF nanoparticles and inorganic nanotubes (INT in organic-inorganic hybrid composite, materials provide the potential for improving thermal, mechanical, and tribological properties of conventional composites. The processing of such high-performance hybrid thermoplastic polymer nanocomposites is achieved via melt-blending without the aid of any modifier or compatibilizing agent. The incorporation of small quantities (0.1–4 wt.% of IF/INTs (tungsten disulfide, IF-WS2 or molybdenum disulfide, MoS2 generates notable performance enhancements through reinforcement effects and excellent lubricating ability in comparison with promising carbon nanotubes or other inorganic nanoscale fillers. It was shown that these IF/INT nanocomposites can provide an effective balance between performance, cost effectiveness, and processability, which is of significant importance for extending the practical applications of diverse hierarchical thermoplastic-based composites.

  18. Identifying Affinity Classes of Inorganic Materials Binding Sequences via a Graph-Based Model.

    Science.gov (United States)

    Du, Nan; Knecht, Marc R; Swihart, Mark T; Tang, Zhenghua; Walsh, Tiffany R; Zhang, Aidong

    2015-01-01

    Rapid advances in bionanotechnology have recently generated growing interest in identifying peptides that bind to inorganic materials and classifying them based on their inorganic material affinities. However, there are some distinct characteristics of inorganic materials binding sequence data that limit the performance of many widely-used classification methods when applied to this problem. In this paper, we propose a novel framework to predict the affinity classes of peptide sequences with respect to an associated inorganic material. We first generate a large set of simulated peptide sequences based on an amino acid transition matrix tailored for the specific inorganic material. Then the probability of test sequences belonging to a specific affinity class is calculated by minimizing an objective function. In addition, the objective function is minimized through iterative propagation of probability estimates among sequences and sequence clusters. Results of computational experiments on two real inorganic material binding sequence data sets show that the proposed framework is highly effective for identifying the affinity classes of inorganic material binding sequences. Moreover, the experiments on the structural classification of proteins (SCOP) data set shows that the proposed framework is general and can be applied to traditional protein sequences.

  19. Stretchable, curvilinear electronics based on inorganic materials.

    Science.gov (United States)

    Kim, Dae-Hyeong; Xiao, Jianliang; Song, Jizhou; Huang, Yonggang; Rogers, John A

    2010-05-18

    All commercial forms of electronic/optoelectronic technologies use planar, rigid substrates. Device possibilities that exploit bio-inspired designs or require intimate integration with the human body demand curvilinear shapes and/or elastic responses to large strain deformations. This article reviews progress in research designed to accomplish these outcomes with established, high-performance inorganic electronic materials and modest modifications to conventional, planar processing techniques. We outline the most well developed strategies and illustrate their use in demonstrator devices that exploit unique combinations of shape, mechanical properties and electronic performance. We conclude with an outlook on the challenges and opportunities for this emerging area of materials science and engineering.

  20. Effects of organic and inorganic acids on phosphorus release from municipal sludge.

    Science.gov (United States)

    Pakdil, N B; Filibeli, A

    2007-01-01

    This paper reports on the effects of inorganic acids (sulphuric acid, hydrochloric acid, nitric acid) and organic acids (citric acid, oxalic acids) for phosphorus recovery from sludge and struvite precipitation results. It was observed that both inorganic acid and organic acids were effective at phosphorus release. The studies on precipitation of released phosphorus from sludge as magnesium ammonium phosphate (struvite) were also done using nitric and oxalic acids. Phosphorus and heavy metals of leachate were analyzed before and after precipitation. It was observed that heavy metal concentrations in the extracted samples decrease after precipitation. Precipitation was accomplished by using extract derived with nitric acid; however, in oxalic acid applications, it was not achieved. When the chemical constituents of the dried material were examined oxygen, sodium and nitrogen were found to be the major elements.

  1. [Analysis of proteins, amino acids and inorganic elements in Holotrichia diomphalia from different areas].

    Science.gov (United States)

    Cao, Wei; Liu, Dan; Zhang, Yi-Kai; Wang, Xiao-Yu; Chang, Yan-Rong; Yang, Qian; Wang, Si-Wang

    2010-10-01

    To analyze the content of proteins,amino acids and inorganic elements of Holotrichia diomphalia in different growing areas as the references for quality evaluation and reasonable application of them. The contents of proteins were determined using semi-micro Kjeldahl method. The contents of seventeen amino acids and inorganic elements were determined with amino acid analyzer and atomic absorption spectrometer and elemental analyzer, respectively. The contents of protein were 33.4%-44.4%, and that in Jiangxi were the highest in five different areas. There were seventeen kinds of amino acids in Holotrichia diomphalia. Among them, seven amino acids were essential to human life. The content of glutamic acid was the highest in seventeen amino acids. In inorganic elements, the content of Mg, Ca was higher in macroelements and Fe, Zn was higher in microelements. There are many kinds of necessary amino acids and inorganic elements for man kind in Holotrichia diomphalia. The contents of proteins, amino acids and inorganic elements have some difference in Holotrichia diomphalia of different growing areas.

  2. Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors

    DEFF Research Database (Denmark)

    He, Ronghuan; Qingfeng, Li; Gang, Xiao

    2003-01-01

    Phosphoric acid doped polybenzimidazole (PBI) and PBI composite membranes have been prepared in the present work. The PBI composites contain inorganic proton conductors including zirconium phosphate (ZrP), (Zr(HPO4)2·nH2O), phosphotungstic acid (PWA), (H3PW12O40·nH2O) and silicotungstic acid (Si...

  3. Tuning the Mechanical Properties of Tapioca Starch by Plasticizers, Inorganic Fillers and Agrowaste-Based Fillers

    OpenAIRE

    Edwin Azwar; Minna Hakkarainen

    2012-01-01

    Mechanical properties of tapioca starch-based films were tuned by different additives and additive combinations. The additives included plasticizers (glycerol, sorbitol, and citric acid), inorganic fillers (halloysite and kaolin), and agrowaste-based fillers (milled wood flour and rice bran). In addition, new biobased additives were prepared from wood flour and rice bran through liquefaction reaction. Through different additive combinations, starch-based materials with significant differences...

  4. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    NICO

    radiation balance.4,5 Major water-soluble inorganic ions are associated with ... central area and major road systems and possible aerosol sources include biomass ..... Tanzania than at European rural sites32 and Asia.33,34. To determine the ...

  5. Compensation of inorganic acid interferences in ICP-OES and ICP-MS using a Flow Blurring® multinebulizer

    OpenAIRE

    Aguirre Pastor, Miguel Ángel; Fialhob, Lucimar L.; NÓBREGA, Joaquim A.; Hidalgo Núñez, Montserrat; Canals Hernández, Antonio

    2014-01-01

    A new and easy method has been proposed for compensation of inorganic acid matrix effects in ICP-OES and ICP-MS. The method consists on an on-line standard addition calibration using a Flow Blurring® multinebulizer (FBMN-based system). Experimental conditions of the FBMN-based system are optimized for both ICP-OES and ICP-MS. Under optimized conditions recovery values obtained in the analysis of synthetic acid samples were close to 100% for HNO3 and HCl (with acid concentrations of up to 15% ...

  6. Analysis of trace inorganic anions in weak acid salts by single pump cycling-column-switching ion chromatography.

    Science.gov (United States)

    Huang, Zhongping; Ni, Chengzhu; Zhu, Zhuyi; Pan, Zaifa; Wang, Lili; Zhu, Yan

    2015-05-01

    The application of ion chromatography with the single pump cycling-column-switching technique was described for the analysis of trace inorganic anions in weak acid salts within a single run. Due to the hydrogen ions provided by an anion suppressor electrolyzing water, weak acid anions could be transformed into weak acids, existing as molecules, after passing through the suppressor. Therefore, an anion suppressor and ion-exclusion column were adopted to achieve on-line matrix elimination of weak acid anions with high concentration for the analysis of trace inorganic anions in weak acid salts. A series of standard solutions consisting of target anions of various concentrations from 0.005 to 10 mg/L were analyzed, with correlation coefficients r ≥ 0.9990. The limits of detection were in the range of 0.67 to 1.51 μg/L, based on the signal-to-noise ratio of 3 and a 25 μL injection volume. Relative standard deviations for retention time, peak area, and peak height were all less than 2.01%. A spiking study was performed with satisfactory recoveries between 90.3 and 104.4% for all anions. The chromatographic system was successfully applied to the analysis of trace inorganic anions in five weak acid salts.

  7. Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic protontic conductors

    DEFF Research Database (Denmark)

    Li, Qingfeng

    2003-01-01

    contain inorganic protonic conductors including zirconium phosphate (ZrP), (Zr(HPO4)2. nH2O); phosphotungstic acid (PWA), (H3PW12O40. nH2O); and silicotungstic acid (SiWA), (H4SiW12O40 . nH2O). The conductivity of phosphoric acid doped PBI and PBI composite membranes was found to be dependent on the acid...

  8. Heterogeneous Catalysis of Polyoxometalate Based Organic–Inorganic Hybrids

    Directory of Open Access Journals (Sweden)

    Yuanhang Ren

    2015-03-01

    Full Text Available Organic–inorganic hybrid polyoxometalate (POM compounds are a subset of materials with unique structures and physical/chemical properties. The combination of metal-organic coordination complexes with classical POMs not only provides a powerful way to gain multifarious new compounds but also affords a new method to modify and functionalize POMs. In parallel with the many reports on the synthesis and structure of new hybrid POM compounds, the application of these compounds for heterogeneous catalysis has also attracted considerable attention. The hybrid POM compounds show noteworthy catalytic performance in acid, oxidation, and even in asymmetric catalytic reactions. This review summarizes the design and synthesis of organic–inorganic hybrid POM compounds and particularly highlights their recent progress in heterogeneous catalysis.

  9. Heterogeneous Catalysis of Polyoxometalate Based Organic-Inorganic Hybrids.

    Science.gov (United States)

    Ren, Yuanhang; Wang, Meiyin; Chen, Xueying; Yue, Bin; He, Heyong

    2015-03-31

    Organic-inorganic hybrid polyoxometalate (POM) compounds are a subset of materials with unique structures and physical/chemical properties. The combination of metal-organic coordination complexes with classical POMs not only provides a powerful way to gain multifarious new compounds but also affords a new method to modify and functionalize POMs. In parallel with the many reports on the synthesis and structure of new hybrid POM compounds, the application of these compounds for heterogeneous catalysis has also attracted considerable attention. The hybrid POM compounds show noteworthy catalytic performance in acid, oxidation, and even in asymmetric catalytic reactions. This review summarizes the design and synthesis of organic-inorganic hybrid POM compounds and particularly highlights their recent progress in heterogeneous catalysis.

  10. Nectar sugars and amino acids in day- and night-flowering Nicotiana species are more strongly shaped by pollinators’ preferences than organic acids and inorganic ions

    Science.gov (United States)

    Tiedge, Kira; Lohaus, Gertrud

    2017-01-01

    Floral nectar contains mainly sugars but also amino acids, organic acids, inorganic ions and secondary compounds to attract pollinators. The genus Nicotiana exhibits great diversity among species in floral morphology, flowering time, nectar compositions, and predominant pollinators. We studied nectar samples of 20 Nicotiana species, composed equally of day- and night-flowering plants and attracting different groups of pollinators (e.g. hummingbirds, moths or bats) to investigate whether sugars, amino acids, organic acids and inorganic ions are influenced by pollinator preferences. Glucose, fructose and sucrose were the only sugars found in the nectar of all examined species. Sugar concentration of the nectar of day-flowering species was 20% higher and amino acid concentration was 2-3-fold higher compared to the nectar of night-flowering species. The sucrose-to-hexose ratio was significantly higher in night-flowering species and the relative share of sucrose based on the total sugar correlated with the flower tube length in the nocturnal species. Flowers of different tobacco species contained varying volumes of nectar which led to about 150-fold higher amounts of total sugar per flower in bat- or sunbird-pollinated species than in bee-pollinated or autogamous species. This difference was even higher for total amino acids per flower (up to 1000-fold). As a consequence, some Nicotiana species invest large amounts of organic nitrogen for certain pollinators. Higher concentrations of inorganic ions, predominantly anions, were found in nectar of night-flowering species. Therefore, higher anion concentrations were also associated with pollinator types active at night. Malate, the main organic acid, was present in all nectar samples but the concentration was not correlated with pollinator type. In conclusion, statistical analyses revealed that pollinator types have a stronger effect on nectar composition than phylogenetic relations. In this context, nectar sugars and amino

  11. Nectar sugars and amino acids in day- and night-flowering Nicotiana species are more strongly shaped by pollinators' preferences than organic acids and inorganic ions.

    Science.gov (United States)

    Tiedge, Kira; Lohaus, Gertrud

    2017-01-01

    Floral nectar contains mainly sugars but also amino acids, organic acids, inorganic ions and secondary compounds to attract pollinators. The genus Nicotiana exhibits great diversity among species in floral morphology, flowering time, nectar compositions, and predominant pollinators. We studied nectar samples of 20 Nicotiana species, composed equally of day- and night-flowering plants and attracting different groups of pollinators (e.g. hummingbirds, moths or bats) to investigate whether sugars, amino acids, organic acids and inorganic ions are influenced by pollinator preferences. Glucose, fructose and sucrose were the only sugars found in the nectar of all examined species. Sugar concentration of the nectar of day-flowering species was 20% higher and amino acid concentration was 2-3-fold higher compared to the nectar of night-flowering species. The sucrose-to-hexose ratio was significantly higher in night-flowering species and the relative share of sucrose based on the total sugar correlated with the flower tube length in the nocturnal species. Flowers of different tobacco species contained varying volumes of nectar which led to about 150-fold higher amounts of total sugar per flower in bat- or sunbird-pollinated species than in bee-pollinated or autogamous species. This difference was even higher for total amino acids per flower (up to 1000-fold). As a consequence, some Nicotiana species invest large amounts of organic nitrogen for certain pollinators. Higher concentrations of inorganic ions, predominantly anions, were found in nectar of night-flowering species. Therefore, higher anion concentrations were also associated with pollinator types active at night. Malate, the main organic acid, was present in all nectar samples but the concentration was not correlated with pollinator type. In conclusion, statistical analyses revealed that pollinator types have a stronger effect on nectar composition than phylogenetic relations. In this context, nectar sugars and amino

  12. Probing the interaction of individual amino acids with inorganic surfaces using atomic force spectroscopy.

    Science.gov (United States)

    Razvag, Yair; Gutkin, Vitaly; Reches, Meital

    2013-08-13

    This article describes single-molecule force spectroscopy measurements of the interaction between individual amino acid residues and inorganic surfaces in an aqueous solution. In each measurement, there is an amino acid residue, lysine, glutamate, phenylalanine, leucine, or glutamine, and each represents a class of amino acids (positively or negatively charged, aromatic, nonpolar, and polar). Force-distance curves measured the interaction of the individual amino acid bound to a silicon atomic force microscope (AFM) tip with a silcon substrate, cut from a single-crystal wafer, or mica. Using this method, we were able to measure low adhesion forces (below 300 pN) and could clearly determine the strength of interactions between the individual amino acid residues and the inorganic substrate. In addition, we observed how changes in the pH and ionic strength of the solution affected the adsorption of the residues to the substrates. Our results pinpoint the important role of hydrophobic interactions among the amino acids and the substrate, where hydrophobic phenylalanine exhibited the strongest adhesion to a silicon substrate. Additionally, electrostatic interactions also contributed to the adsorption of amino acid residues to inorganic substrates. A change in the pH or ionic strength values of the buffer altered the strength of interactions among the amino acids and the substrate. We concluded that the interplay between the hydrophobic forces and electrostatic interactions will determine the strength of adsorption among the amino acids and the surface. Overall, these results contribute to our understanding of the interaction at the organic-inorganic interface. These results may have implications for our perception of the specificity of peptide binding to inorganic surfaces. Consequently, it would possibly lead to a better design of composite materials and devices.

  13. Flexible Photodetectors Based on 1D Inorganic Nanostructures

    Science.gov (United States)

    Lou, Zheng

    2015-01-01

    Flexible photodetectors with excellent flexibility, high mechanical stability and good detectivity, have attracted great research interest in recent years. 1D inorganic nanostructures provide a number of opportunities and capabilities for use in flexible photodetectors as they have unique geometry, good transparency, outstanding mechanical flexibility, and excellent electronic/optoelectronic properties. This article offers a comprehensive review of several types of flexible photodetectors based on 1D nanostructures from the past ten years, including flexible ultraviolet, visible, and infrared photodetectors. High‐performance organic‐inorganic hybrid photodetectors, as well as devices with 1D nanowire (NW) arrays, are also reviewed. Finally, new concepts of flexible photodetectors including piezophototronic, stretchable and self‐powered photodetectors are examined to showcase the future research in this exciting field. PMID:27774404

  14. EFFECT OF CASEIN-BASED SEMISYNTHETIC FOOD ON RENAL ACID EXCRETION AND ACID-BASE STATE OF BLOOD IN DOGS

    NARCIS (Netherlands)

    ZIJLSTRA, WG; LANGBROEK, AJM; KRAAN, J; RISPENS, P; NIJMEIJER, A

    1995-01-01

    Urinary acid excretion and blood acid-base stare were determined in dogs fed a casein-based semi-synthetic food (SSF), to which different amounts of salts had been added, in comparison with feeding normal dog food. Net acid excretion (NAE) and inorganic acid excretion (IAE) increased during SSF feed

  15. Mechanisms for the retention of inorganic N in acidic forest soils of southern China

    Science.gov (United States)

    Zhang, Jin-bo; Cai, Zu-cong; Zhu, Tong-bin; Yang, Wen-yan; Müller, Christoph

    2013-01-01

    The mechanisms underlying the retention of inorganic N in acidic forest soils in southern China are not well understood. Here, we simultaneously quantified the gross N transformation rates of various subtropical acidic forest soils located in southern China (southern soil) and those of temperate forest soils located in northern China (northern soil). We found that acidic southern soils had significantly higher gross rates of N mineralization and significantly higher turnover rates but a much greater capacity for retaining inorganic N than northern soils. The rates of autotrophic nitrification and NH3 volatilization in acidic southern soils were significantly lower due to low soil pH. Meanwhile, the relatively higher rates of NO3− immobilization into organic N in southern soils can counteract the effects of leaching, runoff, and denitrification. Taken together, these processes are responsible for the N enrichment of the humid subtropical forest soils in southern China. PMID:23907561

  16. Photochemical alkylation of inorganic selenium in the presence of low molecular weight organic acids.

    Science.gov (United States)

    Guo, Xuming; Sturgeon, Ralph E; Mester, Zoltán; Gardner, Graeme J

    2003-12-15

    Using a flow-through photochemical reactor and a low pressure mercury lamp as a UV source, alkyl selenium species are formed from inorganic selenium(IV) in the presence of low molecular weight organic acids (LMW acids). The volatile alkyl Se species were cryogenically trapped and identified by GC-MS and GC-ICP-MS. In the presence of formic, acetic, propionic and malonic acids, inorganic selenium(IV) is converted by UV irradiation to volatile selenium hydride and carbonyl, dimethylselenide and diethylselenide, respectively. Se(IV) was successfully removed from contaminated agricultural drainage waters (California, U.S.A.) using a batch photoreactor system Se. Photochemical alkylation may thus offer a promising means of converting toxic selenium salts, present in contaminated water, to less toxic dimethylselenide. The LMW acids and photochemical alkylation process may also be key to understanding the source of atmospheric selenium and are likely involved in its mobility in the natural anaerobic environment.

  17. Effect of dietary phytic acid and inorganic iron on the quality of chilled pork.

    Directory of Open Access Journals (Sweden)

    Renilda Terezinha Monteiro

    2015-09-01

    Full Text Available The objective of this study was to evaluate the effect of supplementing inorganic iron and phytic acid to the diet for finishing pigs on meat quality after 24 hours and 7 days of refrigeration. Forty castrated male finishing pigs of a commercial genotype, with an initial mean weight of 64.34 ± 6.64 kg and age of 108 days, were used. The animals were weighed and housed individually in brick pens with an area of three m2 and compact floor, receiving water and ration ad libitum for 30 days. A randomized block design in a 2 x 2 factorial scheme was used, corresponding to diets supplemented or not with inorganic iron and with two levels of phytic acid, high (4.85% and low (2.98%. The animals were slaughtered when they had reached a mean weight of 100.76 ± 6.54 kg and longissimus dorsi muscle samples were collected for the analysis of meat quality. The following parameters were analyzed in the samples: pH, color, marbling, water loss through pressure, shear force, iron composition, and lipid oxidation. No differences in the variables analyzed were observed between factors, except for muscle iron concentration, which was higher for the diet with inclusion of inorganic iron. Lipid oxidation was not influenced by the presence or absence of phytic acid and inorganic iron. The results show that diets with elevated phytic acid levels supplemented or not with inorganic iron can be used for finishing pigs without compromising meat quality during the refrigeration phase.

  18. A robotics-based automated assay for inorganic and organic phosphates.

    Science.gov (United States)

    Cogan, E B; Birrell, G B; Griffith, O H

    1999-06-15

    Phosphate analyses are fundamental to a broad range of biochemical applications involving inorganic phosphate and organic phosphoesters such as phospholipids, phosphorylated proteins, and nucleic acids. A practical automated method utilizing robotics is described in this report. Five colorimetric methods of phosphate analyses based on formation of a phosphomolybdate complex and compatible with the automated assay were tested, and the fundamental chemistry is discussed. The relative sensitivities are malachite green > crystal violet > quinaldine red > ascorbate reduction > antimony-modified ascorbate reduction, although only a fourfold improvement was observed in going from the modified ascorbate procedure to malachite green. Malachite green was selected to optimize the assay because this dye provided the highest sensitivity. However, where color stability and low blanks are more important than sensitivity, the ascorbate reduction and quinaldine red methods were found to be better choices than malachite green. Automation using a robotic liquid-handling system substantially reduces the labor required to process large arrays of samples. The result is a sensitive, nonradioactive assay of inorganic phosphate with high throughput. A digestion step in an acid-resistant 96-well plate was developed to extend the assay to phosphate esters. The robotic-based assay was demonstrated with inorganic phosphate and a common phospholipid, phosphatidylcholine.

  19. Carborane acids. New "strong yet gentle" acids for organic and inorganic chemistry.

    Science.gov (United States)

    Reed, Christopher A

    2005-04-07

    Icosahedral carborane anions such as CHB11Cl11- are amongst the least coordinating, most chemically inert anions known. They are also amongst the least basic, so their conjugate acids, H(carborane), are superacids (i.e. stronger than 100% H2SO4). Acidity scale measurements indicate that H(CHB11Cl11) is the strongest pure Brønsted acid presently known, surpassing triflic and fluorosulfuric acid. Nevertheless, it is also an extremely gentle acid--because its conjugate base engages in so little chemistry. Carborane acids separate protic acidity from anion nucleophilicity and destructive oxidative capacity in the conjugate base, to a degree not previously achieved. As a result, many long-sought, highly acidic, reactive cations such as protonated benzene (C6H7+), protonated C60(HC60+), tertiary carbocations (R3C+), vinyl cations (R2C=C(+)-R), silylium ions (R3Si+) and discrete hydronium ions (H3O+, H5O2+ etc.) can be readily isolated as carborane salts and characterized at room temperature by X-ray crystallography.

  20. Elevational Variation in Soil Amino Acid and Inorganic Nitrogen Concentrations in Taibai Mountain, China.

    Directory of Open Access Journals (Sweden)

    Xiaochuang Cao

    Full Text Available Amino acids are important sources of soil organic nitrogen (N, which is essential for plant nutrition, but detailed information about which amino acids predominant and whether amino acid composition varies with elevation is lacking. In this study, we hypothesized that the concentrations of amino acids in soil would increase and their composition would vary along the elevational gradient of Taibai Mountain, as plant-derived organic matter accumulated and N mineralization and microbial immobilization of amino acids slowed with reduced soil temperature. Results showed that the concentrations of soil extractable total N, extractable organic N and amino acids significantly increased with elevation due to the accumulation of soil organic matter and the greater N content. Soil extractable organic N concentration was significantly greater than that of the extractable inorganic N (NO3--N + NH4+-N. On average, soil adsorbed amino acid concentration was approximately 5-fold greater than that of the free amino acids, which indicates that adsorbed amino acids extracted with the strong salt solution likely represent a potential source for the replenishment of free amino acids. We found no appreciable evidence to suggest that amino acids with simple molecular structure were dominant at low elevations, whereas amino acids with high molecular weight and complex aromatic structure dominated the high elevations. Across the elevational gradient, the amino acid pool was dominated by alanine, aspartic acid, glycine, glutamic acid, histidine, serine and threonine. These seven amino acids accounted for approximately 68.9% of the total hydrolyzable amino acid pool. The proportions of isoleucine, tyrosine and methionine varied with elevation, while soil major amino acid composition (including alanine, arginine, aspartic acid, glycine, histidine, leucine, phenylalanine, serine, threonine and valine did not vary appreciably with elevation (p>0.10. The compositional

  1. Influence of inorganic acid pickling on the corrosion resistance of magnesium alloy AZ31 sheet

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Blawert, C.; Scharnagl, N.

    2009-01-01

    was investigated. Sulphuric, nitric and phosphoric acids of different concentrations were used to clean the alloy for various pickling times. The surface morphology, composition and phases were elucidated using scanning electron microscopy, X-ray fluorescence analysis, spark discharge-optical emission spectroscopy...... the corrosion resistance of the alloy. The cleaning efficiency of the three acids used and the corrosion protection mechanisms were found to be remarkably different. Best corrosion results were obtained with nitric acid, followed closely by phosphoric acid. Only the sulphuric acid failed more or less when...... of micro-galvanic couples and can therefore increase corrosion attack on these alloys. Due to this influence they should be removed to obtain good corrosion resistance. In this study, the effect of inorganic acid pickling on the corrosion behaviour of a commercial AZ31 magnesium alloy sheet...

  2. Interactions between uptake of amino acids and inorganic nitrogen in wheat plants

    Directory of Open Access Journals (Sweden)

    E. Gioseffi

    2012-04-01

    Full Text Available Soil-borne amino acids may constitute a source of nitrogen (N for plants in various terrestrial ecosystems but their importance for total N nutrition is unclear, particularly in nutrient-rich arable soils. One reason for this uncertainty is lack of information on how the absorption of amino acids by plant roots is affected by the simultaneous presence of inorganic N forms. The objective of the present study was to study absorption of glycine (Gly and glutamine (Gln by wheat roots and their interactions with nitrate (NO3 and ammonium (NH4+ during uptake. The underlying hypothesis was that amino acids, when present in nutrient solution together with inorganic N, may lead to down-regulation of the inorganic N uptake, thereby resulting in similar total N uptake rates. Amino acids were enriched with double-labelled 15N and 13C, while NO3 and NH4+ acquisition was determined by their rate of removal from the nutrient solution surrounding the roots. The uptake rates of NO3 and NH4+ did not differ from each other and were generally about twice as high as the uptake rate of organic N when the different N forms were supplied separately in concentrations of 2 mM. Nevertheless, replacement of 50% of the inorganic N with organic N was able to restore the N uptake to the same level as that in the presence of only inorganic N. Co-provision of NO3 did not affect glycine uptake, while the presence of glycine down-regulated NO3 uptake. The ratio between 13C and 15N were lower in shoots than in roots and also lower than the theoretical values, reflecting higher C losses via respiratory processes compared to N losses. It is concluded that organic N can constitute a significant N-source for wheat plants and that there is an interaction

  3. Fate of inorganic contaminants post treatment of acid mine drainage by cryptocrystalline magnesite: Complimenting experimental results with a geochemical model

    CSIR Research Space (South Africa)

    Masindi, V

    2016-03-01

    Full Text Available This study assessed the fate of inorganic contaminants post treatment of acid mine drainage by cryptocrystalline magnesite. To accomplish that, neutralization and metal attenuation were evaluated and complemented with simulations using geochemical...

  4. HPLC inorganic arsenic speciation analysis of samples containing high sulfuric acid and iron levels

    NARCIS (Netherlands)

    Gonzalez-Contreras, P.A.; Gerrits, I.P.A.M.; Weijma, J.; Buisman, C.J.N.

    2011-01-01

    To monitor the oxidation of arsenite to arsenate in oxidizing and bioleaching reactors, speciation analysis of the inorganic arsenic compounds is required. Existing arsenic speciation analysis techniques are based on the use of liquid chromatography columns coupled to detector equipment such as indu

  5. HPLC inorganic arsenic speciation analysis of samples containing high sulfuric acid and iron levels

    NARCIS (Netherlands)

    Gonzalez-Contreras, P.A.; Gerrits, I.P.A.M.; Weijma, J.; Buisman, C.J.N.

    2011-01-01

    To monitor the oxidation of arsenite to arsenate in oxidizing and bioleaching reactors, speciation analysis of the inorganic arsenic compounds is required. Existing arsenic speciation analysis techniques are based on the use of liquid chromatography columns coupled to detector equipment such as

  6. Preserving the distribution of inorganic arsenic species in groundwater and acid mine drainage samples

    Science.gov (United States)

    Bednar, A.J.; Garbarino, J.R.; Ranville, J.F.; Wildeman, T.R.

    2002-01-01

    The distribution of inorganic arsenic species must be preserved in the field to eliminate changes caused by metal oxyhydroxide precipitation, photochemical oxidation, and redox reactions. Arsenic species sorb to iron and manganese oxyhydroxide precipitates, and arsenite can be oxidized to arsenate by photolytically produced free radicals in many sample matrices. Several preservatives were evaluated to minimize metal oxyhydroxide precipitation, such as inorganic acids and ethylenediaminetetraacetic acid (EDTA). EDTA was found to work best for all sample matrices tested. Storing samples in opaque polyethylene bottles eliminated the effects of photochemical reactions. The preservation technique was tested on 71 groundwater and six acid mine drainage samples. Concentrations in groundwater samples reached 720 ??g-As/L for arsenite and 1080 ??g-As/L for arsenate, and acid mine drainage samples reached 13 000 ??g-As/L for arsenite and 3700 ??g-As/L for arsenate. The arsenic species distribution in the samples ranged from 0 to 90% arsenite. The stability of the preservation technique was established by comparing laboratory arsenic speciation results for samples preserved in the field to results for subsamples speciated onsite. Statistical analyses indicated that the difference between arsenite and arsenate concentrations for samples preserved with EDTA in opaque bottles and field speciation results were analytically insignificant. The percentage change in arsenite:arsenate ratios for a preserved acid mine drainage sample and groundwater sample during a 3-month period was -5 and +3%, respectively.

  7. Adsorption of Fluoride Ion by Inorganic Cerium Based Adsorbent

    Institute of Scientific and Technical Information of China (English)

    Jiao Zhongzhi(焦中志); Chen Zhonglin; Yang Min; Zhang Yu; Li Guibai

    2004-01-01

    Excess of fluoride in drinking water is harmful to human health, the concentration of F- ions must be maintained in the range of 0.5 to 1.5 mg/L. An inorganic cerium based adsorbent (CTA) is developed on the basis of research of adsorption of fluoride on cerium oxide hydrate. Some adsorption of fluoride by CTA adsorbent experiments were carried out, and results showed that CTA adsorbent has a quick adsorption speed and a large adsorption capacity. Adsorption follows Freundlich isotherm, and low pH value helps fluoride removal. Some physical-chemical characteristics of CTA adsorbent were experimented, fluoride removal mechanism was explored, and results showed that hydroxyl group of CTA adsorbent played an important role in the fluoride removal.

  8. Development of foamed Inorganic Polymeric Materials based on Perlite

    Science.gov (United States)

    Tsaousi, G.-M.; Douni, I.; Taxiarchou, M.; Panias, D.; Paspaliaris, I.

    2016-04-01

    This work deals with the development of lightweight geopolymeric boards for use in construction sector utilizing a solid perlitic waste as the main raw material. Hydrogen peroxide (H2O2) was used for the foaming of geopolymeric pastes and the production of porous and lightweight inorganic polymeric materials. The effect of geopolymeric synthesis parameters, such as the composition of activator and the curing conditions, on paste's properties that affect the foaming process, such as setting time and viscosity, were studied in detailed. Finally, the effects of H2O2 concentration on the properties (apparent density and % cell volume) and the microstructure of foamed boards were also studied. The produced porous boards have effective densities in-between 540 - 900 Kg/m3 and the thermal conductivity of the optimum product is 0.08 W/mK. Based on their properties, the developed lightweight geopolymeric boards have high potential to be used as building elements in construction industry.

  9. FLAMMABILITY OF ARALDITE BASED COMPOSITE MIXED WITH INORGANIC RETARDANTS

    Directory of Open Access Journals (Sweden)

    ALI I. AL-MOSAWI

    2012-10-01

    Full Text Available Flammability characteristics of araldite based composite mixed with inorganic hybrid flame retardant represent zinc borate - antimony trioxide as a surface layer(4mm thickness have been studied by thermal erosion test . Antimony trioxide was added to zinc borate with various amounts (10%,20% and 30% to forming a hybrid flame retardant for enhance the action of this material to react flame . The result composite material was exposed to a direct flame generated from Oxyacetylene torch (3000ºC with different flame exposure intervals (10,20mm, and studies the range of resistance of retardant material layer to the flames and protected the substrate. The optimum results were with large percentage from protective layer which is zinc borate-30% antimony trioxide and large exposed distance.

  10. Inorganic-based proton conductive composite membranes for elevated temperature and reduced relative humidity PEM fuel cells

    Science.gov (United States)

    Wang, Chunmei

    Proton exchange membrane (PEM) fuel cells are regarded as highly promising energy conversion systems for future transportation and stationary power generation and have been under intensive investigations for the last decade. Unfortunately, cutting edge PEM fuel cell design and components still do not allow economically commercial implementation of this technology. The main obstacles are high cost of proton conductive membranes, low-proton conductivity at low relative humidity (RH), and dehydration and degradation of polymer membranes at high temperatures. The objective of this study was to develop a systematic approach to design a high proton conductive composite membrane that can provide a conductivity of approximately 100 mS cm-1 under hot and dry conditions (120°C and 50% RH). The approach was based on fundamental and experimental studies of the proton conductivity of inorganic additives and composite membranes. We synthesized and investigated a variety of organic-inorganic Nafion-based composite membranes. In particular, we analyzed their fundamental properties, which included thermal stability, morphology, the interaction between inorganic network and Nafion clusters, and the effect of inorganic phase on the membrane conductivity. A wide range of inorganic materials was studied in advance in order to select the proton conductive inorganic additives for composite membranes. We developed a conductivity measurement method, with which the proton conductivity characteristics of solid acid materials, zirconium phosphates, sulfated zirconia (S-ZrO2), phosphosilicate gels, and Santa Barbara Amorphous silica (SBA-15) were discussed in detail. Composite membranes containing Nafion and different amounts of functionalized inorganic additives (sulfated inorganics such as S-ZrO2, SBA-15, Mobil Composition of Matter MCM-41, and S-SiO2, and phosphonated inorganic P-SiO2) were synthesized with different methods. We incorporated inorganic particles within Nafion clusters

  11. Dendrimer-based organic/inorganic hybrid nanoparticles in biomedical applications

    Science.gov (United States)

    Shen, Mingwu; Shi, Xiangyang

    2010-09-01

    This review reports some recent advances on the synthesis, self-assembly, and biofunctionalization of various dendrimer-based organic/inorganic hybrid nanoparticles (NPs) for various biomedical applications, including but not limited to protein immobilization, gene delivery, and molecular diagnosis. In particular, targeted molecular imaging of cancer using dendrimer-based organic/inorganic hybrid NPs will be introduced in detail.

  12. Safety Assessment of Citric Acid, Inorganic Citrate Salts, and Alkyl Citrate Esters as Used in Cosmetics.

    Science.gov (United States)

    Fiume, Monice M; Heldreth, Bart A; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2014-05-26

    The CIR Expert Panel (Panel) assessed the safety of citric acid, 12 inorganic citrate salts, and 20 alkyl citrate esters as used in cosmetics, concluding that these ingredients are safe in the present practices of use and concentration. Citric acid is reported to function as a pH adjuster, chelating agent, or fragrance ingredient. Some of the salts are also reported to function as chelating agents, and a number of the citrates are reported to function as skin-conditioning agents but other functions are also reported. The Panel reviewed available animal and clinical data, but because citric acid, calcium citrate, ferric citrate, manganese citrate, potassium citrate, sodium citrate, diammonium citrate, isopropyl citrate, stearyl citrate, and triethyl citrate are generally recognized as safe direct food additives, dermal exposure was the focus for these ingredients in this cosmetic ingredient safety assessment.

  13. Experimental data of inorganic gel based smart window using silica sol–gel process

    Directory of Open Access Journals (Sweden)

    Dayeon Jung

    2016-12-01

    Full Text Available In this article experimental data are presented for inorganic gel based smart window fabricated using silica sol–gel process. Parallel beam transmittances were measured as functions of voltages for samples fabricated with different concentrations of nitric acid. Spectroscopic transmittance data at different driving voltages for samples fabricated with different LC concentrations are shown. Transmittance spectra of the Si–Ti based gel-based-liquid-crystal (GDLC device measured as different driving voltages were compared with those of PDLC. GDLC showed much lower operating voltages, 10–15 V, for on-state. Formation of the LC droplet in gelation process is illustrated. The methyl organic group surrounds LC droplets. Demonstration of GDLC based smart window showed the successful operation with low driving voltages. GDLC window shows clear color, even at off-state, compared with PDLC.

  14. Organic acids and inorganic anions in Bayer liquors by ion chromatography after solid-phase extraction

    Institute of Scientific and Technical Information of China (English)

    ZHONG Fu-jin; CHEN Xiao-qing; ZHANG Shu-chao; LI Yue-ping

    2007-01-01

    A method for the simultaneous separation and determination of organic acids and inorganic anions in Bayer liquors was developed by gradient ion chromatography with suppressed conductivity detection. Formate, acetate, propionate, oxalate, succinate,glutarate, fluoride, chloride and sulfate were separated and determined in 33 min. The samples were pretreated with solid-phase extraction, which has high selectivity for removing a large number of metallic ions in the Bayer liquors, and filtered with a 0.45 μm filter membrane before being injected into the ion chromatographic system. The separation of six organic acids and three inorganic anions was achieved on an IonPac AS11-HC column with KOH as the eluent, and the detection was performed by a conductivity detection mode. No interference is found in the presence of fluorate, chlorate and sulphate when organic acids are determined. The calibration graphs of peak area for all the analytes are linear over a wide range. The relative standard derivation of the peak area of analytes is less than 2.14%. Under optimum conditions the detection ranges from 0.2 to 100.0 mg/L. The average recoveries of the added standards are between 94.3% and 102.8%.

  15. Freezing-Enhanced Dissolution of Iron Oxides: Effects of Inorganic Acid Anions.

    Science.gov (United States)

    Jeong, Daun; Kim, Kitae; Min, Dae Wi; Choi, Wonyong

    2015-11-03

    Dissolution of iron from mineral dust particles greatly depends upon the type and amount of copresent inorganic anions. In this study, we investigated the roles of sulfate, chloride, nitrate, and perchlorate on the dissolution of maghemite and lepidocrocite in ice under both dark and UV irradiation and compared the results with those of their aqueous counterparts. After 96 h of reaction, the total dissolved iron in ice (pH 3 before freezing) was higher than that in the aqueous phase (pH 3) by 6-28 times and 10-20 times under dark and UV irradiation, respectively. Sulfuric acid was the most efficient in producing labile iron under dark condition, whereas hydrochloric acid induced the most dissolution of the total and ferrous iron in the presence of light. This ice-induced dissolution result was also confirmed with Arizona Test Dust (AZTD). In the freeze-thaw cycling test, the iron oxide samples containing chloride, nitrate, or perchlorate showed a similar extent of total dissolved iron after each cycling while the sulfate-containing sample rapidly lost its dissolution activity with repeating the cycle. This unique phenomenon observed in ice might be related to the freeze concentration of protons, iron oxides, and inorganic anions in the liquid-like ice grain boundary region. These results suggest that the ice-enhanced dissolution of iron oxides can be a potential source of bioavailable iron, and the acid anions critically influence this process.

  16. Synthesis and characterization of organic-inorganic hybrids formed between conducting polymers and crystalline antimonic acid

    Directory of Open Access Journals (Sweden)

    Beleze Fábio A.

    2001-01-01

    Full Text Available In this paper we report the synthesis and characterization of novel organic-inorganic hybrid materials between the crystalline antimonic acid (CAA and two conductive polymers: polypyrrole and polyaniline. The hybrids were obtained by in situ oxidative polymerization of monomers by the Sb(V present in the pyrochlore-like CAA structure. The materials were characterized by infrared and Raman spectroscopy, X-ray diffraction, cyclic voltammetry, CHN elemental analysis and electronic paramagnetic resonance spectroscopy. The results showed that both polymers were formed in their oxidized form, with the CAA structure acting as a counter anion.

  17. Gravimetric chemical sensors based on silica-based mesoporous organic-inorganic hybrids.

    Science.gov (United States)

    Xu, Jiaqiang; Zheng, Qi; Zhu, Yongheng; Lou, Huihui; Xiang, Qun; Cheng, Zhixuan

    2014-09-01

    Silica-based mesoporous organic-inorganic hybrid material modified quartz crystal microbalance (QCM) sensors have been examined for their ability to achieve highly sensitive and selective detection. Mesoporous silica SBA-15 serves as an inorganic host with large specific surface area, facilitating gas adsorption, and thus leads to highly sensitive response; while the presence of organic functional groups contributes to the greatly improved specific sensing property. In this work, we summarize our efforts in the rational design and synthesis of novel sensing materials for the detection of hazardous substances, including simulant nerve agent, organic vapor, and heavy metal ion, and develop high-performance QCM-based chemical sensors.

  18. Structural resistance of chemically modified 1-D nanostructured titanates in inorganic acid environment

    Energy Technology Data Exchange (ETDEWEB)

    Marinkovic, Bojan A., E-mail: bojan@puc-rio.br [Departamento de Engenharia de Materiais, Pontificia Universidade Catolica de Rio de Janeiro-PUC-Rio, Rua Marques de Sao Vicente 225, Gavea, RJ (Brazil); Fredholm, Yann C. [Nanogavea-Nanotecnologia Sustentavel Ltda, Av. Padre Leonel Franca 150, Gavea, RJ (Brazil); Morgado, Edisson [PETROBRAS S.A./CENPES, Research and Development Centre, Av. Horacio Macedo, 950, Cidade Universitaria, 21941-915, Rio de Janeiro, RJ (Brazil); Jardim, Paula M.; Rizzo, Fernando [Departamento de Engenharia de Materiais, Pontificia Universidade Catolica de Rio de Janeiro-PUC-Rio, Rua Marques de Sao Vicente 225, Gavea, RJ (Brazil)

    2010-10-15

    Sodium containing one-dimensional nanostructured layered titanates (1-D NSLT) were produced both from commercial anatase powder and Brazilian natural rutile mineral sands by alkali hydrothermal process. The 1-D NSLT were chemically modified with proton, cobalt or iron via ionic exchange and all products were additionally submitted to intensive inorganic acid aging (pH = 0.5) for 28 days. The morphology and crystal structure transformations of chemically modified 1-D NSLT were followed by transmission electron microscopy, powder X-ray diffraction, selected area electron diffraction and energy dispersive spectroscopy. It was found that the original sodium rich 1-D NSLT and cobalt substituted 1-D NSLT were completely converted to rutile nanoparticles, while the protonated form was transformed in a 70%-30% (by weight) anatase-rutile nanoparticles mixture, very similar to that of the well-known TiO{sub 2}-photocatalyst P25 (Degussa). The iron substituted 1-D NSLT presented better acid resistance as 13% of the original structure and morphology remained, the rest being converted in rutile. A significant amount of remaining 1-D NSLT was also observed after the acid treatment of the product obtained from rutile sand. The results showed that phase transformation of NSLT into titanium dioxide polymorph in inorganic acid conditions were controllable by varying the exchanged cations. Finally, the possibility to transform, through acid aging, 1-D NSLT obtained from Brazilian natural rutile sand into TiO{sub 2}-polymorphs was demonstrated for the first time to the best of authors' knowledge, opening path for producing TiO{sub 2}-nanoproducts with different morphologies through a simple process and from a low cost precursor.

  19. Modeling the Detection of Organic and Inorganic Compounds Using Iodide-Based Chemical Ionization.

    Science.gov (United States)

    Iyer, Siddharth; Lopez-Hilfiker, Felipe; Lee, Ben H; Thornton, Joel A; Kurtén, Theo

    2016-02-04

    Iodide-based chemical ionization mass spectrometry (CIMS) has been used to detect and measure concentrations of several atmospherically relevant organic and inorganic compounds. The significant electronegativity of iodide and the strong acidity of hydroiodic acid makes electron transfer and proton abstraction essentially negligible, and the soft nature of the adduct formation ionization technique reduces the chances of sample fragmentation. In addition, iodide has a large negative mass defect, which, when combined with the high resolving power of a high resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS), provides good selectivity. In this work, we use quantum chemical methods to calculate the binding energies, enthalpies and free energies for clusters of an iodide ion with a number of atmospherically relevant organic and inorganic compounds. Systematic configurational sampling of the free molecules and clusters was carried out at the B3LYP/6-31G* level, followed by subsequent calculations at the PBE/SDD and DLPNO-CCSD(T)/def2-QZVPP//PBE/aug-cc-pVTZ-PP levels. The binding energies, enthalpies, and free energies thus obtained were then compared to the iodide-based University of Washington HR-ToF-CIMS (UW-CIMS) instrument sensitivities for these molecules. We observed a reasonably linear relationship between the cluster binding enthalpies and logarithmic instrument sensitivities already at the PBE/SDD level, which indicates that relatively simple quantum chemical methods can predict the sensitivity of an iodide-based CIMS instrument toward most molecules. However, higher level calculations were needed to treat some outlier molecules, most notably oxalic acid and methylerythritol. Our calculations also corroborated the recent experimental findings that the molecules that the UW-CIMS detects at maximum sensitivity usually have binding enthalpies to iodide which are higher than about 26 kcal/mol, depending slightly on the level of theory.

  20. Application of a Non-thermal Atmospheric Pressure Plasma Jet to the Decomposition of Salicylic Acid to Inorganic Carbon

    OpenAIRE

    Kuroda, Kosuke; Ishijima, Tatsuo; Kaga, Toshiki; Shiomomura, Kai; Ninomiya, Kazuaki; Takahashi, Kenji

    2015-01-01

    A non-thermal atmospheric pressure plasma jet technique was applied to decompose salicylic acid to inorganic carbon. Excess hydroxyl radical, which has a high oxidation potential, decomposed salicylic acid within 10 min, and total organic carbon decreased to 20% after 30 min. © 2015 The Chemical Society of Japan.

  1. Ruby-based inorganic scintillation detectors for 192Ir brachytherapy

    Science.gov (United States)

    Kertzscher, Gustavo; Beddar, Sam

    2016-11-01

    We tested the potential of ruby inorganic scintillation detectors (ISDs) for use in brachytherapy and investigated various unwanted luminescence properties that may compromise their accuracy. The ISDs were composed of a ruby crystal coupled to a poly(methyl methacrylate) fiber-optic cable and a charge-coupled device camera. The ISD also included a long-pass filter that was sandwiched between the ruby crystal and the fiber-optic cable. The long-pass filter prevented the Cerenkov and fluorescence background light (stem signal) induced in the fiber-optic cable from striking the ruby crystal, which generates unwanted photoluminescence rather than the desired radioluminescence. The relative contributions of the radioluminescence signal and the stem signal were quantified by exposing the ruby detectors to a high-dose-rate brachytherapy source. The photoluminescence signal was quantified by irradiating the fiber-optic cable with the detector volume shielded. Other experiments addressed time-dependent luminescence properties and compared the ISDs to commonly used organic scintillator detectors (BCF-12, BCF-60). When the brachytherapy source dwelled 0.5 cm away from the fiber-optic cable, the unwanted photoluminescence was reduced from  >5% to  5% within 10 s from the onset of irradiation and after the source had retracted. The ruby-based ISDs generated signals of up to 20 times that of BCF-12-based detectors. The study presents solutions to unwanted luminescence properties of ruby-based ISDs for high-dose-rate brachytherapy. An optic filter should be sandwiched between the ruby crystal and the fiber-optic cable to suppress the photoluminescence. Furthermore, we recommend avoiding ruby crystals that exhibit significant time-dependent luminescence.

  2. Heterostructures based on inorganic and organic van der Waals systems

    Directory of Open Access Journals (Sweden)

    Gwan-Hyoung Lee

    2014-09-01

    Full Text Available The two-dimensional limit of layered materials has recently been realized through the use of van der Waals (vdW heterostructures composed of weakly interacting layers. In this paper, we describe two different classes of vdW heterostructures: inorganic vdW heterostructures prepared by co-lamination and restacking; and organic-inorganic hetero-epitaxy created by physical vapor deposition of organic molecule crystals on an inorganic vdW substrate. Both types of heterostructures exhibit atomically clean vdW interfaces. Employing such vdW heterostructures, we have demonstrated various novel devices, including graphene/hexagonal boron nitride (hBN and MoS2 heterostructures for memory devices; graphene/MoS2/WSe2/graphene vertical p-n junctions for photovoltaic devices, and organic crystals on hBN with graphene electrodes for high-performance transistors.

  3. Chitosan bio-based organic-inorganic hybrid aerogel microspheres.

    Science.gov (United States)

    El Kadib, Abdelkrim; Bousmina, Mosto

    2012-07-02

    Recently, organic-inorganic hybrid materials have attracted tremendous attention thanks to their outstanding properties, their efficiency, versatility and their promising applications in a broad range of areas at the interface of chemistry and biology. This article deals with a new family of surface-reactive organic-inorganic hybrid materials built from chitosan microspheres. The gelation of chitosan (a renewable amino carbohydrate obtained by deacetylation of chitin) by pH inversion affords highly dispersed fibrillar networks shaped as self-standing microspheres. Nanocasting of sol-gel processable monomeric alkoxides inside these natural hydrocolloids and their subsequent CO(2) supercritical drying provide high-surface-area organic-inorganic hybrid materials. Examples including chitosan-SiO(2), chitosan-TiO(2), chitosan-redox-clusters and chitosan-clay-aerogel microspheres are described and discussed on the basis of their textural and structural properties, thermal and chemical stability and their performance in catalysis and adsorption.

  4. [Determination of organic acids and inorganic anions by gradient ion chromatography].

    Science.gov (United States)

    Liu, Z; Liu, K; Shen, D; Song, Q; Mou, S; Feng, Y

    1997-07-01

    The chromatographic conditions for separation and detection of organic acids and inorganic anions by gradient ion chromatography with suppressed conductivity detection were studied. The optimized gradient programs were established. Ion chromatography were performed with a DX-100 chromatograph (DIONEX). The separation column is IonPac-AS11. Compared with NaHCO3/Na2CO3 and Na2B4O7, NaOH was the optimal eluent. The effect of organic modifier was also studied. Among methanol, 2-propanol and acetonitrile, methanol can make ion pairs such as malate and succinate, malonate and tartrate gaining baseline resolution. By using ion exchange separation, Cl-, NO3-, malate, succinate, malonate, tartrate, SO4(2-), oxalate were eluted between 5 mmol/L NaOH-16% CH3OH and 10 mmol/L NaOH-16% CH3OH in 25 min. A mobile phase composed of 30 mmol/L NaOH, 50% CH3OH and D.I. water was chosen to elute two groups of organic acids and inorganic anions: (1) quinate, formate, Cl-, malate, malonate, oxalate, citrate, isocitrate, aconitate; (2) lactate, Cl-, SO4(2-), tartrate, PO4(3-), citrate, isocitrate, aconitate. The detection limits (S/N = 3) were 0.1625 (quinate), 0.0691 (formate), 0.0115 (Cl-), 0.0886 (malate), 0.0591 (malonate), 0.0263 (oxalate), 0.1147 (citrate), 0.2017 (isocitrate), 0.3656 (cis-aconitate), 0.1045 (trans-aconitate), 0.1950 (lactate), 0.0729 (tartrate), 0.0224 (SO4(2-)) and 0.0692 (PO4(3-)) mg/L. The relative standard deviations were lower than 11.9% (n = 7) and the correlation coefficients ranged from 0.9212 for Cl- to 0.9999 for formate. The method was applied to determine the organic acids and inorganic anions of beverages and citric acids fermenting-medium. The results were satisfactory.

  5. Acid-Base Homeostasis.

    Science.gov (United States)

    Hamm, L Lee; Nakhoul, Nazih; Hering-Smith, Kathleen S

    2015-12-07

    Acid-base homeostasis and pH regulation are critical for both normal physiology and cell metabolism and function. The importance of this regulation is evidenced by a variety of physiologic derangements that occur when plasma pH is either high or low. The kidneys have the predominant role in regulating the systemic bicarbonate concentration and hence, the metabolic component of acid-base balance. This function of the kidneys has two components: reabsorption of virtually all of the filtered HCO3(-) and production of new bicarbonate to replace that consumed by normal or pathologic acids. This production or generation of new HCO3(-) is done by net acid excretion. Under normal conditions, approximately one-third to one-half of net acid excretion by the kidneys is in the form of titratable acid. The other one-half to two-thirds is the excretion of ammonium. The capacity to excrete ammonium under conditions of acid loads is quantitatively much greater than the capacity to increase titratable acid. Multiple, often redundant pathways and processes exist to regulate these renal functions. Derangements in acid-base homeostasis, however, are common in clinical medicine and can often be related to the systems involved in acid-base transport in the kidneys.

  6. SYNTHESIS OF MESOPOROUS TiO2 MATERIALS WITH HIGH SPECIFIC AREA USING INORGANIC ACIDS AS CATALYSTS

    Institute of Scientific and Technical Information of China (English)

    Dan Huang; Guangsheng Luo; Liming Yang; Yujun Wang

    2005-01-01

    This paper presents a synthesis process for preparing mesoporous titanium dioxide materials in the absence of any templates and using inorganic acids as catalysts. Tetrabutyl titanate was used as the precursor at ambient temperature, and four different inorganic acids, i.e., hydrochloric, nitric, sulfuric and phosphoric, were used as catalysts.The as-prepared mesoporous TiO2 materials were characterized by SEM, XRD and nitrogen adsorption/desorption measurements. The influences of different inorganic acids on the properties of TiO2 were discussed and compared in details. Experiments showed that the inorganic acids have significant effects on the surface area, pore volume, pore size,and pore size distribution of the products. The mesoporous TiO2 materials catalyzed by phosphoric acid exhibited the largest specific surface area and largest pore volume with narrow pore size distribution. Vacuum and infrared drying methods tested in the process were found to have subtle impact on the structure of the TiO2 materials prepared.

  7. Polyacrylamide-based inorganic hybrid flocculants with self-degradable property

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xinfang [Materials and Metallurgical College, Northeastern University, Shenyang 110819 (China); Hebei Provincial Laboratory for Dielectric and Electrolyte Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China); Tao, Junshi; Li, Mingzhi; Zhu, Bishan; Li, Xuan; Ma, Zhiyu; Zhao, Tingjie; Wang, Bingzhu; Suo, Biao [Hebei Provincial Laboratory for Dielectric and Electrolyte Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China); Wang, Haiwang, E-mail: whwdbdx@126.com [Materials and Metallurgical College, Northeastern University, Shenyang 110819 (China); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Hebei Provincial Laboratory for Dielectric and Electrolyte Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China); Yang, Jun, E-mail: jyang@ipe.ac.cn [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Ye, Li, E-mail: yeli@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190 (China); Qi, Xiwei, E-mail: qxw@mail.neuq.edu.cn [Materials and Metallurgical College, Northeastern University, Shenyang 110819 (China); Hebei Provincial Laboratory for Dielectric and Electrolyte Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China)

    2017-05-01

    Polyacrylamide (PAM)-based inorganic hybrid materials are of great potential as flocculants in soil-liquid separation. Herein, we reported the design of inorganic soil-TiO{sub 2}-PAM hybrid materials using a unique process, which involved coating of titanium dioxide (TiO{sub 2}) nanoparticles on the surface of inorganic soils and subsequent polymerization of acrylamide (AM) on these nanoparticles under visible light. Inorganic soils including kaolin, bentonite, montmorillonite and diatomaceous earth were used to control the volume and to reduce the cost, and the TiO{sub 2} nanoparticles accelerated PAM degradation. The nanoparticles initiated AM polymerization directly under visible light, thus providing a facile strategy for the synthesis of new organic-inorganic hybrid flocculants. The obtained hybrid materials were characterized using Fourier transform infrared spectroscopy and transmission electron microscopy. The degradation of PAM initiated by UV irradiation exceeded 24% in 2 h, depending on its initial concentration. - Highlights: • A new polyacrylamide (PAM)-based inorganic hybrid flocculants with self-degradable property was developed. • TiO{sub 2} nanoparticles show a unique surface-initiated property under the condition of visible light. • We designed a facile strategy for the synthesis of inorganic soil@TiO{sub 2}@PAM hybrid materials.

  8. Polyoxometalate-based 3D porous framework with inorganic molecular nanocage units

    Indian Academy of Sciences (India)

    SHAOBIN LI; ZIHAO LI; JINGYU ZHANG; ZHENGNAN SU; SHIYING QI; SHIHONG GUO; XIAOGUO TAN

    2017-05-01

    A new polyoxometalate-based 3D porous framework with inorganic molecular nanocage unit, (H₂dap)[K(H₂O)₂ (V₁₀O₂₈)₀.₅] (1) (dap = 1,2-diaminopropane), has been synthesized and characterized by routine methods. In 1, the decavanadate clusters, as twelve-dentate connectors, link eight potassium ions to form a 3D porous framework with inorganic molecular cage units. There are two dap ligand molecules occupying in each inorganic molecular cage. Furthermore, the electrochemical properties of 1 were studied, which indicate that 1 has a good electrocatalytic activity towards reduction of iodate (IO⁻ ₃ ) ascribed to the V-center.

  9. Acid-base bifunctional catalytic surfaces for nucleophilic addition reactions.

    Science.gov (United States)

    Motokura, Ken; Tada, Mizuki; Iwasawa, Yasuhiro

    2008-09-01

    This article illustrates the modification of oxide surfaces with organic amine functional groups to create acid-base bifunctional catalysts, summarizing our previous reports and also presenting new data. Immobilization of organic amines as bases on inorganic solid-acid surfaces afforded highly active acid-base bifunctional catalysts, which enabled various organic transformations including C--C coupling reactions, though these reactions did not proceed with either the homogeneous amine precursors or the acidic supports alone. Spectroscopic characterization, such as by solid-state MAS NMR and FTIR, revealed not only the interactions between acidic and basic sites but also bifunctional catalytic reaction mechanisms.

  10. The presence of amino acids affects inorganic N uptake in non-mycorrhizal seedlings of European beech (Fagus sylvatica).

    Science.gov (United States)

    Stoelken, Gunda; Simon, Judy; Ehlting, Barbara; Rennenberg, Heinz

    2010-09-01

    To investigate the impact of organic N compounds for inorganic nitrogen uptake in the rhizosphere, we fed ammonium nitrate with or without amino acids (i.e., glutamine or arginine) to the roots of non-mycorrhizal beech (Fagus sylvatica L.) seedlings under controlled conditions at different levels of N availability. Uptake of individual N sources was determined from ¹⁵N (inorganic N) and ¹⁵N ¹³C (organic N) accumulation in the roots. In addition, gene fragments encoding proteins involved in N uptake and metabolism were cloned from beech for gene expression analyses by quantitative real-time PCR in the roots. Generally, ammonium was preferred over nitrate as N source. Organic N sources were taken up by beech roots as intact molecules. Uptake of organic N was significantly higher than inorganic N uptake, thus contributing significantly to N nutrition of beech. Depending on the level of N availability, inorganic N uptake was negatively affected by the presence of organic N sources. This result indicates an overestimation of the contribution of inorganic N uptake to N nutrition of beech in previous studies. Apparently, association with mycorrhizal fungi is not essential for organic N uptake by beech roots. Gene expression analyses showed that transcriptional regulation of the amino acid transporters FsCAT3, FsCAT5, FsAAT and FsAAP and the ammonium transporter FsAMT1.2 in the roots is involved in N nutrition of beech.

  11. Ambient cure polyimide foams prepared from aromatic polyisocyanates, aromatic polycarboxylic compounds, furfuryl alcohol, and a strong inorganic acid

    Science.gov (United States)

    Sawko, Paul M. (Inventor); Riccitiello, Salvatore R. (Inventor); Hamermesh, Charles L. (Inventor)

    1980-01-01

    Flame and temperature resistant polyimide foams are prepared by the reaction of an aromatic dianhydride, e.g., pyromellitic dianhydride, with an aromatic polyisocyanate, e.g., polymethylene polyphenylisocyanate (PAPI) in the presence of an inorganic acid and a lower molecular weight alcohol, e.g., dilute sulfuric acid or phosphoric acid and furfuryl alcohol. The exothermic reaction between the acid and the alcohol provides the heat necessary for the other reactants to polymerize without the application of any external heat. Such mixtures, therefore, are ideally suited for in situ foam formation, especially where the application of heat is not practical or possible.

  12. Total and inorganic arsenic in dietary supplements based on herbs, other botanicals and algae—a possible contributor to inorganic arsenic exposure

    DEFF Research Database (Denmark)

    Hedegaard, Rikke Susanne Vingborg; Rokkjær, Inge; Sloth, Jens Jørgen

    2013-01-01

    The content of total and inorganic arsenic was determined in 16 dietary supplements based on herbs, other botanicals and algae purchased on the Danish market. The dietary supplements originated from various regions, including Asia, Europe and USA. The contents of total and inorganic arsenic...... dose of the individual dietary supplement would lead to an exposure to inorganic arsenic within the range of 0.07 to 13 μg day−1. Such exposure from dietary supplements would in worst case constitute 62.4 % of the range of benchmark dose lower confidence limit values (BMDL01 at 0.3 to 8 μg kg bw−1 kg−1...... day−1) put down by European Food Safety Authority (EFSA) in 2009, for cancers of the lung, skin and bladder, as well as skin lesions. Hence, the results demonstrate that consumption of certain dietary supplements could contribute significantly to the dietary exposure to inorganic arsenic at levels...

  13. Root carbon input in organic and inorganic fertilizer-based systems

    DEFF Research Database (Denmark)

    Chirinda, Ngonidzashe; Olesen, Jørgen Eivind; Porter, John Roy

    2012-01-01

    C input to remain scant. This study aimed at determining macro-root C input and topsoil root related respiration in response to nutrient management and soil fertility building measures. Methods We sampled roots and shoots of cereals and catch crops in inorganic and organic fertilizer-based arable...... season of winter wheat by subtracting soil respiration from soil with and without exclusion of roots. Results Catch crop roots accounted for more than 40 % of total plant C. For spring barley in 2008 and spring wheat in 2010, root C was higher in the organic than in the inorganic fertilizer-based systems...... was higher (31–131 %) in inorganic than in organic fertilizer-based systems. Conclusions Our findings show that macro-roots of both cereal crops and catch crops play a relatively larger role in organically managed systems than in mineral fertilizer based systems; and that the use of fixed biomass S/R ratios...

  14. Photochemical production of dissolved inorganic carbon from suwannee river humic acid

    Institute of Scientific and Technical Information of China (English)

    WANG Xuejun; LOU Tao; XIE Huixiang

    2009-01-01

    The photochemical mineralization of dissolved organic carbon (DOC) to dissolved inorganic carbon (DIC) is a key process in carbon cycling. Using a Suntest CPS solar simulator, Suwannee River humic acid (SRHA) was photooxidated to examine the effects of O2 levels, the wavelength of incident light, and the concentration of Fe on the photoproduction of DIC. Increasing the O2 abundance enhanced photodegradation of SRHA. The rate of DIC photoproduction under air saturation in the first 24 h (4.40 μmol/(L h)) was increased by a factor of 1.56 under O2 saturation, but fell by only 36% under N2 saturation. To evaluate the relative importance of UV-B, UV-A, and visible radiation in the photodegradation, we examined the above process using Mylar-d films and UF-3 and UF-4 plexiglass filters. The results indicated that the UV-B, UV-A and visible wavelengths accounted for 31.8%, 32.6% and 25.6%, respectively, of DIC production with simulated sunlight irradiation. The above results also indicated that photoproduction of DIC could take place in natural water at depths greater than those that UV light can reach. When 20 μmol/L desferrioxamine mesylate (DFOM, a strong Fe complexing ligand) was added, the rate of DIC photoproduction fell to 55.6% that of the original SRHA samples with 5.46 μmol/L Fe.

  15. Reactions between Criegee Intermediates and the Inorganic Acids HCl and HNO3 : Kinetics and Atmospheric Implications.

    Science.gov (United States)

    Foreman, Elizabeth S; Kapnas, Kara M; Murray, Craig

    2016-08-22

    Criegee intermediates (CIs) are a class of reactive radicals that are thought to play a key role in atmospheric chemistry through reactions with trace species that can lead to aerosol particle formation. Recent work has suggested that water vapor is likely to be the dominant sink for some CIs, although reactions with trace species that are sufficiently rapid can be locally competitive. Herein, we use broadband transient absorption spectroscopy to measure rate constants for the reactions of the simplest CI, CH2 OO, with two inorganic acids, HCl and HNO3 , both of which are present in polluted urban atmospheres. Both reactions are fast; at 295 K, the reactions of CH2 OO with HCl and HNO3 have rate constants of 4.6×10(-11)  cm(3)  s(-1) and 5.4×10(-10)  cm(3)  s(-1) , respectively. Complementary quantum-chemical calculations show that these reactions form substituted hydroperoxides with no energy barrier. The results suggest that reactions of CIs with HNO3 in particular are likely to be competitive with those with water vapor in polluted urban areas under conditions of modest relative humidity.

  16. Effects of Inorganic Fillers on the Thermal and Mechanical Properties of Poly(lactic acid

    Directory of Open Access Journals (Sweden)

    Xingxun Liu

    2014-01-01

    Full Text Available Addition of filler to polylactic acid (PLA may affect its crystallization behavior and mechanical properties. The effects of talc and hydroxyapatite (HA on the thermal and mechanical properties of two types of PLA (one amorphous and one semicrystalline have been investigated. The composites were prepared by melt blending followed by injection molding. The molecular weight, morphology, mechanical properties, and thermal properties have been characterized by gel permeation chromatography (GPC, scanning electron microscope (SEM, instron tensile tester, thermogravimetric analysis (TGA, differential scanning calorimetry (DSC, and dynamic mechanical analysis (DMA. It was found that the melting blending led to homogeneous distribution of the inorganic filler within the PLA matrix but decreased the molecular weight of PLA. Regarding the filler, addition of talc increased the crystallinity of PLA, but HA decreased the crystallinity of PLA. The tensile strength of the composites depended on the crystallinity of PLA and the interfacial properties between PLA and the filler, but both talc and HA filler increased the toughness of PLA.

  17. Docosahexaenoic acid counteracts attenuation of CD95-induced cell death by inorganic mercury

    Energy Technology Data Exchange (ETDEWEB)

    Gill, Randall [Department of Immunology and Microbiology, Wayne State University, Detroit MI (United States); Lanni, Lydia; Jen, K.-L. Catherine [Department of Nutrition and Food Science, Wayne State University, Detroit MI (United States); McCabe, Michael J. [Department of Environmental Medicine, University of Rochester, Rochester NY (United States); Rosenspire, Allen, E-mail: arosenspire@wayne.edu [Department of Immunology and Microbiology, Wayne State University, Detroit MI (United States)

    2015-01-01

    In the United States the principal environmental exposure to mercury is through dietary consumption of sea food. Although the mechanism by which low levels of mercury affect the nervous system is not well established, epidemiological studies suggest that low level exposure of pregnant women to dietary mercury can adversely impact cognitive development in their children, but that Docosahexaenoic acid (DHA), the most prominent n-polyunsaturated fatty acid (n-PUFA) present in fish may counteract negative effects of mercury on the nervous system. Aside from effects on the nervous system, epidemiological and animal studies have also suggested that low level mercury exposure may be a risk factor for autoimmune disease. However unlike the nervous system where a mechanism linking mercury to impaired cognitive development remains elusive, we have previously suggested a potential mechanism linking low level mercury exposures to immune system dysfunction and autoimmunity. In the immune system it is well established that disruption of CD95 mediated apoptosis leads to autoimmune disease. We have previously shown in vitro as well as in vivo that in lymphocytes burdened with low levels of mercury, CD95 mediated cell death is impaired. In this report we now show that DHA counteracts the negative effect of mercury on CD95 signaling in T lymphocytes. T cells which have been pre-exposed to DHA are able to cleave pro-caspase 3 and efficiently signal programmed cell death through the CD95 signaling pathway, whether or not they are burdened with low levels of mercury. Thus DHA may lower the risk of autoimmune disease after low level mercury exposures. - Highlights: • Inorganic mercury (Hg{sup 2+}) interferes with CD95 mediated cell death in Jurkat T cells • DHA restores the ability of CD95 to signal cell death in Hg{sup 2+} intoxicated T cells • The restoration of CD95 mediated cell death by DHA is correlated with increased activation of Caspase 3.

  18. Correlations between the contents of phytic acid and inorganic phosphorous and downy mildew resistance of corn inbred lines

    OpenAIRE

    Pantipa Na Chiangmai*; Phrutiya Nilprapruck; Warapon Bunkoed; Phakatip Yodmingkhwan; Chokechai Aekatasanawan; Mana Kanjanamaneesathian

    2015-01-01

    Seeds of corn inbred lines collected at the National Corn and Sorghum Research Center (NCSRC), Kasetsart University, were analyzed to determine the contents of phytic acid (PA) and inorganic phosphorous (InP). These 28 and 29 inbred lines were cultivated at the NCSRC (in the 2008 late rainy season and 2009 early rainy season) to evaluate their resistance to corn downy mildew caused by Peronosclerospora sorghi. Results showed that the values of the PA, InP contents and downy mildew...

  19. Perovskite Thin Film Solar Cells Based on Inorganic Hole Conducting Materials

    Directory of Open Access Journals (Sweden)

    Pan-Pan Zhang

    2017-01-01

    Full Text Available Organic-inorganic metal halide perovskites have recently shown great potential for application, due to their advantages of low-cost, excellent photoelectric properties and high power conversion efficiency. Perovskite-based thin film solar cells have achieved a power conversion efficiency (PCE of up to 20%. Hole transport materials (HTMs are one of the most important components of perovskite solar cells (PSCs, having functions of optimizing interface, adjusting the energy match, and helping to obtain higher PCE. Inorganic p-type semiconductors are alternative HTMs due to their chemical stability, higher mobility, high transparency in the visible region, and applicable valence band (VB energy level. This review analyzed the advantages, disadvantages, and development prospects of several popular inorganic HTMs in PSCs.

  20. Morphological structure of Gluconacetobacter xylinus cellulose and cellulose-based organic-inorganic composite materials

    Science.gov (United States)

    Smyslov, R. Yu; Ezdakova, K. V.; Kopitsa, G. P.; Khripunov, A. K.; Bugrov, A. N.; Tkachenko, A. A.; Angelov, B.; Pipich, V.; Szekely, N. K.; Baranchikov, A. E.; Latysheva, E.; Chetverikov, Yu O.; Haramus, V.

    2017-05-01

    Scanning electron microscopy, ultra-small-angle neutron scattering (USANS), small-angle neutron and X-ray scattering (SANS and SAXS), as well as low-temperature nitrogen adsorption, were used in the studies of micro- and mesostructure of polymer matrix prepared from air-dry preliminarily disintegrated cellulose nano-gel film (synthesized by Gluconacetobacter xylinus) and the composites based on this bacterial cellulose. The composites included ZrO2 nanoparticles, Tb3+ in the form of low molecular weight salt and of metal-polymer complex with poly(vinylpyrrolydone)-poly(methacryloyl-o-aminobenzoic acid) copolymer. The combined analysis of the data obtained allowed revealing three levels of fractal organization in mesostructure of G. xylinus cellulose and its composites. It was shown that both the composition and an aggregation state of dopants have a significant impact on the structural characteristics of the organic-inorganic composites. The composites containing Tb3+ ions demonstrate efficient luminescence; its intensity is an order of magnitude higher in the case of the composites with the metal-polymer complex. It was found that there is the optimal content of ZrO2 nanoparticles in composites resulting in increased Tb3+ luminescence.

  1. Inorganic arsenic contents in rice-based infant foods from Spain, UK, China and USA.

    Science.gov (United States)

    Carbonell-Barrachina, Angel A; Wu, Xiangchun; Ramírez-Gandolfo, Amanda; Norton, Gareth J; Burló, Francisco; Deacon, Claire; Meharg, Andrew A

    2012-04-01

    Spanish gluten-free rice, cereals with gluten, and pureed baby foods were analysed for total (t-As) and inorganic As (i-As) using ICP-MS and HPLC-ICP-MS, respectively. Besides, pure infant rice from China, USA, UK and Spain were also analysed. The i-As contents were significantly higher in gluten-free rice than in cereals mixtures with gluten, placing infants with celiac disease at high risk. All rice-based products displayed a high i-As content, with values being above 60% of the t-As content and the remainder being dimethylarsinic acid (DMA). Approximately 77% of the pure infant rice samples showed contents below 150 μg kg(-1) (Chinese limit). When daily intake of i-As by infants (4-12 months) was estimated and expressed on a bodyweight basis (μg d(-1) kg(-1)), it was higher in all infants aged 8-12 months than drinking water maximum exposures predicted for adults (assuming 1 L consumption per day for a 10 μg L(-1) standard). Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. A Wiki-Based Group Project in an Inorganic Chemistry Foundation Course

    Science.gov (United States)

    Kristian, Kathleen E.

    2015-01-01

    A semester-long group project that utilizes wiki sites to enhance collaboration was developed for a foundation course in inorganic chemistry. Through structured assignments, student groups use metal-based or metal-combating therapeutic agents as a model for applying and understanding course concepts; they also gain proficiency with scientific- and…

  3. A Wiki-Based Group Project in an Inorganic Chemistry Foundation Course

    Science.gov (United States)

    Kristian, Kathleen E.

    2015-01-01

    A semester-long group project that utilizes wiki sites to enhance collaboration was developed for a foundation course in inorganic chemistry. Through structured assignments, student groups use metal-based or metal-combating therapeutic agents as a model for applying and understanding course concepts; they also gain proficiency with scientific- and…

  4. Application of ICT-based Learning Resources for University Inorganic Chemistry Course Training

    Directory of Open Access Journals (Sweden)

    Tatyana M. Derkach

    2013-01-01

    Full Text Available The article studies expediency and efficiency of various ICT-based learning resources use in university inorganic chemistry course training, detects difference of attitudes toward electronic resources between students and faculty members, which create the background for their efficiency loss

  5. 3D Polyaniline Architecture by Concurrent Inorganic and Organic Acid Doping for Superior and Robust High Rate Supercapacitor Performance.

    Science.gov (United States)

    Gawli, Yogesh; Banerjee, Abhik; Dhakras, Dipti; Deo, Meenal; Bulani, Dinesh; Wadgaonkar, Prakash; Shelke, Manjusha; Ogale, Satishchandra

    2016-02-12

    A good high rate supercapacitor performance requires a fine control of morphological (surface area and pore size distribution) and electrical properties of the electrode materials. Polyaniline (PANI) is an interesting material in supercapacitor context because it stores energy Faradaically. However in conventional inorganic (e.g. HCl) acid doping, the conductivity is high but the morphological features are undesirable. On the other hand, in weak organic acid (e.g. phytic acid) doping, interesting and desirable 3D connected morphological features are attained but the conductivity is poorer. Here the synergy of the positive quality factors of these two acid doping approaches is realized by concurrent and optimized strong-inorganic (HCl) and weak-organic (phytic) acid doping, resulting in a molecular composite material that renders impressive and robust supercapacitor performance. Thus, a nearly constant high specific capacitance of 350 F g(-1) is realized for the optimised case of binary doping over the entire range of 1 A g(-1) to 40 A g(-1) with stability of 500 cycles at 40 A g(-1). Frequency dependant conductivity measurements show that the optimized co-doped case is more metallic than separately doped materials. This transport property emanates from the unique 3D single molecular character of such system.

  6. 3D Polyaniline Architecture by Concurrent Inorganic and Organic Acid Doping for Superior and Robust High Rate Supercapacitor Performance

    Science.gov (United States)

    Gawli, Yogesh; Banerjee, Abhik; Dhakras, Dipti; Deo, Meenal; Bulani, Dinesh; Wadgaonkar, Prakash; Shelke, Manjusha; Ogale, Satishchandra

    2016-02-01

    A good high rate supercapacitor performance requires a fine control of morphological (surface area and pore size distribution) and electrical properties of the electrode materials. Polyaniline (PANI) is an interesting material in supercapacitor context because it stores energy Faradaically. However in conventional inorganic (e.g. HCl) acid doping, the conductivity is high but the morphological features are undesirable. On the other hand, in weak organic acid (e.g. phytic acid) doping, interesting and desirable 3D connected morphological features are attained but the conductivity is poorer. Here the synergy of the positive quality factors of these two acid doping approaches is realized by concurrent and optimized strong-inorganic (HCl) and weak-organic (phytic) acid doping, resulting in a molecular composite material that renders impressive and robust supercapacitor performance. Thus, a nearly constant high specific capacitance of 350 F g‑1 is realized for the optimised case of binary doping over the entire range of 1 A g‑1 to 40 A g‑1 with stability of 500 cycles at 40 A g‑1. Frequency dependant conductivity measurements show that the optimized co-doped case is more metallic than separately doped materials. This transport property emanates from the unique 3D single molecular character of such system.

  7. Study of Inorganic Pollutants Removal from Acid Mine Drainage by Hemp Hurds

    Science.gov (United States)

    Demcak, Stefan; Balintova, Magdalena

    2016-12-01

    Sulphates in wastewaters have an origin as the by-products of a variety of industrial operations. A specific and major producer of such effluents, which contained sulphates and heavy metals, is the mining industry. These contaminants should be removed from wastewater using an adequate process of treatment. The paper deals with selected heavy metals (iron, cooper, and manganese) and sulphate removal from acid mine drainage outflowing from an abandoned mine in Smolnik (Slovakia) using the modified biosorbent - Holland hemp hurds. Pre-treatment of acid mine drainage was based on oxidation of ferrous cations from acid mine drainage by hydrogen peroxide and subsequent precipitation. The precipitate were analysed by infrared spectrometry which found the precipitate containing hydroxide and sulphate functional groups. During this process the concentration of sulphate decreased by 43.8 %. Hemp hurds modified by NaOH decreased concentration of Cu2+ in solution by about 70 %

  8. Inorganic elemental determinations of marine traditional Chinese Medicine Meretricis concha from Jiaozhou Bay: The construction of inorganic elemental fingerprint based on chemometric analysis

    Science.gov (United States)

    Shao, Mingying; Li, Xuejie; Zheng, Kang; Jiang, Man; Yan, Cuiwei; Li, Yantuan

    2016-04-01

    The goal of this paper is to explore the relationship between the inorganic elemental fingerprint and the geographical origin identification of Meretricis concha, which is a commonly used marine traditional Chinese medicine (TCM) for the treatment of asthma and scald burns. For that, the inorganic elemental contents of Meretricis concha from five sampling points in Jiaozhou Bay have been determined by means of inductively coupled plasma optical emission spectrometry, and the comparative investigations based on the contents of 14 inorganic elements (Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se and Zn) of the samples from Jiaozhou Bay and the previous reported Rushan Bay were performed. It has been found that the samples from the two bays are approximately classified into two kinds using hierarchical cluster analysis, and a four-factor model based on principle component analysis could explain approximately 75% of the detection data, also linear discriminant analysis can be used to develop a prediction model to distinguish the samples from Jiaozhou Bay and Rushan Bay with accuracy of about 93%. The results of the present investigation suggested that the inorganic elemental fingerprint based on the combination of the measured elemental content and chemometric analysis is a promising approach for verifying the geographical origin of Meretricis concha, and this strategy should be valuable for the authenticity discrimination of some marine TCM.

  9. Acids and bases solvent effects on acid-base strenght

    CERN Document Server

    Cox, Brian G

    2013-01-01

    Acids and bases are ubiquitous in chemistry. Our understanding of them, however, is dominated by their behaviour in water. Transfer to non-aqueous solvents leads to profound changes in acid-base strengths and to the rates and equilibria of many processes: for example, synthetic reactions involving acids, bases and nucleophiles; isolation of pharmaceutical actives through salt formation; formation of zwitter- ions in amino acids; and chromatographic separation of substrates. This book seeks to enhance our understanding of acids and bases by reviewing and analysing their behaviour in non-aqueous solvents. The behaviour is related where possible to that in water, but correlations and contrasts between solvents are also presented.

  10. Novel hybrid organic-inorganic sol-gel materials based on highly efficient heterocyclic push-pull chromophores

    Science.gov (United States)

    Abbotto, Alessandro; Bozio, Renato; Brusatin, Giovanna; Facchetti, Antonio; Guglielmi, Massimo; Innocenzi, Plinio; Meneghetti, Moreno; Pagani, Giorgio A.; Signorini, Raffaella

    1999-10-01

    We report the synthesis of sol-gel materials based on highly efficient heterocycle-based push-pull chromophores showing second- and third-order nonlinear optical activity. We show the proper functionalization of the best performing chromophores and their incorporation into a hybrid organic- inorganic sol-gel matrix. Different types of functionalization of the active molecule have been considered, including hydroxyl and alkoxysilyl end-groups. The functionalization strategy responded to different criteria such as stability and synthetic availability of the final molecular precursors, their solubility, and the used synthetic approach to the sol-gel material. The synthesis of the sol-gel materials has been tuned in order to preserve molecular properties and control important factors such as final concentration of the active dye in the matrix. Both acid- and base-catalyzed sol-gel synthesis has been taken into account. 3-Glycidoxypropyltrimethoxysilane and 3- aminopropyltriethoxysilane have been used as the organically modified alkoxides to prepare the hybrid organic-inorganic matrix. Characterization of the spectroscopic properties of the sol-gel materials is presented.

  11. Biomedical Probes Based on Inorganic Nanoparticles for Electrochemical and Optical Spectroscopy Applications

    Directory of Open Access Journals (Sweden)

    Abdulhadee Yakoh

    2015-08-01

    Full Text Available Inorganic nanoparticles usually provide novel and unique physical properties as their size approaches nanometer scale dimensions. The unique physical and optical properties of nanoparticles may lead to applications in a variety of areas, including biomedical detection. Therefore, current research is now increasingly focused on the use of the high surface-to-volume ratios of nanoparticles to fabricate superb chemical- or biosensors for various detection applications. This article highlights various kinds of inorganic nanoparticles, including metal nanoparticles, magnetic nanoparticles, nanocomposites, and semiconductor nanoparticles that can be perceived as useful materials for biomedical probes and points to the outstanding results arising from their use in such probes. The progress in the use of inorganic nanoparticle-based electrochemical, colorimetric and spectrophotometric detection in recent applications, especially bioanalysis, and the main functions of inorganic nanoparticles in detection are reviewed. The article begins with a conceptual discussion of nanoparticles according to types, followed by numerous applications to analytes including biomolecules, disease markers, and pharmaceutical substances. Most of the references cited herein, dating from 2010 to 2015, generally mention one or more of the following characteristics: a low detection limit, good signal amplification and simultaneous detection capabilities.

  12. Insights into the Interactions of Amino Acids and Peptides with Inorganic Materials Using Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Das, Priyadip; Duanias-Assaf, Tal; Reches, Meital

    2017-03-06

    The interactions between proteins or peptides and inorganic materials lead to several interesting processes. For example, combining proteins with minerals leads to the formation of composite materials with unique properties. In addition, the undesirable process of biofouling is initiated by the adsorption of biomolecules, mainly proteins, on surfaces. This organic layer is an adhesion layer for bacteria and allows them to interact with the surface. Understanding the fundamental forces that govern the interactions at the organic-inorganic interface is therefore important for many areas of research and could lead to the design of new materials for optical, mechanical and biomedical applications. This paper demonstrates a single-molecule force spectroscopy technique that utilizes an AFM to measure the adhesion force between either peptides or amino acids and well-defined inorganic surfaces. This technique involves a protocol for attaching the biomolecule to the AFM tip through a covalent flexible linker and single-molecule force spectroscopy measurements by atomic force microscope. In addition, an analysis of these measurements is included.

  13. Toxicological properties of the thiolated inorganic arsenic and arsenosugar metabolite thio-dimethylarsinic acid in human bladder cells.

    Science.gov (United States)

    Ebert, Franziska; Leffers, Larissa; Weber, Till; Berndt, Svenia; Mangerich, Aswin; Beneke, Sascha; Bürkle, Alexander; Schwerdtle, Tanja

    2014-04-01

    Thio-dimethylarsinic acid (thio-DMA(V)) has recently been identified as human metabolite after exposure toward both the human carcinogen inorganic arsenic and arsenosugars, which are the major arsenical constituents of marine algae. This study aims to get further insight in the toxic modes of action of thio-DMA(V) in cultured human urothelial cells. Among others effects of thio-DMA(V) on eight cell death related endpoints, cell cycle distribution, genotoxicity, cellular bioavailability as well as for the first time its impact on DNA damage induced poly(ADP-ribosyl)ation were investigated and compared to effects induced by arsenite. The data indicate that thio-DMA(V) exerts its cellular toxicity in a similar or even lower concentration range, however most likely via different mechanisms, than arsenite. Most interestingly, thio-DMA(V) decreased damage-induced cellular poly(ADP-ribosyl)ation by 35,000-fold lower concentrations than arsenite. The inhibition of this essential DNA-damage induced and DNA-repair related signaling reaction might contribute to inorganic arsenic induced toxicity, at least in the bladder. Therefore, and also because thio-DMA(V) is to date by far the most toxic human metabolite identified after arsenosugar intake, thio-DMA(V) should contemporary be fully (also in vivo) toxicologically characterized, to assess risks to human health related to inorganic arsenic but especially arsenosugar dietary intake. Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. INORGANIC PHOSPHORS IN GLASS BASED ON LEAD SILICATE GLASSES

    Directory of Open Access Journals (Sweden)

    V. A. Aseev

    2014-09-01

    Full Text Available We created and synthesized luminescent composite of the "phosphor in glass" type, based on the lead-silicate matrix and fine-dispersed powder of cerium-activated yttrium-aluminum garnet crystal. Lead-silicate system (40SiO2- 20PbO-(40-x PbF2-xAlF3, x = 0-25 was chosen as the glassy matrix. Initial glass was reduced to powder (frit for "phosphor in glass" composite with a particle size about 50 µm. Glass frit and powder of commercial YAG:Ce3+ phosphor were mixed in a ratio of 30 to 70 (wt %. Then this composite was pressed in a tablet and sintered on a quartz substrate at 823 К for 30 minutes. Thus, the plane parallel sheet for composite of the "phosphor in glass" was obtained with a diameter equal to 10 mm. For the purpose to reduce the loss of light in the presence of dispersion at a glass-phosphor boundary, optimization of glass mixture was done by adjusting the refractive index. X-ray phase and spectral-luminescent analysis of the derived composite were done. The results of these studies showed that there was no degradation of YAG: Ce powder during sintering. Dependence of luminescence intensity from temperature in the range from room temperature to 473 К was studied. It was shown, that with the phosphor in glass usage thermal quenching of luminescence was reduced in comparison with the silicone. The model of white LED was created with the "phosphor in glass" composite based on lead-silicate glasses with low temperature of vitrifying. The derived LED emits white light with a color temperature of 4370 K, and the luminous efficiency is equal to 58 lm/W. The developed luminescent composite based on the lead-silicate matrix can be used for the production of high-power white light LED.

  15. Validation study of a rapid colorimetric method for the determination of phytic acid and inorganic phosphorus from seeds

    Directory of Open Access Journals (Sweden)

    Dragičević Vesna D.

    2011-01-01

    Full Text Available Phytate, as an important mineral storage compound in seeds, is vital for seed/grain development; it is often considered to be an antinutritional substance. The objective of this study was to develop a rapid and inexpensive colorimetric method of measuring phytate and inorganic P (Pi concentrations from maize, soybean and sunflower seed/grain extracts, by combining adequate precision and simplicity, ideal for breeders interested in improving simultaneously Pi and phytate levels. The investigated extraction mediums: double distilled (DD H2O, 2.4 % HCl and 5 % trichloracetic acid (TCA were proved to be suitable for the analysis of phytic acid and inorganic phosphorus in seed extracts. The advantages of 5 % TCA over to DD H2O and 2.4 % HCl were reflected through the low limit of detection for both phytic acid and Pi and good recovery with low bias. A low detection limit for Pi is important for samples with naturally low Pi concentrations, such as soybean seeds.

  16. High Open-Circuit Voltage Solar Cells Based on Organic-Inorganic Lead Bromide Perovskite.

    Science.gov (United States)

    Edri, Eran; Kirmayer, Saar; Cahen, David; Hodes, Gary

    2013-03-21

    Mesoscopic solar cells, based on solution-processed organic-inorganic perovskite absorbers, are a promising avenue for converting solar to electrical energy. We used solution-processed organic-inorganic lead halide perovskite absorbers, in conjunction with organic hole conductors, to form high voltage solar cells. There is a dire need for low-cost cells of this type, to drive electrochemical reactions or as the high photon energy cell in a system with spectral splitting. These perovskite materials, although spin-coated from solution, form highly crystalline materials. Their simple synthesis, along with high chemical versatility, allows tuning their electronic and optical properties. By judicious selection of the perovskite lead halide-based absorber, matching organic hole conductor, and contacts, a cell with a ∼ 1.3 V open circuit voltage was made. While further study is needed, this achievement provides a general guideline for additional improvement of cell performance.

  17. Organic-inorganic hybrid protonic polymeric electrolytes grafted by sulfonic acid/sulfonamide moieties

    Energy Technology Data Exchange (ETDEWEB)

    Depre, L.; Poinsignon, C.; Popall, M.

    2000-07-01

    Thin proton conducting membranes of an organic-inorganic polymer electrolyte bearing sulphonamide and sulfonic groups are prepared by sol-gel process. Polycondensation of alkoxysilanes provides the inorganic silicate backbone whereas the organic network is formed from reactive functional groups R{prime}(({minus}DH{sub 2}){sub 3}-SO{sub 3}H) and [({minus}CH{sub 2}){sub 3}-SO{sub 2}NH{sub 2}] of alkoxysilanes of R{prime}Si[OR{sub 3}] type. Proton conductivity measured in the dry and wet state under controlled Temperature and Relative Humidity increases from 10{sup {minus}4} S/cm under vacuum to 6 10{sup {minus}2} S/cm at 70 C and 96% RH. Conductivity dependence on temperature and associated conduction mechanisms are discussed in both states.

  18. Hardness and degree of conversion of dental restorative composites based on an organic-inorganic hybrid

    OpenAIRE

    Sandro Aurélio de Souza Venter; Silvia Luciana Fávaro; Eduardo Radovanovic; Emerson Marcelo Girotto

    2013-01-01

    This paper presents a factorial design (mixture design) used to analyze the hardness and degree of monomer conversion into composites containing conventional monomers and an organic-inorganic hybrid polymer-based methacryloyloxypropyl trimethoxysilane (MEMO). For this purpose, resins (composites with SiO2) were formulated with the hybrid polymer (polycondensed, pMEMO), and two conventional monomers used in dentistry, bisphenol-A dimethacrylate (Bis-GMA) and triethyleneglycol dimethacrylate (T...

  19. Multiple transformation pathways of p-arsanilic acid to inorganic arsenic species in water during UV disinfection.

    Science.gov (United States)

    Li, Suqi; Xu, Jing; Chen, Wei; Yu, Yingtan; Liu, Zizheng; Li, Jinjun; Wu, Feng

    2016-09-01

    p-Arsanilic acid (p-ASA) is widely used in China as livestock and poultry feed additive for promoting animal growth. The use of organoarsenics poses a potential threat to the environment because it is mostly excreted by animals in its original form and can be transformed by UV-Vis light excitation. This work examined the initial rate and efficiency of p-ASA phototransformation under UV-C disinfection lamp. Several factors influencing p-ASA phototransformation, namely, pH, initial concentration, temperature, as well as the presence of NaCl, NH4(+), and humic acid, were investigated. Quenching experiments and LC-MS were performed to investigate the mechanism of p-ASA phototransformation. Results show that p-ASA was decomposed to inorganic arsenic (including As(III) and As(V)) and aromatic products by UV-C light through direct photolysis and indirect oxidation. The oxidation efficency of p-ASA by direct photosis was about 32%, and those by HO and (1)O2 were 19% and 49%, respectively. Cleavage of the arsenic-benzene bond through direct photolysis, HO oxidation or (1)O2 oxidation results in simultaneous formation of inorganic As(III), As(IV), and As(V). Inorganic As(III) is oxidized to As(IV) and then to As(V) by (1)O2 or HO. As(IV) can undergo dismutation or simply react with oxygen to produce As(V) as well. Reactions of the organic moieties of p-ASA produce aniline, aminophenol and azobenzene derivatives as main products. The photoconvertible property of p-ASA implies that UV disinfection of wastewaters from poultry and swine farms containing p-ASA poses a potential threat to the ecosystem, especially agricultural environments. Copyright © 2016. Published by Elsevier B.V.

  20. Inorganic nanoparticle-based drug codelivery nanosystems to overcome the multidrug resistance of cancer cells.

    Science.gov (United States)

    Chen, Yu; Chen, Hangrong; Shi, Jianlin

    2014-08-04

    Biocompatible inorganic material-based nanosystems provide a novel choice to effectively circumvent the intrinsic drawbacks of traditional organic materials in biomedical applications, especially in overcoming the multidrug resistance (MDR) of cancer cells due to their unique structural and compositional characteristics, for example, high stability, large surface area, tunable compositions, abundant physicochemical multifunctionalities, and specific biological behaviors. In this review, we focus on the recent developments in the construction of inorganic nanoparticles-based drug codelivery nanosystems (mesoporous SiO2, Fe3O4, Au, Ag, quantum dots, carbon nanotubes, graphene oxide, LDH, etc.) to efficiently circumvent the MDR of cancer cells, including the well-known codelivery of small molecular anticancer drug/macromolecular therapeutic gene and codelivery of small molecular chemosensitizer/anticancer drug, and very recently explored codelivery of targeting ligands/anticancer drug, codelivery of energy/anticancer drug, and codelivery of contrast agent for diagnostic imaging and anticancer drug. The unsolved issues, future developments, and potential clinical translations of these codelivery nanosystems are also discussed. These elaborately designed biocompatible inorganic materials-based nanosystems offer an unprecedented opportunity and show the encouraging bright future for overcoming the MDR of tumors in clinic personalized medicine and the pharmaceutical industry.

  1. An organic-inorganic broadband photodetector based on a single polyaniline nanowire doped with quantum dots.

    Science.gov (United States)

    Yang, Xianguang; Liu, Yong; Lei, Hongxiang; Li, Baojun

    2016-08-25

    The capability to detect light over a broad waveband is highly important for practical optoelectronic applications and has been achieved with photodetectors of one-dimensional inorganic nanomaterials such as Si, ZnO, and GaN. However, achieving high speed responsivity over an entire waveband within such a photodetector remains a challenge. Here we demonstrate a broadband photodetector using a single polyaniline nanowire doped with quantum dots that is highly responsive over a broadband from 350 to 700 nm. The high responsivity is due to the high density of trapping states at the enormous interfaces between polyaniline and quantum dots. The interface trapping can effectively reduce the recombination rate and enhance the efficiency for light detection. Furthermore, a tunable spectral range can be achieved by size-based spectral tuning of quantum dots. The use of organic-inorganic hybrid polyaniline nanowires in broadband photodetection may offer novel functionalities in optoelectronic devices and circuits.

  2. New polymer lithium secondary batteries based on ORMOCER (R) electrolytes-inorganic-organic polymers

    DEFF Research Database (Denmark)

    Popall, M.; Buestrich, R.; Semrau, G.

    2001-01-01

    Based on new plasticized inorganic-organic polymer electrolytes CM. Popall, M. Andrei, J. Kappel, J. Kron, K. Olma, B. Olsowski,'ORMOCERs as Inorganic-organic Electrolytes for New Solid State Lithium Batteries and Supercapacitors', Electrochim. Acta 43 (1998) 1155] new flexible foil-batteries...... electrolyte, typical for polymer electrolytes. Cycling tests (more than 900 cycles) proved that the unplasticized electrolyte can act as binder in composite cathodes of lithium secondary batteries [2]. Charge/discharge cycles of complete batteries like (Cu/active carbon/ORMOCER(R)/LiCoO2/Al) with an ORMOCER......(R) as separator electrolyte were measured. The voltage drop of these batteries is very similar to cells with standard liquid electrolytes and the efficiency is close to 100%. Cycling the batteries with a current density of 0.25 mA cm(-2) between the voltage limits of 3.1 and 4.1 V results in a charge...

  3. Inorganic arsenic in rice-based products for infants and young children

    OpenAIRE

    Signes-Pastor, Antonio J; CAREY,MANUS; Meharg, Andrew A.

    2016-01-01

    Inorganic arsenic (Asi) is a chronic, non-threshold carcinogen. Rice and rice-based products can be the major source of Asi for many subpopulations. Baby rice, rice cereals and rice crackers are widely used to feed infants and young children. The Asi concentration in rice-based products may pose a health risk for infants and young children. Asi concentration was determined in rice-based products produced in the European Union and risk assessment associated with the consumption of these produc...

  4. Slow recovery from severe inorganic arsenic poisoning despite treatment with DMSA (2.3-dimercaptosuccinic acid).

    Science.gov (United States)

    Stenehjem, Aud-E; Vahter, Marie; Nermell, Barbro; Aasen, Jorulf; Lierhagen, Syverin; Mørland, Jørg; Jacobsen, Dag

    2007-05-01

    A 39-year-old woman was hospitalized for nausea, diarrhea, vomiting, and weakness of unknown etiology. Her condition progressively deteriorated and she developed multiple organ failure and tetraplegia. The diagnosis of inorganic arsenic poisoning was established by measurements of arsenic in urine and serum, showing 2,000 microg/L (normal treatment probably had no significant effect on the total body clearance in our patient. The source of the poisoning was never detected, nor the motivation behind it. Criminal intent was suspected, but no verdict was given.

  5. Selection of inorganic-based fertilizers in forward osmosis for water desalination

    Directory of Open Access Journals (Sweden)

    Tripti Mishra

    2015-06-01

    Full Text Available The current study aims at the selection of an appropriate draw solute for forward osmosis process. Separation and recovery of the draw solute are the major criteria for the selection of draw solute for forward osmosis process. Therefore in this investigation six inorganic fertilizers draws solute were selected. The selections of inorganic fertilizers as draw solute eliminate the need of removal and recovery of draw solute from the final product. The final product water of forward osmosis process has direct application in agricultural as nutrient rich water for irrigation. These inorganic fertilizers were tested based on their water extraction (water flux capacity. This experimental water flux was compared with the observed water flux. It was noted that the observed water flux is much higher than the attained experimental water flux. The difference of these two fluxes was used to calculate the performance ratio of each selected fertilizer. Highest performance ratio was shown by low molecular weight compound ammonium nitrate (22.73 and potassium chloride (21.03 at 1 M concentration, whereas diammonium phosphate (DAP which has highest molecular weight among all the selected fertilizer show the lowest performance ratio (10.02 at 2 M concentration. DOI: http://dx.doi.org/10.3126/ije.v4i2.12660 International Journal of Environment Vol.4(2 2015: 319-329

  6. Controlled formation of calcium-phosphate-based hybrid mesocrystals by organic-inorganic co-assembly.

    Science.gov (United States)

    Zhai, Halei; Chu, Xiaobin; Li, Li; Xu, Xurong; Tang, Ruikang

    2010-11-01

    An understanding of controlled formation of biomimetic mesocrystals is of great importance in materials chemistry and engineering. Here we report that organic-inorganic hybrid plates and even mesocrystals can be conveniently synthesized using a one-pot reaction in a mixed system of protein (bovine serum albumin (BSA)), surfactant (sodium bis(2-ethylhexyl) sulfosuccinate (AOT)) and supersaturated calcium phosphate solution. The morphologies of calcium-phosphate-based products are analogous to the general inorganic crystals but they have abnormal and interesting substructures. The hybrids are constructed by the alternate stacking of organic layer (thickness of 1.31 nm) and well-crystallized inorganic mineral layer (thickness of 2.13 nm) at the nanoscale. Their morphologies (spindle, rhomboid and round) and sizes (200 nm-2 μm) can be tuned gradually by changing BSA, AOT and calcium phosphate concentrations. This modulation effect can be explained by a competition between the anisotropic and isotropic assembly of the ultrathin plate-like units. The anisotropic assembly confers mesocrystal characteristics on the hybrids while the round ones are the results of isotropic assembly. However, the basic lamellar organic-inorganic substructure remains unchanged during the hybrid formation, which is a key factor to ensure the self-assembly from molecule to micrometre scale. A morphological ternary diagram of BSA-AOT-calcium phosphate is used to describe this controlled formation process, providing a feasible strategy to prepare the required materials. This study highlights the cooperative effect of macromolecule (frame structure), small biomolecule (binding sites) and mineral phase (main component) on the generation and regulation of biomimetic hybrid mesocrystals.

  7. Effect of ammonium sulfate, ammonium chloride and root-zone acidity on inorganic ion content of tobacco

    Science.gov (United States)

    Vessey, J. K.; Raper, C. D. Jr; Henry, L. T.; Raper CD, J. r. (Principal Investigator)

    1990-01-01

    Tobacco plants (Nicotiana tabacum L. cv NC82) were supplied with (NH4)2SO4 or NH4Cl at root-zone pH of 6.0 and 4.5 in hydroponic culture for 28 days. Dry matter accumulation, total N and C content, and leaf area and number were not affected by the NH4+ source or root-zone pH. Plants supplied with NH4Cl accumulated up to 1.2 mM Cl g DW-1, but accumulated 37% less inorganic H2PO4- and 47% less SO4(2-) than plants supplied with (NH4)2SO4. The large Cl- accumulation resulted in NH4Cl- supplied plants having a 31% higher inorganic anion (NO3-, H2, PO4-, SO4(2-), and Cl-) charge. This higher inorganic anion charge in the NH4Cl-supplied plants was balanced by a similar increase in K+ charge. Plants supplied with NH4Cl accumulated greater concentrations of Cl- in leaves (up to 5.1% of DW) than plants supplied with (NH4)2SO4 (less than -% DW). Despite the high Cl- concentration of leaves in NH4Cl supplied plants, these plants showed no symptoms of Cl- toxicity. This demonstrates that toxicity symptoms are not due solely to an interaction between high Cl- concentration in tissue and NH4+ nutrition. The increase in root-zone acidity to pH 4.5 from 6.0 did not induce toxicity symptoms.

  8. Use of Manganese(II)-Schiff Base Complexes for Carrying Polar Organometallics and Inorganic Ion Pairs.

    Science.gov (United States)

    Gallo, Emma; Solari, Euro; Floriani, Carlo; Chiesi-Villa, Angiola; Rizzoli, Corrado

    1997-05-07

    This report concerns the carrier properties of [Mn(acacen)]-derived compounds toward polar organometallics, inorganic ion pairs, and salts. Such properties are the consequence of Mn(II) behaving as a Lewis acid and the O&arcraise;O bite of the bidentate Schiff base ligand toward alkali cations. The starting compounds, which occur in a dimeric form, [Mn(acac-L-en)](2) [L' = CH(2)CH(2) (1); L" = C(6)H(10) (2); L"' = R,R-C(6)H(10) (3)] have been synthesized either via a metathesis reaction from MnCl(2) or using [Mn(3)Mes(6)]. The reaction of 1-3 with lithium organometallics allowed the isolation of [Mn(acac-L-en)(R)Li(DME)] [R = Me, L = L' (4); R = Ph, L = L' (5); R = Mes, L = L' (6); R = Me, L = L" (7); R = Me, L = L"' (8)] as metalated forms, where the alkyl or aryl group is sigma-bonded to Mn(II), while the lithium cation is anchored to the Schiff base ligand. The metalated forms 4-8 react with PhCHO to give the corresponding lithium alkoxide, which remains bound in its ion-pair form to the [Mn(acacen)] skeleton in [Mn(2)(acac-L'-en)(2)Li(2)(OCH(Ph)Me)(2)](n)() (9). The use of 8, which has a chiral bridge across two nitrogen atoms, did not lead to a significant asymmetric induction in the reaction with PhCHO, because of the long separation between the lithium cation and the stereogenic center. The metalated form 4 was able to transfer the methyl group to the nitrile function to give the corresponding lithium-imide which then remains bonded to [Mn(acacen)] as the ion pair in a dimeric structure, as revealed for [Mn(2)(acac-L'-en)(2)Li(2)(DME){N=C(Ph)Me}(2)](n)() (10). Their reaction with 1 appears to depend on the steric bulkiness of the alkyl group in NaOR, resulting in either monomeric adducts, i.e. in [Mn(acac-L'-en)(2,6-Bu(t)(2)C(6)H(3)O)Na(DME)(2)] (11.2DME), or polymeric structures, like in [Mn(acac-L'-en)Na(DME)(&mgr;-OEt)](n)() (13). All the dimeric units reported in this paper show a slight antiferromagnetic coupling between the two Mn(II) assisted by

  9. Developing inorganic carbon-based radiocarbon chronologies for Holocene lake sediments in arid NW China

    Science.gov (United States)

    Zhang, Jiawu; Ma, Xueyang; Qiang, Mingrui; Huang, Xiaozhong; Li, Shuang; Guo, Xiaoyan; Henderson, Andrew C. G.; Holmes, Jonathan A.; Chen, Fahu

    2016-07-01

    Inorganic carbonates are often used to establish radiocarbon (14C) chronologies for lake sediments when terrestrial plant remains (TPR) are rare or when bulk organic matter is insufficient for dating, a problem that is common for many lakes in arid regions. However, the reservoir effect (RE), as well as old carbon contributed from the lakes catchment make it difficult to establish reliable chronologies. Here we present a systematic study of inorganic 14C ages of two lake-sediment sequences, one from a small-enclosed saline lake - Lake Gahai in Qaidam Basin, and the other from a large freshwater lake - Lake Bosten in Xinjiang. Modern dissolved inorganic carbon (DIC) of the lakes, paleo-lake sediments exposed in the catchment, and mollusk shells in core sediments from Lake Gahai were dated to assess the RE and the contribution of pre-aged carbon to the old ages in the cores. We propose a statistical regression to assess more than one RE for the 14C carbonate ages within our sedimentary sequences. Old radiocarbon ages contributed by detrital carbonates were assessed by comparing the ages of mollusk shells with those of carbonates at the same sediment depths. We established the RE of the authigenic component and assessed detrital old carbon contributions to our two sites, and this was used to correct the 14C ages. Based on this approach, we developed age models for both cores, and tested them using 210Pb ages in both cores and TPR-based 14C-ages recovered from Lake Bosten. We further tested our age models by comparing carbonate-based oxygen isotope (δ18O) records from both lakes to an independently-dated regional speleothem δ18O record. Our results suggest if sedimentary sequences are densely dated and the RE and the contribution of old carbon from detrital carbonates can be ascertained, robust chronological frameworks based on carbonate-based 14C determinations can be established.

  10. Study of Acid Phosphatase in Solubilization of Inorganic Phosphates by Piriformospora indica.

    Science.gov (United States)

    Seshagiri, Swetha; Tallapragada, Padmavathi

    2017-01-02

    Phosphorus is an essential plant macronutrient present in the soil. Only a small portion of phosphorus in soil is taken up by plants and the rest of it becomes unavailable to plants as it is immobilized. Phosphate solubilizing microorganisms play a vital role in converting the insoluble form of phosphates to the soluble form. The present paper reports the solubilization of tricalcium phosphate, rock phosphate, single super phosphate, zinc phosphate and aluminum phosphate by Piriformospora indica with the production of organic acids as well as acid phosphatase. The amount of phosphate released (4.73 mg ml(-1)) and titratable acidity (0.12%) was found to be the highest in the case of single super phosphate as compared to other phosphate sources. High performance liquid chromatography (HPLC) revealed the presence of oxalic acid, lactic acid, citric acid and succinic acid in the media. Highest phosphatase activity was observed with the cell membrane extract of the organism in the presence of zinc phosphate.

  11. Screening of soybean germplasm for high inorganic phosphorus and low phytic acid

    Directory of Open Access Journals (Sweden)

    S. Abirami, A. Kalamani and T. Kalaimagal

    2014-09-01

    Full Text Available Phytic acid, is the major storage form of phosphorus in soybean [Glycine max (L. Merr.] which comprises 75% of total seed phosphorus. It decreases the availability of some essential elements via bonding between the negatively charged phytic acid and the positively charged elements. Thus, diets high in phytate may lead to nutrient deficiencies. So, identification of lines with low phytic acid is of paramount importance. A germplasm survey was conducted among 250 soybean accessions to identify the accessions with low phytic acid. Phytic acid content ranged between 0.84 and 7.07 mg/ g of soy flour. The genotypes with low phytic acid content viz., Williams, Williams 82, CNS – AVRDC line, RKS 52 and NRC 66 may be useful in breeding programs for the development of low phytic acid genotypes with improved nutritional value to overcome nutritional deficiency syndromes and meet the demand of biofortification.

  12. Measurement of inorganic arsenic species in rice after nitric acid extraction by HPLC-ICPMS: verification using XANES.

    Science.gov (United States)

    Maher, W; Foster, S; Krikowa, F; Donner, E; Lombi, E

    2013-06-04

    The measurement of As species in rice is normally accomplished by extraction followed by HPLC-ICPMS analysis. This method, however, has not been comprehensively validated by comparing these speciation results with XANES, which does not require sample extraction, due to the challenge of conducting XANES analysis at very low As concentrations. In this study As speciation data using nitric acid extraction/HPLC-ICPMS and XANES are compared to verify the efficacy of using 2% v/v nitric acid extraction and HPLC-ICPMS to measure inorganic As, DMA, and MA in reference rice materials and common rice varieties obtainable in Australia. Total As and As species (As(III), As(V), DMA, and MA) concentrations measured in 8 reference materials were in agreement with published values. XANES analysis was performed on 5 samples having total As concentrations ranging from 0.198 to 0.335 μg g(-1). XANES results gave similar proportions of total As(III), As(V), and DMA to HPLC-ICPMS. XANES was able to distinguish two forms of As(III): As(III) and As(III)GSH. Total As concentrations in rice samples varied from 0.006 to 0.45 μg g(-1) As (n = 47) with a mean ± std of 0.127 ± 0.112 μg g(-1) As with most As present as inorganic species (63 ± 26%). DMA was found in nearly all the rice samples with the majority of samples containing concentrations below 0.05 μg g(-1) As while MA concentrations were negligible (<0.003 μg g(-1) As). Six rice varieties produced in Australia, China, and Spain all had elevated DMA concentrations (0.170-0.399 μg g(-1) As) that were correlated with total As concentrations (r(2) = 0.7518). In conclusion, comparison of As speciation by HPLC-ICPMS and XANES showed that similar As species were detected indicating the appropriateness of using 2% v/v nitric acid for extraction of rice prior to speciation. Common rice varieties obtainable in Australia generally have low As concentrations with most As present as inorganic As.

  13. Bioavailability of magnesium from inorganic and organic compounds is similar in rats fed a high phytic acid diet.

    Science.gov (United States)

    Bertinato, Jesse; Plouffe, Louise J; Lavergne, Christopher; Ly, Catherine

    2014-01-01

    A large section of the North American population is not meeting recommended intakes for magnesium (Mg). Supplementation and consumption of Mg-fortified foods are ways to increase intake. Currently, information on Mg bioavailability from different compounds and their efficacy in improving Mg status is scant. This study compared the relative ability of inorganic and organic Mg compounds to preserve the Mg status of rats when fed at amounts insufficient to retain optimal Mg status. Male Sprague-Dawley rats (n=12/diet group) were fed one of eight test diets supplemented with phytic acid (5 g/kg diet) and low levels of Mg (155 mg elemental Mg/kg diet) from Mg oxide, Mg sulphate, Mg chloride, Mg citrate, Mg gluconate, Mg orotate, Mg malate or ethylenediaminetetraacetic acid disodium Mg salt for five weeks. Rats were also fed three control diets that did not contain added phytic acid but were supplemented with 500 (NMgO, normal), 155 (LMgO, low) or 80 (DMgO, deficient) mg of Mg per kg diet as Mg oxide. Mg concentrations in femur, serum and urine showed a graded decrease in rats fed the control diets with lower Mg. Mg concentrations did not differ (P≥0.05) between rats fed the different test diets. Addition of phytic acid to the diet did not affect the Mg status of the rats. The results indicate that any differences in the Mg bioavailability of the compounds were small and physiologically irrelevant.

  14. Indirect UV detection-ion-exclusion/cation-exchange chromatography of common inorganic ions with sulfosalicylic acid eluent.

    Science.gov (United States)

    Kozaki, Daisuke; Mori, Masanobu; Nakatani, Nobutake; Arai, Kaori; Masuno, Tomoe; Koseki, Masakazu; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2013-01-01

    Herein, we describe indirect UV detection-ion-exclusion/cation-exchange chromatography (IEC/CEC) on a weakly acidic cation-exchange resin in the H(+)-form (TSKgel Super IC-A/C) using sulfosalicylic acid as the eluent. The goal of the study was to characterize the peaks detected by UV detector. The peak directions of analyte ions in UV at 315 nm were negative because the molar absorbance coefficients of analyte anions and cations were lower than that of the sulfosalicylic acid eluent. Good chromatographic resolution and high signal-to-noise ratios of analyte ions were obtained for the separations performed using 1.1 mM sulfosalicylic acid and 1.5 mM 18-crown-6 as the eluent. The relative standard deviations (RSDs) of the peak areas ranged from 0.6 to 4.9%. Lower detection limits of the analytes were achieved using indirect UV detection at 315 nm (0.23 - 0.98 μM) than those obtained with conductometric detection (CD) (0.61 - 2.1 μM) under the optimized elution conditions. The calibration curves were linear in the range from 0.01 to 1.0 mM except for Cl(-), which was from 0.02 to 2.0 mM. The present method was successfully applied to determine common inorganic ions in a pond water sample.

  15. Fabrication and Characterisation of Polyaniline/Laponite based Semiconducting Organic/Inorganic Hybrid Material

    Directory of Open Access Journals (Sweden)

    Walt V.K. Wheelwright

    2014-05-01

    Full Text Available Novel organic-inorganic semiconducting hybrid material is developed by chemically grafting polyaniline (PANI onto an inorganic template, Laponite. The surface active silanol groups of the Laponite sheets were silylated with an aniline functionalised 3-phenylaminopropyltrimethoxysilane (PAPTMOS coupling agent followed by deposition of PANI onto the silylated surface. The method includes the reaction of Laponite with PAPTMOS dissolved in a very small amount of methanol at 110 °C for 44 h in a vacuum oven, interaction of the silylated product with PANI via in situ polymerisation of aniline and one-step isolation process by means of the removal of the non-connected PANI with N-methylpyrrolidinone-diethylamine binary solvent. After isolation and re-doping with methane sulfonic acid the Laponite-PAPTMOS-PANI hybrid becomes electrically conductive. The chemical attachment of PANI with silylated Laponite in the hybrids were characterised by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, elemental analysis, and scanning electron microscopy.Defence Science Journal, Vol. 64, No. 3, May 2014, pp. 193-197, DOI:http://dx.doi.org/10.14429/dsj.64.7185

  16. Screening of soybean germplasm for high inorganic phosphorus and low phytic acid

    OpenAIRE

    S. Abirami, A. Kalamani and T. Kalaimagal

    2014-01-01

    Phytic acid, is the major storage form of phosphorus in soybean [Glycine max (L.) Merr.] which comprises 75% of total seed phosphorus. It decreases the availability of some essential elements via bonding between the negatively charged phytic acid and the positively charged elements. Thus, diets high in phytate may lead to nutrient deficiencies. So, identification of lines with low phytic acid is of paramount importance. A germplasm survey was conducted among 250 soybean accessions to identify...

  17. Crystal structure of caesium hydrogen (L)-aspartate and an overview of crystalline compounds of aspartic acid with inorganic constituents

    Energy Technology Data Exchange (ETDEWEB)

    Fleck, M. [Universitaet Wien (Austria). Institut fuer Mineralogie und Kristallographie; Emmerich, R.; Bohaty, L. [Universitaet zu Koeln (Austria). Institut fuer Kristallographie

    2010-08-15

    The crystal structure of the new polar compound caesium hydrogen (L)-aspartate, Cs(C{sub 4}H{sub 6}NO{sub 4}), (abbreviated: Cs(L -AspH)) was determined from single crystal X-ray diffraction data; it comprises two crystallographically different L -AspH anions that are connected via caesium cations to form a three dimensional framework. The Cs ions are irregularly sevenfold[Cs1O{sub 7}] respectively eightfold[Cs2O{sub 8}] coordinated to all {alpha}- and {beta}- carboxylate oxygen atoms. Cs(L -AspH) represents a novel structure type of its own, as do most compounds of (L)-aspartic acid with inorganic constituents. A brief summary of such structurally known aspartates is given. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Correlations between the contents of phytic acid and inorganic phosphorous and downy mildew resistance of corn inbred lines

    Directory of Open Access Journals (Sweden)

    Pantipa Na Chiangmai

    2015-10-01

    Full Text Available Seeds of corn inbred lines collected at the National Corn and Sorghum Research Center (NCSRC, Kasetsart University, were analyzed to determine the contents of phytic acid (PA and inorganic phosphorous (InP. These 28 and 29 inbred lines were cultivated at the NCSRC (in the 2008 late rainy season and 2009 early rainy season to evaluate their resistance to corn downy mildew caused by Peronosclerospora sorghi. Results showed that the values of the PA, InP contents and downy mildew infection were statistically different among these inbred lines in both seasons. However, there were no correlations between the contents of either PA or InP and downy mildew infection.

  19. THE SCENARIOS APPROACH TO ATTENUATION-BASED REMEDIES FOR INORGANIC AND RADIONUCLIDE CONTAMINANTS

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, K.; Rysz, M.; Truex, M.; Brady, P.; Newell, C.; Denham, M.

    2011-08-04

    Guidance materials based on use of conceptual model scenarios were developed to assist evaluation and implementation of attenuation-based remedies for groundwater and vadose zones contaminated with inorganic and radionuclide contaminants. The Scenarios approach is intended to complement the comprehensive information provided in the US EPA's Technical Protocol for Monitored Natural Attenuation (MNA) of Inorganic Contaminants by providing additional information on site conceptual models and extending the evaluation to consideration of Enhanced Attenuation approaches. The conceptual models incorporate the notion of reactive facies, defined as units with hydrogeochemical properties that are different from surrounding units and that react with contaminants in distinct ways. The conceptual models also incorporate consideration of biogeochemical gradients, defined as boundaries between different geochemical conditions that have been induced by waste disposal or other natural phenomena. Gradients can change over time when geochemical conditions from one area migrate into another, potentially affecting contaminant mobility. A recognition of gradients allows the attenuation-affecting conditions of a site to be projected into the future. The Scenarios approach provides a stepwise process to identify an appropriate category of conceptual model and refine it for a specific site. Scenario materials provide links to pertinent sections in the EPA technical protocol and present information about contaminant mobility and important controlling mechanism for attenuation-based remedies based on the categories of conceptual models.

  20. Zirconia-based luminescent organic-inorganic hybrid materials with ternary europium (III) complexes bonded

    Science.gov (United States)

    Yang, Jing; Li, Zhiqiang; Xu, Yang; Wang, Yige

    2016-05-01

    In this work, a novel red-emitting organic-inorganic hybrid material with europium (III) lanthanide β-diketonate complexes linked to a zirconia was reported, which was realized by adduct formation with zirconia-tethered terpyridine moieties. Luminescence enhancement of the hybrid material has been observed compared with pure Eu(tta)3·2H2O. Transparent and strongly luminescent thin films based on PMMA were also prepared at room temperature, which are highly luminescent under UV-light irradiation and possess a promising prospect in the area of optics.

  1. Ampholine-functionalized hybrid organic-inorganic silica material as sorbent for solid-phase extraction of acidic and basic compounds.

    Science.gov (United States)

    Wang, Tingting; Chen, Yihui; Ma, Junfeng; Chen, Mingliang; Nie, Chenggang; Hu, Minjie; Li, Ying; Jia, Zhijian; Fang, Jianghua; Gao, Haoqi

    2013-09-20

    A novel sorbent for solid-phase extraction (SPE) was synthesized by chemical immobilization of ampholine on hybrid organic-inorganic silica material. The ampholine-functionalized hybrid organic-inorganic silica sorbent is consisted of aliphatic amine groups, carboxyl groups and long carbon chains, allowing for extraction of both acidic and basic compounds. The retention properties of the developed sorbent were evaluated for 1-hydroxy-2-naphthoic acid (HNA), 1-naphthoic acid (NA), 3-hydroxybenzoic acid (HBA), benzoic acid (BA), sorbic acid (SA), vanillic aldehyde (VA), butyl 4-hydroxybenzoate (BHB), propyl 4-hydroxybenzoate (PHB), ethyl 4-hydroxybenzoate (EHB), and methyl 4-hydroxybenzoate (MHB). The results show that such a sorbent has three types of interaction, i.e., electrostatic interaction, hydrophobic interaction, and hydrogen bonding, exhibiting high extraction efficiency towards the compounds tested. The adsorption capacities of the analytes ranged from 0.61 to 6.54μgmg(-1). The reproducibility of the sorbent preparation was evaluated at three spiking concentration levels, with relative standard deviations (RSDs) of 1.0-10.5%. The recoveries of ten acidic and basic compounds spiked in beverage Coca-Cola(®) sample ranged from 82.5% to 98.2% with RSDs less than 5.8%. Under optimum conditions, the ampholine-functionalized hybrid organic-inorganic silica sorbent rendered higher extraction efficiency for acidic compounds than that of the commercially available ampholine-functionalized silica particles, and was comparable to that of the commercial Oasis WAX and Oasis WCX.

  2. Plasma-based determination of inorganic contaminants in waste of electric and electronic equipment after microwave-induced combustion

    Science.gov (United States)

    Mello, Paola A.; Diehl, Lisarb O.; Oliveira, Jussiane S. S.; Muller, Edson I.; Mesko, Marcia F.; Flores, Erico M. M.

    2015-03-01

    A systematic study was performed for the determination of inorganic contaminants in polymeric waste from electrical and electronic equipment (EEE) for achieving an efficient digestion to minimize interferences in determination using plasma-based techniques. The determination of As, Br, Cd, Co, Cr, Cu, Ni, Pb, Sb, and Zn by inductively coupled plasma mass spectrometry (ICP-MS) and also by inductively coupled plasma optical emission spectrometry (ICP OES) was carried out after digestion using microwave-induced combustion (MIC). Arsenic and Hg were determined by flow-injection chemical vapor generation inductively coupled plasma mass spectrometry (FI-CVG-ICP-MS). Dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) with ammonia was also used for Cr determination. The suitability of MIC for digestion of sample masses up to 400 mg was demonstrated using microcrystalline cellulose as aid for combustion of polymers from waste of EEEs that usually contain flame retardants that impair the combustion. The composition and concentration of acid solutions (HNO3 or HNO3 plus HCl) were evaluated for metals and metalloids and NH4OH solutions were investigated for Br absorption. Accuracy was evaluated by comparison of results with those obtained using high pressure microwave-assisted wet digestion (HP-MAWD) and also by the analysis of certified reference material (CRM) of polymer (EC680k-low-density polyethylene). Bromine determination was only feasible using digestion by MIC once losses were observed when HP-MAWD was used. Lower limits of detection were obtained for all analytes using MIC (from 0.005 μg g- 1 for Co by ICP-MS up to 3.120 μg g-1 for Sb by ICP OES) in comparison to HP-MAWD due to the higher sample mass that can be digested (400 mg) and the use of diluted absorbing solutions. The combination of HNO3 and HCl for digestion showed to be crucial for quantitative recovery of some elements, as Cr and Sb. In addition, suitable agreement of Cr to

  3. Prediction Model of Antibacterial Activities for Inorganic Antibacterial Agents Based on Artificial Neural Networks

    Institute of Scientific and Technical Information of China (English)

    刘雪峰; 张利; 涂铭旌

    2004-01-01

    Quantitatively evaluation of antibacterial activities of inorganic antibacterial agents is an urgent problem to be solved. Using experimental data by an orthogonal design, a prediction model of the relation between conditions of preparing inorganic antibacterial agents and their antibacterial activities has been developed. This is accomplished by introducing BP artificial neural networks in the study of inorganic antibacterial agents..It provides a theoretical support for the development and research on inorganic antibacterial agents.

  4. General base-general acid catalysis by terpenoid cyclases.

    Science.gov (United States)

    Pemberton, Travis A; Christianson, David W

    2016-07-01

    Terpenoid cyclases catalyze the most complex reactions in biology, in that more than half of the substrate carbon atoms often undergo changes in bonding during the course of a multistep cyclization cascade that proceeds through multiple carbocation intermediates. Many cyclization mechanisms require stereospecific deprotonation and reprotonation steps, and most cyclization cascades are terminated by deprotonation to yield an olefin product. The first bacterial terpenoid cyclase to yield a crystal structure was pentalenene synthase from Streptomyces exfoliatus UC5319. This cyclase generates the hydrocarbon precursor of the pentalenolactone family of antibiotics. The structures of pentalenene synthase and other terpenoid cyclases reveal predominantly nonpolar active sites typically lacking amino acid side chains capable of serving general base-general acid functions. What chemical species, then, enables the Brønsted acid-base chemistry required in the catalytic mechanisms of these enzymes? The most likely candidate for such general base-general acid chemistry is the co-product inorganic pyrophosphate. Here, we briefly review biological and nonbiological systems in which phosphate and its derivatives serve general base and general acid functions in catalysis. These examples highlight the fact that the Brønsted acid-base activities of phosphate derivatives are comparable to the Brønsted acid-base activities of amino acid side chains.

  5. The synthesis of amino acids and sugars on an inorganic template from constituents of the prebiotic atmosphere

    Science.gov (United States)

    Field, B. O.; Spencer, J. E. D.

    1990-05-01

    Inelastic Electron Tunnelling Spectroscopy (IETS) has been used to identify the reaction products present on an alumina surface when it is exposed to likely components of the earth's prebiotic atmosphere. The alumina barrier of Al-AlO x -Pb tunnelling junctions have been exposed to water; aqueous ammonia; wet carbon monoxide gas and to aqueous formaldehyde vapour under normal atmospheric conditions at room temperature. The water spectrum shows strong coincidence with that of a genuine sample of formic acid. It is proposed that atmospheric CO2 is involved in this surface catalyzed reaction. The aqueous ammonia spectrum is assigned as an amino acid species produced from ammonia, water and atmospheric carbon dioxide. This spectrum compares very closely with the tunnelling spectrum of a genuine sample of glycine. The wet carbon monoxide spectrum and the aqueous formaldehyde spectrum have been produced by an infusion doping process. These spectra of CO and aqueous formaldehyde are assigned as a sugar like polymer or a sugar formed on the alumina surface. A tunnelling spectrum of D(-) fructose has been produced to aid this assignment. The role of an inorganic template such as alumina in the original prebiotic synthesis of amino acids and sugars is considered.

  6. Charge-transfer induced surface conductivity for a copper based inorganic-organic hybrid

    NARCIS (Netherlands)

    Arkenbout, Anne H.; Uemura, Takafumi; Takeya, Jun; Palstra, Thomas T. M.

    2009-01-01

    Inorganic-organic hybrids are receiving increasing attention as they offer the opportunity to combine the robust properties of inorganic materials with the versatility of organic compounds. We have studied the electric properties of an inorganic-organic hybrid with the chemical formula:

  7. Inorganic Resists Based On Photo-Doped As-S Films

    Science.gov (United States)

    Firth, A. P.; Ewen, P. J.; Owen, A. E.; Huntley, C. M.

    1985-04-01

    In recent years there has been considerable interest in inorganic resist systems based on the photo-doping of amorphous chalcogenide films, the majority of the research being devoted to Ge-Se films. This paper presents a detailed investigation of inorganic resists based on the photo-doping of Ag into As-S films. It is shown that high resolution patterns can be produced in such resists using holography or optical lithography and that they are compatible with wet-chemical or plasma etching. Structural studies using Raman spectro-scopy indicate that for best resolution the composition of the As-S film should be close to AS33S67 since on photo-doping it will yield a single-phase homogeneous material. A possible mechanism for the photo-doping process is described based on a tarnishing-type photo-chemical reaction. It is shown that the actinic radiation initiating the photo-dissolution effect is absorbed primarily in the photo-doped layer, close to the interface with the undoped As-S region.

  8. Combining pH and electrical conductivity measurements to improve titrimetric methods to determine ammonia nitrogen, volatile fatty acids and inorganic carbon concentrations.

    Science.gov (United States)

    Charnier, C; Latrille, E; Lardon, L; Miroux, J; Steyer, J P

    2016-05-15

    Volatile fatty acids (VFA), inorganic carbon (IC) and total ammonia nitrogen (TAN) are key variables in the current context of anaerobic digestion (AD). Accurate measurements like gas chromatography and infrared spectrometry have been developed to follow the concentration of these compounds but none of these methods are affordable for small AD units. Only titration methods answer the need for small plant monitoring. The existing methods accuracy was assessed in this study and reveals a lack of accuracy and robustness to control AD plants. To solve these issues, a new titrimetric device to estimate the VFA, IC and TAN concentrations with an improved accuracy was developed. This device named SNAC (System of titration for total ammonia Nitrogen, volatile fatty Acids and inorganic Carbon) has been developed combining the measurement of electrical conductivity and pH. SNAC were tested on 24 different plant samples in a range of 0-0.16 mol.L(-1) TAN, 0.01-0.21 mol.L(-1) IC and 0-0.04 mol.L(-1) VFA. The standard error was about 0.012 mol.L(-1) TAN, 0.015 mol.L(-1) IC and 0.003 mol.L(-1) VFA. The coefficient of determination R(2) between the estimated and reference data was 0.95, 0.94 and 0.95 for TAN, IC and VFA respectively. Using the same data, current methods based on key pH points lead to standard error more than 14.5 times higher on VFA and more than 1.2 times higher on IC. These results show that SNAC is an accurate tool to improve the management of AD plant.

  9. New blue-light-emitting ultralong [Cd(L)(TeO3)] (L = polyamine) organic-inorganic hybrid nanofibre bundles: their thermal stability and acidic sensitivity.

    Science.gov (United States)

    Yao, Hong-Bin; Li, Xiao-Bo; Yu, Shu-Hong

    2009-08-03

    A new type of blue-light-emitting ultralong [Cd(L)(TeO(3))] (L = ethylenediamine, diethylenetriamine) nanofibre bundle has been synthesised under reflux in a mixed solvent media. Inorganic Cd(TeO(3)) layers are assumed to exist in the structures and are connected by the organic amine molecules through the coordination between nitrogen atoms and cadmium ions. The composition and formulae of these hybrid materials, based on the proposed structures, have been identified through element analysis (EA), thermal gravity analysis (TGA) and energy dispersive spectra (EDS). The thermal stabilities and optical properties of these nanofibre bundles have been investigated. Thermal decomposition of [Cd(en)(TeO(3))] (en = ethylenediamine) and [Cd(DETA)(TeO(3))] (DETA = diethylenetriamine) at 450 degrees C allowed the formation of a mixture of CdTe and Cd(TeO(3)) phases, and a pure CdTe phase, respectively. In addition, this new kind of hybrid bundle, which demonstrates blue emission, was found to be sensitive to acids, and the emission intensity is strongly dependent on the acidity of the solutions, implying that these hybrid nanofibre bundles could be potentially applied as acid sensors.

  10. Effect of organic/inorganic compounds on the enzymes in soil under acid rain stress

    Institute of Scientific and Technical Information of China (English)

    LIU Guang-shen; XU Dong-mei; WANG Li-ming; LI Ke-bin; LIU Wei-ping

    2004-01-01

    The main effects of pollutions including acid rain, Cu2+, atrazine and their combined products on theactivities of urease, invertin, acid phosphatase and catalase were studied by means of orthogonal test. The resultsshowed that H + and Cu2+ had significant influence on the activities of four enzymes and the ability of their inhibitingfollowed the order: H+ > Cu2+ . Al3+ and atrazine only had litter effects on the activity of urease and phosphatase,respectively. Furthermore, interaction analysis revealed that Cu2+ -H+ affected on the activity of acid phosphatasesignificantly and antagonism on invertin and urease, Cu2+ -atrazine only exhibited the synergism on the activity ofacid phosphatase. But atrazine-H+ had non-interaction within the investigated concentration range. Among fourenzymes, acid phosphatase was the most sensitive one to the contaminations.

  11. PHYSIOLOGY OF ACID BASE BALANCE

    Directory of Open Access Journals (Sweden)

    Awati

    2014-12-01

    Full Text Available Acid-base, electrolyte, and metabolic disturbances are common in the intensive care unit. Almost all critically ill patients often suffer from compound acid-base and electrolyte disorders. Successful evaluation and management of such patients requires recognition of common patterns (e.g., metabolic acidosis and the ability to dissect one disorder from another. The intensivists needs to identify and correct these condition with the easiest available tools as they are the associated with multiorgan failure. Understanding the elements of normal physiology in these areas is very important so as to diagnose the pathological condition and take adequate measures as early as possible. Arterial blood gas analysis is one such tool for early detection of acid base disorder. Physiology of acid base is complex and here is the attempt to simplify it in our day to day application for the benefit of critically ill patients.

  12. Glutamic acid-149 is important for enzymatic activity of yeast inorganic pyrophosphatase.

    Science.gov (United States)

    Gonzalez, M A; Cooperman, B S

    1986-11-04

    Modification of Saccharomyces cerevisiae inorganic pyrophosphatase (PPase) with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide is known to lead to a loss of enzymatic activity, the rate of which is decreased in the presence of ligands binding to the active site [Cooperman, B. S., & Chiu, N. Y. (1973) Biochemistry 12, 1676-1682; Heitman, P., & Uhlig, H. J. (1974) Acta Biol. Med. Ger. 32, 565-594]. In this work we show that, when such inactivation is carried out in the presence of [14C]glycine ethyl ester (GEE), GEE is covalently incorporated into PPase, incorporation into the most highly labeled tryptic peptide is site-specific, as evidenced by the reduction of such incorporation in the presence of the active site ligands Zn2+ and Pi, the extent of formation of this specifically labeled peptide correlates with the fractional loss of PPase activity, and the specifically labeled peptide corresponds to residues 145-153 and the position of incorporation within this peptide is Glu-149. The significance of our findings for the location of the active site and for the catalytic mechanism of PPase is briefly considered in the light of the 3-A X-ray crystallographic structure of Arutyunyun and his colleagues [Arutyunyun, E. G., et al. (1981) Dokl. Akad. Nauk SSSR 258, 1481-1485; Kuranova, I. P., et al. (1983) Bioorg. Khim. 9, 1611-1919; Terzyan, S. S., et al. (1984) Bioorg. Khim. 10, 1469-1482].

  13. Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix

    Energy Technology Data Exchange (ETDEWEB)

    Verdolotti, Letizia; Capasso, Ilaria; Lavorgna, Marino [Institute of Composite and Biomedical Materials, National Research Council, Naples (Italy); Liguori, Barbara; Caputo, Domenico [Department of Chemical, Materials and Industrial Engineering, University of Naples Federico II, Naples (Italy); Iannace, Salvatore [Institute of Composite and Biomedical Materials, National Research Council, Naples, Italy and IMAST SCRAL, Piazza Bovio 22 Napoli 80133 (Italy)

    2014-05-15

    Organic-inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared by using different foaming methods. Initially, the synthesis of an inorganic matrix by using aluminosilicate particles, activated through a sodium silicate solution, was performed at room temperature. Subsequently the viscous paste was foamed by using three different methods. In the first method, gaseous hydrogen produced by the oxidization of Si powder in an alkaline media, was used as blowing agent to generate gas bubbles in the paste. In the second method, the porous structure was generated by mixing the paste with a “meringue” type of foam previously prepared by whipping, under vigorous stirring, a water solution containing vegetal proteins as surfactants. In the third method, a combination of these two methods was employed. The foamed systems were consolidated for 24 hours at 40°C and then characterized by FTIR, X-Ray diffraction, scanning electron microscopy (SEM) and compression tests. Low density foams (∼500 Kg/m{sup 3}) with good cellular structure and mechanical properties were obtained by combining the “meringue” approach with the use of the chemical blowing agent based on Si.

  14. Separation and immobilization of Sr and Cs contained in acidic media by using inorganic ion-exchangers. Literature survey

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, Isao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-07-01

    The present study deals with the survey of inorganic ion-exchangers suitable for separation and immobilization of Sr and Cs contained in acidic high-level liquid waste. The stabilities of published waste forms and their preparation processes were evaluated from the standpoint of conversion of exchangers containing Sr and Cs into appropriate waste forms. The essential results are below. (1) For separation and immobilization of Cs, crystalline silicotitanate seems to be the most promising exchanger. Insoluble ferrocyanides and phosphates are not suitable for immobilization without additives. Mordenite is inexpensive and commercially available but it would dissolve in highly acidic media. (2) For selective separation of Sr, there is no promising exchanger up to now. It is necessary either to modify separation condition or to synthesize a novel exchanger. (3) Soluble salts, glasses and ceramics are proposed as a storage or disposal form of separated Sr and Cs. Ceramics sintered by hot-pressing are favorable waste forms of inorganic ion-exchangers but their leachabilities and thermal conductivities are largely influenced by qualities of products. Crystallinity of a sintered exchanger depends on its composition. Exchanges of low Cs contents are often converted into amorphous materials whose chemical stabilities depend on solubilities of components of exchangers. (4) A new exchanger to be synthesized is crystalline and selective toward Sr and Cs. One meq/g is enough for Sr and Cs capacities, which are restricted by thermal and transmutation effects. Composition of the exchanger should be selected from the point of a scenario of separation and disposal. The solubilities of SiO{sub 2}, TiO{sub 2}, ZrO{sub 2}, Nb{sub 2}O{sub 5} and Ta{sub 2}O{sub 5} are low in acidic media and those of Al{sub 2}O{sub 3}, TiO{sub 2} and ZrO{sub 2}, in disposal circumstances. (5) Future works are optimization of separation scheme including development of exchangers, simplification of

  15. Inorganic polymers from laterite using activation with phosphoric acid and alkaline sodium silicate solution: Mechanical and microstructural properties

    Energy Technology Data Exchange (ETDEWEB)

    Lassinantti Gualtieri, Magdalena, E-mail: magdalena.gualtieri@unimore.it [Dipartimento di Ingegneria " Enzo Ferrari" , Università degli studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41125 Modena (Italy); Romagnoli, Marcello [Dipartimento di Ingegneria " Enzo Ferrari" , Università degli studi di Modena e Reggio Emilia, Via Vignolese 905/a, I-41125 Modena (Italy); Pollastri, Simone; Gualtieri, Alessandro F. [Dipartimento di Scienze Chimiche e Geologiche, Università degli studi di Modena e Reggio Emilia, Via S. Eufemia 19I, I-41121 Modena (Italy)

    2015-01-15

    Geopolymers from laterite, an iron-rich soil available in developing countries, have great potential as building materials. In this work, laterite from Togo (Africa) was used to prepare geopolymers using both phosphoric acid and alkaline sodium silicate solution. Microstructural properties were investigated by scanning electron microscopy, X-ray powder diffraction and mercury porosimetry, whereas thermal properties were evaluated by thermal analyses. The local environment of iron was studied by X-ray Absorption Spectroscopy (XANES region). The mechanical properties were determined. Modulus of Rupture and Young's modulus fell in the ranges 3.3–4.5 MPa and 12–33 GPa, respectively, rendering the materials good candidates for construction purposes. Heating above 900 °C results in weight-gain, presumably due to iron redox reactions. X-ray Absorption Spectroscopy data evidence changes in the chemical and structural environments of iron following thermal treatment of geopolymers. These changes indicate interaction between the geopolymer structure and iron during heating, possibly leading to redox properties. -- Highlights: •Geopolymerization of laterite is promising for fabrication of building materials. •Both phosphoric acid and alkaline sodium silicate solution can be used for activation. •Thermally activated redox properties of the inorganic polymers were observed.

  16. Phytic acid and inorganic phosphate composition in soybean lines with independent IPK1 mutations

    Science.gov (United States)

    Soybean [Glycine max (L.) Merr] seeds contain a large amount of phosphorus (P), which is stored as phytic acid (PA). PA is indigestible by nonruminent livestock and considered an anti-nutritional factor because PA chelates divalent cations and prevents the uptake of essential nutrients. Interest in...

  17. 3-methylaminopropylamine as a templating agent in the synthesis of phosphate-based inorganic polymers

    Directory of Open Access Journals (Sweden)

    Jevtić Sanja O.

    2013-01-01

    Full Text Available 3-methylaminopropylamine (MPA has been studied as a structure-directing agent (template in the synthesis of open-framework phosphate-based materials. The influence of temperature, molar ratio of reactants, crystallization time and presence of fluoride ions on the crystallization of aluminophosphate, transition metal-substituted aluminophosphate [transition metal - Mn(II, Cr(III and Co(II] and zincophosphate has also been investigated. MPA exhibits the templating role and in all as-synthesized crystalline products and it is entrapped in an inorganic lattice interacting with the framework via hydrogen or/and electrostatic interactions. According to detailed thermal analysis the type of interactions seems to be crucial for thermal behaviour of MPA and also for the thermal stability of the organic-inorganic crystal system. Structural analysis suggested that the formed crystalline structures have no mutual structural analogy. This indicates that precise role of the organic (guest component in nucleation process for the open-framework phosphates (host is very complex as well as the nucleation process itself. [Projekat Ministarstva nauke Republike Srbije, br. 172018

  18. PVDF-Based Micro Inorganic Fillers-Containing Polymer Electrolyte Membranes

    Institute of Scientific and Technical Information of China (English)

    BAI Ying; WU Feng; WU Chuan

    2006-01-01

    Polymer electrolyte membranes based on poly (vinylidene fluoride-co-hexafluoropropylene) (PVDFHFP) with and without different types of micro inorganic fillers were prepared by phase-inversion process.Morphologies, porosities and electrochemical properties of the as-prepared membranes were investigated by means of scanning electronic microscopy (SEM), PC (propylene carbonate) uptake and alternating current(AC) impedance technique. Compared with other membranes, the membrane with micro SiO2 filler shows a dense morphology so that its PC uptake is the highest, namely, 339%. The membrane filled with micro TiO2exhibits good electrochemical performances: the ion conductivity is as high as 1.1 × 10-3 S/cm at 18 ℃,which can meet the demand of lithium ion batteries. Moreover, its initial charge-discharge efficiency exceeds89 %. The composite membranes with micro SiO2, TiO2 and A12O3 are more suitable for the utilization in lithium ion batteries due to better cycleability, whereas the battery assembled with the blank membrane containing no inorganic fillers encounters a short circuit after the 5th cycle.

  19. Siloxane based Organic-Inorganic Hybrid Polymers and their Applications for Nanostructured Optical/Photonic Components

    Directory of Open Access Journals (Sweden)

    Rahmat Hidayat

    2014-11-01

    Full Text Available We have studied the preparation of organic-inorganic hybrid polymer precursors by sol-gel technique and their utilization for nanostructured optical components for photonic applications. The gel polymer precursors were prepared from siloxane modified by polymerizable acrylate groups, which can be processed further by photopolymerization process. Molecular structure characterizations by means of the FTIR measurements indicate the conversion of C=C bonds into C-C bonds after photopolymerization. This bond conversion produces high cross-linking between the organic and inorganic moieties, resulting in thermally stable and chemically resistant thin polymer layer which provide unique advantages of this material for particular optical/photonic applications. By employing laser interference technique, gratings with periodicity between 400-1000 nm have been successfully fabricated. Application of those sub-micron periodicity of grating structure as active elements in optically pumped polymer laser system and Surface Plasmon Resonance (SPR based measurement system have been also explored. The experimental results therefore also show the potential applications of this hybrid polymer as a building material for micro/nano-photonics components.

  20. Sugar and inorganic anions content in mineral and spring water-based beverages.

    Science.gov (United States)

    Bilek, Maciej; Matłok, Natalia; Kaniuczak, Janina; Gorzelany, Józef

    2014-01-01

    Carbonated and non-carbonated beverages manufactured based on mineral and spring waters have been present at the Polish market shortly, and their production and sales are regularly growing. The products have become commonly known as flavoured waters. The aim of the work was to identify and assess the content of carbohydrates used for sweetening mineral and spring water-based beverages and to estimate a concentration of inorganic anions. The study was undertaken for 15 mineral and spring water-based beverages subject to an analysis contents of fructose, glucose and sucrose with the high-performance liquid chromatography method with ELSD detection) and chlorides, nitrates and sulphates contents using the ion chromatography method. A chromatographic analysis has confirmed the total contents of sugar declared by the manufacturers. The carbohydrates identified included fructose, glucose and sucrose (added sugar). Chlorides and sulphates were found in the content of all the analysed beverages while nitrates were not determined in only one of the 15 examined beverages. Mass consumption of mineral and spring water-based beverages should be considered as an important source of sugar and their excessive consumption may be disadvantageous for human health. A consumer should be informed by a manufacturer about a daily dose of sugar in a portion of a drink in per cents, and the easiest way to do it is to provide GDA marks on the label. Mineral and spring water-based beverages do not pose threats to consumer health in terms of their contents of inorganic ions: chlorides, nitrates and sulphates.

  1. Size-controlled synthesis and formation mechanism of manganese oxide OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids

    Science.gov (United States)

    Zhang, Qin; Cheng, Xiaodi; Qiu, Guohong; Liu, Fan; Feng, Xionghan

    2016-05-01

    This study presents a simplified approach for size-controlled synthesis of manganese oxide octahedral molecular sieve (OMS-2) nanowires using potassium permanganate (KMnO4) and different inorganic acids (HCl, HNO3, and H2SO4) under reflux conditions. The morphology and nanostructure of the synthesized products are characterized by X-ray diffraction, Ar adsorption, and electron microscopy analysis, in order to elucidate the controlling effects of acid concentration and type as well as the formation mechanism of OMS-2 nanowires. The concentration of inorganic acid is a crucial factor controlling the phase of the synthesized products. OMS-2 nanowires are obtained with HCl at the concentration ≥0.96 mol/L or with HNO3 and H2SO4 at the concentrations ≥0.72 mol/L. Differently, the type of inorganic acid effectively determines the particle size of OMS-2 nanowires. When the acid is changed from HCl to HNO3 and H2SO4 in the reflux system, the average length of OMS-2 declines significantly by 60-70% (1104-442 and 339 nm), with minor decreased in the average width (43-39 and 34 nm). The formation of OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids involves a two-step process, i.e., the initial formation of layered manganese oxides, and subsequent transformation to OMS-2 via a dissolution-recrystallization process under acidic conditions. The proposed reflux route provides an alternative approach for synthesizing OMS-2 nanowires as well as other porous nano-crystalline OMS materials.

  2. A lipidomic approach to understanding free fatty acid lipogenesis derived from dissolved inorganic carbon within cnidarian-dinoflagellate symbiosis.

    Directory of Open Access Journals (Sweden)

    Simon R Dunn

    Full Text Available The cnidarian-dinoflagellate symbiosis is arguably one of the most important within the marine environment in that it is integral to the formation of coral reefs. However, the regulatory processes that perpetuate this symbiosis remain unresolved. It is essential to understand these processes, if we are to elucidate the mechanisms that support growth and resource accumulation by coral host, and conversely, recently observed reduction and/or mortality of corals in response to rapid environmental change. This study specifically focused on one area of metabolic activity within the symbiosis, that of free fatty acid synthesis within both the dinoflagellate symbionts and cnidarian host. The main model system used was Aiptasia pulchella and Symbiodinium sp. in combination with aposymbiotic A. pulchella, the symbiotic coral Acropora millepora system and dinoflagellate culture. Fatty acids (FAs were selected because of their multiple essential roles inclusive of energy storage (resource accumulation, membrane structure fluidity and cell signaling. The study addressed free FA lipogenesis by using a new method of enriched stable isotopic ((13C incorporation from dissolved inorganic carbon (DI(13C combined with HPLC-MS. FAs derived from DI(13C aligned with a mixture of known lipogenesis pathways with the addition of some unusual FAs. After 120 hr, (13C-enriched FA synthesis rates were attributed to only a complex integration of both n-3 and n-6 lipogenesis pathways within the dinoflagellate symbionts. Furthermore, there was no detectible evidence of symbiont derived enriched isotope fatty acids, catabolized (13C derivatives or DI(13C being directly utilized, in host late n-6 pathway long-chain FA lipogenesis. These findings do not align with a popular mutualistic translocation model with respect to the use of translocated symbiont photoassimilates in host long-chain FA lipogenesis, which has important connotations for linking nutrient sources with

  3. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the arctic troposphere

    Directory of Open Access Journals (Sweden)

    J. W. Chi

    2015-06-01

    Full Text Available Sea salt aerosols (SSA are dominant particles in the arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes of physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO32, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased but the C, N, O, and S content increased. 12C14N− mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C14N− line scans further show that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces determines their hygroscopic and optical properties. These abundant SSA, whose reactive surfaces absorb inorganic and organic acidic gases in the arctic troposphere, need to be incorporated into atmospheric chemical models.

  4. Molten fatty acid based microemulsions.

    Science.gov (United States)

    Noirjean, Cecile; Testard, Fabienne; Dejugnat, Christophe; Jestin, Jacques; Carriere, David

    2016-06-21

    We show that ternary mixtures of water (polar phase), myristic acid (MA, apolar phase) and cetyltrimethylammonium bromide (CTAB, cationic surfactant) studied above the melting point of myristic acid allow the preparation of microemulsions without adding a salt or a co-surfactant. The combination of SANS, SAXS/WAXS, DSC, and phase diagram determination allows a complete characterization of the structures and interactions between components in the molten fatty acid based microemulsions. For the different structures characterized (microemulsion, lamellar or hexagonal phases), a similar thermal behaviour is observed for all ternary MA/CTAB/water monophasic samples and for binary MA/CTAB mixtures without water: crystalline myristic acid melts at 52 °C, and a thermal transition at 70 °C is assigned to the breaking of hydrogen bounds inside the mixed myristic acid/CTAB complex (being the surfactant film in the ternary system). Water determines the film curvature, hence the structures observed at high temperature, but does not influence the thermal behaviour of the ternary system. Myristic acid is partitioned in two "species" that behave independently: pure myristic acid and myristic acid associated with CTAB to form an equimolar complex that plays the role of the surfactant film. We therefore show that myristic acid plays the role of a solvent (oil) and a co-surfactant allowing the fine tuning of the structure of oil and water mixtures. This solvosurfactant behaviour of long chain fatty acid opens the way for new formulations with a complex structure without the addition of any extra compound.

  5. Phytochemical and Morphological Attributes of St. John’s Wort (Hypericum perforatum Affected by Organic and Inorganic Fertilizers; Humic Acid and Potassium Sulphate

    Directory of Open Access Journals (Sweden)

    Helaleh Sadat KABOLI FARSHCHI

    2014-09-01

    Full Text Available This experiment was designed to evaluate the effects of organic (liquid humic acid and inorganic (potassium sulphate on phytochemical and morphological attributes of St. John’s Wort (Hypericum perforatum. Thus, a research was conducted in a factorial experiment (3×3 based on completely randomized design with three replications. Treatments consisted of potassium sulphate (Kx at three concentrations (0, 60 and 100 Kg/h which were treated before flowering and humic acid (Hx at three concentrations (0, 20 and 40 L/h which were fertigated four times of 15-days intervals. Results showed that the plant stem height, number of flowering stems and number of flowers were significantly affected by simple effect of each fertilizers (p<0.01, while their interaction effect was not significant for the plants height. The highest contents of fresh and dry weight were achieved under the highest amounts of fertilizers (K100 and H40. The highest stem height, number of flowers and number of flowering stems also belonged to these treatments. Increment of applied fertilizers led to increase of obtained essential oils, so that application of these fertilizers simultaneously increased the essential oil content up to 6-fold. Regarding the antioxidant activity, applied fertilizers at their high levels showed significant effects on decrease of EC50, which means the increment of antioxidant activity of H. perforatum.

  6. Phytochemical and Morphological Attributes of St. John’s Wort (Hypericum perforatum Affected by Organic and Inorganic Fertilizers; Humic Acid and Potassium Sulphate

    Directory of Open Access Journals (Sweden)

    Helaleh Sadat KABOLI FARSHCHI

    2014-09-01

    Full Text Available This experiment was designed to evaluate the effects of organic (liquid humic acid and inorganic (potassium sulphate on phytochemical and morphological attributes of St. John’s Wort (Hypericum perforatum. Thus, a research was conducted in a factorial experiment (3×3 based on completely randomized design with three replications. Treatments consisted of potassium sulphate (Kx at three concentrations (0, 60 and 100 Kg/h which were treated before flowering and humic acid (Hx at three concentrations (0, 20 and 40 L/h which were fertigated four times of 15-days intervals. Results showed that the plant stem height, number of flowering stems and number of flowers were significantly affected by simple effect of each fertilizers (p<0.01, while their interaction effect was not significant for the plants height. The highest contents of fresh and dry weight were achieved under the highest amounts of fertilizers (K100 and H40. The highest stem height, number of flowers and number of flowering stems also belonged to these treatments. Increment of applied fertilizers led to increase of obtained essential oils, so that application of these fertilizers simultaneously increased the essential oil content up to 6-fold. Regarding the antioxidant activity, applied fertilizers at their high levels showed significant effects on decrease of EC50, which means the increment of antioxidant activity of H. perforatum.

  7. Transition metal modified and partially calcined inorganic-organic pillared clays for the adsorption of salicylic acid, clofibric acid, carbamazepine, and caffeine from water.

    Science.gov (United States)

    Cabrera-Lafaurie, Wilman A; Román, Félix R; Hernández-Maldonado, Arturo J

    2012-11-15

    Pharmaceutical and Personal Care Products (PPCPs) are considered emerging contaminants, and their efficient removal from water is going to be a challenging endeavor. Microporous adsorbent materials, including pillared clays, could offer a potential solution if tailored properly. Although pillared clays have been employed previously for the removal of organics, the effective removal of PPCPs will only be possible if their surface and textural properties are manipulated from the bottom-up. This work presents the use of modified inorganic-organic pillared clays (IOCs) for the adsorption of salicylic acid, clofibric acid, carbamazepine, and caffeine. The IOCs have been modified with Co(2+), Cu(2+), or Ni(2+) to induce complexation-like adsorbate-adsorbent interactions at ambient conditions, in an attempt to provide an efficient and yet reversible driving force in the sub-ppm concentration range. Furthermore, the IOCs were partially calcined to increase effective surface area by an order of magnitude while preserving some hydrophobicity. In general, the Ni(2+) IOCs exhibited the greatest interaction with salicylic and clofibric acids, respectively, while the Co(2+) adsorbents excelled at adsorbing caffeine at low concentrations. All of the metal-modified IOCs showed comparable adsorption capacities for the case of carbamazepine, probably due to the lack of availability of particular functional groups in this adsorbate.

  8. Chemical composition and acidity of size-fractionated inorganic aerosols of 2013-14 winter haze in Shanghai and associated health risk of toxic elements

    Science.gov (United States)

    Behera, Sailesh N.; Cheng, Jinping; Huang, Xian; Zhu, Qiongyu; Liu, Ping; Balasubramanian, Rajasekhar

    2015-12-01

    The severe winter haze episode that occurred in Shanghai from December 2013 to January 2014, characterized by elevated levels of particulate matter (PM), received considerable international attention because of its impacts on public health and disruption of day-to-day activities. To examine the characteristics of PM during this haze episode and to assess the chemistry behind formation of secondary inorganic aerosols (SIA) and associated health impacts due to exposure of toxic elements, we characterized eight water soluble inorganic (WSI) ions and twenty four trace elements in twelve size-fractionated PM (10 nm-9.9 μm). The average mass concentrations of coarse (1.8 μm < Dp < 9.9 μm), fine (Dp < 2.5 μm), ultrafine (0.01 μm < Dp < 0.10 μm) and nano (0.01 μm < Dp < 0.056 μm) particles during hazy days were 2.8, 5.2, 5.3 and 5.1 times higher than those during non-hazy days, respectively. The in-situ pH (pHIS), as predicted by the Aerosol Inorganic Model (AIM-IV) in all sizes of PM, was observed to be lower during hazy days (average of -0.64) than that during non-hazy days (average of -0.29); there was an increased acidity in haze aerosols. Based on the measured concentrations of particulate-bound toxic elements, health risk assessment was conducted, which revealed that the excess lifetime carcinogenic risk to individuals exposed to fine particles under haze events increased significantly (P < 0.05) to 69 ± 18 × 10-6 compared to non-hazy days (34 ± 10 × 10-6). The qualitative source attribution analysis suggested that the occurrence of haze could be due to a combination of increased emissions of PM from multiple anthropogenic sources followed by its accumulation under unfavourable meteorological conditions with lower mixing heights and less wind speeds and the formation of secondary aerosols.

  9. Laboratory projects using inquiry-based learning: an application to a practical inorganic course

    Directory of Open Access Journals (Sweden)

    José G. Carriazo

    2011-01-01

    Full Text Available This paper reports how laboratory projects (LP coupled to inquiry-based learning (IBL were implemented in a practical inorganic chemistry course. Several coordination compounds have been successfully synthesised by students according to the proposed topics by the LP-IBL junction, and the chemistry of a number of metals has been studied. Qualitative data were collected from written reports, oral presentations, lab-notebook reviews and personal discussions with the students through an experimental course with undergraduate second-year students at the Universidad Nacional de Colombia during the last 5 years. Positive skills production was observed by combining LP and IBL. Conceptual, practical, interpretational, constructional (questions, explanations, hypotheses, communicational, environmental and application abilities were revealed by the students throughout the experimental course.

  10. Hybrid Organometallic-Inorganic Nanomaterial: Acetyl Ferrocene Schiff base Immobilized on Silica Coated Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Masteri-Farahani

    2015-10-01

    Full Text Available In  this  work,  a  new  hybrid  organometallic-inorganic  hybrid nanomaterial was prepared by immobilization of acetyl ferrocene on the  surface  of magnetite  nanoparticles. Covalent  grafting of silica coated magnetite nanoparticles (SCMNPs with 3-aminopropyl triethoxysilane gave aminopropyl-modified magnetite nanoparticles (AmpSCMNPs. Then, Schiff base condensation  of AmpSCMNPs with acetyl  ferrocene resulted in the preparation of acferro-SCMNPs hybrid nanomaterial. Characterization of the prepared nanomaterial was performed with different physicochemical methods such as Fourier transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD, vibrating sample magnetometry (VSM, thermogravimetric analysis (TGA, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. VSM analysis showed superparamagnetic properties of the prepared nanomaterial and TEM and SEM analyses indicated the relatively spherical nanoparticles with 15 nm average size.

  11. Classification of thermal waters based on their inorganic fingerprint and hydrogeothermal modelling

    Directory of Open Access Journals (Sweden)

    I. Delgado-Outeiriño

    2011-05-01

    Full Text Available Hydrothermal features in Galicia have been used since ancient times for therapeutic purposes. A characterization of these thermal waters was carried out in order to understand their behaviour based on inorganic pattern and water-rock interaction mechanisms. In this way 15 thermal water samples were collected in the same hydrographical system. The results of the hydrogeochemistry analysis showed one main water family of bicarbonate type sodium waters, typical in the post-orogenic basins of Galicia. Principal component analysis (PCA and partial lest squared (PLS clustered the selected thermal waters in two groups, regarding to their chemical composition. This classification agreed with the results obtained by the use of geothermometers and the hydrogeochemical modelling. The first included thermal samples that could be in contact with surface waters and therefore, their residence time in the reservoir and their water-rock interaction would be less important than for the thermal waters of the second group.

  12. Teaching Effectiveness of Integrating Task-based Approach into Inorganic and Analytical Chemistry Course

    Institute of Scientific and Technical Information of China (English)

    Tianjiao; WEI; Yiru; WANG; Sen; HUANG

    2013-01-01

    From the perspective of students,the effectiveness of task-based approach in In-organic and Analytical Chemistry course were summarized.The strength and weak points of TBA were analyzed,and the specific suggestions for obtaining better effect were put forward.The result showed a satisfactory achievement and unexpected result in showing the effectiveness of this teaching model.Not only could this TBA enhance student’s overall knowledge of discipline but also cultivate students’ multi-dimensional competence:competence in searching literatures, communication and management,autonomous,co-operative and reflective learning,and competence in analyzing and problem-solving,as well as improving their language expression ability,and skills in using multi-media and internet technology into their academic course learning and research.The implication of this research on the classroom teaching practice will shed light on the future teaching reform of other courses in China.

  13. Self-assembled organic–inorganic magnetic hybrid adsorbent ferrite based on cyclodextrin nanoparticles

    Directory of Open Access Journals (Sweden)

    Ângelo M. L. Denadai

    2012-11-01

    Full Text Available Organic–inorganic magnetic hybrid materials (MHMs combine a nonmagnetic and a magnetic component by means of electrostatic interactions or covalent bonds, and notable features can be achieved. Herein, we describe an application of a self-assembled material based on ferrite associated with β-cyclodextrin (Fe-Ni/Zn/βCD at the nanoscale level. This MHM and pure ferrite (Fe-Ni/Zn were used as an adsorbent system for Cr3+ and Cr2O72− ions in aqueous solutions. Prior to the adsorption studies, both ferrites were characterized in order to determine the particle size distribution, morphology and available binding sites on the surface of the materials. Microscopy analysis demonstrated that both ferrites present two different size domains, at the micro- and nanoscale level, with the latter being able to self-assemble into larger particles. Fe-Ni/Zn/βCD presented smaller particles and a more homogeneous particle size distribution. Higher porosity for this MHM compared to Fe-Ni/Zn was observed by Brunauer–Emmett–Teller isotherms and positron-annihilation-lifetime spectroscopy. Based on the pKa values, potentiometric titrations demonstrated the presence of βCD in the inorganic matrix, indicating that the lamellar structures verified by transmission electronic microscopy can be associated with βCD assembled structures. Colloidal stability was inferred as a function of time at different pH values, indicating the sedimentation rate as a function of pH. Zeta potential measurements identified an amphoteric behavior for the Fe-Ni/Zn/βCD, suggesting its better capability to remove ions (cations and anions from aqueous solutions compared to that of Fe-Ni/Zn.

  14. Water-based synthesis and characterisation of a new Zr-MOF with a unique inorganic building unit.

    Science.gov (United States)

    Waitschat, S; Reinsch, H; Stock, N

    2016-10-20

    A new, microporous Zr-MOF was obtained using 2,5-pyrazinedicarboxylic acid (H2PzDC). The linker leads to the formation of a new 1D inorganic building unit composed of μ-OH bridged {Zr6O4(OH4)} clusters which are arranged in a hexagonal array and connected by the PzDC(2-) ions. The structure was determined from powder X-ray diffraction data.

  15. Sialic acid mediates the initial binding of positively charged inorganic particles to alveolar macrophage membranes.

    Science.gov (United States)

    Gallagher, J E; George, G; Brody, A R

    1987-06-01

    Pulmonary macrophages phagocytize inhaled particles and are postulated to play a role in the development of pulmonary interstitial fibrogenesis. The basic biologic mechanisms through which inhaled particles bind to macrophage membranes and subsequently are phagocytized remain unclear. We hypothesize that positively charged particles bind to negatively charged sialic acid (SA) residues on macrophage membranes. Alveolar Macrophages (AM) were collected by saline lavage from normal rat lungs. The cells adhered to plastic coverslips in serum-free phosphate buffered saline at 37 degrees C for 45 min and then were maintained at 4 degrees C for the binding experiments. Even distribution of SA groups on AM surfaces was demonstrated by scanning electron microscopy of wheat germ agglutinin (WGA) conjugated to 50 nm gold spheres. The WGA is a lectin that binds specifically to sialic acid, and pretreatment of AM with this lectin prevented the binding of positively charged carbonyl iron (C-Fe) spheres, aluminum (Al) spheres, and chrysotile asbestos fibers to AM surfaces. Limulus protein, another lectin with binding specificity for SA, similarly blocked the binding of positively charged spheres and chrysotile asbestos fibers but not negatively charged glass spheres or crocidolite asbestos fibers. Con A and ricin, lectins that bind to mannose and galactose residues, respectively, did not block particle binding. When both positively charged iron spheres and negatively charged glass spheres were prebound to AM membranes, subsequent treatment with WGA displaced only the positively charged spheres from macrophage surfaces. Con A and ricin had no effect on prebound positively charged C-Fe and Al spheres.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Accuracy of a method based on atomic absorption spectrometry to determine inorganic arsenic in food: Outcome of the collaborative trial IMEP-41.

    Science.gov (United States)

    Fiamegkos, I; Cordeiro, F; Robouch, P; Vélez, D; Devesa, V; Raber, G; Sloth, J J; Rasmussen, R R; Llorente-Mirandes, T; Lopez-Sanchez, J F; Rubio, R; Cubadda, F; D'Amato, M; Feldmann, J; Raab, A; Emteborg, H; de la Calle, M B

    2016-12-15

    A collaborative trial was conducted to determine the performance characteristics of an analytical method for the quantification of inorganic arsenic (iAs) in food. The method is based on (i) solubilisation of the protein matrix with concentrated hydrochloric acid to denature proteins and allow the release of all arsenic species into solution, and (ii) subsequent extraction of the inorganic arsenic present in the acid medium using chloroform followed by back-extraction to acidic medium. The final detection and quantification is done by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS). The seven test items used in this exercise were reference materials covering a broad range of matrices: mussels, cabbage, seaweed (hijiki), fish protein, rice, wheat, mushrooms, with concentrations ranging from 0.074 to 7.55mgkg(-1). The relative standard deviation for repeatability (RSDr) ranged from 4.1 to 10.3%, while the relative standard deviation for reproducibility (RSDR) ranged from 6.1 to 22.8%.

  17. Monomethylarsonous acid, but not inorganic arsenic, is a mitochondria-specific toxicant in vascular smooth muscle cells.

    Science.gov (United States)

    Pace, Clare; Banerjee, Tania Das; Welch, Barrett; Khalili, Roxana; Dagda, Ruben K; Angermann, Jeff

    2016-09-01

    Arsenic exposure has been implicated as a risk factor for cardiovascular diseases, metabolic disorders, and cancer, yet the role mitochondrial dysfunction plays in the cellular mechanisms of pathology is largely unknown. To investigate arsenic-induced mitochondrial dysfunction in vascular smooth muscle cells (VSMCs), we exposed rat aortic smooth muscle cells (A7r5) to inorganic arsenic (iAs(III)) and its metabolite monomethylarsonous acid (MMA(III)) and compared their effects on mitochondrial function and oxidative stress. Our results indicate that MMA(III) is significantly more toxic to mitochondria than iAs(III). Exposure of VSMCs to MMA(III), but not iAs(III), significantly decreased basal and maximal oxygen consumption rates and concomitantly increased compensatory extracellular acidification rates, a proxy for glycolysis. Treatment with MMA(III) significantly increased hydrogen peroxide and superoxide levels compared to iAs(III). Exposure to MMA(III) resulted in significant decreases in mitochondrial ATP, aberrant perinuclear clustering of mitochondria, and decreased mitochondrial content. Mechanistically, we observed that mitochondrial superoxide and hydrogen peroxide contribute to mitochondrial toxicity, as treatment of cells with MnTBAP (a mitochondrial superoxide dismutase mimetic) and catalase significantly reduced mitochondrial respiration deficits and cell death induced by both arsenic compounds. Overall, our data demonstrates that MMA(III) is a mitochondria-specific toxicant that elevates mitochondrial and non-mitochondrial sources of ROS. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Effects of crystalline structures and surface functional groups on the adsorption of haloacetic acids by inorganic materials.

    Science.gov (United States)

    Punyapalakul, Patiparn; Soonglerdsongpha, Suwat; Kanlayaprasit, Chutima; Ngamcharussrivichai, Chawalit; Khaodhiar, Sutha

    2009-11-15

    The effects of the crystalline structure and surface functional groups of porous inorganic materials on the adsorption of dichloroacetic acid (DCAA) were evaluated by using hexagonal mesoporous silicates (HMS), two surface functional group (3-aminopropyltriethoxy- and 3-mercaptopropyl-) modified HMSs, faujasite Y zeolite and activated alumina as adsorbents, and compared with powdered activated carbon (PAC). Selective adsorption of HAA(5) group was studied by comparing single and multiple-solute solution, including effect of common electrolytes in tap water. Adsorption capacities were significantly affected by the crystalline structure. Hydrogen bonding is suggested to be the most important attractive force. Decreasing the pH lower than the pH(zpc) increased the DCAA adsorption capacities of these adsorbents due to electrostatic interaction and hydrogen bonding caused by protonation of the hydronium ion. Adsorption capacities of HAA(5) on HMS did not relate to molecular structure of HAA(5). Common electrolytes did not affect the adsorption capacities and selectivity of HMS for HAA5, while they affected those of PAC.

  19. A magnetic organic inorganic composite: Synthesis and characterization of magnetic 5-aminosalicylic acid intercalated layered double hydroxides

    Science.gov (United States)

    Zhang, Hui; Zou, Kang; Sun, Hui; Duan, Xue

    2005-11-01

    A core-shell structured magnetic layered organic-inorganic material involving 5-aminosalicylic acid (5-ASA) intercalated Zn-Al layered double hydroxides (LDHs) and magnesium ferrite (MgFe 2O 4) is assembled by a coprecipitation method. The powder X-ray diffraction results show the coexistence of the clear but weak diffractions of MgFe 2O 4 and ordered relatively stronger reflections of 5-ASA intercalated LDHs. The TEM image of magnetic 5-ASA intercalated LDHs reveals that the LDHs layer covers the MgFe 2O 4 particles or their aggregates with particle size of 50-80 nm. The vibration sample magnetization (VSM) measurements exhibit the increase in saturation magnetization of magnetic 5-ASA intercalated LDHs samples with increasing amount of magnetic core. The XPS analyses account for a majority of Zn, Al and O atoms on the surface of magnetic particles. It is suggested that the magnetic core MgFe 2O 4 was coated with LDHs layer probably through Zn-O-Mg and Al-O-Mg linkages, and a core-shell structured model is tentatively proposed.

  20. Lophira中无机元素及氨基酸含量测定%Study on the contents of amino acids and inorganic elements in Lophira

    Institute of Scientific and Technical Information of China (English)

    陈晓岚; 卢建莎; 郭蕾; 龙跃; 赵清治; 刘聚胜; 魏莉莉

    2001-01-01

    To determine the contents of some inorganic elements and aminoacid in a natural plant-Lophira.Method: The contents of inorganic elements were determined by ICP and amino acids, by amino analyzer, respectively. Resultsand conclusion: The contents such as manganese, strontia and zino in this natural plant were high. Eighteen amino acids including seven human essential amino acids were detected. The high contents of some inorganic elements and hmnan essential elementsamino acids in Lophira perhaps could explain its folk diagnostic applications to a certain degree.%目的:测定天然植物Lophira中无机元素和氨基酸的含量。方法:用等离子体原子光谱,测定Lophira酸溶液中几种重要无机元素含量;用氨基酸自动分析仪测定氨基酸的含量。结果与结论:天然植物Lophira中具有较高的锌、锶和锰;含18种氨基酸,7种为必需氨基酸,氨基酸总含量为20.17mg/g。

  1. Organic free decavanadate based materials: Inorganic linkers to obtain extended structures

    Science.gov (United States)

    Yerra, Sridevi; Das, Samar K.

    2017-10-01

    Decavanadate based extended structures containing compounds [{Na3(H2O)8(μ2-H2O)6Ag2}HV10O28]n·6nH2O (1), [Co(H2O)6]n[{Na2(H2O)6(μ2-H2O)4Co(H2O)2}V10O28]n·4nH2O (2) and [Zn(H2O)6]n[{Na2(H2O)6(μ2-H2O)4Zn(H2O)2}V10O28]n·4nH2O (3) have been synthesized from respective aqueous solutions of sodium metavanadate. Compounds 1, 2 and 3 crystallize in a triclinic space group P-1. Compound 1 is a three-dimensional inorganic solid, whereas compounds 2 and 3 are isomorphous one-dimensional inorganic polymers. In the crystal structure of compound 1, the silver (I) cation is coordinated to the terminal oxygen as well as bridging oxygen atoms of decavanadate anion and it is also connected to bridging oxygen atom of trimeric sodium aqua cluster cation. In the crystals of compound 2, one hexa-hydrated cobalt cation is present as a counter cation and one ;di-sodium cobalt aqua-complex; cation is supported on the [V10O28]6- cluster anion by coordinate covalent bond. Compound 3 is isomorphous with compound 2, with Zn2+ present (in compound 3) in the place of Co2+ (in compound 2). Compounds 1, 2 and 3 are characterized by routine elemental analyses, FT-IR spectroscopy and unambiguously by single crystal X-ray crystallography. In the crystal structure of compound 1, an unusual silver dimer is observed.

  2. Inorganic arsenic in rice-based products for infants and young children.

    Science.gov (United States)

    Signes-Pastor, Antonio J; Carey, Manus; Meharg, Andrew A

    2016-01-15

    Inorganic arsenic (Asi) is a chronic, non-threshold carcinogen. Rice and rice-based products can be the major source of Asi for many subpopulations. Baby rice, rice cereals and rice crackers are widely used to feed infants and young children. The Asi concentration in rice-based products may pose a health risk for infants and young children. Asi concentration was determined in rice-based products produced in the European Union and risk assessment associated with the consumption of these products by infants and young children, and compared to an identical US FDA survey. There are currently no European Union or United States of America regulations applicable to Asi in food. However, this study suggests that the samples evaluated may introduce significant concentration of Asi into infants' and young children's diets. Thus, there is an urgent need for regulatory limits on Asi in food, especially for baby rice-based products. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Origins and Evolution of Inorganic-Based and MOF-Based Mixed-Matrix Membranes for Gas Separations

    Directory of Open Access Journals (Sweden)

    Edson V. Perez

    2016-09-01

    Full Text Available Gas separation for industrial, energy, and environmental applications requires low energy consumption and small footprint technology to minimize operating and capital costs for the processing of large volumes of gases. Among the separation methods currently being used, like distillation, amine scrubbing, and pressure and temperature swing adsorption, membrane-based gas separation has the potential to meet these demands. The key component, the membrane, must then be engineered to allow for high gas flux, high selectivity, and chemical and mechanical stability at the operating conditions of feed composition, pressure, and temperature. Among the new type of membranes studied that show promising results are the inorganic-based and the metal-organic framework-based mixed-matrix membranes (MOF-MMMs. A MOF is a unique material that offers the possibility of tuning the porosity of a membrane by introducing diffusional channels and forming a compatible interface with the polymer. This review details the origins of these membranes and their evolution since the first inorganic/polymer and MOF/polymer MMMs were reported in the open literature. The most significant advancements made in terms of materials, properties, and testing conditions are described in a chronological fashion.

  4. Use of stirred tanks for studying matrix effects caused by inorganic acids, easily ionized elements and organic solvents in inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, Eduardo [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain); Maestre, Salvador E. [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain); Todoli, Jose L. [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain)]. E-mail: jose.todoli@ua.es

    2006-03-15

    A stirred tank was used for the first time to elucidate the mechanism responsible for inductively coupled plasma atomic emission spectroscopy (ICP-AES) matrix effects caused by inorganic, acids and easily ionized elements (EIEs), as well as organic, ethanol and acetic acid, compounds. In order to gradually increase the matrix concentration, a matrix solution was introduced inside a stirred container (tank) initially filled with an aqueous multielement standard. PolyTetraFluoroEthylene (PTFE) tubing was used to deliver the resulting solution to the liquid sample introduction system. Matrix concentration ranged from 0 to 2 mol l{sup -1} in the case of inorganic acids (i.e., nitric, sulfuric, hydrochloric and a mixture of them), from 0 to about 2500 mg l{sup -1} for EIEs (i.e., sodium, calcium and mixtures of both) and from 0% to 15%, w/w for organic compounds. Up to 40-50 different solutions were prepared and measured in a period of time shorter than 6-7 min. This investigation was carried out in terms of emission intensity and tertiary aerosols characteristics. The experimental setup used in the present work allowed to thoroughly study the effect of matrix concentration on analytical signal. Generally speaking, the experiments concerning tertiary aerosol characterization revealed that, in the case of inorganic acids and EIEs, the mechanism responsible for changes in aerosol characteristics was the droplet fission. In contrast, for organic matrices it was found that the interference was caused by a change in both aerosol transport and plasma thermal characteristics. The extent of the interferences caused by organic as well as inorganic compounds was compared for a set of 14 emission lines through a wide range of matrix concentrations. With a stirred tank, it is possible to choose an efficient internal standard for any given matrix composition. The time required to complete this procedure was shorter than 7 min.

  5. Germania-based, sol-gel hybrid organic-inorganic coatings for capillary microextraction and gas chromatography.

    Science.gov (United States)

    Fang, Li; Kulkarni, Sameer; Alhooshani, Khalid; Malik, Abdul

    2007-12-15

    Germania-based, sol-gel hybrid organic-inorganic coatings were developed for capillary microextraction and gas chromatography (GC). Being an isostructural analogue of SiO2, GeO2 is compatible with the silica network. Because of this similarity, germania-based materials possess great potential for being used in the areas of chromatographic separation and sample preparation. These possibilities, however, remain practically unexplored. To our knowledge, this is the first instance that a germania-based hybrid sol-gel material is used as a sorbent in analytical sample preparation or chromatographic separation. Tetramethoxygermane was used as a precursor to create a sol-gel network via hydrolytic polycondensation reactions performed within a fused-silica capillary. The growing sol-gel germania network was simultaneously reacted with an organic ligand that contained sol-gel-active sites in its chemical structure. Three different sol-gel-active ligands were used: (a) hydroxy-terminated poly(dimethylsiloxane), (b) hydroxy-terminated poly(dimethyldiphenylsiloxane), and (c) 3-aminopropyltrimethoxysilane. Sol-gel germania-coated capillaries of desired polarity and extraction selectivity were prepared by using an appropriately selected sol-gel-active ligand in the sol solution. These capillaries were further used to extract trace concentrations of polycyclic aromatic hydrocarbons, aldehydes, ketones, alcohols, phenols, and free fatty acids from aqueous samples. The extracted solutes were further analyzed by GC-FID. The new germania-based coatings showed excellent stability under harsh operation conditions involving extreme pH values, high temperatures, and aggressive solvents. Our preliminary results also indicate that sol-gel hybrid germania coatings have the potential to offer great analytical performance as GC stationary phases.

  6. Plasma-based determination of inorganic contaminants in waste of electric and electronic equipment after microwave-induced combustion

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Paola A.; Diehl, Lisarb O.; Oliveira, Jussiane S.S.; Muller, Edson I. [Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima, 1000, 97105-900, Santa Maria (Brazil); Mesko, Marcia F. [Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Capão do Leão, 96900-010 Pelotas, RS (Brazil); Flores, Erico M.M., E-mail: ericommf@gmail.com [Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima, 1000, 97105-900, Santa Maria (Brazil)

    2015-03-01

    A systematic study was performed for the determination of inorganic contaminants in polymeric waste from electrical and electronic equipment (EEE) for achieving an efficient digestion to minimize interferences in determination using plasma-based techniques. The determination of As, Br, Cd, Co, Cr, Cu, Ni, Pb, Sb, and Zn by inductively coupled plasma mass spectrometry (ICP-MS) and also by inductively coupled plasma optical emission spectrometry (ICP OES) was carried out after digestion using microwave-induced combustion (MIC). Arsenic and Hg were determined by flow-injection chemical vapor generation inductively coupled plasma mass spectrometry (FI-CVG-ICP-MS). Dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) with ammonia was also used for Cr determination. The suitability of MIC for digestion of sample masses up to 400 mg was demonstrated using microcrystalline cellulose as aid for combustion of polymers from waste of EEEs that usually contain flame retardants that impair the combustion. The composition and concentration of acid solutions (HNO{sub 3} or HNO{sub 3} plus HCl) were evaluated for metals and metalloids and NH{sub 4}OH solutions were investigated for Br absorption. Accuracy was evaluated by comparison of results with those obtained using high pressure microwave-assisted wet digestion (HP-MAWD) and also by the analysis of certified reference material (CRM) of polymer (EC680k—low-density polyethylene). Bromine determination was only feasible using digestion by MIC once losses were observed when HP-MAWD was used. Lower limits of detection were obtained for all analytes using MIC (from 0.005 μg g{sup −1} for Co by ICP-MS up to 3.120 μg g{sup −1} for Sb by ICP OES) in comparison to HP-MAWD due to the higher sample mass that can be digested (400 mg) and the use of diluted absorbing solutions. The combination of HNO{sub 3} and HCl for digestion showed to be crucial for quantitative recovery of some elements, as Cr and Sb

  7. Nucleic acid based logical systems.

    Science.gov (United States)

    Han, Da; Kang, Huaizhi; Zhang, Tao; Wu, Cuichen; Zhou, Cuisong; You, Mingxu; Chen, Zhuo; Zhang, Xiaobing; Tan, Weihong

    2014-05-12

    Researchers increasingly visualize a significant role for artificial biochemical logical systems in biological engineering, much like digital logic circuits in electrical engineering. Those logical systems could be utilized as a type of servomechanism to control nanodevices in vitro, monitor chemical reactions in situ, or regulate gene expression in vivo. Nucleic acids (NA), as carriers of genetic information with well-regulated and predictable structures, are promising materials for the design and engineering of biochemical circuits. A number of logical devices based on nucleic acids (NA) have been designed to handle various processes for technological or biotechnological purposes. This article focuses on the most recent and important developments in NA-based logical devices and their evolution from in vitro, through cellular, even towards in vivo biological applications.

  8. Tin-based inorganic-organic hybrid polymers for high energy-density applications

    Science.gov (United States)

    Tran, Huan; Kuma, Arun; Pilania, Ghanshyam; Ramprasad, Rampi

    2014-03-01

    In one of our recent works[1], an organotin polymer was synthesized and suggested to be promising polymeric dielectric, simultaneously exhibiting a high dielectric constant ɛ and a high band gap Eg. Motivated by this result, we study a family of inorganic-organic hybrid polymers based on -(SnF2) x-(CH2) y - as the repeating structural unit (x = 2 , y = 4 , 8 , and 12). The stable structures of these hybrid polymers, predicted by the minima-hopping method, are studied by first-principles calculations at the level of density functional theory. Our calculations show that these polymers are wide band gap materials (up to 6.07 eV). In addition, their dielectric constants are between 4.6 and 7.8, well above that of polypropylene (ɛ ~= 2 . 2), the standard dielectric material for high energy-density capacitors. Therefore, we suggest that the hybrid polymers based on -(SnF2) x-(CH2) y - are promising candidates for high energy-density applications. Our work is supported by the Office of Naval Research through the Multidisciplinary University Research Initiative (MURI).

  9. Pyridinium ionic liquid-based liquid-solid extraction of inorganic and organic iodine from Laminaria.

    Science.gov (United States)

    Peng, Li-Qing; Yu, Wen-Yan; Xu, Jing-Jing; Cao, Jun

    2018-01-15

    A simple, green and effective extraction method, namely, pyridinium ionic liquid- (IL) based liquid-solid extraction (LSE), was first designed to extract the main inorganic and organic iodine compounds (I(-), monoiodo-tyrosine (MIT) and diiodo-tyrosine (DIT)). The optimal extraction conditions were as follows: ultrasonic intensity 100W, IL ([EPy]Br) concentration 200mM, extraction time 30min, liquid/solid ratio 10mL/g, and pH value 6.5. The morphologies of Laminaria were studied by scanning electron microscopy and transmission electron microscopy. The recovery values of I(-), MIT and DIT from Laminaria were in the range of 88% to 94%, and limits of detection were in the range of 59.40 to 283.6ng/g. The proposed method was applied to the extraction and determination of iodine compounds in three Laminaria. The results showed that IL-based LSE could be a promising method for rapid extraction of bioactive iodine from complex food matrices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Fluorometric method for inorganic pyrophosphatase activity detection and inhibitor screening based on click chemistry.

    Science.gov (United States)

    Xu, Kefeng; Chen, Zhonghui; Zhou, Ling; Zheng, Ou; Wu, Xiaoping; Guo, Longhua; Qiu, Bin; Lin, Zhenyu; Chen, Guonan

    2015-01-06

    A fluorometric method for pyrophosphatase (PPase) activity detection was developed based on click chemistry. Cu(II) can coordinate with pyrophosphate (PPi), the addition of pyrophosphatase (PPase) into the above system can destroy the coordinate compound because PPase catalyzes the hydrolysis of PPi into inorganic phosphate and produces free Cu(II), and free Cu(II) can be reduced by sodium ascorbate (SA) to form Cu(I), which in turn initiates the ligating reaction between nonfluorescent 3-azidocoumarins and terminal alkynes to produce a highly fluorescent triazole complex, based on which, a simple and sensitive turn on fluorometric method for PPase can be developed. The fluorescence intensity of the system has a linear relationship with the logarithm of the PPase concentration in the range of 0.5 and 10 mU with a detection limit down to 0.2 mU (S/N = 3). This method is cost-effective and convenient without any labels or complicated operations. The proposed system was applied to screen the potential PPase inhibitor with high efficiency. The proposed method can be applied to diagnosis of PPase-related diseases.

  11. Novel solar energy harvesting options based on solution-processable inorganic/organic hybrid materials

    Science.gov (United States)

    Stingelin, Natalie

    2015-03-01

    The growing demand for energy and increasing concerns for the effect of the excessive abuse of fossil fuels on the environment force the scientific world to search for alternative, clean and safe energy sources. Finding ways to harvest solar energy is thereby one of the most appealing options. Here, we present a novel approach that exploits the versatile properties of recently developed, photoactive organic/inorganic hybrid fluids based on titanium oxide hydrates and polyalcohols for the production of versatile solar fuels. We will show that such systems can absorb light in the UV-near visible wave-length range. The sunlight's energy is then converted into chemical energy in the form of reduced titanium species, which can be re-oxidised by oxygen when required. Therefore, the absorbed energy is stored as long as oxygen is excluded by the hybrid system. We, furthermore, demonstrate that once discharged, the fluid can be activated again by exposing it to sunlight and recycled - a property that is important technologically. The same hybrids can also be exploited to produce structures that permit efficient management of light. We will illustrate the potential of this class of materials based on some of our recent approaches to fabricate light-scattering and light in-coupling structures, and discuss future opportunities they open up.

  12. Coatings for mechanical and chemical protection based on organic-inorganic sol-gel nanocomposites

    OpenAIRE

    Schmidt, Helmut K.; Kasemann, Reiner

    1994-01-01

    The sol-gel process opens the possibility of combining inorganic and organic units on a molecular or nanosized level. The flexible chemical approach of tailoring inorganic structures as well as organic polymeric structures in combination with the new concept of incorporation of nanoscaled metal oxide particles (in general boehmite) opens the possibility of achieving new multifunctional materials like extremely high scratch resistance, antisoiling properties, antifogging properties and corrosi...

  13. Coatings for mechanical and chemical protection based on organic-inorganic sol-gel nanocomposites

    OpenAIRE

    Schmidt, Helmut K.; Kasemann, Reiner

    1993-01-01

    The sol-gel process opens the possibility of combining inorganic and organic units on a molecular or nanosized level. The flexible chemical approach of tailoring inorganic structures as well as organic polymeric structures in combination with the new concept of incorporation of nanoscaled metal oxide particles (in general boehmite) opens the possibility of achieving new multifunctional materials like extremely high scratch resistance, antisoiling properties, antifogging properties and corrosi...

  14. Organic-inorganic Polymer Nano-hybrids Based on Sol-gel Reaction

    Institute of Scientific and Technical Information of China (English)

    Yoshiki; Chujo

    2007-01-01

    1 Results Nano-ordered composite materials consisting of organic polymers and inorganic materials have been attracting attention for the purpose of the creation of high-performance or high-functional polymeric materials. Especially,the word of "polymer hybrid" claims the blends of organic and inorganic components at nano-level dispersion. By using this idea,an enhancement of mechanical strength of organic polymers with silica particles is possible.High transparency of this material is another important ...

  15. Synthesis and characterization of boric acid mediated metal-organic frameworks based on trimesic acid and terephthalic acid

    Science.gov (United States)

    Ozer, Demet; Köse, Dursun A.; Şahin, Onur; Oztas, Nursen Altuntas

    2017-08-01

    The new metal-organic framework materials based on boric acid reported herein. Sodium and boron containing metal-organic frameworks were synthesized by one-pot self-assembly reaction in the presence of trimesic acid and terephthalic acid in water/ethanol solution. Boric acid is a relatively cheap boron source and boric acid mediated metal-organic framework prepared mild conditions compared to the other boron source based metal-organic framework. The synthesized compounds were characterized by FT-IR, p-XRD, TGA/DTA, elemental analysis, 13C-MAS NMR, 11B-NMR and single crystal measurements. The molecular formulas of compounds were estimated as C18H33B2Na5O28 and C8H24B2Na2O17 according to the structural analysis. The obtained complexes were thermally stable. Surface properties of inorganic polymer complexes were investigated by BET analyses and hydrogen storage properties of compound were also calculated.

  16. All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance.

    Science.gov (United States)

    Zhou, Lin; Yu, Kai; Yang, Fan; Zheng, Jun; Zuo, Yuhua; Li, Chuanbo; Cheng, Buwen; Wang, Qiming

    2017-02-14

    High-performance all-inorganic perovskite-based metal/semiconductor/metal (MSM) photodetectors with a bilayer composite film of mesoporous TiO2 and CsPbBr3 quantum dots as a photosensitizer were prepared. The photodetectors demonstrated significantly improved on/off ratios of nearly three orders of magnitude compared to those of pure bromine-based perovskite nanocrystal photodetectors with an MSM structure.

  17. Roxarsone, Inorganic Arsenic, and Other Arsenic Species in Chicken: A U.S.-Based Market Basket Sample

    OpenAIRE

    Nachman, Keeve E.; Baron, Patrick A; Raber, Georg; Francesconi, Kevin A.; Navas-Acien, Ana; Love, David C.

    2013-01-01

    Background: Inorganic arsenic (iAs) causes cancer and possibly other adverse health outcomes. Arsenic-based drugs are permitted in poultry production; however, the contribution of chicken consumption to iAs intake is unknown. Objectives: We sought to characterize the arsenic species profile in chicken meat and estimate bladder and lung cancer risk associated with consuming chicken produced with arsenic-based drugs. Methods: Conventional, antibiotic-free, and organic chicken samples were colle...

  18. Hybrid Perovskite Light-Emitting Diodes Based on Perovskite Nanocrystals with Organic-Inorganic Mixed Cations.

    Science.gov (United States)

    Zhang, Xiaoli; Liu, He; Wang, Weigao; Zhang, Jinbao; Xu, Bing; Karen, Ke Lin; Zheng, Yuanjin; Liu, Sheng; Chen, Shuming; Wang, Kai; Sun, Xiao Wei

    2017-03-07

    Organic-inorganic hybrid perovskite materials with mixed cations have demonstrated tremendous advances in photovoltaics recently, by showing a significant enhancement of power conversion efficiency and improved perovskite stability. Inspired by this development, this study presents the facile synthesis of mixed-cation perovskite nanocrystals based on FA(1-x) Csx PbBr3 (FA = CH(NH2 )2 ). By detailed characterization of their morphological, optical, and physicochemical properties, it is found that the emission property of the perovskite, FA(1-x) Csx PbBr3 , is significantly dependent on the substitution content of the Cs cations in the perovskite composition. These mixed-cation perovskites are employed as light emitters in light-emitting diodes (LEDs). With an optimized composition of FA0.8 Cs0.2 PbBr3 , the LEDs exhibit encouraging performance with a highest reported luminance of 55 005 cd m(-2) and a current efficiency of 10.09 cd A(-1) . This work provides important instructions on the future compositional optimization of mixed-cation perovskite for obtaining high-performance LEDs. The authors believe this work is a new milestone in the development of bright and efficient perovskite LEDs.

  19. Inorganic/organic hybrid microcapsules: melamine formaldehyde-coated Laponite-based Pickering emulsions.

    Science.gov (United States)

    Williams, Mark; Olland, Birte; Armes, Steven P; Verstraete, Pierre; Smets, Johan

    2015-12-15

    A facile synthesis route to novel inorganic/organic hybrid microcapsules is reported. Laponite nanoparticles are surface-modified via electrostatic adsorption of Magnafloc, an amine-based polyelectrolyte allowing the formation of stable oil-in-water Pickering emulsions. Hybrid microcapsules can be subsequently prepared by coating these Pickering emulsion precursors with dense melamine formaldehyde (MF) shells. Employing a water-soluble polymeric stabiliser, poly(acrylamide-co-sodium acrylate) leads to stable hybrid microcapsules that survive an alcohol challenge and the ultrahigh vacuum conditions required for SEM studies. Unfortunately, the presence of this copolymer also leads to secondary nucleation of excess MF latex particles in the aqueous continuous phase. However, since the Magnafloc is utilised at submonolayer coverage when coating the Laponite particles, the nascent cationic MF nanoparticles can deposit onto anionic surface sites on the Laponite, which removes the requirement for the poly(acrylamide-co-sodium acrylate) component. Following this electrostatic adsorption, the secondary amine groups on the Magnafloc chains can react with the MF, leading to highly robust cross-linked MF shells. The absence of the copolymer leads to minimal secondary nucleation of MF latex particles, ensuring more efficient deposition at the surface of the emulsion droplets. However, the MF shells appear to become more brittle, as SEM studies reveal cracking on addition of ethanol.

  20. Enhanced power efficiency of ZnO based organic/inorganic solar cells by surface modification

    Science.gov (United States)

    Tang, Shuangshuang; Tang, Ning; Meng, Xiuqing; Huang, Shihua; Hao, Yafei

    2016-09-01

    We present series of strategies to enhance efficiency of ZnO nanorods based organic/inorganic solar cells with spin-coated P3HT:PCBM blend as active layer. The performance of the as-fabricated devices is improved by controlling the size of ZnO nanorods, annealing temperature and time of active layer, surface modification of ZnO with PSBTBT. Optimized device of ITO/ZnO nanorod/P3HT:PCBM/Ag device with PSBTBT surface modification and air exposure reaches an efficiency of 2.02% with a short-circuit current density, open-circuit voltage and fill factor of 13.23 mA cm-2, 0.547 V and 28%, respectively, under AM 1.5 irradiation of 100 mW m-2, the increase in efficiency is 7-fold of the PSBTBT surface modified ITO/ZnO nanorods/P3HT:PCBM/Ag device compared with the unmodified one, which is own to the increased interface contact, expanded light absorption, tailored band alignment attributed to PSBTBT. We found exposure to air and surface modification is crucial to improve the device performance, and we discussed the mechanisms that affect the performance of the devices in detail.

  1. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency

    Science.gov (United States)

    Qin, Peng; Tanaka, Soichiro; Ito, Seigo; Tetreault, Nicolas; Manabe, Kyohei; Nishino, Hitoshi; Nazeeruddin, Mohammad Khaja; Grätzel, Michael

    2014-05-01

    Organo-lead halide perovskites have attracted much attention for solar cell applications due to their unique optical and electrical properties. With either low-temperature solution processing or vacuum evaporation, the overall conversion efficiencies of perovskite solar cells with organic hole-transporting material were quickly improved to over 15% during the last 2 years. However, the organic hole-transporting materials used are normally quite expensive due to complicated synthetic procedure or high-purity requirement. Here, we demonstrate the application of an effective and cheap inorganic p-type hole-transporting material, copper thiocyanate, on lead halide perovskite-based devices. With low-temperature solution-process deposition method, a power conversion efficiency of 12.4% was achieved under full sun illumination. This work represents a well-defined cell configuration with optimized perovskite morphology by two times of lead iodide deposition, and opens the door for integration of a class of abundant and inexpensive material for photovoltaic application.

  2. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency

    KAUST Repository

    Qin, Peng

    2014-05-12

    Organo-lead halide perovskites have attracted much attention for solar cell applications due to their unique optical and electrical properties. With either low-temperature solution processing or vacuum evaporation, the overall conversion efficiencies of perovskite solar cells with organic hole-transporting material were quickly improved to over 15% during the last 2 years. However, the organic hole-transporting materials used are normally quite expensive due to complicated synthetic procedure or high-purity requirement. Here, we demonstrate the application of an effective and cheap inorganic p-type hole-transporting material, copper thiocyanate, on lead halide perovskite-based devices. With low-temperature solution-process deposition method, a power conversion efficiency of 12.4% was achieved under full sun illumination. This work represents a well-defined cell configuration with optimized perovskite morphology by two times of lead iodide deposition, and opens the door for integration of a class of abundant and inexpensive material for photovoltaic application. © 2014 Macmillan Publishers Limited.

  3. Catalysis-reduction strategy for sensing inorganic and organic mercury based on gold nanoparticles.

    Science.gov (United States)

    Li, Xiaokun; Zhang, Youlin; Chang, Yulei; Xue, Bin; Kong, Xianggui; Chen, Wei

    2017-06-15

    In view of the high biotoxicity and trace concentration of mercury (Hg) in environmental water, developing simple, ultra-sensitive and highly selective method capable of simultaneous determination of various Hg species has attracted wide attention. Here, we present a novel catalysis-reduction strategy for sensing inorganic and organic mercury in aqueous solution through the cooperative effect of AuNP-catalyzed properties and the formation of gold amalgam. For the first time, a new AuNP-catalyzed-organic reaction has been discovered and directly used for sensing Hg(2+), Hg2(2+) and CH3Hg(+) according to the change of the amount of the catalytic product induced by the deposition of Hg atoms on the surface of AuNPs. The detection limit of Hg species is 5.0pM (1 ppt), which is 3 orders of magnitude lower than the U.S. Environmental Protection Agency (EPA) limit value of Hg for drinking water (2 ppb). The high selectivity can be exceptionally achieved by the specific formation of gold amalgam. Moreover, the application for detecting tap water samples further demonstrates that this AuNP-based assay can be an excellent method used for sensing mercury at very low content in the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Effects of Organic and Inorganic Nitrogen on the Growth and Production of Domoic Acid by Pseudo-nitzschia multiseries and P. australis (Bacillariophyceae) in Culture

    Science.gov (United States)

    Martin-Jézéquel, Véronique; Calu, Guillaume; Candela, Leo; Amzil, Zouher; Jauffrais, Thierry; Séchet, Véronique; Weigel, Pierre

    2015-01-01

    Over the last century, human activities have altered the global nitrogen cycle, and anthropogenic inputs of both inorganic and organic nitrogen species have increased around the world, causing significant changes to the functioning of aquatic ecosystems. The increasing frequency of Pseudo-nitzschia spp. in estuarine and coastal waters reinforces the need to understand better the environmental control of its growth and domoic acid (DA) production. Here, we document Pseudo-nitzschia spp. growth and toxicity on a large set of inorganic and organic nitrogen (nitrate, ammonium, urea, glutamate, glutamine, arginine and taurine). Our study focused on two species isolated from European coastal waters: P. multiseries CCL70 and P. australis PNC1. The nitrogen sources induced broad differences between the two species with respect to growth rate, biomass and cellular DA, but no specific variation could be attributed to any of the inorganic or organic nitrogen substrates. Enrichment with ammonium resulted in an enhanced growth rate and cell yield, whereas glutamate did not support the growth of P. multiseries. Arginine, glutamine and taurine enabled good growth of P. australis, but without toxin production. The highest DA content was produced when P. multiseries grew with urea and P. australis grew with glutamate. For both species, growth rate was not correlated with DA content but more toxin was produced when the nitrogen source could not sustain a high biomass. A significant negative correlation was found between cell biomass and DA content in P. australis. This study shows that Pseudo-nitzschia can readily utilize organic nitrogen in the form of amino acids, and confirms that both inorganic and organic nitrogen affect growth and DA production. Our results contribute to our understanding of the ecophysiology of Pseudo-nitzschia spp. and may help to predict toxic events in the natural environment. PMID:26703627

  5. Effects of Organic and Inorganic Nitrogen on the Growth and Production of Domoic Acid by Pseudo-nitzschia multiseries and P. australis (Bacillariophyceae in Culture

    Directory of Open Access Journals (Sweden)

    Véronique Martin-Jézéquel

    2015-11-01

    Full Text Available Over the last century, human activities have altered the global nitrogen cycle, and anthropogenic inputs of both inorganic and organic nitrogen species have increased around the world, causing significant changes to the functioning of aquatic ecosystems. The increasing frequency of Pseudo-nitzschia spp. in estuarine and coastal waters reinforces the need to understand better the environmental control of its growth and domoic acid (DA production. Here, we document Pseudo-nitzschia spp. growth and toxicity on a large set of inorganic and organic nitrogen (nitrate, ammonium, urea, glutamate, glutamine, arginine and taurine. Our study focused on two species isolated from European coastal waters: P. multiseries CCL70 and P. australis PNC1. The nitrogen sources induced broad differences between the two species with respect to growth rate, biomass and cellular DA, but no specific variation could be attributed to any of the inorganic or organic nitrogen substrates. Enrichment with ammonium resulted in an enhanced growth rate and cell yield, whereas glutamate did not support the growth of P. multiseries. Arginine, glutamine and taurine enabled good growth of P. australis, but without toxin production. The highest DA content was produced when P. multiseries grew with urea and P. australis grew with glutamate. For both species, growth rate was not correlated with DA content but more toxin was produced when the nitrogen source could not sustain a high biomass. A significant negative correlation was found between cell biomass and DA content in P. australis. This study shows that Pseudo-nitzschia can readily utilize organic nitrogen in the form of amino acids, and confirms that both inorganic and organic nitrogen affect growth and DA production. Our results contribute to our understanding of the ecophysiology of Pseudo-nitzschia spp. and may help to predict toxic events in the natural environment.

  6. Preparation of geopolymer-based inorganic membrane for removing Ni(2+) from wastewater.

    Science.gov (United States)

    Ge, Yuanyuan; Yuan, Yuan; Wang, Kaituo; He, Yan; Cui, Xuemin

    2015-12-15

    A type of novel free-sintering and self-supporting inorganic membrane for wastewater treatment was fabricated in this study. This inorganic membrane was synthesised using metakaolin and sodium silicate solutions moulded according to a designed molar ratio (SiO2/Al2O3=2.96, Na2O/Al2O3=0.8 and H2O/Na2O=19) which formed a homogenous structure and had a relative concentration pore size distribution, via scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) analyses. In this work, the Ni(2+) removal effect of geopolymer inorganic membrane was studied under different pH value, initial concentration of Ni(2+) solutions and initial operation temperature. Results showed that geopolymer inorganic membrane efficiently removes Ni(2+) from wastewater because of the combined actions of the adsorption and rejection of this membrane on Ni(2+) during membrane separation. Therefore, geopolymer inorganic membrane may have positive potential applications in removing Ni(2+) or other heavy metal ions from aqueous industrial wastewater.

  7. Two new inorganic-organic hybrid materials based on inorganic cluster, [X2Mo18O62]6− (X=P, As)

    Indian Academy of Sciences (India)

    Fatma Hmida; Meriem Ayed; Brahim Ayed; Amor Haddad

    2015-09-01

    Two new inorganic-organic hybrid materials based on heteropolyoxometalates, (C4H10N)6 (P2 Mo18O62).4H2O I, and (C4H10N)6 (As2Mo18O62).4H2O II, where C4H10N is protonated pyrrolidine have been synthesized and structurally characterized by physic-chemical methods. Single-crystal X-ray diffraction method, infrared, ultraviolet spectroscopy, Thermogravimetricanalysis andcyclic voltammetry measurements of the title hybrid materials indicate that there are hydrogen bond interaction between O atoms of the hetero-polyoxometalates and water molecules as well as the N and O atoms of the organic compound. The molecular structures of synthesized hybrid materials contain discrete entities of pyrrolidinumion and water molecules surround every [X2Mo18O62]6− anion over the extended crystalline network that the [X2Mo18O62]6− anion retains its ``Dawson structure". Crystal data: I monoclinic, space group P21/a, a = 13,453(1) Å, b = 24,046 (1) Å, c = 24,119(1) = 97, 99(1)°, V = 7726,30(5) Å3 and Z = 4; II monoclinic, space group P21/a, a = 13.4900(1) Å, 24.0900(1) Å, 24.2740(1) Å, = 98.320(1)°, V = 7805.40(7) Å3 and Z = 4.

  8. The Acid-Base Titration of a Very Weak Acid: Boric Acid

    Science.gov (United States)

    Celeste, M.; Azevedo, C.; Cavaleiro, Ana M. V.

    2012-01-01

    A laboratory experiment based on the titration of boric acid with strong base in the presence of d-mannitol is described. Boric acid is a very weak acid and direct titration with NaOH is not possible. An auxiliary reagent that contributes to the release of protons in a known stoichiometry facilitates the acid-base titration. Students obtain the…

  9. The Acid-Base Titration of a Very Weak Acid: Boric Acid

    Science.gov (United States)

    Celeste, M.; Azevedo, C.; Cavaleiro, Ana M. V.

    2012-01-01

    A laboratory experiment based on the titration of boric acid with strong base in the presence of d-mannitol is described. Boric acid is a very weak acid and direct titration with NaOH is not possible. An auxiliary reagent that contributes to the release of protons in a known stoichiometry facilitates the acid-base titration. Students obtain the…

  10. Preparation of molecular imprinted microspheres based on inorganic-organic co-functional monomer for miniaturized solid-phase extraction of fluoroquinolones in milk.

    Science.gov (United States)

    Wang, Hui; Wang, Ruiling; Han, Yehong

    2014-02-15

    An inorganic-organic co-functional monomer, methacrylic acid-vinyltriethoxysilan (MAA-VTES) was designed for the synthesis of molecularly imprinted microspheres (MIMs). By virtue of the aqueous suspension polymerization and dummy template (pazufloxacin), the obtained MAA-VTES based MIMs exhibited good recognition and selectivity to fluoroquinolones (FQs), and were successfully applied as selective sorbents of a miniaturized home-made solid phase extraction device for the determination of ofloxacin (OFL), lomefloxacin (LOM) and ciprofloxacin (CIP) in milk samples. Under the optimum conditions of the miniaturized molecularly imprinted solid phase extraction (mini-MISPE) coupled with liquid chromatography-ultraviolet detector (LC-UV), good linearities were obtained for three FQs in a range of 0.2-20.0μgmL(-1) and the average recoveries at three spiked levels were ranged from 87.2% to 106.1% with the relative standard deviation (RSD) less than 5.4%. The presented co-functional monomer based mini-MISPE-LC-UV protocol introduced the rigidity and flexibility of inorganic silicon materials, exhibited excellent extraction performance towards targets, and could be potentially applied to the determination of FQs in milk samples.

  11. Establishing the interfacial nano-structure and elemental composition of homeopathic medicines based on inorganic salts: a scientific approach.

    Science.gov (United States)

    Temgire, Mayur Kiran; Suresh, Akkihebbal Krishnamurthy; Kane, Shantaram Govind; Bellare, Jayesh Ramesh

    2016-05-01

    Extremely dilute systems arise in homeopathy, which uses dilution factors 10(60), 10(400) and also higher. These amounts to potencies of 30c, 200c or more, those are far beyond Avogadro's number. There is extreme skepticism among scientists about the possibility of presence of starting materials due to these high dilutions. This has led modern scientists to believe homeopathy may be at its best a placebo effect. However, our recent studies on 30c and 200c metal based homeopathic medicines clearly revealed the presence of nanoparticles of starting metals, which were found to be retained due to the manufacturing processes involved, as published earlier.(9,10) Here, we use HR-TEM and STEM techniques to study medicines arising from inorganic salts as starting materials. We show that the inorganic starting materials are present as nano-scale particles in the medicines even at 1 M potency (having a large dilution factor of 10(2000)). Thus this study has extended our physicochemical studies of metal based medicines to inorganic based medicines, and also to higher dilution. Further, we show that the particles develop a coat of silica: these particles were seen embedded in a meso-microporous silicate layer through interfacial encapsulation. Similar silicate coatings were also seen in metal based medicines. Thus, metal and inorganic salt based homeopathic medicines retain the starting material as nanoparticles encapsulated within a silicate coating. On the basis of these studies, we propose a universal microstructural hypothesis that all types of homeopathic medicines consist of silicate coated nano-structures dispersed in the solvent. Copyright © 2015 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  12. Toward design of multiple-property inorganic-organic hybrid compounds based on face-sharing octahedral iodoplumbate chains.

    Science.gov (United States)

    Zhao, Shun-Ping; Ren, Xiao-Ming

    2011-09-07

    In this review article, we have illustrated the strategies developed to achieve inorganic-organic hybrid compounds with technologically important physical properties. A series of target inorganic-organic hybrid compounds have been accomplished by incorporating the functional organic components (with a large hyperpolarizability and luminophore Schiff base cation) into the highly polarizable one-dimensional (1-D) iodoplumbate chain network. The effect of substituent features in the phenyl ring of the Schiff base cation on its molecular conformation as well as the crystal packing structure of the hybrid compound will be discussed and the multiple physical properties (ferroelectricity, NLO and multiple band emission) will also be mentioned. This journal is © The Royal Society of Chemistry 2011

  13. Preparation and Conducting Behavior of Amphibious Organic/Inorganic Hybrid Proton Exchange Membranes Based on Benzyltetrazole

    Institute of Scientific and Technical Information of China (English)

    QIAO Li-gen; SHI Wen-fang

    2012-01-01

    A series of novel amphibious organic/inorganic hybrid proton exchange membranes with H3PO4 doped which could be used under both wet and dry conditions was prepared through a sol-gel process based on acrylated triethoxysilane(A-TES)and benzyltetrazole-modified triethoxysilane(BT-TES).The dual-curing approach including UV-curing and thermal curing was used to obtain the crosslinked membranes.Polyethylene glycol(400)diacrylate(PEGDA)was used as an oligomer to form the polymeric matrix.The molecular structures of precursors were characterized by 1H,13C and 29Si NMR spectra.The thermogravimetric analysis(TGA)results show that the membranes exhibit acceptable thermal stability for their application at above 200 ℃.The differential scanning calorimeter(DSC)determination indicates that the crosslinked membranes with the mass ratios of below 1.6 of BT-TES to A-TES and the same mass of H3PO4 doped as that of A-TES possess the-Tgs,and the lowest Tg(-28.9 ℃)exists for the membrane with double mass of H3PO4 doped as well.The high proton conductivity in a range of 9.4-17.3 mS/cm with the corresponding water uptake of 19.1%-32.8% of the membranes was detected at 90 ℃ under wet conditions.Meanwhile,the proton conductivity in a dry environment for the membrane with a mass ratio of 2.4 of BT-TES to A-TES and double H3PO4 loading increases from 4.89× 10-2 mS/cm at 30 ℃ to 25.7 mS/cm at 140 ℃.The excellent proton transport ability under both hydrous and anhydrous conditions demonstrates a potential application in the polymer electrolyte membrane fuel cells.

  14. Rapid Field Measurement of Dissolved Inorganic Carbon Based on CO{sub 2} Analysis

    Energy Technology Data Exchange (ETDEWEB)

    VESPER, DJ, Edenborn, Harry

    2012-01-01

    Dissolved inorganic carbon (DIC) is commonly measured in water and is an important parameter for understanding carbonate equilibrium, carbon cycling, and water-rock interaction. While accurate measurements can be made in the analytical laboratory, we have developed a rapid, portable technique that can be used to obtain accurate and precise data in the field as well.

  15. Leaching of dissolved organic and inorganic nitrogen from legume-based grasslands

    DEFF Research Database (Denmark)

    Kusliene, Gedrime; Eriksen, Jørgen; Rasmussen, Jim

    2015-01-01

    Leaching of dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) is a considerable loss pathway in grassland soils. We investigated the white clover (Trifolium repens) contribution to N transport and temporal N dynamics under a pure stand of white clover and white clover...

  16. Preparation and Performance of Inorganic Heat Insulation Panel Based on Sepiolite Nanofibers

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2014-01-01

    Full Text Available High efficiency and low cost thermal insulation energy saving panel materials containing sepiolite nanofibers were developed by means of the synergistic action of inorganic adhesive, curing agent, and hydrogen peroxide. The water soluble sodium silicate was used as inorganic adhesive, and the sodium fluorosilicate was chosen as curing agent. Moreover, appropriate amount of hydrogen peroxide was added in order to decrease the bulk density and improve the heat insulation performance of panel materials. The results showed that the synergistic action of inorganic adhesive, curing agent, and hydrogen peroxide could make thermal insulation energy saving panel materials have low bulk density and high mechanical performance, and the optimal process was as follows: 120°C of drying temperature, 1.6% of sodium silicate as inorganic adhesive, 12% of sodium fluorosilicate as curing agent in sodium silicate, and 2.5% of hydrogen peroxide. The thermal insulation energy saving panel materials as prepared could arrest heat transmission and resist external force effectively.

  17. Intercalation compounds involving inorganic layered structures

    Directory of Open Access Journals (Sweden)

    CONSTANTINO VERA R. L.

    2000-01-01

    Full Text Available Two-dimensional inorganic networks can shown intracrystalline reactivity, i.e., simple ions, large species as Keggin ions, organic species, coordination compounds or organometallics can be incorporated in the interlayer region. The host-guest interaction usually causes changes in their chemical, catalytic, electronic and optical properties. The isolation of materials with interesting properties and making use of soft chemistry routes have given rise the possibility of industrial and technological applications of these compounds. We have been using several synthetic approaches to intercalate porphyrins and phthalocyanines into inorganic materials: smectite clays, layered double hydroxides and layered niobates. The isolated materials have been characterized by elemental and thermal analysis, X-ray diffraction, surface area measurements, scanning electronic microscopy, electronic and resonance Raman spectroscopies and EPR. The degree of layer stacking and the charge density of the matrices as well their acid-base nature were considered in our studies on the interaction between the macrocycles and inorganic hosts.

  18. Integrated removal of inorganic contaminants from acid mine drainage using BOF slag, lime, soda ash and reverse osmosis (RO): Implication for the production of drinking water

    CSIR Research Space (South Africa)

    Masindi, Vhahangwele

    2017-06-01

    Full Text Available , Finland IMWA 2017Mine Water and Circular Economy Wolkersdorfer C, Sartz L, Sillanpää M, Häkkinen A (Editors) Integrated removal of inorganic contaminants from Acid Mine Drainage using BOF Slag, Lime, Soda ash and Reverse Osmosis (RO): Implication... was reduced from 18000 to 4000 mg/L hence requiring another purification technology. Hardness was reduced using lime and soda ash. Reverse Osmosis (RO) was used to further clean the water to drinking standard. A single pass two element RO system...

  19. Mechanical properties of PET composites using multi-walled carbon nanotubes functionalized by inorganic and itaconic acids

    Directory of Open Access Journals (Sweden)

    A. May-Pat

    2012-02-01

    Full Text Available Multi-walled carbon nanotubes (MWCNTs were oxidized by two different acid treatments and further functionalized with itaconic acid (IA. The functionalized MWCNTs were used to fabricate Poly(ethylene terephthalate (PET composites by melt mixing. The presence of functional groups on the surface of the treated MWCNTs was confirmed by infrared spectroscopy and thermogravimetric analysis. The MWCNTs oxidized with a concentrated mixture of HNO3 and H2SO4 exhibited more oxygen containing functional groups (OH, COOH but also suffer larger structural degradation than those oxidized by a mild treatment based on diluted HNO3 followed by H2O2. PET composites were fabricated using the oxidized-only and oxidized followed by functionalization with IA MWCNTs. PET composites fabricated with MWCNT oxidized by mild conditions showed improved tensile strength and failure strain, while harsh MWCNT oxidation render them overly brittle.

  20. Polyaspartic acid facilitates oxolation within iron(iii) oxide pre-nucleation clusters and drives the formation of organic-inorganic composites

    Science.gov (United States)

    Scheck, J.; Drechsler, M.; Ma, X.; Stöckl, M. T.; Konsek, J.; Schwaderer, J. B.; Stadler, S. M.; De Yoreo, J. J.; Gebauer, D.

    2016-12-01

    The interplay between polymers and inorganic minerals during the formation of solids is crucial for biomineralization and bio-inspired materials, and advanced material properties can be achieved with organic-inorganic composites. By studying the reaction mechanisms, basic questions on organic-inorganic interactions and their role during material formation can be answered, enabling more target-oriented strategies in future synthetic approaches. Here, we present a comprehensive study on the hydrolysis of iron(iii) in the presence of polyaspartic acid. For the basic investigation of the formation mechanism, a titration assay was used, complemented by microscopic techniques. The polymer is shown to promote precipitation in partly hydrolyzed reaction solutions at the very early stages of the reaction by facilitating iron(iii) hydrolysis. In unhydrolyzed solutions, no significant interactions between the polymer and the inorganic solutes can be observed. We demonstrate that the hydrolysis promotion by the polymer can be understood by facilitating oxolation in olation iron(iii) pre-nucleation clusters. We propose that the adsorption of olation pre-nucleation clusters on the polymer chains and the resulting loss in dynamics and increased proximity of the reactants is the key to this effect. The resulting composite material obtained from the hydrolysis in the presence of the polymer was investigated with additional analytical techniques, namely, scanning and transmission electron microscopies, light microscopy, atomic force microscopy, zeta potential measurements, dynamic light scattering, and thermogravimetric analyses. It consists of elastic, polydisperse nanospheres, ca. 50-200 nm in diameter, and aggregates thereof, exhibiting a high polymer and water content.

  1. Physical and gas permeation properties of a series of novel hybrid inorganic-organic composites based on a synthesized fluorinated polyimide

    Science.gov (United States)

    Cornelius, Christopher James

    2000-11-01

    that there was a decrease in solubility for all hybrids employed in this study. Furthermore, increases in permeability for the MTMOS based hybrids were created by increased penetrant diffusion. Physical property studies revealed that the type of inorganic material incorporated into the hybrid influences the degree of swelling, bulk density, Tg, and thermal stability. Hybrid materials were also created employing 3,5-diaminobenzoic acid (DABA) in the synthesis of modified 6FDA-6FpDA polyimides in order to evaluate how improvements in inorganic and polymer compatibility influenced the gas transport properties. From this separate study, it was found that increases in both permeability and selectivity were possible. The mechanism attributed to this simultaneous increase in permeability and selectivity was the formation of a more permeable and selective interphase at the interface of an inorganic particle and the polymer matrix. In addition to these studies, 6FDA-6FpDA polyimide molecular weights were changed from 19.3K Mn to 35.3K M n to probe its role on gas transport and physical properties. These studies revealed that permeability, diffusivity, and solubility increased with increasing molecular weight, while density decreased with increasing molecular weight. These results suggest that there is an increase in free volume with increasing 6FDA-6FpDA polyimide molecular weight.

  2. Chemical characterization of the inorganic fraction of aerosols and mechanisms of the neutralization of atmospheric acidity in Athens, Greece

    Directory of Open Access Journals (Sweden)

    E. T. Karageorgos

    2007-06-01

    + and Cl, while SO42−, Ca2+ and NH4+ were the major ionic components of the fine fraction. In the fine particles, a low molar ratio of NH4+/SO42− indicated an ammonium-poor ambient air, and together with inter-ionic correlations suggested that atmospheric ammonia is the major neutralizing agent of sulfate, while being insufficient to neutralize it to full extend. The formation of NH4NO3 is therefore not favored and additional contribution to the neutralization of acidity has been shown to be provided by Ca2+ and Mg2+. In the coarse particle fraction, the predominantly abundant Ca2+ has been found to correlate well with NO3 and SO42−, indicating its role as important neutralizing agent in this particle size range. The proximity of the location under study to the sea explains the important concentrations of salts with marine origin like NaCl and MgCl2 that were found in the coarse fraction, while chloride depletion in the gaseous phase was found to be limited to the fine particulate fraction. Total analyzed inorganic mass (elemental+ionic was found to be ranging between approximately 25–33% of the total coarse particle mass and 35–42% of the total fine particle mass.

  3. The intake of inorganic arsenic from long grain rice and rice-based baby food in Finland - low safety margin warrants follow up.

    Science.gov (United States)

    Rintala, Eeva-Maria; Ekholm, Päivi; Koivisto, Pertti; Peltonen, Kimmo; Venäläinen, Eija-Riitta

    2014-05-01

    We evaluated total and inorganic arsenic levels in long grain rice and rice based baby foods on Finnish market. Inorganic arsenic was analysed with an HPLC-ICP-MS system. The total arsenic concentration was determined with an ICP-MS method. In this study, the inorganic arsenic levels in long grain rice varied from 0.09 to 0.28mg/kg (n=8) and the total arsenic levels from 0.11 to 0.65mg/kg. There was a good correlation between the total and inorganic arsenic levels in long grain rice at a confidence level of 95%. The total arsenic levels of rice-based baby foods were in the range 0.02 - 0.29mg/kg (n=10), however, the level of inorganic arsenic could only be quantitated in four samples, on average they were 0.11mg/kg. Our estimation of inorganic arsenic intake from long grain rice and rice-based baby food in Finland indicate that in every age group the intake is close to the lowest BMDL0.1 value 0.3μg/kg bw/day set by EFSA. According to our data, the intake of inorganic arsenic should be more extensively evaluated. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Reaction of Silane Alkoxide with Acid Anhydride as a Novel Synthetic Method for Organic-Inorganic Hybrid Materials

    Institute of Scientific and Technical Information of China (English)

    Masahiro Fujiwara

    2005-01-01

    @@ 1Introduction Sol-gel method is a potent method to produce new inorganic and organic-inorganic hybrid materials. The key step of this methodology is the hydrolysis of a metal alkoxide or other metal substrates such as acetylacetonates to form hydroxyl metal species, followed by their condensation to metal-oxygen-metal (M - O - M)bonds. In this process, the utilization of water, generally in excess, is essential and alcoholic solvents such as ethanol are often required to homogenize the solution when organic compounds coexist. As the common sol-gel method using water allows for limited uses of organic substrates due to their low solubility and stability in aqueous solution, modified variations of sol-gel method are required. Recently, some processes were reported for preparing metal oxides from metal alkoxides without the utilization of water.

  5. Fatty Acid Profiles of Supraspinatus, Longissimus lumborum and Semitendinosus Muscles and Serum in Kacang Goats Supplemented with Inorganic Selenium and Iodine.

    Science.gov (United States)

    Aghwan, Z A; Alimon, A R; Goh, Y M; Nakyinsige, K; Sazili, A Q

    2014-04-01

    Fat and fatty acids in muscle and adipose tissues are among the major factors influencing meat quality particularly nutritional value and palatability. The present study was carried out to examine the effects of supplementing inorganic selenium (Se), iodine (I) and a combination of both on fatty acid compositions in serum, and supraspinatus (SS), longissimus lumborum (LL), and semitendinosus (ST) muscles in goats. Twenty-four, 7 to 8 months old, Kacang male goats with a mean live weight of 22.00±1.17 kg were individually and randomly assigned into four groups of six animals each for 100 d of feeding prior to slaughter. The animals were offered the same concentrate (basal) diet as 1% of body weight with ad libitum amount of fresh guinea grass. The four groups were as follows: T1 (control) - basal diet without supplementation; T2 - basal diet with 0.6 mg Se/kg DM; T3 - basal diet with 0.6 mg I/kg DM; T4 - basal diet with combination of 0.6 mg Se/kg DM and 0.6 mg I/kg DM. The major fatty acids (FAs) detected in the serum were palmitic (C16:0), stearic (C18:0), oleic (C18:1n9) and linoleic (C18:2n-6), while the major FAs in the selected muscles were C16:0, C18:0 and C18:1n9 acids. The main polyunsaturated fatty acids (PUFA) detected in muscles and serum were (CI8:2n-6), linolenic acid (C18:3n-3), and arachidonic acid (C20:4n-6). No significant differences (p>0.05) were observed in the concentration of total saturated fatty acids (SFA) among the four groups. PUFA concentrations in the goats supplemented with Se (T2) were significantly higher (pgoats of the control group (T1). The PUFA: SFA ratio was significantly higher in the animals supplemented with dietary Se (T2) than those of control ones (T1). It is concluded that dietary supplementation of inorganic Se increased the unsaturated fatty acids in muscle. The supplementation of iodine with or without Se had negligible effects on muscle fatty acid content of Kacang crossbred male goats.

  6. Fatty Acid Profiles of Supraspinatus, Longissimus lumborum and Semitendinosus Muscles and Serum in Kacang Goats Supplemented with Inorganic Selenium and Iodine

    Science.gov (United States)

    Aghwan, Z. A.; Alimon, A. R.; Goh, Y. M.; Nakyinsige, K.; Sazili, A. Q.

    2014-01-01

    Fat and fatty acids in muscle and adipose tissues are among the major factors influencing meat quality particularly nutritional value and palatability. The present study was carried out to examine the effects of supplementing inorganic selenium (Se), iodine (I) and a combination of both on fatty acid compositions in serum, and supraspinatus (SS), longissimus lumborum (LL), and semitendinosus (ST) muscles in goats. Twenty-four, 7 to 8 months old, Kacang male goats with a mean live weight of 22.00±1.17 kg were individually and randomly assigned into four groups of six animals each for 100 d of feeding prior to slaughter. The animals were offered the same concentrate (basal) diet as 1% of body weight with ad libitum amount of fresh guinea grass. The four groups were as follows: T1 (control) - basal diet without supplementation; T2 - basal diet with 0.6 mg Se/kg DM; T3 - basal diet with 0.6 mg I/kg DM; T4 - basal diet with combination of 0.6 mg Se/kg DM and 0.6 mg I/kg DM. The major fatty acids (FAs) detected in the serum were palmitic (C16:0), stearic (C18:0), oleic (C18:1n9) and linoleic (C18:2n-6), while the major FAs in the selected muscles were C16:0, C18:0 and C18:1n9 acids. The main polyunsaturated fatty acids (PUFA) detected in muscles and serum were (CI8:2n-6), linolenic acid (C18:3n-3), and arachidonic acid (C20:4n-6). No significant differences (p>0.05) were observed in the concentration of total saturated fatty acids (SFA) among the four groups. PUFA concentrations in the goats supplemented with Se (T2) were significantly higher (pgoats of the control group (T1). The PUFA: SFA ratio was significantly higher in the animals supplemented with dietary Se (T2) than those of control ones (T1). It is concluded that dietary supplementation of inorganic Se increased the unsaturated fatty acids in muscle. The supplementation of iodine with or without Se had negligible effects on muscle fatty acid content of Kacang crossbred male goats. PMID:25049986

  7. Response surface methodology to optimize gradient ion chromatographic separation of inorganic anions and organic acids in tobacco leaves

    Institute of Scientific and Technical Information of China (English)

    Rui Qi Wang; Na Ni Wang; Jia Jie Zhang; Yan Zhu

    2011-01-01

    The separation optimization of nine organic and inorganic anions in tobacco leaves using gradient ion chromatography by response surface methodology was investigated. In order to achieve this goal the usefulness of the chromatographic response function (CRF) for the evaluation of the two different chromatographic performance goals (resolution and analysis time) was tested. The experiments were performed according to a Box-Behnken design response surface experimental design.

  8. Validation study of a rapid colorimetric method for the determination of phytic acid and inorganic phosphorus from seeds

    OpenAIRE

    Dragičević Vesna D.; Sredojević Slobodanka D.; Perić Vesna A.; Nišavić Anika R.; Srebrić Mirjana B.

    2011-01-01

    Phytate, as an important mineral storage compound in seeds, is vital for seed/grain development; it is often considered to be an antinutritional substance. The objective of this study was to develop a rapid and inexpensive colorimetric method of measuring phytate and inorganic P (Pi) concentrations from maize, soybean and sunflower seed/grain extracts, by combining adequate precision and simplicity, ideal for breeders interested in improving simultaneously Pi and phytate levels. The inv...

  9. Preparation and characteristics of high pH-resistant sol-gel alumina-based hybrid organic-inorganic coating for solid-phase microextraction of polar compounds.

    Science.gov (United States)

    Liu, Mingming; Liu, Ying; Zeng, Zhaorui; Peng, Tianyou

    2006-03-10

    A novel alumina-based hybrid organic-inorganic sol-gel coating was first developed for solid-phase microextraction (SPME) from a highly reactive alkoxide precursor, aluminum sec-butoxide, and a sol-gel-active organic polymer hydroxyl-terminated polydimethylsiloxane (OH-TSO). The underlying mechanism was discussed and confirmed by IR spectra. The porous surface structure of the sol-gel coating was revealed by scanning electron microscopy. A detailed investigation was conducted to evaluate the remarked performance of the newly developed sol-gel alumina-OH-TSO hybrid materials. In stark contrast to the sol-gel silica-based coating, the alumina-based coating demonstrated excellent pH stability. In addition, good thermal resistance and coating preparation reproducibility are also its outstanding performance. As compared to silica-based hybrids material, the ligand exchange ability of alumina makes it structurally superior extraction sorbents for polar compounds, such as fatty acids, phenols, alcohols, aldehydes and amines. Practical applicability of the prepared alumina-OH-TSO fiber was demonstrated through the analysis of volatile alcohols and fatty acids in beer. The recoveries obtained ranged from 85.7 to 104% and the relative standard deviation values for all analytes were below 9%.

  10. CFD-based optimization and design of multi-channel inorganic membrane tubes☆

    Institute of Scientific and Technical Information of China (English)

    Zhao Yang; Jingcai Cheng; Chao Yang; Bin Liang

    2016-01-01

    As a major configuration of membrane elements, multi-channel porous inorganic membrane tubes were studied by means of theoretical analysis and simulation. Configuration optimization of a cylindrical 37-channel porous inorganic membrane tube was studied by increasing membrane filtration area and increasing permeation effi-ciency of inner channels. An optimal ratio of the channel diameter to the inter-channel distance was proposed so as to increase the total membrane filtration area of the membrane tube. The three-dimensional computational fluid dynamics (CFD) simulation was conducted to study the cross-flow permeation flow of pure water in the 37-channel ceramic membrane tube. A model combining Navier–Stokes equation with Darcy's law and the porous jump boundary conditions was applied. The relationship between permeation efficiency and channel locations, and the method for increasing the permeation efficiency of inner channels were proposed. Some novel multi-channel membrane configurations with more permeate side channels were put forward and evaluated.

  11. Time-resolved luminescent biosensing based on inorganic lanthanide-doped nanoprobes.

    Science.gov (United States)

    Zheng, Wei; Tu, Datao; Huang, Ping; Zhou, Shanyong; Chen, Zhuo; Chen, Xueyuan

    2015-03-11

    Time-resolved (TR) photoluminescence (PL) biosensing has been widely adopted in many research and medical institutions. However, commercial molecular TRPL bioprobes like lanthanide (Ln(3+))-chelates suffer from poor photochemical stability and long-term toxicity. Inorganic Ln(3+)-doped nanocrystals (NCs), owing to their superior physicochemical properties over Ln(3+)-chelates, are regarded as a new generation of luminescent nanoprobes for TRPL biosensing. The long-lived PL of Ln(3+)-doped NCs combined with the TRPL technique is able to completely suppress the interference of the short-lived background, resulting in a background-free signal and therefore a remarkable sensitivity for biosensing. In this feature article, we summarize the latest advancements in inorganic Ln(3+)-doped NCs as TRPL nano-bioprobes from their fundamental optical properties to their potential applications for ultrasensitive biodetection and high-resolution bioimaging. Future efforts towards the commercialization of these nanoprobes are also proposed.

  12. Autonomic healable waterborne organic-inorganic polyurethane hybrids based on aromatic disulfide moieties

    Directory of Open Access Journals (Sweden)

    R. H. Aguirresarobe

    2017-04-01

    Full Text Available Aromatic disulfide dynamic structures were incorporated as chain extenders in waterborne organic-inorganic polyurethane hybrids in order to provide autonomic healable characteristics. The synthesis was carried out following the acetone process methodology and the influence of the introduction of the healing agents in the polymer dispersion stability was analyzed. After the crosslinking process at room temperature, organic-inorganic hybrid films, which presented autonomic healing characteristics, were obtained. These features were evaluated by means of stress-strain tests and the films showed repetitive healing abilities. Thus, the optimum healing time at room temperature (25 °C as well as the influence of different parameters in the healing efficiency, such the aromatic disulfide concentration or the physical properties of the polymer matrix were analyzed.

  13. Unique Room Temperature Light Emitting Diode Based on 2D Hybrid Organic-Inorganic Low Dimensional Perovskite Semiconductor

    CERN Document Server

    Vassilakopoulou, Anastasia; Koutselas, Ioannis

    2016-01-01

    Room temperature single layer light emitting diode(LED), based on a two dimensional hybrid organic-inorganic semiconductor(HOIS), is demonstrated. This simple, low cost excitonic LED operates at low voltages. Such an excitonic device is presented for the first time as functioning at room temperature. The newly introduced class of perovskite LEDs, until now based on 3D perovksite HOIS, is now broadened with the implementation of the 2D HOIS. Novel functionalities can be realized since it is now possible to access the hybrid's 2D semiconductor advantageous properties, such as the increased excitonic peak wavelength tunability, excitonic binding energy and oscillator strength.

  14. New organic-inorganic hybrid material based on functional cellulose nanowhisker, polypseudorotaxane and Au nanorods.

    Science.gov (United States)

    Garavand, Ali; Dadkhah Tehrani, Abbas

    2016-11-05

    Organic-inorganic functional hybrid materials play a major role in the development of advanced functional materials and recently have gained growing interest of the worldwide community. In this context, new hybrid organic-inorganic gel consisting of cellulose nanowhisker xanthate (CNWX) and S-H functionalized polypseudorotaxane (PPR) as organic parts of gel and gold nanorods (GNRs) as inorganic cross-linking agent were prepared. Firstly, thiolated α-cyclodextrin (α-CD-SH) was threaded onto poly-(ethylene glycol) bis (mercaptoethanoate ester) (PEG-SH) to give polypseudorotaxane (PPR) and then it reacted with GNRs in the presence of CNWX to give the new hybrid gel material. The new synthesized gel and its components characterized by spectroscopic measurement methods such as FT-IR, UV-vis and NMR spectroscopy. Interestingly, hybrid gel showed new polygonal plate like morphology with 45-60nm thickness and 400-600nm width. The obtained gel may have potential application in many fields especially in biomedical applications.

  15. Strategies for interfacing inorganic nanocrystals with biological systems based on polymer-coating.

    Science.gov (United States)

    Palui, Goutam; Aldeek, Fadi; Wang, Wentao; Mattoussi, Hedi

    2015-01-01

    Interfacing inorganic nanoparticles and biological systems with the aim of developing novel imaging and sensing platforms has generated great interest and much activity. However, the effectiveness of this approach hinges on the ability of the surface ligands to promote water-dispersion of the nanoparticles with long term colloidal stability in buffer media. These surface ligands protect the nanostructures from the harsh biological environment, while allowing coupling to target molecules, which can be biological in nature (e.g., proteins and peptides) or exhibit specific photo-physical characteristics (e.g., a dye or a redox-active molecule). Amphiphilic block polymers have provided researchers with versatile molecular platforms with tunable size, composition and chemical properties. Hence, several groups have developed a wide range of polymers as ligands or micelle capsules to promote the transfer of a variety of inorganic nanomaterials to buffer media (including magnetic nanoparticles and semiconductor nanocrystals) and render them biocompatible. In this review, we first summarize the established synthetic routes to grow high quality nanocrystals of semiconductors, metals and metal oxides. We then provide a critical evaluation of the recent developments in the design, optimization and use of various amphiphilic copolymers to surface functionalize the above nanocrystals, along with the strategies used to conjugate them to target biomolecules. We finally conclude by providing a summary of the most promising applications of these polymer-coated inorganic platforms in sensor design, and imaging of cells and tissues.

  16. The scaled-charge additive force field for amino acid based ionic liquids

    DEFF Research Database (Denmark)

    Fileti, E. E.; Chaban, V. V.

    2014-01-01

    Ionic liquids (ILs) constitute an emerging research field. New ILs involve more and more organic and inorganic ions. Amino acid based ILs (AAILs) represent a specific interest due to their evolutional connection to proteins. We report a new non-polarizable force field (FF) for the eight AAILs com...... the CHARMM36 FF with minor modifications. Compatibility between our parameters and CHARMM36 parameters is preserved. (C) 2014 Elsevier B.V. All rights reserved....

  17. Acid-base properties of Baltic Sea dissolved organic matter

    Science.gov (United States)

    Hammer, Karoline; Schneider, Bernd; Kuliński, Karol; Schulz-Bull, Detlef E.

    2017-09-01

    Calculations related to the marine CO2 system that are based on alkalinity data may be strongly biased if the contributions of organic compounds are ignored. In coastal seas, concentrations of dissolved organic matter (DOM) are frequently high and alkalinity from inorganic compounds is low. In this study, based on measurements of total alkalinity, total CO2, and pH, we determined the organic alkalinity, Aorg, in water from the central Baltic Sea. The maximum Aorg measured in the surface mixed layer during the spring bloom was > 50 μmol/kg-SW but the Aorg decreased with depth and approached zero below the permanent halocline. This behavior could be attributed to the decreased pH of deeper water layers. The data were used to calculate the bulk dissociation constant, KDOM, for marine DOM and the fraction f of dissolved organic carbon (DOC) that acts as a carrier for acid-base functional groups. The p KDOM (7.27) agreed well with the value (7.34) previously estimated in a preliminary study of organic alkalinity in the Baltic Sea. The fraction of carbon atoms carrying acid-base groups was 17% and was somewhat higher than previously reported (12%). Spike experiments performed using artificial seawater and three different humic/fulvic substances tested whether the acid-base properties of these substances explain the results of our field study. Specifically, Aorg was determined at different concentrations (DOC) of the added humic/fulvic substances. The relationship between Aorg and the DOC concentrations indicated that humic/fulvic substances are more acidic (p KDOM < 6.5) than the bulk DOC natural occurring in the Baltic Sea.

  18. Effect of casein-based semi-synthetic food on renal acid excretion and acid-base state of blood in dogs.

    Science.gov (United States)

    Zijlstra, W G; Langbroek, A J; Kraan, J; Rispens, P; Nijmeijer, A

    1995-01-01

    Urinary acid excretion and blood acid-base state were determined in dogs fed a casein-based semi-synthetic food (SSF), to which different amounts of salts had been added, in comparison with feeding normal dog food. Net acid excretion (NAE) and inorganic acid excretion (IAE) increased during SSF feeding. IAE was higher than the acid load calculated from the sulphur and phosphorus content of the casein. This higher IAE appeared to be due to the presence of calcium and magnesium phosphate in the diet, because calcium and magnesium may be in part precipitated as carbonate, leaving phosphate to be absorbed as phosphoric acid. Acid excretion decreased by addition of CaO. When no neutral Na+ and K+ salts were added, the increase in NAE was accompanied by a metabolic acidosis. K+ was more effective in attenuating the acidosis than Na+. On the basis of these findings a diet can be made which imposes a known acid load, and provides stable baseline values. Hence, any additions that influence the acid-base balance can be properly studied. The data obtained in these and future studies utilising this diet may be of help in optimising the composition of nutrient solutions to be used in the care of critically ill patients.

  19. Enhancement of Hybrid SPEEK Based Polymer–Cyclodextrin-Silica Inorganic Membrane for Direct Methanol Fuel Cell Application

    Directory of Open Access Journals (Sweden)

    Tutuk Djoko Kusworo

    2017-06-01

      Keywords: Direct Methanol Fuel Cell, Poly(ether ether ketone, cyclodextrin-silica, sulfonation, ionic conductivity. Article History: Received January 18th 2017; Received in revised form April 21st 2017; Accepted June 22nd 2017; Available online How to Cite This Article: Kusworo, T.D., Hakim, M.F. and Hadiyanto, H. (2017 Enhancement of Hybrid SPEEK Based Polymer–Cyclodextrin-Silica Inorganic Membrane for Direct Methanol Fuel Cell Application. International Journal of Renewable Energy Development, 6(2, 165-170. https://doi.org/10.14710/ijred.6.2.165-170

  20. Synthesis and characterization of silicon-based polymers for use as organic/inorganic hybrids and silicon carbide precursors

    Science.gov (United States)

    Sellinger, Alan

    Organic/inorganic hybrids from silsesquioxanes. This Dissertation describes the synthesis and characterization of methacrylate, epoxy and liquid crystalline (LC)-containing organic/inorganic hybrid materials based on silsesquioxanes. While the methacrylate and epoxy groups provide polymerizable moieties to the hybrids, the LC component is anticipated to provide toughness, and oxidative stability as well as minimize shrinkage during curing. The inorganic silsesquioxane portion, ((RSiOsb{1.5})sb8, cubes), which closely resembles specific crystalline forms of silica and zeolites, may be covalently linked to a variety of organic functional groups. As a result, single-phase organic/inorganic hybrids are formed that when polymerized mimic silica-reinforced composites. The resultant hybrids are liquids at room temperature, and hence allow for single-phase composite processing, ideal for abrasion-resistant coatings and filling molds, as in dental restorative applications. The reactions are based on inexpensive starting materials, have high yields (>80%), and form soluble products containing up to 65% masked silica. The hybrids were characterized using NMR spectroscopy (sp1H,\\ sp{13}C,\\ sp{29}Si), FTIR, size exclusion chromatography (SEC), and thermal analysis (TGA, DSC). A modified polymethylsilane as a precursor of silicon carbide. It is generally known that polymer precursor routes to silicon carbide (SiC) are very important in the processing of SiC fibers and high performance SiC parts with specific shapes. It is further known that commercial SiC precursor polymers are often not resistant to oxidation, and are based on monomers rich in carbon. As a result of this, their pyrolysis yields SiC rich in oxygen and carbon, a feature which drastically reduces the final materials' ultimate properties (high temperature resistance, tensile strength, modulus). To remedy this, we describe in this work the synthesis and characterization of a modified polymethylsilane (mPMS) which

  1. Nucleic Acid-Based Nanoconstructs

    Science.gov (United States)

    Focuses on the design, synthesis, characterization, and development of spherical nucleic acid constructs as effective nanotherapeutic, single-entity agents for the treatment of glioblastoma multiforme and prostate cancers.

  2. Recycling of inorganic waste in monolithic and cellular glass-based materials for structural and functional applications.

    Science.gov (United States)

    Rincón, Acacio; Marangoni, Mauro; Cetin, Suna; Bernardo, Enrico

    2016-07-01

    The stabilization of inorganic waste of various nature and origin, in glasses, has been a key strategy for environmental protection for the last decades. When properly formulated, glasses may retain many inorganic contaminants permanently, but it must be acknowledged that some criticism remains, mainly concerning costs and energy use. As a consequence, the sustainability of vitrification largely relies on the conversion of waste glasses into new, usable and marketable glass-based materials, in the form of monolithic and cellular glass-ceramics. The effective conversion in turn depends on the simultaneous control of both starting materials and manufacturing processes. While silica-rich waste favours the obtainment of glass, iron-rich wastes affect the functionalities, influencing the porosity in cellular glass-based materials as well as catalytic, magnetic, optical and electrical properties. Engineered formulations may lead to important reductions of processing times and temperatures, in the transformation of waste-derived glasses into glass-ceramics, or even bring interesting shortcuts. Direct sintering of wastes, combined with recycled glasses, as an example, has been proven as a valid low-cost alternative for glass-ceramic manufacturing, for wastes with limited hazardousness. The present paper is aimed at providing an up-to-date overview of the correlation between formulations, manufacturing technologies and properties of most recent waste-derived, glass-based materials. © 2016 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  3. Direct injection ion chromatography for the control of chlorinated drinking water: simultaneous estimation of nine haloacetic acids and quantitation of bromate, chlorite and chlorate along with the major inorganic anions.

    Science.gov (United States)

    Garcia-Villanova, Rafael J; Raposo Funcia, César; Oliveira Dantas Leite, M Vilani; Toruño Fonseca, Ivania M; Espinosa Nieto, Miguel; Espuelas India, Javier

    2014-09-01

    Most methods for the analysis of haloacetic acids published in recent years are based on ion chromatography with direct injection, employing a gradient elution with potassium hydroxide (KOH). This work reports the exploration of an alternative eluent, a buffer of sodium carbonate/sodium hydrogen carbonate, aimed at the simultaneous analysis of nine haloacetic acids along with bromate, chlorite and chlorate. The alternative of both a less alkaline eluent and a lower temperature of operation may prevent the partial decomposition of some of the haloacetic acids during the analytical process, especially the more vulnerable brominated ones. Gradient elution at temperature of 7 °C yielded the best results, with an acceptable separation of 17 analytes (which includes the major natural inorganic anions) and a good linearity. Precision ranges from 0.3 to 23.4 (% V.C.), and detection limits are within units of μg L⁻¹, except for tribromoacetic acid - somewhat high in comparison with those of the official methods. Nonetheless, with the basic instrumentation setup herein described, this method may be suitable for monitoring when the drinking water treatments are to be optimized. This is especially interesting for small communities or for developing/developed countries in which regulations on disinfection by-products others than trihalomethanes are being addressed.

  4. Medical applications of organic-inorganic hybrid materials within the field of silica-based bioceramics.

    Science.gov (United States)

    Vallet-Regí, María; Colilla, Montserrat; González, Blanca

    2011-02-01

    Research on bioceramics has evolved from the use of inert materials for mere substitution of living tissues towards the development of third-generation bioceramics aimed at inducing bone tissue regeneration. Within this context hybrid bioceramics have remarkable features resulting from the synergistic combination of both inorganic and organic components that make them suitable for a wide range of medical applications. Certain bioceramics, such as ordered mesoporous silicas, can exhibit different kind of interaction with organic molecules to develop different functions. The weak interaction of these host matrixes with drug molecules confined in the mesoporous channels allows these hybrid systems to be used as controlled delivery devices. Moreover, mesoporous silicas can be used to fabricate three (3D)-dimensional scaffolds for bone tissue engineering. In this last case, different osteoinductive agents (peptides, hormones and growth factors) can be strongly grafted to the bioceramic matrix to act as attracting signals for bone cells to promote bone regeneration process. Finally, recent research examples of organic-inorganic hybrid bioceramics, such as stimuli-responsive drug delivery systems and nanosystems for targeting of cancer cells and gene transfection, are also tackled in this tutorial review (64 references).

  5. The Conjugate Acid-Base Chart.

    Science.gov (United States)

    Treptow, Richard S.

    1986-01-01

    Discusses the difficulties that beginning chemistry students have in understanding acid-base chemistry. Describes the use of conjugate acid-base charts in helping students visualize the conjugate relationship. Addresses chart construction, metal ions, buffers and pH titrations, and the organic functional groups and nonaqueous solvents. (TW)

  6. The Kidney and Acid-Base Regulation

    Science.gov (United States)

    Koeppen, Bruce M.

    2009-01-01

    Since the topic of the role of the kidneys in the regulation of acid base balance was last reviewed from a teaching perspective (Koeppen BM. Renal regulation of acid-base balance. Adv Physiol Educ 20: 132-141, 1998), our understanding of the specific membrane transporters involved in H+, HCO , and NH transport, and especially how these…

  7. Students' Alternate Conceptions on Acids and Bases

    Science.gov (United States)

    Pan, Hanqing; Henriques, Laura

    2015-01-01

    Knowing what students bring to the classroom can and should influence how we teach them. This study is a review of the literature associated with secondary and postsecondary students' ideas about acids and bases. It was found that there are six types of alternate ideas about acids and bases that students hold. These are: macroscopic properties of…

  8. The Kidney and Acid-Base Regulation

    Science.gov (United States)

    Koeppen, Bruce M.

    2009-01-01

    Since the topic of the role of the kidneys in the regulation of acid base balance was last reviewed from a teaching perspective (Koeppen BM. Renal regulation of acid-base balance. Adv Physiol Educ 20: 132-141, 1998), our understanding of the specific membrane transporters involved in H+, HCO , and NH transport, and especially how these…

  9. Speciation of selenoamino acids, selenonium ions and inorganic selenium by ion exchange HPLC with mass spectrometric detection and its application to yeast and algae

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Hansen, M.; Fan, T.

    2001-01-01

    Cation and anion exchange HPLC were used to separate a mixture of 12 selenium species comprising selenoamino acids, selenonium ions and inorganic selenium. The cationic species were separated from each other and from the co-injected anions using a cation exchange column with gradient elution...... by aqueous pyridinium formate at pH similar to 3 as the mobile phase. The anionic species were separated using an anion exchange column with isocratic elution by an aqueous salicylate-TRIS mobile phase at pH 8.5. The separated selenium species were detected as Se-80 by ICP-dynamic reaction cell (DRC......)-MS. The analytical methods were applied to the analysis of yeast and algae enriched in selenium. The yeast was treated with beta -glucosidase followed by a protease mixture for dissolution of the cell walls and selenium-containing peptides, respectively. The second to largest HPLC peak after that corresponding...

  10. Syntheses and Characterizations of Two New Organic-inorganic Hybrids Based on Heteropolymolybdates and Piperidine Molecules

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Two new organic-inorganic compounds [(CH2)5NH2]3[PMo12O40]·3[(CH2)5NH] 1 and [(CH2)5NH2]6[P2Mo18O62]·5H2O 2 have been synthesized using conventional and hydrothermal methods, respectively, and characterized by elemental analyses, IR, TG and single-crystal X-ray diffraction. X-ray analyses show that in these compounds heteropolymolybdates [PMo12O40]3- and [P2Mo18O62]6- are reserved their Keggin or Dawson structures and linked to piperidine through electrostatic and hydrogen-bonding interactions.

  11. Organic - Inorganic Hybrids made from Polymerizable Precursors

    NARCIS (Netherlands)

    Uricanu, V.I.; Donescu, D.; Banu, A.G.; Serban, S.; Olteanu, M.; Dudau, M.

    2004-01-01

    Organic–inorganic hybrid films were prepared based on a recipe using organoalkoxysilanes’ ability to create an inorganic network combined with polymer network formation via radical polymerization of the organic groups. The starting mixtures included different triethoxysilanes (RTES), where the

  12. Polyoxometalate-based organic-inorganic hybrid compounds containing transition metal mixed-organic-ligand complexes of N-containing and pyridinecarboxylate ligands.

    Science.gov (United States)

    Zhao, De-Chuan; Hu, Yang-Yang; Ding, Hong; Guo, Hai-Yang; Cui, Xiao-Bing; Zhang, Xiao; Huo, Qi-Sheng; Xu, Ji-Qing

    2015-05-21

    Five new organic–inorganic hybrid compounds based on the Keggin-type polyoxoanion [SiW12O40]4−, namely [Cu3(2,2′-bpy)3(inic)(μ2-OH)(H2O)][SiW12O40]·2H2O (1), [Cu6(phen)6(μ3-Cl)2(μ2-Cl)2Cl2(inic)2][SiW12O40]·6H2O (2), [Cu2(hnic)(2,2′-bpy)2Cl]2[H2SiW12O40] (3), [Cu2(nic)(phen)2Cl2]2[SiW12O40] (4) and [Cu2(pic)(2,2′-bpy)2Cl]2[SiW12O40] (5) (inic = isonicotinic acid, hnic = 2-hydroxy-nicotinic acid, nic = nicotinic acid, pic = picolinic acid, 2,2′-bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline) have been synthesized and characterized by IR, UV-Vis, XPS, XRD, cyclic voltammetric measurements, photoluminescence analysis and single crystal X-ray diffraction analysis. Crystal analysis reveals that compound 1 exhibits a 2-D double layered framework structure constructed from [SiW12O40]4− and copper-aqua-2,2′-bipy-hydroxyl-isonicotinate complexes. Compound 2 is a 0-D discrete structure formed by [SiW12O40]4− and copper-chloro-isonicotinate-phenanthroline complexes. Compound 3 shows a 1-D single chain structure based on the linkage of copper-2,2-bpy-chloro-2-hydroxy-nicotinate complexes and [SiW12O40]4−. Compounds 4 and 5 both contain polyoxometalate supported transition metal complexes, one is a polyoxometalate supported copper-chloro-nicotinate-phenanthroline complex in 4, and the other is a polyoxometalate supported copper-2,2-bpy-chloro-nicotinate complex in 5. It should be noted that nicotinic, isonicotinic and picolinic acids are structural isomers and 2-hydroxy-nicotinic acid is an in situ hydroxylated product of nicotinic acid. In addition, photocatalytic degradation of Rhodamine B (RhB) by compounds 1–5 has been investigated in aqueous solutions.

  13. A First-Principles Study on the Structural and Electronic Properties of Sn-Based Organic-Inorganic Halide Perovskites

    Science.gov (United States)

    Ma, Zi-Qian; Pan, Hui; Wong, Pak Kin

    2016-11-01

    Organic-inorganic halide perovskites have attracted increasing interest on solar-energy harvesting because of their outstanding electronic properties. In this work, we systematically investigate the structural and electronic properties of Sn-based hybrid perovskites MASnX3 and FASnX3 (X = I, Br) based on density-functional-theory calculations. We find that their electronic properties strongly depend on the organic molecules, halide atoms, and structures. We show that there is a general rule to predict the band gap of the Sn-based hybrid perovskite: its band gap increases as the size of halide atom decreases as well as that of organic molecule increase. The band gap of high temperature phase (cubic structure) is smaller than that of low temperature phase (orthorhombic structure). The band gap of tetragonal structure (medium-temperature phase) may be larger or smaller than that of cubic phase, depending on the orientation of the molecule. Tunable band gap within a range of 0.73-1.53 eV can be achieved by choosing halide atom and organic molecule, and controlling structure. We further show that carrier effective mass also reduces as the size of halide atom increases and that of molecule decreases. By comparing with Pb-based hybrid perovskites, the Sn-based systems show enhanced visible-light absorption and carrier mobility due to narrowed band gap and reduced carrier effective mass. These Sn-based organic-inorganic halide perovskites may find applications in solar energy harvesting with improved performance.

  14. Adsorption of arsenite and selenite using an inorganic ion exchanger based on Fe–Mn hydrous oxide

    KAUST Repository

    Szlachta, Małgorzata

    2012-01-01

    The adsorption behaviour and mechanism of As(III) and Se(IV) oxyanion uptake using a mixed inorganic adsorbent were studied. The novel adsorbent, based on Fe(III)-Mn(III) hydrous oxides and manganese(II) carbonate, was synthesised using a hydrothermal precipitation approach in the presence of urea. The inorganic ion exchanger exhibited a high selectivity and adsorptive capacity towards As(III) (up to 47.6mg/g) and Se(IV) (up to 29.0mg/g), even at low equilibrium concentration. Although pH effects were typical for anionic species (i.e., the adsorption decreased upon pH increase), Se(IV) was more sensitive to pH changes than As(III). The rates of adsorption of both oxyanions were high. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) studies showed that the ion exchange adsorption of both anions took place via OH - groups, mainly from Fe(III) but also Mn(III) hydrous oxides. MnCO 3 did not contribute directly to As(III) and Se(IV) removal. A higher adsorptive capacity of the developed material towards As(III) was partly due to partial As(III) oxidation during adsorption. © 2011 Elsevier Inc.

  15. Raman spectroscopy of metal/organic/inorganic heterostructures and pentacene-based OFETs

    Energy Technology Data Exchange (ETDEWEB)

    Paez-Sierra, Beynor Antonio

    2007-12-20

    In the framework of this thesis the interaction of In and Mg as top electrodes on two perylene derivates, 3,4,9,10-perylene tetracarbonic acid dianhydride (PTCDA) and dimethyl-3,4,9,10-perylene tetracarbonic acid diimide (DiMe-PTCDI) was studied. The metal-organic layers wer fabricated on S-passivated GaAs(100)2 x 1 substrates. As main characterization method the Raman spectroscopy was applied. The PTCDA/Mg form themselves by two stages of the metal growth, the first belongs to a new molecular structure for a Mg layer thinner than 2.8 nm, whereby the PTCA molecule loses the oxygen atom from the dianhydride group. The second belongs to the surface-amplified Raman spectrum of the preceding structure. In the case of the Mg/DiMe-PTCDI heterostructures the molecule is well conserved, whereby the Raman shift on the diimide group is not modified. Also this structure shows a coupling between discrete molecule eigenvibrations of 221 cm{sup -1}, 1291 cm{sup -1}, and 1606 cm{sup -1} of the organic material and the electronic continuum states of the Mg metal contact. The studies on the preceding heterostructures helped to analyze experimentally the channel formation of pentacene-based organic field-effect transistors. [German] Im Rahmen dieser Arbeit wurden die Wechselwirkung von In und Mg als Topelektroden auf zwei Perylen-Derivativen, 3,4,9,10-Perylentetracarbonsaure Dianhydrid (PTCDA) und Dimethyl-3,4,9,10- Perylentetracarbonsaure Diimid (DiMe-PTCDI) untersucht. Die Metal/organische Schichten wurden auf S-passivierten GaAs(100):2 x 1-Substraten hergestellt. Als Hauptcharakterisierungsmethode wird die Raman-Spektroskopie eingesetzt. Die PTCDA/Mg Strukturen formen sich durch zwei Stufen des Metallwachstum, die erste gehoert zu einer neuen molekularen Struktur fuer eine Mg Schicht duenner als 2.8 nm, wobei das PTCA-Molekuel das Sauerstoffatom von der Dianhydridgruppe verliert. Die zweite gehoert zu dem oberflaechenverstaerkten Ramanspektrum von der vorherigen Struktur. Im

  16. A Lewis acid catalytic core sandwiched by inorganic polyoxoanion caps: selective H2O2-based oxidations with [Al(III)4(H2O)10(β-XW9O33H)2](6-) (X = As(III), Sb(III)).

    Science.gov (United States)

    Carraro, Mauro; Bassil, Bassem S; Sorarù, Antonio; Berardi, Serena; Suchopar, Andreas; Kortz, Ulrich; Bonchio, Marcella

    2013-09-18

    The Al(III)-containing polyanions [Al(III)4(H2O)10(β-XW9O33H)2](4-) with X = As(III) (1) and Sb(III) (2) feature four aluminum(III) centers sandwiched by two trivacant (β-XW9O33) Keggin units, and trigger peroxide catalysis as well as substrate coordination via multiple Lewis acid site interactions.

  17. A Note on Fatty Acids Profile of Meat from Broiler Chickens Supplemented with Inorganic or Organic Selenium

    National Research Council Canada - National Science Library

    del Puerto, Marta; Cabrera, M. Cristina; Saadoun, Ali

    2017-01-01

    ..., the lipids and the fatty acids present in a diet in order to fulfil its physiological needs for growth and muscle development [1]. When the chicken diet includes corn, soya meal, sunflower meal, and o...

  18. Boronic acid-based autoligation of nucleic acids

    DEFF Research Database (Denmark)

    Barbeyron, R.; Vasseur, J.-J.; Smietana, M.;

    2013-01-01

    Abstract: The development of synthetic systems displaying dynamic and adaptive characteristics is a formidable challenge with wide applications from biotechnology to therapeutics. Recently, we described a dynamic and programmable nucleic acid-based system relying on the formation of reversible...... boronate internucleosidic linkages. The DNA- or RNA-templated system comprises a 5′-ended boronic acid probe connecting a 3′-ended ribonucleosidic oligonucleotide partner. To explore the dominant factors that control the reversible linkage, we synthesized a series of 3′-end modified ribonucleotidic strands...

  19. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme based decomposition models

    Directory of Open Access Journals (Sweden)

    Daryl L Moorhead

    2013-08-01

    Full Text Available We re-examined data from a recent litter decay study to determine if additional insights could be gained to inform decomposition modeling. Rinkes et al. (2013 conducted 14-day laboratory incubations of sugar maple (Acer saccharum or white oak (Quercus alba leaves, mixed with sand (0.4% organic C content or loam (4.1% organic C. They measured microbial biomass C, carbon dioxide efflux, soil ammonium, nitrate, and phosphate concentrations, and β-glucosidase (BG, β-N-acetyl-glucosaminidase (NAG, and acid phosphatase (AP activities on days 1, 3, and 14. Analyses of relationships among variables yielded different insights than original analyses of individual variables. For example, although respiration rates per g soil were higher for loam than sand, rates per g soil C were actually higher for sand than loam, and rates per g microbial C showed little difference between treatments. Microbial biomass C peaked on day 3 when biomass-specific activities of enzymes were lowest, suggesting uptake of litter C without extracellular hydrolysis. This result refuted a common model assumption that all enzyme production is constitutive and thus proportional to biomass, and/or indicated that part of litter decay is independent of enzyme activity. The length and angle of vectors defined by ratios of enzyme activities (BG/NAG versus BG/AP represent relative microbial investments in C (length, and N and P (angle acquiring enzymes. Shorter lengths on day 3 suggested low C limitation, whereas greater lengths on day 14 suggested an increase in C limitation with decay. The soils and litter in this study generally had stronger P limitation (angles > 45˚. Reductions in vector angles to < 45˚ for sand by day 14 suggested a shift to N limitation. These relational variables inform enzyme-based models, and are usually much less ambiguous when obtained from a single study in which measurements were made on the same samples than when extrapolated from separate studies.

  20. Whole body acid-base modeling revisited.

    Science.gov (United States)

    Ring, Troels; Nielsen, Søren

    2017-04-01

    The textbook account of whole body acid-base balance in terms of endogenous acid production, renal net acid excretion, and gastrointestinal alkali absorption, which is the only comprehensive model around, has never been applied in clinical practice or been formally validated. To improve understanding of acid-base modeling, we managed to write up this conventional model as an expression solely on urine chemistry. Renal net acid excretion and endogenous acid production were already formulated in terms of urine chemistry, and we could from the literature also see gastrointestinal alkali absorption in terms of urine excretions. With a few assumptions it was possible to see that this expression of net acid balance was arithmetically identical to minus urine charge, whereby under the development of acidosis, urine was predicted to acquire a net negative charge. The literature already mentions unexplained negative urine charges so we scrutinized a series of seminal papers and confirmed empirically the theoretical prediction that observed urine charge did acquire negative charge as acidosis developed. Hence, we can conclude that the conventional model is problematic since it predicts what is physiologically impossible. Therefore, we need a new model for whole body acid-base balance, which does not have impossible implications. Furthermore, new experimental studies are needed to account for charge imbalance in urine under development of acidosis.

  1. Visible Photodetectors Based on Organic-Inorganic Hybrids Using Electrostatic Spraying Technology

    Directory of Open Access Journals (Sweden)

    Liang-Wen Ji

    2013-12-01

    Full Text Available This paper discusses an organic-inorganic hybrid white photodetector with the structure of ITO /AZO/ZnO NWs:P3HT: PCBM/PEDOT: PSS/Al produced with an electrostatic spraying method. The method of production was as follows: First, different spraying methods (continuous spraying, discontinuous spraying and different spraying times were tested before the final electrostatic spraying. Then, different annealing times (10 min and 20 min were tested to anneal the coated film. Lastly, we investigated the photoelectric properties, including transparency analysis of the film surface topography through XRD, OM, FE-SEM, AFM and UV-VIS. The results showed that the detector with discontinuous spraying and 20 mins annealing had a photocurrent of approx. 22.1×10-4A, dark current (drain current of approx. 1.94×10-7A, and a ratio of photocurrent to dark current of approximately 1.14×104, which produced optimal photoelectric characteristics.

  2. Acid-base disorders: learning the basics.

    Science.gov (United States)

    Ayers, Phil; Dixon, Carman; Mays, Andrew

    2015-02-01

    Nutrition support practitioners should be confident in their ability to recognize and treat various metabolic and respiratory disorders encountered in daily practice. A clinician's comprehension of the underlying physiologic processes and/or exogenous causes that occur during acid-base disorders is essential when making therapeutic decisions regarding fluids, parenteral nutrition, and electrolyte management. This invited review will discuss basic metabolic and respiratory disorders while briefly addressing mixed acid-base disorders. © 2014 American Society for Parenteral and Enteral Nutrition.

  3. Electrochemical study of oxidation process of promethazine using sensor based on carbon nanotubes paste containing immobilized DNA on inorganic matrix

    Directory of Open Access Journals (Sweden)

    João Paulo Marco

    2014-10-01

    Full Text Available In the present work the voltammetric behavior and the oxidation process of promethazine (PHZ in electrochemical sensor based on carbon nanotubes paste containing DNA immobilized on the inorganic matrix prepared by sol-gel process (SiO2/Al2O3/Nb2O5. The method of Laviron verified that the system is irreversible and high speed of electron transfer between the electrode and DNA. The study of the oxidation of PHZ and influence of pH showed slope of 0.054 V / pH (near the nernstian system: 0.0592 V / pH suggesting that it involves the transfer of two protons and two electrons.

  4. Photo-triggered molecular release based on auto-degradable polymer-containing organic-inorganic hybrids.

    Science.gov (United States)

    Okada, Hiroshi; Tanaka, Kazuo; Ohashi, Wataru; Chujo, Yoshiki

    2014-07-01

    The photo-triggered molecular release from the organic-inorganic polymer hybrids is presented in this manuscript. Initially, the preparation of the auto-degradable polymer is explained with the photo-cleavable group at the end of the polymer main-chain. The silica-based dye-loaded hybrids containing these polymers were fabricated. It was found that by UV irradiation, the end capping was removed, and then the auto-degradation occurs through the polymer main-chain. Finally, the molecular release of the loaded dyes was accomplished in various media by the UV irradiation. In particular, it was shown that both of hydrophobic and hydrophilic dyes can be applied in this system.

  5. Soil properties, crop production and greenhouse gas emissions from organic and inorganic fertilizer-based arable cropping systems

    DEFF Research Database (Denmark)

    Chirinda, Ngonidzashe; Olesen, Jørgen Eivind; Porter, John Roy

    2010-01-01

    Organic and conventional farming practices differ in the use of several management strategies, including use of catch crops, green manure, and fertilization, which may influence soil properties, greenhouse gas emissions and productivity of agroecosystems. An 11-yr-old field experiment on a sandy...... conducted in plots with winter wheat. In April 2008, prior to field operations, intact soil cores were collected at two depths (0–5 and 5–10 cm) in plots under winter wheat. Water retention characteristics of each core were determined and used to calculate relative gas diffusivity (DP/Do). Finally, crop...... growth was monitored and grain yields measured at harvest maturity. The different management strategies between 1997 and 2007 led to soil carbon inputs that were on average 18–68% and 32–91% higher in the organic than inorganic fertilizer-based rotations for the sampled winter wheat and spring barley...

  6. Synthesis and photoelectric properties of new Dawson-type polyoxometalate-based dimeric and oligomeric Pt(II)-acetylide inorganic-organic hybrids.

    Science.gov (United States)

    Liu, Li; Hu, Lei; Liu, Qian; Du, Zu-Liang; Li, Fa-Bao; Li, Guang-Hua; Zhu, Xun-Jin; Wong, Wai-Yeung; Wang, Lei; Li, Hua

    2015-01-07

    A new synthesis route for preparing Dawson-type polyoxometalate (POM) based inorganic-organic hybrid materials is presented. Two new heteropolytungstate-based dimeric and oligomeric Pt(II) acetylide inorganic-organic hybrid compounds (2PtOD and PPtOD) were prepared by Hagihara's dehydrohalogenating coupling of a terminal diacetylene POM hybrid containing diphosphoryl functionality and an appropriate platinum(II) halide precursor. This method provides a rigid covalent linkage between the POM and the organometallic Pt(II) acetylide moiety. The redox potential of the polyanion can be tuned by grafting the organic and organometallic groups on it. The photoelectric properties of hybrid LB films derived from these inorganic-organic composites were studied.

  7. PLASMA SPRAYED Al₂O₃-13 WT.%TiO₂ COATING SEALED WITH ORGANIC-INORGANIC HYBRID AGENT AND ITS CORROSION RESISTANCE IN ACID ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Zehua Zhou

    2016-07-01

    Full Text Available A novel organic-inorganic hybrid material of γ-methacryloxypropyltrime-thoxysilane (KH570 -SiO₂ was fabricated by Sol-Gel method. The hybrid material was used as the sealing agent for the plasma sprayed Al₂O₃-13 wt.% TiO₂ coating. Infrared spectrum and grafted mechanism of the hybrid agent (HA were studied. Moreover, morphology and porosity, as well as characteristics of immersion plus electrochemical corrosion in acid environment of the coating with and without sealing treatment were evaluated, compared with those of the coating sealed with the conventional silicone resin agent (SRA. The results reveal that KH570 was successfully grafted onto the surface of SiO₂. The HA film sealed on the surface of the coating presents a little better quality than the SRA film. The porosities of the coatings after the sealing treatment decreased. Furthermore, the sealing treatment can improve efficiently the corrosion resistance of the coating in 5 vol.% HCl solution. The hybrid sealing agent can become a candidate for the plasma sprayed Al₂O₃-13 wt.% TiO₂ coating used in acid environment to overcome some disadvantages of organic agents such as severely environmental pollution.

  8. Influence of wastewater sludge treatment using combined peroxyacetic acid oxidation and inorganic coagulants re-flocculation on characteristics of extracellular polymeric substances (EPS).

    Science.gov (United States)

    Zhang, Weijun; Cao, Bingdi; Wang, Dongsheng; Ma, Teng; Xia, Hua; Yu, Dehong

    2016-01-01

    Extracellular polymeric substances (EPS) are highly hydrated biopolymers and play important roles in bioflocculation, floc stability, and solid-water separation processes. Destroying EPS structure will result in sludge reduction and release of trapped water. In this study, the effects of combined process of peracetic acid (PAA) pre-oxidation and chemical re-flocculation on morphological properties and distribution and composition of EPS of the resultant sludge flocs were investigated in detail to gain insights into the mechanism involved in sludge treatment. It was found that sludge particles were effectively solubilized and protein-like substances were degraded into small molecules after PAA oxidation. A higher degradation of protein-like substances was observed at acid environments under PAA oxidation. Microscopic analysis revealed that no integral sludge floc was observed after oxidation with PAA at high doses. The floc was reconstructed with addition of inorganic coagulants (polyaluminium chloride (PACl) and ferric chloride (FeCl3)) and PACl performed better in flocculation due to its higher charge neutralization and bridging ability. Combined oxidative lysis and chemical re-flocculation provide a novel solution for sludge treatment.

  9. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  10. Easily processable multimodal spectral converters based on metal oxide/organic-inorganic hybrid nanocomposites.

    Science.gov (United States)

    Julián-López, Beatriz; Gonell, Francisco; Lima, Patricia P; Freitas, Vânia T; André, Paulo S; Carlos, Luis D; Ferreira, Rute A S

    2015-10-09

    This manuscript reports the synthesis and characterization of the first organic-inorganic hybrid material exhibiting efficient multimodal spectral converting properties. The nanocomposite, made of Er(3+), Yb(3+) codoped zirconia nanoparticles (NPs) entrapped in a di-ureasil d-U(600) hybrid matrix, is prepared by an easy two-step sol-gel synthesis leading to homogeneous and transparent materials that can be very easily processed as monolith or film. Extensive structural characterization reveals that zirconia nanocrystals of 10-20 nm in size are efficiently dispersed into the hybrid matrix and that the local structure of the di-ureasil is not affected by the presence of the NPs. A significant enhancement in the refractive index of the di-ureasil matrix with the incorporation of the ZrO2 nanocrystals is observed. The optical study demonstrates that luminescent properties of both constituents are perfectly preserved in the final hybrid. Thus, the material displays a white-light photoluminescence from the di-ureasil component upon excitation at UV/visible radiation and also intense green and red emissions from the Er(3+)- and Yb(3+)-doped NPs after NIR excitation. The dynamics of the optical processes were also studied as a function of the lanthanide content and the thickness of the films. Our results indicate that these luminescent hybrids represent a low-cost, environmentally friendly, size-controlled, easily processed and chemically stable alternative material to be used in light harvesting devices such as luminescent solar concentrators, optical fibres and sensors. Furthermore, this synthetic approach can be extended to a wide variety of luminescent NPs entrapped in hybrid matrices, thus leading to multifunctional and versatile materials for efficient tuneable nonlinear optical nanodevices.

  11. Easily processable multimodal spectral converters based on metal oxide/organic—inorganic hybrid nanocomposites

    Science.gov (United States)

    Julián-López, Beatriz; Gonell, Francisco; Lima, Patricia P.; Freitas, Vânia T.; André, Paulo S.; Carlos, Luis D.; Ferreira, Rute A. S.

    2015-10-01

    This manuscript reports the synthesis and characterization of the first organic-inorganic hybrid material exhibiting efficient multimodal spectral converting properties. The nanocomposite, made of Er3+, Yb3+ codoped zirconia nanoparticles (NPs) entrapped in a di-ureasil d-U(600) hybrid matrix, is prepared by an easy two-step sol-gel synthesis leading to homogeneous and transparent materials that can be very easily processed as monolith or film. Extensive structural characterization reveals that zirconia nanocrystals of 10-20 nm in size are efficiently dispersed into the hybrid matrix and that the local structure of the di-ureasil is not affected by the presence of the NPs. A significant enhancement in the refractive index of the di-ureasil matrix with the incorporation of the ZrO2 nanocrystals is observed. The optical study demonstrates that luminescent properties of both constituents are perfectly preserved in the final hybrid. Thus, the material displays a white-light photoluminescence from the di-ureasil component upon excitation at UV/visible radiation and also intense green and red emissions from the Er3+- and Yb3+-doped NPs after NIR excitation. The dynamics of the optical processes were also studied as a function of the lanthanide content and the thickness of the films. Our results indicate that these luminescent hybrids represent a low-cost, environmentally friendly, size-controlled, easily processed and chemically stable alternative material to be used in light harvesting devices such as luminescent solar concentrators, optical fibres and sensors. Furthermore, this synthetic approach can be extended to a wide variety of luminescent NPs entrapped in hybrid matrices, thus leading to multifunctional and versatile materials for efficient tuneable nonlinear optical nanodevices.

  12. All-inorganic white light emitting devices based on ZnO nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Nannen, Ekaterina

    2012-09-21

    Semiconductor nanaocrystals (NCs) are very promising candidates for lightweight large-area rollable displays and light emitting devices (LEDs). They are expected to combine the efficiency, robustness and color tunability of conventional semiconductor LEDs with the flexible fabrication techniques known from OLED technology, since the NCs are compatible with solution processing and therefore can be deposited on virtually any substrates including glass and plastic. Today, NC-LEDs consist of chemically synthesized QDs embedded in organic charge injection and transport layers. The organic layers limit the robustness of the NC-LEDs and result in significant constrictions within the device fabrication procedure, such as organic evaporation steps, inert (i.e. humidity and oxygen free) atmosphere and obligatory encapsulation. These limitations during the production process as well as complex chemical synthesis route of the implemented NCs and organic components lead to high fabrication costs and low turnover. So far, only prototype devices have been introduced by several research groups and industrial companies. Still, the main concern retarding NC-LEDs from market launch is the high content of toxic heavy metals like Cd in the active nanocrystalline light emitting material. Within this work, possible environmentally safe and ambient-air-compatible alternatives to conventional QDs and organics were explored, with the main focus on design and fabrication of completely inorganic white NC-LEDs with commercial ZnO nanoparticles as an active light emitting material. While the electrical transport properties through the NC-network of the commercially available VP AdNano {sup registered} ZnO2O particles were already to some extent explored, their optical properties and therefore suitability as an active light emitter in NC-LEDs were not studied so far. (orig.)

  13. Anticancer Activity of Ferulic Acid-Inorganic Nanohybrids Synthesized via Two Different Hybridization Routes, Reconstruction and Exfoliation-Reassembly

    Directory of Open Access Journals (Sweden)

    Hyoung-Jun Kim

    2013-01-01

    Full Text Available We have successfully prepared nanohybrids of biofunctional ferulic acid and layered double hydroxide nanomaterials through reconstruction and exfoliation-reassembly routes. From X-ray diffraction and infrared spectroscopy, both nanohybrids were determined to incorporate ferulic acid molecules in anionic form. Micrsocopic results showed that the nanohybrids had average particle size of 150 nm with plate-like morphology. As the two nanohybridization routes involved crystal disorder and random stacking of layers, the nanohybrids showed slight alteration in z-axis crystallinity and particle size. The zeta potential values of pristine and nanohybrids in deionized water were determined to be positive, while those in cell culture media shifted to negative values. According to the in vitro anticancer activity test on human cervical cancer HeLa cells, it was revealed that nanohybrids showed twice anticancer activity compared with ferulic acid itself. Therefore we could conclude that the nanohybrids of ferulic acid and layered double hydroxide had cellular delivery property of intercalated molecules on cancer cell lines.

  14. A Note on Fatty Acids Profile of Meat from Broiler Chickens Supplemented with Inorganic or Organic Selenium

    Science.gov (United States)

    del Puerto, Marta; Cabrera, M. Cristina

    2017-01-01

    This investigation evaluated, in broiler chickens Pectoralis and Gastrocnemius muscles, the effect of the dietary supplementation with sodium selenite (0.3 ppm) versus selenomethionine (0.3 ppm), on the fatty acids composition, lipids indices, and enzymes indexes for desaturase, elongase, and thioesterase. The selenium reduced, in both muscles, the content of atherogenic fatty acids, C14:0 and C16:0, while it increased the C18:1 level. On the other hand, selenium increased, in both muscles, the content of C18:3n3 and EPA, but not DPA and DHA. No selenium effect was detected for PUFA/SFA, n-6, n-3, n-6/n-3, and atherogenic and thrombogenic indices. As for the enzyme indexes, a selenium effect is only detected for thioesterase. Taken together, the results highlight the potential effect of dietary selenium, mainly selenomethionine, in the modulation of the composition of fatty acids in chicken meat, in particular, reducing the content of atherogenic fatty acids and increasing the health promoting n-3 PUFA. PMID:28194404

  15. Inorganic Materials

    Science.gov (United States)

    Černý, Radovan

    The separation of compounds by inorganic/organic boundary is of less importance for the structure determination by diffraction methods. More important for the diffraction is how the atoms build up larger building units and the crystal itself. A molecular/non-molecular boundary is therefore relevant for the choice of a structure determination method. Non-molecular compounds - also called extended solids - are constructed by bonds that extend "infinitely" in three dimensions through a crystal. These non-molecular crystals usually crystallize with higher symmetries, and atoms often occupy special Wyckoff positions. A review of actual methodology is given first, and then highlights and pitfalls of structure determination from powder diffraction, its problems and their solutions are shown and discussed using selected examples.

  16. Water soluble inorganic trace gases and related aerosol compounds in the tropical boundary layer. An analysis based on real time measurements at a pasture site in the Amazon Basin

    NARCIS (Netherlands)

    Trebs, I.

    2005-01-01

    This dissertation investigates the behavior of water-soluble inorganic trace gases and related aerosol species in the tropical boundary layer. Mixing ratios of ammonia (NH3), nitric acid (HNO3), nitrous acid (HONO), hydrochloric acid (HCl), sulfur dioxide (SO;,) and the corresponding water-soluble a

  17. An investigation of proton conductivity of binary matrices sulfonated polysulfone/polyvinyltriazole after doping with inorganic acids

    Indian Academy of Sciences (India)

    Serkan Sevinç; Sevim Ünügür Çelik; Ayhan Bozkurt

    2015-04-01

    As anhydrous proton conductive membranes, sulfonated polysulfone (SPSU) and polyvinyl triazole were studied as binary matrices. The sulfonation of polysulfone was performed with trimethylsilylchlorosulfonate and high degree of sulfonation (140%) was obtained. Ion exchange capacity of SPSU was determined as 3.05 mmol−1/g. The polymer electrolyte membranes were prepared by blending of sulfonated polysulfone with polyvinyl triazole and phosphoric acid. Fourier transform infrared spectroscopy confirmed the sulfonation of the polysulfone and the ionic interaction between sulfonic acid and triazole units. Thermogravimetric analysis showed that the polymer electrolyte membranes are thermally stable up to at least 150° C. Scanning electron microscopy analysis indicated the homogeneity of the ternary composites. The maximum proton conductivity has been measured as 3.63 × 10−4S cm−1 at 150° C.

  18. Attachment of inorganic moieties onto aliphatic polyurethanes

    Directory of Open Access Journals (Sweden)

    Eliane Ayres

    2007-06-01

    Full Text Available Polyurethanes have been used in a series of applications due basically to their versatility in terms of controlling the behavior by altering basically the type of reagents used. However, for more specific and advanced applications, such as in membranes, biomaterials and sensors, well-organized and defined chemical functionalities are necessary. In this work, inorganic functionalities were incorporated into aliphatic polyurethanes (PU having different macromolecular architectures. Polyurethanes were synthesized using a polyether diol and dicyclohexylmethane 4,4' diisocyanate (H12-MDI. Polyurethanes having carboxylic acid groups were also produced by introducing 2,2- bis (hydroxymethyl propionic acid in the polymerization process. Inorganic functionalities were inserted into polyurethanes by reacting isocyanate end capped chains with aminopropyltriethoxysilane followed by tetraethoxysilane. PU having carboxylic acid groups yielded transparent samples after the incorporation of inorganic entities, as an evidence of smaller and better dispersed inorganic entities in the polymer network. FTIR and swelling measurements showed that polyurethanes having carboxylic acid groups had inorganic domains less packed, condensed and cross-linked when compared to polyurethanes with no carboxylic acid groups. Results also suggested that the progressive incorporation of inorganic moieties in both types of polyurethanes occurred in regions previously activated with inorganic functionalities, instead of by the creation of new domains. The temperatures of thermal decomposition and glass transition were also shifted to higher temperatures when inorganic functionalities were incorporated into polyurethanes.

  19. A new polymeric ionic liquid-based magnetic adsorbent for the extraction of inorganic anions in water samples.

    Science.gov (United States)

    Chen, Lei; Huang, Xiaojia; Zhang, Yong; Yuan, Dongxing

    2015-07-17

    In this work, a novel type of polymeric ionic liquid (PIL)-based magnetic adsorbent was successfully synthesized and applied for the extraction and determination of seven inorganic anions in water samples by coupling with ion chromatography. The new adsorbent was synthesized by simple free radical copolymerization of 1-ally-3-vinylimidazolium chloride, ethylene glycol dimethacrylate and silica-coated magnetite. The adsorbent exhibited well-defined core-shell structure and good magnetic response ability. Furthermore, due to the presence of abundant anion-exchange groups in the PIL, the adsorbent displayed expected extraction performance for anions including F(-), Cl(-), Br(-), NO2(-), NO3(-), PO4(3-) and SO4(2-). Various experimental parameters that could affect the extraction performance, such as the amount of adsorbent, desorption solvent, extraction and desorption time, the pH value of sample solution were investigated in detail. Under the optimized conditions, low limits of detection (S/N=3) and quantification limits (S/N=10) of the proposed method for the target anions were achieved within the range of 0.061-0.73μg/L and 0.19-2.41μg/L, respectively. The repeatability was investigated by evaluating the intra-day, inter-day precisions and batch-to-batch reproducibility with relative standard deviations (RSDs) lower than 11%. At the same time, the method also showed high extraction speed, simplicity, practicality and low cost for the extraction inorganic anions. Finally, the proposed method was used to detect anions in different water samples successfully. The recoveries were in the range of 71.0-111%, and the RSDs were below 12% in the all cases.

  20. On-site Rapid Detection of Trace Non-volatile Inorganic Explosives by Stand-alone Ion Mobility Spectrometry via Acid-enhanced Evaporization

    OpenAIRE

    2014-01-01

    New techniques for the field detection of inorganic improvised explosive devices (IEDs) are urgently developed. Although ion mobility spectrometry (IMS) has been proved to be the most effective method for screening organic explosives, it still faces a major challenge to detect inorganic explosives owing to their low volatilities. Herein, we proposed a strategy for detecting trace inorganic explosives by thermal desorption ion mobility spectrometry (TD-IMS) with sample-to-sample analysis time ...

  1. Time-resolved variations in the distributions of inorganic ions, carbonaceous components, dicarboxylic acids and related compounds in atmospheric aerosols from Sapporo, northern Japan during summertime

    Science.gov (United States)

    Pavuluri, Chandra Mouli; Kawamura, Kimitaka; Kikuta, Motomi; Tachibana, Eri; Aggarwal, Shankar G.

    2012-12-01

    To better understand time-resolved variations of water-soluble organic aerosols in the atmosphere, we collected atmospheric particles (TSP) every 3 h during summertime (8-10 August, 2005) in Sapporo, northern Japan. We measured inorganic ions, carbonaceous components, dicarboxylic acids, ketoacids and α-dicarbonyls in TSP. SO42- was found as the most abundant ionic species (57 ± 9% of total ions determined) followed by NH4+ and NO3-. However, none of the ionic species showed any diurnal trend throughout the campaign. Organic carbon (OC) ranged from 2.1 to 12.1 μg m-3 whereas elemental carbon (EC) was negligible in most of the samples (0.31 ± 0.56 μg m-3). Oxalic (C2) acid was the most abundant diacid species, followed by malonic (C3) and succinic (C4) acids. Water-soluble OC (WSOC), water-insoluble OC (WIOC) and OC as well as dominant diacids (C2-C4), total diacids, ketoacids and α-dicarbonyls did not show diurnal trend on 8 August, but they showed clear diurnal distributions during 9-10 August following the changes in ambient temperature (and radiation). Detailed analyses of time-resolved aerosols demonstrate that diurnal variations of organic aerosol compositions are caused by local in situ photochemical production, but are significantly superimposed by long-range atmospheric transport of aerosols, particularly when the air masses are enriched with emissions from higher plants and/or biomass burning, and their photochemical processing during the transport.

  2. Efficiency Investigations of Organic/Inorganic Hybrid ZnO Nanoparticles Based Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Satbir Singh

    2016-01-01

    Full Text Available The present research study focuses upon the synthesis, characterization, and performances of optoelectronic properties of organic-inorganic (hybrid ZnO based dye sensitized solar cells. Initially, polymer dye A was synthesized using condensation reaction between 2-thiophenecarboxaldehyde and polyethylenimine and was capped to ZnO nanoparticles. Size and morphology of polymer dye A capped ZnO nanoparticles were analyzed using DLS, SEM, and XRD analysis. Further, the polymer dye was added to ruthenium metal complex (RuCl3 to form polymer-ruthenium composite dye B. Absorption and emission profiles of polymer dye A and polymer-ruthenium composite dye B capped ZnO nanoparticles were monitored using UV-Vis and fluorescence spectroscopy. Polymer dye A and polymer-ruthenium composite dye B capped ZnO nanoparticles were further processed to solar cells using wet precipitation method under room temperature. The results of investigations revealed that, after addition of ruthenium chloride (RuCl3 metal complex dye, the light harvesting capacity of ZnO solar cell was enhanced compared to polymer dye A capped ZnO based solar cell. The polymer-ruthenium composite dye B capped ZnO solar cell exhibited good photovoltaic performance with excellent cell parameters, that is, exciting open circuit voltage (Voc of 0.70 V, a short circuit current density (Jsc of 11.6 mA/cm2, and a fill factor (FF of 0.65. A maximum photovoltaic cell efficiency of 5.28% had been recorded under standard air mass (AM 1.5 simulated solar illuminations for polymer-ruthenium composite dye B based hybrid ZnO solar cell. The power conversion efficiency of hybrid ZnO based dye sensitized solar cell was enhanced by 1.78% and 3.88% compared to polymer dye A (concentrated and polymer dye A (diluted capped ZnO based dye sensitized solar cells, respectively. The hybrid organic/inorganic ZnO nanostructures can be implemented in a variety of optoelectronic applications in the future of clean and

  3. Organic-Inorganic Hybrid Hollow Mesoporous Organosilica Nanoparticles for Efficient Ultrasound-Based Imaging and Controlled Drug Release

    Directory of Open Access Journals (Sweden)

    Xiaoqin Qian

    2014-01-01

    Full Text Available A novel anticancer drug delivery system with contrast-enhanced ultrasound-imaging performance was synthesized by a typical hard-templating method using monodispersed silica nanoparticles as the templates, which was based on unique molecularly organic/inorganic hybrid hollow periodic mesoporous organosilicas (HPMOs. The highly dispersed HPMOs show the uniform spherical morphology, large hollow interior, and well-defined mesoporous structures, which are very beneficial for ultrasound-based theranostics. The obtained HPMOs exhibit excellent performances in contrast-enhanced ultrasonography both in vitro and in vivo and can be used for the real-time determination of the progress of lesion tissues during the chemotherapeutic process. Importantly, hydrophobic paclitaxel- (PTX- loaded HPMOs combined with ultrasound irradiation show fast ultrasound responsiveness for controlled drug release and higher in vitro and in vivo tumor inhibition rates compared with free PTX and PTX-loaded HPMOs, which is due to the enhanced ultrasound-triggered drug release and ultrasound-induced cavitation effect. Therefore, the achieved novel HPMOs-based nanoparticle systems will find broad application potentials in clinically ultrasound-based imaging and auxiliary tumor chemotherapy.

  4. Science Update: Inorganic Chemistry.

    Science.gov (United States)

    Rawls, Rebecca

    1981-01-01

    Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)

  5. Acid-base balance in heart failure.

    Science.gov (United States)

    Frangiosa, A; De Santo, L S; Anastasio, P; De Santo, N G

    2006-01-01

    In end-stage heart failure, various acid-base disorders can be discovered due to the renal loss of hydrogen ions and hydrogen ion movements into cells, the reduction of the effective circulating volume, hypoxemia and renal failure. This justifies the occurrence of metabolic alkalosis, metabolic acidosis, respiratory alkalosis, as well as respiratory acidosis alone or in combination. Several studies have been published on the acid-base state in heart failure. In a 1951 study, Squires et al analyzed the distribution of body fluid in congestive heart failure by taking into consideration the abnormalities in serum electrolyte concentration and in acid-base equilibrium. A recent study by Milionis et al, analyzed 86 patients with congestive heart failure receiving conventional treatment; the majority of these patients exhibited hypokalemia, hyponatremia, hypocalcemia and hypophosphatemia. Disorders in acid-base balance were noted in 37.2% of patients. In a recent study, 70 patients with severe congestive heart failure before heart transplantation showed high-normal pH, slightly reduced pCO 2 and a slight loss of hydrogen ions. After heart transplantation, stability of blood pH and hydrogen ion concentrations was found. In contrast, bicarbonate and pCO 2 increased significantly. The data led us to formulate the diagnosis of a mixed acid-base disorder that includes respiratory alkalosis and metabolic alkalosis before heart transplantation. In heart failure, the presence of acid-base imbalance associated with the activation of mechanisms that lead to salt and water retention reveals evidence concerning the pivotal role of the kidney in determining the outcome of these patients.

  6. Recovery of vanadium from spent catalysts of sulfuric acid plant by using inorganic and organic acids: Laboratory and semi-pilot tests.

    Science.gov (United States)

    Erust, Ceren; Akcil, Ata; Bedelova, Zyuldyz; Anarbekov, Kuanysh; Baikonurova, Aliya; Tuncuk, Aysenur

    2016-03-01

    Catalysts are used extensively in industry to purify and upgrade various feeds and to improve process efficiency. These catalysts lose their activity with time. Spent catalysts from a sulfuric acid plant (main elemental composition: 5.71% V2O5, 1.89% Al2O3, 1.17% Fe2O3 and 61.04% SiO2; and the rest constituting several other oxides in traces/minute quantities) were used as a secondary source for vanadium recovery. Experimental studies were conducted by using three different leaching systems (citric acid with hydrogen peroxide, oxalic acid with hydrogen peroxide and sulfuric acid with hydrogen peroxide). The effects of leaching time, temperature, concentration of reagents and solid/liquid (S/L) ratio were investigated. Under optimum conditions (1:25 S/L ratio, 0.1 M citric acid, 0.1 M hydrogen peroxide, 50°C and 120 min), 95% V was recovered in the presence of hydrogen peroxide in citric acid leaching.

  7. The Role of Organic Acids in the Acid-Base Status of Surface Waters at Bickford Watershed, Massachusetts

    Science.gov (United States)

    Eshleman, K. N.; Hemond, H. F.

    1985-10-01

    An experimental field study of the alkalinity and major ion budgets of Bickford watershed in central Massachusetts indicates that organic acid production by the ecosystem contributes measurably to surface water acidification. Applying the concepts of alkalinity, electroneutrality of solutions, and mass balance, organic acids were found to comprise 20% of all strong acid sources on one subcatchment annually, a value half as large as the measured bulk mineral acid deposition. Inorganic cation to anion ratios in Provencial Brook varied between 1.0 in winter and 1.6 during summer, suggesting the presence of up to 100 μeq/L of unmeasured charge from organic anions during the growing season. Base titrations and ultraviolet photooxidation experiments confirmed the existence of low pKa (3.5-5.0) acidic functional groups. A positive linear relationship between dissolved organic carbon (DOC) and anion deficit for a group of surface and groundwater samples indicates the DOC contains about 7.5 meq carboxylic groups per gram C. Biological factors related to both upland and wetland carbon metabolism apparently control this natural acidification phenomenon, which has not been documented on other watersheds in the northeastern United States for which annual alkalinity budgets have been determined.

  8. Hypokalemic paralysis and acid-base balance

    Directory of Open Access Journals (Sweden)

    Ivo Casagranda

    2006-10-01

    Full Text Available Three cases of hypokalemic paralysis are reported, presenting to the Emergency Department. The first is a patient with a hypokalemic periodic paralysis with a normal acid-base status, the second is a case of hypokalemic flaccid paralysis of all extremities with a normal anion gap metabolic acidosis, the last is a patient with a hypokalemic distal paralysis of right upper arm with metabolic alkalosis. Afterwards some pathophysiologic principles and the clinical aspects of hypokalemia are discussed and an appropriate approach to do in Emergency Department, to identify the hypokalemic paralysis etiologies in the Emergency Department, is presented, beginning from the evaluation of acid-base status.

  9. Organic-skinned inorganic nanoparticles: surface-confined polymerization of 6-(3-thienylhexanoic acid bound to nanocrystalline TiO2

    Directory of Open Access Journals (Sweden)

    Saji Viswanathan

    2011-01-01

    Full Text Available Abstract There are many practical difficulties in direct adsorption of polymers onto nanocrystalline inorganic oxide surface such as Al2O3 and TiO2 mainly due to the insolubility of polymers in solvents or polymer agglomeration during adsorption process. As an alternative approach to the direct polymer adsorption, we propose surface-bound polymerization of pre-adsorbed monomers. 6-(3-Thienylhexanoic acid (THA was used as a monomer for poly[3-(5-carboxypentylthiophene-2,5-diyl] (PTHA. PTHA-coated nanocrystalline TiO2/FTO glass electrodes were prepared by immersing THA-adsorbed electrodes in FeCl3 oxidant solution. Characterization by ultraviolet/visible/infrared spectroscopy and thermal analysis showed that the monolayer of regiorandom-structured PTHA was successfully formed from intermolecular bonding between neighbored THA surface-bound to TiO2. The anchoring functional groups (-COOH of the surface-crawling PTHA were completely utilized for strong bonding to the surface of TiO2.

  10. Inorganic ions in ambient fine particles over a National Park in central India: Seasonality, dependencies between SO42-, NO3-, and NH4+, and neutralization of aerosol acidity

    Science.gov (United States)

    Kumar, Samresh; Sunder Raman, Ramya

    2016-10-01

    Twelve hour integrated ambient fine particles (PM2.5) were collected over an Van Vihar National Park (VVNP), in Bhopal, Central India. Samples were collected on filter substrates every-other-day for two years (2012 and 2013). In addition to PM2.5 mass concentration, water soluble inorganic ions (WSIIs) were also measured. Further, on-site meteorological parameters including temperature, wind speed, wind direction, relative humidity, rainfall and atmospheric pressure were recorded. During 2012, the average PM2.5 concentration was 40 ± 31 μgm-3 while during 2013 it was 48 ± 50 μgm-3. Further, in about 20% of the samples the 12 h integrated fine PM mass exceeded the daily (24 h) average standards (60 μgm-3). This observation suggests that the PM2.5 mass concentration at the study site is likely to be in violation of the National Ambient Air Quality Standard (NAAQS), India. During the study period the sum of three major ions (SO42-, NO3-, and NH4+) accounted for 19.4% of PM2.5 mass on average. Air parcel back trajectory ensembles revealed that emissions from thermal power plants were likely to be the main regional source of particulate SO42- and NO3- measured over VVNP. Further, local traffic activities appeared to have no significant impact on the concentrations of PM2.5 and its WSIIs constituents, as revealed by a day-of-the-week analysis. PM2.5 mass, SO42-, NO3-, and NH4+ showed a pronounced seasonal trend with winter (Jan, Feb) and post-monsoon (Oct, Nov, Dec) highs and pre-monsoon (Mar, Apr, May) and monsoon (Jun, Jul, Aug, Sep) lows, during both 2012 and 2013. Further, when the sum of SO42- and NO3- constituted greater than 90% of water soluble inorganic anions by mass, they were linearly dependent on one another and moderately anti-correlated (r2 = 0.60). The molar ratios of NH4+ and non-sea salt SO42- were examined to understand the aerosol neutralization mechanisms and particulate NO3- formation. An assessment of these ratios and subsequent analyses

  11. 玉蜀黍叶中氨基酸及无机元素的含量测定%Determination of Amino Acids and Inorganic Elements in the leaves of Zea mays L.

    Institute of Scientific and Technical Information of China (English)

    刘银燕; 杨晓虹; 陈滴; 王文娜; 孙琦; 杨锦竹

    2012-01-01

    对玉蜀黍叶中氨基酸和无机元素进行研究.采用日立835-50型氨基酸分析仪和ICP - AES法对玉蜀黍叶中氨基酸和无机元素进行了研究.结果表明,玉蜀黍叶中含有17种氨基酸和12种人体必需的无机元素.本研究为玉蜀黍叶的药用开发提供了参考依据.%To determine amino acids and inorganic elements in the leaves of zea mays L., amino acids in leaves of zea mays L. Were determined by the amino acid analyzer, and inorganic elements in leaves of zea mays L. Were determined by ICP-AES. The result showed thai there were 17 amino acids and 12 kind of inorganic elements in leaves of zea mays L., and it provide a basis for the medical exploitation oi the leaves of zea mays L..

  12. Noninvasive tagging of proteins with an inorganic chromophore. Selectivity of chloro(terpyridine)platinum(II) toward amino acids, peptides, and cytochromes c

    Energy Technology Data Exchange (ETDEWEB)

    Brothers, H.M. II; Kostic, N.M.

    1988-05-18

    The complex (Pt(trpy)Cl)/sup +/ exhibits unexpected selectivity toward amino acid side chains in cytochromes c from Candida krusei and bakers' yeast. Although kinetic studies with amino acids and peptides as entering ligands prove this complex to be completely selective toward thiol over imidazole, His-33 and His-39 residues (in both proteins) are labeled with greater yields than the Cys-102 residue (in the bakers' yeast protein). The binding sites are determined by peptide mapping and other methods. The Pt(trpy)/sup 2+/ tags are stable, and the protein derivatives are separated by cation-exchange chromatography. The (Pt(trpy)His)/sup 2+/ and (Pt(trpy)Cys)/sup +/ chromophores are easily detected and quantitated owing to their characteristic and strong UV-vis bands. Spectroscopic and electrochemical measurements show that labeling with the new reagent does not alter the structural and redox properties of the cytochromes c. The unexpected outcome of the protein labeling indicates that, contrary to the common assumption, Cys-102 is not exposed at the protein surface. Modification of this residue with various organic reagents and dimerization of the protein must be accompanied by a perturbation of the conformation, which makes Cys-102 accessible to the reagent or to another molecule of the protein. These predictions from the labeling study are confirmed subsequently by the crystallographic study of the iso-1 cytochrome c from bakers' yeast. The inorganic complex (Pt(trpy)Cl)/sup +/ differs from the other reagents for protein modification by its noninvasiveness, a property that may well render it useful as a probe of the protein surface. 59 refs., 2 figs., 4 tabs.

  13. A field-deployable, chemical ionization time-of-flight mass spectrometer: application to the measurement of gas-phase organic and inorganic acids

    Directory of Open Access Journals (Sweden)

    T. H. Bertram

    2011-03-01

    Full Text Available We report a new field-deployable chemical ionization time-of-flight mass spectrometer (CI-TOFMS for the direct measurement of trace gases in the atmosphere. We apply the technique to the measurement of gas-phase inorganic and organic acids via negative-ion proton transfer, using acetate as the reagent ion. A novel high pressure interface, incorporating two RF-only quadrupoles is used to efficiently focus ions through four stages of differential pumping before analysis with a compact TOFMS. The high ion-duty cycle (>20% of the TOFMS, coupled to efficient production and transmission of ions in the high pressure interface results in a highly sensitive (>300 ions s−1 pptv−1 instrument capable of the fast measurement of atmospheric gases at trace levels. We demonstrate the efficient transfer and detection of both bare ions and ion-molecule clusters, and characterize the instrument during field measurements aboard the R/V Atlantis as part of the CalNex campaign during the spring of 2010. The in-field short-term precision is better than 5% at 1 pptv (pL/L, for 1-second averages. The detection limit (3σ, 1-second averages of the current version of the CI-TOFMS, as applied to the in situ detection of gas-phase acids, is limited by the magnitude and variability in the background determination and was determined to be 4 pptv.

  14. Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites.

    Science.gov (United States)

    Noel, Nakita K; Abate, Antonio; Stranks, Samuel D; Parrott, Elizabeth S; Burlakov, Victor M; Goriely, Alain; Snaith, Henry J

    2014-10-28

    Organic-inorganic metal halide perovskites have recently emerged as a top contender to be used as an absorber material in highly efficient, low-cost photovoltaic devices. Solution-processed semiconductors tend to have a high density of defect states and exhibit a large degree of electronic disorder. Perovskites appear to go against this trend, and despite relatively little knowledge of the impact of electronic defects, certified solar-to-electrical power conversion efficiencies of up to 17.9% have been achieved. Here, through treatment of the crystal surfaces with the Lewis bases thiophene and pyridine, we demonstrate significantly reduced nonradiative electron-hole recombination within the CH(3)NH(3)PbI(3-x)Cl(x) perovskite, achieving photoluminescence lifetimes which are enhanced by nearly an order of magnitude, up to 2 μs. We propose that this is due to the electronic passivation of under-coordinated Pb atoms within the crystal. Through this method of Lewis base passivation, we achieve power conversion efficiencies for solution-processed planar heterojunction solar cells enhanced from 13% for the untreated solar cells to 15.3% and 16.5% for the thiophene and pyridine-treated solar cells, respectively.

  15. Noncovalent interaction of polyethylene glycol with copper complex of ethylenediaminetetraacetic acid and its application in constructing inorganic nanomaterials.

    Science.gov (United States)

    Pan, Shu Zhen; Song, Le Xin; Chen, Jie; Du, Fang Yun; Yang, Jing; Xia, Juan

    2011-10-21

    In this study, we try to answer a fundamental question: what is the consequence of the noncovalent interaction between a polymer and a coordination compound? Here, polyethylene glycol (PEG-4000, PEG-b) and copper complex of ethylenediaminetetraacetic acid (H(2)CuY) were employed to solve this problem. A novel adduct (CEP) between H(2)CuY and PEG-b was prepared. Our results indicated several interesting findings. First, the introduction of H(2)CuY had no effect on the stacking structure of PEG-b but led to a large change in surface structure of the polymer. Second, there was a significant difference (117 K) in the maximum degradation temperature between the PEG and the CEP, suggesting that the noncovalent interaction can drastically improve the thermal stability of the PEG. Third, sintering experiments showed that H(2)CuY and CEP produced completely different decomposition products. The former formed Cu crystals in nitrogen and CuO in air, but the latter generated Cu and CuCl crystals with good crystallinity, respectively. Finally, three independent measurements: viscosity, conductivity and nuclear magnetic resonance in solution, provided useful information and insights from both sides of the noncovalent interaction. Probable interaction mechanisms and interaction sites were proposed. We consider that the current research could create the foundation for a new understanding of how the noncovalent adduct interaction between a metallic complex and a polymer relates to the change in physical and chemical properties of the adducted components.

  16. Fermented probiotic beverages based on acid whey

    Directory of Open Access Journals (Sweden)

    Katarzyna Skryplonek

    2015-12-01

    Full Text Available Background. Production of fermented probiotic beverages can be a good method for acid whey usage. The obtained products combine a high nutritional value of whey with health benefits claimed for probiotic bac- teria. The aim of the study was to define quality properties of beverages based on fresh acid whey and milk with addition of buttermilk powder or sweet whey powder. Material and methods. Samples were inoculated with two strains of commercial probiotic cultures: Lac- tobacillus acidophilus La-5 or Bifidobacterium animalis Bb-12. After fermentation, samples were stored at refrigerated conditions. After 1, 4, 7, 14 and 21 days sensory characteristics, hardness, acetaldehyde content, titratable acidity, pH acidity and count of bacteria cells were evaluated. Results. Throughout all storage period, the number of bacteria was higher than 8 log cfu/ml in the all sam- ples. Beverages with La-5 strain had higher hardness and acidity, whilst samples with Bb-12 contained more acetaldehyde. Samples with buttermilk powder had better sensory properties than with sweet whey powder. Conclusions. Obtained products made of acid whey combined with milk and fortified with buttermilk pow- der or sweet whey powder, are good medium for growth and survival of examined probiotic bacteria strains. The level of bacteria was sufficient to provide health benefits to consumers.

  17. Glycine/Glycolic acid based copolymers

    NARCIS (Netherlands)

    in 't Veld, P.J.A.; in 't Veld, Peter J.A.; Shen, Zheng-Rong; Shen, Z.; Takens, Gijsbert A.J.; Takens, G.A.J.; Dijkstra, Pieter J.; Feijen, Jan

    1994-01-01

    Glycine/glycolic acid based biodegradable copolymers have been prepared by ring-opening homopolymerization of morpholine-2,5-dione, and ring-opening copolymerization of morpholine-2,5-dione and glycolide. The homopolymerization of morpholine-2,5-dione was carried out in the melt at 200°C for 3 min

  18. Jigsaw Cooperative Learning: Acid-Base Theories

    Science.gov (United States)

    Tarhan, Leman; Sesen, Burcin Acar

    2012-01-01

    This study focused on investigating the effectiveness of jigsaw cooperative learning instruction on first-year undergraduates' understanding of acid-base theories. Undergraduates' opinions about jigsaw cooperative learning instruction were also investigated. The participants of this study were 38 first-year undergraduates in chemistry education…

  19. The Magic Sign: Acids, Bases, and Indicators.

    Science.gov (United States)

    Phillips, Donald B.

    1986-01-01

    Presents an approach that is used to introduce elementary and junior high students to a series of activities that will provide concrete experiences with acids, bases, and indicators. Provides instructions and listings of needed solutions and materials for developing this "magic sign" device. Includes background information and several…

  20. Jigsaw Cooperative Learning: Acid-Base Theories

    Science.gov (United States)

    Tarhan, Leman; Sesen, Burcin Acar

    2012-01-01

    This study focused on investigating the effectiveness of jigsaw cooperative learning instruction on first-year undergraduates' understanding of acid-base theories. Undergraduates' opinions about jigsaw cooperative learning instruction were also investigated. The participants of this study were 38 first-year undergraduates in chemistry education…

  1. Glycine/Glycolic acid based copolymers

    NARCIS (Netherlands)

    Veld, in 't Peter J.A.; Shen, Zheng-Rong; Takens, Gijsbert A.J.; Dijkstra, Pieter J.; Feijen, Jan

    1994-01-01

    Glycine/glycolic acid based biodegradable copolymers have been prepared by ring-opening homopolymerization of morpholine-2,5-dione, and ring-opening copolymerization of morpholine-2,5-dione and glycolide. The homopolymerization of morpholine-2,5-dione was carried out in the melt at 200°C for 3 min u

  2. Compound-specific 15N analysis of amino acids in 15N tracer experiments provide an estimate of newly synthesised soil protein from inorganic and organic substrates

    Science.gov (United States)

    Charteris, Alice; Michaelides, Katerina; Evershed, Richard

    2015-04-01

    Organic N concentrations far exceed those of inorganic N in most soils and despite much investigation, the composition and cycling of this complex pool of SOM remains poorly understood. A particular problem has been separating more recalcitrant soil organic N from that actively cycling through the soil system; an important consideration in N cycling studies and for the soil's nutrient supplying capacity. The use of 15N-labelled substrates as stable isotope tracers has contributed much to our understanding of the soil system, but the complexity and heterogeneity of soil organic N prevents thorough compound-specific 15N analyses of organic N compounds and makes it difficult to examine any 15N-labelled organic products in any detail. As a result, a significant proportion of previous work has either simply assumed that since the majority of soil N is organic, all of the 15N retained in the soil is organic N (e.g. Sebilo et al., 2013) or subtracted 15N-labelled inorganic compounds from bulk values (e.g. Pilbeam et al., 1997). While the latter approach is more accurate, these methods only provide an estimate of the bulk 15N value of an extremely complex and non-uniformly labelled organic pool. A more detailed approach has been to use microbial biomass extraction (Brookes et al., 1985) and subsequent N isotopic analysis to determine the 15N value of biomass-N, representing the fraction of 15N assimilated by microbes or the 15N cycling through the 'living' or 'active' portion of soil organic N. However, this extraction method can only generate estimates and some lack of confidence in its validity and reliability remains. Here, we present an alternative technique to obtain a measure of the assimilation of an applied 15N substrate by the soil microbial biomass and an estimate of the newly synthesized soil protein, which is representative of the magnitude of the active soil microbial biomass. The technique uses a stable isotope tracer and compound-specific 15N analysis, but

  3. The use of inorganic salts to improve the dissolution characteristics of tablets containing Soluplus®-based solid dispersions.

    Science.gov (United States)

    Hughey, Justin R; Keen, Justin M; Miller, Dave A; Kolter, Karl; Langley, Nigel; McGinity, James W

    2013-03-12

    The dissolution enhancement advantages inherent to amorphous solid dispersions systems are often not fully realized once they are formulated into a solid dosage form. The objective of this study was to investigate the ability of inorganic salts to improve the dissolution rate of carbamazepine (CBZ) from tablets containing a high loading of a Soluplus®-based solid dispersion. Cloud point and viscometric studies were conducted on Soluplus® solutions to understand the effect of temperature, salt type and salt concentration on the aqueous solubility and gelling tendencies of Soluplus®, properties that can significantly impact dissolution performance. Studies indicated that Soluplus® exhibited a cloud point that was strongly dependent on the salt type and salt concentration present in the dissolving medium. The presence of kosmotropic salts dehydrated the polymer, effectively lowering the cloud point and facilitating formation of a thermoreversible hydrogel. The ability of ions to impact the cloud point and gel strength generally followed the rank order of the Hofmeister series. Solid dispersions of CBZ and Soluplus® were prepared by KinetiSol® Dispersing, characterized to confirm an amorphous composition was formed and incorporated into tablets at very high levels (70% w/w). Dissolution studies demonstrated the utility of including salts in tablets to improve dissolution properties. Tablets that did not contain a salt or those that included a chaotropic salt hydrated at the tablet surface and did not allow for sufficient moisture ingress into the tablet. Conversely, the inclusion of kosmotropic salts allowed for rapid hydration of the entire tablet and the formation of a gel structure with strength dependent on the type of salt utilized. Studies also showed that, in addition to allowing tablet hydration, potassium bicarbonate and potassium carbonate provided effervescence which effectively destroyed the gel network and allowed for rapid dissolution of CBZ

  4. Inorganic and hybrid inorganic-organic systems for conservative treatments of stone and wood materials

    OpenAIRE

    Bergamonti, Laura

    2015-01-01

    Inorganic and hybrid inorganic-organic systems for conservative treatments of stone and wood materials The research has focused on the synthesis, characterization and application of inorganic and hybrid inorganic-organic systems for conservative treatments of stone and wood. The wood preservatives synthesized and tested for biocidal activity are polyamidoamines functionalized with hydroxyl and siloxane groups, while the coatings applied on the stones are water based TiO2 nanosols with ...

  5. Study on how nanosilver-based inorganic antibacterial agent functions on biofilm formation of Candida albicans, inside the oral cavity.

    Science.gov (United States)

    Wang, Huili; Xie, Bing

    2016-09-01

    Candida albicans is a common symbiotic fungus in the oral cavity, which can easily adhere to the surface of implanted materials. Highlighted by a broad antibacterial spectrum and potent antibacterial effects, nanosilver-based inorganic antibacterial agents (NSBIAA) are currently being hotly discussed with regard to their influences on biofilm formation of Candida albicans. This paper aims to explore the influence of NSBIAA on biofilm formation of Candida albicans. The XTT reduction method and the method of crystal violet determination were applied in measuring the influence of NSBIAA on biofilm formation of Candida albicans. In addition, biofilm morphology was determined by crystal violet staining. It was observed that with the application of liquid antibacterial agent, at a concentration of 0.62 mg/ml, the biofilm activity of Candida albicans reduced (96.1 ± 3.0) %, along with a reduction in the biomass (95.4 ± 2.7) %, and biofilm formation was not observed under an inverted microscope. NSBIAA are able to inhibit biofilm formation.

  6. A series of pure inorganic eight-connected self-catenated network based on Silverton-type polyoxometalate

    Science.gov (United States)

    Tan, Huaqiao; Chen, Weilin; Li, Yang-Guang; Liu, Ding; Chen, Limin; Wang, Enbo

    2009-03-01

    In this paper, three pure inorganic eight-connected self-catenated networks based on the Silverton-type polyoxometalate [CeMo 12O 42] 8- with lanthanide, transition metal and alkali metal cations as linkers: [Li(H 2O) 4] 2Co(H 2O) 4Ce(H 2O) 3[CeMo 12O 42]·3H 2O (1), H 0.5[Li(H 2O) 4] 2.5[Ni(H 2O) 4] 0.5Ce(H 2O) 3[CeMo 12O 42]·3H 2O (2) and H[Li(H 2O) 4] 3Ce(H 2O) 3[CeMo 12O 42]·3H 2O (3) have been successfully synthesized and characterized by elemental analysis, IR spectroscopy, thermal gravimetric analysis, X-ray photoelectron spectroscopy, electrochemical analyses and single crystal X-ray diffraction. The single crystal X-ray diffraction analyses reveal that compounds 1- 3 are isostructural. The [Ce IVMo 12O 42] 8- polyoxoanions are connected by Ce 4+ to form the infinite 1D chains. And then the parallel stacking chains linked by transition metal cations and lithium ions construct to an eight-connected self-catenated 4 2456 3 topology framework.

  7. Self-powered pH sensor based on a flexible organic-inorganic hybrid composite nanogenerator.

    Science.gov (United States)

    Saravanakumar, Balasubramaniam; Soyoon, Shin; Kim, Sang-Jae

    2014-08-27

    In this study, we developed an innovative, flexible, organic-inorganic hybrid composite nanogenerator, which was used to drive a self-powered microwire-based pH sensor. The hybrid composite nanogenerator was fabricated using ZnO nanowire and piezoelectric polymer poly(vinylidene fluoride), through a simple, inexpensive solution-casting technique. The fabricated hybrid composite nanogenerator delivered a maximum open-circuit voltage of 6.9 V and a short-circuit current of 0.96 μA, with an output power of 6.624 μW under uniaxial compression. This high-performance, electric poling free composite nanogenerator opens up the possibility of industrial-scale fabrication. The hybrid nanogenerator demonstrated its ability to drive five green LEDs simultaneously, without using an energy-storage device. Additionally, we constructed a self-powered pH sensor, using a ZnO microwire powered with our hybrid nanogenerator. The output voltage varied according to changes in the pH level. This study demonstrates the feasibility of using a hybrid nanogenerator as a self-powered device that can be extended for use as a biosensor for environmental monitoring and/or as a smart, wearable, vibration sensor in future applications.

  8. Syntheses of silsesquioxane (POSS)-based inorganic/organic hybrid and the application in reinforcement for an epoxy resin.

    Science.gov (United States)

    Ni, Caihua; Ni, Guifeng; Zhang, Liping; Mi, Jiaquan; Yao, Bolong; Zhu, Changping

    2011-10-01

    A new inorganic/organic hybrid material containing silsesquioxane was prepared by the reaction of caged octa (aminopropyl silsesquioxane) (POSS-NH(2)) with n-butyl glycidyl ether (nBGE) and 1,4-butanediol diglycidyl ether (BDGE). The copolymers of POSS, nBGE, and BDGE could be obtained with varied feed ratio of POSS-NH(2), nBGE, and BDGE in the preparation. The hybrid material was added into an epoxy resin (E51) for enhancing the toughening and thermal properties of the epoxy resin. The results showed that the toughening and the thermal properties of the cured epoxy resin were greatly improved by the addition of the hybrid. The enhancement was ascribed to nano-scale effect of the POSS structure and the formation of anchor structure in the cured network. The investigation of kinetics for the curing process of the hybrid-modified epoxy resin revealed that two kinds of curing reactions occurred in different temperature ranges. They were attributed to the reactions between amino groups of the curing agent with epoxy groups of E51 and with residue epoxy groups in the hybrid. The reacting activation energies were calculated based on Kissinger's and Flynn-Wall-Ozawa's methods, respectively.

  9. Preparation a new sorbent based on polymeric ionic liquid for stir cake sorptive extraction of organic compounds and inorganic anions.

    Science.gov (United States)

    Huang, Xiaojia; Wang, Yulei; Hong, Qiuyun; Liu, Yi; Yuan, Dongxing

    2013-11-01

    A new multi-interaction sorbent (MIS) based on polymeric ionic liquid was prepared and used as extractive medium of stir cake sorptive extraction (SCSE). In the presence of dimethyl sulfoxide, an ionic liquid, 1-vinylbenzyl-3-methylimidazolium chloride was used as monomer to copolymerize in situ with divinylbenzene to form the MIS. The influences of the content of monomer and the porogen solvent in the polymerization mixture on the extraction performance were investigated thoroughly. The MIS was characterized by infrared spectroscopy, elemental analysis, scanning electron microscopy and mercury intrusion porosimetry. Parabens and aromatic amines were used to investigate the extraction performance of MIS-SCSE for apolar and strongly polar analytes, respectively. The extraction parameters for parabens and aromatic amines were optimized. At the same time, simple and sensitive analytical methods for parabens and aromatic amines in real samples were developed by the combination of MIS-SCSE and HPLC/DAD. Some inorganic anions, such as F(-), Br(-), NO3(-), PO4(3-) and SO4(2-), were used to test the extraction performance of MIS-SCSE for anions. Results indicated that mechanism involved in the extraction of MIS is the multi-interaction modes including π-π, hydrophobic, hydrogen-bonding, dipole-dipole and anion-exchange interactions.

  10. Organic-inorganic hybrid polyionic liquid based polyoxometalate as nano porous material for selective oxidation of sulfides

    Science.gov (United States)

    Rafiee, Ezzat; Shahebrahimi, Shabnam

    2017-07-01

    Organic-inorganic hybrid nano porous materials based on poly(ionic liquid)-polyoxometalate (PIL-POM) were reported. These hybrid materials were synthesized by the reaction of 4-vinyl pyridine with 1,3-propanesultone, followed by the polymerization and also sulfonate-functionalized cross-linked poly(4-vinylpyridine) and combining these polymers with H5PMo10V2O40 (PMo10V2). Activity of prepared PIL-PMo10V2 hybrids were investigated as catalysts for oxidation of sulfides with H2O2 as oxidant. For understanding catalytic activities of the PIL-PMo10V2 hybrids in oxidation of sulfides, effect of catalyst composition, substrate, and reaction conditions were studied. The results show that the PIL-PMo10V2 hybrids are active as selective heterogeneous catalysts for oxidation of sulfides and can be recovered and reused. The catalyst was characterized by FT-IR, TGA-DSC, XRD, SEM/EDX, BET, CV and zeta potential measurement. Also, average molecular weight of prepared catalysts were measured.

  11. Solution-processed solar cells based on inorganic bulk heterojunctions with evident hole contribution to photocurrent generation.

    Science.gov (United States)

    Qiu, Zeliang; Liu, Changwen; Pan, Guoxing; Meng, Weili; Yue, Wenjin; Chen, Junwei; Zhou, Xun; Zhang, Fapei; Wang, Mingtai

    2015-05-14

    To develop solution-processed and novel device structures is of great importance for achieving advanced and low-cost solar cells. In this paper, we report the solution-processed solar cells based on inorganic bulk heterojunctions (BHJs) featuring a bulk crystalline Sb2S3 absorbing layer interdigitated with a TiO2 nanoarray as an electron transporter. A solution-processed amorphous-to-crystalline transformation strategy is used for the preparation of Sb2S3/TiO2-BHJs. Steady-state and dynamic results demonstrate that the crystalline structure in the Sb2S3 absorbing layer is crucial for efficient devices, and a better Sb2S3 crystallization favors a higher device performance by increasing the charge collection efficiency for a higher short-circuit current, due to reduced interfacial and bulk charge recombinations, and enhancing the open-circuit voltage and fill factor with the reduced defect states in the Sb2S3 layer as well. Moreover, an evident contribution to photocurrent generation from the photogenerated holes in the Sb2S3 layer is revealed by experimental and simulated dynamic data. These results imply a kind of potential non-excitonic BHJ for energy conversion.

  12. Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells

    Science.gov (United States)

    Minemoto, Takashi; Murata, Masashi

    2014-08-01

    Device modeling of CH3NH3PbI3-xCl3 perovskite-based solar cells was performed. The perovskite solar cells employ a similar structure with inorganic semiconductor solar cells, such as Cu(In,Ga)Se2, and the exciton in the perovskite is Wannier-type. We, therefore, applied one-dimensional device simulator widely used in the Cu(In,Ga)Se2 solar cells. A high open-circuit voltage of 1.0 V reported experimentally was successfully reproduced in the simulation, and also other solar cell parameters well consistent with real devices were obtained. In addition, the effect of carrier diffusion length of the absorber and interface defect densities at front and back sides and the optimum thickness of the absorber were analyzed. The results revealed that the diffusion length experimentally reported is long enough for high efficiency, and the defect density at the front interface is critical for high efficiency. Also, the optimum absorber thickness well consistent with the thickness range of real devices was derived.

  13. Influence of lead Inorganic Compounds on Combustion Rate of Double Base Rocket Propellants

    Directory of Open Access Journals (Sweden)

    V. B. Pillai

    1982-04-01

    Full Text Available The influence of lead nitrate, red lead, lead chromate, lead floride and lead carbonate on the combustion behaviour of double base propellants in the pressure range-35-140kg/cm /sup 2/ was studied. While all these compounds increased burning rates in lower pressure range (35-60 kg/cm/sup 2/ and higher pressure range (120-140 kg/cm/sup 2/, only lead chromate and lead fluoride were effective in the intermediate pressure range of 60-105 kg/cm/sup 2/. None of these compounds were effective as platonizer, except lead fluoride, which lowered n value to 0.34 in the lower pressure range. Addition of carbon black along with lead compounds raised burning rates further and reduced n values significantly in the higher pressure regins. A probable mechanism on the role of lead compounds studied has been suggested based on burning rate and DTA results.

  14. New highly fluorescent biolabels based on II VI semiconductor hybrid organic inorganic nanostructures for bioimaging

    Science.gov (United States)

    Santos, B. S.; Farias, P. M. A.; Menezes, F. D.; Brasil, A. G., Jr.; Fontes, A.; Romão, L.; Amaral, J. O.; Moura-Neto, V.; Tenório, D. P. L. A.; Cesar, C. L.; Barbosa, L. C.; Ferreira, R.

    2008-11-01

    Semiconductor quantum dots based on II-VI materials may be prepared to develop good biolabeling properties. In this study we present some well-succeeded results related to the preparation, functionalization and bioconjugation of CdY (Y = S, Se and Te) to biological systems (live cells and fixed tissues). These nanostructured materials were prepared using colloidal synthesis in aqueous media resulting nanoparticles with very good optical properties and an excellent resistance to photodegradation.

  15. Crystal Structure and Band Gap Engineering in Polyoxometalate-Based Inorganic-Organic Hybrids.

    Science.gov (United States)

    Roy, Soumyabrata; Sarkar, Sumanta; Pan, Jaysree; Waghmare, Umesh V; Dhanya, R; Narayana, Chandrabhas; Peter, Sebastian C

    2016-04-04

    We have demonstrated engineering of the electronic band gap of the hybrid materials based on POMs (polyoxometalates), by controlling its structural complexity through variation in the conditions of synthesis. The pH- and temperature-dependent studies give a clear insight into how these experimental factors affect the overall hybrid structure and its properties. Our structural manipulations have been successful in effectively tuning the optical band gap and electronic band structure of this kind of hybrids, which can find many applications in the field of photovoltaic and semiconducting devices. We have also addressed a common crystallographic disorder observed in Keggin-ion (one type of heteropolyoxometalate [POMs])-based hybrid materials. Through a combination of crystallographic, spectroscopic, and theoretical analysis of four new POM-based hybrids synthesized with tactically varied reaction conditions, we trace the origin and nature of the disorder associated with it and the subtle local structural coordination involved in its core picture. While the crystallography yields a centrosymmetric structure with planar coordination of Si, our analysis with XPS, IR, and Raman spectroscopy reveals a tetrahedral coordination with broken inversion symmetry, corroborated by first-principles calculations.

  16. Natamycin based sol-gel antimicrobial coatings on polylactic acid films for food packaging.

    Science.gov (United States)

    Lantano, Claudia; Alfieri, Ilaria; Cavazza, Antonella; Corradini, Claudio; Lorenzi, Andrea; Zucchetto, Nicola; Montenero, Angelo

    2014-12-15

    In this work a comprehensive study on a new active packaging obtained by a hybrid organic-inorganic coating with antimicrobial properties was carried out. The packaging system based on polylactic acid was realised by sol-gel processing, employing tetraethoxysilane as a precursor of the inorganic phase and polyvinyl alcohol as the organic component, and incorporating natamycin as the active agent. Films with different organic-inorganic ratios (in a range between 1:19 and 1:4) were prepared, and the amount of antimycotic entrapped was found to be modulated by the sol composition, and was between 0.18 and 0.25mg/dm(2). FTIR microspectroscopic measurements were used to characterise the prepared coatings. The antifungal properties of the films were investigated against mould growth on the surface of commercial semi-soft cheese. The release of natamycin from the films to ethanol 50% (v/v) was studied by means of HPLC UV-DAD. The maximal level released was about 0.105 mg/dm(2), which is far below the value allowed by legislation.

  17. Ion-Conducting Organic/Inorganic Polymers

    Science.gov (United States)

    Kinder, James D.; Meador, Mary Ann B.

    2007-01-01

    Ion-conducting polymers that are hybrids of organic and inorganic moieties and that are suitable for forming into solid-electrolyte membranes have been invented in an effort to improve upon the polymeric materials that have been used previously for such membranes. Examples of the prior materials include perfluorosulfonic acid-based formulations, polybenzimidazoles, sulfonated polyetherketone, sulfonated naphthalenic polyimides, and polyethylene oxide (PEO)-based formulations. Relative to the prior materials, the polymers of the present invention offer greater dimensional stability, greater ease of formation into mechanically resilient films, and acceptably high ionic conductivities over wider temperature ranges. Devices in which films made of these ion-conducting organic/inorganic polymers could be used include fuel cells, lithium batteries, chemical sensors, electrochemical capacitors, electrochromic windows and display devices, and analog memory devices. The synthesis of a polymer of this type (see Figure 1) starts with a reaction between an epoxide-functionalized alkoxysilane and a diamine. The product of this reaction is polymerized by hydrolysis and condensation of the alkoxysilane group, producing a molecular network that contains both organic and inorganic (silica) links. The silica in the network contributes to the ionic conductivity and to the desired thermal and mechanical properties. Examples of other diamines that have been used in the reaction sequence of Figure 1 are shown in Figure 2. One can use any of these diamines or any combination of them in proportions chosen to impart desired properties to the finished product. Alternatively or in addition, one could similarly vary the functionality of the alkoxysilane to obtain desired properties. The variety of available alkoxysilanes and diamines thus affords flexibility to optimize the organic/inorganic polymer for a given application.

  18. Comparative short-term inhalation toxicity of five organic diketopyrrolopyrrole pigments and two inorganic iron-oxide-based pigments

    Science.gov (United States)

    Hofmann, Thomas; Ma-Hock, Lan; Strauss, Volker; Treumann, Silke; Rey Moreno, Maria; Neubauer, Nicole; Wohlleben, Wendel; Gröters, Sibylle; Wiench, Karin; Veith, Ulrich; Teubner, Wera; van Ravenzwaay, Bennard; Landsiedel, Robert

    2016-01-01

    Abstract Diketopyrrolopyrroles (DPP) are a relatively new class of organic high-performance pigments. The present inhalation and particle characterization studies were performed to compare the effects of five DPP-based pigments (coarse and fine Pigment Red 254, coarse and fine meta-chloro DPP isomer and one form of mixed chlorinated DPP isomers) and compare it to coarse and fine inorganic Pigment Red 101. Wistar rats were exposed head-nose to atmospheres of the respective materials for 6 h/day on 5 consecutive days. Target concentrations were 30 mg/m3 as high dose for all compounds and selected based occupational exposure limits for respirable nuisance dust. Toxicity was determined after end of exposure and after 3-week recovery using broncho-alveolar lavage fluid (BALF) and microscopic examinations of the entire respiratory tract. Mixed chlorinated DPP isomers and coarse meta-chloro DPP isomer caused marginal changes in BALF, consisting of slight increases of polymorphonuclear neutrophils, and in case of coarse meta-chloro DPP increased MCP-1 and osteopontin levels. Mixed chlorinated DPP isomers, Pigment Red 254, and meta-chloro DPP caused pigment deposits and phagocytosis by alveolar macrophages, slight hypertrophy/hyperplasia of the bronchioles and alveolar ducts, but without evidence of inflammation. In contrast, only pigment deposition and pigment phagocytosis were observed after exposure to Pigment Red 101. All pigments were tolerated well and caused only marginal effects in BALF or no effects at all. Only minor effects were seen on the lung by microscopic examination. There was no evidence of systemic inflammation based on acute-phase protein levels in blood. PMID:27387137

  19. Organic/inorganic hybrid coatings for anticorrosion

    Science.gov (United States)

    He, Zhouying

    Compared to organic coatings, organic-inorganic hybrid coatings can potentially improve the anticorrosion performance. The organic phase provides the excellent mechaincal and barrier properties while the inorganic phase acts as an adhesion promoter and corrosion inhibitor. Despite that many studies on alkoxylsilane-based hybrid coatings have been developed and studied, their weatherability and anticorrosion performance has been rarely evaluated. On the other hand, organic-inorganic hybrid coatings based on mixed sol-gel precursors have received much less attention compared to alkoxylsilane-based hybrid coatings. In the first part, polyurethane hybrid coatings with a unique hybrid crosslinked structure as an improved unicoat were successfully prepared. The effect of polyesters on physical properties of the hybrid coatings was studied. Polyurethane coatings derived from cycloaliphatic polyester show comparable properties than those derived from the commercially viable aromatic polyester. Introducing the polysiloxane part into the polyurethane coatings enhanced the crosslinking density, Tg, mechanical properties, and general coating properties. The increased adhesion between the hybrid coating and the substrate make the hybrid coating a good candidate for anticorrosion application, which is shown by electrochemical impedance spectroscopy (EIS). The degradation mechanism of the polyurethane/polysiloxane hybrid coatings under various weathering conditions was shown to be the scission of the urethane and ester groups in the organic phase along with reorganizing and rearranging of the inorganic phase. The anticorrosion performance of the cycloaliphatic hybrid was much better than that of aromatic based hybrid under outdoor weathering based on visual observation and EIS analysis. Acid undercutting is an issue for TEOS based hybrid coating. In the second part, design of experiments (DOEs) was used to statistically investigate on the effect of sol-gel precursors. The

  20. Synthesis of cryptocrystalline magnesite–bentonite clay composite and its application for neutralization and attenuation of inorganic contaminants in acidic and metalliferous mine drainage

    CSIR Research Space (South Africa)

    Masindi, Vhahangwele

    2015-12-01

    Full Text Available The primary aim of this study was to synthesize cryptocrystalline magnesite–bentonite clay composite by mechanochemical activation and evaluate its usability as low cost adsorbent for neutralization and attenuation of inorganic contaminants...

  1. The first proton sponge-based amino acids: synthesis, acid-base properties and some reactivity.

    Science.gov (United States)

    Ozeryanskii, Valery A; Gorbacheva, Anastasia Yu; Pozharskii, Alexander F; Vlasenko, Marina P; Tereznikov, Alexander Yu; Chernov'yants, Margarita S

    2015-08-21

    The first hybrid base constructed from 1,8-bis(dimethylamino)naphthalene (proton sponge or DMAN) and glycine, N-methyl-N-(8-dimethylamino-1-naphthyl)aminoacetic acid, was synthesised in high yield and its hydrobromide was structurally characterised and used to determine the acid-base properties via potentiometric titration. It was found that the basic strength of the DMAN-glycine base (pKa = 11.57, H2O) is on the level of amidine amino acids like arginine and creatine and its structure, zwitterionic vs. neutral, based on the spectroscopic (IR, NMR, mass) and theoretical (DFT) approaches has a strong preference to the zwitterionic form. Unlike glycine, the DMAN-glycine zwitterion is N-chiral and is hydrolytically cleaved with the loss of glycolic acid on heating in DMSO. This reaction together with the mild decarboxylative conversion of proton sponge-based amino acids into 2,3-dihydroperimidinium salts under air-oxygen was monitored with the help of the DMAN-alanine amino acid. The newly devised amino acids are unique as they combine fluorescence, strongly basic and redox-active properties.

  2. Development of inorganic and organic hybrid nanocoating based on carbon nanotubes for corrosion resistance.

    Science.gov (United States)

    Kang, T H; Bagkar, Nitin C; Jung, Y S; Chun, H H; Shin, S C; Cho, H; Kim, J K; Kim, T G

    2014-10-01

    In this study, we report the synthesis and characterization of novel hybrid nanocoating based on carbon nanotubes (CNTs) on anodized aluminum surfaces (AAO). The hybrid nanocoating was deposited by number of methods which include spray coating, spin coating and dip coating. The bonding of nanocoating with metal surface is an important parameter for successful modification of the metal surfaces. The improved adhesion of nanocoating on metal surfaces could be attributed to chemical bonding of sol-gel nanocoating with anodized surfaces. The nanocoated anodized aluminum surfaces showed superior adhesion and excellent anticorrosive properties. The nanocoated panels showed enhanced galvanic protection comparable to 80% of titanium metal as determined by galvanic corrosion measurements. It also showed higher thermal conductivities than stainless steel and bare anodized surfaces.

  3. Oxide-based inorganic/organic and nanoporous spherical particles: synthesis and functional properties

    Science.gov (United States)

    Shiba, Kota; Tagaya, Motohiro; Tilley, Richard D.; Hanagata, Nobutaka

    2013-04-01

    This paper reviews the recent progress in the preparation of oxide-based and heteroatom-doped particles. Surfactant-templated oxide particles, e.g. silica and titania, are possible candidates for various potential applications such as adsorbents, photocatalysts, and optoelectronic and biological materials. We highlight nanoporous oxides of one element, such as silicon or titanium, and those containing multiple elements, which exhibit properties that are not achieved with individual components. Although the multicomponent nanoporous oxides possess a number of attractive functions, the origin of their properties is hard to determine due to compositional/structural complexity. Particles with a well-defined size and shape are keys for a quantitative and detailed discussion on the unique complex properties of the particles. From this viewpoint, we review the synthesis techniques of the oxide particles, which are functionalized with organic molecules or doped with heteroatoms, the physicochemical properties of the particles and the possibilities for their photofunctional applications as complex systems.

  4. Preparation and fluorescent properties of a complex probe based on inorganic QDs and organic dye

    Energy Technology Data Exchange (ETDEWEB)

    Fei Xuening, E-mail: xueningfei@126.co [Department of Material Science and Engineering, TianJin Institute of Urban Construction, No. 26, Jinjing Road, Tianjin 300384 (China) and School of Chemical Engineering and Technology, TianJin University, Tianjin 300072 (China); Gu Yingchun [School of Chemical Engineering and Technology, TianJin University, Tianjin 300072 (China); Department of Material Science and Engineering, TianJin Institute of Urban Construction, No. 26, Jinjing Road, Tianjin 300384 (China); Wang Jun; Jia Guozhi; Liu Zhijun [Department of Material Science and Engineering, TianJin Institute of Urban Construction, No. 26, Jinjing Road, Tianjin 300384 (China)

    2011-02-15

    A novel complex fluorescent probe based on quantum dots and organic dye (QDs-TO) was designed and prepared by incorporating a benzothiazole derivative into QDs-1-(3-amidepropyl)-4-methylquinoline. The complex probe was characterized by FT-IR and TG/DTA. The emission wavelength of QDs-1-(3-amidepropyl)-4-methylquinoline was found at 475 nm and a new peak corresponding to QDs-TO appeared at 550 nm, indicating that benzothiazole derivative can react with QDs-1-(3-amidepropyl)-4-methylquinoline to afford QDs-TO. Furthermore, the emission wavelength of QDs shifted blue while the characteristic peak of TO shifted red during the reaction. This suggests that the probe may be useful for biological labeling in offering an efficient method to study the interrelation between quantum dots and organic dyes.

  5. Evaluation of commonly used methods for the analysis of acid-soluble phosphate in internationally traded inorganic fertilizers.

    Science.gov (United States)

    Hall, William L; Siegel, Sanford

    2014-01-01

    Several methodologies are used throughout the world to determine phosphate concentration (measured as PO4 and expressed as % P2O5) in fertilizers. Concentrated phosphate materials, including diammonium phosphate (DAP) and monoammonium phosphate (MAP), are traded in large volumes (millions of metric tons) internationally. The International Fertilizer Association (IFA) identified a need to assess the methods currently being used to measure the phosphate content for suitability (scope), accuracy, and repeatability. Even small discrepancies in the expressed P2O5 content can have a major financial impact on buyers and sellers as contracts are settled and import regulations are imposed. The IFA's Technical Committee selected a working group to address issues dealing with harmonization of fertilizer sampling and analytical methodologies. The working group identified phosphate content in DAP and MAP fertilizers as a major concern for commerce. The working group initiated a method screening and comparison project to assess method performance and to determine which methods, if any, could be considered best practice methods and, therefore, be deemed acceptable for use by the industry. In order to systematically review the acceptability of methods for consideration, the task force developed an assessment protocol outlined in a white paper involving three steps: (1) compile all known relevant methods practiced in global fertilizer trade, (2) review and evaluate methods based upon specific evaluation criteria, and (3) compare the methods that most closely fit the evaluation criteria by multilaboratory analysis of unknown materials for accuracy and repeatability. Six methods were evaluated for analysis of total phosphate in concentrated phosphate products. From these methods, four were determined to be acceptable as best practice methods. The study members proposed three of the methods, while a fourth method was commonly used among the participating laboratories. This publication

  6. Inorganic Nickel-Based Nanocomposites%无机镍纳米复合材料

    Institute of Scientific and Technical Information of China (English)

    林丽娟; 周苇; 郭林

    2011-01-01

    Nanocomposites have become hot issues in the field of nanomaterials due to their unique physical and chemical properties.As an important transitional metal nanomaterial,nickel material has been widely used in magnetics,electrochemistry,catalytic chemistry and other fields.The composites of nickel and other metals or oxides with improved inherent properties would show novel properties by the synergy of composition and nanostructure.Therefore,it is of scientific significance to study the nickel-based nanocomposites.Because of the differences of the combining positions and methods for different components in various nanostructures,the progress of nickel-based nanocomposites is reviewed according to three main structures,which are core-shell structure,supported structure,and multisegment nanowires.Based on the introduction to the various synthetic methods and structures,we summarize the advantages and disadvantages of these methods and composite structures,as well as probable applications.It will be helpful for preparing other similar nanocomposites.%纳米复合材料因具有独特的物理、化学性能而成为纳米领域研究的热点。镍纳米材料作为一种重要的过渡金属纳米材料,在磁学、电化学、催化等领域具有广泛的应用。将它与其他金属、氧化物等材料复合,一方面使其固有性质得到明显改善,另一方面利用其他组成和镍基材料的协同作用,可得到具有新特性的异质材料,因此研究镍基纳米复合材料的合成具有重要的科学意义。由于纳米材料的结构不同,其复合位置和复合方式均存在不同,本文按照复合材料的结构特征,分别从核壳型、负载型、多节段纳米线3种类型对镍纳米复合材料的研究进展进行评述,在介绍这些材料的合成方法、结构特点的基础上,综述各种方法、各类结构的优缺点及应用前景,为类似复合材料的合成提供借鉴。

  7. Magnetic properties of the magnetic hybrid membranes based on various polymer matrices and inorganic fillers

    Energy Technology Data Exchange (ETDEWEB)

    Rybak, Aleksandra, E-mail: Aleksandra.Rybak@polsl.pl [Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Kaszuwara, Waldemar [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warszawa (Poland)

    2015-11-05

    Magnetic hybrid membranes based on ethylcellulose (EC), poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and various magnetic praseodymium and neodymium powder microparticles as fillers were obtained. Permeability, diffusion and sorption coefficients of O{sub 2}, N{sub 2} and synthetic air components were estimated for homogeneous and heterogeneous membranes using the Time Lag method based on constant pressure permeation technique. The microstructure studies and the phase analysis of magnetic membranes were also performed using SEM and XRD. The influence of magnetic parameters, like coercivity, remanence and saturation magnetization of created membranes on the gas transport properties was studied. The results showed that their coercivity depended on composition and microstructure of the magnetic powder. On the other hand, remanence and saturation magnetization increased with the increase of the powder addition in the membrane. It was found that the magnetic membrane's gas transport properties were improved with the increase of membrane's remanence, saturation magnetization and magnetic particle filling. The decrease in powder particle size and associated increase of the membrane's coercivity also positively influenced the gas transport and separation properties of investigated membranes. It was observed that the magnetic ethylcellulose and poly(2,6-dimethyl-1,4-phenylene oxide) membranes had higher gas permeability, while their permselectivity and solubility coefficient values were rather maintained or slightly increased. The results also showed that the magnetic powder content enhanced significantly gas diffusivity in EC and PPO membranes. It was also analyzed the dependence of the drift coefficient w on the magnetic parameters of investigated membranes. The correlation between the membrane selectivity, permeability and magnetic properties with their XRD characteristics was stated. - Highlights: • Membrane's production consisting of EC or PPO

  8. Oxide-based inorganic/organic and nanoporous spherical particles: synthesis and functional properties

    Directory of Open Access Journals (Sweden)

    Kota Shiba, Motohiro Tagaya, Richard D Tilley and Nobutaka Hanagata

    2013-01-01

    Full Text Available This paper reviews the recent progress in the preparation of oxide-based and heteroatom-doped particles. Surfactant-templated oxide particles, e.g. silica and titania, are possible candidates for various potential applications such as adsorbents, photocatalysts, and optoelectronic and biological materials. We highlight nanoporous oxides of one element, such as silicon or titanium, and those containing multiple elements, which exhibit properties that are not achieved with individual components. Although the multicomponent nanoporous oxides possess a number of attractive functions, the origin of their properties is hard to determine due to compositional/structural complexity. Particles with a well-defined size and shape are keys for a quantitative and detailed discussion on the unique complex properties of the particles. From this viewpoint, we review the synthesis techniques of the oxide particles, which are functionalized with organic molecules or doped with heteroatoms, the physicochemical properties of the particles and the possibilities for their photofunctional applications as complex systems.

  9. Quantum dot-based organic-inorganic hybrid materials for optoelectronic applications (Conference Presentation)

    Science.gov (United States)

    Lee, Kwang-Sup

    2016-10-01

    Our recent research involves the design, characterization and testing of devices constituting low bandgap conjugated polymers, surface-engineered quantum dots (QDs), carbon nanotube (CNT)-QDs, QDs decorated nanowires, and QD coupled conjugated polymers. The resulting hybrid materials can be used for facilitating the charge/energy transfer and enhancing the charge carrier mobility in highly efficient optoelectronic and photonic devices. Exploiting the full potential of quantum dots (QDs) in optoelectronic devices require efficient mechanisms for transfer of energy or electrons produced in the optically excited QDs. We propose semiconducting π-conjugated molecules as ligands to achieve energy or charge transfer. The hybridization of p-type π-conjugated molecules to the surface of n-type QDs can induce distinct luminescence and charge transport characteristics due to energy and/or charge transfer effects. QDs and π-conjugated molecule hybrids with controlled luminescent properties can be used for new active materials for light-emitting diodes and flexible displays. In addition, such hybrid systems with enhanced charge transfer efficiency can be used for nanoscale photovoltaic devices. We have also explored single nanoparticle based electronics using QDs and π-conjugated molecule hybrids with molecular-scale n-p or n-insulating (ins)-p-heterojunction structures.

  10. Ultrathin, flexible organic-inorganic hybrid solar cells based on silicon nanowires and PEDOT:PSS.

    Science.gov (United States)

    Sharma, Manisha; Pudasaini, Pushpa Raj; Ruiz-Zepeda, Francisco; Elam, David; Ayon, Arturo A

    2014-03-26

    Recently, free-standing, ultrathin, single-crystal silicon (c-Si) membranes have attracted considerable attention as a suitable material for low-cost, mechanically flexible electronics. In this paper, we report a promising ultrathin, flexible, hybrid solar cell based on silicon nanowire (SiNW) arrays and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The free-standing, ultrathin c-Si membranes of different thicknesses were produced by KOH etching of double-side-polished silicon wafers for various etching times. The processed free-standing silicon membranes were observed to be mechanically flexible, and in spite of their relatively small thickness, the samples tolerated the different steps of solar cell fabrication, including surface nanotexturization, spin-casting, dielectric film deposition, and metallization. However, in terms of the optical performance, ultrathin c-Si membranes suffer from noticeable transmission losses, especially in the long-wavelength region. We describe the experimental performance of a promising light-trapping scheme in the aforementioned ultrathin c-Si membranes of thicknesses as small as 5.7 μm employing front-surface random SiNW texturization in combination with a back-surface distribution of silver (Ag) nanoparticles (NPs). We report the enhancement of both the short-circuit current density (JSC) and the open-circuit voltage (VOC) that has been achieved in the described devices. Such enhancement is attributable to the plasmonic backscattering effect of the back-surface Ag NPs, which led to an overall 10% increase in the power conversion efficiency (PCE) of the devices compared to similar structures without Ag NPs. A PCE in excess of 6.62% has been achieved in the described devices having a c-Si membrane of thickness 8.6 μm. The described device technology could prove crucial in achieving an efficient, low-cost, mechanically flexible photovoltaic device in the near future.

  11. A Simple Method for the Calculation of Lattice Energies of Inorganic Ionic Crystals Based on the Chemical Hardness.

    Science.gov (United States)

    Kaya, Savaş; Kaya, Cemal

    2015-09-08

    This paper presents a new technique for estimation of lattice energies of inorganic ionic compounds using a simple formula. This new method demonstrates the relationship between chemical hardness and lattice energies of ionic compounds. Here chemical hardness values of ionic compounds are calculated via our molecular hardness equation. The results obtained using the present method and comparisons made by considering experimental data and the results from other theoretical methods in the literature showed that the new method allows easy evaluation of lattice energies of inorganic ionic crystals without the need for ab initio calculations and complex calculations.

  12. Organic-Inorganic Hybrid Materials Based on Basket-like {Ca⊂P6Mo18O73} Cages.

    Science.gov (United States)

    Zhang, He; Yu, Kai; Lv, Jing-hua; Gong, Li-hong; Wang, Chun-mei; Wang, Chun-xiao; Sun, Di; Zhou, Bai-Bin

    2015-07-20

    Four basket-like organic-inorganic hybrids, formulated as [{Cu(II)(H2O)2}{Ca4(H2O)4(HO0.5)3(en)2}{Ca⊂P6Mo4(V)Mo14(VI)O73}]·7H2O (1), (H4bth)[{Fe(II)(H2O)}{Ca⊂P6Mo18(VI)O73}]·4H2O (2), (H2bih)3[{Cu(II)(H2O)2}{Ca⊂P6Mo2(V)Mo16(VI)O73}]·2H2O (3), (H2bib)3[{Fe(II)(H2O)2}{Ca⊂P6Mo2(V) Mo16(VI)O73}]·4H2O (4), (bth = 1,6-bis(triazole)hexane; bih = 1,6-bis(imidazol)hexane; bib = 1,4-bis(imidazole)butane) have been hydrothermally synthesized and fully characterized. Compounds 1-4 contain polyoxoanion [Ca⊂P6Mon(V)Mo18-n(VI)O73]((6+n)-) (n = 0, 2, or 4) (abbreviated as {P6Mo18O73}) as a basic building block, which is composed of a "basket body" {P2Mo14} unit and a "handle"-liked {P4Mo4} fragment encasing an alkaline-earth metal Ca(2+) cation in the cage. Compound 1 exhibits an infrequent 2D layer structure linked by the Cu(H2O)2 linker and an uncommon tetranuclear calcium complex, while compound 2 is 8-connected 2-D layers connected by binuclear {Fe2(H2O)3} segaments, which are observed for the first time as 2-D basket-like assemblies. Compounds 3 and 4 are similar 1D Z-typed chains bonded by M(H2O)2 units (M = Cu for 3 and Fe for 4). The optical band gaps of 1-4 reveal their semiconductive natures. They exhibit universal highly efficient degradation ability for typical dyes such as methylene blue, methyl orange, and rhodamine B under UV light. The lifetime and catalysis mechanism of the catalysts have been investigated. The compounds also show good bifunctional electrocatalytic behavior for oxidation of amino acids and reduction of NO2(-).

  13. Silica- and germania-based dual-ligand sol-gel organic-inorganic hybrid sorbents combining superhydrophobicity and π-π interaction. The role of inorganic substrate in sol-gel capillary microextraction.

    Science.gov (United States)

    Seyyal, Emre; Malik, Abdul

    2017-04-29

    Principles of sol-gel chemistry were utilized to create silica- and germania-based dual-ligand surface-bonded sol-gel coatings providing enhanced performance in capillary microextraction (CME) through a combination of ligand superhydrophobicity and π-π interaction. These organic-inorganic hybrid coatings were prepared using sol-gel precursors with bonded perfluorododecyl (PF-C12) and phenethyl (PhE) ligands. Here, the ability of the PF-C12 ligand to provide enhanced hydrophobic interaction was advantageously combined with π-π interaction capability of the PhE moiety to attain the desired sorbent performance in CME. The effect of the inorganic sorbent component on microextraction performance of was explored by comparing microextraction characteristics of silica- and germania-based sol-gel sorbents. The germania-based dual-ligand sol-gel sorbent demonstrated superior CME performance compared to its silica-based counterpart. Thermogravimetric analysis (TGA) of the created silica- and germania-based dual-ligand sol-gel sorbents suggested higher carbon loading on the germania-based sorbent. This might be indicative of more effective condensation of the organic ligand-bearing sol-gel-active chemical species to the germania-based sol-gel network (than to its silica-based counterpart) evolving in the sol solution. The type and concentration of the organic ligands were varied in the sol-gel sorbents to fine-tune extraction selectivity toward different classes of analytes. Specific extraction (SE) values were used for an objective comparison of the prepared sol-gel CME sorbents. The sorbents with higher content of PF-C12 showed remarkable affinity for aliphatic hydrocarbons. Compared to their single-ligand sol-gel counterparts, the dual-ligand sol-gel coatings demonstrated significantly superior CME performance in the extraction of alkylbenzenes, providing up to ∼65.0% higher SE values. The prepared sol-gel CME coatings provided low ng L(-1) limit of detections (LOD

  14. Inorganic-organic hybrid compounds based on face-sharing octahedral [PbI3]∞ chains: self-assemblies, crystal structures, and ferroelectric, photoluminescence properties.

    Science.gov (United States)

    Duan, Hai-Bao; Zhao, Hai-Rong; Ren, Xiao-Ming; Zhou, Hong; Tian, Zheng-Fang; Jin, Wan-Qin

    2011-02-28

    Eight inorganic-organic hybrid compounds with a formula of [R-Bz-1-APy][PbI(3)] (R-Bz-1-APy(+) = mono-substituted benzylidene-1-aminopyridinium Schiff base derivative; R = m-CN (1), m-CH(3) (2), H (3), p-F (4), p-Cl (5), p-Br (6), o-Cl (7), o-Br (8)) have been synthesized and characterized structurally. The common characteristic of the crystal structures of 1-8 is that the inorganic components form straight and face-sharing octahedral [PbI(3)](∞) chains and the Schiff base cations surround the [PbI(3)](∞) chains to form molecular stacks. The substituent (R) on the phenyl ring of the Schiff base cation clearly influences the packing structures of 1-8, and the hybrid compound crystallizes in the space group P6(3) when R = CN (1) in the meta-position of the phenyl ring, and in a central symmetric space group when R is in the ortho- or para-position of the phenyl ring. The conformation of the Schiff base cation is related to the R position, and the dihedral angle between the phenyl and pyridyl rings increases in the order of para- inorganic [PbI(3)](∞) chain in the para-substituted hybrid compounds, and perpendicular to the straight inorganic [PbI(3)](∞) chain in the ortho-substituted hybrid compounds. 1 is second harmonic generation (SHG) active with a comparable response as that of urea and also exhibits ferroelectricity with larger P(s) and P(r) values; 1-8 emit multi-band luminescence in the 300-650 nm regions under the excitation of ultraviolet light.

  15. Spatial and seasonal variability of PM2.5 acidity at two Chinese megacities: insights into the formation of secondary inorganic aerosols

    Directory of Open Access Journals (Sweden)

    Z. Shi

    2012-02-01

    Full Text Available Aerosol acidity is one of the most important parameters influencing atmospheric chemistry and physics. Based on continuous field observations from January 2005 to May 2006 and thermodynamic modeling, we investigated the spatial and seasonal variations in PM2.5 acidity in two megacities in China, Beijing and Chongqing. Spatially, PM2.5 was generally more acidic in Chongqing than in Beijing, but a reverse spatial pattern was found within the two cities, with more acidic PM2.5 at the urban site in Beijing whereas the rural site in Chongqing. Ionic compositions of PM2.5 revealed that it was the higher concentrations of NO3− at the urban site in Beijing and the lower concentrations of Ca2+ within the rural site in Chongqing that made their PM2.5 more acidic. Temporally, PM2.5 was more acidic in summer and fall than in winter, while in the spring of 2006, the acidity of PM2.5 was higher in Beijing but lower in Chongqing than that in 2005. These were attributed to the more efficient formation of nitrate relative to sulfate as a result of the influence of Asian desert dust in 2006 in Beijing and the greater wet deposition of ammonium compared to sulfate and nitrate in 2005 in Chongqing. Furthermore, simultaneous increase of PM2.5 acidity was observed from spring to early summer of 2005 in both cities. This synoptic-scale evolution of PM2.5 acidity was accompanied by the changes in air masses origins, which were influenced by the movements of a subtropical high over the northwestern Pacific in early summer. Finally, the correlations between [NO3−]/[SO42−] and [NH4+]/[SO42−] suggests that under conditions of high aerosol acidity, heterogeneous reactions became one of the major pathways for the formation of nitrate at both cities. These findings provided new insights in our understanding of the spatial and temporal variations in aerosol acidity in Beijing and Chongqing, as well as those reported in other cities in China.

  16. Organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides with intercalated phacolysin as ocular delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhiguo; Zhang, Jie; Chi, Huibo; Cao, Feng, E-mail: cpufengc@163.com [China Pharmaceutical University, Department of Pharmaceutics, School of Pharmacy (China)

    2015-12-15

    This study was mainly aimed to evaluate the potential use of a novel ocular drug delivery system, organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides (LDH). Organic polymers of chitosan–glutathione (CG) and pre-activated chitosan–glutathione (CG-2MNA) were successfully synthesized and characterized. LDH with intercalated phacolysin (PCL), including larger hexagonal LDH–PCL (Lh-LDH–PCL), larger spherical LDH–PCL (Ls-LDH–PCL), smaller hexagonal LDH–PCL (Sh-LDH–PCL), CG hybrid LDH–PCL (LDH–PCL-CG), and CG-2MNA hybrid LDH–PCL (LDH–PCL-CG-2MNA), were prepared. The nanocomposites with particle size of 107.2–274.9 nm were characterized by powder X-ray diffraction, Fourier transform infrared, transmission electron micrographs, etc. In vivo precorneal retention studies showed that the detectable time of all nanocomposites was prolonged from 2 to 6 h in comparison to PCL saline. Accordingly, the AUC{sub 0–6h} values of Lh-LDH–PCL, Ls-LDH–PCL, Sh-LDH–PCL, LDH–PCL-CG, and LDH–PCL-CG-2MNA nanocomposites were increased by 2.27-, 2.08-, 3.08-, 4.67-, and 3.36-fold, respectively. The Draize test and hematoxylin and eosin staining demonstrated that modified LDH had no eye irritation after single and repeated administration. These results indicated that chitosan derivatives-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs.Graphical AbstractThiolated chitosan-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs and may facilitate penetration of drugs into tissues of the eyes.

  17. Removal of inorganic mercury and methylmercury from surface waters following coagulation of dissolved organic matter with metal-based salts

    Science.gov (United States)

    Henneberry, Y.K.; Kraus, T.E.C.; Fleck, J.A.; Krabbenhoft, D.P.; Bachand, P.M.; Horwath, W.R.

    2011-01-01

    The presence of inorganic mercury (IHg) and methylmercury (MeHg) in surface waters is a health concern worldwide. This study assessed the removal potential use of metal-based coagulants as a means to remove both dissolved IHg and MeHg from natural waters and provides information regarding the importance of Hg associations with the dissolved organic matter (DOM) fraction and metal hydroxides. Previous research indicated coagulants were not effective at removing Hg from solution; however these studies used high concentrations of Hg and did not reflect naturally occurring concentrations of Hg. In this study, water collected from an agricultural drain in the Sacramento-San Joaquin Delta was filtered to isolate the dissolved organic matter (DOM) fraction. The DOM was then treated with a range of coagulant doses to determine the efficacy of removing all forms of Hg from solution. Three industrial-grade coagulants were tested: ferric chloride, ferric sulfate, and polyaluminum chloride. Coagulation removed up to 85% of DOM from solution. In the absence of DOM, all three coagulants released IHg into solution, however in the presence of DOM the coagulants removed up to 97% of IHg and 80% of MeHg. Results suggest that the removal of Hg is mediated by DOM-coagulant interactions. There was a preferential association of IHg with the more aromatic, higher molecular weight fraction of DOM but no such relationship was found for MeHg. This study offers new fundamental insights regarding large-scale removal of Hg at environmentally relevant regarding large-scale removal of Hg at environmentally relevant concentrations.

  18. Investigating Students' Reasoning about Acid-Base Reactions

    Science.gov (United States)

    Cooper, Melanie M.; Kouyoumdjian, Hovig; Underwood, Sonia M.

    2016-01-01

    Acid-base chemistry is central to a wide range of reactions. If students are able to understand how and why acid-base reactions occur, it should provide a basis for reasoning about a host of other reactions. Here, we report the development of a method to characterize student reasoning about acid-base reactions based on their description of…

  19. Teaching Inorganic Photophysics and Photochemistry with Three Ruthenium(II) Polypyridyl Complexes: A Computer-Based Exercise

    Science.gov (United States)

    Garino, Claudio; Terenzi, Alessio; Barone, Giampaolo; Salassa, Luca

    2016-01-01

    Among computational methods, DFT (density functional theory) and TD-DFT (time-dependent DFT) are widely used in research to describe, "inter alia," the optical properties of transition metal complexes. Inorganic/physical chemistry courses for undergraduate students treat such methods, but quite often only from the theoretical point of…

  20. High performance organic-inorganic perovskite-optocoupler based on low-voltage and fast response perovskite compound photodetector

    Science.gov (United States)

    Li, Dong; Dong, Guifang; Li, Wenzhe; Wang, Liduo

    2015-01-01

    Organic-inorganic hybrid photodetectors attract considerable attention because they can combine the advantages of both organic and inorganic systems. Here, a perovskite compound with a broad absorption spectrum and high power conversion efficiency is used as a photosensitive layer in an organic/inorganic hybrid heterojunction photodetector with a high and fast response. The high sensitivity exceeding 104 is obtained at bias of 0–4 V. Using a tandem organic light-emitting diode (OLED) as the light source, we fabricated an optocoupler device. The optocoupler achieved a maximum photoresponsivity of 1.0 A W−1 at 341.3 μWcm−2 at an input voltage of 6 V. The device also exhibits rapid response times of τrise ~ 20 μs and τfall ~ 17 μs; as well as a high current transfer ratio (CTR) of 28.2%. After applying an amplification circuit, the CTR of the optocoupler increases to 263.3%, which is comparable with that of commercial inorganic optocouplers. The developed hybrid optocoupler thus shows great promise for use in photonics. PMID:25600830

  1. Ba3(P1−MnO4)2 : Blue/green inorganic materials based on tetrahedral Mn(V)

    Indian Academy of Sciences (India)

    Sourav Laha; Rohit Sharma; S V Bhat; M L P Reddy; J Gopalakrishnan; S Natarajan

    2011-10-01

    We describe a blue/green inorganic material, Ba3(P1−MnO4)2 (I) based on tetrahedral MnO$^{3-}_{4}$ :32 chromophore. The solid solutions (I) which are sky-blue and turquoise-blue for ≤ 0.25 and dark green for ≥ 0.50, are readily synthesized in air from commonly available starting materials, stabilizing the MnO$^{3-}_{4}$ chromophore in an isostructural phosphate host. We suggest that the covalency/ionicity of P–O/Mn–O bonds in the solid solutions tunes the crystal field strength around Mn(V) such that a blue colour results for materials with small values of . The material could serve as a nontoxic blue/green inorganic pigment.

  2. Structural Peculiarities of Ion-Conductive Organic-Inorganic Polymer Composites Based on Aliphatic Epoxy Resin and Salt of Lithium Perchlorate

    Science.gov (United States)

    Matkovska, Liubov; Iurzhenko, Maksym; Mamunya, Yevgen; Tkachenko, Igor; Demchenko, Valeriy; Synyuk, Volodymyr; Shadrin, Andriy; Boiteux, Gisele

    2017-06-01

    The article is concerned with hybrid amorphous polymers synthesized basing on epoxy oligomer of diglycide aliphatic ester of polyethylene glycol that was cured by polyethylene polyamine and lithium perchlorate salt. Structural peculiarities of organic-inorganic polymer composites were studied by differential scanning calorimetry, wide-angle X-ray spectra, infrared spectroscopic, scanning electron microscopy, elemental analysis, and transmission and reflective optical microscopy. On the one hand, the results showed that the introduction of LiClO4 salt into epoxy polymer leads to formation of the coordinative metal-polymer complexes of donor-acceptor type between central Li+ ion and ligand. On the other hand, the appearance of amorphous microinclusions, probably of inorganic nature, was also found.

  3. Preparation of a new polymeric ionic liquid-based monolith for stir cake sorptive extraction and its application in the extraction of inorganic anions.

    Science.gov (United States)

    Huang, Xiaojia; Chen, Linli; Yuan, Dongxing; Bi, Shangshang

    2012-07-27

    In this study, a novel stir cake sorptive extraction (SCSE) sorbent based on polymeric ionic liquid-based monolith (PILM) for the extraction of inorganic anions was prepared. In the presence of a porogen solvent containing 1-propanol and dimethylformamid, an ionic liquid, 1-ally-3-methylimidazolium chloride was used as monomer to copolymerize in situ with ethylene dimethacrylate to form PILM. The effect of preparation conditions such as ratio of functional monomer to cross-linker, content of porogenic solvent on the extraction efficiencies were investigated in detail. The PILM was characterized by elemental analysis, scanning electron microscopy, mercury intrusion porosimetry and infrared spectroscopy. In order to investigate the extraction capacity of PILM-SCSE for inorganic anions, the SCSE was combined with ion chromatography with conductivity detection, F(-), Cl(-), NO(2)(-), Br(-), NO(3)(-), PO(4)(3-) and SO(4)(2-) were selected as detected solutes. Several extractive parameters, including pH values in sample matrix, desorption solvent, extraction and desorption time were optimized. The results showed that under the optimum experimental conditions, low detection limits (S/N=3) and quantification limits (S/N=10) of the proposed method for the target anions were achieved within the range of 0.11-2.08 and 0.37-6.88 μg/L, respectively. The method also showed good linearity, simplicity, practicality and low cost for the extraction inorganic anions. Finally, the proposed method was successfully used to detect different water samples include commercial purified water, tab water and river water. Acceptable recoveries and satisfactory repeatability were obtained. To the best of our knowledge, this is the first to use polymeric ionic liquid to enrich inorganic anions.

  4. Progess in technology development for conversion of {sup 99}Mo production--BATAN's (Indonesia) conversion program, progress in the CNEA (Argentina) LEU foil/base-side process, and development of inorganic sorbents for {sup 99}Mo production.

    Energy Technology Data Exchange (ETDEWEB)

    Bakel, A. J.; Stepinski, D. C.; Vandegrift, G. F.; Leyva, A.; Gelis, A. V.; Bond, A. H.; Mayes, H.; Chemical Engineering

    2005-01-01

    Currently, nearly all of the world's supply of {sup 99}Mo is produced fiom the fissioning of {sup 235}U in targets of high-enriched uranium (HEU). Conversion of these targets to low-enriched uranium (LEU) would ease worldwide concern over the use and transport of this weapons-grade material. This paper reviews three projects: (1) the ongoing conversion of BATAN's {sup 99}Mo production process from HEU oxide targets (Cintichem processing) to LEU foil targets (Cintichem processing), (2) demonstration of LEU foil targets and base-side processing in CNEA's facility, and (3) the evaluation of two inorganic Thermoxid sorbents for Mo recovery and purification in acidic U-bearing solutions.

  5. Roxarsone, Inorganic Arsenic, and Other Arsenic Species in Chicken: A U.S.-Based Market Basket Sample

    Science.gov (United States)

    Baron, Patrick A.; Raber, Georg; Francesconi, Kevin A.; Navas-Acien, Ana; Love, David C.

    2013-01-01

    Background: Inorganic arsenic (iAs) causes cancer and possibly other adverse health outcomes. Arsenic-based drugs are permitted in poultry production; however, the contribution of chicken consumption to iAs intake is unknown. Objectives: We sought to characterize the arsenic species profile in chicken meat and estimate bladder and lung cancer risk associated with consuming chicken produced with arsenic-based drugs. Methods: Conventional, antibiotic-free, and organic chicken samples were collected from grocery stores in 10 U.S. metropolitan areas from December 2010 through June 2011. We tested 116 raw and 142 cooked chicken samples for total arsenic, and we determined arsenic species in 65 raw and 78 cooked samples that contained total arsenic at ≥ 10 µg/kg dry weight. Results: The geometric mean (GM) of total arsenic in cooked chicken meat samples was 3.0 µg/kg (95% CI: 2.5, 3.6). Among the 78 cooked samples that were speciated, iAs concentrations were higher in conventional samples (GM = 1.8 µg/kg; 95% CI: 1.4, 2.3) than in antibiotic-free (GM = 0.7 µg/kg; 95% CI: 0.5, 1.0) or organic (GM = 0.6 µg/kg; 95% CI: 0.5, 0.8) samples. Roxarsone was detected in 20 of 40 conventional samples, 1 of 13 antibiotic-free samples, and none of the 25 organic samples. iAs concentrations in roxarsone-positive samples (GM = 2.3 µg/kg; 95% CI: 1.7, 3.1) were significantly higher than those in roxarsone-negative samples (GM = 0.8 µg/kg; 95% CI: 0.7, 1.0). Cooking increased iAs and decreased roxarsone concentrations. We estimated that consumers of conventional chicken would ingest an additional 0.11 µg/day iAs (in an 82-g serving) compared with consumers of organic chicken. Assuming lifetime exposure and a proposed cancer slope factor of 25.7 per milligram per kilogram of body weight per day, this increase in arsenic exposure could result in 3.7 additional lifetime bladder and lung cancer cases per 100,000 exposed persons. Conclusions: Conventional chicken meat had higher i

  6. Inorganic-organic hybrid compounds based on octamolybdates and multidentate N-donor ligand: syntheses, structures, photoluminescence and photocatalysis.

    Science.gov (United States)

    Kan, Wei-Qiu; Yang, Jin; Liu, Ying-Ying; Ma, Jian-Fang

    2012-08-28

    Six inorganic-organic hybrid compounds, namely, [Cu(2)(2,4'-tmbpt)(2)(β-Mo(8)O(26))(H(2)O)(2)]·7H(2)O (1), [Cu(2,4'-tmbpt)(γ-Mo(8)O(26))(0.5)(H(2)O)]·H(2)O (2), [Co(2,4'-Htmbpt)(2)(γ-Mo(8)O(26))(H(2)O)(2)] (3), [Zn(2,4'-Htmbpt)(2)(γ-Mo(8)O(26))(H(2)O)(2)] (4), [Ni(2,4'-tmbpt)(α-Mo(8)O(26))(0.5)(H(2)O)]·2.5H(2)O (5) and [Ag(2,4'-Htmbpt)(β-Mo(8)O(26))(0.5)] (6), have been synthesized under hydrothermal conditions (2,4'-tmbpt = 1-((1H-1,2,4-triazol-1-yl)methyl)-3-(2-pyridyl)-5-(4-pyridyl)-1,2,4-triazole). The structures of compounds 1-6 have been determined by single-crystal X-ray diffraction analyses and characterized by infrared spectra (IR), elemental analyses, powder X-ray diffraction (PXRD) analyses and thermogravimetric analyses (TGA). Compound 1 shows a 3D (3,4)-connected framework constructed by the 2D Cu(II)-organic fragments and [β-Mo(8)O(26)](4-) anions. Compound 2 exhibits a 2D layer structure based on Cu(II)-organic chains and [γ-Mo(8)O(26)] chains. The layers are extended into a 3D supramolecular framework by hydrogen-bonding interactions. Compounds 3 and 4 are isostructural, and display 1D chain structures. The chains are further interlinked by hydrogen-bonding interactions to form 3D supramolecular architectures. Compound 5 shows a 3D framework based on the 2D Ni(II)-organic fragments and [α-Mo(8)O(26)](4-) anions. In compound 6, the 1D chains constructed by the Ag(I) ions, 2,4'-Htmbpt ligands and [β-Mo(8)O(26)](4-) anions are extended by hydrogen-bonding interactions into a 2D supramolecular layer. Each layer threads into the adjacent layers, yielding a 2D → 3D interdigitated structure. Moreover, the photoluminescent properties of 4 and 6, the optical band gaps of 1-6, and the photocatalytic properties of 1-6 have also been investigated.

  7. Bipolar Membranes for Acid Base Flow Batteries

    Science.gov (United States)

    Anthamatten, Mitchell; Roddecha, Supacharee; Jorne, Jacob; Coughlan, Anna

    2011-03-01

    Rechargeable batteries can provide grid-scale electricity storage to match power generation with consumption and promote renewable energy sources. Flow batteries offer modular and flexible design, low cost per kWh and high efficiencies. A novel flow battery concept will be presented based on acid-base neutralization where protons (H+) and hydroxyl (OH-) ions react electrochemically to produce water. The large free energy of this highly reversible reaction can be stored chemically, and, upon discharge, can be harvested as usable electricity. The acid-base flow battery concept avoids the use of a sluggish oxygen electrode and utilizes the highly reversible hydrogen electrode, thus eliminating the need for expensive noble metal catalysts. The proposed flow battery is a hybrid of a battery and a fuel cell---hydrogen gas storing chemical energy is produced at one electrode and is immediately consumed at the other electrode. The two electrodes are exposed to low and high pH solutions, and these solutions are separated by a hybrid membrane containing a hybrid cation and anion exchange membrane (CEM/AEM). Membrane design will be discussed, along with ion-transport data for synthesized membranes.

  8. Effect of Organic and Inorganic Fertilizers on Nitrogen and Potassium Uptake and Yield of Sweet Corn Grown on an Acid Soil

    Directory of Open Access Journals (Sweden)

    Mohd. T. M. Yusuff

    2007-01-01

    Full Text Available A field study was carried with the following objectives: (i To investigate the effect of compost, N, and K fertilizers on selected chemical properties of Bekenu series (Tipik Tualemkuts, and (ii To investigate the effect of compost, N and K fertilizers on N and K uptake and yield of Masmadu variety cultivated on Bekenu series. Treatments evaluated were: (i No fertilization (T1, (ii Hundred percent inorganic fertilizer application (T2, (iii Eighty percent of N fertilizer plus twenty percent of N from compost application (T3, (iv Sixty percent of N fertilizer plus forty percent of N from compost (T4, and (v Application of hundred percent compost (T5. The experiment was conducted at the share farm of Universiti Putra Malaysia Bintulu Campus, Sarawak, Malaysia. The experimental design was a randomized complete block design (RCBD with 4 replications. Nitrogen and K were applied in the forms of urea (46 % N and muriate of potash (60 % K2O in split i.e., at 15 days after planting (DAP and 36 DAP, respectively. At 73 DAP, plants were harvested. The fresh weight of cobs excluding guard rows was recorded. Dry weight (stem and leaves, N, K, Ca, and Mg concentrations were determined by standard procedures. Soil sampling was done before and after fertilization. Soil total N was determined using the Kjeldahl method while exchangeable K, Ca, and Mg were extracted using the double acid method and their concentrations determined using atomic absorption spectrophotometry. Dry ashing method was used for the determination of K, Ca, and Mg concentrations in plant tissues while the Kjeldahl method was used to determine total N in plant tissues. The concentrations multiplied by the oven dried weight of roots and stem provided N, K, Ca and Mg uptake in these plant parts. T2, T3, T4 and T5 affected soil bulk density, CEC, pH, total N, exchangeable K, Ca and Mg. The dry weight of Masmadu leaf was not affected by fertilization and so was N and K uptake in this plant part

  9. Biodegradable polyesters based on succinic acid

    Directory of Open Access Journals (Sweden)

    Nikolić Marija S.

    2003-01-01

    Full Text Available Two series of aliphatic polyesters based on succinic acid were synthesized by copolymerization with adipic acid for the first series of saturated polyesters, and with fumaric acid for the second series. Polyesters were prepared starting from the corresponding dimethyl esters and 1,4-butanediol by melt transesterification in the presence of a highly effective catalyst tetra-n-butyl-titanate, Ti(0Bu4. The molecular structure and composition of the copolyesters was determined by 1H NMR spectroscopy. The effect of copolymer composition on the physical and thermal properties of these random polyesters were investigated using differential scanning calorimetry. The degree of crystallinity was determined by DSC and wide angle X-ray. The degrees of crystallinity of the saturated and unsaturated copolyesters were generally reduced with respect to poly(butylene succinate, PBS. The melting temperatures of the saturated polyesters were lower, while the melting temperatures of the unsaturated copolyesters were higher than the melting temperature of PBS. The biodegradability of the polyesters was investigated by enzymatic degradation tests. The enzymatic degradation tests were performed in a buffer solution with Candida cylindracea lipase and for the unsaturated polyesters with Rhizopus arrhizus lipase. The extent of biodegradation was quantified as the weight loss of polyester films. Also the surface of the polyester films after degradation was observed using optical microscopy. It could be concluded that the biodegradability depended strongly on the degree of crystallinity, but also on the flexibility of the chain backbone. The highest biodegradation was observed for copolyesters containing 50 mol.% of adipic acid units, and in the series of unsaturated polyesters for copolyesters containing 5 and 10 mol.% of fumarate units. Although the degree of crystallinity of the unsaturated polyesters decreased slightly with increasing unsaturation, the biodegradation

  10. Fluorescent Properties of Manganese Halide Benzothiazole Inorganic-Organic Hybrids.

    Science.gov (United States)

    Yu, Hui; Mei, YingXuan; Wei, ZhenHong; Mei, GuangQuan; Cai, Hu

    2016-11-01

    The reaction of manganese (II) halides MnX2 and benzothiazole (btz) in the concentrated acids HX (X = Cl, Br) at 80 °C resulted in the formation of two inorganic-organic hybrid complexes: [(btz)2(MnX4)]·2H2O (X = Cl, 1; X = Br, 2). Both compounds showed green luminescence and exhibited moderate quantum yields of 43.17 % for 1 and 26.18 % for 2, which were directly originated from the tetrahedral coordination of Mn(2+) ion. Two organic - inorganic hybrids [(btz)2(MnX4)]·2H2O based on MnCl2, benzothiazole and halide acids emitted green light with the moderate quantum efficiencies when excited by 365 nm light. Graphical abstract Two organic-inorganic hybrids [(btz)2(MnX4)]·2H2O based on MnCl2, benzothiazole and halide acids emitted green light with the moderate quantum efficiencies when excited by 365 nm light.

  11. Synthesis and structural characterization of a new chiral porous hybrid organic–inorganic material based on γ-zirconium phosphates and L-(+)-phosphoserine

    Energy Technology Data Exchange (ETDEWEB)

    Alhendawi, Hussein M.H., E-mail: hussein.alhendawi@yahoo.com [Department of Chemistry, Faculty of Science, Al-Azhar University of Gaza, 1277 Gaza, Palestine (Country Unknown)

    2013-05-01

    In the present work, a chiral layered derivative of γ-zirconium phosphate (γ-ZrP) containing L-(+)-phosphoserine (γ-ZrP-PS*) covalently attached to inorganic layers has been prepared by means of topotactic exchange reaction. This organic–inorganic derivative is characterized by X-ray diffractometry, Solid {sup 13}C–NMR and FT-IR spectrophotometries and thermal analyses. A maximum level of topotactic replacement of 20% is achieved. Under both the acidic environment of the interlayer region of γ-ZrP and the acidic synthesis conditions, the hydrolysis of the ester bond of PS* is expected to take place to some extent. For this reason, it was impossible to exceed the recent percentage, which in turn reflects the relative moderate stability of the above mentioned bond under these conditions. In order to be more certain with regard to an expected further hydrolysis for this bond after separation, a sample of γ-ZrP-PS* was stored in a desiccator over a saturated solution of BaCl{sub 2} (90% relative humidity) for three months, and then the sample re-analyzed once again. Surprisingly, the results show that the sample still keeps almost the same level of exchange (i.e., 20%). Second, it is revealed that the sample almost gives the same spectroscopic and thermal behavior. This could be attributed to the less acidic character of the partially exchanged inorganic layers of the sample in comparison with that of the precursor γ-ZrP. Therefore, the PS* molecules persist and stay there into the interlayer gallery without further hydrolysis. - Graphical abstract: • Red: oxygen • White: zirconium • Cyan: carbon • Yellow: phosphorus • Blue: nitrogen. Highlights: • L-(+)-Phosphoserine (PS*) is exchanged with γ-ZrP by means of topotactic exchange. • The maximum exchange level is 20%. • γ-ZrP is functionalized with chiral amino acid group. • γ-ZrP-PS* has large chiral space for huge guest molecules to be intercalated.

  12. Teaching Acid/Base Physiology in the Laboratory

    Science.gov (United States)

    Friis, Ulla G.; Plovsing, Ronni; Hansen, Klaus; Laursen, Bent G.; Wallstedt, Birgitta

    2010-01-01

    Acid/base homeostasis is one of the most difficult subdisciplines of physiology for medical students to master. A different approach, where theory and practice are linked, might help students develop a deeper understanding of acid/base homeostasis. We therefore set out to develop a laboratory exercise in acid/base physiology that would provide…

  13. Using Willie's Acid-Base Box for Blood Gas Analysis

    Science.gov (United States)

    Dietz, John R.

    2011-01-01

    In this article, the author describes a method developed by Dr. William T. Lipscomb for teaching blood gas analysis of acid-base status and provides three examples using Willie's acid-base box. Willie's acid-base box is constructed using three of the parameters of standard arterial blood gas analysis: (1) pH; (2) bicarbonate; and (3) CO[subscript…

  14. Using Willie's Acid-Base Box for Blood Gas Analysis

    Science.gov (United States)

    Dietz, John R.

    2011-01-01

    In this article, the author describes a method developed by Dr. William T. Lipscomb for teaching blood gas analysis of acid-base status and provides three examples using Willie's acid-base box. Willie's acid-base box is constructed using three of the parameters of standard arterial blood gas analysis: (1) pH; (2) bicarbonate; and (3) CO[subscript…

  15. Assessing College Students' Understanding of Acid Base Chemistry Concepts

    Science.gov (United States)

    Wan, Yanjun Jean

    2014-01-01

    Typically most college curricula include three acid base models: Arrhenius', Bronsted-Lowry's, and Lewis'. Although Lewis' acid base model is generally thought to be the most sophisticated among these three models, and can be further applied in reaction mechanisms, most general chemistry curricula either do not include Lewis' acid base model, or…

  16. Teaching Acid/Base Physiology in the Laboratory

    Science.gov (United States)

    Friis, Ulla G.; Plovsing, Ronni; Hansen, Klaus; Laursen, Bent G.; Wallstedt, Birgitta

    2010-01-01

    Acid/base homeostasis is one of the most difficult subdisciplines of physiology for medical students to master. A different approach, where theory and practice are linked, might help students develop a deeper understanding of acid/base homeostasis. We therefore set out to develop a laboratory exercise in acid/base physiology that would provide…

  17. Wood-Based Nanocomposite Derived by in Situ Formation of Organic-Inorganic Hybrid Polymer within Wood via a Sol-Gel Method.

    Science.gov (United States)

    Dong, Xiaoying; Zhuo, Xiao; Wei, Jie; Zhang, Gang; Li, Yongfeng

    2017-03-15

    Solid wood materials and wood-plastic composites as two kinds of lightweight materials are attracting great interest from academia and industry due to their green and recycling nature. However, the relatively lower specific strength limits their wider applications. In particular, solid wood is vulnerable to moisture and decay fungi in nature, resulting in its poor durability for effectively long-term utilization. Inspired from the porous structure of wood, we propose a new design to build a wood-based nanocomposite with higher specific strength and satisfactory durability by in situ generation of organic-inorganic hybrid polymer within wood via a sol-gel method. The derived composite has 50-1200% improvement of impact toughness, 56-192% improvement of tensile strength, and 110-291% improvement of flexural strength over those of typical wood-plastic composites, respectively; and even 34% improvement of specific tensile strength than that of 36A steel; 208% enhancement of hardness; and 156% enhancement of compression strength than those of compared solid wood, respectively; as well as significantly improved dimensional stability and decay resistance over those of untreated natural wood. Such materials could be potentially utilized as lightweight and high-strength materials for applications in construction and automotive industries. This method could be extended to constitute other inorganic nanomaterials for novel organic-inorganic hybrid polymer within wood.

  18. Synthesis and Characterization of Two New Photochromic Inorganic-organic Hybrid Materials Based on Keggin-type Polyoxometalates

    Institute of Scientific and Technical Information of China (English)

    KU Zongjun; JIN Surong

    2008-01-01

    Two new photochromic inorganic-organic hybrid materials formed from Keggin-type polyoxometalates (POMs) and metronidazole (C6H9N3O3, MNZ), formulated as H3PMo12O40·3MNZ·3H2O (1) and H3PW12O40·3MNZ·3H2O (2), were synthesized and characterized by elemental analysis, IR spectra, electronic spectra, electron spin resonance (ESR) spectra and thermogravi-metry-differential thermal analysis (TG-DTA). Reflectance spectra show the presence of weak intermolecular charge transfer between the organic and inorganic moieties in the solid state. The photochromic properties were studied by solid diffuse reflectance spectra and ESR spectra, and the photochromic reactions were found to exhibit first-order kinetics. TG-DTA showed that two hybrid materials have similar thermal behavior.

  19. Miniaturized preconcentration methods based on liquid-liquid extraction and their application in inorganic ultratrace analysis and speciation: A review

    Science.gov (United States)

    Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2009-01-01

    Liquid-liquid extraction (LLE) is widely used as a pre-treatment technique for separation and preconcentration of both organic and inorganic analytes from aqueous samples. Nevertheless, it has several drawbacks, such as emulsion formation or the use of large volumes of solvents, which makes LLE expensive and labour intensive. Therefore, miniaturization of conventional liquid-liquid extraction is needed. The search for alternatives to the conventional LLE using negligible volumes of extractant and the minimum number of steps has driven the development of three new miniaturized methodologies, i.e. single-drop microextraction (SDME), hollow fibre liquid-phase microextraction (HF-LPME) and dispersive liquid-liquid microextraction (DLLME). The aim of this paper is to provide an overview of these novel preconcentration approaches and their potential use in analytical labs involved in inorganic (ultra)trace analysis and speciation. Relevant applications to the determination of metal ions, metalloids, organometals and non-metals are included.

  20. Miniaturized preconcentration methods based on liquid-liquid extraction and their application in inorganic ultratrace analysis and speciation: A review

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Pereira, Francisco; Lavilla, Isela [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Facultad de Quimica, Universidad de Vigo, Campus As Lagoas-Marcosende s/n, 36310 Vigo (Spain); Bendicho, Carlos [Departamento de Quimica Analitica y Alimentaria, Area de Quimica Analitica, Facultad de Quimica, Universidad de Vigo, Campus As Lagoas-Marcosende s/n, 36310 Vigo (Spain)], E-mail: bendicho@uvigo.es

    2009-01-15

    Liquid-liquid extraction (LLE) is widely used as a pre-treatment technique for separation and preconcentration of both organic and inorganic analytes from aqueous samples. Nevertheless, it has several drawbacks, such as emulsion formation or the use of large volumes of solvents, which makes LLE expensive and labour intensive. Therefore, miniaturization of conventional liquid-liquid extraction is needed. The search for alternatives to the conventional LLE using negligible volumes of extractant and the minimum number of steps has driven the development of three new miniaturized methodologies, i.e. single-drop microextraction (SDME), hollow fibre liquid-phase microextraction (HF-LPME) and dispersive liquid-liquid microextraction (DLLME). The aim of this paper is to provide an overview of these novel preconcentration approaches and their potential use in analytical labs involved in inorganic (ultra)trace analysis and speciation. Relevant applications to the determination of metal ions, metalloids, organometals and non-metals are included.

  1. ROMP-Derived cyclooctene-based monolithic polymeric materials reinforced with inorganic nanoparticles for applications in tissue engineering

    Directory of Open Access Journals (Sweden)

    Franziska Weichelt

    2010-12-01

    Full Text Available Porous monolithic inorganic/polymeric hybrid materials have been prepared via ring-opening metathesis copolymerization starting from a highly polar monomer, i.e., cis-5-cyclooctene-trans-1,2-diol and a 7-oxanorborn-2-ene-derived cross-linker in the presence of porogenic solvents and two types of inorganic nanoparticles (i.e., CaCO3 and calcium hydroxyapatite, respectively using the third-generation Grubbs initiator RuCl2(Py2(IMesH2(CHPh. The physico-chemical properties of the monolithic materials, such as pore size distribution and microhardness were studied with regard to the nanoparticle type and content. Moreover, the reinforced monoliths were tested for the possible use as scaffold materials in tissue engineering, by carrying out cell cultivation experiments with human adipose tissue-derived stromal cells.

  2. A hydrophilic inorganic framework based on a sandwich polyoxometalate: unusual chemoselectivity for aldehydes/ketones with in situ generated hydroxylamine.

    Science.gov (United States)

    Xing, Songzhu; Han, Qiuxia; Shi, Zhuolin; Wang, Shugai; Yang, PeiPei; Wu, Qiang; Li, Mingxue

    2017-08-16

    A hydrophilic inorganic porous catalyst was prepared via the hydrothermal method. The combination of [WZn3(H2O)2(ZnW9O34)2](12-) and Co(ii) provides a synergistical catalytic way to promote oximation of aldehyde/ketone with in situ generated hydroxylamine that initially produces an oxime, which further either dehydrates into a nitrile or undergoes a Beckmann rearrangement to form an amide.

  3. Photoinduced energy transfer processes in hybrid organic-inorganic multichromophoric arrays arranged on a truxene-based platform.

    Science.gov (United States)

    Diring, Stéphane; Ventura, Barbara; Barbieri, Andrea; Ziessel, Raymond

    2012-11-14

    The synthesis, photophysical characterization and energy-transfer features of a series of hybrid truxene derivatives peripherally decorated with inorganic Os-containing polypyridine units and organic Bodipy dyes are reported. The photoactive terminal units are coupled to the central truxene scaffold by rigid ethynyl linkers in a star-shaped arrangement. The absorption range widely covers the UV-Vis spectrum and the Os (3)MLCT or the Bodipy triplet act as final collectors of the absorbed energy.

  4. Origins and Evolution of Inorganic-Based and MOF-Based Mixed-Matrix Membranes for Gas Separations

    National Research Council Canada - National Science Library

    Perez, Edson; Karunaweera, Chamaal; Musselman, Inga; Balkus, Kenneth; Ferraris, John

    2016-01-01

    .... Among the separation methods currently being used, like distillation, amine scrubbing, and pressure and temperature swing adsorption, membrane-based gas separation has the potential to meet these demands...

  5. Luminescent Organic–Inorganic Hybrids of Functionalized Mesoporous Silica SBA-15 by Thio-Salicylidene Schiff Base

    Directory of Open Access Journals (Sweden)

    Li Ying

    2010-01-01

    Full Text Available Abstract Novel organic–inorganic mesoporous luminescent hybrid material N, N′-bis(salicylidene-thiocarbohydrazide (BSTC-SBA-15 has been obtained by co-condensation of tetraethyl orthosilicate and the organosilane in the presence of Pluronic P123 surfactant as a template. N,N′-bis(salicylidene-thiocarbohydrazide (BSTC grafted to the coupling agent 3-(triethoxysilyl-propyl isocyanate (TESPIC was used as the precursor for the preparation of mesoporous materials. In addition, for comparison, SBA-15 doped with organic ligand BSTC was also synthesized, denoted as BSTC/SBA-15. This organic–inorganic hybrid material was well-characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy (HRTEM, and photoluminescence spectra, which reveals that they all have high surface area, uniformity in the mesostructure. The resulting materials (BSTC-SBA-15 and BSTC/SBA-15 exhibit regular uniform microstructures, and no phase separation happened for the organic and the inorganic compounds was covalently linked through Si–O bonds via a self-assemble process. Furthermore, the two materials have different luminescence range: BSTC/SBA-15 presents the strong dominant green luminescence, while BSTC-functionalized material BSTC-SBA-15 shows the dominant blue emission.

  6. Liquid Crystalline Furandicarboxylic Acid-based Aaromatic Polyesters

    NARCIS (Netherlands)

    WILSENS, CAROLUS HENRICUS R. MARIA; RASTOGI, SANJAY; VELD, MARTIJN ARNOLDUS JOHANNES; KLOP, ENNO ANTON; NOORDOVER, BART ADRIANUS JOHANNES

    2013-01-01

    The invention pertains to a fully aromatic liquid crystalline furandicarboxylic acid- based aromatic polyester obtainable from a mixture of monomers comprising 2,5- furandicarboxylic acid, p-hydroxybenzoic acid, an aromatic diol, and 5-40 mol% of an aromatic monocarboxylic acid selected from vanilli

  7. Separate vaporisation of boric acid and inorganic boron from tungsten sample cuvette-tungsten boat furnace followed by the detection of boron species by inductively coupled plasma mass spectrometry and atomic emission spectrometry (ICP-MS and ICP-AES).

    Science.gov (United States)

    Kataoka, Hiroko; Okamoto, Yasuaki; Tsukahara, Satoshi; Fujiwara, Terufumi; Ito, Kazuaki

    2008-03-10

    Utilising extremely different vaporisation properties of boron compounds, the determination procedures of volatile boric acid and total boron using tungsten boat furnace (TBF) ICP-MS and TBF-ICP-AES have been investigated. For the determination of volatile boric acid by TBF-ICP-MS, tetramethylammonium hydroxide (TMAH, Me(4)NOH) was used as a chemical modifier to retain it during drying and ashing stages. As for the total boron, not only non-volatile inorganic boron such as boron nitride (BN), boron carbide (B(4)C), etc. but also boric acid (B(OH)(3)) was decomposed by a furnace-fusion digestion with NaOH to produce sodium salt of boron, a suitable species for the electrothermal vaporisation (ETV) procedure. The proposed method was applied to the analysis of various standard reference materials. The analytical results for various biological and steel samples are described.

  8. Determination of volatile organic acids and inorganic anions in pharmaceutical wastewater by ion chromatography%离子色谱法测定制药废水中挥发性有机酸及无机阴离子

    Institute of Scientific and Technical Information of China (English)

    王强; 王路光; 王靖飞; 李洪波

    2009-01-01

    An ion chromatographic method for simultaneous determination of volatile organic acids and inorganic anions in pharmacentical wastewater was developed, using NaOH as eluent, ion exchange column for separation, and thermal conductivity detector for detection. Eight volatile organic acids and inorganic anions in pharmaceutical wastewater were separated in 28.0 min. The recoveries were 85.9%~109.5% and RSDs were 2.9%~10.9%. The method can be used for analysis of volatile organic acids and inorganic anions in wastewater in the production of penicillin and vitamin C.%建立了以NaOH为淋洗液、离子交换色谱柱为分析柱、用电导检测器进行检测的制药废水中有机酸和无机阴离子的离子色谱分析方法.结果表明,在28.0 min内可以分离出废水中8种主要挥发性有机酸与无机阴离子.方法回收率为85.9%~109.5 %,相对标准偏差为2.9%~10.9%.该法可用于青霉素生产废水、VC生产废水等制药废水中有机酸和无机阴离子的快速、准确分析,结果令人满意.

  9. Inorganic nanomedicine--part 1.

    Science.gov (United States)

    Sekhon, Bhupinder S; Kamboj, Seema R

    2010-08-01

    Inorganic nanomedicine refers to the use of inorganic or hybrid nanomaterials and nanosized objects to achieve innovative medical breakthroughs for drug and gene discovery and delivery, discovery of biomarkers, and molecular diagnostics. Potential uses for fluorescent quantum dots include cell labeling, biosensing, in vivo imaging, bimodal magnetic-luminescent imaging, and diagnostics. Biocompatible quantum dot conjugates have been used successfully for sentinel lymph node mapping, tumor targeting, tumor angiogenesis imaging, and metastatic cell tracking. Magnetic nanowires applications include biosensing and construction of nucleic acids sensors. Magnetic cell therapy is used for the repair of blood vessels. Magnetic nanoparticles (MNPs) are important for magnetic resonance imaging, drug delivery, cell labeling, and tracking. Superparamagnetic iron oxide nanoparticles are used for hyperthermic treatment of tumors. Multifunctional MNPs applications include drug and gene delivery, medical imaging, and targeted drug delivery. MNPs could have a vital role in developing techniques to simultaneously diagnose, monitor, and treat a wide range of common diseases and injuries. From the clinical editor: This review serves as an update about the current state of inorganic nanomedicine. The use of inorganic/hybrid nanomaterials and nanosized objects has already resulted in innovative medical breakthroughs for drug/gene discovery and delivery, discovery of biomarkers and molecular diagnostics, and is likely to remain one of the most prolific fields of nanomedicine.

  10. Striking a Balance: Experiment and Concept in Undergraduate Inorganic Chemistry.

    Science.gov (United States)

    Frey, John E.

    1990-01-01

    Described is an inorganic chemistry course based on the premise that a balanced understanding of inorganic chemistry requires knowledge of the experimental, theoretical, and technological aspects of the subject. A detailed description of lectures and laboratories is included. (KR)

  11. Striking a Balance: Experiment and Concept in Undergraduate Inorganic Chemistry.

    Science.gov (United States)

    Frey, John E.

    1990-01-01

    Described is an inorganic chemistry course based on the premise that a balanced understanding of inorganic chemistry requires knowledge of the experimental, theoretical, and technological aspects of the subject. A detailed description of lectures and laboratories is included. (KR)

  12. Three-dimensional hybrid networks based on aspartic acid

    Indian Academy of Sciences (India)

    Anupama Ghosh; R A Sanguramath

    2008-01-01

    Three-dimensional achiral coordination polymers of the general formula M2(D, L-NHCH (COO)CH2COO)2.C4H4N2 where M = Ni and Co and pyrazine acts as the linker molecule have been prepared under hydrothermal conditions starting with [M(L-NHCH(COO)CH2COO).3H2O] possessing a helical chain structure. A three-dimensional hybrid compound of the formula Pb2.5[N{CH(COO)CH2COO}22H2O] has also been prepared hydrothermally starting with aspartic acid and Pb(NO3)2. In this lead compound, where a secondary amine formed by the dimerisation of aspartic acid acts as the ligand, there is two-dimensional inorganic connectivity and one-dimensional organic connectivity.

  13. A fuel cell operating between room temperature and 250 C based on a new phosphoric acid based composite electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Rong [Department of Chemistry, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Xu, Xiaoxiang; Irvine, John T.S. [School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST (United Kingdom); Tao, Shanwen [Department of Chemistry, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST (United Kingdom)

    2010-10-15

    A phosphoric acid based composite material with core-shell microstructure has been developed to be used as a new electrolyte for fuel cells. A fuel cell based on this electrolyte can operate at room temperature indicating leaching of H{sub 3}PO{sub 4} with liquid water is insignificant at room temperature. This will help to improve the thermal cyclability of phosphoric acid based electrolyte to make it easier for practical use. The conductivity of this H{sub 3}PO{sub 4}-based electrolyte is stable at 250 C with addition of the hydrophilic inorganic compound BPO{sub 4} forming a core-shell microstructure which makes it possible to run a PAFC at a temperature above 200 C. The core-shell microstructure retains after the fuel cell measurements. A power density of 350 mW/cm{sup 2} for a H{sub 2}/O{sub 2} fuel cell has been achieved at 200 C. The increase in operating temperature does not have significant benefit to the performance of a H{sub 2}/O{sub 2} fuel cell. For the first time, a composite electrolyte material for phosphoric acid fuel cells which can operate in a wide range of temperature has been evaluated but certainly further investigation is required. (author)

  14. A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in groundwater

    Science.gov (United States)

    Han, L. F; Plummer, Niel

    2016-01-01

    Numerous methods have been proposed to estimate the pre-nuclear-detonation 14C content of dissolved inorganic carbon (DIC) recharged to groundwater that has been corrected/adjusted for geochemical processes in the absence of radioactive decay (14C0) - a quantity that is essential for estimation of radiocarbon age of DIC in groundwater. The models/approaches most commonly used are grouped as follows: (1) single-sample-based models, (2) a statistical approach based on the observed (curved) relationship between 14C and δ13C data for the aquifer, and (3) the geochemical mass-balance approach that constructs adjustment models accounting for all the geochemical reactions known to occur along a groundwater flow path. This review discusses first the geochemical processes behind each of the single-sample-based models, followed by discussions of the statistical approach and the geochemical mass-balance approach. Finally, the applications, advantages and limitations of the three groups of models/approaches are discussed.The single-sample-based models constitute the prevailing use of 14C data in hydrogeology and hydrological studies. This is in part because the models are applied to an individual water sample to estimate the 14C age, therefore the measurement data are easily available. These models have been shown to provide realistic radiocarbon ages in many studies. However, they usually are limited to simple carbonate aquifers and selection of model may have significant effects on 14C0 often resulting in a wide range of estimates of 14C ages.Of the single-sample-based models, four are recommended for the estimation of 14C0 of DIC in groundwater: Pearson's model, (Ingerson and Pearson, 1964; Pearson and White, 1967), Han & Plummer's model (Han and Plummer, 2013), the IAEA model (Gonfiantini, 1972; Salem et al., 1980), and Oeschger's model (Geyh, 2000). These four models include all processes considered in single-sample-based models, and can be used in different ranges of

  15. Bedside Analysis of Acid-Base Balance

    Directory of Open Access Journals (Sweden)

    Yu. S. Podlesskikh

    2006-01-01

    Full Text Available Laboratory service is one of the most hang-the-expense items in the cost of treatment of patients in an intensive care unit. Isolated acid-base balance (ABB impairments are rare in clinical practice. These impairments are generally combined and they frequently cause a drastic change in the pH value of blood. Early detection of their origin and its elimination are of profound importance in these situations. Miniaturization of analyzers has made it possible to conduct some investigations and particularly to determine ABB just in the intensive care unit or operating suite. The attached software permits creation of a database and transmission of information to the laboratory network. One year’s experience has indicated that the quality of reagents and reference substances allows real-time determination of the values of ABB with a high degree of accuracy and reproducibility at a patient’s bed. 

  16. Whole-body acid-base modeling revisited

    DEFF Research Database (Denmark)

    Ring, Troels; Nielsen, Søren

    2017-01-01

    The textbook account of whole-body acid-base balance in terms of endogenous acid production, renal net acid excretion and gastrointestinal alkali absorption which is the only comprehensive model around, has never been applied in clinical practice or been formally validated. In order to improve...... understanding of acid-base modeling, we managed to write up this conventional model as an expression solely on urine chemistry. Renal net acid excretion and endogenous acid production was already formulated in terms of urine chemistry, and we could from the literature also see gastrointestinal alkali absorption...

  17. The influence of dissolved organic matter on the acid-base system of the Baltic Sea

    Science.gov (United States)

    Kuliński, Karol; Schneider, Bernd; Hammer, Karoline; Machulik, Ulrike; Schulz-Bull, Detlef

    2014-04-01

    To assess the influence of dissolved organic matter (DOM) on the acid-base system of the Baltic Sea, 19 stations along the salinity gradient from Mecklenburg Bight to the Bothnian Bay were sampled in November 2011 for total alkalinity (AT), total inorganic carbon concentration (CT), partial pressure of CO2 (pCO2), and pH. Based on these data, an organic alkalinity contribution (Aorg) was determined, defined as the difference between measured AT and the inorganic alkalinity calculated from CT and pH and/or CT and pCO2. Aorg was in the range of 22-58 μmol kg- 1, corresponding to 1.5-3.5% of AT. The method to determine Aorg was validated in an experiment performed on DOM-enriched river water samples collected from the mouths of the Vistula and Oder Rivers in May 2012. The Aorg increase determined in that experiment correlated directly with the increased DOC concentration caused by enrichment of the > 1 kDa DOM fraction. To examine the effect of Aorg on calculations of the marine CO2 system, the pCO2 and pH values measured in Baltic Sea water were compared with calculated values that were based on the measured alkalinity and another variable of the CO2 system, but ignored the existence of Aorg. Large differences between measured and calculated pCO2 and pH were obtained when the computations were based on AT and CT. The calculated pCO2 was 27-56% lower than the measured value whereas the calculated pH was overestimated by more than 0.4 pH units. Since biogeochemical models are based on the transport and transformations of AT and CT, the acid-base properties of DOM should be included in calculations of the CO2 system in DOM-rich basins like the Baltic Sea. In view of our limited knowledge about the composition and acid/base properties of DOM, this is best achieved using a bulk dissociation constant, KDOM, that represents all weakly acidic functional groups present in DOM. Our preliminary results indicated that the bulk KDOM in the Baltic Sea is 2.94 · 10- 8 mol kg- 1

  18. Three iodometalate organic-inorganic hybrid materials based on methylene blue cation: Syntheses, structures, properties and DFT calculations

    Science.gov (United States)

    Chai, Wen-Xiang; Lin, Jian; Song, Li; Qin, Lai-Shun; Shi, Hong-Sheng; Guo, Jia-Yu; Shu, Kang-Ying

    2012-08-01

    The functional dye of methylene blue (MB) has been employed for seeking new organic-inorganic hybrid photochromic materials. Although the photochromism has not been observed yet, three iodometalate compounds, namely (MB) (PbI3) (DMF) (1), (MB)4(Cu2I4)2 (2), and (MB)3(Bi2I9) (DMF)2 (3), have been synthesized and characterized. The iodometalate anion features as a [PbI3]∞- chain in 1, a dinuclear unit of Cu2I42- in 2, and a dinuclear unit of Bi2I93- in 3. Due to the synergy of cations and anions, the MB+ cations present supramolecular column stacks in 1 and 3, but a novel supramolecular octamer structure in 2. Their thermogravimetric analyses reveal that the polymeric inorganic anion structure is helpful to increase the stability of cation whereas the discrete structure is adverse. For seeking some clues which is significant to searching new photochromic systems, the density functional theory (DFT) studies have been performed on 1, in which the electronic structure analyses suggests that the stacking mode of cations and anions could be also an important factor influencing the charge transfer between them. In addition, dielectric hysteresis loop testing has been performed on 1 due to its polar space group of Cc.

  19. Zinc complexes developed as metallopharmaceutics for treating diabetes mellitus based on the bio-medicinal inorganic chemistry.

    Science.gov (United States)

    Yoshikawa, Yutaka; Yasui, Hiroyuki

    2012-01-01

    Biological trace metals such as iron, zinc, copper, and manganese are essential to life and health of humans, and the success of platinum drugs in the cancer chemotherapy has rapidly grown interest in developing inorganic pharmaceutical agents in medicinal chemistry, that is, medicinal inorganic chemistry, using essential elements and other biological trace metals. Transition metal complexes with unique chemical structures may be useful alternatives to the drugs available to address some of the incurable diseases. In this review, we emphasize that metal complexes are an expanding of interest in the research field of treatment of diabetes mellitus. Especially, orally active anti-diabetic and anti-metabolic syndrome zinc complexes have been developed and progressed since the discovery in 2001, where several highly potent anti-diabetic zinc complexes with different coordination structures have quite recently been disclosed, using experimental diabetic animals. In all of the complexes discussed, zinc is found to be biologically active and function by interacting with some target proteins related with diabetes mellitus. The design and screening of zinc complexes with higher activity is not efficient without consideration of the translational research. For the development of a clinically useful metallopharmaceutics, the research of zinc complexes on the long-term toxicity including side effects, clear-cut evidence of target molecule for the in vivo pharmacological action, and good pharmacokinetic property are essential in the current and future studies.

  20. A High Dimensional Coordination Polymer Based on [β-Mo8O26]4- Inorganic Building Block: Synthesis, Structure and Topology

    Institute of Scientific and Technical Information of China (English)

    DU Xiao-Di; LI Chun-Yang; JIN Gang; CHANG Jia-Zhong; WANG Zhen-Ling

    2012-01-01

    A high dimensional copper coordination polymer {[Cu2(btb)2(H2O)4( -Mo8O26)] H2O}n(1, btb = 1,4-bis(1,2,4-triazol-1-yl)butane) based on [ -Mo8O26]4 anions and flexible bis(triazole) ligands has been synthesized and characterized by elemental analysis, IR spectra, single-crystal X-ray diffraction and thermal analysis. The crystallographic data show that complex 1 crystallizes in triclinic space group P with a = 9.7550(10), b = 10.3996(11), c = 10.9516(11), = 77.622(2), = 89.602(2), = 87.610(2), V = 1084.25(19)3, C16H34Cu2Mo8 N12O31, Mr = 1785.15, Dc = 2.734 g cm 3, μ(MoKα) = 3.303 mm 1, F(000) = 856, GOF = 1.060, Z = 1, the final R = 0.0376 and wR = 0.0982 for I 〉 2 (I). In 1, the inorganic building block [ -Mo8O26]4 anions are connected with each other to generate one-dimensional chains. Then the chains are further connected by Cu2+ ions to form a three-dimensional (3D) inorganic framework [Cu2( -Mo8O26)]n containing quadrangular channels, with the pcu alpha-Po primitive cubic topology. The btb ligands are encapsulated into the void of the 3D inorganic framework forming a new three-dimensional architecture. The thermal analysis illustrates that complex 1 retains a comparatively good thermal stability.

  1. ACID-BASE INTERACTIONS BETWEEN POLYMERS AND FILLERS

    Institute of Scientific and Technical Information of China (English)

    WANG Qingguo; CHEN Fute; HUANG Yuanfu; ZHOU Qingli

    1987-01-01

    Inverse gas chromatography(IGC) and Fourier-transform infrared (FT-IR) techniques were applied to determining the relative acid-base strength of polymers and coupling agents. The acid-base characteristics of fillers such as CaCO3 could be altered by treatment with different coupling agents. It was shown that some mechanical properties of filled polymers were obviously associated with acid-base interactions between polymers and fillers.

  2. UTILITY OF ZEOLITES IN REMOVAL OF INORGANIC AND ORGANIC WATER POLLUTANTS

    Science.gov (United States)

    Zeolites are well known for their ion exchange, adsorption and acid catalysis properties. Different inorganic and organic pollutants have been removed from water at room temperature using various zeolites. Synthetic zeolite Faujasite Y has been used to remove inorganic pollutants...

  3. Sol-gel Process in Preparation of Organic-inorganic Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Macan, J

    2008-07-01

    Full Text Available Organic-inorganic hybrid materials are a sort of nanostructured material in which the organic and inorganic phases are mixed at molecular level. The inorganic phase in hybrid materials is formed by the sol-gel process, which consists of reactions of hydrolysis and condensation of metal (usually silicon alkoxides. Flexibility of sol-gel process enables creation of hybrid materials with varying organic and inorganic phases in different ratios, and consequently fine-tuning of their properties. In order to obtain true hybrid materials, contact between the phases should be at molecular level, so phase separation between thermodynamically incompatible organic and inorganic phases has to be prevented. Phase interaction can be improved by formation of hydrogen or covalent bonds between them during preparation of hybrid materials. Covalent bond can be introduced by organically modified silicon alkoxides containing a reactive organic group (substituent capable of reacting with the organic phase. In order to obtain hybrid materials with desired structures, a detailed knowledge of hydrolysis and condensation mechanism is necessary. The choice of catalyst, whether acid or base, has the most significant influence on the structure of the inorganic phase. Other important parameters are alkoxide concentration, water: alkoxide ratio, type of alkoxide groups, solvent used, temperature, purity of chemicals used, etc. Hydrolysis and condensation of organically modified silicon alkoxides are additionally influenced by nature and size of the organic supstituent.

  4. Biosynthetic inorganic chemistry.

    Science.gov (United States)

    Lu, Yi

    2006-08-25

    Inorganic chemistry and biology can benefit greatly from each other. Although synthetic and physical inorganic chemistry have been greatly successful in clarifying the role of metal ions in biological systems, the time may now be right to utilize biological systems to advance coordination chemistry. One such example is the use of small, stable, easy-to-make, and well-characterized proteins as ligands to synthesize novel inorganic compounds. This biosynthetic inorganic chemistry is possible thanks to a number of developments in biology. This review summarizes the progress in the synthesis of close models of complex metalloproteins, followed by a description of recent advances in using the approach for making novel compounds that are unprecedented in either inorganic chemistry or biology. The focus is mainly on synthetic "tricks" learned from biology, as well as novel structures and insights obtained. The advantages and disadvantages of this biosynthetic approach are discussed.

  5. Inorganic-organic hybrid membranes with anhydrous proton conduction prepared from 3-aminopropyltriethoxysilane and sulfuric acid by the sol-gel method.

    Science.gov (United States)

    Tezuka, Teruaki; Tadanaga, Kiyoharu; Hayashi, Akitoshi; Tatsumisago, Masahiro

    2006-12-27

    Inorganic-organic hybrid membranes with anhydrous proton conduction were prepared from 3-aminopropyltriethoxysilane and H2SO4 by the sol-gel method. The membrane has a unique structure: a hexagonal phase formed by the stacking of rodlike polysiloxanes with ion complexes of ammonium groups and HSO4- extruded outside. The membranes showed high conductivity of 2 x 10-3 S cm-1 at 200 degrees C under dry atmosphere. In the membrane, protons probably migrate through the outside of the rodlike polysiloxanes along hydrogen-bond chains formed among HSO4- anions.

  6. Crystal structure of an organic-inorganic hybrid compound based on morpholinium cations and a β-type Anderson polyanion.

    Science.gov (United States)

    Lukianova, Tamara J; Kinzhybalo, Vasyl; Pietraszko, Adam

    2015-11-01

    A new organic-inorganic hybrid compound, penta-morpholinium hexa-hydrogen hexa-molybdoferrate(III) sulfate 3.5-hydrate, (C4H10NO)5[Fe(III)(OH)6Mo6O18](SO4)·3.5H2O, was obtained from an aqueous solution. The polyoxidomolybdate (POM) anion is of the Anderson β-type with a central Fe(III) ion. Three of five crystallographically independent morpholinium cations are disordered over two sets of sites. An intricate network of inter-molecular N-H⋯O and O-H⋯O inter-actions between cations, POMs, sulfate anions and non-coordinating water mol-ecules creates a three-dimensional network structure.

  7. Novel Synchronous Linear and Rotatory Micro Motors Based on Polymer Magnets with Organic and Inorganic Insulation Layers

    Directory of Open Access Journals (Sweden)

    Andreas WALDSCHIK

    2008-12-01

    Full Text Available In this work, we report on the development of several synchronous motors with rotatory or linear movements. The synchronous micro motors are brushless DC motors or stepper motors with electrically controlled commutation consisting of a stator and a rotor. The rotor is mounted onto the stator and is adjusted by an integrated guidance. Inside the stator different coil systems are realized, like double layer sector coils or special nested coils. The coil systems can be controlled by three or six phases depending on the operational mode. Furthermore, inorganic insulation layers were used in order to reduce the thickness of the system. By this means four layers of electrical conductors can be realized especially for the 2D devices. The smallest diameter of the rotatory motor is 1 mm and could be successfully driven.

  8. Organic/inorganic hybrid filters based on dendritic and cyclodextrin "nanosponges" for the removal of organic pollutants from water.

    Science.gov (United States)

    Arkas, Michael; Allabashi, Roza; Tsiourvas, Dimitris; Mattausch, Eva-Maria; Perfler, Reinhard

    2006-04-15

    Long-alkyl chain functionalized poly(propylene imine) dendrimer, poly(ethylene imine) hyperbranched polymer, and beta-cyclodextrin derivatives, which are completely insoluble in water, have the property of encapsulating organic pollutants from water. Ceramic porous filters can be impregnated with these compounds resulting in hybrid organic/ inorganic filter modules. These hybrid filter modules were tested for the effective purification of water, by continuous filtration experiments, employing a variety of water pollutants. It has been established that polycyclic aromatic hydrocarbons (PAHs) can be removed very efficiently (more than 95%), and final concentrations of several ppb (microg/ L) are easily obtained. Representatives of the pollutant group of trihalogen methanes (THMs), monoaromatic hydrocarbons (BTX), and pesticides (simazine) can also be removed (>80%), although the filters are saturated considerably faster in these cases.

  9. Acid-base strengths in pyridine

    NARCIS (Netherlands)

    Bos, M.; Dahmen, E.A.M.F.

    1971-01-01

    Although pyridine is a solvent with a low dielectric constant, spectrophotometric determinations show simple dissociation without ion pairs as intermediates for some sulfonphthaleins and polynitrophenols in pyridine. The salts of a number of amines and hydrochloric acid, perchloric acid and picric

  10. Quinoline based receptor in fluorometric discrimination of carboxylic acids

    Directory of Open Access Journals (Sweden)

    2008-12-01

    Full Text Available Quinoline and naphthalene-based fluororeceptors 1 and 2 have been designed and synthesized for detection of hydroxy carboxylic acids in less polar solvents. The receptor 1 shows monomer emission quenching followed by excimer emission upon hydrogen bond-mediated complexation of carboxylic acids. The excimer emission distinguishes aromatic dicarboxylic acids from aliphatic dicarboxylic acids and even long chain aliphatic dicarboxylic acids from short chain aliphatic dicarboxylic acids. The receptor 1 is found to be selective for citric acid with a strong excimer emission in CHCl3. On the contrary, the receptor 2 exhibited less binding constant value and did not form any excimer upon complexation with the same acids under similar conditions. This established the role of quinoline ring nitrogen in binding with the acids.

  11. Enhanced Acid/Base Catalysis in High Temperature Liquid Water

    Institute of Scientific and Technical Information of China (English)

    Xiu Yang LU; Qi JING; Zhun LI; Lei YUAN; Fei GAO; Xin LIU

    2006-01-01

    Two novel and environmentally benign solvent systems, organic acids-enriched high temperature liquid water (HTLW) and NH3-enriched HTLW, were developed, which can enhance the reaction rate of acid/base-catalyzed organic reactions in HTLW. We investigated the decomposition of fructose in organic acids-enriched HTLW, hydrolysis of cinnamaldehyde and aldol condensation of phenylaldehyde with acetaldehyde in NH3-enriched HTLW. The experimental results demonstrated that organic acids-enriched or NH3-enriched HTLW can greatly accelerate acid/base-catalyzed organic reactions in HTLW.

  12. Investigation of the relationship between drinking water quality based on content of inorganic components and landform classes using fuzzy AHP (case study: south of Firozabad, west of Fars province, Iran)

    Science.gov (United States)

    Mokarram, Marzieh; Sathyamoorthy, Dinesh

    2016-10-01

    In this study, the fuzzy analytic hierarchy process (AHP) is used to study the relationship between drinking water quality based on content of inorganic components and landform classes in the south of Firozabad, west of Fars province, Iran. For determination of drinking water quality based on content of inorganic components, parameters of calcium (Ca), chlorine (Cl), magnesium (Mg), thorium (TH), sodium (Na), electrical conductivity (EC), sulfate (SO4), and total dissolved solids (TDS) were used. It was found that 8.29 % of the study area has low water quality; 64.01 %, moderate; 23.33 %, high; and 4.38 %, very high. Areas with suitable drinking water quality based on content of inorganic components are located in parts of the south-eastern and south-western parts of the study area. The relationship between landform class and drinking water quality based on content of inorganic components shows that drinking water quality based on content of inorganic components is high in the stream, valleys, upland drainages, and local ridge classes, and low in the plain small and midslope classes. In fact we can predict water quality using extraction of landform classes from a digital elevation model (DEM) by the Topographic Position Index (TPI) method, so that streams, valleys, upland drainages, and local ridge classes have more water quality than the other classes. In the study we determined that without measurement of water sample characteristics, we can determine water quality by landform classes.

  13. Recognition of Nucleic Acid Junctions Using Triptycene-Based Molecules

    OpenAIRE

    Barros, Stephanie A.; Chenoweth, David M.

    2014-01-01

    Nucleic acid modulation by small molecules is an essential process across the kingdoms of life. Targeting nucleic acids with small molecules represents a significant challenge at the forefront of chemical biology. Nucleic acid junctions are ubiquitous structural motifs in nature and in designed materials. Herein, we describe a new class of structure specific nucleic acid junction stabilizers based on a triptycene scaffold. Triptycenes provide significant stabilization of DNA and RNA three-way...

  14. History of medical understanding and misunderstanding of Acid base balance.

    Science.gov (United States)

    Aiken, Christopher Geoffrey Alexander

    2013-09-01

    To establish how controversies in understanding acid base balance arose, the literature on acid base balance was reviewed from 1909, when Henderson described how the neutral reaction of blood is determined by carbonic and organic acids being in equilibrium with an excess of mineral bases over mineral acids. From 1914 to 1930, Van Slyke and others established our acid base principles. They recognised that carbonic acid converts into bicarbonate all non-volatile mineral bases not bound by mineral acids and determined therefore that bicarbonate represents the alkaline reserve of the body and should be a physiological constant. They showed that standard bicarbonate is a good measure of acidosis caused by increased production or decreased elimination of organic acids. However, they recognised that bicarbonate improved low plasma bicarbonate but not high urine acid excretion in diabetic ketoacidosis, and that increasing pCO2 caused chloride to shift into cells raising plasma titratable alkali. Both indicate that minerals influence pH. In 1945 Darrow showed that hyperchloraemic metabolic acidosis in preterm infants fed milk with 5.7 mmol of chloride and 2.0 mmol of sodium per 100 kcal was caused by retention of chloride in excess of sodium. Similar findings were made but not recognised in later studies of metabolic acidosis in preterm infants. Shohl in 1921 and Kildeberg in 1978 presented the theory that carbonic and organic acids are neutralised by mineral base, where mineral base is the excess of mineral cations over anions and organic acid is the difference between mineral base, bicarbonate and protein anion. The degree of metabolic acidosis measured as base excess is determined by deviation in both mineral base and organic acid from normal.

  15. New inorganic (an)ion exchangers based on Mg–Al hydrous oxides: (Alkoxide-free) sol–gel synthesis and characterisation

    KAUST Repository

    Chubar, Natalia

    2011-05-01

    New inorganic ion exchangers based on double Mg-Al hydrous oxides were generated via the new non-traditional sol-gel synthesis method which avoids using metal alkoxides as raw materials. Surface chemical and adsorptive properties of the final products were controlled by several ways of hydrogels and xerogels treatments which produced the materials of the layered structure, mixed hydrous oxides or amorphous adsorbents. The final adsorptive materials obtained via thermal treatment of xerogels were the layered mesoporous materials with carbonate in the interlayer space, surface abundance with hydroxylic groups and maximum adsorptive capacity to arsenate. Higher affinity of Mg-Al hydrous oxides towards H2AsO4- is confirmed by steep adsorption isotherms having plateau (removal capacity) at 220. mg[As]. gdw-1 for the best sample at pH = 7, fast adsorption kinetics and little pH effect. Adsorption of arsenite, fluoride, bromate, bromide, selenate, borate by Mg-Al hydrous oxides was few times high either competitive (depending on the anion) as compare with the conventional inorganic ion exchange adsorbents. © 2011 Elsevier Inc.

  16. pH-dependent assembly of two inorganic-organic hybrid compounds based on octamolybdates: an unusual intercalated layer and a 3D 4-connected framework.

    Science.gov (United States)

    Liu, Hai-Yan; Yang, Jin; Liu, Ying-Ying; Ma, Jian-Fang

    2012-09-07

    Two novel inorganic-organic hybrid compounds based on octamolybdates, namely, [Cu(H(2)L)(2)(γ-Mo(8)O(26))]·(Mo(6)O(19))·2H(2)O (1) and [Cu(H(2)L)(γ-Mo(8)O(26))(H(2)O)(2)]·5H(2)O (2), where L = 1,1'-(1,5-pentanediyl)bis[2-(4-pyridyl)benzimidazole], have been successfully synthesized at different pH values under hydrothermal conditions. Compound 1, which is hydrothermally prepared at pH ≈ 3.5, exhibits an entirely new type of intercalated layer. The nanosized hexamolybdate anions as guests are introduced into the layers. When the pH value is adjusted to 2, a structurally-different complex 2 was obtained. Compound 2 shows a unique 3D 4-connected framework constructed by inorganic layers and H(2)L(2+) ligands as bridges. The two compounds were characterized by elemental analyses, IR spectra and TGA. In addition, the electrochemical properties of 1-modified carbon paste electrode (CPE) have also been investigated in 1 M H(2)SO(4) aqueous solution.

  17. Gold nanoparticles-induced enhancement of the analytical response of an electrochemical biosensor based on an organic-inorganic hybrid composite material.

    Science.gov (United States)

    Barbadillo, M; Casero, E; Petit-Domínguez, M D; Vázquez, L; Pariente, F; Lorenzo, E

    2009-12-15

    The design and characterization of a new organic-inorganic hybrid composite material for glucose electrochemical sensing are described. This material is based on the entrapment of both gold nanoparticles (AuNPs) and glucose oxidase, which was chosen as a model, into a sol-gel matrix. The addition of spectroscopic grade graphite to this system, which confers conductivity, leads to the development of a material particularly attractive for electrochemical biosensor fabrication. The characterization of the hybrid composite material was performed using atomic force microscopy and scanning electron microscopy techniques. This composite material was applied to the determination of glucose in presence of hydroxymethylferrocene as a redox mediator. The system exhibits a clear electrocatalytic activity towards glucose, allowing its determination at 250 mV vs Ag/AgCl. The performance of the resulting enzyme biosensor was evaluated in terms of sensitivity, detection limit, linear response range, stability and accuracy. Finally, the enhancement of the analytical response of the resulting biosensor induced by the presence of gold nanoparticles was evaluated by comparison with a similar organic-inorganic hybrid composite material without AuNPs.

  18. Chip-based sequencing nucleic acids

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Neil Reginald

    2014-08-26

    A system for fast DNA sequencing by amplification of genetic material within microreactors, denaturing, demulsifying, and then sequencing the material, while retaining it in a PCR/sequencing zone by a magnetic field. One embodiment includes sequencing nucleic acids on a microchip that includes a microchannel flow channel in the microchip. The nucleic acids are isolated and hybridized to magnetic nanoparticles or to magnetic polystyrene-coated beads. Microreactor droplets are formed in the microchannel flow channel. The microreactor droplets containing the nucleic acids and the magnetic nanoparticles are retained in a magnetic trap in the microchannel flow channel and sequenced.

  19. Chip-based sequencing nucleic acids

    Science.gov (United States)

    Beer, Neil Reginald

    2014-08-26

    A system for fast DNA sequencing by amplification of genetic material within microreactors, denaturing, demulsifying, and then sequencing the material, while retaining it in a PCR/sequencing zone by a magnetic field. One embodiment includes sequencing nucleic acids on a microchip that includes a microchannel flow channel in the microchip. The nucleic acids are isolated and hybridized to magnetic nanoparticles or to magnetic polystyrene-coated beads. Microreactor droplets are formed in the microchannel flow channel. The microreactor droplets containing the nucleic acids and the magnetic nanoparticles are retained in a magnetic trap in the microchannel flow channel and sequenced.

  20. Multi-criteria decision making development of ion chromatographic method for determination of inorganic anions in oilfield waters based on artificial neural networks retention model.

    Science.gov (United States)

    Stefanović, Stefica Cerjan; Bolanča, Tomislav; Luša, Melita; Ukić, Sime; Rogošić, Marko

    2012-02-24

    This paper describes the development of ad hoc methodology for determination of inorganic anions in oilfield water, since their composition often significantly differs from the average (concentration of components and/or matrix). Therefore, fast and reliable method development has to be performed in order to ensure the monitoring of desired properties under new conditions. The method development was based on computer assisted multi-criteria decision making strategy. The used criteria were: maximal value of objective functions used, maximal robustness of the separation method, minimal analysis time, and maximal retention distance between two nearest components. Artificial neural networks were used for modeling of anion retention. The reliability of developed method was extensively tested by the validation of performance characteristics. Based on validation results, the developed method shows satisfactory performance characteristics, proving the successful application of computer assisted methodology in the described case study.

  1. A Closer Look at Acid-Base Olfactory Titrations

    Science.gov (United States)

    Neppel, Kerry; Oliver-Hoyo, Maria T.; Queen, Connie; Reed, Nicole

    2005-01-01

    Olfactory titrations using raw onions and eugenol as acid-base indicators are reported. An in-depth investigation on olfactory titrations is presented to include requirements for potential olfactory indicators and protocols for using garlic, onions, and vanillin as acid-base olfactory indicators are tested.

  2. What is the Ultimate Goal in Acid-Base Regulation?

    Science.gov (United States)

    Balakrishnan, Selvakumar; Gopalakrishnan, Maya; Alagesan, Murali; Prakash, E. Sankaranarayanan

    2007-01-01

    It is common to see chapters on acid-base physiology state that the goal of acid-base regulatory mechanisms is to maintain the pH of arterial plasma and not arterial PCO [subscript 2] (Pa[subscript CO[subscript 2

  3. The Roles of Acids and Bases in Enzyme Catalysis

    Science.gov (United States)

    Weiss, Hilton M.

    2007-01-01

    Many organic reactions are catalyzed by strong acids or bases that protonate or deprotonate neutral reactants leading to reactive cations or anions that proceed to products. In enzyme reactions, only weak acids and bases are available to hydrogen bond to reactants and to transfer protons in response to developing charges. Understanding this…

  4. Disorders of Acid-Base Balance: New Perspectives.

    Science.gov (United States)

    Seifter, Julian L; Chang, Hsin-Yun

    2017-01-01

    Disorders of acid-base involve the complex interplay of many organ systems including brain, lungs, kidney, and liver. Compensations for acid-base disturbances within the brain are more complete, while limitations of compensations are more apparent for most systemic disorders. However, some of the limitations on compensations are necessary to survival, in that preservation of oxygenation, energy balance, cognition, electrolyte, and fluid balance are connected mechanistically. This review aims to give new and comprehensive perspective on understanding acid-base balance and identifying associated disorders. All metabolic acid-base disorders can be approached in the context of the relative losses or gains of electrolytes or a change in the anion gap in body fluids. Acid-base and electrolyte balance are connected not only at the cellular level but also in daily clinical practice. Urine chemistry is essential to understanding electrolyte excretion and renal compensations. Many constructs are helpful to understand acid-base, but these models are not mutually exclusive. Electroneutrality and the close interconnection between electrolyte and acid-base balance are important concepts to apply in acid-base diagnoses. All models have complexity and shortcuts that can help in practice. There is no reason to dismiss any of the present constructs, and there is benefit in a combined approach.

  5. A new representation of acid-base disturbances

    NARCIS (Netherlands)

    M. Hekking (Marcel); E.S. Gelsema; J. Lindemans (Jan)

    1994-01-01

    textabstractThe acid-base status of intensive care patients is monitored on the basis of three quantities. The graphical representation which may be of help for the monitoring task is therefore cumbersome. The classical Siggaard-Andersen acid-base chart is such a representation, but it is only suite

  6. The Roles of Acids and Bases in Enzyme Catalysis

    Science.gov (United States)

    Weiss, Hilton M.

    2007-01-01

    Many organic reactions are catalyzed by strong acids or bases that protonate or deprotonate neutral reactants leading to reactive cations or anions that proceed to products. In enzyme reactions, only weak acids and bases are available to hydrogen bond to reactants and to transfer protons in response to developing charges. Understanding this…

  7. Connecting Acids and Bases with Encapsulation... and Chemistry with Nanotechnology

    Science.gov (United States)

    Criswell, Brett

    2007-01-01

    The features and the development of various new acids and bases activity sets that combines chemistry with nanotechnology are being described. These sets lead to the generation of many nanotechnology-based pharmaceuticals for the treatment of various diseases.

  8. Connecting Acids and Bases with Encapsulation... and Chemistry with Nanotechnology

    Science.gov (United States)

    Criswell, Brett

    2007-01-01

    The features and the development of various new acids and bases activity sets that combines chemistry with nanotechnology are being described. These sets lead to the generation of many nanotechnology-based pharmaceuticals for the treatment of various diseases.

  9. Nanocomposites Derived from Polymers and Inorganic Nanoparticles

    Directory of Open Access Journals (Sweden)

    In-Yup Jeon

    2010-06-01

    Full Text Available Polymers are considered to be good hosting matrices for composite materials because they can easily be tailored to yield a variety of bulk physical properties. Moreover, organic polymers generally have long-term stability and good processability. Inorganic nanoparticles possess outstanding optical, catalytic, electronic and magnetic properties, which are significantly different their bulk states. By combining the attractive functionalities of both components, nanocomposites derived from organic polymers and inorganic nanoparticles are expected to display synergistically improved properties. The potential applications of the resultant nanocomposites are various, e.g. automotive, aerospace, opto-electronics, etc. Here, we review recent progress in polymer-based inorganic nanoparticle composites.

  10. Oxide Semiconductor-Based Flexible Organic/Inorganic Hybrid Thin-Film Transistors Fabricated on Polydimethylsiloxane Elastomer.

    Science.gov (United States)

    Jung, Soon-Won; Choi, Jeong-Seon; Park, Jung Ho; Koo, Jae Bon; Park, Chan Woo; Na, Bock Soon; Oh, Ji-Young; Lim, Sang Chul; Lee, Sang Seok; Chu, Hye Yong

    2016-03-01

    We demonstrate flexible organic/inorganic hybrid thin-film transistors (TFTs) on a polydimethysilox- ane (PDMS) elastomer substrate. The active channel and gate insulator of the hybrid TFT are composed of In-Ga-Zn-O (IGZO) and blends of poly(vinylidene fluoride-trifluoroethylene) [P(VDF- TrFE)] with poly(methyl methacrylate) (PMMA), respectively. It has been confirmed that the fabri- cated TFT display excellent characteristics: the recorded field-effect mobility, sub-threshold voltage swing, and I(on)/I(off) ratio were approximately 0.35 cm2 V(-1) s(-1), 1.5 V/decade, and 10(4), respectively. These characteristics did not experience any degradation at a bending radius of 15 mm. These results correspond to the first demonstration of a hybrid-type TFT using an organic gate insulator/oxide semiconducting active channel structure fabricated on PDMS elastomer, and demonstrate the feasibility of a promising device in a flexible electronic system.

  11. Quantification of Lewis acid induced Brønsted acidity of protogenic Lewis bases.

    Science.gov (United States)

    Lathem, A Paige; Heiden, Zachariah M

    2017-05-09

    Proton transfer promoted by the coordination of protogenic Lewis bases to a Lewis acid is a critical step in catalytic transformations. Although the acidification of water upon coordination to a Lewis acid has been known for decades, no attempts have been made to correlate the Brønsted acidity of the coordinated water molecule with Lewis acid strength. To probe this effect, the pKa's (estimated error of 1.3 pKa units) in acetonitrile of ten protogenic Lewis bases coordinated to seven Lewis acids containing Lewis acidities varying 70 kcal mol(-1), were computed. To quantify Lewis acid strength, the ability to transfer a hydride (hydride donor ability) from the respective main group hydride was used. Coordination of a Lewis acid to water increased the acidity of the bound water molecule between 20 and 50 pKa units. A linear correlation exhibiting a 2.6 pKa unit change of the Lewis acid-water adduct per ten kcal mol(-1) change in hydride donor ability of the respective main group hydride was obtained. For the ten protogenic Lewis bases studied, the coordinated protogenic Lewis bases were acidified between 10 and 50 pKa units. On average, a ten kcal mol(-1) change in hydride donor ability of the respective main group hydride resulted in about a 2.8 pKa unit change in the Brønsted acidity of the Lewis acid-Lewis base adducts. Since attempts to computationally investigate the pKa of main group dihydrogen complexes were unsuccessful, experimental determination of the first reported pKa of a main group dihydrogen complex is described. The pKa of H2-B(C6F5)3 was determined to be 5.8 ± 0.2 in acetonitrile.

  12. Changes in free amino acid content and activities of amination and transamination enzymes in yeasts grown on different inorganic nitrogen sources, including hydroxylamine.

    Science.gov (United States)

    Norkrans, B; Tunblad-Johansson, I

    1981-01-01

    This study concerns inter- and intraspecific differences between yeasts at assimilation of different nitrogen sources. Alterations in the content of free amino acids in cells and media as well as in the related enzyme activities during growth were studied. The hydroxylamine (HA)-tolerant Endomycopsis lipolytica was examined and compared with the nitrate-reducing Cryptococcus albidus, and Saccharomyces cerevisiae, requiring fully reduced nitrogen for growth. Special attention was paid to alanine, aspartic acid, and glutamic acid, the amino acids closely related to the Krebs cycle keto acids. The amino acids were analyzed as their n-propyl N-acetyl esters by gas-liquid chromatography (GLC). The composition of the amino acid pool was similar for the three yeasts. Glutamic acid was predominant; in early log-phase cells of E. lipolytica contents of 200-234 micromol . g(-1) dry weight were found. A positive correlation between the specific growth rate and the size of the amino acid pool was observed. The assimilation of ammonia was mediated by glutamate dehydrogenase (GDH). The NADP-GDH was the dominating enzyme in all three yeasts showing the highest specific activity in Cr. albidus grown on nitrate (6980 nmol . (min(-1)).(mg protein(-1)). Glutamine synthetase (GS) displayed a high specific activity in S. cerevisiae, which also had a high amount of glutamine. The assimilation of HA did not differ greatly from the assimilation of ammonium in E. lipolytica. The existing differences could rather be explained as provoked by the concentration of available nitrogen.

  13. Effects of in-feed inclusion of clinoptilolite on blood serum concentrations of aluminium and inorganic phosphorus and on ruminal pH and volatile fatty acid concentrations in dairy cows.

    Science.gov (United States)

    Karatzia, Maria A; Pourliotis, Konstantinos; Katsoulos, Panagiotis D; Karatzias, Harilaos

    2011-08-01

    The experiment investigated the effects of the dietary inclusion of 200 g of the natural zeolite, clinoptilolite on the blood serum concentrations of aluminium (Al) and inorganic phosphorus (P) as well as on the ruminal pH and the ruminal concentrations of Al and P and of certain volatile fatty acids. Sixteen Holstein cows with a rumen fistula were randomly assigned to one of two groups. Group A cows (n = 8) were fed the basal ration supplemented with 200 g of clinoptilolite per day, and group B cows (n = 8) were fed the basal ration and served as controls. Blood and rumen fluid samples were collected at the same day of each week and at the same time (5 h after morning feeding) for 12 weeks. Clinoptilolite supplementation had no significant effect on ruminal and blood serum concentrations of Al and P. However, clinoptilolite significantly increased ruminal pH and acetate, and decreased ruminal propionate and valerate.

  14. Science Update: Inorganic Chemistry

    Science.gov (United States)

    Rawls, Rebecca

    1978-01-01

    This first in a series of articles describing the state of the art of various branches of chemistry reviews inorganic chemistry, including bioinorganic, photochemistry, organometallic, and solid state chemistries. (SL)

  15. Inorganic Coatings Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The inorganic Coatings Lab provides expertise to Navy and Joint Service platforms acquisition IPTs to aid in materials and processing choices which balance up-front...

  16. Controllable Assembly of Vanadium-Containing Polyoxoniobate-Based Three-Dimensional Organic-Inorganic Hybrid Compounds and Their Photocatalytic Properties.

    Science.gov (United States)

    Hu, Jufang; Wang, Yin; Zhang, Xinning; Chi, Yingnan; Yang, Song; Li, Jikun; Hu, Changwen

    2016-08-01

    The controllable synthesis of two vanadium-containing polyoxoniobate-based three-dimensional organic-inorganic hybrid compounds, [Co(pn)2]4[HPNb10V(IV)2O40(V(IV)O)4]·17H2O (1) and [Co(pn)2]5[PNb12O40(V(IV)O)6](OH)7·15H2O (2), where pn = 1,2-diaminopropane, is realized by changing the hydrothermal temperature or adding N-(aminoethyl)piperazine as an additive. Both compounds 1 and 2 are structurally characterized by single-crystal/powder X-ray diffraction and IR and X-ray photoelectron spectroscopy. Compound 1 features a new divanadium-substituted Keggin polyoxoniobate capped by four vanadyl groups, and the polyanion in 2 exhibits the highest coordination number (10-connected) in polyoxoniobate chemistry. Moreover, the photocatalytic activities of 1 and 2 for hydrogen evolution are preliminarily assessed.

  17. One novel multidimensional organic-inorganic hybrid based on polyoxometalates and copper chlorine coordination polymers with 4,4′-bipyridine ligands

    Institute of Scientific and Technical Information of China (English)

    Li Chun Xuan; Qing Jiang Pan

    2012-01-01

    One novel organic-inorganic hybrid materials with 4,4′-bipy ligands and copper chlorine coordination polymers as linkers,with new topology,{[CuI(4,4′-bipy)]10Cl2(SiW12O40)2}·6H2O (1) (4,4′-bipy =4,4′-bipyridine),has been hydrothermally synthesized.The single crystal X-ray structural analysis reveals that the structure of 1 is constructed from classical Keggin anions and [CuI(4,4′-bipy)] cations into a novel,three-dimensional (3D) polyoxometalates (POMs)based network.From the topological view,compound 1 is a novel (3.44.52.63)(32.44.56.69) topology.The electrochemical and photocatalysis properties of 1 have been investigated in details.

  18. Carbon-based strong solid acid for cornstarch hydrolysis

    Science.gov (United States)

    Nata, Iryanti Fatyasari; Irawan, Chairul; Mardina, Primata; Lee, Cheng-Kang

    2015-10-01

    Highly sulfonated carbonaceous spheres with diameter of 100-500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO3H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO3H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst.

  19. Reactive Distillation for Esterification of Bio-based Organic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential

  20. Effect of benzoic acid supplementation on acid-base status and mineralmetabolism in catheterized growing pigs

    DEFF Research Database (Denmark)

    Nørgaard, Jan Værum; Fernández, José Adalberto; Sørensen, Kristina Ulrich;

    2010-01-01

    Benzoic acid (BA) in diets for growing pigs results in urinary acidification and reduced ammonia emission. The objective was to study the impact of BA supplementation on the acid-base status and mineral metabolism in pigs. Eight female 50-kg pigs, fitted with a catheter in the abdominal aorta, were...

  1. Facile syntheses of dissymmetric ferrocene-functionalized Lewis acids and acid-base pairs.

    Science.gov (United States)

    Morgan, Ian R; Di Paolo, Angela; Vidovic, Dragoslav; Fallis, Ian A; Aldridge, Simon

    2009-12-21

    A facile synthetic approach is reported for the synthesis of dissymmetric 1,2-ferrocenediyl Lewis acids and mixed acid-base pairs including the first example of a 1-phosphino-2-borylferrocene; the use of non-racemic electrophiles allows for the isolation of single diastereomer products.

  2. Polymerization of amino acids containing nucleotide bases

    Science.gov (United States)

    Ben Cheikh, Azzouz; Orgel, Leslie E.

    1990-01-01

    The nucleoamino acids 1-(3'-amino,3'-carboxypropyl)uracil (3) and 9-(3'-amino,3'-carboxypropyl)adenine (4) have been prepared as (L)-en-antiomers and as racemic mixtures. When 3 or 4 is suspended in water and treated with N,N'-carbon-yldiimidazole, peptides are formed in good yield. The products formed from the (L)-enantiomers are hydrolyzed to the monomeric amino acids by pronase. Attempts to improve the efficiency of these oligomerizations by including a polyuridylate template in the reaction mixture were not successful. Similarly, oligomers derived from the (L)-enantiomer of 3 did not act as templates to facilitate the oligomerization of 4.

  3. Chemical and structural changes in polyamide based organic-inorganic hybrid materials upon incorporation of SeS2O62- precursor

    Science.gov (United States)

    Krylova, V.; Dukstienė, N.; Žalenkienė, S.; Baltrusaitis, J.

    2017-01-01

    Composite organic-inorganic functional materials are of significant importance in various applications of science and technology. In this work, physicochemical characterization of such composite materials obtained after the exposure of polyamide PA 6 to K2SeS2O6 precursor solution was performed. Chalcogenized polymer surface was characterized using X-ray diffraction, infrared, and UV-vis spectroscopies while their bulk chemical analysis was performed using atomic absorption spectroscopy. Crystallite size was not found to change with the exposure to K2SeS2O6 precursor but PA 6 chain-chain separation decreased. Importantly, infrared and X-ray analyses showed chemical bonding taking place between the PA 6 and SeS2O62- ions via -NH- functional group. A distinct change in bandgap, Eg, value was observed in UV-vis spectra due to the presence of SeS2O62-, SeSO32- and Se2S2O62- ions formed via decomposition of the precursor material in acidic medium. After extended 4 h chalcogenation a distinct absorption due to the elemental selenium was also observed as obtained from Tauc plots.

  4. Carbon-based strong solid acid for cornstarch hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Nata, Iryanti Fatyasari, E-mail: yanti_tkunlam@yahoo.com [Chemical Engineering Study Program, Faculty of Engineering, Lambung Mangkurat University, Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan 70714 (Indonesia); Irawan, Chairul; Mardina, Primata [Chemical Engineering Study Program, Faculty of Engineering, Lambung Mangkurat University, Jl. A. Yani Km. 36 Banjarbaru, South Kalimantan 70714 (Indonesia); Lee, Cheng-Kang, E-mail: cklee@mail.ntust.edu.tw [Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Rd. Sec.4, Taipei 106, Taiwan (China)

    2015-10-15

    Highly sulfonated carbonaceous spheres with diameter of 100–500 nm can be generated by hydrothermal carbonization of glucose in the presence of hydroxyethylsulfonic acid and acrylic acid at 180 °C for 4 h. The acidity of the prepared carbonaceous sphere C4-SO{sub 3}H can reach 2.10 mmol/g. It was used as a solid acid catalyst for the hydrolysis of cornstarch. Total reducing sugar (TRS) concentration of 19.91 mg/mL could be obtained by hydrolyzing 20 mg/mL cornstarch at 150 °C for 6 h using C4-SO{sub 3}H as solid acid catalyst. The solid acid catalyst demonstrated good stability that only 9% decrease in TRS concentration was observed after five repeat uses. The as-prepared carbon-based solid acid catalyst can be an environmentally benign replacement for homogeneous catalyst. - Highlights: • Carbon solid acid was successfully prepared by one-step hydrothermal carbonization. • The acrylic acid as monomer was effectively reduce the diameter size of particle. • The solid acid catalyst show good catalytic performance of starch hydrolysis. • The solid acid catalyst is not significantly deteriorated after repeated use.

  5. Nucleic Acid--Based Nanodevices in Biological Imaging

    Science.gov (United States)

    Chakraborty, Kasturi; Veetil, Aneesh T.

    2017-01-01

    The nanoscale engineering of nucleic acids has led to exciting molecular technologies for high-end biological imaging. The predictable base pairing, high programmability, and superior new chemical and biological methods used to access nucleic acids with diverse lengths and in high purity, coupled with computational tools for their design, have allowed the creation of a stunning diversity of nucleic acid--based nanodevices. Given their biological origin, such synthetic devices have a tremendous capacity to interface with the biological world, and this capacity lies at the heart of several nucleic acid--based technologies that are finding applications in biological systems. We discuss these diverse applications and emphasize the advantage, in terms of physicochemical properties, that the nucleic acid scaffold brings to these contexts. As our ability to engineer this versatile scaffold increases, its applications in structural, cellular, and organismal biology are clearly poised to massively expand. PMID:27294440

  6. Nucleic Acid-Based Nanodevices in Biological Imaging.

    Science.gov (United States)

    Chakraborty, Kasturi; Veetil, Aneesh T; Jaffrey, Samie R; Krishnan, Yamuna

    2016-06-02

    The nanoscale engineering of nucleic acids has led to exciting molecular technologies for high-end biological imaging. The predictable base pairing, high programmability, and superior new chemical and biological methods used to access nucleic acids with diverse lengths and in high purity, coupled with computational tools for their design, have allowed the creation of a stunning diversity of nucleic acid-based nanodevices. Given their biological origin, such synthetic devices have a tremendous capacity to interface with the biological world, and this capacity lies at the heart of several nucleic acid-based technologies that are finding applications in biological systems. We discuss these diverse applications and emphasize the advantage, in terms of physicochemical properties, that the nucleic acid scaffold brings to these contexts. As our ability to engineer this versatile scaffold increases, its applications in structural, cellular, and organismal biology are clearly poised to massively expand.

  7. Nitrate, ascorbic acid, mineral and antioxidant activities of Cosmos caudatus in response to organic and mineral-based fertilizer rates.

    Science.gov (United States)

    Hassan, Siti Aishah; Mijin, Salumiah; Yusoff, Umi Kalsom; Ding, Phebe; Wahab, Puteri Edaroyati Megat

    2012-06-28

    The source and quantity of nutrients available to plants can affect the quality of leafy herbs. A study was conducted to compare quality of Cosmos caudatus in response to rates of organic and mineral-based fertilizers. Organic based fertilizer GOBI (8% N:8% P₂O₅:8% K₂O) and inorganic fertilizer (15% N, 15% P₂O₅, 15% K₂O) were evaluated based on N element rates at 0, 30, 60, 90, 120 kg h⁻¹. Application of organic based fertilizer reduced nitrate, improved vitamin C, antioxidant activity as well as nitrogen and calcium nutrients content. Antioxidant activity and chlorophyll content were significantly higher with increased fertilizer application. Fertilization appeared to enhance vitamin C content, however for the maximum ascorbic acid content, regardless of fertilizer sources, plants did not require high amounts of fertilizer.

  8. Teaching acid/base physiology in the laboratory

    DEFF Research Database (Denmark)

    Friis, Ulla G; Plovsing, Ronni; Hansen, Klaus;

    2010-01-01

    Acid/base homeostasis is one of the most difficult subdisciplines of physiology for medical students to master. A different approach, where theory and practice are linked, might help students develop a deeper understanding of acid/base homeostasis. We therefore set out to develop a laboratory...... exercise in acid/base physiology that would provide students with unambiguous and reproducible data that clearly would illustrate the theory in practice. The laboratory exercise was developed to include both metabolic acidosis and respiratory alkalosis. Data were collected from 56 groups of medical...

  9. Respiratory Acid-Base Disorders in the Critical Care Unit.

    Science.gov (United States)

    Hopper, Kate

    2017-03-01

    The incidence of respiratory acid-base abnormalities in the critical care unit (CCU) is unknown, although respiratory alkalosis is suspected to be common in this population. Abnormal carbon dioxide tension can have many physiologic effects, and changes in Pco2 may have a significant impact on outcome. Monitoring Pco2 in CCU patients is an important aspect of critical patient assessment, and identification of respiratory acid-base abnormalities can be valuable as a diagnostic tool. Treatment of respiratory acid-base disorders is largely focused on resolution of the primary disease, although mechanical ventilation may be indicated in cases with severe respiratory acidosis. Published by Elsevier Inc.

  10. Synthesis of porous magnesite-bentonite clay composite and its application for neutralisation and attenuation of inorganic contaminants in acidic and metalliferous mine drainage

    CSIR Research Space (South Africa)

    Masindi, Vhahangwele

    2015-08-01

    Full Text Available This paper evaluated the application of cryptocrystalline magnesite-bentonite clay composite for treatment of acid mine drainage (AMD). Bench laboratory studies were used to evaluate the treatment of AMD....

  11. Hybrid inorganic-organic materials: Novel poly(propylene oxide)-based ceramers, abrasion-resistant sol-gel coatings for metals, and epoxy-clay nanocomposites, with an additional chapter on: Metallocene-catalyzed linear polyethylene

    Science.gov (United States)

    Jordens, Kurt

    1999-12-01

    The sol-gel process has been employed to generate hybrid inorganic-organic network materials. Unique ceramers were prepared based on an alkoxysilane functionalized soft organic oligomer, poly(propylene oxide (PPO), and tetramethoxysilane (TMOS). Despite the formation of covalent bonds between the inorganic and organic constituents, the resulting network materials were phase separated, composed of a silicate rich phase embedded in a matrix of the organic oligomer chains. The behavior of such materials was similar to elastomers containing a reinforcing filler. The study focused on the influence of initial oligomer molecular weight, functionality, and tetramethoxysilane, water, and acid catalyst content on the final structure, mechanical and thermal properties. The sol-gel approach has also been exploited to generate thin, transparent, abrasion resistant coatings for metal substrates. These systems were based on alkoxysilane functionalized diethylenetriamine (DETA) with TMOS, which generated hybrid networks with very high crosslink densities. These materials were applied with great success as abrasion resistant coatings to aluminum, copper, brass, and stainless steel. In another study, intercalated polymer-clay nanocomposites were prepared based on various epoxy networks montmorillonite clay. This work explored the influence of incorporated clay on the adhesive properties of the epoxies. The lap shear strength decreased with increasing day content This was due to a reduction in the toughness of the epoxy. Also, the delaminated (or exfoliated) nanocomposite structure could not be generated. Instead, all nanocomposite systems possessed an intercalated structure. The final project involved the characterization of a series of metallocene catalyzed linear polyethylenes, produced at Phillips Petroleum. Polyolefins synthesized with such new catalyst systems are becoming widely available. The influence of molecular weight and thermal treatment on the mechanical, rheological

  12. Environmentally Benign Bifunctional Solid Acid and Base Catalysts

    NARCIS (Netherlands)

    Elmekawy, A.; Shiju, N.R.; Rothenberg, G.; Brown, D.R.

    2014-01-01

    Solid bifunctional acid-​base catalysts were prepd. in two ways on an amorphous silica support: (1) by grafting mercaptopropyl units (followed by oxidn. to propylsulfonic acid) and aminopropyl groups to the silica surface (NH2-​SiO2-​SO3H)​, and (2) by grafting only aminopropyl groups and then parti

  13. Acid-base transport in pancreas-new challenges

    DEFF Research Database (Denmark)

    Novak, Ivana; Haanes, Kristian Agmund; Wang, Jing

    2013-01-01

    Along the gastrointestinal tract a number of epithelia contribute with acid or basic secretions in order to aid digestive processes. The stomach and pancreas are the most extreme examples of acid (H+) and base (HCO-3) transporters, respectively. Nevertheless, they share the same challenges of tra...

  14. A pure inorganic 1D chain based on {Mo8O28} clusters and Mn(II) ions: [Mn(H2O)2Mo8O28 ] n 6 n -

    Science.gov (United States)

    Zhang, Xiaofen; Yan, Yonghong; Wu, Lizhou; Yu, Chengxin; Dong, Xinbo; Hu, Huaiming; Xue, Ganglin

    2016-01-01

    A new pure inorganic polymer, (NH4)6n[Mn(H2O)2Mo8O28)]n(H2O)2n(1), has been synthesized and characterized by elemental analyses, IR spectrum, UV-vis absorption spectra, TG-DSC and electrochemical studies. In 1, [Mo8O28]8- anions act as tetradentate ligands and are alternately linked by Mn(H2O)2 2 + ions into a one-dimensional chain structure. It is interesting that 1 represents the first example of pure inorganic-inorganic hybrid based on octamolybdate and transition metal ions. Moreover, it was indicated that 1 had definite catalytic activities on the probe reaction of benzyl alcohol oxidation to benzaldehyde with H2O2.

  15. Syntheses, structures and properties of two new organic-inorganic hybrid materials based on ε-Zn Keggin units {ε-PMo(V)8Mo(VI)4O(40-x)(OH)(x)Zn4}.

    Science.gov (United States)

    Miao, Hao; Hu, Gonghao; Guo, Jiuyu; Wan, Hongxiang; Mei, Hua; Zhang, Yu; Xu, Yan

    2015-01-14

    Two novel organic-inorganic hybrids, Na[PMo(V)8Mo(VI)4O38(OH)2Zn4][pyim]2·1.5H2O [ε(pyim)2] (pyim = 2-(2-pyridyl)-imidazole) and [PMo(V)8Mo(VI)4O37(OH)3Zn4]2[pyim]6·4H2O [ε2(pyim)6], based on ε-Zn Keggin units {ε-PMo(V)8Mo(VI)4O(40-x)(OH)(x)Zn4}, have been successfully synthesized under hydrothermal conditions by controlling the pH values. Structural analysis indicates that the framework of ε(pyim)2 is a 1D chain constructed by monomeric ε-Zn units modified by pyim ligands, while ε2(pyim)6 is an isolated structural compound with dimeric ε-Zn units modified by pyim ligands. This is the first isolated structure of the ε-Keggin POMs system. The luminescent and electrochemical properties of ε(pyim)2 and ε2(pyim)6 were investigated. ε2(pyim)6 also shows high catalytic activity for the esterification of phosphoric acid with equimolar lauryl alcohol to monoalkyl phosphate ester (MAP).

  16. Synthesis, property and crystal structure of a novel two-dimensional network organic-inorganic hybrid compound based on the neodymium III center and Keggin-type heteropolyanion of [α-BW 12O 40] 5-

    Science.gov (United States)

    Niu, Jingyang; Zhao, Junwei; Wang, Jingping; Ma, Pengtao

    2004-08-01

    A novel two-dimensional infinite network organic-inorganic hybrid neodymium(III)-centered compound of formula (dmaH) 2[Nd(dmf) 4(H 2O)][α-BW 12O 40]·H 2O ( 1) [dma=dimethylamine and dmf= N, N-dimethylformamide] is obtained by the conventional self-assembly reaction of neodymium oxide, N, N-dimethylformamide and borotungstic acid (α-H 5BW 12O 40·30H 2O) in the mixed solvent of acetonitrile and water, and characterized by IR, UV-visible spectra and X-ray single crystal diffraction. Structural analysis indicates that every [α-BW 12O 40] 5- polyanion interconnects with three adjacent [Nd(dmf) 4(H 2O)] 3+ subunits by means of W-O-Nd bridges, meanwhile, every [Nd(dmf) 4(H 2O)] 3+ building block is surrounded by three neighboring [α-BW 12O 40] 5- polyanions by making use of which an unprecedented two-dimensional extended network structure can be constructed. Interestingly, this structure pattern may act as useful model for the design and assembly of functional molecule-based compounds, especially in the field of molecular sieve materials.

  17. Boronic acid-tethered amphiphilic hyaluronic acid derivative-based nanoassemblies for tumor targeting and penetration.

    Science.gov (United States)

    Jeong, Jae Young; Hong, Eun-Hye; Lee, Song Yi; Lee, Jae-Young; Song, Jae-Hyoung; Ko, Seung-Hak; Shim, Jae-Seong; Choe, Sunghwa; Kim, Dae-Duk; Ko, Hyun-Jeong; Cho, Hyun-Jong

    2017-02-16

    (3-Aminomethylphenyl)boronic acid (AMPB)-installed hyaluronic acid-ceramide (HACE)-based nanoparticles (NPs), including manassantin B (MB), were fabricated for tumor-targeted delivery. The amine group of AMPB was conjugated to the carboxylic acid group of hyaluronic acid (HA) via amide bond formation, and synthesis was confirmed by spectroscopic methods. HACE-AMPB/MB NPs with a 239-nm mean diameter, narrow size distribution, negative zeta potential, and >90% drug encapsulation efficiency were fabricated. Exposed AMPB in the outer surface of HACE-AMPB NPs (in the aqueous environment) may react with sialic acid of cancer cells. The improved cellular accumulation efficiency, in vitro antitumor efficacy, and tumor penetration efficiency of HACE-AMPB/MB NPs, compared with HACE/MB NPs, in MDA-MB-231 cells (CD44 receptor-positive human breast adenocarcinoma cells) may be based on the CD44 receptor-mediated endocytosis and phenylboronic acid-sialic acid interaction. Enhanced in vivo tumor targetability, infiltration efficiency, and antitumor efficacies of HACE-AMPB NPs, compared with HACE NPs, were observed in a MDA-MB-231 tumor-xenografted mouse model. In addition to passive tumor targeting (based on an enhanced permeability and retention effect) and active tumor targeting (interaction between HA and CD44 receptor), the phenylboronic acid-sialic acid interaction can play important roles in augmented tumor targeting and penetration of HACE-AMPB NPs. STATEMENT OF SIGNIFICANCE: (3-Aminomethylphenyl)boronic acid (AMPB)-tethered hyaluronic acid-ceramide (HACE)-based nanoparticles (NPs), including manassantin B (MB), were fabricated and their tumor targeting and penetration efficiencies were assessed in MDA-MB-231 (CD44 receptor-positive human adenocarcinoma) tumor models. MB, which exhibited antitumor efficacies via the inhibition of angiogenesis and hypoxia inducible factor (HIF)-1, was entrapped in HACE-AMPB NPs in this study. Phenylboronic acid located in the outer surface

  18. Layered double hydroxides as electrode materials for Ni based batteries and as novel inorganic/organic hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Caravaggio, G.

    2002-07-01

    This study examined the electrochemical properties of layered double hydroxides (LDH) in half-cells to determine if they can be used in nickel-cadmium (Ni-Cd) and nickel-metal hydride (NiMH) batteries. The LDHs were prepared by coprecipitation and were characterized by X-ray diffraction analysis. The nickel-aluminium LDHs were found to be the most stable during potassium hydroxide electrolyte discharge because the aluminium acted in a two fold manner. The high charge to radius ratio increased the electrostatic interaction between the anions and the metal layers. The acidity of the hydroxyl groups was due to the high exchange of electrons. The powders had lower discharge capacity compared to commercial electrode materials because of their low density. The nickel-vanadium LDHs exchanged only up to 1.2 electrons and were stable only up to a maximum of 14 days in electrolytic solutions of the cells. Zinc-aluminium LDHs were also synthesized and intercalated with phenyl phosphonic acid or 1,4-phenylene bis phosphonic acid to create microporous materials. X-ray diffraction, infra-red spectroscopy and nuclear magnetic resonance was used to characterize the compounds and determine crystallographic spacing. Grafting of both phosphonates to the metal layers had occurred and both materials showed little or no microporosity.

  19. A locked nucleic Acid-based nanocrawler

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Pasternak, Karol; Campbell, Meghan A

    2013-01-01

    Herein we introduce a novel fluorescent LNA/DNA machine, a nanocrawler, which reversibly moves along a directionally polar complementary road controlled by affinity-enhancing locked nucleic acid (LNA) monomers and additional regulatory strands. Polyaromatic hydrocarbon (PAH) dyes attached to 2......'-amino-LNA monomers are incorporated at four stations of the system, enabling simple detection of the position of the nanocrawler via a step-specific color signal. The sensing is provided by highly sensitive, chemically stable, and photostable PAH LNA interstrand communication systems, including pyrene...

  20. Inorganic UV filters

    Directory of Open Access Journals (Sweden)

    Eloísa Berbel Manaia

    2013-06-01

    Full Text Available Nowadays, concern over skin cancer has been growing more and more, especially in tropical countries where the incidence of UVA/B radiation is higher. The correct use of sunscreen is the most efficient way to prevent the development of this disease. The ingredients of sunscreen can be organic and/or inorganic sun filters. Inorganic filters present some advantages over organic filters, such as photostability, non-irritability and broad spectrum protection. Nevertheless, inorganic filters have a whitening effect in sunscreen formulations owing to the high refractive index, decreasing their esthetic appeal. Many techniques have been developed to overcome this problem and among them, the use of nanotechnology stands out. The estimated amount of nanomaterial in use must increase from 2000 tons in 2004 to a projected 58000 tons in 2020. In this context, this article aims to analyze critically both the different features of the production of inorganic filters (synthesis routes proposed in recent years and the permeability, the safety and other characteristics of the new generation of inorganic filters.

  1. Acid-Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization.

    Science.gov (United States)

    Lewis, Jennifer D; Van de Vyver, Stijn; Román-Leshkov, Yuriy

    2015-08-17

    Hf-, Sn-, and Zr-Beta zeolites catalyze the cross-aldol condensation of aromatic aldehydes with acetone under mild reaction conditions with near quantitative yields. NMR studies with isotopically labeled molecules confirm that acid-base pairs in the Si-O-M framework ensemble promote soft enolization through α-proton abstraction. The Lewis acidic zeolites maintain activity in the presence of water and, unlike traditional base catalysts, in acidic solutions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Renal acidification responses to respiratory acid-base disorders.

    Science.gov (United States)

    Madias, Nicolaos E

    2010-01-01

    Respiratory acid-base disorders are those abnormalities in acid-base equilibrium that are expressed as primary changes in the arterial carbon dioxide tension (PaCO2). An increase in PaCO2 (hypercapnia) acidifies body fluids and initiates the acid-base disturbance known as respiratory acidosis. By contrast, a decrease in PaCO2 (hypocapnia) alkalinizes body fluids and initiates the acid-base disturbance known as respiratory alkalosis. The impact on systemic acidity of these primary changes in PaCO2 is ameliorated by secondary, directional changes in plasma [HCO3¯] that occur in 2 stages. Acutely, hypercapnia or hypocapnia yields relatively small changes in plasma [HCO3¯] that originate virtually exclusively from titration of the body's nonbicarbonate buffers. During sustained hypercapnia or hypocapnia, much larger changes in plasma [HCO3¯] occur that reflect adjustments in renal acidification mechanisms. Consequently, the deviation of systemic acidity from normal is smaller in the chronic forms of these disorders. Here we provide an overview of the renal acidification responses to respiratory acid-base disorders. We also identify gaps in knowledge that require further research.

  3. 无机抗菌凝胶剂的制备及检测%Study of composition and preparation procedure and detection of nano_silver base inorganic antibacterial gel

    Institute of Scientific and Technical Information of China (English)

    张林祺; 张涛; 张昀; 刘双云

    2015-01-01

    目的:研制无机抗菌凝胶剂,并且进行相关检测。方法用卡波姆940作凝胶基质制备无机抗菌凝胶剂,并进行常规质量控制实验。结果制备的凝胶质地均匀细腻,室温下流动性和黏稠度适宜。结论本方法制备的凝胶稳定性好,工艺简单,质量可控。%Objective To prepare nano_silver base inorganic antibacterial gel and take the correlation detection , Methods The carbomer 940 was used as the ground substance for nano_silver base inorganic antibacterial gel,and to take routine quality control experiment, Results Nano_silver base inorganic antibacterial gel has fine suitable fluidity at room tem_perature,and the texture is delicate and can be well_distribute, Conclusion The preparation of the nano_silver base inorganic antibacterial gel is simple, The stable quality is well and its quality is stable and controllable.

  4. An Olfactory Indicator for Acid-Base Titrations.

    Science.gov (United States)

    Flair, Mark N.; Setzer, William N.

    1990-01-01

    The use of an olfactory acid-base indicator in titrations for visually impaired students is discussed. Potential olfactory indicators include eugenol, thymol, vanillin, and thiophenol. Titrations performed with each indicator with eugenol proved to be successful. (KR)

  5. Acid-base and potassium disorders in liver disease.

    Science.gov (United States)

    Ahya, Shubhada N; José Soler, Maria; Levitsky, Josh; Batlle, Daniel

    2006-11-01

    Acid-base and potassium disorders occur frequently in the setting of liver disease. As the liver's metabolic function worsens, particularly in the setting of renal dysfunction, hemodynamic compromise, and hepatic encephalopathy, acid-base disorders ensue. The most common acid-base disorder is respiratory alkalosis. Metabolic acidosis alone or in combination with respiratory alkalosis also is common. Acid-base disorders in patients with liver disease are complex. The urine anion gap may help to distinguish between chronic respiratory alkalosis and hyperchloremic metabolic acidosis when a blood gas is not available. A negative urine anion gap helps to rule out chronic respiratory alkalosis. In this disorder a positive urine anion gap is expected owing to suppressed urinary acidification. Distal renal tubular acidosis occurs in autoimmune liver disease such as primary biliary cirrhosis, but often is a functional defect from impaired distal sodium delivery. Potassium disorders are often the result of the therapies used to treat advanced liver disease.

  6. Synthesis and catalytic application of amino acid based dendritic macromolecules

    NARCIS (Netherlands)

    Koten, G. van; Gossage, R.A.; Jastrzebski, J.T.B.H.; Ameijde, J. van; Mulders, S.J.E.; Brouwer, Arwin J.; Liskamp, R.M.J.

    1999-01-01

    The use of amino acid based dendrimers as molecular scaffolds for the attachment of catalytically active organometallic Ni ''pincer'' complexes, via a urea functionality, is described; the dendrimer catalysts have comparable activity to their mononuclear (NCN)NiX analogues.

  7. Acid-base strengths in m-cresol

    NARCIS (Netherlands)

    Bos, M.; Dahmen, E.A.M.F.

    1971-01-01

    For various acids and bases dissociation constants were determined conductimetrically in m-cresol. A glass electrode was calibrated by means of some compounds with dissociation constants known from conductivity measurements. Potentiometric titrations with this calibrated glass electrode gave dissoci

  8. Towards lactic acid bacteria-based biorefineries.

    Science.gov (United States)

    Mazzoli, Roberto; Bosco, Francesca; Mizrahi, Itzhak; Bayer, Edward A; Pessione, Enrica

    2014-11-15

    Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass.

  9. Synthesis and antimicrobial activities of new higher amino acid Schiff base derivatives of 6-aminopenicillanic acid and 7-aminocephalosporanic acid

    Science.gov (United States)

    Özdemir (nee Güngör), Özlem; Gürkan, Perihan; Özçelik, Berrin; Oyardı, Özlem

    2016-02-01

    Novel β-lactam derivatives (1c-3c) (1d-3d) were produced by using 6-aminopenicillanic acid (6-APA), 7-aminocephalosporanic acid (7-ACA) and the higher amino acid Schiff bases. The synthesized compounds were characterized by elemental analysis, IR, 1H/13C NMR and UV-vis spectra. Antibacterial activities of all the higher amino acid Schiff bases (1a-3a) (1b-3b) and β-lactam derivatives were screened against three gram negative bacteria (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Acinetobacter baumannii RSKK 02026), three gram positive bacteria (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 07005, Bacillus subtilis ATCC 6633) and their drug-resistant isolates by using broth microdilution method. Two fungi (Candida albicans and Candida krusei) were used for antifungal activity.

  10. Acid-base homeostasis in the human system

    Science.gov (United States)

    White, R. J.

    1974-01-01

    Acid-base regulation is a cooperative phenomena in vivo with body fluids, extracellular and intracellular buffers, lungs, and kidneys all playing important roles. The present account is much too brief to be considered a review of present knowledge of these regulatory systems, and should be viewed, instead, as a guide to the elements necessary to construct a simple model of the mutual interactions of the acid-base regulatory systems of the body.

  11. Kislinsko-bazno ravnovesje: Acid-base balance:

    OpenAIRE

    2002-01-01

    Acids are donors, while bases are acceptors of protons in solutions. Many various acids and bases are incorporated into organisms by everyday alimentation and cell metabolism, while the output routes are the respiratory system, kidneys and gastrointestinal system. The concentration of free protonsin the blood (expressed as pH value) is strictly regulated, as it has agreat impact on cell metabolism. There are many ways in which organisms defend themselves against harmful pH changes. The first ...

  12. Polymeric precursors method for obtaining pigments based on Inorganic oxides of chromium and iron deposited on TiO{sub 2}; Metodo dos precursores polimericos para obtencao de pigmentos inorganicos a base de oxidos de cromo e de ferro, depositados sobre TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The case study was the use of chromium oxides and iron, as a precursor in the synthesis of inorganic pigments. The synthesis was based on the dissolution of citric acid as a complexing agent, addition of metal oxides, such as ion chromophores; polymerization with ethylene glycol and doping with titanium oxide. Going through pre-calcination, breakdown, calcination at different temperatures (700, 900 and 1100 deg C resulting in pigments: green for pigment and chromium deposited on TiO2, orange for iron on TiO2. The thermal analysis (TG and DTA), evaluated their thermal decompositions, the XRD revealed the formation of crystalline phases such as iron titanate and chrome titanate; SEM showed the formation of hexagonal particles for both oxides. Under the different analysis, one can see the potential stability of pigments and powders, can be proposed its use as pigments in polymers. (author)

  13. Microfluidics in inorganic chemistry.

    Science.gov (United States)

    Abou-Hassan, Ali; Sandre, Olivier; Cabuil, Valérie

    2010-08-23

    The application of microfluidics in chemistry has gained significant importance in the recent years. Miniaturized chemistry platforms provide controlled fluid transport, rapid chemical reactions, and cost-saving advantages over conventional reactors. The advantages of microfluidics have been clearly established in the field of analytical and bioanalytical sciences and in the field of organic synthesis. It is less true in the field of inorganic chemistry and materials science; however in inorganic chemistry it has mostly been used for the separation and selective extraction of metal ions. Microfluidics has been used in materials science mainly for the improvement of nanoparticle synthesis, namely metal, metal oxide, and semiconductor nanoparticles. Microfluidic devices can also be used for the formulation of more advanced and sophisticated inorganic materials or hybrids.

  14. Technical Study on Manufacturing Organic-inorganic Compound Fertilizer by Activating Humic Acid%活化腐植酸制备有机-无机复混肥的工艺研究

    Institute of Scientific and Technical Information of China (English)

    王家盛; 张伟; 石学勇; 苏州; 程颖

    2012-01-01

    Abstract: There are much humic acid in weathered coal and brown coal, but most of them are solidified by Ca2+ and Mg2+ in the nature, only be quite little water-soluble humic acid which can be directly absorbed by plants. Thus, it is necessary to make an activation to the hurnic acid. This paper study on how to use sodium bicarbonate and ammonia activate humic acid in order to receive a high biologic-active humic ammonia, which could as the organic material to blend with abio nutrient and producing granular organic-inorganic compound fertilizer. It is proved that the activate fer- tilizer sample obviously excelled than the unactivate one in chemical and phical parameters.%风化煤、褐煤等物质中含有大量的腐植酸,但在自然界中多数被钙、镁离子固定,能被作物直接吸收利用的水溶性腐植酸普遍含量甚微。因此,生产腐植酸肥料时,有必要进行腐植酸活化处理。本文研究了碳铵与氨水联合对褐煤进行活化处理,得到了生物活性较高的腐植酸铵,并以腐植酸铵作为有机原料与无机养分复混造粒制备了25-5-10有机-无机复混肥样品,经过性能指标和外观效果等方面的评价,明显优于未经活化的褐煤制得的样品。

  15. Speed limits for acid-base chemistry in aqueous solutions.

    Science.gov (United States)

    Donten, Mateusz L; Vandevondele, Joost; Hamm, Peter

    2012-01-01

    Proton transfer reactions, including acid-base recombination, are commonly considered to occur 'nearly instantaneously'. However, their actual time scales may stretch far into the microsecond range, as acid-base reactions are diffusion controlled and the concentrations are low near neutral pH. The interplay of competing bases in the pH relaxation is illustrated using a model acid-base system consisting of o-nitrobenzaldehyde (oNBA) as a proton cage and acetate ions and hydroxyl ions as bases. The kinetically controlled behavior leads to highly counterintuitive states, i.e. acetate ions are transiently protonated for hundreds of nanoseconds despite the presence of a much stronger base OH-.

  16. Organic-Inorganic Composites Toward Biomaterial Application.

    Science.gov (United States)

    Miyazaki, Toshiki; Sugawara-Narutaki, Ayae; Ohtsuki, Chikara

    2015-01-01

    Bioactive ceramics are known to exhibit specific biological affinities and are able to show direct integration with surrounding bone when implanted in bony defects. However, their inadequate mechanical properties, such as low fracture toughness and high Young's modulus in comparison to natural bone, limit their clinical application. Bone is a kind of organic-inorganic composite where apatite nanocrystals are precipitated onto collagen fibre networks. Thus, one way to address these problems is to mimic the natural composition of bone by using bioactive ceramics via material designs based on organic-inorganic composites. In this chapter, the current research on the development of the various organic-inorganic composites designed for biomaterial applications has been reviewed. Various compounds such as calcium phosphate, calcium sulphate and calcium carbonate can be used for the inorganic phases to design composites with the desired mechanical and biological properties of bone. Not only classical mechanical mixing but also coating of the inorganic phase in aqueous conditions is available for the fabrication of such composites. Organic modifications using various polymers enable the control of the crystalline structure of the calcium carbonate in the composites. These approaches on the fabrication of organic-inorganic composites provide important options for biomedical materials with novel functions. © 2015 S. Karger AG, Basel.

  17. An Ultrahigh Precision, High-Frequency Dissolved Inorganic Carbon Analyzer Based on Dual Isotope Dilution and Cavity Ring-Down Spectroscopy.

    Science.gov (United States)

    Huang, Kuan; Cassar, Nicolas; Jonsson, Bror; Cai, Wei-jun; Bender, Michael L

    2015-07-21

    We present a novel method for continuous and automated shipboard measurements of dissolved inorganic carbon concentration ([DIC]) in surface water. The method is based on dual isotope dilution and cavity ring-down spectroscopy (DID-CRDS). In this method, seawater is continuously sampled and mixed with a flow of NaH(13)CO3 solution that is also enriched in deuterated water (the spike). The isotopic composition of CO2 (δ(13)C(spiked_sample)) derived from the DIC in the mixture, and the D/H ratio of the mixed water (δD(spiked_sample)), are measured by CRDS analyzers. The D/H of the water in the mixture allows accurate estimates of the mixing ratio of the sample and the spike. [DIC] of the sample is then calculated from the mixing ratio, [DI(13)C] of the spike, and δ(13)C(spiked_sample). In the laboratory, the precision of the method is test was conducted in the Delaware Bay and Estuary. For 2 min average [DIC], a precision of <0.03% was achieved. Measurements from the DID-CRDS showed good agreement with independent measurements of discrete samples using the well-established coulometric method (mean difference = -1.14 ± 1.68 μmol kg(-1)), and the nondispersive infrared(NDIR)-based methods (mean difference = -0.9 ± 4.73 μmol kg(-1)).

  18. Hybrid pn-junction solar cells based on layers of inorganic nanocrystals and organic semiconductors: optimization of layer thickness by considering the width of the depletion region.

    Science.gov (United States)

    Saha, Sudip K; Guchhait, Asim; Pal, Amlan J

    2014-03-07

    We report the formation and characterization of hybrid pn-junction solar cells based on a layer of copper diffused silver indium disulfide (AgInS2@Cu) nanoparticles and another layer of copper phthalocyanine (CuPc) molecules. With copper diffusion in the nanocrystals, their optical absorption and hence the activity of the hybrid pn-junction solar cells was extended towards the near-IR region. To decrease the particle-to-particle separation for improved carrier transport through the inorganic layer, we replaced the long-chain ligands of copper-diffused nanocrystals in each monolayer with short-ones. Under illumination, the hybrid pn-junctions yielded a higher short-circuit current as compared to the combined contribution of the Schottky junctions based on the components. A wider depletion region at the interface between the two active layers in the pn-junction device as compared to that of the Schottky junctions has been considered to analyze the results. Capacitance-voltage characteristics under a dark condition supported such a hypothesis. We also determined the width of the depletion region in the two layers separately so that a pn-junction could be formed with a tailored thickness of the two materials. Such a "fully-depleted" device resulted in an improved photovoltaic performance, primarily due to lessening of the internal resistance of the hybrid pn-junction solar cells.

  19. Inorganic contaminants attenuation in acid mine drainage by fly ash and fly ash-ordinary Portland cement (OPC) blends : column experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gitari, W.M. [Venda Univ., Thohoyandou (South Africa). Dept. of Ecology and Resources Management, School of Environmental Studies; Petrik, L.F.; Etchebers, O. [Western Cape Univ., Bellville (South Africa). Environmental and Nanosciences Group, Dept. of Chemistry; Key, D.L. [Western Cape Univ., Bellville (South Africa). Dept. of Chemistry; Okujeni, C. [Western Cape Univ., Bellville (South Africa). Dept. of Earth Sciences

    2010-07-01

    The infiltration of acid mine drainage (AMD) material into mine voids is one of the environmental impacts of underground coal mining. In this study, the mitigation of AMD in a mine void was simulated in laboratory conditions. Various mixtures of fly ash, solid residues, and Portland cement were added to packed columns over a 6-month period. The fly ash additions generated near-neutral to alkaline pH levels, which in turn induced precipitation, co-precipitation, and adsorption contaminant attenuation mechanisms. A modelling study demonstrated that the precipitation of ferrihydrite, Al-hydroxides, Al-oxyhydroxysulphates, gypsum, ettringite, manganite, and rhodochrosite lowered contaminant levels. Results of the study indicated that the pH regime and acidity level of the AMD strongly influenced both the leaching of the toxic trace elements as well as the attenuation of the AMD. 3 refs., 2 figs.

  20. Geological and Inorganic Materials.

    Science.gov (United States)

    Jackson, L. L.; And Others

    1989-01-01

    Presents a review focusing on techniques and their application to the analysis of geological and inorganic materials that offer significant changes to research and routine work. Covers geostandards, spectroscopy, plasmas, microbeam techniques, synchrotron X-ray methods, nuclear activation methods, chromatography, and electroanalytical methods.…

  1. Funky inorganic fibers

    NARCIS (Netherlands)

    de Wit, Patrick

    2017-01-01

    Inorganic porous hollow fibers (IPHF) are interesting for various applications that can benefit from a high surface-area-to-volume ratio. Examples include membranes, catalysts, electrodes, and combinations of these. The thesis starts with providing an overview of conceivable materials of which IPHF

  2. Assessment of acid-base balance. Stewart's approach.

    Science.gov (United States)

    Fores-Novales, B; Diez-Fores, P; Aguilera-Celorrio, L J

    2016-04-01

    The study of acid-base equilibrium, its regulation and its interpretation have been a source of debate since the beginning of 20th century. Most accepted and commonly used analyses are based on pH, a notion first introduced by Sorensen in 1909, and on the Henderson-Hasselbalch equation (1916). Since then new concepts have been development in order to complete and make easier the understanding of acid-base disorders. In the early 1980's Peter Stewart brought the traditional interpretation of acid-base disturbances into question and proposed a new method. This innovative approach seems more suitable for studying acid-base abnormalities in critically ill patients. The aim of this paper is to update acid-base concepts, methods, limitations and applications. Copyright © 2015 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Role of acids and bases in nanoparticle growth

    Science.gov (United States)

    Yli-Juuti, Taina; Barsanti, Kelley; Bzdek, Bryan; Hildebrandt Ruiz, Lea; Jokinen, Tuija; Kieloaho, Antti-Jussi; Makkonen, Ulla; Petäjä, Tuukka; Ruuskanen, Taina; Johnston, Murray; Kulmala, Markku; Riipinen, Ilona

    2014-05-01

    Secondary aerosol particles that are formed in atmosphere by gas-to-particle conversion during new particle formation events have potential to affect climate significantly due to their typically high number concentrations. This, however, requires that the freshly formed nanoparticles of about 1 nm in diameter grow tens of nanometers and reach climatically relevant sizes, i.e. sizes where they can act as cloud condensation nuclei. During the growth towards larger sizes the nanoparticles are subject to coagulational losses, and the rate at which the nanoparticles grow by condensation of vapors is a key factor affecting their probability to survive to climatically relevant sizes. Vapors that condense on the nanoparticles can be produced in the atmosphere from volatile compounds through gas phase chemical reactions, and their volatility can also be further lowered by particle phase processes. Therefore, particle composition and particle phase processes may influence nanoparticle growth. We study the growth of atmospheric nanoparticles and especially the role of particle phase salt formation in the nanoparticle growth using MABNAG model (Model for Acid-Base chemistry in NAnoparticle Growth) and by comparing to atmospheric measurements. MABNAG is a condensation growth model for aqueous solution particles. In MABNAG the dynamics of gas phase mass transport of vapors to particle are coupled with thermodynamics of particle phase acid-base chemistry, and both the composition and size dependence of equilibrium vapor pressures are accounted for. The model is applied especially for boreal forest environment. Here nanoparticle growth is modeled with a system of water, two acids (sulfuric acid and an organic acid) and two bases (ammonia and an amine) as condensing vapors. Focus is on the neutralization of acids by the bases and the related effects on the particle growth. According to the model predictions the enhancement of condensation of organic acid due to salt formation is

  4. Inorganic Nanoparticles for Multimodal Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Magdalena Swierczewska

    2011-01-01

    Full Text Available Multimodal molecular imaging can offer a synergistic improvement of diagnostic ability over a single imaging modality. Recent development of hybrid imaging systems has profoundly impacted the pool of available multimodal imaging probes. In particular, much interest has been focused on biocompatible, inorganic nanoparticle-based multimodal probes. Inorganic nanoparticles offer exceptional advantages to the field of multimodal imaging owing to their unique characteristics, such as nanometer dimensions, tunable imaging properties, and multifunctionality. Nanoparticles mainly based on iron oxide, quantum dots, gold, and silica have been applied to various imaging modalities to characterize and image specific biologic processes on a molecular level. A combination of nanoparticles and other materials such as biomolecules, polymers, and radiometals continue to increase functionality for in vivo multimodal imaging and therapeutic agents. In this review, we discuss the unique concepts, characteristics, and applications of the various multimodal imaging probes based on inorganic nanoparticles.

  5. Poly (ricinoleic acid) based novel thermosetting elastomer.

    Science.gov (United States)

    Ebata, Hiroki; Yasuda, Mayumi; Toshima, Kazunobu; Matsumura, Shuichi

    2008-01-01

    A novel bio-based thermosetting elastomer was prepared by the lipase-catalyzed polymerization of methyl ricinoleate with subsequent vulcanization. Some mechanical properties of the cured carbon black-filled polyricinoleate compounds were evaluated as a thermosetting elastomer. It was found that the carbon black-filled polyricinoleate compounds were readily cured by sulfur curatives to produce a thermosetting elastomer that formed a rubber-like sheet with a smooth and non-sticky surface. The curing behaviors and mechanical properties were dependent on both the molecular weight of the polyricinoleate and the amount of the sulfur curatives. Cured compounds consisting of polyricinoleate with a molecular weight of 100,800 showed good mechanical properties, such as a hardness of 48 A based on the durometer A measurements, a tensile strength at break of 6.91 MPa and an elongation at break of 350%.

  6. Acid-base disturbance in patients with cirrhosis

    DEFF Research Database (Denmark)

    Henriksen, Jens H; Bendtsen, Flemming; Møller, Søren

    2015-01-01

    PURPOSE: Acid-base disturbances were investigated in patients with cirrhosis in relation to hemodynamic derangement to analyze the hyperventilatory effects and the metabolic compensation. METHODS: A total of 66 patients with cirrhosis and 44 controls were investigated during a hemodynamic study......, and effects of unidentified ions (all Pacid-base disturbances could not be identified. CONCLUSION: Hypocapnic alkalosis is related to disease severity and hyperdynamic systemic circulation in patients with cirrhosis. The metabolic compensation includes...... alterations in serum albumin and water retention that may result in a delicate acid-base balance in these patients....

  7. Nanopore-based sequencing and detection of nucleic acids.

    Science.gov (United States)

    Ying, Yi-Lun; Zhang, Junji; Gao, Rui; Long, Yi-Tao

    2013-12-09

    Nanopore-based techniques, which mimic the functions of natural ion channels, have attracted increasing attention as unique methods for single-molecule detection. The technology allows the real-time, selective, high-throughput analysis of nucleic acids through both biological and solid-state nanopores. In this Minireview, the background and latest progress in nanopore-based sequencing and detection of nucleic acids are summarized, and light is shed on a novel platform for nanopore-based detection. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Parallel proton transfer pathways in aqueous acid-base reactions

    NARCIS (Netherlands)

    Cox, M.J.; Bakker, H.J.

    2008-01-01

    We study the mechanism of proton transfer (PT) between the photoacid 8-hydroxy-1,3, 6-pyrenetrisulfonic acid (HPTS) and the base chloroacetate in aqueous solution. We investigate both proton and deuteron transfer reactions in solutions with base concentrations ranging from 0.25M to 4M. Using femtose

  9. Soil Studies: Applying Acid-Base Chemistry to Environmental Analysis.

    Science.gov (United States)

    West, Donna M.; Sterling, Donna R.

    2001-01-01

    Laboratory activities for chemistry students focus attention on the use of acid-base chemistry to examine environmental conditions. After using standard laboratory procedures to analyze soil and rainwater samples, students use web-based resources to interpret their findings. Uses CBL probes and graphing calculators to gather and analyze data and…

  10. Soil Studies: Applying Acid-Base Chemistry to Environmental Analysis.

    Science.gov (United States)

    West, Donna M.; Sterling, Donna R.

    2001-01-01

    Laboratory activities for chemistry students focus attention on the use of acid-base chemistry to examine environmental conditions. After using standard laboratory procedures to analyze soil and rainwater samples, students use web-based resources to interpret their findings. Uses CBL probes and graphing calculators to gather and analyze data and…

  11. The coulometric titration of acids and bases in dimethylsulfoxide media

    NARCIS (Netherlands)

    Bos, M.; IJpma, S.T.; Dahmen, E.A.M.F.

    1976-01-01

    The coulometric titration of 20–200 μeq of acids and bases in DMSO media is described. In the titration of bases, the electro-oxidation of hydrogen at a platinized platinum electrode is used as the source of protons. The conditions for 100 % current efficiency at this electrode are low current

  12. A European Acid Rain Program based on the US experience

    DEFF Research Database (Denmark)

    Brandt, U. Steiner; Svendsen, Gert Tinggaard

    2000-01-01

    The paper shows that cost-effective involvement of the source location involves utmost difficulty in practice. Based on the RAINS model, it is recommended that source location should be ignored in a European market for SO2, as is the case in the US Acid Rain Program. Based on the political target...

  13. Hard and soft acids and bases: atoms and atomic ions.

    Science.gov (United States)

    Reed, James L

    2008-07-07

    The structural origin of hard-soft behavior in atomic acids and bases has been explored using a simple orbital model. The Pearson principle of hard and soft acids and bases has been taken to be the defining statement about hard-soft behavior and as a definition of chemical hardness. There are a number of conditions that are imposed on any candidate structure and associated property by the Pearson principle, which have been exploited. The Pearson principle itself has been used to generate a thermodynamically based scale of relative hardness and softness for acids and bases (operational chemical hardness), and a modified Slater model has been used to discern the electronic origin of hard-soft behavior. Whereas chemical hardness is a chemical property of an acid or base and the operational chemical hardness is an experimental measure of it, the absolute hardness is a physical property of an atom or molecule. A critical examination of chemical hardness, which has been based on a more rigorous application of the Pearson principle and the availability of quantitative measures of chemical hardness, suggests that the origin of hard-soft behavior for both acids and bases resides in the relaxation of the electrons not undergoing transfer during the acid-base interaction. Furthermore, the results suggest that the absolute hardness should not be taken as synonymous with chemical hardness but that the relationship is somewhat more complex. Finally, this work provides additional groundwork for a better understanding of chemical hardness that will inform the understanding of hardness in molecules.

  14. Selection of pecan shell based activated carbons for removal of organic and inorganic impurities from simulated well-water

    Science.gov (United States)

    Activated carbons are a byproduct from pyrolysis and have value as a purifying agent. The effectiveness of activated carbons is dependent on feedstock selection and pyrolysis conditions that modify its surface properties. Therefore, pecan shell-based activated carbons (PSACs) were prepared by soakin...

  15. Ionic liquid supported acid/base-catalyzed production of biodiesel.

    Science.gov (United States)

    Lapis, Alexandre A M; de Oliveira, Luciane F; Neto, Brenno A D; Dupont, Jairton

    2008-01-01

    The transesterification (alcoholysis) reaction was successfully applied to synthesize biodiesel from vegetable oils using imidazolium-based ionic liquids under multiphase acidic and basic conditions. Under basic conditions, the combination of the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMINTf2), alcohols, and K2CO3 (40 mol %) results in the production of biodiesel from soybean oil in high yields (>98%) and purity. H2SO4 immobilized in BMINTf2 efficiently promotes the transesterification reaction of soybean oil and various primary and secondary alcohols. In this multiphase process the acid is almost completely retained in the ionic liquid phase, while the biodiesel forms a separate phase. The recovered ionic liquid containing the acid could be reused at least six times without any significant loss in the biodiesel yield or selectivity. In both catalytic processes (acid and base), the reactions proceed as typical multiphasic systems in which the formed biodiesel accumulates as the upper phase and the glycerol by-product is selectively captured by the alcohol-ionic liquid-acid/base phase. Classical ionic liquids such as 1-n-butyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate are not stable under these acidic or basic conditions and decompose.

  16. A physicochemical model of crystalloid infusion on acid-base status.

    Science.gov (United States)

    Omron, Edward M; Omron, Rodney M

    2010-09-01

    The objective of this study is to develop a physicochemical model of the projected change in standard base excess (SBE) consequent to the infused volume of crystalloid solutions in common use. A clinical simulation of modeled acid-base and fluid compartment parameters was conducted in a 70-kg test participant at standard physiologic state: pH =7.40, partial pressure of carbon dioxide (PCO2) = 40 mm Hg, Henderson-Hasselbalch actual bicarbonate ([HCO3]HH) = 24.5 mEq/L, strong ion difference (SID) = 38.9 mEq/L, albumin = 4.40 g/dL, inorganic phosphate = 1.16 mmol/L, citrate total = 0.135 mmol/L, and SBE =0.1 mEq/L. Simulations of multiple, sequential crystalloid infusions up to 10 L were conducted of normal saline (SID = 0), lactated Ringer's (SID = 28), plasmalyte 148 (SID = 50), one-half normal saline þ 75 mEq/L sodium bicarbonate (NaHCO3; SID = 75), 0.15 mol/L NaHCO3 (SID = 150), and a hypothetical crystalloid solution whose SID = 24.5 mEq/L, respectively. Simulations were based on theoretical completion of steady-state equilibrium and PCO2 was fixed at 40 mm Hg to assess nonrespiratory acid-base effects. A crystalloid SID equivalent to standard state actual bicarbonate (24.5 mEq/L) results in a neutral metabolic acid-base status for infusions up to 10 L. The 5 study solutions exhibited curvilinear relationships between SBE and crystalloid infusion volume in liters. Solutions whose SID was greater than 24.5 mEq/L demonstrated a progressive metabolic alkalosis and less, a progressive metabolic acidosis. In a human model system, the effects of crystalloid infusion on SBE are a function of the crystalloid and plasma SID, volume infused, and nonvolatile plasma weak acid changes. A projection of the impact of a unit volume of various isotonic crystalloid solutions on SBE is presented. The model's validation, applications, and limitations are examined.

  17. Synthesis, Multinuclear NMR Characterization and Dynamic Property of Organic–Inorganic Hybrid Electrolyte Membrane Based on Alkoxysilane and Poly(oxyalkylene Diamine

    Directory of Open Access Journals (Sweden)

    Hsien-Ming Kao

    2012-06-01

    Full Text Available Organic–inorganic hybrid electrolyte membranes based on poly(propylene glycol-block-poly(ethylene glycol-block-poly(propylene glycol bis(2-aminopropyl ether complexed with LiClO4 via the co-condensation of tetraethoxysilane (TEOS and 3-(triethoxysilylpropyl isocyanate have been prepared and characterized. A variety of techniques such as differential scanning calorimetry (DSC, Fourier transform infrared (FTIR spectroscopy, alternating current (AC impedance and solid-state nuclear magnetic resonance (NMR spectroscopy are performed to elucidate the relationship between the structural and dynamic properties of the hybrid electrolyte and the ion mobility. A VTF (Vogel-Tamman-Fulcher-like temperature dependence of ionic conductivity is observed for all the compositions studied, implying that the diffusion of charge carriers is assisted by the segmental motions of the polymer chains. A maximum ionic conductivity value of 5.3 × 10−5 Scm−1 is obtained at 30 °C. Solid-state NMR results provide a microscopic view of the effects of salt concentrations on the dynamic behavior of the polymer chains.

  18. Crystal structures and spectral properties of two polyoxometalate-based inorganic-organic compounds from silver-azine building blocks with bis-bidentate and tridentate ligands

    Science.gov (United States)

    An, Bing; Zhou, Rui-Min; Sun, Li; Bai, Yan; Dang, Dong-Bin

    2014-07-01

    Two polyoxometalate-based inorganic-organic hybrid compounds constructed from silver(I)-L species and saturated Keggin type polyoxoanion, [Ag2L21]2(SiMo12O40)·1.5DMF·0.5CH3OHṡH2O 1 and [{Ag4L22(DMF)5}(SiMo12O40)] 2 (L1 = phenyl 2-pyridyl ketone azine, L2 = 3-phenyltriazolo[1,5-a]pyridine), have been synthesized and structurally characterized by IR, UV, elemental analysis, XRPD and complete single crystal structure analyses, where the ligands L1 and L2 are bis-bidentate and tridentate azines synthesized with the same materials under different conditions. The structure of 1 exhibits a dinuclear double-helicate with [SiMo12O40]4- anions as counter ions, where all of the Ag centers coordinate to bis-bidentate chelating ligands. Compound 2 displays a two-dimensional sheet formed by the Ag-organic infinite chains and the [SiMo12O40]4- alternately arranged in a “rail-like” fashion. The luminescent properties of 1 and 2 in the solid state were investigated.

  19. Bulk Heterojunction Solar Cells Based on Blends of Conjugated Polymers with II–VI and IV–VI Inorganic Semiconductor Quantum Dots

    Directory of Open Access Journals (Sweden)

    Ryan Kisslinger

    2017-01-01

    Full Text Available Bulk heterojunction solar cells based on blends of quantum dots and conjugated polymers are a promising configuration for obtaining high-efficiency, cheaply fabricated solution-processed photovoltaic devices. Such devices are of significant interest as they have the potential to leverage the advantages of both types of materials, such as the high mobility, band gap tunability and possibility of multiple exciton generation in quantum dots together with the high mechanical flexibility and large molar extinction coefficient of conjugated polymers. Despite these advantages, the power conversion efficiency (PCE of these hybrid devices has remained relatively low at around 6%, well behind that of all-organic or all-inorganic solar cells. This is attributed to major challenges that still need to be overcome before conjugated polymer–quantum dot blends can be considered viable for commercial application, such as controlling the film morphology and interfacial structure to ensure efficient charge transfer and charge transport. In this work, we present our findings with respect to the recent development of bulk heterojunctions made from conjugated polymer–quantum dot blends, list the ongoing strategies being attempted to improve performance, and highlight the key areas of research that need to be pursued to further develop this technology.

  20. Crystal structures and spectral properties of two polyoxometalate-based inorganic-organic compounds from silver-azine building blocks with bis-bidentate and tridentate ligands.

    Science.gov (United States)

    An, Bing; Zhou, Rui-Min; Sun, Li; Bai, Yan; Dang, Dong-Bin

    2014-07-15

    Two polyoxometalate-based inorganic-organic hybrid compounds constructed from silver(I)-L species and saturated Keggin type polyoxoanion, [Ag2L2(1)]2(SiMo12O40)·1.5DMF·0.5CH3OH⋅H2O 1 and [{Ag4L2(2)(DMF)5}(SiMo12O40)] 2 (L(1) = phenyl 2-pyridyl ketone azine, L(2) = 3-phenyltriazolo[1,5-a]pyridine), have been synthesized and structurally characterized by IR, UV, elemental analysis, XRPD and complete single crystal structure analyses, where the ligands L(1) and L(2) are bis-bidentate and tridentate azines synthesized with the same materials under different conditions. The structure of 1 exhibits a dinuclear double-helicate with [SiMo12O40](4)(-) anions as counter ions, where all of the Ag centers coordinate to bis-bidentate chelating ligands. Compound 2 displays a two-dimensional sheet formed by the Ag-organic infinite chains and the [SiMo12O40](4)(-) alternately arranged in a "rail-like" fashion. The luminescent properties of 1 and 2 in the solid state were investigated. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Synthesis, Multinuclear NMR Characterization and Dynamic Property of Organic–Inorganic Hybrid Electrolyte Membrane Based on Alkoxysilane and Poly(oxyalkylene) Diamine

    Science.gov (United States)

    Saikia, Diganta; Pan, Yu-Chi; Kao, Hsien-Ming

    2012-01-01

    Organic–inorganic hybrid electrolyte membranes based on poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether) complexed with LiClO4 via the co-condensation of tetraethoxysilane (TEOS) and 3-(triethoxysilyl)propyl isocyanate have been prepared and characterized. A variety of techniques such as differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, alternating current (AC) impedance and solid-state nuclear magnetic resonance (NMR) spectroscopy are performed to elucidate the relationship between the structural and dynamic properties of the hybrid electrolyte and the ion mobility. A VTF (Vogel-Tamman-Fulcher)-like temperature dependence of ionic conductivity is observed for all the compositions studied, implying that the diffusion of charge carriers is assisted by the segmental motions of the polymer chains. A maximum ionic conductivity value of 5.3 × 10−5 Scm−1 is obtained at 30 °C. Solid-state NMR results provide a microscopic view of the effects of salt concentrations on the dynamic behavior of the polymer chains. PMID:24958176

  2. Syntheses, structures and properties of two 2-D layered hybrid organic-inorganic materials based on different V4O12 building units.

    Science.gov (United States)

    Hou, Wentao; Guo, Jiuyu; Xu, Xiao; Wang, Zuoxiang; Zhang, Deng; Wan, Hongxiang; Song, You; Zhu, Dunru; Xu, Yan

    2014-01-14

    Two new layered hybrid organic-inorganic compounds [Zn(pyim)]2V4O12 () (pyim = 2-(2-pyridyl)imidazole) and [Cu(bim)2]2V4O12(H2O)·CH3CH2OH () (bim = bis(1-imidazolyl)methane) based on polyoxovanadates (POVs) and organic ligands decorated transition metal units have been synthesized by hydrothermal and solvothermal methods respectively. Single crystal XRD, fluorescence spectrum, magnetic measurement, IR spectra, powder XRD and thermogravimetric (TG) measurements were performed to analyze the structures and properties of and . The structural analysis reveals that compound features a two-dimensional {[Zn(pyim)]2V4O12}n layered structure, constructed by sine wave-like {V4O12}n(4n-) chains, Zn(2+) ions and pyim ligands. In the layered structure of , {V4O12}(4-) circles are connected by Cu(2+) ions to form {Cu(V4O12)}n(2n-) chains, which are further linked by {Cu(bim)4}(2+) subunits to generate a hybrid layer of . The magnetic susceptibility measurement indicates strong antiferromagnetic interactions between Cu(2+) ions in .

  3. Public health costs accounting of inorganic PM2.5 pollution in metropolitan areas of the United States using a risk-based source-receptor model.

    Science.gov (United States)

    Heo, Jinhyok; Adams, Peter J; Gao, H Oliver

    2017-09-01

    In order to design effective strategies to reduce the public health burden of ambient fine particulate matter (PM2.5) imposed in an area, it is necessary to identify the emissions sources affecting that location and quantify their contributions. However, it is challenging because PM2.5 travels long distances and most constituents are the result of complex chemical processes. We developed a reduced-form source-receptor model for estimating locations and magnitudes of downwind health costs from a source or, conversely, the upwind sources that contribute to health costs at a receptor location. Built upon outputs from a state-of-the-art air quality model, our model produces comprehensive risk-based source apportionment results with trivial computational costs. Using the model, we analyzed all the sources contributing to the inorganic PM2.5 health burden in 14 metropolitan statistical areas (MSAs) in the United States. Our analysis for 12 source categories shows that 80-90% of the burden borne by these areas originates from emissions sources outside of the area and that emissions sources up to 800 km away need to be included to account for 80% of the burden. Conversely, 60-80% of the impacts of an MSA's emissions occurs outside of that MSA. The results demonstrate the importance of regionally coordinated measures to improve air quality in metropolitan areas. Copyright © 2017. Published by Elsevier Ltd.

  4. A computational study of ultrafast acid dissociation and acid-base neutralization reactions. I. The model.

    Science.gov (United States)

    Maurer, Patrick; Thomas, Vibin; Rivard, Ugo; Iftimie, Radu

    2010-07-28

    Ultrafast, time-resolved investigations of acid-base neutralization reactions have recently been performed using systems containing the photoacid 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) and various Bronsted bases. Two conflicting neutralization mechanisms have been formulated by Mohammed et al. [Science 310, 83 (2005)] and Siwick et al. [J. Am. Chem. Soc. 129, 13412 (2007)] for the same acid-base system. Herein an ab initio molecular dynamics based computational model is formulated, which is able to investigate the validity of the proposed mechanisms in the general context of ground-state acid-base neutralization reactions. Our approach consists of using 2,4,6-tricyanophenol (exp. pKa congruent with 1) as a model for excited-state HPTS( *) (pKa congruent with 1.4) and carboxylate ions for the accepting base. We employ our recently proposed dipole-field/quantum mechanics (QM) treatment [P. Maurer and R. Iftimie, J. Chem. Phys. 132, 074112 (2010)] of the proton donor and acceptor molecules. This approach allows one to tune the free energy of neutralization to any desired value as well as model initial nonequilibrium hydration effects caused by a sudden increase in acidity, making it possible to achieve a more realistic comparison with experimental data than could be obtained via a full-QM treatment of the entire system. It is demonstrated that the dipole-field/QM model reproduces correctly key properties of the 2,4,6-tricyanophenol acid molecule including gas-phase proton dissociation energies and dipole moments, and condensed-phase hydration structure and pKa values.

  5. In situ formation of a MoS2 -based inorganic-organic nanocomposite by directed thermal decomposition.

    Science.gov (United States)

    Djamil, John; Segler, Stefan A W; Bensch, Wolfgang; Schürmann, Ulrich; Deng, Mao; Kienle, Lorenz; Hansen, Sven; Beweries, Torsten; von Wüllen, Leo; Rosenfeldt, Sabine; Förster, Stephan; Reinsch, Helge

    2015-06-08

    Nanocomposites based on molybdenum disulfide (MoS2 ) and different carbon modifications are intensively investigated in several areas of applications due to their intriguing optical and electrical properties. Addition of a third element may enhance the functionality and application areas of such nanocomposites. Herein, we present a facile synthetic approach based on directed thermal decomposition of (Ph4 P)2 MoS4 generating MoS2 nanocomposites containing carbon and phosphorous. Decomposition at 250 °C yields a composite material with significantly enlarged MoS2 interlayer distances caused by in situ formation of Ph3 PS bonded to the MoS2 slabs through MoS bonds and (Ph4 P)2 S molecules in the van der Waals gap, as was evidenced by (31) P solid-state NMR spectroscopy. Visible-light-driven hydrogen generation demonstrates a high catalytic performance of the materials.

  6. Solution processeable organic-inorganic hybrids based on pyrene functionalized mixed cubic silsesquioxanes as emitters in OLEDs

    KAUST Repository

    Yang, Xiaohui

    2012-01-01

    Traditional materials for application in organic light emitting diodes (OLEDs) are primarily based on small molecules and polymers, with much fewer examples of intermediate molecular weight materials. Our interest lies in this intermediate molecular weight range, specifically in hybrids based on 3-dimensional silsesquioxane (SSQ) cores that represents a new class of versatile materials for application in solution processable OLEDs. We report here various SSQ based hybrids that are easily prepared in one high-yield step from the Heck coupling of commercially available 1-bromopyrene, and 1-bromo-4-heptylbenzene with octavinyl-T8-SSQ, and a mixture of octavinyl-T8-, decavinyl-T10- and dodecavinyl-T12-SSQ. The resulting materials offer numerous advantages for OLEDs including amorphous properties, high-glass-transition temperatures (T g), low polydispersity, solubility in common solvents, and high purity via column chromatography. Solution processed OLEDs prepared from the SSQ hybrids provide sky-blue emission with external quantum efficiencies and current efficiencies of 3.64% and 9.56 cd A -1 respectively. © 2012 The Royal Society of Chemistry.

  7. Deoxyribonucleic acid base compositions of dermatophytes.

    Science.gov (United States)

    Davison, F D; Mackenzie, D W; Owen, R J

    1980-06-01

    DNA was extracted and purified from 55 dermatophyte isolates representing 34 species of Trichophyton, Microsporum and Epidermophyton. The base compositions of the chromosomal DNA were determined by CsCl density gradient centrifugation and were found to be in the narrow range of 48.7 to 50.3 mol % G + C. A satellite DNA component assumed to be of mitochondrial origin was present in most strains, with a G + C content ranging from 14.7 to 30.8 mol % G + C. Heterogeneity in microscopic and colonial characteristics was not reflected in differences in the mean G + C content of the chromosomal DNAs. Strains varied in the G + C contents of satelite DNA, but these did not correlate with traditional species concepts.

  8. Natural hybrid organic-inorganic photovoltaic devices

    Science.gov (United States)

    De Padova, Paola; Lucci, Massimiliano; Olivieri, Bruno; Quaresima, Claudio; Priori, Sandro; Francini, Roberto; Grilli, Antonio; Hricovini, Karol; Davoli, Ivan

    2009-06-01

    Natural hybrid organic-inorganic photovoltaic devices based on TiO 2 have been realized. Chlorophyll A (from anacystis nidulans algae), chlorophyll B (from spinach), carmic acid (from insect Coccus cacti L.), synthetic trans- β-carotene, natural fresh picked Morus nigra, and their mixtures have been used as an organic photo active layer to fabricate photovoltaic prototypes. In order to reduce the charge's interfacial recombination, different thicknesses (5-45 nm) of Si layers, subsequently oxidized in air, were inserted between the TiO 2 and chlorophyll B. Scanning electron microscopy of TiO 2 and Si/TiO 2 systems shows the coexistence at least of four classes of nanoparticles of 60, 100, 150 and 250 nm in size. Auger electron spectroscopy of the Si L 2,3V V transition demonstrates the presence of silica and SiO x suboxides. Photocurrent measurements versus radiation wavelength in the range 300-800 nm exhibit different peaks according to the absorption spectra of the organic molecules. All realized photovoltaic devices are suitable for solar light electric energy conversion. Those made of a blend of all organic molecules achieved higher current and voltage output. The Si/TiO 2-based devices containing chlorophyll B exhibited an enhanced photocurrent response with respect to those with TiO 2 only.

  9. A fuel cell operating between room temperature and 250 °C based on a new phosphoric acid based composite electrolyte

    Science.gov (United States)

    Lan, Rong; Xu, Xiaoxiang; Tao, Shanwen; Irvine, John T. S.

    A phosphoric acid based composite material with core-shell microstructure has been developed to be used as a new electrolyte for fuel cells. A fuel cell based on this electrolyte can operate at room temperature indicating leaching of H 3PO 4 with liquid water is insignificant at room temperature. This will help to improve the thermal cyclability of phosphoric acid based electrolyte to make it easier for practical use. The conductivity of this H 3PO 4-based electrolyte is stable at 250 °C with addition of the hydrophilic inorganic compound BPO 4 forming a core-shell microstructure which makes it possible to run a PAFC at a temperature above 200 °C. The core-shell microstructure retains after the fuel cell measurements. A power density of 350 mW/cm 2 for a H 2/O 2 fuel cell has been achieved at 200 °C. The increase in operating temperature does not have significant benefit to the performance of a H 2/O 2 fuel cell. For the first time, a composite electrolyte material for phosphoric acid fuel cells which can operate in a wide range of temperature has been evaluated but certainly further investigation is required.

  10. Swelling compositions based polycarboxylic acids and bentonite clays in solutions of salts of metals

    Directory of Open Access Journals (Sweden)

    A. Sarshesheva

    2012-12-01

    Full Text Available This work is devoted to the synthesis of chemical cross-linked composite materials made of natural inorganic polymer bentonite clay of Manrak deposit, and polyacrylic and polymethacrylic acids. The swelling ability of the composition in solutions of salts of heavy metals (Ni2+ and Pb2+, influence of solution of concentration, pH and temperature on the swelling ability is investigated.

  11. Metal-amino acid (or peptide)-nucleoside (or related bases) ternary complexes

    Energy Technology Data Exchange (ETDEWEB)

    Terron, A.; Fiol, J.J.; Herrero, L.A.; Garcia-Raso, A. [Departament de Quimica. Universitat de les Illes Balears. Palma de Mallorca. (Spain); Apella, M.C. [Cerela Centro de Referencia de Lactobacilos, Tucaman, Argentina (Antigua and Barbuda); Caubet, A.; Moreno, V. [Departament de Quimica Inorganica. Universitat de Barcelona. Barcelona (Spain)

    1997-05-01

    The knowledge of simultaneous metal ion interaction with proteins and nucleic acids is one of the most exciting subjects inside the Inorganic Biochemistry. In the last years, several groups have published articles on the synthesis and characterization of ternary complexes bringing relevant data on the structure and stability of metallo biomolecules. In this short review, the last contributions found in the literature are collected. Comments on the factors influencing the behaviour and stability of these systems are offered. (Author) 100 refs.

  12. Synthesis of molecularly imprinted organic-inorganic hybrid azobenzene materials by sol-gel for radiation induced selective recognition of 2,4-dichlorophenoxyacetic acid

    Science.gov (United States)

    Shuai Jiang, Guang; An Zhong, Shi; Chen, Lan; Blakey, Idriss; Whitaker, Andrew

    2011-02-01

    A novel photoresponsive functional monomer bearing a siloxane polymerisable group and azobenzene moieties was synthesized. This monomer was then used to prepare photoresponsive molecularly imprinted polymers (MIP), which have specific binding sites for 2,4-dichlorophenoxyacetic acid (2,4-D) through hydrogen bonding moieties. The binding affinity of the imprinted recognition sites was switchable by alternate irradiations with ultraviolet and visible light, suggesting that azobenzene groups located inside the binding sites could be used as chemical sensors and the trans-cis isomerization could regulate the affinity for the 2,4-D. In addition, the concentration of the 2,4-D was able to be quantified by monitoring the trans-to-cis photoisomerization rate constant.

  13. Photodegradation of Acid Black 1 and Removing Heavy Metals from the Water by an Inorganic Nanocomposite Synthesized via Simple Co-Precipitation Method

    Directory of Open Access Journals (Sweden)

    Marziyeh Mohammadi

    2016-07-01

    Full Text Available In this experimental work, PbS/ZnS/ZnO nanocomposite was synthesized via a simple co-precipitation method. The effect of Zn2+/Pb2+ mole ratio was investigated on the product size and morphology. The products were characterized via scanning electron microscopy to obtain product size and morphology. The optical properties of the nanocomposites were studied by ultra violet-visible spectroscopy. Photocatalytic activity of the product was examine by decomposition of acid black 1 as dye. To investigation of the effect of as synthesized nanocomposite on the water treatment, the influences of the nanocomposite to remove heavy ions was studied by atomic absorption spectroscopy. The results showed that the synthesized nanocomposite has well optical properties, photocatalytic and water treatment activities.

  14. The influence of dissolved organic matter on the acid-base system of the Baltic Sea: A pilot study

    Science.gov (United States)

    Kulinski, Karol; Schneider, Bernd; Hammer, Karoline; Schulz-Bull, Detlef

    2015-04-01

    To assess the influence of dissolved organic matter (DOM) on the acid-base system of the Baltic Sea, 19 stations along the salinity gradient from Mecklenburg Bight to the Bothnian Bay were sampled in November 2011 for total alkalinity (AT), total inorganic carbon concentration (CT), partial pressure of CO2 (pCO2), and pH. Based on these data, an organic alkalinity contribution (Aorg) was determined, defined as the difference between measured AT and the inorganic alkalinity calculated from CT and pH and/or CT and pCO2. Aorg was in the range of 22-58 µmol kg-1, corresponding to 1.5-3.5% of AT. The method to determine Aorg was validated in an experiment performed on DOM-enriched river water samples collected from the mouths of the Vistula and Oder Rivers in May 2012. The Aorg increase determined in that experiment correlated directly with the increase of DOC concentration caused by enrichment of the >1 kDa DOM fraction. To examine the effect of Aorg on calculations of the marine CO2 system, the pCO2 and pH values measured in Baltic Sea water were compared with calculated values that were based on the measured alkalinity and another variable of the CO2 system, but ignored the existence of Aorg. Large differences between measured and calculated pCO2 and pH were obtained when the computations were based on AT and CT. The calculated pCO2 was 27-56% lower than the measured values whereas the calculated pH was overestimated by more than 0.4 pH units. Since biogeochemical models are based on the transport and transformations of AT and CT, the acid-base properties of DOM should be included in calculations of the CO2 system in DOM-rich basins like the Baltic Sea. In view of our limited knowledge about the composition and acid/base properties of DOM, this is best achieved using a bulk dissociation constant, KDOM, that represents all weakly acidic functional groups present in DOM. Our preliminary results indicated that the bulk KDOM in the Baltic Sea is 2.94•10-8 mol kg-1

  15. Acid-base patterns in acute severe asthma.

    Science.gov (United States)

    Raimondi, Guillermo A; Gonzalez, Silvia; Zaltsman, Jorge; Menga, Guillermo; Adrogué, Horacio J

    2013-12-01

    Acid-base status in acute severe asthma (ASA) remains undefined; some studies report complete absence of metabolic acidosis, whereas others describe it as present in one fourth of patients or more. Conclusion discrepancies would therefore appear to derive from differences in assessment methodology. Only a systematic approach centering on patient clinical findings can correctly establish true acid-base disorder prevalence levels. This study examines acid-base patterns in ASA (314 patients), taking into account both natural history of disease and treatment, in patients free of other diseases altering acid-base status. Data were collected from patients admitted for ASA without prior history of chronic bronchitis, emphysema, kidney or liver disease, heart failure, uncontrolled diabetes mellitus or gastrointestinal illness. Informed consent was obtained for all patients, after study protocol approval by the Institutional Review Board. Arterial blood gases, plasma electrolytes, lactate levels, and FEV(1) were measured on arrival. Severe airway obstruction was found with FEV(1) values of 25.6 ± 10.0%, substantial hypoxemia (PaO(2) 66.1 ± 11.9 mmHg) and increased A-a O(2) gradient (39.3 ± 12.3 mmHg) breathing room air. While respiratory alkalosis occurred in patients with better preservation of FEV1, respiratory acidosis was observed with more severe airway obstruction, as was increased lactate in the majority of patients, independent of PaO(2) and PaCO(2) levels. Predominant acid-base patterns observed in ASA in this patient population included primary hypocapnia, or less frequently, primary hypercapnia. Lactic acidosis occurred in 11% of patients and presented consistently as a mixed acid-base disorder. These findings suggest lactic acidosis results from the combined effects of both ASA and medication-related sympathetic effects.

  16. Regulated acid-base transport in the collecting duct.

    Science.gov (United States)

    Wagner, Carsten A; Devuyst, Olivier; Bourgeois, Soline; Mohebbi, Nilufar

    2009-05-01

    The renal collecting system serves the fine-tuning of renal acid-base secretion. Acid-secretory type-A intercalated cells secrete protons via a luminally expressed V-type H(+)-ATPase and generate new bicarbonate released by basolateral chloride/bicarbonate exchangers including the AE1 anion exchanger. Efficient proton secretion depends both on the presence of titratable acids (mainly phosphate) and the concomitant secretion of ammonia being titrated to ammonium. Collecting duct ammonium excretion requires the Rhesus protein RhCG as indicated by recent KO studies. Urinary acid secretion by type-A intercalated cells is strongly regulated by various factors among them acid-base status, angiotensin II and aldosterone, and the Calcium-sensing receptor. Moreover, urinary acidification by H(+)-ATPases is modulated indirectly by the activity of the epithelial sodium channel ENaC. Bicarbonate secretion is achieved by non-type-A intercalated cells characterized by the luminal expression of the chloride/bicarbonate exchanger pendrin. Pendrin activity is driven by H(+)-ATPases and may serve both bicarbonate excretion and chloride reabsorption. The activity and expression of pendrin is regulated by different factors including acid-base status, chloride delivery, and angiotensin II and may play a role in NaCl retention and blood pressure regulation. Finally, the relative abundance of type-A and non-type-A intercalated cells may be tightly regulated. Dysregulation of intercalated cell function or abundance causes various syndromes of distal renal tubular acidosis underlining the importance of these processes for acid-base homeostasis.

  17. Effect of pH and coexisting anions on removal of phosphate from aqueous solutions by inorganic-based mesostructures.

    Science.gov (United States)

    Choi, Jae-Woo; Choi, Yong-Soo; Hong, Seok-Won; Kim, Dong-Ju; Lee, Sang-Hyup

    2012-07-01

    This study investigated the effect of pH and the presence of coexisting (competitive) anions on the removal of phosphate by titanium mesostructures synthesized using do- or hexadecyltrimethylammonium bromide. To address these research objectives, experiments were conducted (1) under controlled initial pH values (2 to 10); and (2) through injection of nitrate, fluoride, chloride, or sulfate anions into a phosphate solution. Based on the experimental results, an initial of pH of 2 was found to be optimal for use of titanium mesostructures. The presence of fluoride anions in solution significantly decreased the removal efficiency of phosphate removal (3.56% at 3.95 mg/g). However, the addition of nitrate, chloride, and sulfate anions did not affect phosphate removal.

  18. A novel class of nonlinear optical materials based on host-guest composites: zeolites as inorganic crystalline hosts.

    Science.gov (United States)

    Kim, Hyun Sung; Pham, Tung Cao Thanh; Yoon, Kyung Byung

    2012-05-16

    The demand for nonlinear optical (NLO) materials with exceptional NLO properties is very large, and hence the search for such materials should be continued not only to enhance their functions in current applications but also to help expedite the materialization of photonics in which photons instead of electrons are used for signal processing, transmission, and storage. This article summarizes the preparation, characteristics, and the future perspectives of novel second order nonlinear optical (2NLO) materials prepared by orientation-controlled incorporation of 2NLO molecules into zeolite channels and third order nonlinear optical (3NLO) materials prepared by compartmentalization of very small (<1.3 nm) PbS QDs within zeolite nanopores under different environments, and the novel chemistry newly unveiled during the preparation of novel zeolite based NLO materials. This journal is © The Royal Society of Chemistry 2012

  19. Preparation of copper sulphide clusters in organic-inorganic composites of Langmuir-Blodgett films of amphiphilic Schiff bases

    Indian Academy of Sciences (India)

    G Hemakanthi; Aruna Dhathathreyan; T Ramasami; D Möbius

    2001-04-01

    Copper sulphide clusters were prepared in Langmuir-Blodgett films of copper complexes of amphiphilic Schiff bases-3,4-dimethoxy-N-benzylidene hexadeylamine (I) and 3,4-dimethoxy-N-benzylidene-4 -(hexadecylamino) benzylamine (II) The clusters obtained were analysed using UV-Vis spectroscopy and optical microscopy. Brewster angle microscopic studies on monolayers of I and II at air/water interface showed formation of needle-like domains which seem to cluster faster in I than in II. Atomic force microscopy (AFM) studies also showed fairly uniform sized clusters in II whereas in the case of I they seem to show varying sizes. From the results it is concluded that -elongation in the polar head groups leads to controlled cluster sizes in compound II as compared to those in compound I.

  20. Ceramic separators based on Li+-conducting inorganic electrolyte for high-performance lithium-ion batteries with enhanced safety

    Science.gov (United States)

    Jung, Yun-Chae; Kim, Seul-Ki; Kim, Moon-Sung; Lee, Jeong-Hye; Han, Man-Seok; Kim, Duck-Hyun; Shin, Woo-Cheol; Ue, Makoto; Kim, Dong-Won

    2015-10-01

    Flexible ceramic separators based on Li+-conducting lithium lanthanum zirconium oxide are prepared as thin films and directly applied onto negative electrode to produce a separator-electrode assembly with good interfacial adhesion and low interfacial resistances. The ceramic separators show an excellent thermal stability and high ionic conductivity as compared to conventional polypropylene separator. The lithium-ion batteries assembled with graphite negative electrode, Li+-conducting ceramic separator and LiCoO2 positive electrode exhibit good cycling performance in terms of discharge capacity, capacity retention and rate capability. It is also demonstrated that the use of a ceramic separator can greatly improve safety over cells employing a polypropylene separator, which is highly desirable for lithium-ion batteries with enhanced safety.

  1. Troger's base molecular scaffolds in dicarboxylic acid recognition.

    Science.gov (United States)

    Goswami, S; Ghosh, K; Dasgupta, S

    2000-04-07

    Artificial receptors (1-5) have been designed and synthesized from simple precursors. The chain length selectivity studies of dicarboxylic acids within the cavities of new fluorescent Troger's base molecular frameworks (1-3) have been carried out with a critical examination of their role of rigidity as well as flexibility in selective binding in comparison to receptor 5. The chiral resolution of the racemic Troger's base receptors (1 and 2) by chiral recognition with (+)- camphoric acid using hydrogen-bonding interactions has been studied.

  2. Carbon Dot Based Sensing of Dopamine and Ascorbic Acid

    Directory of Open Access Journals (Sweden)

    Upama Baruah

    2014-01-01

    Full Text Available We demonstrate carbon dot based sensor of catecholamine, namely, dopamine and ascorbic acid. Carbon dots (CDs were prepared from a green source: commercially available Assam tea. The carbon dots prepared from tea had particle sizes of ∼0.8 nm and are fluorescent. Fluorescence of the carbon dots was found to be quenched in the presence of dopamine and ascorbic acid with greater sensitivity for dopamine. The minimum detectable limits were determined to be 33 μM and 98 μM for dopamine and ascorbic acid, respectively. The quenching constants determined from Stern-Volmer plot were determined to be 5 × 10−4 and 1 × 10−4 for dopamine and ascorbic acid, respectively. A probable mechanism of quenching has been discussed in the paper.

  3. Unprecedented {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} polymeric chains and four novel organic-inorganic hybrids based on Mo-POMs and azaheterocycles templates

    Energy Technology Data Exchange (ETDEWEB)

    Du Haijuan; Zunzhe Shu [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Niu Yunyin, E-mail: niuyy@zzu.edu.cn [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Song Lisha; Zhu Yu [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China)

    2012-06-15

    Abstrct: Four novel organic-inorganic hybrid materials based on Mo-POMs and organic templates, namely [DEB] [{beta}-Mo{sub 8}O{sub 26}] [NH{sub 4}]{sub 2} (1), [BMIM] [{beta}-Mo{sub 8}O{sub 26}]{sub 0.5}{center_dot}H{sub 2}O (2), [BMIM] [1D-Mo{sub 8}O{sub 26}]{sub 0.5} (3) and {l_brace}3D-[Cu(DIE){sub 2}] [1D-Mo{sub 8}O{sub 26}]{sub 0.5}{r_brace}{sub {infinity}} (4) [DEB= 1,1 Prime -diethyl-4,4 Prime -bipyridinium, BMIM=1,1 Prime -bis(1-methylimidazolium)methylene, DIE=1,2-diimidazoloethane] have been hydrothermally synthesized and characterized by elemental analyses, IR spectroscopy, thermal gravimetric analysis(TGA) and single-crystal X-ray diffraction. Both compounds 1 and 2 are POMs-based supramolecular compounds consisted of independent [{beta}-Mo{sub 8}O{sub 26}]{sup 4-} anions and [DEB]{sup 2+} or [BMIM]{sup 2+} organic cations. Compound 3 is the first external template example of Mo-POMs-based supramolecular network incorporated with novel {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} polymeric chains. Compound 4 is a rare supramolecular structure that contains octamolybdate {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} polymeric chains interconnected via DIE ligands to form a 3D net. Moreover, it was indicated that these polyacid compounds had definite catalytic activities on the probe reaction of acetaldehyde oxidation to acetic acid with H{sub 2}O{sub 2}. - Graphical abstract: Four novel organic templated polyoxometalates comprising of 0D, 1D and 3D supramolecular frameworks together with the catalytic activities on the acetaldehyde oxidation to acetic acid were reported. Highlights: Using cation templated self-assembly four novel polyoxometalates were prepared. Compounds 1 and 2 consisted of independent [{beta}-Mo{sub 8}O{sub 26}]{sup 4-} anions and organic cations. Compound 3 is the first external template-assisted POMs with {sup 1}/{sub {infinity}}[{beta}-Mo{sub 8}O{sub 26}]{sup 4-} chain. Compound 4 is a rare 3D net

  4. Relativistic effects on acidities and basicities of Brønsted acids and bases containing gold.

    Science.gov (United States)

    Koppel, Ilmar A; Burk, Peeter; Kasemets, Kalev; Koppel, Ivar

    2013-11-07

    It is usually believed that relativistic effects as described by the Dirac-Schrödinger equation (relative to the classical or time-independent Schrödinger equation) are of little importance in chemistry. A closer look, however, reveals that some important and widely known properties (e.g., gold is yellow, mercury is liquid at room temperature) stem from relativistic effects. So far the influence of relativistic effects on the acid-base properties has been mostly ignored. Here we show that at least for compounds of gold such omission is completely erroneous and would lead to too high basicity and too low acidity values with errors in the range of 25-55 kcal mol(-1) (or 20 to 44 powers of ten in pK(a) units) in the gas-phase. These findings have important implications for the design of new superstrong acids and bases, and for the understanding of gold-catalysed reactions.

  5. Inorganic Analytical Chemistry

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    The book is a treatise on inorganic analytical reactions in aqueous solution. It covers about half of the elements in the periodic table, i.e. the most important ones : H, Li, B, C, N, O, Na, Mg, Al, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Sr, Mo, Ag, Cd, Sn, Sb, I, Ba, W,...

  6. Capillary ion electrophoresis of inorganic anions and uric acid in human saliva using a polyvinyl alcohol coated capillary column and hexamethonium chloride as additive of background electrolyte.

    Science.gov (United States)

    Mori, Masanobu; Yamamoto, Tsukasa; Kaseda, Maki; Yamada, Sachiko; Itabashi, Hideyuki

    2012-03-01

    A combination of polyvinyl alcohol chemically coated capillary (PVA capillary) and background electrolyte (BGE) with ion-pair reagent (hexamethonium dichloride, HMC) was used on capillary ion electrophoresis-UV detection (CIE-UV) for analysis of Br⁻, I⁻, NO₂⁻, NO₃⁻, SCN⁻ and uric acid in human saliva. The PVA capillary prepared in our laboratory minimized electro-osmotic flow (EOF) at the BGE in pH 3-10, and did not affect the UV detection at 210 nm by the PVA-layer on capillary wall. Therefore, use of the PVA capillary was suitable for sensitive UV detection for analyte anions, as well as suppression of protein adsorption. In this study, we optimized the BGE of 10 mM phosphate plus 10 mM HMC with applying a voltage of -15 kV. HMC as an additive to BGE could manipulate the electrophoretic mobility of anions, without electrostatic adsorption to the PVA capillary. The CIE-UV could separate and determine analyte anions in human saliva containing proteins by the direct injection without pretreatments such as dilution or deproteinization within 13 min. The relative standard deviations (n=10) were ranged of 0.5-1.6% in migration times, 2.2-6.8% in peak heights and 2.8-8.4% in peak areas. The limits of detection (S/N=3) were ranged of 3.42-6.87 μM. The peak height of anions in this system was gradually decreased through the successive injections of saliva samples, but the problem was successfully solved by periodically conditioning the PVA capillary. The quantifiability of anions in human saliva samples by the CIE-UV was evaluated through the recoveries by standard addition methods and comparison of other representative analytical methods, as well as identification by ion chromatography (IC). From the anion analyses in 12 different saliva samples, the CIE-UV demonstrated that can obtain obvious differences in concentrations of SCN⁻ between of smoker and non-smoker and those of uric acid between male and female with satisfactory results.

  7. PbBr-Based Layered Perovskite Organic-Inorganic Superlattice Having Carbazole Chromophore; Hole-Mobility and Quantum Mechanical Calculation.

    Science.gov (United States)

    Era, Masanao; Yasuda, Takeshi; Mori, Kento; Tomotsu, Norio; Kawano, Naoki; Koshimizu, Masanori; Asai, Keisuke

    2016-04-01

    We have successfully evaluated hole mobility in a spin-coated film of a lead-bromide based layered perovskite having carbazole chromophore-linked ammonium molecules as organic layer by using FET measurement. The values of hole mobility, threshold voltage and on/off ratio at room temperature were evaluated.to.be 1.7 x 10(-6) cm2 V-1 s-1, 27 V and 28 V, respectively. However, the spin-coated films on Si substrates were not so uniform compared with those on fused quartz substrates. To improve the film uniformity, we examined the relationship between substrate temperature during spin-coating and film morphology in the layered perovskite spin-coated films. The mean roughness of the spin-coated films on Si substrates was dependent on the substrate temperature. At 353 K, the mean roughness was minimized and the carrier mobility was enhanced by one order of magnitude; the values of hole mobility and threshold voltage were .estimated to be 3.4 x 10(-5) cm2 V-1 s-1, and 22 V at room temperature in a preliminary FET evaluation, respectively. In addition, we determined a crystal structure of the layered perovskite by X-ray diffraction analysis. To gain a better understanding of the observed hole transports, we conducted quantum mechanical calculations using the obtained crystal structure information. The calculated band structure of the layered organic perovskite showed that the valence band is composed of the organic carbazole layer, which confirms that.the measured hole mobility is mainly derived from the organic part of the layered perovskite. Band and hopping transport mechanisms were discussed by calculating the effective masses and transfer integrals for the 2D periodic system of the organic layer in isolation.

  8. A knowledge based advisory system for acid/base titrations in non-aqueous solvents

    NARCIS (Netherlands)

    Bos, M.; Linden, van der W.E.

    1996-01-01

    A computer program was developed that could advice on the choice of solvent and titrant for acid/base titrations in nonaqueous media. It is shown that the feasibility of a titration in a given solvent can be calculated from solvent properties and intrinsic acid/base properties of the sample componen

  9. Design of cinnamaldehyde amino acid Schiff base compounds based on the quantitative structure–activity relationship

    Science.gov (United States)

    Hui Wang; Mingyue Jiang; Shujun Li; Chung-Yun Hse; Chunde Jin; Fangli Sun; Zhuo Li

    2017-01-01

    Cinnamaldehyde amino acid Schiff base (CAAS) is a new class of safe, bioactive compounds which could be developed as potential antifungal agents for fungal infections. To design new cinnamaldehyde amino acid Schiff base compounds with high bioactivity, the quantitative structure–activity relationships (QSARs) for CAAS compounds against Aspergillus niger (A. niger) and...

  10. Acid-base transport in pancreas-new challenges

    DEFF Research Database (Denmark)

    Novak, Ivana; Haanes, Kristian Agmund; Wang, Jing

    2013-01-01

    Along the gastrointestinal tract a number of epithelia contribute with acid or basic secretions in order to aid digestive processes. The stomach and pancreas are the most extreme examples of acid (H+) and base (HCO-3) transporters, respectively. Nevertheless, they share the same challenges...... to consider in pancreas are the proton pumps (H-K-ATPases), as well as the calcium-activated K and Cl channels, such as K3.1 and TMEM16A/ANO1. Local regulators, such as purinergic signaling, fine-tune, and coordinate pancreatic secretion. Lastly, we speculate whether dys-regulation of acid-base transport...... contributes to pancreatic diseases including cystic fibrosis, pancreatitis, and cancer. © 2013 Novak, Haanes and Wang....

  11. Castor Bean Cereal Based Bio-Organic-Inorganic Compound Fertilizers and Use%蓖麻粕基生物有机无机复混肥及其应用

    Institute of Scientific and Technical Information of China (English)

    陈绍荣; 邵建华; 赵立新; 刘园园

    2014-01-01

    A brief account is given of the properties and features of castor bean cereal based bio-organic-inorganic compound fertilizers.By field experiment of fertilizer efficiency with corn, rice and peanut , it is proved that castor bean cereal based bio-organic-inorganic compound fertilizers have better effects on increasing production and improving the properities of soil, and can be widely applied to grain and oil crops.%简要介绍了蓖麻粕基生物有机无机复混肥的性能及特点。通过玉米、水稻、花生大田肥效试验,结果证明蓖麻粕基生物有机无机复混肥具有较好的增产改土效果,可在粮油作物上推广应用。

  12. [Influence of inorganic ions and humic acid on the removal of Pb(II) and Hg(II) in water by zero-valent iron].

    Science.gov (United States)

    Shi, Qiu-Ling; Zhou, Xin; Zhang, Jin-Zhong; Qiu, Xin-Kai

    2014-08-01

    The effects of Ca2+, Cl- and humic acid (HA) on the removal rates of Pb(II) and Hg(II) in water by zero-valent (ZVI) and the kinetic characteristics were studied, and the removal mechanism of Pb(II) and Hg(II) by ZVI were preliminarily investigated using X-ray diffraction (XRD). The results indicated that the removal mechanism of Pb(II) might mainly be attributed to the adsorption and co-precipitation of ZVI, while that of Hg(II) might mainly be attributed to the oxidation-reduction of ZVI. With the increase of Ca2+ concentration, the removal rates of Hg(II) and Pb(II) showed the trends of gradual increase and slight decrease, respectively. The Hg(II) removal increased with increasing Cl- concentration, whereas no obvious increase in Pb(II) removal was observed. The removal rates of Hg(II) and Pb(II) showed the trends of slow increase and slow decrease with increasing HA concentration, respectively. When Ca2+, Cl- and HA coexisted, the removal rates of Hg(II) and Pb(II) reached 99.71% and 97.95%, respectively. The removal processes of Pb(II) and Hg(II) could be described by pseudo first-order reaction kinetic equations when Ca2+, Cl- and HA existed alone and in combination. The removal rate constant of Pb(II) was the maxinum (0.024 0 min(-1)) when 5 mg x L(-1) HA existed alone, whereas that of Hg(II) was the maximum (0.0169 min(-1)) when 0.80 mmol x L(-1) Ca2+ existed alone.

  13. Ionic Transfer in Hybrid Inorganic/Organic Membranes

    Institute of Scientific and Technical Information of China (English)

    A.B.Yaroslavtsev; I.A.Stenina; A.S.Shalimov

    2007-01-01

    1 Results In last years increasing interest has been devoted to the development and research of transport properties of hybrid organic/inorganic membranes. Traditionally, these membranes are used as electrolyte in fuel cells. However a number of their properties allow considering them as perspective materials for water treatment and substance purification. In this work transport properties of some ion exchange membranes modified by inorganic nanoparticles (hydrated oxides or solid acids) are discussed. ...

  14. Molecular mechanisms of acid-base sensing by the kidney.

    Science.gov (United States)

    Brown, Dennis; Wagner, Carsten A

    2012-05-01

    A major function of the kidney is to collaborate with the respiratory system to maintain systemic acid-base status within limits compatible with normal cell and organ function. It achieves this by regulating the excretion and recovery of bicarbonate (mainly in the proximal tubule) and the secretion of buffered protons (mainly in the distal tubule and collecting duct). How proximal tubular cells and distal professional proton transporting (intercalated) cells sense and respond to changes in pH, bicarbonate, and CO(2) status is a question that has intrigued many generations of renal physiologists. Over the past few years, however, some candidate molecular pH sensors have been identified, including acid/alkali-sensing receptors (GPR4, InsR-RR), kinases (Pyk2, ErbB1/2), pH-sensitive ion channels (ASICs, TASK, ROMK), and the bicarbonate-stimulated adenylyl cyclase (sAC). Some acid-sensing mechanisms in other tissues, such as CAII-PDK2L1 in taste buds, might also have similar roles to play in the kidney. Finally, the function of a variety of additional membrane channels and transporters is altered by pH variations both within and outside the cell, and the expression of several metabolic enzymes are altered by acid-base status in parts of the nephron. Thus, it is possible that a master pH sensor will never be identified. Rather, the kidney seems equipped with a battery of molecules that scan the epithelial cell environment to mount a coordinated physiologic response that maintains acid-base homeostasis. This review collates current knowledge on renal acid-base sensing in the context of a whole organ sensing and response process.

  15. Simulation of perovskite solar cells with inorganic hole transporting materials

    DEFF Research Database (Denmark)

    Wang, Yan; Xia, Zhonggao; Liu, Yiming

    2015-01-01

    Device modeling organolead halide perovskite solar cells with planar architecture based on inorganic hole transporting materials (HTMs) were performed. A thorough understanding of the role of the inorganic HTMs and the effect of band offset between HTM/absorber layers is indispensable for further...

  16. Synthesis of Porous Inorganic Hollow Fibers without Harmful Solvents

    NARCIS (Netherlands)

    Shukla, S.; Wit, de Patrick; Luiten-Olieman, Mieke W.J.; Kappert, Emiel J.; Nijmeijer, Arian; Benes, Nieck E.

    2015-01-01

    A route for the fabrication of porous inorganic hollow fibers with high surface-area-to-volume ratio that avoids harmful solvents is presented. The approach is based on bio-ionic gelation of an aqueous mixture of inorganic particles and sodium alginate during wet spinning. In a subsequent thermal tr

  17. Sustainable Route to Inorganic Porous Hollow Fibers with Superior Properties

    NARCIS (Netherlands)

    Hussein Qasim Hussein, H.Q.H.; de Wit, Patrick; Kappert, Emiel; Benes, Nieck Edwin

    2015-01-01

    This research article presents a method for the fabrication of inorganic porous hollow fibers, using ecologically benign feed materials instead of organic solvents and harmful additives. Our method is based on ionic cross-linking of an aqueous mixture of sodium alginate, inorganic particles, and a c

  18. Sustainable Route to Inorganic Porous Hollow Fibers with Superior Properties

    NARCIS (Netherlands)

    Hussein Qasim Hussein, H.Q.H.; de Wit, Patrick; Kappert, Emiel; Benes, Nieck Edwin

    2015-01-01

    This research article presents a method for the fabrication of inorganic porous hollow fibers, using ecologically benign feed materials instead of organic solvents and harmful additives. Our method is based on ionic cross-linking of an aqueous mixture of sodium alginate, inorganic particles, and a

  19. Acid-base metabolism: implications for kidney stones formation.

    Science.gov (United States)

    Hess, Bernhard

    2006-04-01

    The physiology and pathophysiology of renal H+ ion excretion and urinary buffer systems are reviewed. The main focus is on the two major conditions related to acid-base metabolism that cause kidney stone formation, i.e., distal renal tubular acidosis (dRTA) and abnormally low urine pH with subsequent uric acid stone formation. Both the entities can be seen on the background of disturbances of the major urinary buffer system, NH3+ NH4+. On the one hand, reduced distal tubular secretion of H+ ions results in an abnormally high urinary pH and either incomplete or complete dRTA. On the other hand, reduced production/availability of NH4+ is the cause of an abnormally low urinary pH, which predisposes to uric acid stone formation. Most recent research indicates that the latter abnormality may be a renal manifestation of the increasingly prevalent metabolic syndrome. Despite opposite deviations from normal urinary pH values, both the dRTA and uric acid stone formation due to low urinary pH require the same treatment, i.e., alkali. In the dRTA, alkali is needed for improving the body's buffer capacity, whereas the goal of alkali treatment in uric acid stone formers is to increase the urinary pH to 6.2-6.8 in order to minimize uric acid crystallization.

  20. Current chemical concepts of acids and bases and their application to anionic ("acid") and cationic ("basic") dyes.

    Science.gov (United States)

    Puchtler, H; Meloan, S N; Spencer, M

    1985-01-01

    In biomedical studies, dyes are divided into "acid" and "basic" dyes. This classification cannot be reconciled with current chemical definitions of acids and bases. Brönsted-Lowry acids are compounds that can donate protons; bases are proton acceptors. The definition of acids and bases is independent of the electric charge, i.e. acids and bases can be neutral, anionic or cationic. Reactions between acids and bases result in formation of new acid-base pairs. Lewis acids and bases do not depend on a particular element, but are characterized by their electronic configurations. Lewis bases are electron donors; Lewis acids are electron acceptors. This classification is also unrelated to the electric charge. Lewis acids and bases interact by formation of coordinate covalent bonds. In histochemistry and histology, dyes containing -SO3-, -COO- and/or -O- groups are classified as "acid" dyes. However, such compounds are electron pair donors and hence Brönsted-Lowry and Lewis anionic bases. Dyes carrying a positive charge are termed "basic" dyes. Chemically, many cationic dyes are Lewis acids because they can add a base, e.g. OH-, acetate, halides. The hypothesis that transformation of -NH2 into ammonium groups imparts "basic" properties to dyes is untenable; ammonium groups are proton donors and hence acids. Furthermore, conversion of an amino into an ammonium group blocks a lone electron pair and the color of the dye changes drastically, e.g. from violet to green and yellow. It appears therefore highly unlikely that ammonium groups are responsible for binding of cationic ("basic") dyes. In histochemistry, it is usually not of critical importance whether anionic or cationic dyes are chemically acids or bases.(ABSTRACT TRUNCATED AT 250 WORDS)