WorldWideScience

Sample records for innovative nuclear energy

  1. Innovative nuclear energy systems roadmap

    International Nuclear Information System (INIS)

    2007-12-01

    Developing nuclear energy that is sustainable, safe, has little waste by-product, and cannot be proliferated is an extremely vital and pressing issue. To resolve the four issues through free thinking and overall vision, research activities of 'innovative nuclear energy systems' and 'innovative separation and transmutation' started as a unique 21st Century COE Program for nuclear energy called the Innovative Nuclear Energy Systems for Sustainable Development of the World, COE-INES. 'Innovative nuclear energy systems' include research on CANDLE burn-up reactors, lead-cooled fast reactors and using nuclear energy in heat energy. 'Innovative separation and transmutation' include research on using chemical microchips to efficiently separate TRU waste to MA, burning or destroying waste products, or transmuting plutonium and other nuclear materials. Research on 'nuclear technology and society' and 'education' was also added in order for nuclear energy to be accepted into society. COE-INES was a five-year program ending in 2007. But some activities should be continued and this roadmap detailed them as a rough guide focusing inventions and discoveries. This technology roadmap was created for social acceptance and should be flexible to respond to changing times and conditions. (T. Tanaka)

  2. Global architecture of innovative nuclear energy

    International Nuclear Information System (INIS)

    Andreeva-Andrievskaya, L.N.; Kagramanyan, V.S.; Usanov, V.I.; )

    2011-01-01

    The study Global Architecture of Innovative Nuclear Energy Systems Based on Thermal and Fast Reactors including a Closed Fuel Cycle (GAINS), aimed at harmonization of tools used to assess various options for innovative development of nuclear energy, modeling of jointly defined scenarios and analysis of obtained results is presented in the paper. Objectives and methods of the study, issues of spent fuel and fissile materials management are discussed. Investment risks and economic indicators are also described [ru

  3. Innovation in nuclear energy technology

    International Nuclear Information System (INIS)

    Dujardin, Th.; Bertel, E.; Kwang Seok, Lee; Foskolos, K.

    2007-01-01

    Innovation has been a driving force for the success of nuclear energy and remains essential for its sustainable future. Many research and development programmes focus on enhancing the performance of power plants in operation, current fuel design and characteristics, and fuel cycle processes used in existing facilities. Generally performed under the leadership of the industry. Some innovation programmes focus on evolutionary reactors and fuel cycles, derived from systems of the current generation. Such programmes aim at achieving significant improvements, in the field of economics or resource management for example, in the medium term. Often, they are undertaken by the industry with some governmental support as they require basic research together with technological development and adaptation. Finally, large programmes, often undertaken in an international, intergovernmental framework are devoted to design and development of a new generation of systems meeting the goals of sustainable development in the long term. Driving forces for nuclear innovation vary depending on the target technology, the national framework and the international context surrounding the research programme. However, all driving factors can be grouped in three categories: market drivers, political drivers and technology drivers. Globally, innovation in the nuclear energy sector is a success story but is a lengthy process that requires careful planning and adequate funding to produce successful outcomes

  4. A Roadmap of Innovative Nuclear Energy System

    Science.gov (United States)

    Sekimoto, Hiroshi

    2017-01-01

    Nuclear is a dense energy without CO2 emission. It can be used for more than 100,000 years using fast breeder reactors with uranium from the sea. However, it raises difficult problems associated with severe accidents, spent fuel waste and nuclear threats, which should be solved with acceptable costs. Some innovative reactors have attracted interest, and many designs have been proposed for small reactors. These reactors are considered much safer than conventional large reactors and have fewer technical obstructions. Breed-and-burn reactors have high potential to solve all inherent problems for peaceful use of nuclear energy. However, they have some technical problems with materials. A roadmap for innovative reactors is presented herein.

  5. Nuclear energy: The role of innovation. Vienna, 23 June 2003. Conference on innovative technologies for nuclear fuel cycles and nuclear power

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2003-01-01

    First, the scope of our vision for the future of nuclear power must be global. While we often point out that nuclear power currently provides about 16% of global electricity, we note less often that some 83% of nuclear capacity is concentrated in industrialized countries. If nuclear power is to play a major role in meeting this demand for additional energy, it will require innovative approaches - both technological and otherwise - to match the needs of users not only in industrialized but also in developing countries. Secondly, innovation must be responsive to concerns that remain about nuclear power, and should be 'smart' in taking into account new developments and expected future trends. For example, innovation should ensure that new reactor and fuel cycle technologies incorporate inherent safety features, proliferation resistant characteristics, and reduced generation of waste. Consideration should be given to physical protection and other characteristics that will reduce the vulnerability of nuclear facilities and materials to theft, sabotage and terrorist acts. Awareness of needs other than electricity generation can help to make the nuclear contribution more substantial. Third, nuclear innovation efforts should be co-operative and collaborative in nature. The most important outcome of this collaboration may be, as I have already suggested, a better understanding of user needs and requirements worldwide. The IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was developed with precisely this objective in mind - to engender the broadest possible international collaboration, to permit the scientific and technological innovation that would ensure that nuclear energy remains a viable option for future generations. INPRO recently completed its work on defining user requirements related to economics, safety, proliferation resistance and the environment, bringing Phase 1A of the project to a close. The INPRO Steering Committee last

  6. Innovative and practical technical development of nuclear energy. Efforts on proposal and recruitment type technical development of nuclear energy

    International Nuclear Information System (INIS)

    Matsui, Kazuaki; Shioiri, Akio; Hamada, Jun; Kanagawa, Takashi; Mori, Yukihide; Kouno, Koji

    2003-01-01

    In technical development of nuclear energy conceiving a view on energy environment problem at the 21st Century, technical development on innovative nuclear energy system as well as next generation LWR is an important subject. Even in Japan, on the 'Long-term program for research, development and utilization of nuclear energy (LPRNE)' summarized by the Atomic Energy Commission, investigation on R and Ds of innovative reactors under cooperation of government, industrial field, and universities is required. In the Energy Generalized Engineering Institute, by receiving a subsidy from the Ministry of Economy and Industry since 2000, a proposal recruitment business on innovative and practical technical development of nuclear energy has been carried out. Here were introduced hopeful and unique five themes out of them applied to the recruitment, such as a super-critical pressure water cooling reactor (SCPR), an integrated modular LWR (IMR): technical development for practice, technical development on general purpose boiling transitional analysis method, technical development on direct extraction of U and Pu from consumed fuels based on super-DIREX reprocessing method, and material transfer forecasting in natural barriers at landfill disposal of radioactive wastes. (G.K.)

  7. Nuclear Innovation 2050: Charting a Path for the Nuclear Energy Future

    International Nuclear Information System (INIS)

    Magwood, William D.

    2017-01-01

    The NEA: 33 Countries Seeking Excellence in Nuclear Safety, Technology, and Policy. •33 member countries + key partners (e.g., China) •7 standing committees and 86 working parties and expert groups •The NEA Data Bank - providing nuclear data, code, and verification services •23 international joint projects (e.g., the Halden Reactor Project in Norway). COP 21 and Energy Production: •UN-sponsored meeting concluded with 195 countries agreeing to develop approaches to limit global warming to below 2°C. •Energy represents 60% of global CO2 emissions - 3/4 of global electric power production today is based on fossil fuels. •Many countries – including China and India indicate that nuclear will play a large role. 2015 NEA/IEA Technology Roadmap - Contents and Approaches: •Provides an overview of global nuclear energy today. •Identifies key technological milestones and innovations that can support significant growth in nuclear energy. •Identifies potential barriers to expanded nuclear development. •Provides recommendations to policy-makers on how to reach milestones & address barriers. •Case studies developed with experts to support recommendations

  8. The promise of innovation: Nuclear energy horizons

    International Nuclear Information System (INIS)

    Mourogov, V.

    2003-01-01

    The 21st century promises the most open, competitive, and globalized markets in human history, as well as the most rapid pace of technological change ever. For nuclear energy, as any other, that presents challenges. Though the atom now supplies a good share of world electricity, its share of total energy is relatively small, anywhere from four to six per cent depending on how it is calculated. And, while energy is most needed in the developing world, four of every five nuclear plants are in industrialized countries. Critical problems that need to be overcome are well known - high capital costs for new plants, and concerns over proliferation risks and safety, (including safety of waste disposal) stand high among them. The IAEA and other programmes are confronting these problems through ambitious initiatives involving both industrialized and developing countries. They include the collaborative efforts known as the Generation-IV International Forum (GIF) and the IAEA International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). They use ideas, results and the best experiences from today's research and development tools and advanced types of nuclear energy systems to meet tomorrow's challenges. Though the market often decides the fate of new initiatives, the market is not always right for the common good. Governments, and the people that influence them, play an indispensable role in shaping progress in energy fields for rich and poor countries alike. They shoulder the main responsibilities for fundamental science, basic research, and long-term investments. For energy in particular, government investment and support will prove instrumental in the pace of innovation toward long-term options that are ready to replace limited fossil fuel supplies, and respond to the growing premium put on clean energy alternatives. Yet governments cannot go it alone. The challenges are too diverse and complex, and public concerns - about proliferation or safety - go beyond

  9. Nuclear Energy Innovation Workshops. Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Todd [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jackson, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hildebrandt, Phil [Idaho National Lab. (INL), Idaho Falls, ID (United States); Baker, Suzy [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    The nuclear energy innovation workshops were organized and conducted by INL on March 2-4, 2015 at the five NUC universities and Boise State University. The output from these workshops is summarized with particular attention to final summaries that were provided by technical leads at each of the workshops. The current revision includes 3-4 punctuation corrections and a correction of the month of release from May to June.

  10. Innovative Nuclear Reactors Implementation in the Armenian Energy Sector

    International Nuclear Information System (INIS)

    Gevorgyan, A.

    2006-01-01

    The purpose of the present paper is to demonstrate the importance of nuclear energy development in Armenia with the use of innovative nuclear reactors when considering the long-term energy planning, taking into account the specific conditions and tendencies, which are formed and developed in economy of Armenia and, in particular, in fuel-energy complex of the country. When developing the long-term program, the main factors among others considered were assumed to be the energy independence and energy security of a country, and not only the least 'cost factor', as it was usually done before. When that program was under development, such social aspects as application of the infrastructure existing within the relevant sphere, and financing of decommissioning of existing units of the Armenian NNP were also took into consideration. The studies performed have shown that implementation of innovative medium size reactors would enable the energy sector of Armenia to meet all those requirements. The issues of environmental protection were also taken into consideration when developing that program. (authors)

  11. Achieving Nuclear Sustainability through Innovation

    International Nuclear Information System (INIS)

    2013-01-01

    In 2000, the IAEA Member States recognized that concerted and coordinated research and development is needed to drive innovation that ensures that nuclear energy can help meet energy needs sustainably in the 21st century. Following an IAEA General Conference resolution, an international 'think tank' and dialogue forum were established. The resulting organization, the IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), helps nuclear technology holders and users coordinate the national and international studies, research and other activities needed to achieve innovations in nuclear reactor designs and fuel cycles. Currently, 38 countries plus the European Commission are participating in the project. This group includes both developing and developed economies that represent more than 75% of the world's population and 85% of its gross domestic product. INPRO undertakes collaborative projects among IAEA Member States, which analyse development scenarios and examine how nuclear energy can support the United Nations' goals for sustainable development in the 21st century. The results of these projects can be applied by IAEA Member States in their national nuclear energy strategies and can lead to international cooperation resulting in beneficial innovations in nuclear energy technology and its deployment. For example, INPRO studies the 'back end' of the fuel cycle, including recycling of spent fuel to increase resource use efficiency and to reduce the waste disposal burdens.

  12. The IAEA international project on innovative nuclear reactors and fuel cycles (INPRO): study on opportunities and challenges of large-scale nuclear energy development

    International Nuclear Information System (INIS)

    Khoroshev, M.; Subbotin, S.

    2006-01-01

    Existing scenarios for global energy use project that demand will at least double over the next 50 years. Electricity demand is projected to grow even faster. These scenarios suggest that the use of all available generating options, including nuclear energy, will inevitably be required to meet those demands. If nuclear energy is to play a meaningful role in the global energy supply in the foreseeable future, innovative approaches will be required to address concerns about economic competitiveness, environment, safety, waste management, potential proliferation risks and necessary infrastructure. In the event of a renaissance of nuclear energy, adequate infrastructure development will become crucial for Member States considering the future use of nuclear power. The IAEA should be ready to provide assistance in this area. A special resolution was adopted by the General Conference in September 2005 on 'Strengthening the Agency's Activities Related to Nuclear Science, Technology and Applications: Approaches to Supporting Nuclear Power Infrastructure Development'. Previously, in 2000, taking into account future energy scenarios and the needs of Member States, the IAEA General Conference had adopted a resolution initiating the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). Based on scenarios for the next fifty years, INPRO identified requirements for different aspects of future nuclear energy systems, such as economics, environment, safety, waste management, proliferation resistance and infrastructure and developed a methodology to assess innovative nuclear systems and fuel cycles. Using this assessment tool, the need for innovations in nuclear technology can be defined, which can be achieved through research, development and demonstration (RD and D). INPRO developed these requirements during its first stage, Phase 1A, which lasted from 2001 to mid-2003. In the second stage, Phase 1B (first part), INPRO organized 14 case studies (8 by

  13. GC Side Event: Nuclear Energy Innovation and the Paris Agreement. Presentations

    International Nuclear Information System (INIS)

    2017-01-01

    This event presented roadmaps for nuclear energy innovation linked to nationally determined contributions (NDCs) to the global response to climate change. It covered enabling conditions for research and development, the regulatory framework and infrastructure to support Member States’ NDC updates from 2020 to 2050

  14. Innovation in nuclear technology

    International Nuclear Information System (INIS)

    Bertel, E.

    2007-01-01

    Innovation has been a driving force for the success of nuclear energy and remains essential for its future. For the continued safe and economically effective operation and maintenance of existing nuclear systems, and to meet the goals set out by projects aiming at designing and implementing advanced systems for the future, efficient innovation systems are needed. Consequently, analysing innovation systems is essential to understand their characteristics and enhance their performance in the nuclear sector. Lessons learnt from innovation programmes that have already been completed can help enhance the effectiveness of future programmes. The analysis of past experience provides a means for identifying causes of failure as well as best practices. Although national and local conditions are important factors, the main drivers for the success of innovative endeavors are common to all countries. Cooperation and coordination among the various actors are major elements promoting success. All interested stakeholders, including research organisations, industrial actors, regulators and civil society, have a role to play in supporting the success of innovation, but governments are an essential trigger, especially for projects with long durations and very ambitious objectives. Governments have a major role to play in promoting innovation because they are responsible for the overall national energy policy which sets the stage for the eventual deployment of innovative products and processes. Moreover, only governments can create the stable legal and regulatory framework favourable to the undertaking and successful completion of innovation programmes. International organisations such as the NEA may help enhance the effectiveness of national policies and innovation programmes by providing a forum for exchanging information, facilitating multilateral collaboration and joint endeavors, and offering technical support for the management of innovative programmes

  15. International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). 2011 Progress Report. Enhancing Global Nuclear Energy Sustainability

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-05-15

    When INPRO was established in 2000, some key characteristics and main objectives for the project were determined and remain basically unchanged to this day: to help ensure that nuclear energy is available to contribute to satisfying energy needs in the 21st century in a sustainable manner and to bring together technology holders, technology users and other stakeholders to consider jointly the national and international actions required to achieve desired innovations in nuclear reactors and fuel cycles. I wish to use the occasion of this INPRO Progress Report to review some of the key highlights of the past year and share with you my views and vision of INPRO's future. The ''Great East Japan Earthquake and Tsunami'' and the resulting accident at TEPCO's Fukushima Daiichi nuclear power plant occurred on 11 March 2011. In response to this accident and at the request of its Member States, the IAEA drafted an Action Plan which defines a programme of work o strengthen the global nuclear safety framework. The activities proposed in the Action Plan are meant to be implemented in the near term, to assess the safety of operating nuclear power plants n the light of lessons learned from the Fukushima Daiichi accident. The assessment covers both technical elements, specifically the design of nuclear power plants with regard to site specific extreme natural hazards, and institutional elements, such as the effectiveness of regulatory bodies, operating organizations and the international legal framework in regard to the implementation of IAEA Safety tandards and Conventions. The lessons learned in the medium and long terms will also be reflected n a periodic update of the design requirements for nuclear power plants, international safety tandards, regulations issued by national supervisory authorities, operational procedures, emergency planning and safety assessment methodologies. INPRO has a long term perspective and provides an assessment of the whole nuclear system. Ensuring

  16. International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). 2011 Progress Report. Enhancing Global Nuclear Energy Sustainability

    International Nuclear Information System (INIS)

    2012-05-01

    When INPRO was established in 2000, some key characteristics and main objectives for the project were determined and remain basically unchanged to this day: to help ensure that nuclear energy is available to contribute to satisfying energy needs in the 21st century in a sustainable manner and to bring together technology holders, technology users and other stakeholders to consider jointly the national and international actions required to achieve desired innovations in nuclear reactors and fuel cycles. I wish to use the occasion of this INPRO Progress Report to review some of the key highlights of the past year and share with you my views and vision of INPRO's future. The ''Great East Japan Earthquake and Tsunami'' and the resulting accident at TEPCO's Fukushima Daiichi nuclear power plant occurred on 11 March 2011. In response to this accident and at the request of its Member States, the IAEA drafted an Action Plan which defines a programme of work o strengthen the global nuclear safety framework. The activities proposed in the Action Plan are meant to be implemented in the near term, to assess the safety of operating nuclear power plants n the light of lessons learned from the Fukushima Daiichi accident. The assessment covers both technical elements, specifically the design of nuclear power plants with regard to site specific extreme natural hazards, and institutional elements, such as the effectiveness of regulatory bodies, operating organizations and the international legal framework in regard to the implementation of IAEA Safety tandards and Conventions. The lessons learned in the medium and long terms will also be reflected n a periodic update of the design requirements for nuclear power plants, international safety tandards, regulations issued by national supervisory authorities, operational procedures, emergency planning and safety assessment methodologies. INPRO has a long term perspective and provides an assessment of the whole nuclear system. Ensuring

  17. Nuclear Innovation Workshops Report

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, John Howard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Allen, Todd Randall [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hildebrandt, Philip Clay [Idaho National Lab. (INL), Idaho Falls, ID (United States); Baker, Suzanne Hobbs [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The Nuclear Innovation Workshops were held at six locations across the United States on March 3-5, 2015. The data collected during these workshops has been analyzed and sorted to bring out consistent themes toward enhancing innovation in nuclear energy. These themes include development of a test bed and demonstration platform, improved regulatory processes, improved communications, and increased public-private partnerships. This report contains a discussion of the workshops and resulting themes. Actionable steps are suggested at the end of the report. This revision has a small amount of the data in Appendix C removed in order to avoid potential confusion.

  18. The international project on innovative nuclear reactors and fuel cycles (INPRO) - status and trends

    International Nuclear Information System (INIS)

    Gowin, Peter J.; Beatty, Randy L.

    2010-01-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in 2000. As of April 2010, INPRO has 31 members and is implementing activities in five programme areas: A: Nuclear Energy System Assessments (NESA) using the INPRO Methodology Assisting Member States in performing Nuclear Energy System Assessments (NESA) using the INPRO methodology, in support of long-term strategic planning and nuclear energy deployment decision making. B: Global Vision Developing global and regional nuclear energy scenarios, on the basis of a scientific-technical pathway analysis, that lead to a global vision on sustainable nuclear energy development in the 21. century, and supporting Member States in working towards that vision. C: Innovations in Nuclear Technology Fostering collaboration among INPRO Member States on selected innovative nuclear technologies and related R and D that contribute to sustainable nuclear energy. D: Innovations in Institutional Arrangements Investigating and fostering collaboration on innovative institutional and legal arrangements for the use of innovative nuclear systems in the 21. century and supporting Member States in developing and implementing such innovative arrangements. E: INPRO Dialogue Forum Bringing together technology holders and technology users to discuss, debate and share information on desirable innovations, both technical and institutional, but also national long-term nuclear planning strategies and approaches and, on the highest level, the global nuclear energy system. The paper presents main INPRO achievements to date, the current status of activities in these five programme areas and recent INPRO publications, in particular in support of nuclear energy system assessments (NESA) using the INPRO methodology. (authors)

  19. Constructing a Model for Safe Nuclear Energy. General Conference Event to Focus on Innovative Cross-cutting Approach to Nuclear Safety

    International Nuclear Information System (INIS)

    Verlini, Giovanni

    2011-01-01

    Two innovative IAEA Extra-Budgetary Programmes, supporting safe nuclear energy in Bulgaria and Romania, passed their one-year milestone in 2010. Funded by the Norwegian government, these programmes are unique in that they cover separate but cross-cutting issues related to nuclear safety, including safety culture, safety assessments, risk management and resource management.

  20. Nuclear energy technology innovation and restructuring electric power industry for sustainable development in Korea in 21st century - issues and strategies

    International Nuclear Information System (INIS)

    Lee, B.W.; Chae, K.N.

    2001-01-01

    After TMI and Chernobyl accidents, concerns on nuclear safety and radiation health risk from radioactive wastes become the target issues for anti-nuclear. Nevertheless, nuclear power is a substantial contributor to the world electricity production, supplying more than 16 % of global electricity. The objectives of Korean nuclear energy technology innovation are to improve safety, economic competitiveness, energy security and the effectiveness of radioactive waste management in harmony with environment. Meeting such objectives, public concerns on safety and health risks would be cleared. Innovative nuclear energy system will certainly enhance socio-political acceptance and enable wider application of nuclear energy for sustainable development in Korea in the 21st Century. In parallel to such technology innovations, the effective first phase restructuring of electric power industry is in progress to enhance management efficiency and customer services. The power generation division of the former state-run utility, Korea Electric Power Corporation (KEPCO) was separated and divided into six companies - five thermal power and one hydro and nuclear power generation companies - in last April. After the reorganization of KEPCO and the break-up of monopoly, the new electric power industry will be driven by market force. (author)

  1. Innovations in and by nuclear technology - review and perspectives

    International Nuclear Information System (INIS)

    Barthelt, K.

    1984-01-01

    An innovative technology like nuclear technology does not make progress by itself once it has to prove its profitability. It was a long way from technical to economic perfection which took courageous managemental descisions. Since nuclear fission was discovered, its exploitation as an energy source has been perfected. Now it is not only technically safe, reliable and ecological; it has also proved to be economically efficient as compared with the competing primary energies. As with other great innovations, the innovative force of nuclear technology is characterized by two directions: its assimilating capacity and its expanding capacity. Further issues are the so-called technological spin-off of nuclear technology and the fresh impetus nuclear technology gives to other fields. Another aspect beyond technological spin-off affecting all of our society: It was the first large technology requiring risk analyses to be carried out. Discussion broke out in public on the question: ''How safe is nuclear technology''. To sum up, the basic innovation of nuclear technology is now an important economic factor. It came just in time. It is capable of providing relief to the world's energy problems. It is up to us to use it in an intelligent way in the future despite any short-breathed complaints. (orig./HSCH) [de

  2. INPRO Assessment of the Planned Nuclear Energy System of Belarus. A report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2013-09-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was started in 2001 on the basis of IAEA General Conference resolution GC(44)/RES/21. INPRO activities have since been continuously endorsed by IAEA General Conference resolutions and by the General Assembly of the United Nations. The objectives of INPRO are to help ensure that nuclear energy is available to contribute, in a sustainable manner, to the goal of meeting the energy needs of the 21st century, and to bring together technology holders and users so that they can jointly consider the international and national actions required for ensuring sustainability of nuclear energy through innovations in technology and/or institutional arrangements. To fulfill these objectives, INPRO has developed a set of basic principles, user requirements and criteria, and an assessment method which, taken together, comprise the INPRO methodology for the evaluation of the long term sustainability of innovative nuclear energy systems. The INPRO methodology is documented in IAEA-TECDOC-1575 Rev.1, comprising an overview volume and eight additional volumes covering economics, institutional measures (infrastructure), waste management, proliferation resistance, physical protection, environment (impact of stressors and availability of resources), safety of reactors, and safety of nuclear fuel cycle facilities. This publication is the final report of an assessment of the planned nuclear energy system of Belarus using the INPRO methodology. The assessment was performed in 2009-2011 by Belarusian experts in a strategic partnership with the Russian Federation and with support from the IAEA's INPRO Group

  3. INPRO Assessment of the Planned Nuclear Energy System of Belarus. A report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-15

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was started in 2001 on the basis of IAEA General Conference resolution GC(44)/RES/21. INPRO activities have since been continuously endorsed by IAEA General Conference resolutions and by the General Assembly of the United Nations. The objectives of INPRO are to help ensure that nuclear energy is available to contribute, in a sustainable manner, to the goal of meeting the energy needs of the 21st century, and to bring together technology holders and users so that they can jointly consider the international and national actions required for ensuring sustainability of nuclear energy through innovations in technology and/or institutional arrangements. To fulfill these objectives, INPRO has developed a set of basic principles, user requirements and criteria, and an assessment method which, taken together, comprise the INPRO methodology for the evaluation of the long term sustainability of innovative nuclear energy systems. The INPRO methodology is documented in IAEA-TECDOC-1575 Rev.1, comprising an overview volume and eight additional volumes covering economics, institutional measures (infrastructure), waste management, proliferation resistance, physical protection, environment (impact of stressors and availability of resources), safety of reactors, and safety of nuclear fuel cycle facilities. This publication is the final report of an assessment of the planned nuclear energy system of Belarus using the INPRO methodology. The assessment was performed in 2009-2011 by Belarusian experts in a strategic partnership with the Russian Federation and with support from the IAEA's INPRO Group.

  4. Users' Requirements for Environmental Effects From Innovative Nuclear Energy Systems and Their Fuel Cycles

    International Nuclear Information System (INIS)

    Carreter, M.; Gray, M.; Falck, E.; Bonne, A.; Bell, M.

    2002-01-01

    The objective of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) is to support the safe, sustainable, economic and proliferation resistant use of nuclear technology to meet the needs of the 21. century. The first part of the project focusses on the development of an understanding of the requirements of possible users of innovative concepts for reactors and fuel cycle applications. This paper reports progress made on the identification of user requirements as they relate to the environment and environmental protection. The user requirements being formulated are intended to limit adverse environmental effects from the different facilities involved in the nuclear fuel cycles to be well below maximum acceptable levels. To determine if the user requirements are met, it is necessary to identify those factors that are relevant to assessment of the environmental performance of innovative nuclear systems. To this effect, Environmental Impact Assessment (EIA) and the Material Flow accounting (MFA) methodologies are being appraised for the suitability for application. This paper develops and provides the rationale for the 'users' requirements' as they are currently defined. Existing Environmental Impact Assessment and Materials Flow Accounting methodologies that can be applied to determine whether or not innovative technologies conform to the User Requirements are briefly described. It is concluded that after establishing fundamental principles, it is possible to formulate sets of general and specific users' requirements against which, the potential adverse environmental effects to be expected from innovative nuclear energy systems (INES) can be assessed. The application of these users' requirements should keep the adverse environmental effects from INES's within acceptable limits. (authors)

  5. An approach for evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems

    International Nuclear Information System (INIS)

    Nakae, Nobuo; Ozawa, Takayuki; Ohta, Hirokazu; Ogata, Takanari; Sekimoto, Hiroshi

    2014-01-01

    One of the important issues in the study of Innovative Nuclear Energy Systems is evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems. An approach for evaluating the integrity of the fuel is discussed here based on the procedure currently used in the integrity evaluation of fast reactor fuel. The fuel failure modes determining fuel life time were reviewed and fuel integrity was analyzed and compared with the failure criteria. Metal and nitride fuels with austenitic and ferritic stainless steel (SS) cladding tubes were examined in this study. For the purpose of representative irradiation behavior analyses of the fuel for Innovative Nuclear Energy Systems, the correlations of the cladding characteristics were modeled based on well-known characteristics of austenitic modified 316 SS (PNC316), ferritic–martensitic steel (PNC–FMS) and oxide dispersion strengthened steel (PNC–ODS). The analysis showed that the fuel lifetime is limited by channel fracture which is a nonductile type (brittle) failure associated with a high level of irradiation-induced swelling in the case of austenitic steel cladding. In case of ferritic steel, on the other hand, the fuel lifetime is controlled by cladding creep rupture. The lifetime evaluated here is limited to 200 GW d/t, which is lower than the target burnup value of 500 GW d/t. One of the possible measures to extend the lifetime may be reducing the fuel smeared density and ventilating fission gas in the plenum for metal fuel and by reducing the maximum cladding temperature from 650 to 600 °C for both metal and nitride fuel

  6. An approach for evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nakae, Nobuo, E-mail: nakae-nobuo@jnes.go.jp [Center for Research into Innovative Nuclear Energy System, Tokyo Institute of Technology, 2-12-1-N1-19, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Ozawa, Takayuki [Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency, 4-33, Muramatsu, Tokai-mura, Ibaraki-ken 319-1194 (Japan); Ohta, Hirokazu; Ogata, Takanari [Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1, Iwado Kita, Komae-shi, Tokyo 201-8511 (Japan); Sekimoto, Hiroshi [Center for Research into Innovative Nuclear Energy System, Tokyo Institute of Technology, 2-12-1-N1-19, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-03-15

    One of the important issues in the study of Innovative Nuclear Energy Systems is evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems. An approach for evaluating the integrity of the fuel is discussed here based on the procedure currently used in the integrity evaluation of fast reactor fuel. The fuel failure modes determining fuel life time were reviewed and fuel integrity was analyzed and compared with the failure criteria. Metal and nitride fuels with austenitic and ferritic stainless steel (SS) cladding tubes were examined in this study. For the purpose of representative irradiation behavior analyses of the fuel for Innovative Nuclear Energy Systems, the correlations of the cladding characteristics were modeled based on well-known characteristics of austenitic modified 316 SS (PNC316), ferritic–martensitic steel (PNC–FMS) and oxide dispersion strengthened steel (PNC–ODS). The analysis showed that the fuel lifetime is limited by channel fracture which is a nonductile type (brittle) failure associated with a high level of irradiation-induced swelling in the case of austenitic steel cladding. In case of ferritic steel, on the other hand, the fuel lifetime is controlled by cladding creep rupture. The lifetime evaluated here is limited to 200 GW d/t, which is lower than the target burnup value of 500 GW d/t. One of the possible measures to extend the lifetime may be reducing the fuel smeared density and ventilating fission gas in the plenum for metal fuel and by reducing the maximum cladding temperature from 650 to 600 °C for both metal and nitride fuel.

  7. Fuelling innovation: Countries look to the next generation of nuclear power

    International Nuclear Information System (INIS)

    Perera, Judith

    2004-01-01

    The past few years have seen several multinational initiatives looking at the prospects for the medium and long-term development of nuclear energy. These include: the US-led Generation IV International Forum (GIF), the IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), and the European Michelangelo network for competitiveness and sustainability of nuclear energy in the EU (Micanet). There have also been two major studies - a joint investigation by the IAEA together with the OECD's International Energy Agency (IEA) and Nuclear Energy Agency (NEA), Innovative Nuclear Reactor Development; Opportunities for International Co-operation; and an interdisciplinary study by the Massachusetts Institute of Technology (MIT) on The Future of Nuclear Energy. All these cover much of the same ground, looking at innovative nuclear systems including reactors and fuel cycles. But, while they were prompted by the same set of underlying imperatives, they also differ to some extent, not least in the importance they attach to the nuclear fuel cycle. GIF and INPRO are two initiatives where enhanced international cooperation could emerge

  8. The development of global energy supply as a succession of energy-related innovation processes. A qualitative model approach to assess the use of nuclear power

    International Nuclear Information System (INIS)

    Herrmann, Dieter

    2017-01-01

    Often, the development of the world energy supply is adopted as a painful sequence of the exhaustible and polluting use of primary energy sources. Therefore the expectations in practically inexhaustible and environmentally neutral renewable energy sources are high. However, in fact, it depends on the available production, conversion, and utilization technology, which sources of energy are suitable to meet given demands and requirements. In particular, the development of the energy demand requires energy technology innovations to use new energy sources, to use known energy sources more efficient and to replace exhaustible energy sources at an early stage by others. The historical development of the global energy supply is a sequence of interrelated energy technology innovation processes. This makes it also possible, to analyse the historical development of nuclear power and to derive a model on the future role of nuclear power worldwide.

  9. The Canadian Centre for Nuclear Innovation

    Energy Technology Data Exchange (ETDEWEB)

    Root, J., E-mail: John.Root@usask.ca [Canadian Centre for Nuclear Innovation, Inc., Saskatoon, Saskatchewan (Canada)

    2013-07-01

    The Canadian Centre for Nuclear Innovation (CCNI) was incorporated on December 20, 2011, to help place Saskatchewan among global leaders of nuclear research, development and training, through investment in partnerships with academia and industry for maximum societal and economic benefit. As the CCNI builds a community of participants in the nuclear sector, the province of Saskatchewan expects to see positive impacts in nuclear medicine, materials research, nuclear energy, environmental responsibility and the quality of social policy related to nuclear science and technology. (author)

  10. The NEA Nuclear Innovation 2050 Initiative

    International Nuclear Information System (INIS)

    Rayment, Fiona; ); Deffrennes, Marc; )

    2017-01-01

    The NEA launched its Nuclear Innovation 2050 (NI2050) Initiative with the aim of identifying research and development (R and D) strategies and associated priorities to achieve commercial readiness of innovative, sustainable nuclear fission technologies in a fast and cost-effective way. As defined at the beginning of the process, these R and D strategies would be elaborated with NEA stakeholders at large, in particular involving nearly all NEA committees, nuclear research organisations, industry, regulators and technical safety organisations. The NI2050 Initiative has evolved over the last year to become an NEA incubator for the selection and development of a number of large nuclear fission R and D programs (and infrastructures) that can support the role of nuclear energy in a low carbon future, mainly by accelerating innovation and the market deployment of technologies. This article provides a brief overview and the next steps of the initiative, which has reached the stage where more concrete outcomes might now be expected, in particular in terms of programs of action to be proposed for co-operative implementation

  11. Nuclear energy supports sustainable development

    International Nuclear Information System (INIS)

    Koprda, V.

    2005-01-01

    The article is aimed at acceptability, compatibility and sustainability of nuclear energy as non-dispensable part of energy sources with vast innovation potential. The safety of nuclear energy , radioactive waste deposition, and prevention of risk from misuse of nuclear material have to be very seriously abjudged and solved. Nuclear energy is one of the ways how to decrease the contamination of atmosphere with carbon dioxide and it solves partially also the problem of global increase of temperature and climate changes. Given are the main factors responsible for the renaissance of nuclear energy. (author)

  12. National assessment study in Armenia using innovative nuclear reactors and fuel cycles methodology for an innovative nuclear systems in a country with small grid

    International Nuclear Information System (INIS)

    Sargsyan, V.H.; Galstyan, A.A.; Gevorgyan, A.A.

    2010-01-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was launched in November 2000 under the aegis of the IAEA. Phases 1A and IB (first Part) of the Project were dedicated to elaboration, testing and validation of the INPRO Methodology. At the Technical Meeting in Vienna (13-15 October 2004) Armenia has proposed an assessment using the INPRO Methodology for an Innovative Nuclear Energy System in a country with a small electrical grid. Such kind of study helps Armenia in analysis of Innovative Nuclear Energy System (INS), including fuel cycle options, as well as shows applicability of INPRO methodology for small countries, like Armenia. This study was based on the results given in [3] and [4], and also on the main objectives, declared by the Government of Armenia in the paper 'Energy Sector Development Strategies in the Context of Economic Development in Armenia'

  13. The potential for disruptive innovations in nuclear power

    International Nuclear Information System (INIS)

    Adams, F.P.

    2014-01-01

    The concept of 'disruptive innovation' is a management tool that provides a framework for understanding the structure and dynamics of technology markets, especially their sometimes acute response to innovation. The concept was used in a preliminary assessment of a number of energy technologies, including renewable energy technologies and energy storage, as well as nuclear technologies, as they interact in industry and the marketplace. The technologies were assessed and perspectives were provided on their current potential for innovation to disrupt the value networks behind electricity markets. The findings indicate that this concept may provide useful guidance for the planning of technology development. (author)

  14. Export orientation and domestic electricity generation: Effects on energy efficiency innovation in select sectors

    International Nuclear Information System (INIS)

    Urpelainen, Johannes

    2011-01-01

    Why are some countries developing many energy efficiency innovations, while others are lagging behind? I argue that export orientation and electricity at low variable cost from nuclear and hydropower plants have an interactive effect on energy efficiency innovation. Export-oriented countries have strong incentives to invest in energy efficiency innovation, as they are in a position to export these technology innovations for global markets. But if inexpensive electricity is supplied in a country, the domestic demand for energy efficiency innovation is missing, and so the home market cannot serve as a springboard for international commercialization. I test this theory against international patent data on energy efficiency innovation in insulation, heating, and lighting for 22 OECD countries, 1991-2007. The statistical analysis indicates that export orientation has large positive effects on energy efficiency innovation in countries that do not rely on nuclear and hydroelectricity. - Highlights: → Export-oriented countries produce energy efficiency innovations. → Nuclear and hydropower reduce energy efficiency innovation. → Data on international patents from industrialized countries support the argument.

  15. International conference on innovative technologies for nuclear fuel cycles and nuclear power. Unedited proceedings

    International Nuclear Information System (INIS)

    2004-01-01

    Nuclear power is a significant contributor to the global supply of electricity, and continues to be the major source that can provide electricity on a large scale with a comparatively minimal impact on the environment. But it is evident that, despite decades of experience with this technology, nuclear power today remains mainly in a holding position, with its future somewhat uncertain primarily due to concerns related to waste, safety and security. One of the most important factors that would influence future nuclear growth is the innovation in reactor and fuel cycle technologies to successfully maximize the benefits of nuclear power while minimizing the associated concerns. The main objectives of the Conference were to facilitate exchange of information between senior experts and policy makers from Member States and international organizations on important aspects of the development of innovative technologies for future generations of nuclear power reactors and fuel cycles; to create an understanding of the social, environmental and economic conditions that would facilitate innovative and sustainable nuclear technologies; and to identify opportunities for collaborative work between Member States and international organizations and programmes. All relevant aspects of innovative technologies for nuclear fuel cycles and nuclear power were discussed in an open, frank and objective manner. These proceedings contain a summary of the results of the conference, invited and contributed papers, and summaries of panel discussions. No large increase in the use of nuclear energy is foreseen in the near and medium term, but is likely in the long term if developing country per-capita electricity consumption reaches that of the developed world. The nuclear sector including regulators view an increased use of nuclear energy as the solution for global sustainable energy needs considering that significant reductions in CO 2 emissions would be required. Although the current nuclear

  16. Supporting innovation. International Project on Innovative Nuclear Reactors and Fuel Cycles moves into first phase

    International Nuclear Information System (INIS)

    Gowin, Peter J.; Kupitz, Juergen

    2001-01-01

    Work has been initiated through the IAEA International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), including technical meetings and workshops scheduled over the coming months. Among activities is an information 'side event' on INPRO at the IAEA General Conference in September 2001. Among topics addressed at the Steering Committee Meeting earlier this year are user requirements and nuclear development criteria in the area of safety; safety issues related to waste management technologies of innovative nuclear reactors and fuel cycles; methodology of assessment and comparison of innovative nuclear technology with respect to INPRO; user requirements on environmental impacts of innovative reactors, fuel cycles, and waste management; and user requirements and nuclear energy development criteria in the area of non-proliferation and proliferation resistance. In December 2001, the second meeting of the INPRO Steering Committee is scheduled. At the inaugural meeting earlier this year, the Steering Committee stressed the unique role of INPRO relative to other national and international initiatives on innovative nuclear power technologies. The role lies in identifying the needs and requirements of a spectrum of developing and developed countries; and contributing explicitly to the debate on the global acceptability of nuclear power. As of August 2001, the following countries or entities have become members of INPRO: Argentina, Canada, China, France, Germany, India, Netherlands, Russian Federation, Spain, Turkey, and the European Commission. In total, 14 experts have been nominated by their respective governments or international organizations. All IAEA Member States are also free to participate in the Steering Committee as observers. The Terms of Reference define INPRO's rationale and purpose, in the context of energy needs and developments. They state that the 'long-term outlook for nuclear energy should be considered in the broader perspective of future

  17. Progress and status of the international project on innovative nuclear reactors and fuel cycles (INPRO) - 5182

    International Nuclear Information System (INIS)

    Ponomarev, A.; Fesenko, G.; Grigoriev, F.G.; Korinny, A.; Phillips, J.R.; Rho, K.

    2015-01-01

    The IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was established in 2000 through IAEA General Conference resolution. INPRO cooperates with Member States to ensure that sustainable nuclear energy is available to help meet the energy needs of the 21. century. INPRO membership has grown to 41 members and 16 observers. The paper presents the current prospectus of the INPRO programme and details the most recent achievements in the following 7 projects: 1) the GAINS project (Global Architecture of Innovative Nuclear Energy Systems with thermal and fast reactors and a closed nuclear fuel cycle); 2) the SYNERGIES project applies and amends the analytical framework developed in GAINS project to examine more specifically the various forms of regional collaboration among nuclear energy suppliers and users; 3) the KIND project (Key Indicators for Innovative Nuclear Energy Systems) has the objective of developing guidance on the evaluation on innovative nuclear technologies; 4) the ROADMAPS project addresses several possible stages toward nuclear energy sustainability; 5) the RISC project aims at demonstrating that the evolution of safety requirements and technical innovations provide continual progress towards the avoidance of evacuation measures outside NPP sites in case of severe accidents; 6) the FANES project has the objective of carrying out feasibility analyses of advanced and innovative fuels for different reactor systems; and 7) the WIRAF project aims at identifying problematic waste from innovative reactor designs and corresponding nuclear fuel cycles

  18. Proceedings of the NEA International Workshop on the Nuclear Innovation road-map (NI2050)

    International Nuclear Information System (INIS)

    Ha, Jaejoo HA; Deffrennes, Marc; ); Tromm, Walter; Ait Abderrahim, Hamid; Fernandez Fernandez, Alberto; Speranzini, Robert; Jeong, Ik; Lee, Gye Seok; Castelao Lopez, Carlos; Pasamehmetoglu, Kemal; Puska, Eija Karita; Cordier, Pierre-Yves; Horvath, Akos; Agostini, Pietro; Kamide, Hideki; Nakatsuka, Toru; Roelofs, Ferry; Wrochna, Grzegorz; Zezula, Lubor; Rayment, Fiona; Cizelj, Leon; Zimmermann, Martin A.; Schmitz, Bruno; Martin-Ramos, Manuel; Andreeva-Andrievskaya, Lyudmila N.; Monti, Stefano; ); Paillere, Henri; ); Caron-Charles, Marylise; Gulliford, Jim; ); Breest, Axel; ); McGrath, Margaret; Bignan, Gilles

    2015-07-01

    The two-day workshop held at the OECD Headquarters in Paris on 7-8 July 2015, brought together some of the leading experts in the field of nuclear fission research, development and demonstration. The purpose was to launch the NEA Nuclear Innovation 2050 Initiative, aiming, after a first survey phase, at producing a road-map of main priority research programmes and infrastructures necessary to support the role nuclear energy may play in the low carbon power sector of the future. This might then further lead to some ad-hoc cooperation frameworks that help to effectively implement key priorities coming out of the road-mapping. The workshop was organised into the following five sessions: 1 - Opening session on NI2050: vision and main objectives; 2 - National presentations on nuclear fission research and innovation activities (programmes, infrastructures, budgets); 3 - Presentations on some existing international nuclear fission road-maps and co-operation frameworks; 4 - Defining the way forward for NI2050: survey, road-mapping and priorities and co-operation; 5 - Open discussion. These proceedings bring together the available presentations (slides) given during the workshop: 1. Opening session on NI2050: vision and main objectives: Setting the scene: NEA/IEA Nuclear Energy road-map 2050 (Jaejoo Ha); Proposed scope and organisation of the NI2050 project launching, taking stock of the IEA Energy RD and D survey and going further (Marc Deffrennes); 2. National presentations on nuclear fission research and innovation activities (programmes, infrastructures, budgets): Overview of German Situation with focus on HGF NUSAFE - HELMHOLTZ (W. Tromm); Investing in Nuclear Innovation in Belgium - SCKCEN (Hamid Ait Abderrahim and Alberto Fernandez); Canadian Nuclear Laboratories: Nuclear S and T and Innovation (R. Speranzini); ROK's Nuclear Policies and R and D Programs - KAERI (Ik Jeong and Lee Gye Seok); R and D Spanish Nuclear Platform (C. Castelao); NOE-NE Programs and

  19. Nuclear energy, environmental protection and international conflicts

    International Nuclear Information System (INIS)

    Menke-Glueckert, P.

    1975-01-01

    Some general and some critical remarks on: nuclear energy as an image for politics; nuclear energy as a model for research planning; nuclear controversy; the principle of precaution in nuclear and radiation protection law; reactor safety on probation; advantages and economy of nuclear energy; communication difficulties; the special role of nuclear energy; the need for European site planning; supervision of fissionable materials; the world's energy household in danger; global structure politics and nuclear energy; nuclear energy with a capacity for social innovations. (HP/LN) [de

  20. The potential for disruptive innovations in nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Adams, F.P., E-mail: fred.adams@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2014-12-01

    The concept of 'disruptive innovation' is a management tool that provides a framework for understanding the structure and dynamics of technology markets, especially their sometimes acute response to innovation. The concept was used in a preliminary assessment of a number of energy technologies, including renewable energy technologies and energy storage, as well as nuclear technologies, as they interact in industry and the marketplace. The technologies were assessed and perspectives were provided on their current potential for innovation to disrupt the value networks behind electricity markets. The findings indicate that this concept may provide useful guidance for the planning of technology development. (author)

  1. Innovations shape the nuclear services of tomorrow

    International Nuclear Information System (INIS)

    Apel, Frank

    2008-01-01

    The worldwide renaissance of nuclear energy production is getting up to speed. Thus Nuclear Services has the unique chance to develop and to implement exciting innovations. The driver for future innovations is the area of new builds as new customers are demanding new service solutions. Such are e.g. high availability concepts, full scope services and fully computerized datasets. AREVA NP Services. organization is prepared best to deliver innovative solutions, learning form being the first company building a new generation nuclear power plant, the EPR in OL3. AREVA involved Services in a very early stage to the design of the EPR to optimize plants maintainability. The newly developed tools and IT-solutions for new builds will as well support existing plants in improving their maintenance activities. Additionally AREVA takes advantage of being a global player in exchanging consequently experiences between all regions. (orig.)

  2. Structural materials for innovative nuclear systems (SMINS)

    International Nuclear Information System (INIS)

    2008-01-01

    Structural materials research is a field of growing relevance in the nuclear sector, especially for the different innovative reactor systems being developed within the Generation IV International Forum (GIF), for critical and subcritical transmutation systems, and of interest to the Global Nuclear Energy Partnership (GNEP). Under the auspices of the NEA Nuclear Science Committee (NSC) the Workshop on Structural Materials for Innovative Nuclear Systems (SMINS) was organised in collaboration with the Forschungszentrum Karlsruhe in Germany. The objectives of the workshop were to exchange information on structural materials research issues and to discuss ongoing programmes, both experimental and in the field of advanced modelling. These proceedings include the papers and the poster session materials presented at the workshop, representing the international state of the art in this domain. (author)

  3. Lessons Learned from Nuclear Energy System Assessments (NESA) Using the INPRO Methodology. A Report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2009-11-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in 2001 on the basis of a resolution of the IAEA General Conference in 2000 (GC(44)/RES/21). INPRO activities have since been continuously endorsed by resolutions of IAEA General Conferences and by the General Assembly of the United Nations. The objectives of INPRO are to: Help ensure that nuclear energy is available to contribute, in a sustainable manner, to meeting the energy needs of the 21st century; Bring together technology holders and users so that they can consider jointly the international and national actions required for achieving desired innovations in nuclear reactors and fuel cycles. INPRO is proceeding in steps. In its first step, referred to as Phase 1, 2001 to 2006, INPRO developed a set of basic principles, user requirements and criteria together with an assessment method, which taken together, comprise the INPRO methodology for the evaluation of innovative nuclear energy systems. To provide additional guidance in using the INPRO methodology an INPRO Manual was developed; it is comprised of an overview volume and eight additional volumes covering the areas of economics, infrastructure, waste management, proliferation resistance, physical protection, environment, safety of reactors, and safety of the nuclear fuel cycle facilities. Based on a decision of the 9 INPRO steering committee in July 2006, INPRO has entered into Phase 2. This phase has three main directions of activity: methodology improvement, infrastructure/institutional aspects and collaborative projects. As of March 2009, INPRO had 28 members: Argentina, Armenia, Belarus, Belgium, Brazil, Bulgaria, Canada, Chile, China, Czech Republic, France, Germany, India, Indonesia, Japan, Republic of Korea, Morocco, Netherlands, Pakistan, the Russian Federation, Slovakia, South Africa, Spain, Switzerland, Turkey, Ukraine, United States of America and the European Commission. This IAEA-TECDOC is part of

  4. Socio-economic research for innovative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Yuichi [Tokyo Univ., High Temperature Plasma Center, Kashiwa, Chiba (Japan); Okano, Kunihiko [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2006-10-15

    In the 21st century global environment and energy issues become very important, and this is characterized by the long-term (in the scale of a few tens years) and world-wide issue. In addition, future prospect of these issues might be quite uncertain, and scientific prediction could be very difficult. For these issues vigorous researches and various efforts have been carried out from various aspects; e.g., world-wide discussion such as COP3 in Kyoto, promotion of the energy-saving technology and so on. Development of environment-friendly energy has been promoted, and new innovative technologies are explored. Nuclear fusion is, of course, a promising candidate. While, there might be some criticism for nuclear fusion from the socio-economic aspect; e.g., it would take long time and huge cost for the fusion reactor development. In addition, other innovative energy technologies might have their own criticism, as well. Therefore, socio-economic research might be indispensable for future energy resources. At first we have selected six items as for the characteristics, which might be important for future energy resources; i.e., energy resource, environmental load, economics, reliability/stability, flexibility on operation and safety/security. Concerning to innovative energy technologies, we have nominated seven candidates; i.e., advanced coal technology with CO2 recovery system, SOFC top combined cycle, solar power, wind power, space solar power station, advanced fission and fusion. Based on questionnaires for ordinary people and fusion scientists, we have tried to assess the fusion energy development, comparing with other innovative energy technologies. (author)

  5. 2017 NEA Annual Report: Nuclear Power in 2017; Innovation and Education: Necessary Enablers for Sustainable Nuclear Energy, or the Virtuous Circle; NEA Activities by Sector

    International Nuclear Information System (INIS)

    2018-01-01

    The NEA Annual Report of the OECD Nuclear Energy Agency (NEA) for the year ending on 31 December 2017 provides an overview of the status of nuclear power in OECD countries and illustrative descriptions of the Agency's activities and international joint projects. Content: 1 - Message from the Director-General; 2 - Innovation and Education: Necessary Enablers for Sustainable Nuclear Energy, or the Virtuous Circle; 3 - Nuclear Technology in 2017; 4 - NEA Activities by Sector: Nuclear Development, Nuclear Safety and Regulation, Human Aspects of Nuclear Safety, Radiological Protection, Radioactive Waste Management, Nuclear Science, Data Bank, Legal Affairs, 5 - General Information: Information and Communications, Organisational Structure of the NEA, NEA Committee Structure in 2017, NEA Management Structure in 2017, NEA Publications and Brochures Produced in 2017

  6. Nuclear Future is Ten Years Old. Innovative Nuclear Technology Celebrates Anniversary at General Conference

    International Nuclear Information System (INIS)

    Verlini, Giovanni

    2011-01-01

    IAEA-led International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) marked today its tenth anniversary with a ceremony held on the opening day of the IAEA's annual General Conference. INPRO was established in 2000 to ensure that sustainable nuclear energy is available to meet the energy needs of the twenty-first century.

  7. Research and education on innovative nuclear engineering in 21. century COE program in Japan (COE-INES)

    International Nuclear Information System (INIS)

    Hiroshi Sekimoto

    2004-01-01

    -In the year 2002 and 2003 the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) started the 'Priority Assistance for the Formation of Worldwide Renowned Centers of Research - The 21. Century Center of Excellence (COE) Program'. A program proposed by Tokyo Institute of Technology (TITech) 'Innovative Nuclear Energy Systems for Sustainable Development of the World (COE-INES)' was selected as the only one program in nuclear engineering. Here the innovative nuclear energy systems include innovative nuclear reactors and innovative separation and transmutation technologies. This program is planned to continue for 5 years, and the monetary support for the first year (2003-4) is already fixed to be 196 M yens. International collaboration will be promoted for research and education on innovative nuclear energy systems. Several international meetings and intensive personnel exchanges will be performed. (author)

  8. Measuring the social value of nuclear energy using contingent valuation methodology

    International Nuclear Information System (INIS)

    Jun, Eunju; Joon Kim, Won; Hoon Jeong, Yong; Heung Chang, Soon

    2010-01-01

    As one of the promising energy sources for the next few decades, nuclear energy receives more attention than before as environmental issues become more important and the supply of fossil fuels becomes unstable. One of the reasons for this attention is based on the rapid innovation of nuclear technology which solves many of its technological constraints and safety issues. However, regardless of these rapid innovations, social acceptance for nuclear energy has been relatively low and unchanged. Consequently, the social perception has often been an obstacle to the development and execution of nuclear policy requiring enormous subsidies which are not based on the social value of nuclear energy. Therefore, in this study, we estimate the social value of nuclear energy-consumers' willingness-to-pay for nuclear energy-using the Contingent Valuation Method (CVM) and suggest that the social value of nuclear energy increases approximately 68.5% with the provision of adequate information about nuclear energy to the public. Consequently, we suggest that the social acceptance management in nuclear policy development is important along with nuclear technology innovation.

  9. Guidance for the evaluation of innovative nuclear reactors and fuel cycles. Report of Phase 1A of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2003-06-01

    The IAEA General Conference in 2000 invited all interested Member States to combine their efforts under the aegis of the IAEA in considering the issues of the nuclear fuel cycle, in particular by examining innovative and proliferation-resistant nuclear technology. Resolutions of the UN General Assembly in 2001 and 2002 provided additional endorsement for INPRO, by emphasizing the unique role that the IAEA can play in developing user requirements and in addressing safeguards, safety, and environmental questions for innovative reactors and their fuel cycles and stressing the need for international collaboration in the development of innovative nuclear technology. As of April 2003, INPRO had 15 members: Argentina, Brazil, Bulgaria, Canada, China, Germany, India, Republic of Korea, Pakistan, Russian Federation, Spain, Switzerland, the Netherlands, Turkey and the European Commission. The main objectives of INPRO are to: Help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner; and to Bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles. The 21st century promises the most competitive, globalized markets in human history, the most rapid pace of technological change ever, and the greatest expansion of energy use, particularly in developing countries. For a technology to make a truly substantial contribution to energy supplies, innovation is essential. It will be the defining feature of a successful nuclear industry and a critical feature of international co-operation in support of that industry, co-operation that ranges from joint scientific and technological initiatives, to safety standards and guidelines, and to security and safeguards activities. Innovation is also essential to attract a growing, high-quality pool of talented scientists, engineers and

  10. Introduction to the use of the INPRO methodology in a nuclear energy system assessment. A report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2010-01-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in 2001 on the basis of an IAEA General Conference resolution in 2000 (GC(44)/RES/21). INPRO activities have since that time been continuously endorsed by resolutions of the IAEA General Conference and by the General Assembly of the United Nations. The objectives of INPRO are to: Help ensure that nuclear energy is available to contribute, in a sustainable manner, to the goal of meeting energy needs in the 21st century; Bring together technology holders and users so that they can jointly consider the international and national actions required to ensure the sustainability of nuclear energy through innovations in technology and/or institutional arrangements. To fulfil these objectives, INPRO developed a set of basic principles, user requirements and criteria, along with an assessment method, which are the basis of the INPRO methodology for evaluation of the sustainability of innovative nuclear energy systems. To provide additional guidance in using the INPRO methodology, the nine volume INPRO Manual was developed; it consists of an overview volume and eight volumes covering the areas of economics, institutional measures (infrastructure), waste management, proliferation resistance, physical protection, environment (including the impact of stressors and the availability of resources), reactor safety, and the safety of nuclear fuel cycle facilities. To assist Member States in applying the INPRO methodology, the nuclear energy system assessment (NESA) support package is being developed. This includes a database (containing input data for assessment), provision of training courses in the INPRO methodology and examples of comprehensive assessments. This publication provides guidance on how a variety of potential users, including nuclear technology developers, experienced users and prospective first time nuclear technology users (newcomers) can apply the INPRO methodology for

  11. The NRNU MEPhI activities in the development and applications of advanced tools for innovative nuclear energy systems sustainability assessments - 5020

    International Nuclear Information System (INIS)

    Andrianov, A.; Dogov, A.; Kuptsov, I.; Fedorova, E.; Svetlichnyy, L.; Utianskaia, T.; Korovin, Y.

    2015-01-01

    This report delineates the multi-objective optimization and uncertainty treatment modules for the IAEA energy planning software MESSAGE developed at the National Research Nuclear University MEPhI and the Obninsk Institute for Nuclear Power Engineering intended for multi-objective optimization and sustainability assessments of innovative nuclear energy systems with account of uncertainty. The authors present some results of implementation of these tools for multi-objective nuclear energy system optimization studies. The developed software allows searching for compromises between the conflicting factors that determine the nuclear energy systems' effectiveness and calculating corresponding trade-off rates; carrying out comparative multi-criteria analysis of alternatives as well as choosing, ranking, and sorting corresponding options taking into account the evolution dynamics, structure and organization of a nuclear fuel cycle and the most important system constraints and restrictions. (authors)

  12. Innovative nuclear reactor development. Opportunities for international co-operation

    International Nuclear Information System (INIS)

    2002-08-01

    A number of countries wish to expand their use of nuclear energy or keep open the option of doing so in the future. Any new nuclear generating capacity will be built in the context of increasingly privatized and de-regulated energy markets coupled with heightened public concern over nuclear power. New nuclear power plants must maintain or exceed current levels of safety and must be economically competitive with alternative ways of generating electricity. They must address other challenges as well, among them waste disposal and nonproliferation concerns. This report reviews how some of the innovative nuclear-fission technologies being developed today attempt to address the challenges facing nuclear energy. It suggests some areas for collaborative research and development that could reduce the time and cost required to develop new technologies. The report is a product of the 'Three-Agency Study', a joint project among the International Energy Agency (IEA), the OECD Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA). (authors)

  13. Innovative nuclear reactor - Indian approach to meet user requirements for safety

    International Nuclear Information System (INIS)

    Saha, D.; Sinha, R.K.

    2002-01-01

    Full text: For sustainable development of nuclear energy, a number of key issues are to be addressed. It should be economically competitive; it must address the issues related to nuclear safety, proliferation resistance, environmental impact, waste disposal and cross cutting issues like social and infra-structural aspects. To compete successfully in the long term, in the highly competitive energy market and to overcome other challenges, it is necessary to introduce innovative reactor and fuel cycle concepts. Indian Advanced Heavy Water Reactor (AHWR) is one such innovative reactor. To guide the research and development activities related to innovative concepts, user requirements are to be formulated. User requirements covering various aspects of sustainable development are being formulated at both national and international levels. One such international project involved in the formulation of user requirements is the IAEA International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). This paper deals with INPRO user requirements for safety and Indian approach to meet these requirements through AHWR

  14. Climatic change and nuclear energy

    International Nuclear Information System (INIS)

    Schneider, M.

    2000-08-01

    The data presented in the different chapters lead to show that nuclear energy ids not a sustainable energy sources for the following reasons: investments in nuclear energy account financing that lacks to energy efficiency programmes. The nuclear programmes have negative effects such the need of great electric network, the need of highly qualified personnel, the freezing of innovation in the fields of supply and demand, development of small performing units. The countries resort to nuclear energy are among the biggest carbon dioxide emitters, because big size nuclear power plants lead to stimulate electric power consumption instead of inducing its rational use. Nuclear energy produces only electric power then a part of needs concerns heat (or cold) and when it is taken into account nuclear energy loses its advantages to the profit of cogeneration installations. Finally nuclear energy is a dangerous energy source, difficult to control as the accident occurring at Tokai MURA showed it in 1998. The problem of radioactive wastes is not still solved and the nuclear proliferation constitutes one of the most important threat at the international level. (N.C.)

  15. Nuclear energy significantly reduces carbon dioxide emissions

    International Nuclear Information System (INIS)

    Koprda, V.

    2006-01-01

    This article is devoted to nuclear energy, to its acceptability, compatibility and sustainability. Nuclear energy is non-dispensable part of energy sources with vast innovation potential. The safety of nuclear energy, radioactive waste deposition, and prevention of risk from misuse of nuclear material have to be very seriously adjudged and solved. Nuclear energy is one of the ways how to decrease the contamination of atmosphere with carbon dioxide and it solves partially also the problem of global increase of temperature and climate changes. Given are the main factors responsible for the renaissance of nuclear energy. (author)

  16. Analysis of Russian transition scenarios to innovative nuclear energy system based on thermal and fast reactors with closed nuclear fuel cycle using INPRO methodology

    International Nuclear Information System (INIS)

    Kagramanyan, V.S.; Poplavskaya, E.V.; Korobeynikov, V.V.; Kalashnikov, A.G.; Moseev, A.L.; Korobitsyn, V.E.; Andreeva-Andrievskaya, L.N.

    2011-01-01

    This paper presents the results of the analysis of modeling of Russian nuclear energy (NE) scenarios on the basis of thermal and fast reactors with closed nuclear fuel cycle (NFC). Modeling has been carried out with use of CYCLE code (SSC RF IPPE's tool) designed for analysis of Nuclear Energy System (NES) with closed NFC taking into account plutonium and minor actinides (MA) isotopic composition change during multi-recycling of fuel in fast reactors. When considering fast reactor introduction scenarios, one of important questions is to define optimal time for their introduction and related NFC's facilities. Analysis of the results obtained has been fulfilled using the key INPRO indicators for sustainable energy development. It was shown that a delay in fast reactor introduction led to serious ecological, social and finally economic risks for providing energy security and sustainable development of Russia in long-term prospects and loss of knowledge and experience in mastering innovative technologies of fast reactors and related nuclear fuel cycle. (author)

  17. Innovative global architecture for sustainable nuclear power

    International Nuclear Information System (INIS)

    Wheeler, John; Kagramanyan, Vladimir; Poplavskaya, Elena; Edwards, Geoffrey; Dixon, Brent; Usanov, Vladimir; Hayashi, Hideyuki; Beatty, Randall

    2011-01-01

    The INPRO collaborative project 'Global architecture of innovative nuclear energy systems based on thermal and fast reactors with the inclusion of a closed nuclear fuel cycle (GAINS)' was one of several scenario studies implemented in the IAEA in recent years. The objective of GAINS was to develop a standard framework for assessing future nuclear energy systems (NESs) taking into account sustainable development, and to validate the results through sample analyses. Belgium, Canada, China, the Czech Republic, France, India, Italy, Japan, the Republic of Korea, the Russian Federation, Slovakia, Ukraine, USA, the European Commission and Argentina as an observer participated in the project. The results received are discussed in the paper, including: development of a heterogeneous multi-group model of a global NES, estimation of nuclear energy demand, identification of a representative set of reactors and fuel cycles, evaluation capability of available analytical and modelling tools, and quantitative analysis of the different options of the global architecture. It was shown that the approach used contributes to development of a coherent vision of driving forces for nuclear energy system development and deployment. (author)

  18. Nuclear innovation in Saskatchewan: innovation

    International Nuclear Information System (INIS)

    Alexander, N.

    2015-01-01

    This paper describes nuclear innovation in Saskatchewan. The first stage is the Canadian Institute for Science and Innovation Policy (CSIP) and how you have a successful discussion about a technically complex issue, understand what information people need in order to have an informed discussion, understand how to convey that information to those people in a constructive way.

  19. The international project on innovative nuclear reactors and fuel cycles (INPRO): status and outlook

    International Nuclear Information System (INIS)

    Steur, R.; Kupitz, J.; Depisch, F.

    2004-01-01

    Full text: During the last fifty years remarkable results are achieved in the application of nuclear technology for the production of electricity. Looking ahead to the next fifty years it is clear that the demand for energy will grow considerably and also new requirements for the way the energy will be supplied have to be fulfilled. Following a resolution of the General Conference of the IAEA in the year 2000 an International Project on Innovative Nuclear Reactors and Fuel Cycles, referred to as INPRO, was initiated. The main objectives of INPRO are to: Help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner; and Bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles. Within INPRO the future of the energy demand and supply was explored and several scenario's identified. A leading requirement for energy supply is coming up and will play a crucial role: sustainability of the way the energy supply will be realized. Fulfilling the growing need for energy in developing countries is as well an important issue. Based on these scenario's for the next fifty years, requirements for the different aspects of the future of nuclear energy systems, such as economics, sustain ability and environment, safety, waste and proliferation resistance have been identified as well a methodology developed. to assess innovative nuclear systems and fuel cycles. On the base of this assessment, the need for innovations and breakthroughs in existing technology can be defined. To facilitate the deployment of innovative nuclear systems also different aspects of the infrastructure, technical as well institutional have been reviewed and recommendations for changes are made to anticipate main developments in the world such as the ongoing globalisation. As a contribution to the conference

  20. Technical features to enhance proliferation resistance of nuclear energy systems

    International Nuclear Information System (INIS)

    2010-01-01

    It is generally accepted that proliferation resistance is an essential issue for the continued development and sustainability of nuclear energy. Several comprehensive assessment activities on the proliferation resistance of the nuclear fuel cycle have previously been completed, notably the International Nuclear Fuel Cycle Evaluation (INFCE) carried out under the auspices of the IAEA, and the Non-proliferation Alternative Systems Assessment Program (NASAP) review carried out by the USA. There have been, however, relatively few comprehensive treatments of the issue following these efforts in the 1970s. However, interest in and concern about this issue have increased recently, particularly because of greater interest in innovative nuclear fuel cycles and systems. In 2000, the IAEA initiated the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) and the US Department of Energy initiated the Generation IV International Forum (GIF). These projects are aimed at the selection and development of concepts of innovative nuclear energy systems and fuel cycles. Proliferation resistance is one of the fundamental considerations for both projects. In this context, the IAEA in 2001 initiated a study entitled 'Technical Aspects of Increasing Proliferation Resistance of the Nuclear Fuel Cycle'. This task is not intended as an effort to assess the merits of a particular fuel cycle system for the future, but to describe a qualitative framework for an examination of the proliferation resistance provided by the intrinsic features of an innovative nuclear energy system and fuel cycle. This task also seeks to provide a high level survey of a variety of innovative nuclear energy systems and fuel cycles with respect to that framework. The concept of proliferation resistance is considered in terms of intrinsic features and extrinsic measures. The intrinsic features, sometimes referred to as the physical/technical aspects, are those features that result from the

  1. Economics of seawater desalination with innovative nuclear reactors and other energy sources: the EURODESAL project

    International Nuclear Information System (INIS)

    Nisan, S.; Volpi, L.

    2004-01-01

    This paper summarises our recent investigations undertaken as part of the EURODESAL project on nuclear desalination, which were carried out by a consortium of four EU and one Canadian, Industrials and two leading EU R and D organisations. Major results of the project, in particular of its economic evaluation work package as discussed in this paper, are: 1. A coherent demonstration of the technical feasibility of nuclear desalination through the development of technical principles for the optimum cogeneration of electricity and water and by exploring the unique capabilities of the innovative nuclear reactors and desalination technologies; verification that the integrated system design does not adversely affect nuclear reactor safety. 2. The development of codes and methods for an objective assessment of the competitiveness and sustainability of proposed solutions through comparison, in European conditions, with fossil and renewable energy based solutions. The results obtained so far seem to be quite encouraging as regards the economical viability of nuclear desalination options. Thus, for example, specific desalination costs ($/m 3 of desalted water) for nuclear systems such as the AP600 and the French PWR900 (reference base case), coupled to Multiple Effect Distillation (MED) or the Reverse Osmosis (RO) processes, are 30% to 60% lower than fossil energy based systems using pulverised coal and natural gas with combined cycle, at low discount rates and recommended fuel prices. Even in the most unfavourable scenarios for nuclear energy (discount rates = 10%, low fossil fuel prices) desalination costs with the nuclear options with the nuclear reactors are 7% to 15% lower, depending upon the desalination capacities. Furthermore, with the high performance coupling schemes developed by the EURODESAL partners, the specific desalination costs of nuclear systems are reduced by another 2% to 14%, even without system and design optimisation. (author)

  2. Innovation is the only way forward to re-launch nuclear power

    International Nuclear Information System (INIS)

    Chapuis, F.; L'Hostis, N.

    2014-01-01

    Constituting a high value added sector for France, civil nuclear power is faced with regulatory, societal and economic constraints, all of which weigh on industry's various participants. In a world context, where electricity production is booming, the future share of nuclear power is under threat. Nuclear power has important assets: reliability and independence but has also to face societal, political and economic pressures. The outlook for mature electronuclear technology is dependent on the innovations that its actors can promote. The 4. generation reactors are far more innovative than the previous generation in terms of a far better utilisation rate of uranium resource, or of co-production of electric power and heat that can be used for instance for hydrogen production. Innovations can also be found in the size of reactors: small and medium sized reactors can be proposed to meet the energy demand of countries whose energy consumption grows faster than the development of their infra-structures. Another step necessary for the development of nuclear power is the implementing of the same international high standards of nuclear safety any where in the world

  3. An innovative concept for maximizing the use of coal and nuclear energy for co-generation applications

    International Nuclear Information System (INIS)

    Choong, P.T.S.

    1995-01-01

    Despite the abundance in coal reserves in the world, coal fired power plants are not the desirable long-term solution to the energy shortage in most nations, because of environmental and transportation difficulties. However, nuclear power is inherently inefficient due to low temperature operations. The prudent solution to world's energy crisis should address both the immediate need for electricity and the long-term need for an environmentally sound energy system capable of providing low cost electricity and district heating energy utilizing mainly indigenous energy resources (coal, uranium, and thorium). The new energy utilization system has to be environment friendly. A conceptual solution plan is the subject matter of this presentation. The concept calls for an innovative integration of coal gasification, gas turbine, steam turbine and an intermediate bulk coolant heating nuclear power technologies. The output of the nuclear heated coolant is to cool the syngas output which is to drive the high temperature gas turbine generator. The waste heat from the gas turbine is recovered to drive the steam turbine. The exhaust steam from the steam turbine is used for district heating. The siting of the nuclear power plant is to be near the coal mines and water resources. Bulk of the electricity output is transmitted via HVDC lines to far away population centers. Excess coal gas from the gasification plant is to be piped to surrounding districts to drive remote combined cycle power plants. The thermal efficiency of power cycle can be over 50%. The overall energy utilization efficiency can be as high as 85% when district heating effect included. An example of INCTES (Integrated Nuclear/Coal Total Energy System) for China power/energy infra structure is briefly touched upon

  4. Radioactivity and nuclear energy

    International Nuclear Information System (INIS)

    Hoffmann, J.; Kuczera, B.

    2001-05-01

    The terms radioactivity and nuclear energy, which have become words causing irritation in the political sphere, actually represent nothing but a large potential for innovative exploitation of natural resources. The contributions to this publication of the Karlsruhe Research Center examine more closely three major aspects of radioactivity and nuclear energy. The first paper highlights steps in the history of the discovery of radioactivity in the natural environment and presents the state of the art in health physics and research into the effects of exposure of the population to natural or artificial radionuclides. Following contributions focus on: Radiochemical methods applied in the medical sciences (diagnostic methods and devices, therapy). Nuclear energy and electricity generation, and the related safety policies, are an important subject. In this context, the approaches and pathways taken in the field of nuclear science and technology are reported and discussed from the angle of nuclear safety science, and current trends are shown in the elaboration of advanced safety standards relating to nuclear power plant operation and ultimate disposal of radioactive wastes. Finally, beneficial aspects of nuclear energy in the context of a sustainable energy policy are emphasized. In particular, the credentials of nuclear energy in the process of building an energy economy based on a balanced energy mix which combines economic and ecologic advantages are shown. (orig./CB) [de

  5. Nuclear's second wind: innovative 'fast' nuclear power plants may be a strategic imperative

    International Nuclear Information System (INIS)

    Adamov, Evgeny

    2004-01-01

    Nuclear power needed 50 years to gain the same position in global energy production as the one achieved by hydropower over hundreds of years. All those years, proposals for new reactor concepts would come up every now and then alongside mainstream reactor technologies. In the nuclear-friendly 1960s and 1970s, some of those 'innovative' concepts even led to demonstration or pilot projects. Yet for all the diversity of new ideas, nuclear power entered the new century still moving in a rut of older mainstream technologies. Most were devised at the dawn of nuclear engineering, when reactors for production of weapon-grade isotopes and reactors for nuclear submarines propelled development. Unless we understand the reasons why innovative technologies failed to make any appreciable progress way back then, it is impossible to answer the question of whether there is a need for them now or in the foreseeable future. Few people, perhaps, may remember that nuclear power was not brought into existence by energy deficiency. Its advent was caused by the Second World War and the associated pressing necessity for increasing the power of weapons. Once the war ended, nuclear plans were fuelled by the intentions of both weapons designers (e.g., Russia's I. Kurchatov who initiated construction of the world's first nuclear power plant in Obninsk and US politicians led by President Dwight Eisenhower's 'Atoms for Peace' Initiative in 1953) to counterbalance the military effort by encouraging peaceful nuclear applications

  6. Guidance for the application of an assessment methodology for innovative nuclear energy systems. INPRO manual - Safety of nuclear fuel cycle facilities. Vol. 9 of the final report of phase 1 of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2008-11-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in the year 2000, based on a resolution of the IAEA General Conference (GC(44)/RES/21). The main objectives of INPRO are (1) to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner, (2) to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles; and (3) to create a forum to involve all relevant stakeholders that will have an impact on, draw from, and complement the activities of existing institutions, as well as ongoing initiatives at the national and international level. The INPRO manual is comprised of an overview volume (No. 1), and eight additional volumes covering the areas of economics (Volume 2), infrastructure (Volume 3), waste management (Volume 4), proliferation resistance (Volume 5), physical protection (Volume 6), environment (Volume 7), safety of nuclear reactors (Volume 8), and safety of nuclear fuel cycle facilities (laid out in this report) (Volume 9).This report elaborates on the guidance given in the INPRO report 'Methodology for the assessment of innovative nuclear reactors and fuel cycles', IAEA-TECDOC-1434, and the previous INPRO report 'Guidance for the evaluation for innovative nuclear reactors and fuel cycles', IAEA-TECDOC-1362 (2003), in the area of safety of nuclear reactors. The present version of this manual deals with safety issues related to design and operation of mining, milling, refining, conversion, enrichment, fuel fabrication, fuel storage and fuel reprocessing facilities. The INPRO Manual starts with an introduction in Chapter 1. Chapter 2 sets out the necessary input for an INPRO assessment of the safety of an innovative nuclear fuel cycle facility. This includes information on the design for the plant and the safety

  7. Assessment of two small-sized innovative nuclear reactors for electricity generation in Brazil using INPRO methodology

    International Nuclear Information System (INIS)

    Goncalves Filho, Orlando Joao Agostinho; Sefidvash, Farhang

    2009-01-01

    This paper presents the main results of the assessment study of two small-sized innovative reactors for electricity generation in Brazil using the methodology developed under the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), co-ordinated by the International Atomic Energy Agency (IAEA). INPRO was initiated in 2001 and has the main objective of helping to ensure that nuclear energy is available to contribute in a sustainable manner to the energy needs of the 21st century. Brazil joined the INPRO project since its beginning and in 2005 submitted a proposal for the assessment using INPRO methodology of two small-sized reactors (IRIS - International Reactor Innovative and Secure, and FBNR - Fixed Bed Nuclear Reactor) as potential components of an innovative nuclear energy system (INS) completed by a conventional open nuclear fuel cycle based on enriched uranium. The scope of this assessment study was restricted to the reactor component of the INS and to the methodology areas of economics and safety for IRIS, and proliferation resistance and safety for FBNR. The results indicate that both IRIS and FBNR innovative designs comply mostly with the basic principles of the areas assessed and have potential to comply with the remaining ones. (author)

  8. International Project on Innovative Nuclear Reactors and Fuel Cycles: Introduction and Education and Training Activity

    International Nuclear Information System (INIS)

    Fesenko, G.; Kuznetsov, V.; Phillips, J.R.; Rho, K.; Grigoriev, A.; Korinny, A.; Ponomarev, A.

    2015-01-01

    The IAEA’s International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was established in 2000 through IAEA General Conference resolution with aim to ensure that sustainable nuclear energy is available to help meet the energy needs of the 21st century. INPRO seeks to bring together technology holders, users and newcomers to consider jointly the international and national actions required for achieving desired innovations in nuclear reactors and fuel cycles, with a particular focus on sustainability and needs of developing countries. It is a mechanism for INPRO Members to collaborate on topics of joint interest. INPRO activities are undertaken in close cooperation with Member States in the following main areas: Global Scenarios, Innovations, Sustainability Assessment and Strategies, Policy and Dialogue. The paper presents short introduction in INPRO and specifically the distant Education and Training INPRO activity on important topics of nuclear energy sustainability to audiences in different Member States. These activities can support capacity building and national human resource development in the nuclear energy sector. The main benefit of such training courses and workshops is that it is not only targeted to students, but also to lecturers of technical and nuclear universities. Moreover, young professionals working at nuclear energy departments, electric utilities, energy ministries and R&D institutions can participate in such training and benefit from it. (authors)

  9. Overview of nuclear energy: Present and projected use

    Energy Technology Data Exchange (ETDEWEB)

    Stanculescu, Alexander [Idaho National Laboratory 2525 North Fremont Avenue, Idaho Falls, Idaho 83415 (United States)

    2012-06-19

    Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

  10. Overview of Nuclear Energy: Present and Projected Use

    Energy Technology Data Exchange (ETDEWEB)

    Alexander Stanculescu

    2011-09-01

    Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

  11. Overview of Nuclear Energy: Present and Projected Use

    International Nuclear Information System (INIS)

    Stanculescu, Alexander

    2011-01-01

    Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

  12. Development of integrated nuclear data utilization system for innovative reactors

    International Nuclear Information System (INIS)

    Naoki, Yamano; Masayuki, Igashira; Akira, Hasegawa; Kiyoshi, Kato

    2005-01-01

    An integrated nuclear data utilization system has been developing for innovative nuclear energy systems such as innovative reactors and accelerator-driven systems. The system has been constructed as a modular code system, which consists of a managing system and two subsystems. The management system named CONDUCT controls system resource management of the PC Linux server and the user authentication through Internet access. A subsystem is the nuclear data search and plotting subsystem based on a SPES engine developed by Hokkaido University. Nuclear data such as EXFOR, JENDL-3.3, ENDF/B-VI and JEFF-3.1 can be searched and plotted in the subsystem. The other is the nuclear data processing and utilization subsystem, which is able to handle JENDL-3.3, ENDF/B-VI and JEFF-3.1 to generate point-wise and group cross sections in several formats, and perform various criticality and shielding benchmarks for verification of nuclear data and validation of design methods for innovative reactors. This paper presents an overview of the integrated nuclear data utilization system, describes the progress of the system development to examine the operability of the user interface and discuss specifications of the two subsystems. (authors)

  13. Guidance for the application of an assessment methodology for innovative nuclear energy systems. INPRO manual - Physical protection. Vol. 6 of the final report of phase 1 of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2008-11-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in the year 2000, based on a resolution of the IAEA General Conference (GC(44)/RES/21). The main objectives of INPRO are (1) to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner, (2) to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles; and (3) to create a forum to involve all relevant stakeholders that will have an impact on, draw from, and complement the activities of existing institutions, as well as ongoing initiatives at the national and international level. This document follows the guidelines of the INPRO report M ethodology for the assessment of innovative nuclear reactors and fuel cycles, Report of Phase 1B (first part) of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) , IAEA-TECDOC-1434 (2004), together with its previous report G uidance for the evaluation for innovative nuclear reactors and fuel cycles, Report of Phase 1A of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), IAEATECDOC-1362 (2003). This INPRO manual is comprised of an overview volume and eight additional volumes covering the areas of economics (Volume 2), infrastructure (Volume 3), waste management (Volume 4), proliferation resistance (Volume 5), physical protection (Volume 6), environment (Volume 7), safety of reactors (Volume 8), and safety of nuclear fuel cycle facilities (Volume 9). The INPRO Manual for the area of physical protection (Volume 6) provides guidance to the assessor of an INS (innovative nuclear energy system) under a physical protection regime in a country that is planning to install a nuclear power program (or maintaining or enlarging an existing one), and describes the application of the

  14. Strategic environments (SWOT) for nuclear energy innovation in the 21. century

    International Nuclear Information System (INIS)

    Lee, Tae Joon; Oh, Keun-Bae

    2004-01-01

    In prospecting the role of nuclear energy in a future society, it is necessary to foresee the social attitudes towards energy, economy and environment, and to analyze their interactions with the exploitation of nuclear energy itself. As those issues, this article looks upon the change of the socio-economic environment, the concerns about nuclear power and eco-environment, and the sustainability and limits of the energy resources, etc. With this perception, the so-called SWOT analysis is employed to identify the internal strengths (S) and/or weaknesses (W) of nuclear energy compared with other energy competitors on the basis of the evaluation of the external factors which are likely to play the roles of opportunities (O) for and/or threats (T) against the technological change in nuclear energy. (authors)

  15. The International Atomic Energy Agency shows keen interest. Innovative warning system for nuclear proliferation

    International Nuclear Information System (INIS)

    Smet, S.; Van der Meer, K.

    2011-01-01

    In order to prevent nuclear proliferation, nuclear fuels and other strategic materials have to be responsibly managed. Non-proliferation aims to counteract the uncontrolled proliferation of nuclear materials worldwide. SCK-CEN is developing an innovative nuclear warning system based on political and economic indicators. Such a system should allow the early detection of the development of a nuclear weapons programme.

  16. Paris Agreement and opportunities for innovative nuclear power

    International Nuclear Information System (INIS)

    Tam, Cecilia

    2017-01-01

    How far can technology take us? Pushing energy technology to achieve carbon neutrality by 2060 could meet the mid-point of the range of ambitions expressed in Paris. Nuclear additions need to double current rate to meet 2DS. 2016 saw the highest nuclear capacity additions since 1990, but new construction starts down sharply. The fuel mix to generate electricity is vastly different to today. The average carbon intensity of power generation falls from around 520 gCO2/kWh today to Below zero in the B2DS. Nuclear innovation could also target need for decarbonised heat. Heating and cooling in industry and buildings accounts for more than 40% of final energy consumption and 30% of global CO2 emissions

  17. Nuclear Energy System Department annual report. (April 1, 2002 - March 31, 2003)

    International Nuclear Information System (INIS)

    Nakajima, Hajime; Shibata, Keiichi; Kugo, Teruhiko

    2003-09-01

    This report summarizes the research and development activities in the Department of Nuclear Energy System during the fiscal year of 2002 (April 1, 2002 - March 31, 2003). The Department has carried out researches and developments (R and Ds) of innovative nuclear energy system and their related fundamental technologies to ensure the long-term energy supply in Japan. The report deals with the R and Ds of an innovative water reactor, called Reduced-Moderation Water Reactor (RMWR), which has the capability of multiple recycling and breeding of plutonium using light water reactor technologies. In addition, as basic studies and fundamental researches of nuclear energy system in general, described are intensive researches in the fields of reactor physics, thermal-hydraulics, nuclear data, nuclear fuels, and materials. These activities are essential not only for the R and Ds of innovative nuclear energy systems but also for the improvement of safety and reliability of current nuclear energy systems. The maintenance and operation of reactor engineering facilities belonging to the Department support experimental activities. The activities of the research committees to which the Department takes a role of secretariat are also summarized. (author)

  18. Nuclear energy development and Kondratiev cycles

    International Nuclear Information System (INIS)

    Brissaud, I.

    2001-01-01

    Searchers from IIASA (international institute for applied system analysis) have considered the spreading of an idea or an innovation among human societies similar to the evolution of an epidemic. This study shows a correlation between the birth of a major invention and the rise of a new source of energy. The invention of computers and nuclear energy seem to be linked in that way. The time interval between 2 major innovations is about 55 years, this value also corresponds to the length of crisis cycles that were discovered by the soviet economist N.D.Kondratiev in 1926. According to Kondratiev capitalist economies have undergone or will undergo cycles between the following dates: 1830, 1885, 1940, 1995 and 2050. After a period of expansion where jobs, wages and prices increase, a crisis happens where unemployment, social trouble and international conflicts develop. The crisis ends with the surge of innovations that feed the system by creating new markets in a modified social context. We are at the beginning of a new cycle, this cycle will see the expansion of nuclear energy, then its predominance and the emergence of a new source of energy in 50 years. (A.C.)

  19. European Master in Innovation in Nuclear Energy (EMINE). Developed in the frame work of the European Institut of Innovation and Technology, KIC InnoEnergy

    International Nuclear Information System (INIS)

    Ferrié, E.; Carreira, M.; Gudowski, W.; Garrido, F.; Reynier, B.; Dies, J.; Batet, Ll.; Otic, I.; Patte, C.; Darrigues, I.; Fernandez-Olano, P.; Leon, P.T.; Coste-Leconte, S.; Fanjas, Y.; Henriksson, H.

    2014-01-01

    KIC InnoEnergy SE is a European company fostering the integration of education, technology, business and entrepreneurship and strengthening the culture of innovation. The strategic objective is to become the leading engine of innovation in the field of sustainable energy. It has been designated as a one of the first three Knowledge and Innovation Communities by the EIT's Governing Board on 16 December 2009 in Budapest. KIC InnoEnergy addresses sustainable energy as its priority area. KIC InnoEnergy is a world class alliance of top European players with a proven track record. The Consortium consists of 30+ shareholders and additional 50+ partners - companies, research institutes, universities and business schools covering the whole energy mix. They are organised around six regional units, the Co-Location Centres (CC): France, Benelux, Germany, Iberia, Poland Plus and Sweden. On completion of the EMINE programme, a Master of Science degree will be awarded from the universities where studies were performed during year one and year two, i.e. a double-degree. A diploma from KIC InnoEnergy related to innovation and entrepreneurship will also be presented

  20. Innovative technology for safe, sustainable nuclear energy

    International Nuclear Information System (INIS)

    2016-01-01

    The report presents the ONET experience many areas related to nuclear energy, such as: new facility design and; construction & plant; revamping; operations support; maintenance; testing and inspection; decontamination, dismantling; waste treatment; asbestos removal; training and other engineering and logistic services

  1. The IAEA international project on innovative nuclear reactors and fuel cycles (INPRO):status, development of approaches and outlook

    International Nuclear Information System (INIS)

    Khoroshev, M.; Sokolov, Y.; Facer, I.

    2005-01-01

    During the last fifty years remarkable results have been achieved in the application of nuclear technology for the production of electricity. Looking ahead to the next fifty years it is clear that the demand for energy will grow considerably and also new requirements have to be fulfilled for the way nuclear energy will be supplied, UNCSD, WSSD, IPCC and others have emphasized the substantial growth in 21st century energy supplies needed to meet sustainable development (SD) goals. This will be driven by continuing population growth, economic development and aspiration to provide access to modern energy systems to be 1,6 billion people now without such access, the growth demand on limiting greenhouse gas emissions, and reducing the risk oaf climate change. A key factor to the future of nuclear power is the degree to which innovative nuclear technologies can be developed to meet challenges of economic competitiveness, safety,waste and proliferation concerns. There are two major international initiatives in the area of innovative nuclear technology: the IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycle (INPRO) and the Generation IV International Forum. Following a resolution of the General Conference of the IAEA in the year 2000 an International Project on Innovative Nuclear Reactors and Fuel Cycles, referred to as INPRO, was initiated (Authors)

  2. Research on process management of nuclear power technological innovation

    International Nuclear Information System (INIS)

    Yang Hua; Zhou Yu

    2005-01-01

    Different from the other technological innovation processes, the technological innovation process of nuclear power engineering project is influenced deeply by the extensive environmental factors, the technological innovation of nuclear power engineering project needs to make an effort to reduce environmental uncertainty. This paper had described the mechanism of connection technological innovation process of nuclear power engineering project with environmental factors, and issued a feasible method based on model of bargaining to incorporate technological innovation process management of nuclear power engineering project with environmental factors. This method has realistic meanings to guide the technological innovation of nuclear power engineering project. (authors)

  3. Heterogeneous world model and collaborative scenarios of transition to globally sustainable nuclear energy systems

    Directory of Open Access Journals (Sweden)

    Kuznetsov Vladimir

    2015-01-01

    Full Text Available The International Atomic Energy Agency's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO is to help ensure that nuclear energy is available to contribute to meeting global energy needs of the 21st century in a sustainable manner. The INPRO task titled “Global scenarios” is to develop global and regional nuclear energy scenarios that lead to a global vision of sustainable nuclear energy in the 21st century. Results of multiple studies show that the criteria for developing sustainable nuclear energy cannot be met without innovations in reactor and nuclear fuel cycle technologies. Combining different reactor types and associated fuel chains creates a multiplicity of nuclear energy system arrangements potentially contributing to global sustainability of nuclear energy. In this, cooperation among countries having different policy regarding fuel cycle back end would be essential to bring sustainability benefits from innovations in technology to all interested users. INPRO has developed heterogeneous global model to capture countries’ different policies regarding the back end of the nuclear fuel cycle in regional and global scenarios of nuclear energy evolution and applied in a number of studies performed by participants of the project. This paper will highlight the model and major conclusions obtained in the studies.

  4. Prospective opportunities for using the innovative nuclear reactors in Armenian energy sector long-term programme development

    International Nuclear Information System (INIS)

    Gevorgyan, A.

    2003-01-01

    gases such as CO 2 CO, SO 2 and NOx, which are responsible for acid rain and global warming, some 35% of the present electricity generation is based on fossil fuels (natural gas), giving emission of 1 267 213 tons of CO 2 , 3355 tons of NOx, 960 tons of CO; and 9 tons of SO 2 . Although, some radioactive materials are released to the environment during normal operation of nuclear power plants and other nuclear fuel cycle facilities, the amounts released are very small and strictly kept within the permissible limits. So, we can say that the option with combined cycle scenario, from this point of view, is not as preferable as that with the nuclear scenario. Taking into consideration also a social aspect, we can see that in case of realization of an option of energy sector development with the nuclear scenario, it is expected that more than 10.000 workers will be employed in the construction process. Considerable part of industry and transport infrastructure of the country will be involved. For the country that suffers a transition period, such huge construction may be a locomotive for the whole economy. The implementation of nuclear option would also make it possible to include the costs of decommissioning of the old units of the ANPP into the tariff on the electricity generated by the new nuclear unit. Thus, the analysis performed has shown that the sustainable energy long-term development in Armenia can be achieved provided that the nuclear scenario will be implemented as the preferable, in view of all aspects, of the two above-mentioned scenarios considered. This may be ensured in case of utilization of innovative nuclear reactors with high-level operational safety and economic indicators. (author)

  5. International project on innovative nuclear reactors and fuel cycles

    International Nuclear Information System (INIS)

    Cherepnin, Yu.S.; Bezzubtsev, V.S.; Gabaraev, B.A.

    2002-01-01

    Positive changes are currently taking place in nuclear power in the world. Power generation at Nuclear Power Plants (NPPs) is increasing and new units construction and completion rates are growing in some of leading countries. Considerable efforts are made for improving the safety of operating NPPs, effective use of nuclear fuel and solving the spent nuclear fuel and radioactive waste problems. Simultaneously, work are undertaken to develop new reactor technologies to reduce the fundamental drawbacks of conventional nuclear power, namely: insufficient safety, spent fuel and waste handling problems, nuclear material proliferation risk and poor economic competitiveness as compared to fossil-fuel energy sources. One the most important events in this field is an international project implemented by three agencies (OECD-IEA, OECD-NEA, IAEA) for comparative evaluation of new projects, development of Generation IV reactors underway in the US in cooperation with a number of Western countries and, finally, the initiative by Russian President V.V. Putin for consolidation the efforts of interested countries under auspices of IAEA to solve the problem of energy support for sustainable development of humankind, radical solution of non-proliferation problems and environmental sanitation of the Planet of Earth. The 44-th General Conference of IAEA in September 2000 supported the Initiative of Russian President and called all interested countries to unite efforts under the Agency's auspices in the International Project on Innovative Nuclear Reactors and Fuel Cycles to consider and select the most acceptable nuclear technologies of the 21-st century with regard for the drawbacks of today's nuclear power. Main objectivities of INPRO: Promotion of the availability of nuclear power for sustainable satisfaction of the energy needs in 21-st century; Consolidation of efforts by all interested INPRO participating countries (both owners and users of technologies) for joint development of

  6. Sustainability and acceptance - new challenges for nuclear energy

    International Nuclear Information System (INIS)

    Lensa, W. von

    2001-01-01

    This paper discusses the concept of sustainability in relation to acceptance of nuclear energy. Acceptance is viewed in terms of public acceptance, industrial acceptance, and internal acceptance/consensus within the nuclear community. It addresses sustainability criteria, the need for innovation, and the different levels of acceptability. The mechanisms of risk perception are discussed along with the technological consequences from risk perception mechanisms leading to specific objections against nuclear energy. (author)

  7. Nuclear energy in future sustainable, competitive energy mixes

    International Nuclear Information System (INIS)

    Echavarri, L.

    2002-01-01

    Full text: Nuclear energy is an established component of electricity supply worldwide (16%) and in particular in OECD (nearly a quarter). It is supported by a mature industry benefiting from extensive experience (more than 8 000 reactor years of commercial operation) and dynamic R and D programmes implemented by governments and industries. Existing nuclear power plants are competing successfully in deregulated electricity markets owing to their low marginal production costs, their technical reliability (availability factors exceeding 80% in many countries) and good safety performance. Stringent safety requirements and radiation protection regulations in place in OECD countries allow potential impacts of nuclear energy facilities on human health and the environment to remain extremely low. Furthermore, nuclear energy, a nearly carbon free source, contributes to alleviating the risk of global climate change (worldwide, GHG emissions from the energy sector are already 8% lower than they would be without nuclear energy). Issues related to high-level waste management and disposal are being addressed in comprehensive, step by step approach. Progress towards the implementation of deep geological repositories is being demonstrated (e.g., Yucca Mountain in the US, Olkiluoto in Finland) and research on innovative fuel cycles aiming at partitioning and transmutation of minor actinides is being actively pursued. Up to 2010-2020, nuclear energy will maintain its role mainly through capacity upgrade and lifetime extension of existing plants, in many cases the most cost effective means to increase power capacity and generation. Examples are provided by utility policies and decisions in a number of OECD countries (e.g., Spain, Sweden, Switzerland, UK, US). Although only few new units are being or will be built in the very near term, their construction and operation is bringing additional experience on advanced evolutionary nuclear systems and paving the way for the renaissance of

  8. The IAEA international project on innovative nuclear reactors and fuel cycles (INPRO): Status, ongoing activities and outlook

    International Nuclear Information System (INIS)

    Kupitz, J.; Depisch, F.; Khorochev, M.

    2004-01-01

    The IAEA General Conference (2000) invited 'all interested Member States to combine their efforts under the aegis of the IAEA in considering the issues of the nuclear fuel cycle, in particular by examining innovative and proliferation-resistant nuclear technology'. In response to this invitation, the IAEA initiated the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). The overall objectives of INPRO are to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21 st century in a sustainable manner; and to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles. INPRO is addressing the identification of full spectrum of user requirements for innovative technologies as well as the development of methodologies and guidelines for the comparison of different innovative approaches taking into account variations in potential demands across countries. INPRO can make major contributions by focusing on economic aspects, and societal acceptability issues and those areas where IAEA can make unique contributions such as proliferation resistance, nuclear safety, waste management and sustainability issues and providing assistance to the user community. To enhance the potential for the deployment of innovative technologies, some changes in the infrastructure under which nuclear energy is developed and used; should be envisaged. In order to fulfil these objectives, the first phase of INPRO dealt with the development of a methodology to assess and compare the performance of innovative nuclear energy systems (INS). This methodology includes the definition of a set of Basic principles, User requirements and Criteria to be met in different areas (Economics, Sustainability and environment, Safety of nuclear installations, Waste management and Proliferation resistance). The result of

  9. The innovative simulator for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kurosawa, A [The Inst. of Applied Energy, Tokyo (Japan); Ohashi, H; Akiyama, M [Univ. of Tokyo (Japan). Dept. of Nuclear Engineering

    1994-12-31

    Nuclear power simulators are becoming more and more important tools for ensuring the safety and the reliability during the whole cycle of plants from design to operation. Recently, there has been remarkable progress in computer science such as increase of computing speed, refinement of mathematical models and emergence of various AI technologies. By fully exploiting this progress to nuclear plant simulators, it becomes possible to achieve much faster, more extensive and more realistic simulation than ever. The Institute of Applied Energy (IAE) has organized a feasibility study on the advanced simulator since 1990, to develop the concept of nuclear power plant simulators in future. In this study, several academic organizations make fundamental researches on parallelization of transient analyses, large-scale parallel computing, thermal-hydraulic analysis using cellular automata, code development methodology by module-integration and task scheduling methods for parallel compilers. The concept and impact of the innovative simulator, as a multipurpose simulator complex, are summarized from the viewpoints of wide range scenarios including severe accidents, 3D multi-media interface, much faster than real-time simulation, and innovative algorithms for analyses of thermal-hydraulics, structure, neutronkinetics and their coupled phenomena. (orig.) (2 refs., 2 figs.).

  10. The innovative simulator for nuclear power plants

    International Nuclear Information System (INIS)

    Kurosawa, A.; Ohashi, H.; Akiyama, M.

    1994-01-01

    Nuclear power simulators are becoming more and more important tools for ensuring the safety and the reliability during the whole cycle of plants from design to operation. Recently, there has been remarkable progress in computer science such as increase of computing speed, refinement of mathematical models and emergence of various AI technologies. By fully exploiting this progress to nuclear plant simulators, it becomes possible to achieve much faster, more extensive and more realistic simulation than ever. The Institute of Applied Energy (IAE) has organized a feasibility study on the advanced simulator since 1990, to develop the concept of nuclear power plant simulators in future. In this study, several academic organizations make fundamental researches on parallelization of transient analyses, large-scale parallel computing, thermal-hydraulic analysis using cellular automata, code development methodology by module-integration and task scheduling methods for parallel compilers. The concept and impact of the innovative simulator, as a multipurpose simulator complex, are summarized from the viewpoints of wide range scenarios including severe accidents, 3D multi-media interface, much faster than real-time simulation, and innovative algorithms for analyses of thermal-hydraulics, structure, neutronkinetics and their coupled phenomena. (orig.) (2 refs., 2 figs.)

  11. Heterogeneous world model and collaborative scenarios of transition to globally sustainable nuclear energy systems - 15483

    International Nuclear Information System (INIS)

    Kuznetsov, V.; Fesenko, G.

    2015-01-01

    The International Atomic Energy Agency's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) is to help ensure that nuclear energy is available to contribute to meeting global energy needs of the 21. century in a sustainable manner. The INPRO task titled 'Global scenarios' is to develop global and regional nuclear energy scenarios that lead to a global vision of sustainable nuclear energy in the 21. century. Results of multiple studies show that the criteria for developing sustainable nuclear energy cannot be met without innovations in reactor and nuclear fuel cycle technologies. Combining different reactor types and associated fuel chains creates a multiplicity of nuclear energy system arrangements potentially contributing to global sustainability of nuclear energy. In this, cooperation among countries having different policy regarding fuel cycle back end would be essential to bring sustainability benefits from innovations in technology to all interested users. INPRO has developed heterogeneous global model to capture countries' different policies regarding the back end of the nuclear fuel cycle in regional and global scenarios of nuclear energy evolution and applied in a number of studies performed by participants of the project. This paper will highlight the model and major conclusions obtained in the studies. (authors)

  12. Future of nuclear energy research

    International Nuclear Information System (INIS)

    Fuketa, Toyojiro

    1989-09-01

    In spite of the easing of worldwide energy supply and demand situation in these years, we believe that research efforts towards the next generation nuclear energy are indispensably necessary. Firstly, the nuclear colleagues believe that nuclear energy is the best major energy source from many points of view including the global environmental viewpoint. Secondly, in the medium- and long-range view, there will once again be a high possibility of a tight supply and demand situation for oil. Thirdly, nuclear energy is the key energy source to overcome the vulnerability of the energy supply structure in industrialized countries like Japan where virtually no fossil energy source exists. In this situation, nuclear energy is a sort of quasi-domestic energy as a technology-intensive energy. Fourthly, the intensive efforts to develop the nuclear technology in the next generation will give rise to a further evolution in science and technology in the future. A few examples of medium- and long-range goals of the nuclear energy research are development of new types of reactors which can meet various needs of energy more flexibly and reliably than the existing reactors, fundamental and ultimate solution of the radioactive waste problems, creation and development of new types of energy production systems which are to come beyond the fusion, new development in the biological risk assessment of the radiation effects and so on. In order to accomplish those goals it is quite important to introduce innovations in such underlying technologies as materials control in more microscopic manners, photon and particle beam techniques, accelerator engineering, artificial intelligence, and so on. 32 refs, 2 figs

  13. Bio-energy. Innovators talking; Bio-energie. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on bio-energy [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar bio-energie.

  14. Bio-energy. Innovators talking; Bio-energie. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on bio-energy [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar bio-energie.

  15. The IAEA International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO): Status, Ongoing Activities and Outlook

    International Nuclear Information System (INIS)

    Kupitz, Juergen; Depisch, Frank; Azpitarte, Osvaldo

    2004-01-01

    The IAEA General Conference (2000) invited 'all interested Member States to combine their efforts under the aegis of the IAEA in considering the issues of the nuclear fuel cycle, in particular by examining innovative and proliferation-resistant nuclear technology'. In response to this invitation, the IAEA initiated the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). The overall objectives of INPRO are to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21. century in a sustainable manner, and to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles. In order to fulfil these objectives, the first phase of INPRO dealt with the development of a methodology to assess and compare the performance of innovative nuclear energy systems. This methodology includes the definition of a set of Basic principles, User requirements and Criteria to be met in different areas (Economics, Sustainability and environment, Safety of nuclear installations, Waste management and Proliferation resistance). The result of this phase was presented in a IAEA document (IAEA-TECDOC-1362, Guidance for the evaluation of innovative nuclear reactors and fuel cycles) issued in June 2003. In the present phase of the project, case studies are being carried out in order to validate and improve the developed methodology and the defined set of Basic principles, User requirements and Criteria. This paper shortly summarizes the results published in IAEA-TECDOC-1362 and the ongoing actions related to case studies. Finally, an outlook of INPRO activities is presented. (authors)

  16. New energy and innovation in Denmark; Ny energi og innovation i Danmark

    Energy Technology Data Exchange (ETDEWEB)

    Dannemand Andersen, P.; Borup, M.; Gregersen, B.; Nygaard Tanner, A.

    2009-07-01

    The objective of this project is to analyse the framework conditions for development of energy technologies in Denmark through an innovation perspective. The project is an analytical contribution to the discussion of development and possible improvements of the framework conditions and public-private interplay in the energy area. Moreover, the project provides new insight in Danish energy innovation in general and in development dynamics on individual technology areas. Main elements of the analysis are in-depth studies of innovation dynamics and framework conditions on five selected technology areas - all strategic priority areas within Danish energy research and development. The areas are: bio energy, hydrogen technology and fuel cells, wind power technology, solar cells, and energy efficient end-use technologies. Another main element is a broad questionnaire survey across the energy sector and its different actor groups. More than 300 organisations answered the questionnaire. The main results of the project are a.o. that 1) the Danish energy innovation system and the framework conditions for development of energy technologies on many points are well-developed and not immature in general. 2) The energy technology industry is one of the most important industries in Denmark with large export and an innovativeness that is higher than in the manufacturing industry in general. 3) Despite EU, internationalisation and globalisation and despite significant international connections, the energy innovation system is anchored primarily on the domestic level. Strengthening of the framework conditions and ambitious competences and goals on Danish level is therefore required to maintain a strong Danish energy technology development. 4) The technology areas differ significantly with respect to innovation dynamics, competence bases, actors, etc. and it is therefore needed that policy efforts to some extent are adjusted to the individual technology areas. Among the more detailed

  17. Preparation of human resources for future nuclear energy using FBNR as the instrument of learning

    International Nuclear Information System (INIS)

    Sefidvash, Farhang; Espinoza, Patricio; Guerrero, Victor Hugo

    2015-01-01

    An increasing number of developing countries are showing interest to become the emerging countries to nuclear energy. Most of these countries lack human resources and adequate infrastructures to enter such a venture. The principle objective of activities of FBNR Group is to train human resources for the countries that at the present lack the necessary conditions, but aim at the future clean and safe nuclear energy through the fourth generation and INPRO compatible nuclear reactors. The preparation for the future nuclear energy is done through development of innovative nuclear reactor that meets the INPRO philosophies and criteria. These countries may or may not have decided as yet to utilize nuclear energy, but are interested to gain a strong educational foundation for their future. The research and development of a small innovative nuclear reactor FBNR is used as the instrument for learning. The young scientists will learn how to be innovative with the vision of INPRO philosophy and criteria.

  18. Preparation of human resources for future nuclear energy using FBNR as the instrument of learning

    Energy Technology Data Exchange (ETDEWEB)

    Sefidvash, Farhang; Espinoza, Patricio; Guerrero, Victor Hugo [Escuela Politecnica Nacional (EPN), Quito (Ecuador); and others

    2015-11-15

    An increasing number of developing countries are showing interest to become the emerging countries to nuclear energy. Most of these countries lack human resources and adequate infrastructures to enter such a venture. The principle objective of activities of FBNR Group is to train human resources for the countries that at the present lack the necessary conditions, but aim at the future clean and safe nuclear energy through the fourth generation and INPRO compatible nuclear reactors. The preparation for the future nuclear energy is done through development of innovative nuclear reactor that meets the INPRO philosophies and criteria. These countries may or may not have decided as yet to utilize nuclear energy, but are interested to gain a strong educational foundation for their future. The research and development of a small innovative nuclear reactor FBNR is used as the instrument for learning. The young scientists will learn how to be innovative with the vision of INPRO philosophy and criteria.

  19. Innovations in the Use of Nuclear Energy for Sustainable Manufacturing

    International Nuclear Information System (INIS)

    Herring, J. Stephen

    2010-01-01

    Over the next 50 years, nuclear energy will become increasingly important in providing the electricity and heat needed both by the presently industrialized countries and by those countries which are now developing their manufacturing industries. The twin concerns of global climate change and of the vulnerability of energy supplies caused by increasing international competition will lead to a greater reliance on nuclear energy for both electricity and process heat. Conservative estimates of new nuclear construction indicate a 50% increase in capacity by 2030. Other estimates predict a tripling of present capacity. Required machine tool technologies will include the improvements in the manufacture of standard LWR components, such as pressure vessels and pumps. Further in the future, technologies for working high temperature metals and ceramics will be needed and will require new machining capabilities.

  20. Innovations in the Use of Nuclear Energy for Sustainable Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    J. Stephen Herring

    2010-10-01

    Abstract Over the next 50 years, nuclear energy will become increasingly important in providing the electricity and heat needed both by the presently industrialized countries and by those countries which are now developing their manufacturing industries. The twin concerns of global climate change and of the vulnerability of energy supplies caused by increasing international competition will lead to a greater reliance on nuclear energy for both electricity and process heat. Conservative estimates of new nuclear construction indicate a 50% increase in capacity by 2030. Other estimates predict a tripling of present capacity. Required machine tool technologies will include the improvements in the manufacture of standard LWR components, such as pressure vessels and pumps. Further in the future, technologies for working high temperature metals and ceramics will be needed and will require new machining capabilities.

  1. The IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    Juergen Kupitz

    2002-01-01

    , Brazil, Canada, China, Germany, India, Russian Federation, Spain, Switzerland, The Netherlands, Turkey and the European Commission. In total, 15 cost-free experts have been nominated by their respective governments or international organizations. The objective of INPRO is to support the safe, sustainable, economic and proliferation resistant use of nuclear technology to meet the global energy needs of the 21. century. Phase I of INPRO was initiated in May 2001. During Phase I, work is subdivided in two sub-phases: Phase IA (in progress): Selection of criteria and development of methodologies and guidelines for the comparison of different concepts and approaches, taking into account the compilation and review of such concepts and approaches, and determination of user requirements. Phase IB (to be started after Phase IA is completed): Examination of innovative nuclear energy technologies made available by Member States against criteria and requirements. This examination will be co-ordinated by the Agency and performed with participation of Member States on the basis of the user requirements and methodologies established in Phase IA. In the first phase, six subject groups were established: Resources, Demand and User requirements for Economics; User requirements for the Environment, Fuel cycle and Waste; User requirements for Safety; User requirements for Non-proliferation; User requirements for crosscutting issues; Criteria and Methodology. (authors)

  2. Post-Fukushima Energy and Nuclear Policy Evolution

    Science.gov (United States)

    Masuda, Tatsuo

    2014-07-01

    The Fukushima nuclear disaster should be marked as a point of departure towards energy policy evolution needed in the 21st century. Japan had cast off the skin after the oil shocks of the 1970s, where energy efficiency and saving played a critical role. Japan might have looked very different without these innovative policies. The post-Fukushima Japan faces multiple challenges, each of which constitutes a daunting task for policymakers such as surging LNG import costs and nuclear restarting. However, overcoming these problems one by one is not enough. Intensifying climate impact alerts us to the arrival of a historical inflection point requiring a radical shift in energy model worldwide, where Japan will be best suited to take the lead in view of its energy history and technology. The on-going effort after Fukushima to renew her energy and nuclear policy is suggestive of her potential to develop an innovative energy model by casting off the skin again. Asia will become the "problem centre" of the world if it may fail to address global environmental problems deriving from the heavy use of energy (about 46% of world's energy used by Asia alone in 2035). If successful, on the contrary, Asia will become the "solution centre" benefiting the global community. Asia is too big to fail as the whole world will be badly affected. The new energy model of Japan will serve as "public goods" for Asian countries in developing their new energy model towards sustainable future.

  3. SNETP – Sustainable Nuclear Energy Technology Platform

    Energy Technology Data Exchange (ETDEWEB)

    Aït Abderrahim, Hamid

    2016-07-01

    SNETP is one of the EU’s official European Technology & Innovation Platforms established to implement the SET-Plan. SNETP and its pillars gather more than 120 European stakeholders involved in the research and innovation, deployment and operation of nuclear fission reactors and fuel cycle facilities: industry, research centres, universities, technical safety organisations, small and medium enterprises, service providers, non-governmental organisations. Despite industrial competition, SNETP has achieved efficient collaboration between its stakeholders. It has developed a common vision on the future contribution of nuclear fission energy in Europe, with the publication of a Vision Report, a Strategic Research & Innovation Agenda (two editions) and a Deployment Strategy report. It issued also a dedicated report on the R&D topics related to safety issues triggered by the Fukushima accident.

  4. An innovative nuclear reactor as a solution to global warming

    International Nuclear Information System (INIS)

    Silva, Robson Silva da; Sefidvash, Farhang

    2007-01-01

    The problem of global warming is no longer a philosophical discussion, but it is a fact seriously threatening the future of humanity. In this paper a practical solution to the problem of global warming resulting from the fossil fuelled energy suppliers is presented. The energy conservation and alternative forms of energy such as solar, wind, and bio even though having important roles, do not satisfy the energy demand generated by an increasing world population that desires to increase its standard of living. The fission process in the nuclear reactors does not produce greenhouse gases that cause global warming. The new paradigm in nuclear energy is the future innovative reactors that meet the new standards set by the INPRO Program of the IAEA. One such a reactor is presented in this paper, namely the Fixed Bed Nuclear Reactor (FBNR) that is supported by the International Atomic Energy (IAEA) in its program of Small Reactors Without On-Site Refuelling (SRWOSR), being one of the four water cooled reactors in this program. The other three reactor concepts are PFPWR50 of Japan, BWRPB of Russia and AFPR-100 of USA. It is shown that the nuclear energy of the future is totally different than what is today in respect to safety, economics, environmental impact and proliferation. In this manner, the public perception of nuclear energy will change and its acceptability is promoted. (author)

  5. Major Findings of the IAEA/INPRO Collaborative Project on Global Architectures of Innovative Nuclear Energy Systems with Thermal and Fast Reactors and a Closed Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kuznetsov, V.; Fesenko, G.; Kriachko, M.; Dixon, B.; Hayashi, H.; Usanov, V.

    2013-01-01

    GAINS objectives: Rationale: • Increasing interest in MSs in joint modelling of global and regional trends in nuclear power taking into account technical innovations and multilateral cooperation; • Modelling of the kind requires agreed methodological platform to analyse transition strategies from the present to future nuclear energy system (NES). Overall objectives: Address technical & institutional issues of developing a global architecture for the sustainable NES in the 21st century: • develop a framework (common methodological platform, databases, assumptions & boundary conditions); • perform sample studies; • indicate potential areas for application of GAINS framework

  6. International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). Introduction and status

    International Nuclear Information System (INIS)

    2002-01-01

    INPRO is a response to the invitation of the IAEA General Conference to combine efforts in considering the issues of the nuclear fuel cycle, in particular by examining innovative and proliferation resistant nuclear technology. The objective if INPRO is to support the safe, sustainable, economic and proliferation-resistant use of nuclear technology to meet the global energy needs of the 21st century

  7. Prospective of the nuclear energy, technological tendency

    International Nuclear Information System (INIS)

    Cruz F, G. De la; Salaices A, M.

    2004-01-01

    The world's concern about the energy supply in the near future, has had as an answer diverse proposals in which two multinational initiatives are highlighted, that of the International Project on Nuclear Innovative Reactors and Fuel Cycles (INPRO) and that of the Generation-l V International Forum (GIF). Both initiatives direct their efforts to the development of new technologies in nuclear energy that would satisfy the energy requirements of the future. In this article, an analysis based on a) the available information on these technologies, b) a joint study (IEA/OECD/IAEA) on the new technologies regarding its capacity to confront the current challenges of the nuclear energy, and c) the authors' experience and knowledge about the phenomenology, design and security of nuclear facilities, is presented. Moreover, the technologies that, in the authors' opinion, will have the better possibilities to compete successfully in the energy markets and could be one of the viable options to satisfy the energy demands of the future, are described. (Author)

  8. Guidance for the application of an assessment methodology for innovative nuclear energy systems. INPRO manual - Overview of the methodology. Vol. 1 of 9 of the final report of phase 1 of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) including a CD-ROM comprising all volumes

    International Nuclear Information System (INIS)

    2008-11-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in the year 2000, based on a resolution of the IAEA General Conference (GC(44)/RES/21). The main objectives of INPRO are (1) to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner, (2) to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles; and (3) to create a forum to involve all relevant stakeholders that will have an impact on, draw from, and complement the activities of existing institutions, as well as ongoing initiatives at the national and international level. This document follows the guidelines of the INPRO report 'Methodology for the assessment of innovative nuclear reactors and fuel cycles, Report of Phase 1B (first part) of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)', IAEA-TECDOC-1434 (2004), together with its previous report Guidance for the evaluation for innovative nuclear reactors and fuel cycles, Report of Phase 1A of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), IAEA-TECDOC-1362 (2003). This INPRO manual is comprised of an overview volume (laid out in this report), and eight additional volumes (available on a CD-ROM attached to the inside back cover of this report) covering the areas of economics (Volume 2), infrastructure (Volume 3), waste management (Volume 4), proliferation resistance (Volume 5), physical protection (Volume 6), environment (Volume 7), safety of reactors (Volume 8), and safety of nuclear fuel cycle facilities (Volume 9). The overview volume sets out the philosophy of INPRO and a general discussion of the INPRO methodology. This overview volume discusses the relationship of INPRO with the UN concept of sustainability to demonstrate how the

  9. International conference on innovative technologies for nuclear fuel cycles and nuclear power. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    A wide range of issues relevant to the innovative technologies for nuclear power cycle and nuclear power were addressed. The 7 sessions of the conference were entitled: (1) no title; (2) needs, prospects and challenges for innovation; (3) evolution of technical, social, economic and political conditions; (4) panel on challenges for the deployment of innovative technologies; (5) international programmes on innovative nuclear systems; (6) innovative nuclear systems and related R and D programmes; (7) concluding panel.

  10. Innovative designs and technologies of nuclear power. IV International scientific and technical conference. Book of abstracts

    International Nuclear Information System (INIS)

    2016-01-01

    IV International scientific and technical conference “Innovative designs and technologies of nuclear power” has been organized and is conducted by JSC NIKIET with support from Rosatom State Corporation, the International Atomic Energy Agency, the Russian Academy of Sciences and the Nuclear Society of Russia. The conference topics include: innovative designs of nuclear facilities for various applications, nuclear fuel and new materials, closed fuel cycle technologies, SNF and RW management, technological answers to nonproliferation problems, small power reactors (stationary, transportable, floatable, propulsion, space), integrated codes of a new generation for safety analysis of nuclear power plants and fuel cycles, controlled fusion [ru

  11. The development of global energy supply as a succession of energy-related innovation processes. A qualitative model approach to assess the use of nuclear power; Die Entwicklung globaler Energieversorgung als Abfolge energietechnischer Innovationsprozesse. Ein qualitativer Modellansatz zur historischen Einordnung der Kernenergie

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Dieter

    2017-04-15

    Often, the development of the world energy supply is adopted as a painful sequence of the exhaustible and polluting use of primary energy sources. Therefore the expectations in practically inexhaustible and environmentally neutral renewable energy sources are high. However, in fact, it depends on the available production, conversion, and utilization technology, which sources of energy are suitable to meet given demands and requirements. In particular, the development of the energy demand requires energy technology innovations to use new energy sources, to use known energy sources more efficient and to replace exhaustible energy sources at an early stage by others. The historical development of the global energy supply is a sequence of interrelated energy technology innovation processes. This makes it also possible, to analyse the historical development of nuclear power and to derive a model on the future role of nuclear power worldwide.

  12. IAEA activities in the development of innovative nuclear technology – the Role of INPRO

    International Nuclear Information System (INIS)

    Drace, Z.

    2013-01-01

    INPRO provides for: • Development of global and regional nuclear energy evolution scenarios and visions to inform national policy development and collaboration among Member States; • Improved understanding of practical steps in transitions to regionally and globally sustainable NESs; • Improved understanding of innovations in technical and institutional features of NES that support transition to sustainable NES; • Holistic assessment of proposed and planned NES to assure that the stated objective of sustainability is rigorously measureable using a defensible consensus approach; and • Communication of insights gained through INPRO activities, and other subjects of direct shared interest to sustainable nuclear energy development, to all involved and interested stakeholders through the INPRO Dialogue Forum. All INPRO activities combined seek to develop a structured holistic approach to assessment and dynamic analysis of NES sustainability. This, together with consideration of both innovative technology and institutional arrangements, may potentially lead to improved understanding of the approach to globally sustainable nuclear energy systems

  13. Nuclear energy development in the 21st century: Global scenarios and regional trends

    International Nuclear Information System (INIS)

    2010-01-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was launched in 2000, on the basis of a resolution of the IAEA General Conference (GC(44)/RES/21). INPRO helps ensure that sustainable nuclear energy is available in the twenty-first century and seeks to bring together all interested Member States - both technology holders and technology users - to consider joint actions to achieve desired innovations. As of July 2010, 30 countries and the European Commission are members of INPRO. Programme Area B of INPRO, Global Vision - Scenarios and Pathways to Sustainable Nuclear Power Development, is aimed at providing a better understanding of the role of nuclear energy in the context of long term sustainable development. Its objective is to develop global and regional nuclear energy scenarios on the basis of a scientific-technical pathway analysis that lead to a global vision on sustainable nuclear energy development in the twenty-first century, and to support Member States in working towards that vision. This report presents the results of a study undertaken under Programme Area B in INPRO on Nuclear Energy Development in the Twenty-first Century: Global Scenarios and Regional Trends Studies on Nuclear Capacity Growth and Material Flow between Regions. The report does not develop a global vision for nuclear deployment per se, but presents a limited set of technical scenarios of nuclear deployment and considers their implications. It considers a global energy supply system composed of several reactor and fuel cycle types available today and of fast reactors that may be developed in the future to illustrate a possible modelling approach to identify the potential role of interregional transfer of nuclear fuel resources in supporting the global growth of nuclear energy. The study was performed with the participation of sixteen experts from nine INPRO Member States and included a dynamic simulation of material flows in nuclear energy systems using

  14. Sustainable Nuclear Energy for the 21st Century

    International Nuclear Information System (INIS)

    2010-09-01

    Concerns over energy resource availability, energy security and climate change suggest an important role for nuclear power in supplying sustainable energy in the 21st century. The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in 2000 by a resolution of the IAEA General Conference to help ensure that nuclear energy is available to contribute to meeting global energy needs of the 21st century in a sustainable manner. It is a mechanism for IAEA Member States that have joined the project as INPRO members to collaborate on topics of joint interest. By 2010, INPRO membership had grown to 30 countries and the European Commission. The results of INPRO's activities, however, are made available to all IAEA Member States

  15. The challenge of venture capital financing of nuclear innovations: an American example?

    International Nuclear Information System (INIS)

    Hurel, T.

    2017-01-01

    The financing of innovations in nuclear industry has been a public sector concern till recently, now in the last years about 50 start-ups operating in nuclear activities have been created in the US. A broad part of these new enterprises are financed by business angels or venture capitalists and generally they propose new kinds of reactors which is not surprising as public funding has the tendency to go to projects based on technologies already approved by the NRC. Breakthrough Energy Ventures (BEV) was launched in 2016 by Bill Gates with the purpose of financing clean energy projects. TerraPower promotes a new kind of reactor while Mission Innovation aims at doubling investment in clean technologies. Other start-ups like ALPHA (Accelerating Low-cost Plasma Heating and Assembly) or LPP Fusion or General Fusion are working on thermonuclear fusion. (A.C.)

  16. The Sylvia Fedoruk Canadian Centre for Nuclear Innovation: advancing knowledge through partnerships

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, N.; Root, J.H., E-mail: neil.alexander@usask.ca, E-mail: john.root@usask.ca [Sylvia Fedoruk Canadian Centre for Nuclear Innovation, Saskatoon, SK (Canada); Chad, K., E-mail: karen.chad@usask.ca [Univ. of Saskatchewan, Saskatoon, SK (Canada); Bereznai, G., E-mail: george.bereznai@uoit.ca [Univ. of Ontario Inst. of Tech., Faculty of Energy Systems and Nuclear Science, Oshawa, ON (Canada); Dalzell, M.T.J., E-mail: matthew.dalzell@usask.ca [Sylvia Fedoruk Canadian Centre for Nuclear Innovation, Saskatoon, SK (Canada)

    2014-07-01

    The vision of the Sylvia Fedoruk Canadian Centre for Nuclear Innovation is to place the Canadian province of Saskatchewan among global leaders in nuclear research, development and training through partnerships with industry and academia for economic and social benefit. Saskatchewan is one of the world's largest producers of uranium and home to pioneering research in nuclear medicine, most notably the development of cobalt-60 teletherapy. The Fedoruk Centre is striving to build on this legacy through the attainment of four strategic goals: (1) building nuclear expertise and capacity through the support to academic programs and research projects in partnership with industry, academic institutions and research organizations in nuclear medicine, materials research, energy and the environment; (2) enhancing innovation in partnership with the research community and industry; (3) engaging communities and increasing understanding of risks, benefits and potential impacts of nuclear technologies; and (4) ensuring the sustainability and accountability of the Centre and its resources. The Fedoruk Centre's mandate includes the stewardship of select nuclear facilities, the first being a 24 MeV cyclotron and nuclear substances laboratory as a resource for the development of novel imaging agents, training and production of radioisotopes for clinical diagnoses. By attracting new research leadership in the nuclear domain, developing networks of expertise, training highly-qualified personnel in nuclear disciplines, stimulating industrial partnerships, and creating conditions for fact-based conversation regarding nuclear issues, the Fedoruk Centre is working to establish a research and innovation capacity to support a vibrant nuclear sector in Saskatchewan. (author)

  17. The Sylvia Fedoruk Canadian Centre for Nuclear Innovation: advancing knowledge through partnerships

    International Nuclear Information System (INIS)

    Alexander, N.; Root, J.H.; Chad, K.; Bereznai, G.; Dalzell, M.T.J.

    2014-01-01

    The vision of the Sylvia Fedoruk Canadian Centre for Nuclear Innovation is to place the Canadian province of Saskatchewan among global leaders in nuclear research, development and training through partnerships with industry and academia for economic and social benefit. Saskatchewan is one of the world's largest producers of uranium and home to pioneering research in nuclear medicine, most notably the development of cobalt-60 teletherapy. The Fedoruk Centre is striving to build on this legacy through the attainment of four strategic goals: (1) building nuclear expertise and capacity through the support to academic programs and research projects in partnership with industry, academic institutions and research organizations in nuclear medicine, materials research, energy and the environment; (2) enhancing innovation in partnership with the research community and industry; (3) engaging communities and increasing understanding of risks, benefits and potential impacts of nuclear technologies; and (4) ensuring the sustainability and accountability of the Centre and its resources. The Fedoruk Centre's mandate includes the stewardship of select nuclear facilities, the first being a 24 MeV cyclotron and nuclear substances laboratory as a resource for the development of novel imaging agents, training and production of radioisotopes for clinical diagnoses. By attracting new research leadership in the nuclear domain, developing networks of expertise, training highly-qualified personnel in nuclear disciplines, stimulating industrial partnerships, and creating conditions for fact-based conversation regarding nuclear issues, the Fedoruk Centre is working to establish a research and innovation capacity to support a vibrant nuclear sector in Saskatchewan. (author)

  18. Experience-based innovations in management of nuclear power plant technology

    International Nuclear Information System (INIS)

    Wagner, R.L.; Bradbury, R.B.; Freeman, D.V.; Jacobs, S.B.

    1987-01-01

    During 45 years of nuclear technology development and experience, Stone and Webster (S and W) has developed and successfully applied various innovative techniques to numerous nuclear projects. These techniques, developed primarily in response to the increasing scope and complexity of nuclear power plants, have been used and refined to provide efficient management of the two major nuclear project acticities-design and construction. For this paper, these techniques have been divided into: 1) engineering-based innovations, 2) construction-based innovations, and 3) management-based innovations. (author)

  19. Experience-based innovations in management of nuclear power plant technology

    International Nuclear Information System (INIS)

    Wagner, R.L.; Bradbury, R.B.; Freeman, D.V.; Jacobs, S.B.

    1988-01-01

    During 45 years of nuclear technology development and experience, Stone and Webster (S and W) has developed and successfully applied various innovative techniques to numerous nuclear projects. These techniques, developed primarily in response to the increasing scope and complexity of nuclear power plants, have been used and refined to provide efficient management of the two major nuclear project activities - design and construction. For this paper, these techniques have been divided into: (1) engineering-based innovations, (2) construction-based innovations, and (3) management-based innovations

  20. Rescue US energy innovation

    Science.gov (United States)

    Anadon, Laura Diaz; Gallagher, Kelly Sims; Holdren, John P.

    2017-10-01

    President Trump has proposed severe cuts to US government spending on energy research, development and demonstration, but Congress has the `power of the purse' and can rescue US energy innovation. If serious cuts are enacted, the pace of innovation will slow, harming the economy, energy security and global environmental quality.

  1. Methodology for the assessment of innovative nuclear reactors and fuel cycles. Report of Phase 1B (first part) of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2004-12-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in the year 2000, based on resolution of the IAEA General Conference (GC(44)/RES/21). This followed an initiative of the Russian Federation supported by a group of IAEA Member States to join forces in a broad international effort to develop innovative nuclear reactor and fuel cycle technology, recognizing that: A sustainable energy supply for humanity in the 21st century will require the large-scale deployment of nuclear power as well as other energy sources; Nuclear power is an energy technology that offers practically unlimited energy resources whose deployment can reduce environmental pollution and the volumes of waste needing management, including greenhouse gas emissions. As of December 2004, INPRO has 22 members: Argentina, Armenia, Brazil, Bulgaria, Canada, Chile, China, Czech Republic, France, Germany, India, Indonesia, Morocco, Netherlands, Republic of Korea, Pakistan, Russian Federation, South Africa, Spain, Switzerland, Turkey and the European Commission. The main objectives of INPRO are to: Help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner; Bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles; and to Create a forum to involve all relevant stakeholders that will have an impact on, draw from, and complement the activities of existing institutions, as well as ongoing initiatives at the national and international level. To realize its objectives, INPRO has adopted a stepwise approach. In the first step, called Phase 1A, task groups established a hierarchy of Basic Principles, User Requirements and Criteria, in the areas of economics, safety, environment, waste management, proliferation resistance, and infrastructure, that must be fulfilled by

  2. Long-term cost targets for nuclear energy

    International Nuclear Information System (INIS)

    Rogner, H.H.; McDonald, A.

    2004-01-01

    In 2000 the International Atomic Energy Agency (IAEA) began the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) to help guide nuclear R and D strategies targeted on anticipated mid-century energy system needs. One part of INPRO seeks to develop cost targets for new designs to be competitive in mid-century markets. The starting point was the 40 scenarios of the Special Report on Emissions Scenarios (SRES) of the Intergovernmental Panel on Climate Change. This paper summarizes four of the SRES scenarios, one from each of the four SRES scenario families. It discusses their implications for nuclear energy, including cost targets, and develops for each an 'aggressive nuclear' variant. The aggressive nuclear variants estimate the potential market for nuclear energy if, by improving faster than assumed by the SRES authors, nuclear energy can make inroads into vulnerable market shares projected for its competitors. In addition to projected demands for nuclear generated electricity, hydrogen and heat, the aggressive variants include prospective demand for nuclear desalination and use in upgrading fossil fuels. The paper then presents learning rates and implied cost targets consistent with the aggressive nuclear variants of the SRES scenarios. One provocative initial result is that many of the scenarios with substantial nuclear expansion do not seem to require big reductions in nuclear investment costs. One interpretation discussed at the end of the paper highlights the difference between cost reductions consistent with long-term energy system optimization based on perfect foresight, and cost reductions necessary to attract private investment in today's 'deregulating' and uncertain energy markets. (orig.)

  3. Innovations in nuclear concrete constructions

    International Nuclear Information System (INIS)

    Tatum, C.B.

    1983-01-01

    The technical requirements and scope of concrete work on nuclear projects present significant engineering and construction challenges. These demands represent the extremes in many areas of construction operations. In meeting these challenges, engineering and construction forces have developed several innovations which can be beneficially applied to other types of construction. Innovative approaches in the general categories of engineering scope, construction input to engineering, work planning, special methods and techniques, and satisfaction of quality assurance requirements are given in this paper. The transfer of this technology to other segments of the construction industry will improve overall performance by avoiding the problem areas encountered on nuclear projects

  4. On Brazil's participation in the International Project on Innovative Nuclear Reactors and Fuels Cycles (INPRO)

    International Nuclear Information System (INIS)

    Goncalves Filho, Orlando Joao Agostinho

    2007-01-01

    In response to a resolution of its 44th General Conference (GC(44)/RES/21) held in September 2000, the International Atomic Energy Agency launched in May 2001 the International Project on Innovative Nuclear Reactors and Fuels Cycles (INPRO) with the objective of supporting the safe, sustainable, economic and proliferation-resistant use of nuclear technology to meet the global energy needs of the 21st century. Brazil joined the project from its beginnings and in 2005 submitted a proposal for the screening assessment using INPRO methodology of two small-size light-water reactors as potential components of an innovative nuclear reactor system (INS) completed with a conventional open nuclear fuel cycle. The INS reactor components currently being assessed are the International Reactor Innovative and Secure (IRIS) that is being developed by an international consortium made of 21 organizations from 10 countries (Brazil included) led by the Westinghouse Company, and the Fixed Bed Nuclear Reactor (FBNR) that is being developed at the Federal University of Rio Grande do Sul. This paper gives an overview of Brazil's participation in INPRO, highlighting the objective, scope and intermediate results of the assessment study being performed, and the possibilities for participation in one or two collaborative research projects under INPRO Phase 2 Action Plan for 2008-2009. (author)

  5. Solar Energy Innovation Network | Solar Research | NREL

    Science.gov (United States)

    Energy Innovation Network Solar Energy Innovation Network The Solar Energy Innovation Network grid. Text version The Solar Energy Innovation Network is a collaborative research effort administered (DOE) Solar Energy Technologies Office to develop and demonstrate new ways for solar energy to improve

  6. The IAEA international project on innovative nuclear reactors and fuel cycles (INPRO): current and future activities

    International Nuclear Information System (INIS)

    Kupitz, J.; Depisch, F.; Kuznetsov, V.

    2004-01-01

    Upon resolutions of the IAEA General Conference in 2000, the IAEA initiated International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). The objective of INPRO, which comprises two phases, is to support sustainable deployment and use of nuclear technology to meet the global energy needs in the next 50 years and beyond. During Phase I, work is subdivided into two sub phases. Phase 1A focused on determining user requirements in the areas of economics, environment, safety, proliferation resistance, and recommendations in the area of so-called crosscutting issues, which are legal, institutional, and infrastructure issues accompanying the deployment of nuclear power, and is targeted at developing a methodology and guidelines for the assessment of various nuclear reactor and fuel cycle concepts and approaches. Phase 1A was finalised in June 2003 with its results now available as IAEA TECDOC-1362. Phase 1B has started in July 2003. During this phase interested Member States are performing case studies to validate the INPRO methodology and, later on, to assess selected innovative nuclear energy systems using the updated INPRO methodology. In accordance with the INPRO Terms of Reference, after successful completion of Phase I, Phase II may be initiated to examine the feasibility of commencing international projects on innovative nuclear energy systems. The paper contains a description of the current and future activities of INPRO and summarizes the outcome of the project.(author)

  7. User requirements for innovative nuclear reactors and fuel cycle technologies in the area of economics, environment, safety, waste management, proliferation resistance and cross cutting issues, and methodology for innovative technologies assessment

    International Nuclear Information System (INIS)

    Kupitz, Juergen; Depisch, Frank; Allan, Colin

    2003-01-01

    The IAEA General Conference in 2000 has invited ''all interested Member States to combine their efforts under the aegis of the Agency in considering the issues of the nuclear fuel cycle, in particular by examining innovative and proliferation-resistant nuclear technology''. In response to this invitation, the IAEA initiated an ''International Project on Innovative Nuclear Reactors and Fuel Cycles'', INPRO. The overall objectives of INPRO is to help to ensure that nuclear energy is available to contribute in fulfilling in a sustainable manner energy needs in the 21st century, and to bring together all interested Member States, both technology holders and technology users, to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles that use sound and economically competitive technology. Phase-I of INPRO was initiated in May 2001. During Phase-I, work was subdivided in two sub phase: Phase 1A (finished in June 2003) and Phase 1B (started in June 2003). Phase 1A dealt with the definition of Basic Principles, User Requirements and Criteria, and the development of a methodology for the evaluation of innovative nuclear technologies. In Phase 1A, task groups for several areas were established: (a) Prospects and Potentials of Nuclear Power, (b) Economics; (c) Sustainability and Environment, (d) Safety of Nuclear Installations, (e) Waste Management, (f) Proliferation Resistance, (g) Crosscutting issues and (h) for the Methodology for Assessment. In Phase-IB evaluations of innovative nuclear energy technologies will be performed by Member States against the INPRO Basic Principles, User Requirements and Criteria. This paper summarizes the results achieved in the Phase 1A of INPRO and is a cooperative effort of the INPRO team, consisting of all INPRO cost free experts and task managers. (author)

  8. Annual report 2015 of the Institute for Nuclear and Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Schulenberg, Thomas

    2016-07-01

    The annual report of the Institute for Nuclear and Energy Technologies of KIT summarizes its research activities and provides some highlights of each working group, like thermal-hydraulic analyses for nuclear fusion reactors, accident analyses for light water reactors, and research on innovative energy technologies: liquid metal technologies for energy conversion, hydrogen technologies and geothermal power plants. The institute has been engaged in education and training in energy technologies.

  9. Innovation and energy use

    International Nuclear Information System (INIS)

    Berg, C.A.

    1991-01-01

    Energy conservation is back. War in the Middle East and environmental concerns are again responsible. Advocates of conservation cite engineering studies to show that improvements in energy efficiency are possible in almost all economic sectors and that the adoption of the cited measures will pay. In technical aspects, such studies correct, in as far as they go. However, conventional energy conservation studies, based on classical thermodynamics, are inherently biased toward refinement in execution of familiar techniques. The tell little of possibilities for profound conceptual change: innovation. Capital invested to refine execution of a technique becomes unavailable for innovation. However, it is innovation that brings the greatest gains in the efficiencies of use of all resources in production, including energy. The first object, in this paper is to explain limitations of conventional assessments; the second is to suggest the outlines of a dynamic theory that might reveal opportunities for innovation

  10. Innovations on nuclear energy - what can a small country contribute?

    International Nuclear Information System (INIS)

    Smodis, B.; Cercek, M.

    2007-01-01

    The Slovenian energy policy gives priority to the use of renewable energy resources. The energy policy defined in the Resolution on the National Energy Program adopted in 2004 foresees increasing of renewable energy (RES) sources in the primary energy consumption up to 12 % in 2010. The share of electricity from RES in total electricity production in the year 2004 was 29,1%. The share of RES in the primary energy balance in the same year was 10,7 %, with about half of this coming from hydropower. The electricity power produced by co-generation is about 8 % and expected to double by 2010. However, the Krsko nuclear power plant produces about one third of electricity needed within the country. Consequently, Slovenia has long tradition in research pertaining to development and utilisation of nuclear technology. Furthermore, Slovenian scientists have long been collaborating in numerous fusion-related projects. The major equipment available include an ion-beam accelerator with material diagnostics installations, the TRIGA nuclear research reactor, high-temperature furnaces, an advanced, dedicated fully-integrated high-resolution microscope facility for investigations of nano structured materials, computer systems for simulations, structural mechanical analysis and CAD, and much more. The researchers at the Jozef Stefan Institute study the processes that occur on plasma facing materials and in the edge plasma of tokamak reactors and involve neutral hydrogen/deuterium molecules. These molecules are typically vibrationally excited that influences respective reaction cross sections. Therefore, a special experimental technique for vibrational spectroscopy of molecules was developed and an ion beam analytical technique ERDA is used for characterizing hydrogen content on and beneath the material surface. Ion beam analytical methods are also being developed for the studies of plasma wall interaction processes such as erosion, deposition, fuel retention and material migration in

  11. Guidance for the application of an assessment methodology for Innovative Nuclear Energy Systems. INPRO manual - Economics. Vol. 2 of the final report of phase 1 of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2008-11-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in the year 2000, based on a resolution of the IAEA General Conference (GC(44)/RES/21). The main objectives of INPRO are (1) to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner, (2) to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles; and (3) to create a forum to involve all relevant stakeholders that will have an impact on, draw from, and complement the activities of existing institutions, as well as ongoing initiatives at the national and international level. This publication elaborates on the guidance given in the INPRO report 'Methodology for the assessment of innovative nuclear reactors and fuel cycles', IAEA-TECDOC-1434 (2004), and the previous INPRO report 'Guidance for the evaluation for innovative nuclear reactors and fuel cycles', IAEA-TECDOC-1362 (2003) in the area of economics. The information presented in Volume 1 of the INPRO manual should be considered to be an integral part of this volume and the user should be familiar with that information. The goal of the INPRO Manual for the area of economics (Volume 2) is to provide guidance for performing an INPRO assessment, as described in Volume 1 of the INPRO manual, in the area of economics. The manual is not intended to provide guidance on how to design an INS to meet the INPRO requirements in the area of economics: rather, the focus is on the assessment method and the evaluation of the INPRO criteria in the area of economics. The INPRO assessor, i.e. the individual or group of individuals carrying out the assessment, is assumed to be knowledgeable in the area of economics and financial analysis. The INPRO assessment will either confirm that the INPRO economic criteria are fulfilled

  12. Cross-cutting european thermal-hydraulics research for innovative nuclear systems

    International Nuclear Information System (INIS)

    Roelofs, F.; Class, A.; Cheng, X.; Meloni, P.; Van Tichelen, K.; Boudier, P.; Prasser, M.

    2010-01-01

    Thermal-hydraulics is recognized as a key scientific subject in the development of different innovative nuclear reactor systems. From the thermal-hydraulic point of view, different innovative reactors are mainly characterized by their coolants (gas, water, liquid metals and molten salt). This results in different micro- and macroscopic behavior of flow and heat transfer and requires specific models and advanced analysis tools. However, many common thermal-hydraulic issues are identified among various innovative nuclear systems. In Europe, such cross-cutting thermal-hydraulic issues are the subject of the 7. framework programme THINS (Thermal-Hydraulics of Innovative Nuclear Systems) project which runs from 2010 until 2014. This paper will describe the activities in this project which address the main identified thermal hydraulics issues for innovative nuclear systems. (authors)

  13. Current status and future prospects of nuclear energy utilization in Japan

    International Nuclear Information System (INIS)

    Kondo, S.

    2006-01-01

    Nuclear power is recognized as a safe, reliable and competitive energy source in Japan as Japan's 55 nuclear power plants supply about a third of the country's electricity and contribute to the rise in her degree of self-sufficiency in primary energy supply from 4% to 17%. It is also a practical and effective mean to observe the promise of the Kyoto Protocol to reduce CO2 emissions into atmosphere. The development of nuclear science and engineering, on the other hand, contributes not only to the advancement of science and technology in various fields but also to the improvement of health and living standards of the people as well as to the industrial prosperity through the application of radiation to medical diagnosis, cancer treatment, insect pest control, production of semi-conductors, radial tiers, etc. Major goal of current nuclear energy policy in Japan is to enrich the basic measures that compose the basis for the utilization of nuclear energy technologies in civil society and encourage academia and industries to innovate themselves to grapple the challenge, while sustaining the share of nuclear power in electricity generation after the year 2030 at the level equal to or greater than the current level of 30-40% based on the strategy to recycle uranium and plutonium from nuclear spent fuels, in addition to the expansion of the use of radiation technologies. Major policy areas are the improvement of institutional and financial arrangements to promote safe and effective utilization of nuclear energy technology including radiation technologies, the promotion of effective and efficient research and development activities, and the promotion of bilateral and multilateral cooperative activities necessary and or useful for facilitating these activities, in addition to nurturing the international political and institutional environment suitable for the sound promotion of nuclear energy utilization in the world. To pursue these goals, Japanese government and industries

  14. Nuclear Energy Institute (NEI) summary

    International Nuclear Information System (INIS)

    2001-01-01

    The Nuclear Energy Institute (NEI) provided a brief presentation on the state of energy demand in the United States and discussed the improving economics for new nuclear power plants. He discussed the consolidation of companies under deregulation and the ability of these larger companies to undertake large capital projects such as nuclear power plant construction. He discussed efforts under way to support a new generation of plants but noted that there needs to be greater certainty in the licensing process. He discussed infrastructure challenges in terms of people, hardware, and services to support new and current plants. He stated that there needs to be fair and equitable licensing fees and decommissioning funding assurance for innovative modular designs such as the PBMR. He concluded that NRC challenges will include resolving 10 CFR Part 52 implementation issues, establishing an efficient and predictable process for siting, COL permits and inspection, and an increasing regulatory workload

  15. Energy strategies and the case of nuclear power

    International Nuclear Information System (INIS)

    Haefele, W.

    1976-01-01

    The future of nuclear energy is widely discussed with emphasis on the compatibility with social structure. Projected growth of nuclear power generation, demands for nuclear fuel resources and services, and comparison of power generation costs with other energy sources are presented and discussed based on the published data. As one of the processing problems in fuel cycle industry, the problem of reprocessing plant is discussed mainly from the view point of managing radioactive wastes including trans-actinides. Here the importance of establishing regulating standards is emphasized. A logical decision process for regulating large scale nuclear power development is proposed and explained and it is concluded that the largest obstacle for large scale development is the lack of decisions about regulation. In other words, the problem is not of technological feature but of software. Other problems discussed in this paper include, the multipurpose utilization of nuclear energy with the combination of LWR, FBR, and HTR, plutonium physical protection, the problem of energy park, and multi-national energy center. Finally, a historical review is given of the relations between the scale of energy utilization and the social structure and technological innovations. It is deduced that a new social pattern will be required for the large scale utilization of nuclear energy. (Aoki, K.)

  16. Energy strategies and the case of nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Haefele, W [International Inst. for Applied Systems Analysis, Laxenburg (Austria)

    1976-01-01

    The future of nuclear energy is widely discussed with emphasis on the compatibility with social structure. Projected growth of nuclear power generation, demands for nuclear fuel resources and services, and comparison of power generation costs with other energy sources are presented and discussed based on the published data. As one of the processing problems in fuel cycle industry, the problem of reprocessing plant is discussed mainly from the view point of managing radioactive wastes including trans-actinides. Here the importance of establishing regulating standards is emphasized. A logical decision process for regulating large scale nuclear power development is proposed and explained and it is concluded that the largest obstacle for large scale development is the lack of decisions about regulation. In other words, the problem is not of technological feature but of software. Other problems discussed in this paper include, the multipurpose utilization of nuclear energy with the combination of LWR, FBR, and HTR, plutonium physical protection, the problem of energy park, and multi-national energy center. Finally, a historical review is given of the relations between the scale of energy utilization and the social structure and technological innovations. It is deduced that a new social pattern will be required for the large scale utilization of nuclear energy.

  17. International project on innovative nuclear reactors and fuel cycles (INPRO)

    International Nuclear Information System (INIS)

    Omoto, A.

    2006-01-01

    The IAEA's project INPRO was initiated in order to provide a forum for discussion of experts and policy makers on all aspects of nuclear energy planning as well as on the development and deployment of innovative nuclear energy systems (INS). It brings together technology holders users and potential users to consider jointly the international and national actions required for achieving desired innovations in nuclear reactors and fuel cycles, but it pays particular attention to the needs of developing countries. Currently INPRO members count 24 including even three countries, which are not yet operating nuclear reactors. Its initial phase has produced an outlook into the future of the energy markets and defined basic principles, user requirements and criteria in the following areas as TECDOC1362 in June 2003; Economics, Environment, Fuel Cycle and Waste, Safety, Proliferation Resistance and Crosscutting Issues. This assessment methodology can be applied for screening an INS, comparing different INS to find a preferred INS consistent with the needs of a given state, and identifying RD and D needs. The methodology has be validated through case studies and updated as TECDOC1434 in December 2004. Currently, besides producing a manual for each chapter of TECDOC1434, six assessment studies of various INS options are being carried out and the number of such studies is increasing. Further several tasks are ongoing including modeling and analysis of global and regional balance of resources and INS deployment scenarios in order to gain the better perspective of future implication of INS deployment as well as to identify challenges and opportunities of INS. It is envisioned that INPRO will continue to develop with three planned major pillars of activity; methodology, infrastructure and coordination for planning of R and D activities. The paper discusses the progress and status of INPRO as well as the future prospect of INPRO activities

  18. A new option for exploitage of future nuclear energy. Accelerator driven radioactive clean nuclear power system

    International Nuclear Information System (INIS)

    Ding Dazhao

    2000-01-01

    Nuclear energy is an effective, clean and safe energy resource. But some shortages of the nuclear energy system presently commercial available obstruct further development of the nuclear energy by heavy nuclear fission. Those are final disposal of the high level radioactive waste, inefficient use of the uranium resource and safety issue of the system. Innovative technical option is seeking for by the nuclear scientific community in recent ten years in aiming to overcome these obstacles, namely, accelerator driven sub-critical system (ADS). This hybrid system may bridge over the gap between presently commercial available nuclear power system and the full exploitation of the fusion energy. The basic principle of ADS is described and its capability in waste transmutation, conversion of the nuclear fuel are demonstrated by two examples--AD-fast reactor and AD-heavy water thermal reactor. The feasibility of ADS and some projects in US, Japan, etc are briefly discussed. The rationale in promoting the R and D of ADS in China is emphasized as China is at the beginning stage of its ambitious project in construction of the nuclear power

  19. The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO): General description and implications for the research reactor infrastructure needed for R and D

    International Nuclear Information System (INIS)

    Sokolov, Yury A.

    2005-01-01

    The substantial growth in 21st century energy supplies needed to meet sustainable development goals has been emphasized by UNCSD, WSSD, IPCC and others. This will be driven by continuing population growth, economic development and aspiration to provide access to modern energy systems to the 1,6 billion people now without such access, the growth demand on limiting greenhouse gas emissions, and reducing the risk of climate change. A key factor to the future of nuclear power is the degree to which innovative nuclear technologies can be developed to meet challenges of economic competitiveness, safety, waste and proliferation concerns. There are two major international initiatives in the area of innovative nuclear technology: the IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycle (INPRO) and the Generation IV International Forum. With INPRO some scenarios of future energy needs were identified and the methodology for holistic assessment of the innovative nuclear energy systems (INS), which can be developed to meet these scenarios, was developed.. The current status of the INPRO project and details of the INPRO methodology will be reported. The research needs identified due to Agency's activities on innovative nuclear system development assume the use of research reactors. The areas crucial for the development of INS which critically dependent of the RR experiments and following requirements addressed to the RR will be discussed. These areas include the development of advanced fuel and core materials for proposed innovative power reactor concepts. (author)

  20. A Strategy for Nuclear Energy Research and Development

    International Nuclear Information System (INIS)

    Bennett, Ralph G.

    2008-01-01

    The United States is facing unprecedented challenges in climate change and energy security. President-elect Obama has called for a reduction of CO2 emissions to 1990 levels by 2020, with a further 80% reduction by 2050. Meeting these aggressive goals while gradually increasing the overall energy supply requires that all non-emitting technologies must be advanced. The development and deployment of nuclear energy can, in fact, help the United States meet several key challenges: (1) Increase the electricity generated by non-emitting sources to mitigate climate change, (2) Foster the safe and proliferation-resistant use of nuclear energy throughout the world, (3) Reduce the transportation sector's dependence on imported fossil fuels, and (4) Reduce the demand on natural gas for process heat and hydrogen production. However, because of the scale, cost, and time horizons involved, increasing nuclear energy's share will require a coordinated research effort-combining the efforts of industry and government, supported by innovation from the research community. This report outlines the significant nuclear energy research and development (R and D) necessary to create options that will allow government and industrial decision-makers to set policies and create nuclear energy initiatives that are decisive and sustainable. The nuclear energy R and D strategy described in this report adopts the following vision: Safe and economical nuclear energy in the United States will expand to address future electric and non-electric needs, significantly reduce greenhouse gas emissions and provide energy diversity, while providing leadership for safe, secure and responsible expansion of nuclear energy internationally

  1. China's nuclear energy demand and CGNPC's nuclear power development

    International Nuclear Information System (INIS)

    Rugang, Sh.

    2007-01-01

    By importation, assimilation and innovation from French nuclear power technology and experience, the China Guangdong Nuclear Power Plant Holding Company (CGNPC) has developed the capabilities of indigenous construction and operation of 1000 MW-class nuclear power plants. Through the industrial development over the past 20 years, four 1000 MW-class reactors have been built and put into commercial operation in China. CGNPC is negotiating with AREVA on the transfer of the EPR technology and the application of this technology for the Yangjang nuclear power plant depends on the negotiation results. Since China became a member of the 4. Generation International Forum, CGNPC as a large state-owned enterprise, will take an active part in the 4. generation nuclear power technology developments under the leadership of China Atomic Energy Authority, particularly it will contribute to the research work on the high-temperature gas-cooled reactor and on the super-critical water reactor

  2. Limitations of Nuclear Power as a Sustainable Energy Source

    Directory of Open Access Journals (Sweden)

    Joshua M. Pearce

    2012-06-01

    Full Text Available This paper provides a review and analysis of the challenges that nuclear power must overcome in order to be considered sustainable. The results make it clear that not only do innovative technical solutions need to be generated for the fundamental inherent environmental burdens of nuclear energy technology, but the nuclear industry must also address difficult issues of equity both in the present and for future generations. The results show that if the concept of just sustainability is applied to the nuclear energy sector a global large-scale sustainable nuclear energy system to replace fossil fuel combustion requires the following: (i a radical improvement in greenhouse gas emissions intensity by improved technology and efficiency through the entire life cycle to prevent energy cannibalism during rapid growth; (ii the elimination of nuclear insecurity to reduce the risks associated with nuclear power so that the free market can indemnify it without substantial public nuclear energy insurance subsidies; (iii the elimination of radioactive waste at the end of life and minimization of environmental impact during mining and operations; and (iv the nuclear industry must regain public trust or face obsolescence as a swarm of renewable energy technologies quickly improve both technical and economic performance.

  3. Innovative configuration of a hybrid nuclear-solar tower power plant

    International Nuclear Information System (INIS)

    Popov, Dimityr; Borissova, Ana

    2017-01-01

    This paper proposes a combination of a nuclear and a CSP plant and performs a thermodynamic analysis of the potential benefit. Most of today's operating nuclear reactor systems are producing saturated steam at relatively low pressure. This, in turn, limits their thermodynamic efficiency. Superheating of nuclear steam with solar thermal energy has the potential to overcome this drawback. Accordingly, an innovative configuration of a hybrid nuclear-CSP plant is assembled and simulated. It brings together pressurized water reactor and solar tower. The solar heat is transferred to nuclear steam to raise its temperature. Continuous superheating is provided through thermal energy storage. The results from design point calculations show that solar superheating has the potential to increase nuclear plant electric efficiency significantly, pushing it to around 37.5%. Solar heat to electricity conversion efficiency reaches unprecedented rates of 56.2%, approaching the effectiveness of the modern combined cycle gas turbine plants. Off-design model was used to simulate 24-h operation for one year by simulating 8760 cases. Due to implementation of thermal energy storage non-stop operation is manageable. The increased efficiency leads to solar tower island installed cost reductions of up to 25% compared to the standalone CSP plant, particularly driven by the smaller solar field. - Highlights: • External superheating of nuclear steam with solar thermal energy is proposed. • Novel hybrid plant configuration is assembled, modeled and simulated. • Substantial increase of nuclear plant capacity and efficiency is reported. • Superior efficiency of solar heat to electricity conversion is achieved. • Substantial decrease of solar field investment cost is reported.

  4. Book of presentations. Tokyo Tech COE-INES. Indonesia international symposium 2005. 'Prospect of nuclear energy in Indonesia'

    International Nuclear Information System (INIS)

    2005-03-01

    The symposium of the title was organized by the 21st Century COE Program, Innovative Nuclear Energy Systems for Sustainable Development of the World, the Tokyo Institute of Technology (Tokyo Tech COE-INES), the Bandung Institute of Technology (ITB), and the National Nuclear Energy Agency of Indonesia (BATAN). The symposium included presentations of 21 from Japan 24 from Indonesia and discussions on innovative nuclear energy systems and on a number of topics related to nuclear energy, including long-term policies and regulation for its development. Students from Japan and Indonesia played an important role in the symposium, presenting excellent work and discussion on their research topics as well as participating in very fruitful panel discussions on 'Education in Nuclear Field' and 'Attractiveness of Jobs in the Nuclear Field'. (J.P.N.)

  5. Technology Road-map - Nuclear Energy. 2015 edition

    International Nuclear Information System (INIS)

    Houssin, Didier; Dujardin, Thierry; Cameron, Ron; Tam, Cecilia; Paillere, Henri; Baroni, Marco; Bromhead, Amos; Baritaud, Manual; Cometto, Marco; Gaghen, Rebecca; Herzog, Antoine; Remme, Uwe; Urso, Maria-Elena; Vance, Robert

    2015-01-01

    -carbon electricity in OECD countries and second at global level. Nuclear can play a key role in lowering emissions from the power sector, while improving security of energy supply, supporting fuel diversity and providing large-scale electricity at stable production costs. In the 2D scenario, global installed capacity would need to more than double from current levels of 396 GW to reach 930 GW in 2050, with nuclear power representing 17% of global electricity production. The near-term outlook for nuclear energy has been impacted in many countries by the Fukushima Daiichi nuclear power plant (NPP) accident. Although the accident caused no direct radiation-induced casualties, it raised concerns over the safety of NPPs and led to a drop in public acceptance, as well as changes in energy policies in some countries. However, in the medium to long term, prospects for nuclear energy remain positive. A total of 72 reactors were under construction at the beginning of 2014, the highest number in 25 years. Nuclear safety remains the highest priority for the nuclear sector. Regulators have a major role to play to ensure that all operations are carried out with the highest levels of safety. Safety culture must be promoted at all levels in the nuclear sector and especially in newcomer countries. Governments have a role to play in ensuring a stable, long-term investment framework that allows capital-intensive projects to be developed and provides adequate electricity prices over the long term. Governments should also continue to support nuclear R and D, especially in the area of nuclear safety, advanced fuel cycles, waste management and innovative designs. Nuclear energy is a mature low-carbon technology, which has followed a trend towards increased safety levels and power output to benefit from economies of scale. This trajectory has come with an increased cost for Generation III reactors compared with previous generations. Small modular reactors (SMRs) could extend the market for nuclear energy

  6. Public opinion on nuclear energy - background and causes

    International Nuclear Information System (INIS)

    Rudloff, W.

    1990-01-01

    The nuclear energy discussion is as old as the discovery of nuclear fission. Its technical harnessing is one of the most important basic innovations of this century. The ambivalence of nuclear energy - peaceful and aggresssive utilization habe been equally realized - and potential endangerment by fission products have put a strain on its acceptance worldwide. The forming of public opinion is further complicated by the complexity of the system we call 'nuclear energy'. The beginning of its commercial utilization coincided with the first awareness of the 'limits to growth'. In many discussion and for many groups, also ideologically based ones, nuclear energy plays a substitute role in the social political debate on the 'right' way into the future. By means of one-sided and sometimes distorted representations, many media have contributed to the confusion. Industry and the business world, being interested in nuclear energy, have endeavored to take a stand in its defence, although not always qualitatively or quantitatively appropriate. These endeavors were impeded by sporadic strong politicalization of all relevant decisions. The specific roll behavior of those participating in the discussion was also at times a hindrance. The nuclear energy discussion is not locally limited, it is rather international. This should be taken into consideration in all endeavors for its acceptance. The beginning world-wide climate discussion will inveterately alter the position of nuclear energy and the public's opinion of it. (author)

  7. An innovative way of thinking nuclear waste management - Neutron physics of a reactor directly operating on SNF.

    Science.gov (United States)

    Merk, Bruno; Litskevich, Dzianis; Bankhead, Mark; Taylor, Richard J

    2017-01-01

    A solution for the nuclear waste problem is the key challenge for an extensive use of nuclear reactors as a major carbon free, sustainable, and applied highly reliable energy source. Partitioning and Transmutation (P&T) promises a solution for improved waste management. Current strategies rely on systems designed in the 60's for the massive production of plutonium. We propose an innovative strategic development plan based on invention and innovation described with the concept of developments in s-curves identifying the current boundary conditions, and the evolvable objectives. This leads to the ultimate, universal vision for energy production characterized by minimal use of resources and production of waste, while being economically affordable and safe, secure and reliable in operation. This vision is transformed into a mission for a disruptive development of the future nuclear energy system operated by burning of existing spent nuclear fuel (SNF) without prior reprocessing. This highly innovative approach fulfils the sustainability goals and creates new options for P&T. A proof on the feasibility from neutronic point of view is given demonstrating sufficient breeding of fissile material from the inserted SNF. The system does neither require new resources nor produce additional waste, thus it provides a highly sustainable option for a future nuclear system fulfilling the requests of P&T as side effect. In addition, this nuclear system provides enhanced resistance against misuse of Pu and a significantly reduced fuel cycle. However, the new system requires a demand driven rethinking of the separation process to be efficient.

  8. An innovative way of thinking nuclear waste management - Neutron physics of a reactor directly operating on SNF.

    Directory of Open Access Journals (Sweden)

    Bruno Merk

    Full Text Available A solution for the nuclear waste problem is the key challenge for an extensive use of nuclear reactors as a major carbon free, sustainable, and applied highly reliable energy source. Partitioning and Transmutation (P&T promises a solution for improved waste management. Current strategies rely on systems designed in the 60's for the massive production of plutonium. We propose an innovative strategic development plan based on invention and innovation described with the concept of developments in s-curves identifying the current boundary conditions, and the evolvable objectives. This leads to the ultimate, universal vision for energy production characterized by minimal use of resources and production of waste, while being economically affordable and safe, secure and reliable in operation. This vision is transformed into a mission for a disruptive development of the future nuclear energy system operated by burning of existing spent nuclear fuel (SNF without prior reprocessing. This highly innovative approach fulfils the sustainability goals and creates new options for P&T. A proof on the feasibility from neutronic point of view is given demonstrating sufficient breeding of fissile material from the inserted SNF. The system does neither require new resources nor produce additional waste, thus it provides a highly sustainable option for a future nuclear system fulfilling the requests of P&T as side effect. In addition, this nuclear system provides enhanced resistance against misuse of Pu and a significantly reduced fuel cycle. However, the new system requires a demand driven rethinking of the separation process to be efficient.

  9. Open innovation in urban energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, M. [Technische Universitaet Muenchen, TUM School of Management, Freising (Germany); Barth, V. [Carl von Ossietzky Universitaet Oldenburg, Ecological Economics, Oldenburg (Germany)

    2012-08-15

    Despite recent efforts, existing urban energy systems still hardly meet the demands of sustainable development or climate change. Meeting these targets thus will require innovations that use energy much more efficiently and emit far less greenhouse gases. These innovations need to be made on the production as well as the consumption side, on all levels, and need to cover not only technical aspects, but even more service solutions. While many of these solutions still need to be developed, some are already invented but only exist in limited market segments. Opening closed urban planning processes and using open innovation tools can foster bottom-up urban energy system transformation by addressing the interactive ways of decision-making integrating company representatives and citizens. While open innovation tools like (open) innovation workshops or ideas competitions are already used by several companies to find and develop new designs and products, there is yet little experience with energy efficiency ideas and bottom-up changes. Therefore, we analyse energy-efficient ideas generated in three different ideas competitions. We discuss the findings for theory and research on open innovation approaches and bottom-up urban changes. Our results show that there are a vast number of ideas available in the public. Open innovation tools offer advanced possibilities to generate energy-efficient solutions.

  10. Innovation exploration and practice on communication between publics and nuclear power plant

    International Nuclear Information System (INIS)

    Xu Liuhua

    2014-01-01

    It is a fundamental job for nuclear industry's development to realize smooth communication and deep fusion between nuclear energy and the public. Tracing back to Haiyan people's history in contacting with nuclear energy, it is easily found that the local government did quite a few works on public's awareness on nuclear energy safety concern. The local authority tell people the scientific reason and related knowledge by printing and propagating easily-understood pamphlets and pictures, or to explain the nuclear safety by publicizing testing data and related research results. In a word, the local authority used easily-understood ways and reasonable facts to ease the public's over worry about nuclear safety problem. The local authority has set up a mutual interacted communication system with nuclear power plant while focusing on key issues in this important period of nuclear power development. Meanwhile it has set up a weekly report system and appointed news spoksman for nuclear safety concern to public. The nuclear edition volume on the local government's website and micro-blog for nuclear news releasing have been constructed already, to realizing the public transparency. The public has gradually changed their stand from worry to disburden, from nuclear-avoid to nuclear favored, from economy burden to pillar industry. Later, Haiyan county will focus on implementation of public education and deep fused cooperation between local and nuclear power plant, endeavoring to exploit an innovative way on mutual communication for 2 parts in future. (author)

  11. Enabling innovations in energy access: An African perspective

    International Nuclear Information System (INIS)

    Agbemabiese, Lawrence; Nkomo, Jabavu; Sokona, Youba

    2012-01-01

    Conventional energy technologies and deployment approaches cannot be relied upon to eliminate energy poverty in Africa. Innovations in energy access are necessary. Previous attempts at introducing and scaling up innovative solutions do not sufficiently address dynamic and structural determinants of success. This limits their actual performance as scalable drivers of innovations in technology, policy and institutions. Using technological innovation systems theory, we demonstrate a practical approach to assess the sustainability of innovations in energy access, and develop a framework to guide energy policy makers, clean energy entrepreneurs and energy-development researchers. - Highlights: ► Innovative technologies and policies are needed to expand energy access. ► TIS approach can guide the formulation and deployment of sustainable energy innovations. ► Learning by exploring and doing are the keys to entrepreneurial success. ► Lack of infrastructure and institutional frameworks are major barriers to innovations. ► Government intervention is needed to eliminate barriers to innovations.

  12. NEA International Workshop on the Nuclear Innovation Road-map - NI2050. Workshop proceedings

    International Nuclear Information System (INIS)

    Ait Abderrahim, Hamid; Fernandez Fernandez, Alberto; Van Walle, Eric; Speranzini, Robert; Zezula, Lubor; Puska, Eija Karita; Tuomisto, Harri; Al Mazouzi, Abderrahim; Bazile, Fanny; Cordier, Pierre-Yves; Wahide, Carole; Tromm, Th. Walter; Horvath, Akos; Agostini, Pietro; Ambrosini, Walter; Kamide, Hideki; Nakatsuka, Toru; Sagayama, Yutaka; Tsujimoto, Kazufumi; Jeong, Ik; LEE, Gye Seok; Roelofs, Ferry; Van Der Lugt, Hermen; Wrochna, Grzegorz; Alekseev, Pavel; Andreeva-Andrievskaya, Lyudmila N.; Liska, Peter; Cizelj, Leon; Castelao Lopez, Carlos; Zimmermann, Martin; Rayment, Fiona; Pasamehmetoglu, Kemal; Martin Ramos, Manuel; Schmitz, Bruno; Monti, Stefano; Bignan, Gilles; Mcgrath, Margaret; Caron-Charles, Marylise; Magwood, William IV; Ha, Jaejoo; Deffrennes, Marc; Paillere, Henri; Noh, Jae Man; Gulliford, Jim; Breest, Axel; Matsumoto, Kiyoshi; Lebedev, Vladimir

    2015-07-01

    The two-day workshop held at the OECD Headquarters in Paris on 7-8 July 2015, brought together some of the leading experts in the field of nuclear fission research, development and demonstration. The purpose was to launch the NEA Nuclear Innovation 2050 Initiative, aiming, after a first survey phase, at producing a road-map of main priority research programs and infrastructures necessary to support the role nuclear energy may play in the low carbon power sector of the future. This might then further lead to some ad-hoc co-operation frameworks that help to effectively implement key priorities coming out of the road-mapping. The workshop was organised into the following five sessions: 1 - Opening session on NI2050: vision and main objectives; 2 - National presentations on nuclear fission research and innovation activities (programs, infrastructures, budgets); 3 - Presentations on some existing international nuclear fission road-maps and co-operation frameworks; 4 - Defining the way forward for NI2050: survey, road-mapping and priorities and co-operation; 5 - Open discussion. This document gathers the available presentations given at this workshop

  13. A boom in energy technology innovation despite decades of stagnant investment

    Energy Technology Data Exchange (ETDEWEB)

    Bettencourt, Luis M [Los Alamos National Laboratory; Trancik, Jessika A [SANTA FE INSTITUTE; Kaur, Jasleen [INDIANA UNIV

    2009-01-01

    Rates of patenting in energy technologies in the United States stagnated during a period of low federal investment in the sector from the mid-1980's through 2000. To analyze the current state of the field, we built a new comprehensive database of energy patents in the USA and worldwide aggregated by nation and technology. We show that innovation in energy technologies, as measured by numbers of new patents, has grown dramatically over the last decade both for renewable and fossil fuel-based technologies, but that traditional investment -government and private support for research and development (R&D) -has not risen commensurately. We also show that while venture capital investment in the sector has increased significantly in the last few years it lags the observed uptick in patenting. We find increasing patenting rates in nations worldwide but also differences in regional priorities, as well as a marked divergence in innovation rates across technologies. Renewable energy technologies - especially solar and wind - currently show the fastest rates of innovation, while patenting levels in nuclear fission have remained low despite relatively high levels of sustained investment. While this sharp increase of innovative activity bodes well for change in the energy sector, the future of emerging technologies may hinge on sustained investment in R&D and favorable incentives for market entry.

  14. Steam water cycle chemistry of liquid metal cooled innovative nuclear power reactors

    International Nuclear Information System (INIS)

    Yurmanov, Victor; Lemekhov, Vadim; Smykov, Vladimir

    2012-09-01

    The Federal Target Program (FTP) of Russian Federation 'Nuclear Energy Technologies of the New Generation for 2010-2015 and for Perspective up to 2020' is aimed at development of advanced nuclear energy technologies on the basis of closed fuel cycle with fast reactors. There are advanced fast reactor technologies of the 4. generation with liquid metal cooled reactors. Development stages of maturity of fast sodium cooled reactor technology in Russia includes experimental reactors BR-5/10 (1958-2002) and BOR-60 (since 1969), nuclear power plants (NPPs) with BN-350 (1972-1999), BN-600 (since 1980), BN-800 (under construction), BN-1200 (under development). Further stage of development of fast sodium cooled reactor technology in Russia is commercialization. Lead-bismuth eutectic fast reactor technology has been proven at industrial scale for nuclear submarines in former Soviet Union. Lead based technology is currently under development and need for experimental justification. Current status and prospects of State Corporation 'Rosatom' participation in GIF activities was clarified at the 31. Meeting of Policy Group of the International Forum 'Generation-IV', Moscow, May 12-13, 2011. In June, 2010, 'Rosatom' joined the Sodium Fast Reactor Arrangement as an authorized representative of the Russian Government. It was also announced the intention of 'Rosatom' to sign the Memorandum on Lead Fast Reactor based on Russia's experience with lead-bismuth and lead cooled fast reactors. In accordance with the above FTP some innovative liquid metal cooled reactors of different design are under development in Russia. Gidropress, well known as WER designer, develops innovative lead-bismuth eutectic cooled reactor SVBR-100. NIKIET develops innovative lead cooled reactor BRESTOD-300. Some other nuclear scientific centres are also involved in this activity, e.g. Research and Development Institute for Power Engineering (RDIPE). Optimum

  15. Simultaneous nuclear data target accuracy study for innovative fast reactors

    International Nuclear Information System (INIS)

    Aliberti, G.; Palmiotti, G.; Salvatores, M.

    2007-01-01

    The present paper summarizes the major outcomes of a study conducted within a Nuclear Energy Agency Working Party on Evaluation Cooperation (NEA WPEC) initiative aiming to investigate data needs for future innovative nuclear systems, to quantify them and to propose a strategy to meet them. Within the NEA WPEC Subgroup 26 an uncertainty assessment has been carried out using covariance data recently processed by joint efforts of several US and European Labs. In general, the uncertainty analysis shows that for the wide selection of fast reactor concepts considered, the present integral parameters uncertainties resulting from the assumed uncertainties on nuclear data are probably acceptable in the early phases of design feasibility studies. However, in the successive phase of preliminary conceptual designs and in later design phases of selected reactor and fuel cycle concepts, there will be the need for improved data and methods, in order to reduce margins, both for economic and safety reasons. It is then important to define as soon as possible priority issues, i.e. which are the nuclear data (isotope, reaction type, energy range) that need improvement, in order to quantify target accuracies and to select a strategy to meet the requirements needed (e.g. by some selected new differential measurements and by the use of integral experiments). In this context one should account for the wide range of high accuracy integral experiments already performed and available in national or, better, international data basis, in order to indicate new integral experiments that will be needed to account for new requirements due to innovative design features, and to provide the necessary full integral data base to be used for validation of the design simulation tools.

  16. Long-Term Nuclear Knowledge Management (NKM) on Nuclear Production of Hydrogen - A Case Study of the Japan Atomic Energy Research Institute (JAERI)

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    2007-01-01

    In Japan, so-called a formal nuclear policy; The Framework for Nuclear Energy Policy is built up by Japan Atomic Energy Commission at every 5-year, in which not only a conventional light water reactor (LWR) but also a fast breeder reactor (FBR), HTGR and a fusion reactor (FR) is referred as a prominent candidate of long-term (<100 years) nuclear energy source. The policy makers might have multi-purpose scenarios for a future of innovated nuclear energy systems through results of various discussions at their level. According to long-term nuclear knowledge management, the author made ex ante evaluation of HTGR known as the intellectual assets of JAERI 1, from the viewpoint of hypothetical benefits under conditions of substantial uncertainty. Nuclear knowledge management (NKM) is an integrated, systematic approach to identifying, managing and sharing an organization's nuclear knowledge, and enabling persons to create new nuclear knowledge collectively and thereby helping achieve the objectives. NKM identifies, optimizes, and actively manages intellectual assets either in the form of explicit knowledge held in intangible products or tacit knowledge possessed by individuals or communities in the nuclear fields. In the present study the authors wish not only to show the validity of long-term NKM as a key factor of HTGR but also to assess their hypothetical benefits through the year 2050 under conditions of substantial uncertainty. It should be stressed that those factors are important intellectual assets of JAERI developed to date. Additionally, in the Framework for Nuclear Energy Policy constructed up by the Japan Atomic Energy Commission, a LWR, a fast breeder reactor (FBR), a HTGR, and a fusion reactor (FR) are all defined as eligible and prominent candidates for long-term nuclear energy sources. In this sense, we estimate here a direct market creation of (1) hydrogen energy production and (2) electricity generation, by commercialized HTGR through the year 2050 with

  17. Innovation projects of atomic energy institute of national nuclear center RK in the area of peaceful use of atomic energy

    International Nuclear Information System (INIS)

    Kenzhin, E.; Tazhibayeva, I.; Vasiliyev, Y.; Kolodeshnikov, A.; Vurim, A.

    2010-01-01

    Institute of Atomic Energy of National Nuclear Center RK (IAE NNC RK) is located in Kurchatov. The city is situated at the border of former Semipalatinsk test site. The institute includes two reactor complexes - IGR and Baikal-1, which are rather distant from Kurchatov. Main activities of IAE NNC RK are: 1. Experimental researches of the nuclear power reactors safety; 2. Experimental researches of behavior of the structural materials for fusion and fission facilities under reactor irradiation; 3. Management of radioactive wastes; 4. Participation in the projects on decommissioning of the fast neutron reactor BN-350; 5. innovation projects: creation of first Kazakhstan's fusion reactor - tokamak KTM for materials; research and testing; development of new technologies (irradiated Be-recycling); development of new reactor technologies - project on creation of high temperature gas-cooled reactor KHTR. IAE NNC RK jointly with Japanese Atomic Energy Agency and with participation of Japanese Atomic Power Company is performing the activities on experimental substantiation of design of active core of prospective fast neutron reactor. Main goal of out-of-pile experiments at the EAGLE facility is obtaining of the information on fuel movement processes under conditions simulating the accident with melting of fast reactor core containing tube-design fuel assembly. Batch mixture is loaded into graphite crucible; then it is melded into electric melting furnace and poured into melt top trap. The outlet pipe is melted by the melt, which is poured into bottom melt trap through the pipe with sodium

  18. Accelerating Innovation: How Nuclear Physics Benefits Us All

    Science.gov (United States)

    2011-01-01

    Innovation has been accelerated by nuclear physics in the areas of improving our health; making the world safer; electricity, environment, archaeology; better computers; contributions to industry; and training the next generation of innovators.

  19. Hydrogen Production Using Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, K. [Research Centre Juelich (Germany)

    2013-03-15

    world. In recent years, the scope of the IAEA's programme has been widened to include other more promising applications such as nuclear hydrogen production and higher temperature process heat applications. The OECD Nuclear Energy Agency, Euratom and the Generation IV International Forum have also shown interest in the non-electric applications of nuclear power based on future generation advanced and innovative nuclear reactors. This report was developed under an IAEA project with the objective of providing updated, balanced and objective information on the current status of hydrogen production processes using nuclear energy. It documents the state of the art of the development of hydrogen as an energy carrier in many Member States, as well as its corresponding production through the use of nuclear power. The report includes an introduction to the technology of nuclear process heat reactors as a means of producing hydrogen or other upgraded fuels, with a focus on high temperature reactor technology to achieve simultaneous generation of electricity and high temperature process heat and steam. Special emphasis is placed on the safety aspects of nuclear hydrogen production systems.

  20. Clean energy : nuclear energy world

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-10-15

    This book explains the nuclear engineering to kids with easy way. There are explanations of birth of nuclear energy such as discover of nuclear and application of modern technology of nuclear energy, principles and structure of nuclear power plant, fuel, nuclear waste management, use of radiation for medical treatment, food supplies, industry, utilization of neutron. It indicates the future of nuclear energy as integral nuclear energy and nuclear fusion energy.

  1. Energy Innovation Systems Indicator Report 2016

    DEFF Research Database (Denmark)

    Borup, Mads; Klitkou, Antje; Iversen, Eric

    This report collates a set of indicators, figures and tables for the energy innovation system in Denmark. Emphasis is on renewable energy and other technologies for moving towards sustainability. The purpose is to provide an overview of indicators available for illuminating dynamics and character...... in “EIS – Strategic research alliance for Energy Innovation Systems and their dynamics – Denmark in global competition”. EIS is funded by the Danish Council for Strategic Research (Innovation Fund Denmark) and by the involved research organisations.......This report collates a set of indicators, figures and tables for the energy innovation system in Denmark. Emphasis is on renewable energy and other technologies for moving towards sustainability. The purpose is to provide an overview of indicators available for illuminating dynamics...... and characteristics of energy innovation systems and to the extent possible offer figures of the developments in the individual indicators. The report is an update of a report published in 2012. Graphs and numbers are updated with the most recent data available. The text is updated where needed in connection...

  2. Energy, innovation, and microprocessors: continuity in the research policy

    Energy Technology Data Exchange (ETDEWEB)

    Hauff, V [Bundesministerium fuer Forschung und Technologie, Bonn-Bad Godesberg (Germany, F.R.)

    1978-07-01

    The present West German Minister for Research and Technology took up his official duties three months ago. So Umschau asked some questions concerning his future policies. First, the minister confirmed the continuity of the existing science policies. In the field of energy he claimed that efficient and frugal use of energy is the priority. The second priority concerns the utilization of domestic coal. No hindrances in the further development of fast breeder reactors and nuclear recycling are expected. The Minister layed stress on the encouragement of technological innovations, which are indispensable for economic growth, given the present worldwide structural change in the division of labor; the country must search for very new products. Microelectronics will play a major role in future developments. The Minister gave some examples of new fields that present chances for innovative endeavors. Another field of interest is the forecasting models.

  3. Energy: nuclear energy

    International Nuclear Information System (INIS)

    Lung, M.

    2000-11-01

    Convinced that the nuclear energy will be the cleaner, safer, more economical and more respectful of the environment energy of the future, the author preconizes to study the way it can be implemented, to continue to improve its production, to understand its virtues and to better inform the public. He develops this opinion in the presentation of the principal characteristics of the nuclear energy: technology, radioactive wastes, radiation protection, the plutonium, the nuclear accidents, the proliferation risks, the economics and nuclear energy and competitiveness, development and sustainability. (A.L.B.)

  4. Innovative public information programs. Panel Discussion

    International Nuclear Information System (INIS)

    Emmy Roos; Chuck Vincent; David Knox; Lauretta Kerchma-Olson

    2001-01-01

    Full text of publication follows: What is new in public information in the nuclear industry? With developments such as deregulation in the United States, the ever-changing global energy market, and constant scientific and technological advances, public information programs are more important than ever. Co-sponsored by the American Nuclear Society (ANS) Public Information Committee, panelists will present news of innovations in a broad spectrum of areas. These include the new research on the views of public opinion leaders about nuclear energy, the new ANS Public Information Web site, volunteer outreach by nuclear professionals at the local level, public information innovations at nuclear utilities, unique international programs, an update on the U.S. Nuclear Regulatory Commission's strategic plan for public confidence, and recent changes at the U.S. Department of Energy. Invited presentations: New ANS Public Information Web Site International Programs (Emmy Roos (ETCetera)); ANS Teacher Workshops and the Northern Ohio Section's Highly Successful Implementation of Them (Chuck Vincent (ANS)); Innovations at Exelon (David Knox (Exelon)) Innovative Public Information Center Programs (Lauretta Kerchma-Olson (Nucl Mgt, Two Rivers))

  5. The innovation and application of the nuclear power construction management information system MISNPC

    International Nuclear Information System (INIS)

    Wang Kaihua; Tang Zihui; Zhang Baiqi; Sun Guangwei; Zhu Guodong; Qian Fuhua

    2009-01-01

    This paper focuses on introducing the innovation achievements on the management information system of nuclear power construction (MISNPC). The innovation is achieved through summarizing the practice of nuclear power construction in China and drawing on advanced experience of international nuclear power construction. The innovation, including the management standard for nuclear power construction, the standard of construction process, the standard of nuclear-power basic codes and the standard for nuclear power construction and control, can be rapidly copied for application in various nuclear power construction projects. The application of the innovation may play an essential role in ensuring safe construction and operation of nuclear power plants in China and improving economic benefits. (authors)

  6. An innovative way of thinking nuclear waste management – Neutron physics of a reactor directly operating on SNF

    Science.gov (United States)

    Litskevich, Dzianis; Bankhead, Mark; Taylor, Richard J.

    2017-01-01

    A solution for the nuclear waste problem is the key challenge for an extensive use of nuclear reactors as a major carbon free, sustainable, and applied highly reliable energy source. Partitioning and Transmutation (P&T) promises a solution for improved waste management. Current strategies rely on systems designed in the 60’s for the massive production of plutonium. We propose an innovative strategic development plan based on invention and innovation described with the concept of developments in s-curves identifying the current boundary conditions, and the evolvable objectives. This leads to the ultimate, universal vision for energy production characterized by minimal use of resources and production of waste, while being economically affordable and safe, secure and reliable in operation. This vision is transformed into a mission for a disruptive development of the future nuclear energy system operated by burning of existing spent nuclear fuel (SNF) without prior reprocessing. This highly innovative approach fulfils the sustainability goals and creates new options for P&T. A proof on the feasibility from neutronic point of view is given demonstrating sufficient breeding of fissile material from the inserted SNF. The system does neither require new resources nor produce additional waste, thus it provides a highly sustainable option for a future nuclear system fulfilling the requests of P&T as side effect. In addition, this nuclear system provides enhanced resistance against misuse of Pu and a significantly reduced fuel cycle. However, the new system requires a demand driven rethinking of the separation process to be efficient. PMID:28749952

  7. Nuclear Energy, Long Term Requirements

    International Nuclear Information System (INIS)

    Knapp, V.

    2006-01-01

    There are serious warnings about depletion of oil and gas and even more serious warnings about dangers of climate change caused by emission of carbon dioxide. Should developed countries be called to replace CO2 emitting energy sources as soon as possible, and the time available may not be longer then few decades, can nuclear energy answer the call and what are the requirements? Assuming optimistic contribution of renewable energy sources, can nuclear energy expand to several times present level in order to replace large part of fossil fuels use? Paper considers intermediate and long-term requirements. Future of nuclear power depends on satisfactory answers on several questions. First group of questions are those important for near and intermediate future. They deal with economics and safety of nuclear power stations in the first place. On the same time scale a generally accepted concept for radioactive waste disposal is also required. All these issues are in the focus of present research and development. Safer and more economical reactors are targets of international efforts in Generation IV and INPRO projects, but aiming further ahead these innovative projects are also addressing issues such as waste reduction and proliferation resistance. However, even assuming successful technical development of these projects, and there is no reason to doubt it, long term and large-scale nuclear power use is thereby not yet secured. If nuclear power is to play an essential role in the long-term future energy production and in reduction of CO2 emission, than several additional questions must be replied. These questions will deal with long-term nuclear fuel sufficiency, with necessary contribution of nuclear power in sectors of transport and industrial processes and with nuclear proliferation safety. This last issue is more political then technical, thus sometimes neglected by nuclear engineers, yet it will have essential role for the long-term prospects of nuclear power. The

  8. A study on national innovation system for the improvement of nuclear R and D performance

    Energy Technology Data Exchange (ETDEWEB)

    Yun, S. W.; Oh, K. B.; Kim, H. J.; Cheong, H. S.; Cheong, I.; Lee, J. H.; Won, B. C.; Cheong, C. E.; Lee, K. H.; Choi, H. M

    2006-01-15

    Review basic concept and analytical method concerned with technological innovation and NIS : concept and defition of technological innovation and NIS, background and evolution of the NIS theory, basic elements of NIS and their relationship. Identification on scientific-technological characteristics of the nuclear R and D and technological innovation : special aspect of the nuclear R and D and technological innovation, difficulty(or complexity) of the nuclear R and D and technological, innovation. Defining organizational-institutional elements of nuclear R and D and innovation allowing for nuclear scientific-technological peculiarity. Developing the model of national nuclear innovation system for analysis of the national R and D performance. Developing the analytical model including performance measure and procedure for national nuclear innovation system led mainly by national Rand D in Korea. Discussion about the national innovation system with other OECD/NEA member countries.

  9. A study on national innovation system for the improvement of nuclear R and D performance

    International Nuclear Information System (INIS)

    Yun, S. W.; Oh, K. B.; Kim, H. J.; Cheong, H. S.; Cheong, I.; Lee, J. H.; Won, B. C.; Cheong, C. E.; Lee, K. H.; Choi, H. M.

    2006-01-01

    Review basic concept and analytical method concerned with technological innovation and NIS : concept and defition of technological innovation and NIS, background and evolution of the NIS theory, basic elements of NIS and their relationship. Identification on scientific-technological characteristics of the nuclear R and D and technological innovation : special aspect of the nuclear R and D and technological innovation, difficulty(or complexity) of the nuclear R and D and technological, innovation. Defining organizational-institutional elements of nuclear R and D and innovation allowing for nuclear scientific-technological peculiarity. Developing the model of national nuclear innovation system for analysis of the national R and D performance. Developing the analytical model including performance measure and procedure for national nuclear innovation system led mainly by national Rand D in Korea. Discussion about the national innovation system with other OECD/NEA member countries

  10. A new scenery for nuclear energy at Brazil

    International Nuclear Information System (INIS)

    Vieira, Wilson J.; Menezes, Artur; Claro, Luiz H.; Urbina, Ligia M. Soto

    1999-01-01

    In a not so distant future, nuclear energy will substitute other forms of electric energy generation. In this work it is shown that recent factors around the world, that is, globalization, the need for technological innovation, quality programs, and the need to stop devastation of the planet by human activity is promoting a change in attitude of the population in respect to nuclear energy. A new public opinion is rising in a world which comes to the end of the millennium in the middle of a scientific and technological revolution, as important as the 1500 s discoveries or the French revolution. These facts reveal a historical moment to boost nuclear energy development. The reasons for this assumption are: the rise in scientific and technological activities promoted by the competition between countries to gain positions in production an exportation of goods and services with aggregate technology; the public acceptation of nuclear energy which is now considered as the most proper option to stop the environment damage caused by fossil fuels; the generalization of nuclear applications. These reasons prove the need of the human being to know and utilize the most complex phenomena of Nature to proceed in the road of its own evolution. (author)

  11. Union innovation in Ontario's nuclear industry

    International Nuclear Information System (INIS)

    MacKinnon, D.

    2003-01-01

    Over the last decade the Power Worker's Union (PWU) has embarked on a number of innovative approaches that have provided significant benefit to the nuclear industry. These include advanced labour relations approaches, equity participation and groundbreaking skills training initiatives. This presentation outlines these and other initiatives in the context of the union's view of the nuclear generation industry's future. (author)

  12. Technology innovation in an integrated energy economy

    International Nuclear Information System (INIS)

    Isaacs, E.

    2006-01-01

    A discussion on technology innovation in an integrated energy economy was presented. The mission, mandate and strategy of the Alberta Research Institute was first presented, followed by a discussion on oil supply needs based on historic demand. The presentation then addressed what might happen as oil demand and supply peak. A comparison of conventional versus unconventional resources was included along with a chart illustrating Alberta's contribution to total global reserves. Other topics addressed in the presentation in chart format included: natural gas requirements and natural gas use in oil sands; marketable gas production and the number of producing gas wells; Alberta's natural gas situation; and net United States imports of natural gas. Options for reducing natural gas consumption in oil sand production processes were also identified. These included steam assisted gravity drainage; solvent processes, electrical heating, combustion, nuclear, geothermal, and gasification processes. Advantages and disadvantages of replacing natural gas through gasification were presented. Last, the presentation provided an unconventional gas technology roadmap and discussed an innovative energy technology program. It was concluded that there are no clear cut options for replacing the huge amount of natural gas needed in the expanding oil sands sector. tabs., figs

  13. What drives innovation in nuclear reactors technologies? An empirical study based on patent counts

    International Nuclear Information System (INIS)

    Berthelemy, Michel

    2012-01-01

    This paper examines the evolution of innovation in nuclear power reactors between 1974 and 2008 in twelve OECD countries and assesses to what extent nuclear innovation has been driven by economic incentives, political decisions and safety regulation considerations. We use priority patent applications related to Nuclear Power Plants (NPPs) as a proxy for innovating activity. Our results highlight that nuclear innovation is partly driven by the conventional paradigm where both demand-pull, measured by NPPs constructions in the innovating country and in the rest of the world, and technology-push, measured by Research and Development (R and D) expenditures specific to NPPs, have a positive and significant impact on innovation. Our results also evidence that the impact of public R and D expenditures and national NPPs construction on innovation is stronger when the quality of innovation, measured by forward patent citations, is taken into account, and have a long run positive impact on innovation through the stock of knowledge available to innovators. In contrast, we show that political decisions following the Three Miles Island and Chernobyl nuclear accidents, measured by NPPs cancellations, have a negative impact on nuclear innovation. Finally, we find that the nuclear safety authority has an ambivalent effect on innovation. On one hand, regulatory inspections have a positive impact on innovation, one the other hand, regulatory decisions to temporarily close a NPP have an adverse impact on innovation. (author)

  14. Experience in Modelling Nuclear Energy Systems with MESSAGE: Country Case Studies

    International Nuclear Information System (INIS)

    2018-01-01

    Member States have recognized the increasing need to model future nuclear power scenarios in order to develop strategies for sustainable nuclear energy systems. The IAEA model for energy supply strategy alternatives and their general environmental impacts (MESSAGE) code is a tool that supports energy analysis and planning in Member States. This publication documents the experience gained on modelling and scenario analysis of nuclear energy systems (NES) using the MESSAGE code through various case studies performed by the participating Member States on evaluation and planning for nuclear energy sustainability at the regional or national level. The publication also elaborates on experience gained in modelling of global nuclear energy systems with a focus on specific aspects of collaboration among technology holder and technology user countries and the introduction of innovative nuclear technologies. It presents country case studies covering a variety of nuclear energy systems based on a once-through fuel cycle and a closed fuel cycle for thermal reactors, fast reactors and advanced systems. The feedback from case studies proves the analytical capabilities of the MESSAGE model and highlight the path forward for further advancements in the MESSAGE code and NES modelling.

  15. Nuclear energy and the nuclear energy industry

    International Nuclear Information System (INIS)

    Bromova, E.; Vargoncik, D.; Sovadina, M.

    2013-01-01

    A popular interactive multimedia publication on nuclear energy in Slovak. 'Nuclear energy and energy' is a modern electronic publication that through engaging interpretation, combined with a number of interactive elements, explains the basic principles and facts of the peaceful uses of nuclear energy. Operation of nuclear power plants, an important part of the energy resources of developed countries, is frequently discussed topic in different social groups. Especially important is truthful knowledgeability of the general public about the benefits of technical solutions, but also on the risks and safety measures throughout the nuclear industry. According to an online survey 'Nuclear energy and energy' is the most comprehensive electronic multimedia publication worldwide, dedicated to the popularization of nuclear energy. With easy to understand texts, interactive and rich collection of accessories stock it belongs to modern educational and informational titles of the present time. The basic explanatory text of the publication is accompanied by history and the present time of all Slovak nuclear installations, including stock photos. For readers are presented the various attractions legible for the interpretation, which help them in a visual way to make a more complete picture of the concerned issue. Each chapter ends with a test pad where the readers can test their knowledge. Whole explanatory text (72 multimedia pages, 81,000 words) is accompanied by a lot of stock of graphic materials. The publication also includes 336 photos in 60 thematic photo galleries, 45 stock charts and drawings, diagrams and interactive 31 videos and 3D models.

  16. Euratom innovation in nuclear fission: Community research in reactor systems and fuel cycles

    International Nuclear Information System (INIS)

    Goethem, G. van; Hugon, M.; Bhatnagar, V.; Manolatos, P.; Deffrennes, M.

    2007-01-01

    The following questions are naturally at the heart of the current Euratom research and training framework programme:(1)What are the challenges facing the European Union nuclear fission research community in the short (today), medium (2010) and long term (2040)? (2)What kind of research and technological development (RTD) does Euratom offer to respond to these challenges, in particular in the area of reactor systems and fuel cycles? In the general debate about energy supply technologies there are challenges of both a scientific and technological (S/T) as well as an economic and political (E/P) nature. Though the Community research programme acts mainly on the former, there is nevertheless important links with Community policy. These not only exist in the specific area of nuclear policy, but also more generally as is depicted in the following figure. It is shown in the particular area of nuclear fission, to what extent Euratom research, education and innovation ('Knowledge Triangle' in above figure) respond to the following long-term criteria: (1) sustainability, (2) economics, (3) safety, and (4) proliferation resistance. Research and innovation in nuclear fission technology has broad and extended geographical, disciplinary and time horizons:- the community involved extends to all 25 EU Member States and beyond; - the research assembles a large variety of scientific disciplines; - three generations of nuclear power technologies (called II, III and IV) are involved, with the timescales extending from now to around the year 2040. To each of these three generations, a couple of challenges are associated (six in total):- Generation II (1970-2000, today): security of supply+environmental compatibility; - Generation III (around 2010): enhanced safety and competitiveness (economics); - Generation IV (around 2040): cogeneration of heat and power, and full recycling. At the European Commission (EC), the research related to nuclear reactor systems and fuel cycles is

  17. Nuclear energy and process heating

    Energy Technology Data Exchange (ETDEWEB)

    Kozier, K.S

    1999-10-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating and several industrial applications. Although only About 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven, a

  18. Nuclear energy and process heating

    International Nuclear Information System (INIS)

    Kozier, K.S.

    1999-10-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating and several industrial applications. Although only About 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven, a determined

  19. International trend on development of an innovative nuclear reactor and its meanings

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Kazuaki [Institute of Applied Energy, Tokyo (Japan)

    2002-01-01

    On outlining on flow of so-called innovative or new type nuclear reactor, at first, an improvement line of large-scale WHR, contains ABWR-2, APWR and its successive APWR+ in Japan, APR in Korea, and EPR in Europe, all of which have super large-scale output of 1.5MKW to use their scale merits in maximum. And, the second type is fast reactor only in Russia and Japan which are under reviewing its actual using plan of its already established development route. Furthermore, nuclear industry in the world is allowable to say a has-been industry, even its R and D system is decrepit, its researchers are much aged, and even utilization and foreign development of nuclear energy as a protecting measure of global warming are pronounced its self-control at the Bonn Conference in last year. However, the Generation 4 International Forum led by U.S.A. since early of 2000 and the Innovative Reactor Development Program (INPRO) through the International Atomic Energy Association (IAEA) due to initiative of Russia are planned to cooperatively promote their programs. In order to obtain any priority on small-scale production considerable technical jump is required or R and D and technical development elements with technical gap is necessary, which must be proved establishment of a target to overcome their scale demerit. (G.K.)

  20. The 1st reveal of Gen-V nuclear energy. Prospecting investigation of nuclear power 2050 (A2050) for energy innovation in the nuclear industry

    International Nuclear Information System (INIS)

    Woo, Tae Ho; Lee, Soon Ho

    2012-01-01

    The proposed strategy for the future nuclear energy is analyzed. The conventional nuclear power plants (NPPs) are investigated by the 21 st style interdisciplinary research as the information technology (IT), nanotechnology (NT), and biological technology (BT). New kinds of energy production methods as spherical isotropic power reactor (SIPR) and nano lattice power (NLP) are introduced. In addition, the problems of Gen-IV technologies are challenged to be solved, which is the matters of the mechanical and thermal controls of several coolants cases. The simulation result shows the increasing for the usefulness of the business. The core and vessel are very tractable due to moving core vessel (SIPR). The concept of safety system is changed to be submerged into coolant instead of injection concept (SIPR). The commercial fusion energy is realized for mass energy productions (NLP). Eventually, the safety as well as economical status is increased comparing to previous NPPs. (orig.)

  1. The IAEA's international project on innovative nuclear reactors and fuel cycles (INPRO)

    International Nuclear Information System (INIS)

    Kuptiz, Juergen; )

    2002-01-01

    This paper presents the IAEA International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). It defines its rationale, key objectives and specifies the organizational structure. The IAEA General Conference (2000) has invited all interested Member states to combine their efforts under the aegis of the Agency in considering the issues of the nuclear fuel cycle, in particular by examining innovative and proliferation-resistant nuclear technology and invited Member states to consider to contribute to a task force on innovative nuclear reactors and fuel cycle

  2. INPRO Methodology to evaluate the Mexico nuclear energy system

    International Nuclear Information System (INIS)

    Cruz S, R. R.; Martin del C, C.

    2016-09-01

    The International Atomic Energy Agency has developed the so-called International Project on Fuel Cycles and Innovative Nuclear Reactors (INPRO), in order to make nuclear energy available to meet the energy needs of the 21 century, in a sustainable way. One of the tasks of the project is the evaluation of the nuclear systems, to check whether they meet the objectives of the project and whether they are sustainable. This paper explains the rationale and general characteristics of the project in the evaluation of nuclear energy systems based on the concept of sustainable development. It describes the methodology developed to carry out this evaluation, divided into seven areas, such as economic, environmental, security, etc., which together make up the sustainable development of energy through nuclear systems. The economic area is analyzed and the evaluation criteria and parameters established by INPRO are discussed, in order to evaluate the Mexican nuclear energy system using Nest (software developed within the same project) as a tool to support the economic evaluation of nuclear systems. Based on the energy strategy proposed by the Energy Secretary of the Mexican Government which seeks to reduce the greenhouse gas emissions from the national electricity generation park, two types of reactor of currently available technology (A BWR and AP1000), were compared and these in turn with other alternative energy generation technologies, such as combined cycle, geothermal and wind plants. Also, the results of the application of the INPRO methodology are presented. Finally, the recommendations on actions that could lead the Mexican nuclear energy system towards sustainable development and conclusions on the application of the methodology to the Mexican case are mentioned. (Author)

  3. Enabling Technologies for Ultra-Safe and Secure Modular Nuclear Energy

    International Nuclear Information System (INIS)

    Mendez Cruz, Carmen Margarita; Rochau, Gary E.; Middleton, Bobby; Rodriguez, Salvador B.; Rodriguez, Carmelo; Schleicher, Robert

    2016-01-01

    Sandia National Laboratories and General Atomics are pleased to respond to the Advanced Research Projects Agency-Energy (ARPA-e)'s request for information on innovative developments that may overcome various current reactor-technology limitations. The RFI is particularly interested in innovations that enable ultra-safe and secure modular nuclear energy systems. Our response addresses the specific features for reactor designs called out in the RFI, including a brief assessment of the current state of the technologies that would enable each feature and the methods by which they could be best incorporated into a reactor design.

  4. Enabling Technologies for Ultra-Safe and Secure Modular Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Cruz, Carmen Margarita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rochau, Gary E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Middleton, Bobby [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodriguez, Carmelo [General Atomics, San Diego, CA (United States); Schleicher, Robert [General Atomics, San Diego, CA (United States)

    2016-06-01

    Sandia National Laboratories and General Atomics are pleased to respond to the Advanced Research Projects Agency-Energy (ARPA-e)’s request for information on innovative developments that may overcome various current reactor-technology limitations. The RFI is particularly interested in innovations that enable ultra-safe and secure modular nuclear energy systems. Our response addresses the specific features for reactor designs called out in the RFI, including a brief assessment of the current state of the technologies that would enable each feature and the methods by which they could be best incorporated into a reactor design.

  5. Structural Materials for Innovative Nuclear Systems (SMINS-3) - Workshop Proceedings, Idaho National Laboratory, Idaho Falls, United States, 7-10 October 2013

    International Nuclear Information System (INIS)

    2015-01-01

    The development of innovative nuclear systems such as Gen IV reactors or critical and subcritical transmutation systems requires a good knowledge of the properties of the materials used for designing these reactors. A common feature in developing nuclear systems is the widely recognised need for experimental programmes to select and characterise structural materials. Structural materials research, both at national and international level, can significantly contribute to the future deployment of new systems. Since 2007, the OECD Nuclear Energy Agency Nuclear Science Committee organises a series of workshop on Structural Materials for Innovative Nuclear Systems (SMINS) to stimulate an exchange of information on current materials research programmes for innovative nuclear systems with a view to identifying and developing potential synergies. The third workshop was held on 7-10 October 2013 in Idaho Falls (United States) and organised through the collaboration of the Working Party on Scientific Issues of the Fuel Cycle (WPFC) and the Working Party on Multi-Scale Modelling of Fuels and Structural Materials for Nuclear Systems (WPMM) in co-operation with the European Community (EC) and the International Atomic Energy Agency (IAEA). A total of 74 abstracts were received for either an oral and poster presentation. These proceedings include the papers presented at the workshop

  6. The Role of Technological Innovations for Dry Storage of Used Nuclear Fuel

    International Nuclear Information System (INIS)

    Issard, H.

    2015-01-01

    We cannot predict the recovery from the financial crisis, but regardless of whether it is slow or quick, the global need for energy and the growth of electricity consumption have been confirmed. Many countries throughout the world are pursuing or have publicly expressed their intention to pursue the construction of Nuclear Power Plants or to extend the life of existing nuclear reactors and to address the back end of the fuel cycle. As always in history, when economic constraints become more severe, the answer is often innovation. Maintaining the high level of performance of nuclear energy and increasing safety with an attractive cost is today’s challenge. It is true for reactors, true also for fuel cycle and in particular for the back end: recycling and interim storage. Interim storage equipment or systems of used fuel are considered in this presentation. The industry is ready to provide support to countries and utilities for the development of radioactive material transportation and storage, and is striving to develop innovative solutions in wet or dry storage systems and casks and to bring them to the market. This presentation will elaborate on the two following questions: Where are the most crucial needs for technological innovations? What is the role of innovation? The needs of technological innovation are important in 3 domains: storage equipment design, interfaces and handling of used fuel and safety justification methodology. Concerning the design, continuous effort for optimisation of used fuel storage equipment requires innovations. These designs constitute the new generation of dry storage casks. The expectations are a higher payload thanks to new materials (such as metal matrix composites) and optimised geometry for criticality-safety, better thermal evacuation efficiency to accept higher fuel characteristics (more enrichment, burnup, shorter cooling time), resistance to impact of airplanes. Designs are also expected to be optimised for sustainable

  7. Innovation Benefits from Nuclear Phase-out: Can they Compensate the Costs?

    OpenAIRE

    Enrica De Cian; Samuel Carrara; Massimo Tavoni

    2012-01-01

    This paper investigates whether an inefficient allocation of abatement, due to constraints on the use of currently available low carbon mitigation options, can promote innovation in new technologies and eventually generate welfare gains. We focus on the case of nuclear power phase out, when accounting for endogenous technical change in energy efficiency and in low carbon technologies. The analysis uses the Integrated Assessment Model WITCH, which features multiple externalities due to both cl...

  8. Nuclear desalination option for the international reactor innovative and secure (IRIS) design

    International Nuclear Information System (INIS)

    Ingersoll, D. T.; Binder, J. L.; Conti, D.; Ricotti, M. E.

    2004-01-01

    The worldwide demand for potable water is on the rise. A recent market survey by the World Resources Institute shows a doubling in desalinated water production every ten years from both seawater and brackish water sources. The production of desalinated water is energy intensive, requiring approximately 3-6 kWh per cubic meter of produced desalted water. At current U.S. water use rates, 1 kW of energy capacity per capita (or 1000 MW for every one million people) would be required to meet water needs with desalted water. The choice of the desalination technology determines the form of energy required: electrical energy for reverse osmosis systems, relatively low quality thermal energy for distillation systems, and both electrical and thermal energy for hybrid systems such as pre-heat RO systems. Nuclear energy plants are attractive for large scale desalination application. Nuclear plants can provide both electrical and thermal energy in an integrated, co-generated fashion to produce a spectrum of energy products including electricity, desalted water, process heat, district heating, and potentially hydrogen generation. A particularly attractive option for nuclear desalination is to couple it with an advanced, modular, passively safe reactor design such as the International Reactor Innovative and Secure (IRIS) plant. This allows for countries with smaller electrical grid needs and infrastructure to add new electrical and desalination capacity in smaller increments and at distributed sites. The safety by design nature of the IRIS reactor will ensure a safe and reliable source of energy even for countries with limited nuclear power experience and infrastructure. Two options for the application of the IRIS nuclear power plant to the cogeneration of electricity and desalted water are presented, including a coupling to a reverse osmosis plant and a multistage flash distillation plant. The results from an economic assessment of the two options are also presented.(author)

  9. Methodological considerations in evaluating a proliferation resistance of innovative nuclear energy systems

    International Nuclear Information System (INIS)

    Kikuchi, Masahiro; Takaki, Naoyuki; Murajiri, Masahiro; Nakagome, Yoshihiro; Tokiwai, Moriyasu

    2004-01-01

    Over 25 years ago, INFCE studied the evaluation methodology of proliferation resistance. Recently, INPRO and GEN-IV coordinated by the IAEA and the USDOE respectively seek an appropriate innovative fuel cycle system for next generation that is furnished safer, sustainable, economical and reliable features. The evaluation methodology of the proliferation resistance is also assigned as an essential part of both studies. The IAEA established and has been strictly implementing the verification measures with accurate material accountancy system from the early of the 1970s in order to detect diversion of plutonium that is individually separated from irradiated nuclear material and recycled as MOX fuel. This paper firstly identifies the impedibility of intrinsic features of innovative fuel cycles and the safeguardability of selected nonproliferation measures as two individual essential parameters for evaluation of a proliferation resistance capability. As a next step, this paper also shows methodological considerations in evaluating the proliferation resistance levels as a multiple model of several clusters that are identified the ability of each parameter. (author)

  10. Electric energy: global perspective, the brazilian desires and the nuclear generation role

    International Nuclear Information System (INIS)

    Barroso, Antonio Carlos de Oliveira; Dieguez, Jose Antonio Diaz; Imakuma, Kengo

    2003-01-01

    An evaluation of nuclear power perspectives considering the concepts of sustainable development and energy needs for developed and under development countries was made. It is clear that the role of nuclear energy - as an economical, safe and emissions-free source of electric energy - will depend on the solution of some fundamental questions. Expanding capacity of nuclear energy should focus primarily on the need for innovation in nuclear fuel cycles and nuclear power plants. In connection with these evaluations a foresight study on the nuclear area was conducted in Brazil with a small group of experts in order to find out the requirements for the future reactors. This paper describes the purpose, methodology, results and conclusions of this prospective exercise. A comparison is also made with the preliminary results obtained by GIF and INPRO international initiatives whose main objective is to identify the mos promising technologies for future generations of nuclear reactors. (author)

  11. Market Potential for Non-electric Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    Konishi, T.; Kononov, S.; Kupitz, J.; McDonald, A.; Rogner, H.H.; Nisan, S.

    2002-01-01

    The paper presents results of a recent IAEA study to assess the market potential for non-electric applications of nuclear energy in the near (before 2020) and long term (2020-2050). The applications covered are district heating, desalination, industrial heat supply, ship propulsion, energy supply for spacecraft, and, to a lesser extent, 'innovative' applications such as hydrogen production, coal gasification, etc. While technical details are covered only briefly, emphasis is placed on economics and other factors that may promote or hinder the penetration of nuclear options in the markets for non-electric energy services. The study makes a distinction between the market size (demand for a given service) and the market potential for nuclear penetration (which may be smaller because of technical or non-technical constraints). Near-term nuclear prospects are assessed on the basis of on-going projects in the final stages of design or under construction. For the long term, use has been made of a qualitative scale ranging from 0 to 2 for five critical areas: market structure, demand pressure, technical basis, economic competitiveness, and public acceptance. The paper presents the resulting evaluation of long-term prospects for nuclear energy entering into non-electric markets. (authors)

  12. User-led innovation in civic energy communities

    NARCIS (Netherlands)

    de Vries, Gerben; Boon, Wouter; Peine, A.

    2016-01-01

    Building on user and grassroots innovation literature, we explore user innovations in five Dutch civic energy communities. Less attention has been paid to the interplay of social, symbolic and technological innovations that seems to be at the heart of many civic energy communities. In this paper, we

  13. Nuclear energy

    International Nuclear Information System (INIS)

    Kuhn, W.

    1986-01-01

    This loose-leaf collection is made up of five didactically prepared units covering the following subjects: basic knowledge on nuclear energy, nuclear energy in relation to energy economy, site issues, environmental compatibility of nuclear energy, and nuclear energy in the focus of political and social action. To this was added a comprehensive collection of material: specific scientific background material, a multitude of tables, diagrams, charts etc. for copying, as well as 44 transparent charts, mostly in four colours. (orig./HP) [de

  14. Portfolio of patents after the Brazilian Innovation Act: the case of the Comissao Nacional de Energia Nuclear - CNEN (Brazilian National Nuclear Energy Commission)

    International Nuclear Information System (INIS)

    Pereira, Gustavo Jose; Guimaraes, Regia Ruth Ramirez; Perry, Katia da Silva Peixoto; Teruya, Dirceu Yoshikazu

    2013-01-01

    The process of technological development is due to the need to promote a solution to a particular problem of agents, compete with products and/or processes on the international market and to promote scientific advancement. Thus, the patent system is a repository of knowledge for protection, for promotion of diffusion through licensing agreements and an indicator of technological development. In 2004, the Brazilian Government enacted the Brazilian Innovation Act and the mechanisms were improved for cooperation between firms and public education, science and technology organisations and also promoted the commercialisation of technology produced by public education, science and technology organisations and the mandatory establishment of Technology Transfer Offices. The Comissao Nacional de Energia Nuclear (CNEN) is a federal agency responsible for basic and applied research in the field of nuclear technology and has used the patent system since the 1980s to protect its knowledge. With the advent of the Innovation Act in 2004, there was a significant boost in requests for patents in CNEN which also established an internal set of normative acts and created a System of Innovation Management and Technology Innovation Offices in its research institutes to support management and dissemination of knowledge. The aim of this case study is to present the profile of the requests for patents by CNEN before and after the enactment of the Brazilian Innovation Act covering the period of time between 1980 and 2010. (author)

  15. Is nuclear energy reasonable with national economic regards?

    International Nuclear Information System (INIS)

    Scholz, L.

    1989-01-01

    In answering the question of whether a nuclear phaseout can be acceptable with national economic respects, one is confronted with the following basic question: Are the risks associated with nuclear energy reasonable in terms of safety and the conservation of the environment. Effective and responsible action in this question presupposes a clear political will and judgment. Because of the necessity of having to put up in the case of nuclear energy - a basic innovation whose development has yet a long way to go - with nuclear legal terms, are faced with a dilemma. In the opinion of energy engineers and the energy industry, the central part of the controversy on nuclear power is about the problem of coming to terms on what will be acceptable to the population as necessary precautionary measures for the event of an accident. Obviously, it is for the legislator to decide on the compatibility and social adequacy of a risk, not for the judge to interpret it on the basis of nuclear legal terms. Our national economy is now and in the future challenged with the task to research, develop, and realize hazard-prone technologies in order to shape the future. Where readiness to accept risks can no longer be assumed in the future, development prospects will be curbed in parallel. What national economic consequences will result from this, and whether they will be acceptable with national econiomic regards, is a question that has not so far been dealt with by the studies on a phaseout of nuclear energy. (orig./HSCH) [de

  16. Positioning of Nuclear in the Japanese Energy Mix

    International Nuclear Information System (INIS)

    Masuda, Tatsuo; Komiyama, Ryiochi

    2012-08-01

    Nuclear fission was discovered in the late 1930's. The first application went towards military use, and gradually expanded to civil use such as power generation. Power generation gained importance in two stages: firstly, to shift away from oil in power generation after the oil shocks in the 1970's, and second, to arrest climate change due to CO 2 -free nature of nuclear power more recently. This typically applies to Japan, which has become the world third largest in nuclear power generation. However, nuclear power is violent by nature, and major accidents of nuclear power plants shook the public confidence in nuclear safety. Japan has been put into such situation in a most radical way due to the Fukushima nuclear disaster of March 2011. This disaster may have its root causes in the history of nuclear development in Japan. Nuclear scientists failed to take the initiative in peaceful use of nuclear and lost the opportunity of making basic researches prior to the commercial introduction of nuclear power generation. Otherwise, safety issues could have been handled with greater care and 'nuclear safety myth' could not have prevailed. Today, the discussion is ongoing on how to position nuclear in the Japanese energy mix. Purely from economic viewpoint, due to the energy reality of Japan, it might be extremely difficult to sustain its economy without nuclear at least in short and medium term. However, the public opinions are divided with the vast majority in favor of zero-nuclear or decreased nuclear dependency. In this context, employing an energy-economic model, an attempt was made to analyze Japan's power generation mix in 2030 under possible nuclear scenarios and assessed the role of nuclear energy in its energy mix. A technical implication taken form this analysis is that, if intermittent renewables such as solar and wind may largely diffuse in power grid replacing nuclear power, output fluctuation from high penetration level of these energy sources will be

  17. Technology innovation in an integrated energy economy

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, E. [Alberta Energy Research Inst., Edmonton, AB (Canada)

    2006-07-01

    A discussion on technology innovation in an integrated energy economy was presented. The mission, mandate and strategy of the Alberta Research Institute was first presented, followed by a discussion on oil supply needs based on historic demand. The presentation then addressed what might happen as oil demand and supply peak. A comparison of conventional versus unconventional resources was included along with a chart illustrating Alberta's contribution to total global reserves. Other topics addressed in the presentation in chart format included: natural gas requirements and natural gas use in oil sands; marketable gas production and the number of producing gas wells; Alberta's natural gas situation; and net United States imports of natural gas. Options for reducing natural gas consumption in oil sand production processes were also identified. These included steam assisted gravity drainage; solvent processes, electrical heating, combustion, nuclear, geothermal, and gasification processes. Advantages and disadvantages of replacing natural gas through gasification were presented. Last, the presentation provided an unconventional gas technology roadmap and discussed an innovative energy technology program. It was concluded that there are no clear cut options for replacing the huge amount of natural gas needed in the expanding oil sands sector. tabs., figs.

  18. Perspective of nuclear energy and advanced reactors

    International Nuclear Information System (INIS)

    Lopez Jimenez, J.; Cobian, J.

    2007-01-01

    Future nuclear energy growth will be the result of the contributions of every single plant being constructed or projected at present as it is connected to the grid. As per IAEA, there exists presently 34 nuclear power plants under construction 81 with the necessary permits and funding and 223 proposed, which are plants seriously pursuing permits and financing. This means that in a few decades the number of nuclear power plants in operation will have doubled. This growth rate is characterised by the incorporation of new countries to the nuclear club and the gradually increasing importance of Asian countries. During this expansive phase, generation III and III+designs are or will be used. These designs incorporate the experience from operating plants, and introduce innovations on rationalization design efficiency and safety, with emphasis on passive safety features. In a posterior phase, generation IV designs, presently under development, will be employed. Generation IV consists of several types of reactors (fast reactors, very high temperature reactors, etc), which will improve further sustain ability, economy, safety and reliability concepts. The described situation seems to lead to a renaissance of the nuclear energy to levels hardly thinkable several years ago. (Author)

  19. Nuclear energy and energy security

    International Nuclear Information System (INIS)

    Mamasakhlisi, J.

    2010-01-01

    Do Georgia needs nuclear energy? Nuclear energy is high technology and application of such technology needs definite level of industry, science and society development. Nuclear energy is not only source of electricity production - application of nuclear energy increases year-by-year for medical, science and industrial use. As an energy source Georgia has priority to extend hydro-power capacity by reasonable use of all available water resources. In parallel regime the application of energy efficiency and energy conservation measures should be considered but currently this is not prioritized by Government. Meanwhile this should be taken into consideration that attempts to reduce energy consumption by increasing energy efficiency would simply raise demand for energy in the economy as a whole. The Nuclear energy application needs routine calculation and investigation. For this reason Government Commission is already established. But it seems in advance that regional nuclear power plant for South-Caucasus region would be much more attractive for future

  20. Towards a nuclear energy technology roadmap. A new service to the nuclear community

    International Nuclear Information System (INIS)

    Van Den Durpel, Luc; Thomas, Chris Creighton

    2005-01-01

    The role of nuclear energy in a future sustainable energy mix has been the subject of debates over the past few years. The future for nuclear energy will not only depend on this energy market development and the socio-political environment, but also on the innovation potential of the nuclear community to cope with the ever shorter business cycles in the energy market and the inherently longer term horizon needed in developing nuclear energy at its potential. Today's nuclear R and D community is in a transition phase, i.e. from former 'national' R and D-organisational structure to a truly international research area based on partnerships between organisations and companies creating networks-of-excellence. Several studies in the recent past have indicated the need for a shared vision in guiding this process. Identification of shared R and D-programmes, mergers and acquisitions of organizations and companies, knowledge gap analysis and the strategic mapping for each organization or company active in this nuclear R and D community. Technology Roadmapping is the appropriate tool to respond to these needs. Several stand-alone nuclear roadmap activities have been undertaken but lacked the possibility to analyse and make use of the synergies and interactions inherent to this technology development. The development has started of a master nuclear roadmap portal covering all the roadmap and technology foresight information in one so-called master nuclear roadmap. This master nuclear roadmap is implemented in an electronic online format allowing easy access, easy updating and lots of functionalities which may not be offered by traditional snap-shot roadmap reports. The paper will bring an overview on the role that technology roadmapping is playing in various industry sectors and the added value it may bring in the nuclear technology sector on a organizational as well as technology sector level. The paper will highlight the current status of this new initiative. (author)

  1. Application of optimization methods for nuclear energy system performance assessment by the MESSAGE software

    International Nuclear Information System (INIS)

    Andrianov, A.A.; Kuptsov, I.S.; Utyanskaya, T.V.

    2016-01-01

    This paper defines the multi-objective optimization and uncertainty treatment modules for the IAEA energy planning software MESSAGE intended for multi-objective optimization and sustainability assessments of innovative nuclear energy systems with account of uncertainty [ru

  2. Nuclear energy in Romania - a road to energy security

    International Nuclear Information System (INIS)

    Chirica, T.; Lucaciu, G.

    2009-01-01

    The Nuclear Program in Romania is a part of the national and European energy policy: sustainable development, security of energy supply and competitiveness; Romania has a proven experience in construction, commissioning and operation of NPPs, as well as the necessary support infrastructure: Unit 2 completion represents the major project of Nuclearelectrica during its first decade of existence; Innovative approach of Nuclearelectrica related is applied to Cernavoda NPP Units 3 and 4 completion: Major project for the second decade of company life; Risks management and allocation – major tool for project management and financing closure; Support from the political class is crucial, considering that the completion of such projects are covering more than one elections cycle

  3. Constructing China’s wind energy innovation system

    International Nuclear Information System (INIS)

    Klagge, Britta; Liu Zhigao; Campos Silva, Pedro

    2012-01-01

    The rapid rise of China as the largest wind energy market worldwide with several global leaders in turbine manufacturing received much attention from both scholarly and policy-analytical work. However, little attention has been given to the innovation activities of the Chinese wind industry. In our paper, we aim to address this gap, based on second-hand sources and over 50 personal interviews with wind energy-related experts. We argue that China’s wind industry has made great progress in terms of manufacturing and installing, but is confronted with various challenges and problems regarding the development of its indigenous innovation capabilities. Using innovation systems approaches as an analytical tool and focusing on institutions, actors, technology and their interaction in supporting innovation activities, we decompose the elements of China’s wind energy innovation system and their role in developing the domestic wind industry. Against this backdrop we identify and discuss challenges and obstacles in the development of an innovation-driven wind industry in China. The paper strongly argues that more attention should be paid to improve the coordination and cooperation among the various actors of the wind energy innovation system, to the build-up of a market-oriented education and training system as well as to intellectual property protection. - Highlights: ► Innovation systems concepts as analytical tool to understand wind energy in China. ► Focus on institutions, actor constellations and technology development in China. ► Analysis of success in manufacturing and the rapid rise of China’s wind industry. ► Identification of challenges and problems regarding innovation activities. ► Recommendation to (better) integrate innovation policy and wind industry policy.

  4. The 1{sup st} reveal of Gen-V nuclear energy. Prospecting investigation of nuclear power 2050 (A2050) for energy innovation in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho [Seoul National Univ. (Korea, Republic of). Dept. of Nuclear Engineering; Lee, Seok Jong [POSCO Engineering and Construction Co., Ltd., Incheon (Korea, Republic of); Lee, Soon Ho [SK Engineering and Construction Co., Ltd., Seoul (Korea, Republic of)

    2012-11-15

    The proposed strategy for the future nuclear energy is analyzed. The conventional nuclear power plants (NPPs) are investigated by the 21{sup st} style interdisciplinary research as the information technology (IT), nanotechnology (NT), and biological technology (BT). New kinds of energy production methods as spherical isotropic power reactor (SIPR) and nano lattice power (NLP) are introduced. In addition, the problems of Gen-IV technologies are challenged to be solved, which is the matters of the mechanical and thermal controls of several coolants cases. The simulation result shows the increasing for the usefulness of the business. The core and vessel are very tractable due to moving core vessel (SIPR). The concept of safety system is changed to be submerged into coolant instead of injection concept (SIPR). The commercial fusion energy is realized for mass energy productions (NLP). Eventually, the safety as well as economical status is increased comparing to previous NPPs. (orig.)

  5. Innovative designs of nuclear reactors

    International Nuclear Information System (INIS)

    Gabaraev, B.A.; Cherepnin, Y.S.

    2010-01-01

    The world development scenarios predict at least a 2.5 time increase in the global consumption of primary energy in the first half of the twenty-first century. Much of this growth can be provided by the nuclear power which possesses important advantages over other energy technologies. However, the large deployment of nuclear sources may take place only when the new generation of reactors appears on the market and will be free of the shortcomings found in the existing nuclear power installations. The public will be more inclined to accept nuclear plants that have better economics; higher safety; more efficient management of the radioactive waste; lower risk of nuclear weapons proliferation, and provided that the focus is made on the energy option free of ∇ e 2 generation. Currently, the future of nuclear power is trusted to the technology based on fast reactors and closed fuel cycle. The latter implies reprocessing of the spent nuclear fuel of the nuclear plants and re-use of plutonium produced in power reactors

  6. Determinants of innovation in energy intensive industry and implications for energy policy

    International Nuclear Information System (INIS)

    Song, ChiUng; Oh, Wankeun

    2015-01-01

    Abstracts: The Korean government adopted “green growth” in 2008 as an environmentally friendly growth strategy. The energy efficiency of Korea, however, is still relatively low due to the large portion of energy intensive industry (EII) in its manufacturing sector. To improve energy efficiency in Korea, from an EII perspective a new approach has to be taken because restructuring entire industries would take too much time and be too costly. This study aims to emphasize the importance of innovation and analyze the effects of R&D on product and process innovations in EII in Korea. The Probit model is adopted to estimate the effects of eight determinants in the Korea Innovation Survey 2008 data. The results of this study demonstrate that one of the most important determinants, the R&D personnel ratio, has a strong positive effect on both product and process innovation, while another determinant, R&D intensity, only has a strong and positive effect on process innovation in EII. Because of the resulting innovation, energy policies should be enacted to enhance energy efficiency. Thus, the Korean government should keep providing incentives for firms in EII to invest more financial and human resources in their R&D activities. -- Highlights: •We analyze determinants on two innovations in energy intensive industry (EII). •The R&D personnel ratio is effective in product innovation in EII. •Both R&D intensity and R&D personnel are effective in process innovation in EII. •In less EII, R&D variables have positive effects on product and process innovations. •The Korean government should strongly support R&D to improve energy efficiency

  7. Studies on nuclear fusion energy potential based on a long-term world energy and environment model

    International Nuclear Information System (INIS)

    Tokimatsu, K.; Fujino, J.; Asaoka, Y.

    2001-01-01

    This study investigates introduction conditions and potential of nuclear fusion energy as energy supply and CO 2 mitigation technologies in the 21st century. Time horizon of the 21st century, 10 regionally allocated world energy/environment model (Linearized Dynamic New Earth 21) is used for this study. Following nuclear fusion technological data are taken into consideration: cost of electricity (COE) in nuclear fusion introduction year, annual COE reduction rates, regional introduction year, and maximum regional plant capacity constraints by maximum plant construction speed. We made simulation under a constraint of atmospheric CO 2 concentration of 550 parts per million by volume (ppmv) targeted at year 2100, assuming that sequestration technologies and unknown innovative technologies for CO 2 reduction are available. The results indicate that under the 550ppm scenario with nuclear fusion within maximum construction speed, 66mill/kWh is required for introducing nuclear fusion in 2050, 92 mill/kWh in 2060, and 106 mill/kWh in 2070. Therefore, tokamak type nuclear fusion reactors of present several reactor cost estimates are expected to be introduced between 2060 and 2070, and electricity generation fraction by nuclear fusion will go around 20% in 2100 if nuclear fusion energy growth is limited only by the maximum construction speed. CO 2 reduction by nuclear fusion introduced in 2050 from business-as-usual (BAU) scenario without nuclear fusion is about 20% of total reduction amount in 2100. In conclusion, nuclear fusion energy is revealed to be one of the candidates of energy supply technologies and CO 2 mitigation technologies. Cost competitiveness and removal of capacity constraint factors are desired for use of nuclear fusion energy in a large scale. (author)

  8. Energy efficiency determinants: An empirical analysis of Spanish innovative firms

    International Nuclear Information System (INIS)

    Costa-Campi, María Teresa; García-Quevedo, José; Segarra, Agustí

    2015-01-01

    This paper examines the extent to which innovative Spanish firms pursue improvements in energy efficiency (EE) as an objective of innovation. The increase in energy consumption and its impact on greenhouse gas emissions justifies the greater attention being paid to energy efficiency and especially to industrial EE. The ability of manufacturing companies to innovate and improve their EE has a substantial influence on attaining objectives regarding climate change mitigation. Despite the effort to design more efficient energy policies, the EE determinants in manufacturing firms have been little studied in the empirical literature. From an exhaustive sample of Spanish manufacturing firms and using a logit model, we examine the energy efficiency determinants for those firms that have innovated. To carry out the econometric analysis, we use panel data from the Community Innovation Survey for the period 2008–2011. Our empirical results underline the role of size among the characteristics of firms that facilitate energy efficiency innovation. Regarding company behaviour, firms that consider the reduction of environmental impacts to be an important objective of innovation and that have introduced organisational innovations are more likely to innovate with the objective of increasing energy efficiency. -- Highlights: •Drivers of innovation in energy efficiency at firm-level are examined. •Tangible investments have a greater influence on energy efficiency than R&D. •Environmental and energy efficiency innovation objectives are complementary. •Organisational innovation favors energy efficiency innovation. •Public policies should be implemented to improve firms’ energy efficiency

  9. Energy System Expectations for Nuclear in the 21. Century: A Plausible Range

    International Nuclear Information System (INIS)

    Langlois, Lucille M.; McDonald, Alan; Rogner, Hans-Holger; Vera, Ivan

    2002-01-01

    This paper outlines a range of scenarios describing what the world's energy system might look like in the middle of the century, and what nuclear energy's most profitable role might be. The starting point is the 40 non-greenhouse-gas-mitigation scenarios in the Special Report on Emissions Scenarios (SRES) of the Intergovernmental Panel on Climate Change (IPCC, 2000). Given their international authorship and comprehensive review by governments and scientific experts, the SRES scenarios are the state of the art in long-term energy scenarios. However, they do not present the underlying energy system structures in enough detail for specific energy technology and infrastructure analyses. This paper therefore describes initial steps within INPRO (The International Project on Innovative Nuclear Reactors and Fuel Cycles of the International Atomic Energy Agency) to translate the SRES results into a range of possible nuclear energy technology requirements for mid-century. The paper summarizes the four SRES scenarios that will be used in INPRO and the reasons for their selection. It provides illustrative examples of the sort of additional detail that is being developed about the overall energy system implied by each scenario, and about specific scenario features particularly relevant to nuclear energy. As recommended in SRES, the selected scenarios cover all four SRES 'story-line families'. The energy system translations being developed in INPRO are intended to indicate how energy services may be provided in mid-century and to delineate likely technology and infrastructure implications. They will indicate answers to questions like the following. The list is illustrative, not comprehensive. - What kind of nuclear power plants will best fit the mid-century energy system? - What energy forms and other products and services provided by nuclear reactors will best fit the mid-century energy system? - What would be their market shares? - How difficult will it be to site new nuclear

  10. Hydrogen energy based on nuclear energy

    International Nuclear Information System (INIS)

    2002-06-01

    A concept to produce hydrogen of an energy carrier using nuclear energy was proposed since 1970s, and a number of process based on thermochemical method has been investigated after petroleum shock. As this method is used high temperature based on nuclear reactors, these researches are mainly carried out as a part of application of high temperature reactors, which has been carried out at an aim of the high temperature reactor application in the Japan Atomic Energy Research Institute. On October, 2000, the 'First International Conference for Information Exchange on Hydrogen Production based on Nuclear Energy' was held by auspice of OECD/NEA, where hydrogen energy at energy view in the 21st Century, technology on hydrogen production using nuclear energy, and so on, were published. This commentary was summarized surveys and researches on hydrogen production using nuclear energy carried out by the Nuclear Hydrogen Research Group established on January, 2001 for one year. They contains, views on energy and hydrogen/nuclear energy, hydrogen production using nuclear energy and already finished researches, methods of hydrogen production using nuclear energy and their present conditions, concepts on production plants of nuclear hydrogen, resources on nuclear hydrogen production and effect on global environment, requests from market and acceptability of society, and its future process. (G.K.)

  11. Potential wealth creation via nuclear energy in Malaysia

    International Nuclear Information System (INIS)

    Sabar Md Hashim; Dol Malek Md Sap

    2009-01-01

    Like any other developing nation, Malaysia aspires to be an economic force to be reckoned with. A strong opportunity may be in the form of nuclear energy as can be seen from the success stories of France and South Korea. Although nuclear is not the only common parameter that make developed nations tick, the multiplier spin-off impacts of nuclear as sources of wealth creation are deliberated. Foreseeable benefits include job creation (especially highly-skilled knowledge workers), spin-off technologies and vendor development as well as the opportunity to assume regional leadership in carefully-selected sectors. Categorically in Malaysian context, introduction of nuclear energy would yield numerous benefits, i.e. as a strong catalyst to enhance country's competitiveness by raising capacity for knowledge, cutting-edge technology, and eventually, innovation (National Mission Thrust 2) beside ensuring stable electricity generation price; as an element to move up value chain by creating high-skilled knowledge workers who could help to raise country's economic profile and plant the seed for a strong post-2020 Malaysia (National Mission Thrust 1); and as an agent to enhance sustainability and quality of life through clean energy (National Mission Thrust 4) by being environmentally benign due to its low greenhouse gas emissions with very minimal impact to global warming. Our point us that, being synergistic with national aspiration, nuclear energy is a genuine national agenda. (Author)

  12. On the selfacting safe limitation of fission power and fuel temperature in innovative nuclear reactors

    International Nuclear Information System (INIS)

    Scherer, W.; Brockmann, H.; Drecker, S.; Gerwin, H.; Haas, K.A.; Kugeler, K.; Ohlig, U.; Ruetten, H.J.; Teuchert, E.; Werner, H.; Wolf, L.

    1994-08-01

    Nuclear energy probably will not contribute significantly to the future worldwide energy supply until it can be made catastrophe-free. Therefore it has to be shown, that the consequences of even largest accidents will have no major impact to the environment of a power plant. In this paper one of the basic conditions for such a nuclear technology is discussed. Using mainly the modular pebble-bed high-temperature reactor as an example, the design principles, analytical methods and the level of knowledge as given today in controlling reactivity accidents by inherent safety features of innovative nuclear reactors are described. Complementary possibilities are shown to reach this goal with systems of different types of construction. Questions open today and resulting requirements for future activities are discussed. Today's knowledge credibly supports the possibility of a catastrophe-free nuclear technology with respect to reactivity events. (orig.)

  13. Guidance for the application of an assessment methodology for innovative nuclear energy systems. INPRO manual - Environment. Vol. 7 of the final report of phase 1 of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2008-11-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in the year 2000, based on a resolution of the IAEA General Conference (GC(44)/RES/21). The main objectives of INPRO are (1) to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner, (2) to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles; and (3) to create a forum to involve all relevant stakeholders that will have an impact on, draw from, and complement the activities of existing institutions, as well as ongoing initiatives at the national and international level. The INPRO manual is comprised of an overview volume (No. 1), and eight additional volumes covering the areas of economics (Volume 2), infrastructure (Volume 3), waste management (Volume 4), proliferation resistance (Volume 5), physical protection (Volume 6), environment (laid out in this volume) (Volume 7), safety of nuclear reactors (Volume 8), and safety of nuclear fuel cycle facilities (Volume 9). This volume should provide guidance to the assessor of an INS that is planned (or maintained or enlarged), describing how to apply the INPRO methodology in the area of environment. It follows the guidelines of the INPRO report 'Methodology for the assessment of innovative nuclear reactors and fuel cycles', together with its previous report 'Guidance for the evaluation for innovative nuclear reactors and fuel cycles'. The INPRO Manual starts with an introduction in Chapter 1. In Chapter 2 an overview is presented what kind of information must be available to an INPRO assessor to perform his environmental assessment. In Chapter 3 the background of the INPRO environmental basic principle BP1, the corresponding user requirements (UR) and criteria (CR) consisting of indicators (IN) and acceptance

  14. Innovation research on the safety supervision system of nuclear and radiation safety in Jiangsu province

    International Nuclear Information System (INIS)

    Zhang Qihong; Lu Jigen; Zhang Ping; Wang Wanping; Dai Xia

    2012-01-01

    As the rapid development of nuclear technology, the safety supervision of nuclear and radiation becomes very important. The safety radiation frame system should be constructed, the safety super- vision ability for nuclear and radiation should be improved. How to implement effectively above mission should be a new subject of Provincial environmental protection department. Through investigating the innovation of nuclear and radiation supervision system, innovation of mechanism, innovation of capacity, innovation of informatization and so on, the provincial nuclear and radiation safety supervision model is proposed, and the safety framework of nuclear and radiation in Jiangsu is elementally established in the paper. (authors)

  15. Study on the nuclear energy development policy to face the change in international nuclear industry

    International Nuclear Information System (INIS)

    Jo, Y. H.

    2009-10-01

    On 17 February 2009, American Recovery and Reinvestment Act(ARRA) came into effect after President Obama signed it. According to the Act, the total budget of $38.7 billion is used for energy sector, including energy efficiency and renewable energy($16.8 billion), electricity transmission and SMART grid($4.5 billion) and carbon capture storage and fossil energy($3.4 billion). On 26 June 2009, American Clean Energy and Security Act was passed in the U. S. House of Representatives by recorded vote as 219 - 212. The remarkable provisions of the Act are as follows: 1) greenhouse gas emission control using cap and trade system, 2) energy efficiency program, 3) plug-in hybrid vehicle program, 4) carbon capture and sequestration technology, 5) renewable energy portfolio standards and 6) smart grid. The important provisions relevant to nuclear industry of the ACESA are as follows: 1) deployment of Clean Energy Deployment Administration (CEDA) and assistance to clean energy project by CEDA, 2) DOE is required to submit to Congress a report on the use of thorium-fueled nuclear reactors by 1 February 2011, 3) DOE is required to establish a monetary award program for nuclear energy to encourage innovative means for recovering thermal energy as a potentially useful byproduct of electric power generation

  16. Nuclear Energy Infrastructure Database Fitness and Suitability Review

    Energy Technology Data Exchange (ETDEWEB)

    Heidrich, Brenden [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    In 2014, the Deputy Assistant Secretary for Science and Technology Innovation (NE-4) initiated the Nuclear Energy-Infrastructure Management Project by tasking the Nuclear Science User Facilities (NSUF) to create a searchable and interactive database of all pertinent NE supported or related infrastructure. This database will be used for analyses to establish needs, redundancies, efficiencies, distributions, etc. in order to best understand the utility of NE’s infrastructure and inform the content of the infrastructure calls. The NSUF developed the database by utilizing data and policy direction from a wide variety of reports from the Department of Energy, the National Research Council, the International Atomic Energy Agency and various other federal and civilian resources. The NEID contains data on 802 R&D instruments housed in 377 facilities at 84 institutions in the US and abroad. A Database Review Panel (DRP) was formed to review and provide advice on the development, implementation and utilization of the NEID. The panel is comprised of five members with expertise in nuclear energy-associated research. It was intended that they represent the major constituencies associated with nuclear energy research: academia, industry, research reactor, national laboratory, and Department of Energy program management. The Nuclear Energy Infrastructure Database Review Panel concludes that the NSUF has succeeded in creating a capability and infrastructure database that identifies and documents the major nuclear energy research and development capabilities across the DOE complex. The effort to maintain and expand the database will be ongoing. Detailed information on many facilities must be gathered from associated institutions added to complete the database. The data must be validated and kept current to capture facility and instrumentation status as well as to cover new acquisitions and retirements.

  17. The SGR Multipurpose - Generation IV - Transportable Cogeneration Nuclear Reactor with Innovative Shielding

    International Nuclear Information System (INIS)

    Pahladsingh, R.R.

    2002-01-01

    Deregulation and liberalization are changing the global energy-markets. At the same time innovative technologies are introduced in the electricity industry; often as a requirement from the upcoming Digital Society. Energy solutions for the future are more seen as a mix of energy-sources for generation-, transmission- and distribution energy-services. The Internet Energy-web based 'Virtual' enterprises are coming up and will gradually change our society. It the fast changing world we have to realize that there will be less time to look for the adequate solutions to anticipate on global developments and the way they will influence our own societies. Global population may reach 9 billion people by 2030; this will put tremendous pressure on energy-, water- and food supply in the global economy. It is time to think about some major issues as described below and come up with the right answers. These are needed on very short term to secure a humane global economic growth and the sustainable global environment. The DOE (Department of Energy - USA) has started the Generation IV initiative for the new generation of nuclear reactors that must lead to much better safety, economics and public acceptance the new reactors. The SGR (Simplified Gas-cooled Reactor) is being proposed as a Generation IV modular nuclear reactor, using graphite pebbles as fuel, whereby an attempt has been made to meet all the DOE requirements, to be used for future nuclear reactors. The focus in this paper is on the changing and emerging global energy-markets and shows some relevant criteria to the nuclear industry and how we can anticipate with improved and new designs towards the coming Digital Society. (author)

  18. Innovation management in renewable energy sector

    Science.gov (United States)

    Ignat, V.

    2017-08-01

    As a result of the globalization of knowledge, shortening of the innovation cycle and the aggravation of the price situation, the diffusion of innovation has accelerated. The protection of innovation has become even more important for companies in technologyintensive industries. Legal and actual patent right strategies complement one another, in order to amortize the investment in product development. Climate change is one of today’s truly global challenges, affecting all aspects of socio-economic development in every region of the world. Technology development and its rapid diffusion are considered crucial for tackling the climate change challenge. At the global level, the last decades have seen a continuous expansion of inventive activity in renewable energy technologies. The growth in Renewable Energy (RE) inventions has been much faster than in other technologies, and RE today represents nearly 6% of global invention activity, up from 1.5% in 1990. This paper discusses about global innovation activity in the last five years in the renewable energy sector and describes the Innovation and Technology Management process for supporting managerial decision making.

  19. Nuclear energy and the nuclear industry

    International Nuclear Information System (INIS)

    1979-01-01

    These notes have been prepared by the Department of Energy to provide information and to answer questions often raised about nuclear energy and the nuclear industry and in the hope that they will contribute to the public debate about the future of nuclear energy in the UK. The subject is dealt with under the headings; contribution of nuclear power, energy forecasts, nuclear fuels and reactor types, cost, thermal reactor strategy, planning margin, safety, nuclear licensing, unlike an atomic bomb, radiation, waste disposal, transport of nuclear materials, emergency arrangements at nuclear sites, siting of nuclear stations, security of nuclear installations, world nuclear programmes, international regulation and non-proliferation, IAEA safeguards arrangements in the UK, INFCE, and uranium supplies. (U.K.)

  20. Digital game for education and dissemination of nuclear energy applications

    International Nuclear Information System (INIS)

    Legey, Ana Paula; Silva, Marcio H.; Machado, Daniel M.; Santo, Andre Cotelli E.; Lapa, Celso M.F.; Mol, Antonio C.A.

    2015-01-01

    Students are immersed in a society with many possibilities of interaction, either computer or smart phones. In addition, students demand more innovation, dynamism and interactivity in classrooms. The form of education that can motivate students to engage in the learning process can get them to be interested in the lessons and not prematurely abandon schools. On the other hand, educational materials based on Virtual Reality (VR), as computer games, have been considered an important educational tool for making dynamic, motivating, innovative, in addition to achieving those areas where traditional methods are not reaching its goal. Motivated by the above, and given the competence developed by the Virtual Reality Laboratory of the Instituto de Engenharia Nuclear / CNEN and the collaboration of the University Center UniCarioca, was developed a digital game based on virtual reality tools for the teaching of a subject of area of science that needs to be addressed to society more contextualized way: the different applications of nuclear energy. It is expected that this digital game is an important tool for the dissemination, teaching and learning the benefits of nuclear energy. (author)

  1. Digital game for education and dissemination of nuclear energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Legey, Ana Paula; Silva, Marcio H.; Machado, Daniel M.; Santo, Andre Cotelli E.; Lapa, Celso M.F.; Mol, Antonio C.A., E-mail: analegey@hotmail.com, E-mail: machado.mol@gmail.com [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Realidade Virtual; Lima, Tiago Rocha; Paula, Vanessa M.; Junior, Israel L.; Augusto, Haline F., E-mail: tlrtiago@gmail.com, E-mail: vnspaula@hotmail.com, E-mail: halineffa@hotmail.com, E-mail: israel_plj@hotmail.com [Centro Universitario Carioca (UniCarioca), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Students are immersed in a society with many possibilities of interaction, either computer or smart phones. In addition, students demand more innovation, dynamism and interactivity in classrooms. The form of education that can motivate students to engage in the learning process can get them to be interested in the lessons and not prematurely abandon schools. On the other hand, educational materials based on Virtual Reality (VR), as computer games, have been considered an important educational tool for making dynamic, motivating, innovative, in addition to achieving those areas where traditional methods are not reaching its goal. Motivated by the above, and given the competence developed by the Virtual Reality Laboratory of the Instituto de Engenharia Nuclear / CNEN and the collaboration of the University Center UniCarioca, was developed a digital game based on virtual reality tools for the teaching of a subject of area of science that needs to be addressed to society more contextualized way: the different applications of nuclear energy. It is expected that this digital game is an important tool for the dissemination, teaching and learning the benefits of nuclear energy. (author)

  2. Kazakhstan innovation projects in nuclear technologies field

    International Nuclear Information System (INIS)

    Shkol'nik, V.S.; Tukhvatulin, Sh.T.

    2005-01-01

    At present in the Republic of Kazakhstan in preparation and realization stage there are several innovation projects related with use of advanced nuclear technologies. Projects are as follows: 'Implementation of Kazakhstan thermonuclear reactor tokamak (KTM)'; 'Implementation at the L.N. Gumilev Eurasian National University the inter-disciplinary research complex on the heavy ions accelerator base'; 'Development of the Technological Park 'Nuclear Technologies Center in Kurchatov city'; 'Development the first in the Central-Asian region Center of Nuclear Medicine and Biophysics'. The initiator and principal operator of these projects is the National Nuclear Center of the Republic of Kazakhstan

  3. Cooperative technological innovation and competitiveness in the nuclear arena

    International Nuclear Information System (INIS)

    Castro Galvan, A.; Marco Pelegrin, M.; Salve Galiana, R.; Vallejo Haya, J.; Tagle Gonzalez, J. A.

    2000-01-01

    R and D and, more recently, technological innovation and its relationship with competitivity are more and more part of conferences, books, articles and political speeches and very often are the central part of them. Innovation has become fashionable and many initiatives have come out in connection with it. However, the relationship between technological innovation and competitivity are not always obvious. The current article intends to illustrate some mechanisms that link these two concepts through a specific case, DTN, that is already providing results for the Spanish nuclear industry and whose example can be extrapolated to other industrial sectors. The importance given by the nuclear to the innovation, the research and the technological development it is not new either exclusively belong to any specific organisation but makes evident the coherence between its traditional approach and the current idea of modernizing the country promoting the national technological capacity. (Author)

  4. Energy innovation systems indicator report 2012

    Energy Technology Data Exchange (ETDEWEB)

    Borup, M. [Technical Univ. of Denmark. DTU Management Engineering, Kgs. Lyngby (Denmark); Klitkou, A.; Iversen, E. [Nordic Institute for Studies in Innovation, Research and Education, Oslo (Norway)

    2012-12-15

    Knowledge about the innovation systems with respect to new energy solutions and technologies is of central importance for understanding the dynamics of change in the energy sector and assessment of opportunities for moving towards more climate-friendly and sustainable energy systems and for socio-economic development in the field, creation of new businesses, work places, etc.. This is the topic that in general is addressed in the research activities of the ''EIS - Strategic research alliance for Energy Innovation Systems and their dynamics - Denmark in global competition''. As part of this, the present report gives an overview of the available indicators of energy innovation systems and points out some of the limitations and potentials there currently are in this connection. Focus is on Denmark. Figures for other countries, primarily Nordic or European, are in some cases showed as well, offering a comparative perspective. (Author)

  5. Proliferation resistance characteristics of advanced nuclear energy systems: a safeguard ability point of view

    International Nuclear Information System (INIS)

    Sevini, F.; Cojazzi, G.G.M.; Renda, G.

    2008-01-01

    Among the international community there is a renewed interest in nuclear power systems as a major source for energy production in the near to mid future. This is mainly due to concerns connected with future availability of conventional energy resources, and with the environmental impact of fossil fuels. International initiatives have been set up like the Generation 4. International Forum (GIF), the International Project on Innovative Nuclear Reactors and Fuel Cycles (IAEA-INPRO), and, partially, the US driven Global Nuclear Energy Partnership (GNEP), aimed at defining and evaluating the characteristics, in which future innovative nuclear energy systems (INS) will have to excel. Among the identified characteristics, Proliferation Resistance plays an important role for being able to widely deploy nuclear technology worldwide in a secure way. Studies having the objective to assess Proliferation Resistance of nuclear fuel cycles have been carried out since the nineteen seventies, e.g., the International Nuclear Fuel Cycle Evaluation (INFCE) and the Non-proliferation Alternative Systems Assessment Program (NASAP) initiatives, and all agree in stating that absolute intrinsic proliferation resistance, although desirable, is not achievable in the foreseeable future. The above finding is still valid; as a consequence, every INS will have to comply with agreements related to the Non Proliferation Treaty (NPT) and will require safeguards measures, implemented through extrinsic measures. This consideration led to a renewed interest in the Safeguard ability concept which can be seen as a bridge between intrinsic features and extrinsic features and measures.

  6. Solar energy innovation and Silicon Valley

    Science.gov (United States)

    Kammen, Daniel M.

    2015-03-01

    The growth of the U. S. and global solar energy industry depends on a strong relationship between science and engineering innovation, manufacturing, and cycles of policy design and advancement. The mixture of the academic and industrial engine of innovation that is Silicon Valley, and the strong suite of environmental policies for which California is a leader work together to both drive the solar energy industry, and keep Silicon Valley competitive as China, Europe and other area of solar energy strength continue to build their clean energy sectors.

  7. Sustainable energy innovation: a new era for Australia

    International Nuclear Information System (INIS)

    Schuck, S.

    2002-01-01

    This book profiles Australian capability in sustainable energy innovations. Chapter 1 outlines the country's underlying drivers and support programs for sustainable energy development and gives an overview of Australia's sustainable energy industry. Renewable energy companies and their projects are covered in Chapter 2 while sustainable energy innovation in the fields of coal gas and cogeneration are highlighted in Chapter 3. This is followed by Chapter 4 which turns the spotlight on energy efficiency in the building and transport sectors. Chapter 5 focuses on the challenge of bringing sustainable Australian energy innovations to global markets highlighting interaction with government support programs and the transition from laboratory to commercial product. Chapter 6 peers into the future taking stock of the innovations waiting in the wings and predicting the technologies that are likely to emerge in coming years onto our energy landscape

  8. Renewable energy-driven innovative energy-efficient desalination technologies

    International Nuclear Information System (INIS)

    Ghaffour, Noreddine; Lattemann, Sabine; Missimer, Thomas; Ng, Kim Choon; Sinha, Shahnawaz; Amy, Gary

    2014-01-01

    Highlights: • Renewable energy-driven desalination technologies are highlighted. • Solar, geothermal, and wind energy sources were explored. • An innovative hybrid approach (combined solar–geothermal) has also been explored. • Innovative desalination technologies developed by our group are discussed. • Climate change and GHG emissions from desalination are also discussed. - Abstract: Globally, the Kingdom of Saudi Arabia (KSA) desalinates the largest capacity of seawater but through energy-intensive thermal processes such as multi-stage flash (MSF) distillation (>10 kW h per m 3 of desalinated water, including electrical and thermal energies). In other regions where fossil energy is more expensive and not subsidized, seawater reverse osmosis (SWRO) is the most common desalination technology but it is still energy-intensive (3–4 kW h e /m 3 ). Both processes therefore lead to the emission of significant amounts of greenhouse gases (GHGs). Moreover, MSF and SWRO technologies are most often used for large desalination facilities serving urban centers with centralized water distribution systems and power grids. While renewable energy (RE) sources could be used to serve centralized systems in urban centers and thus provide an opportunity to make desalination greener, they are mostly used to serve rural communities off of the grid. In the KSA, solar and geothermal energy are of most relevance in terms of local conditions. Our group is focusing on developing new desalination processes, adsorption desalination (AD) and membrane distillation (MD), which can be driven by waste heat, geothermal or solar energy. A demonstration solar-powered AD facility has been constructed and a life cycle assessment showed that a specific energy consumption of <1.5 kW h e /m 3 is possible. An innovative hybrid approach has also been explored which would combine solar and geothermal energy using an alternating 12-h cycle to reduce the probability of depleting the heat source

  9. Status and trends of nuclear technologies - Report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2009-09-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was launched in the year 2000, based on a resolution by the IAEA General Conference (GC(44)/RES/21). INPRO intends to help to ensure that nuclear energy is available in the 21st century in a sustainable manner, and seeks to bring together all interested Member States, both technology holders and technology users, to consider, jointly, actions to achieve desired innovations. INPRO is taking care of the specific needs of developing countries. This IAEA publication is part of Phase 1 of INPRO. It intends to provide an overview on history, present situation and future perspectives of nuclear fuel cycle technologies. While this overview focuses on technical issues, nevertheless, the aspects of economics, environment, and safety and proliferation resistance are important background issues for this study. After a brief description about the INPRO project and an evaluation of existing and future reactor designs the publication covers nuclear fuel cycle issues in detail. It is expected that this documentation will provide IAEA Member States and their nuclear engineers and designers, as well as policy makers with useful information on status and trends of future nuclear fuel cycle technologies. Due to the size of the full report it was decided to create a summary of the information and attach a CD-ROM in the back of this summary report with the full text of the report

  10. Innovative ways of decontaminating nuclear facilities

    International Nuclear Information System (INIS)

    Bremmer, Jan; Gentes, Sascha; Ambos, Frank

    2009-01-01

    The great variety of surfaces to be decontaminated in a nuclear power plant increases demand for economic solutions and efficient processing systems. The Institute for Technology and Management in Building (TMB) of the University of Karlsruhe (TH) is working on this task in the new professorship of Sascha Gentes and, together with sat Kerntechnik GmbH, developing innovative techniques and tools for surface decontamination. In this effort, sat.Kerntechnik GmbH contributes 50% to the funding of the new professorship at the Karlsruhe Institute of Technology, the merger of the University of Karlsruhe and the Karlsruhe Research Center. The new professorship will extend its work also to various other innovative concepts to be employed not only in demolition but also in maintenance and operation of nuclear facilities. Above and beyond theoretical approaches, practical solutions are in the focus of work. For this reason, new developments are elaborated in close cooperation with the respective users. (orig.)

  11. Induced innovation, energy prices, and the environment

    Science.gov (United States)

    Popp, David Clifford

    The process of developing new technologies is a central question for economic theory as well as for public policy in many areas. For example, the development of cleaner, more efficient energy technologies will play an important role in reducing the threat of global warming. To study how technology evolves over time, this dissertation uses patent data on energy innovations from 1970 to 1991 to examine the impact of energy prices on energy-efficient innovations. Before this can be done, however, information on supply-side factors which influence innovation is also needed. In the case of innovation, supply-side factors are the usefulness of the existing base of scientific knowledge. Patent citations are used for this purpose. Subsequent citations to patents granted each year since 1970 are used to show that the returns to research and development (R&D) fall over time for most of the technologies studied. These estimates are then combined with data on demand-side factors, such as energy prices, to estimate a model of induced innovation in energy technologies. Both energy prices and the supply of knowledge are found to have strongly significant positive effects on innovation. Next, the Yale Technology Concordance (YTC), which maps patents to the industries in which they are used, is employed to construct a stock of energy-related knowledge for 14 energy intensive industries. The effect of changes in this stock on energy consumption in these industries is estimated. On average, the present value of energy savings resulting from a new patent is eight million dollars, with the maximum savings coming about five years after the initial patent application. Finally, the results of each regression are combined to simulate the impact of a ten percent energy tax. Initially, simple factor substitution due to the price change has the largest effect. However, because of the cumulative nature of R&D, induced innovation has a much larger effect than factor substitution in the long run

  12. Summary. “Materials Challenges in Nuclear Energy,” S.J. Zinkle, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Pestovich, Kimberly Shay [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-05

    Nuclear energy continues to grow in abundance and importance. It offers a future electric grid based entirely off of green energy, and it has numerous applications. Nuclear power has capabilities to desalinate water, deliver process heat or steam, affordably crack hydrogen from water, and extract unconventional fossil fuel sources. Current light water reactors demonstrate high reliability under normal operating conditions. Researchers have shown significant interest and investigating how to extend reactor lifespans and into other possible reactor designs. Further understanding of mechanisms responsible for corrosion and stress corrosion cracking, radiation hardening and degradation, and nuclear fuels innovations can lead to safer, more reliable, and cost-effective water-cooled nuclear reactors for electricity production.

  13. Nuclear energy of the future, solar energy of the future: some convergencies

    International Nuclear Information System (INIS)

    Flamant, G.

    2006-01-01

    Most medium- and long-term energy scenarios foresee the joint development of renewable and nuclear energies. In other words, the energy sources must be as various as possible. Among the renewable energy sources, the solar energy presents the highest development potential, even if today the biomass and wind energies are quantitatively more developed. In France, the solar power generation is ensured by photovoltaic systems. However, the thermodynamical conversion of solar energy (using concentrating systems) represents an enormous potential at the world scale and several projects of solar plants are in progress in Spain and in the USA. The advantages of this solution are numerous: high efficiency of thermodynamic cycles, possibility of heat storage and hybridization (solar/fuels), strong potential of innovation. Moreover, the solar concentrators allow to reach temperatures higher than 1000 deg. C and thus allow to foresee efficient thermochemical cycles for hydrogen generation. The future solar plants will have to be efficient, reliable and will have to be able to meet the energy demand. In order to reach high thermodynamic cycle efficiencies, it is necessary to increase the temperature of the hot source and to design combined cycles. These considerations are common to the communities of researchers and engineers of both the solar thermal and nuclear industries. Therefore, the future development of generation 4 nuclear power plants and of generation 3 solar plants are conditioned by the resolution of similar problems, like the coolants (molten salts and gases), the materials (metals and ceramics), the heat transfers (hydrogen generation), and the qualification of systems (how solar concentrators can help to perform qualification tests of nuclear materials). Short communication. (J.S.)

  14. Peaceful uses of nuclear energy: Meeting societal needs. 15 November 2004, Mumbai, India. 15th Annual Conference of the Indian Nuclear Society (INSAC-2004)

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2004-01-01

    A number of issues facing the international nuclear community and the IAEA discussed are concerned with Nuclear Power, including Global Growth and Current Status of Nuclear Power, Nuclear Safety Performance and Reliability, Factors That Will Shape Future Growth, Carbon Emissions and the Growth in Demand, security of energy supply, Public Perceptions and Misconceptions, Innovation in Reactor and Fuel Cycle Technology, Nuclear Security, Non-power nuclear applications, Nuclear Verification - The final aspect of the IAEA activity

  15. A Survey on the Development Status of Nano Technology as a Basic and Fundamental Technology of Nuclear Energy

    International Nuclear Information System (INIS)

    Lee, Byung Chul; Lee, J. Y.; Lee, G. H.

    2010-02-01

    - It is necessary to research and develop high-grade nuclear energy technology such as raising stability of nuclear power generation, improving economic feasibility and managing radioactive wastes. - Innovation of nano technology is composed of each stage as follows Energy source -> conversion to energy -> distribution of energy -> energy storage -> energy use which are a value added system in the part of energy. - It is necessary to strengthen support of the government to raise next-generation human resources for continuous promotion of nuclear energy, referring to KNOO program promoted by the UK government for raising recognition about nuclear energy, raising core human resources and developing next generation core technology

  16. They invent tomorrow's nuclear technologies

    International Nuclear Information System (INIS)

    Hurel, T.; Le Ngoc, B.

    2017-01-01

    3 leaders working in the nuclear industry for 3 different French entities: AREVA, EDF and CEA detail the role of innovation for tomorrow's nuclear energy. For AREVA, innovation is the response to the 4 challenges facing nuclear industry: improving the current business models, getting more modern and reliable plants, anticipating customers' wishes, and luring new young talents to ensure the future of the nuclear industry. As for EDF, innovation is the tool that will make nuclear energy absolutely necessary to counter-balance the intermittency of most renewable energies. EDF sees 3 main challenges to overcome: reactor safety, load following and developing a broader offer of reactors including small and modular reactors. For CEA, it is necessary to get a broad view of new nuclear systems and the nature of innovations can be very varied and for instance it can focus on a particular spot like fuel cladding or metal corrosion or on a complete new type of reactor. Innovation should also lead towards more predictive simulations. In all cases nuclear industry requires a better public financing for accelerating the implementation of innovations. (A.C.)

  17. Nuclear energy in Bulgaria. Improvement, decommission and new plant

    International Nuclear Information System (INIS)

    Hakata, Tadakuni

    2001-01-01

    Author stayed in Bulgaria at total of 14 months among four years from 1996 to perform a lot of exchange on regulation, research, technology, and so on relating to nuclear safety by widely visiting Kozrodoi nuclear power station, engineering companies, universities, and so on, at center of the Bulgaria Committee of Nuclear Energy Peaceful Application. On a base of knowledge obtained by their experiences, here were introduced on past, present and future subjects remained in Bulgaria, an old Russian satellite nations in East Europe and on present state of nuclear power generation and so on. As exchange with Kozrodoi power station was not a main object of his international cooperation, because of its many subjects its introduction became a main subject. Here were introduced on the newest information such as closure and new construction plan of WWER-440, innovation of energy sector, and so on, furthermore, added some informations obtained from Dr. D.Popov, present quasi-professor of Sophia Technical Collage. (G.K.)

  18. Nuclear energy worldwide

    International Nuclear Information System (INIS)

    Fertel, M.

    2000-01-01

    In this short paper the author provides a list of tables and charts concerning the nuclear energy worldwide, the clean air benefits of nuclear energy, the nuclear competitiveness and the public opinion. He shows that the nuclear energy has a vital role to play in satisfying global energy and environmental goals. (A.L.B)

  19. Offshore wind energy. Innovators talking; Wind op zee. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on offshore wind energy [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar wind op zee.

  20. Offshore wind energy. Innovators talking; Wind op zee. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on offshore wind energy [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar wind op zee.

  1. Renewable Energy Innovation Policy. Success Criteria and Strategies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    Renewable energy technology (RET) innovation involves new, improved processes, as well as strategies to accelerate RET development, ranging from breakthroughs with basic technology inventions and improved research, development and deployment (RDD) systems, to improved market mechanisms and commercialisation. In order to achieve RET innovation, a country needs to put in place the right policy approaches, frameworks, governance and policy instruments. This working paper was compiled to assist countries with policy development in order to strengthen renewable energy innovation, primarily through a discussion of design criteria for innovation policy frameworks. The report identifies broad success criteria for innovation policy in the sector and suggests strategic policy approaches to advance RET innovation in the context of constrained options, competition for resources, and national economic development goals. For renewable energy innovation policy regimes to be succeed, they must satisfy two broad criteria: (a) promotion of sustained multi-stakeholder engagement around an achievable, shared vision; and (b) appropriate positioning of a country or region to anticipate and benefit from renewable energy technology flows.

  2. Innovations in Nuclear Infrastructure and Education

    Energy Technology Data Exchange (ETDEWEB)

    John Bernard

    2010-12-13

    The decision to implement the Innovation in Nuclear Infrastructure and Engineering Program (INIE) was an important first step towards ensuring that the United States preserves its worldwide leadership role in the field of nuclear science and engineering. Prior to INIE, university nuclear science and engineering programs were waning, undergraduate student enrollment was down, university research reactors were being shut down, while others faced the real possibility of closure. For too long, cutting edge research in the areas of nuclear medicine, neutron scattering, radiochemistry, and advanced materials was undervalued and therefore underfunded. The INIE program corrected this lapse in focus and direction and started the process of drawing a new blueprint with positive goals and objectives that supports existing as well the next generation of educators, students and researchers.

  3. Innovations in Nuclear Infrastructure and Education

    International Nuclear Information System (INIS)

    Bernard, John

    2010-01-01

    The decision to implement the Innovation in Nuclear Infrastructure and Engineering Program (INIE) was an important first step towards ensuring that the United States preserves its worldwide leadership role in the field of nuclear science and engineering. Prior to INIE, university nuclear science and engineering programs were waning, undergraduate student enrollment was down, university research reactors were being shut down, while others faced the real possibility of closure. For too long, cutting edge research in the areas of nuclear medicine, neutron scattering, radiochemistry, and advanced materials was undervalued and therefore underfunded. The INIE program corrected this lapse in focus and direction and started the process of drawing a new blueprint with positive goals and objectives that supports existing as well the next generation of educators, students and researchers.

  4. Policies for the Energy Technology Innovation System (ETIS)

    NARCIS (Netherlands)

    Grubler, A.; Aguayo, F.; Gallagher, K.; Hekkert, M.P.; Jiang, K.; Mytelka, L.; Neij, L.; Nemet, G.; Wilson, C.

    2012-01-01

    Innovation and technological change are integral to the energy system transformations described in the Global Energy Assessment (GEA) pathways. Energy technology innovations range from incremental improvements to radical breakthroughs and from technologies and infrastructure to social institutions

  5. Current status and future direction of INPRO (International Project on Innovative Nuclear Reactors and Fuel Cycles)

    International Nuclear Information System (INIS)

    Omoto, Akira; Moriwaki, Masanao; Sugimoto, Jun; Nakai, Ryodai

    2007-01-01

    INPRO is an international forum to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles so as to ensure that nuclear energy is available to contribute to a sustainable development of the human, and IAEA becomes the secretariat for INPRO. The number of the members counts 28 by recent participation of Japan and U.S.A. now, and it is a unique forum to bring together both technology users and technology holders, that includes 5 countries which do not still have nuclear power generation. Until now it was phase I, and focused its activities to make clear the desired characteristics of nuclear energy system toward the future, and to develop methodology to evaluate various nuclear energy systems, but it shifted to phase II from July, 2006, and it planned three areas of activities such as improvement of evaluation methodology, institutional/infrastructure oriented activities and a collaborative project of technology development. Current status and future direction of INPRO was presented to encourage Japan in significant contributions of these three areas. (T. Tanaka)

  6. Energy storage deployment and innovation for the clean energy transition

    Science.gov (United States)

    Kittner, Noah; Lill, Felix; Kammen, Daniel M.

    2017-09-01

    The clean energy transition requires a co-evolution of innovation, investment, and deployment strategies for emerging energy storage technologies. A deeply decarbonized energy system research platform needs materials science advances in battery technology to overcome the intermittency challenges of wind and solar electricity. Simultaneously, policies designed to build market growth and innovation in battery storage may complement cost reductions across a suite of clean energy technologies. Further integration of R&D and deployment of new storage technologies paves a clear route toward cost-effective low-carbon electricity. Here we analyse deployment and innovation using a two-factor model that integrates the value of investment in materials innovation and technology deployment over time from an empirical dataset covering battery storage technology. Complementary advances in battery storage are of utmost importance to decarbonization alongside improvements in renewable electricity sources. We find and chart a viable path to dispatchable US$1 W-1 solar with US$100 kWh-1 battery storage that enables combinations of solar, wind, and storage to compete directly with fossil-based electricity options.

  7. Technology Platform on Sustainable Nuclear Energy - a report on the vision

    International Nuclear Information System (INIS)

    Potocnik, J.

    2008-01-01

    The aim of the report is to prepare the establishment of the Technology Platform on Sustainable Nuclear Energy (SNP-TP). The report puts forth a version of the short-term, medium-term and long-term development of nuclear fission technologies, whose goal it is to achieve sustainable nuclear power generation, significant improvement of its economic indices, and continuous safety improvement, and to prevent it from abuse. The document includes proposals for timescales and milestones of the development and deployment of potentially sustainable nuclear technologies and provisions for a harmonization of educational and training activities in all EU Member States and for innovation of their research infrastructures. For the development of nuclear it is vital that it gains public acceptance. Therefore it is necessary to support research in the safety of nuclear facilities, staff and public protection from ionizing radiation, handling of all kinds of nuclear waste, and inspection methods involving the public. The time plans proposed will form the backbone of the Strategic Research Agenda (SRA), which should help Europe keep its leadership position in nuclear power, both in the research domain and in the industrial domain. The report emphasizes that nuclear will hold a key position among European energy sources, and calls upon European countries to make all efforts to meet the vision for a sustainable nuclear energy in line with European Commission's Strategic Plan for Energy Technologies. (author)

  8. Plasma physics: innovation in energy and industrial technology

    International Nuclear Information System (INIS)

    Harris, J.H.

    2000-01-01

    Full text: Plasmas-ionised gases-are truly ubiquitous. More than 99% of the matter in the universe is in the plasma state. All of the matter that comprises the Earth, and all of the energy that powers it, has been processed through plasma fusion reactions in stars. Plasmas also play a crucial role in the Earth's atmosphere, which screens out harmful radiation, and make long distance radio propagation possible. While the study of plasma physics was originally motivated by astrophysics, the discipline has grown to address terrestrial concerns. These include lighting, welding, the switching of large electrical currents, the processing of materials such as semiconductors, and the quest to build fusion power reactors artificial stars for low-emissions generation of electricity from hydrogen isotopes. Plasma physics is fundamentally multi-disciplinary. It requires understanding not only of the complex collective behaviour of ionised gases in unusual conditions, but also knowledge of the atomic and nuclear physics that determines how plasmas are formed and maintained, and the specialised engineering and instrumentation of the mechanical and electromagnetic containers needed to confine plasmas on Earth. These characteristics make plasma physics a fertile breeding ground for imagination and innovation. This paper draws together examples of innovation stimulated by plasma physics research in the areas of energy, materials, communications, and computation

  9. Energy Innovation Systems Indicator Report 2012

    DEFF Research Database (Denmark)

    Klitkou, Antje; Borup, Mads; Iversen, Eric

    This report is the first report in a series of reports on energy innovation system indicators produced as part of the activities in the “EIS Strategic research alliance for Energy Innovation Systems and their dynamics – Denmark in global competition”. The work is based on a number of existing......). The report received also valuable input from a project commissioned by IPTS. This project addressed co-operation patterns and knowledge flows in patent documents in the fields of wind energy, photovoltaic energy and concentrating solar power (Iversen and Patel, 2010). The results relevant for this project...

  10. Nuclear energy

    International Nuclear Information System (INIS)

    Rippon, S.

    1984-01-01

    Do we need nuclear energy. Is it safe. What are the risks. Will it lead to proliferation. The questions are endless, the answers often confused. In the vigorous debates that surround the siting and operation of nuclear power plants, it is all too easy to lose sight of the central issues amid the mass of arguments and counter-arguments put forward. And there remains the doubt, who do we believe. This book presents the facts, simply, straightforwardly, and comprehensibly. It describes the different types of nuclear reactor, how they work, how energy is produced and transformed into usable power, how nuclear waste is handled, what safeguards are built in to prevent accident, contamination and misuse. More important, it does this in the context of the real world, examining the benefits as well as the dangers of a nuclear power programme, quantifying the risks, and providing an authoritative account of the nuclear industry worldwide. Technically complex and politically controversial, the contribution of nuclear energy to our future energy requirements is a crucial topic of our time. (author)

  11. Glossary of nuclear energy

    International Nuclear Information System (INIS)

    Seo, Du Hwan

    1987-01-01

    This book gives descriptions of explanations of terminologies concerning to nuclear energy such as analysis of financial safety of nuclear energy, radwaste disposal, fast breeder reactor, nuclear reactor and device, nuclear fuel and technique for concentration, using of nuclear energy radiation and measurement, plan for development of nuclear energy and international institution. This book includes 160 terms on nuclear energy and arranges in Korean alphabetical order.

  12. Nuclear energy

    International Nuclear Information System (INIS)

    Wethe, Per Ivar

    2009-01-01

    Today we know two forms of nuclear energy: fission and fusion. Fission is the decomposition of heavy nuclei, while fusion is the melting together of light nuclei. Both processes create a large surplus of energy. Technologically, we can currently only use fission to produce energy in today's nuclear power plants, but there is intense research worldwide in order to realize a controlled fusion process. In a practical context, today's nuclear energy is a sustained source of energy since the resource base is virtually unlimited. When fusion technology is realized, the resource supply will be a marginal problem. (AG)

  13. Nuclear energy data

    International Nuclear Information System (INIS)

    2002-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers additional textual and graphical information as compared with previous editions. It provides the reader with a comprehensive but easy-to-access overview on the status of and trends in the nuclear power and fuel cycle sector. This publication is an authoritative information source of interest to policy makers, experts and academics involved in the nuclear energy field. (authors)

  14. Nuclear energy data

    International Nuclear Information System (INIS)

    2003-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers additional textual and graphical information as compared with previous editions. It provides the reader with a comprehensive but easy-to-access overview on the status of and trends in the nuclear power and fuel cycle sector. This publication is an authoritative information source of interest to policy makers, experts and academics involved in the nuclear energy field. (author)

  15. I wonder nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Cheol

    2009-04-15

    This book consists seven chapters, which are powerful nuclear energy, principle of nuclear fission, nuclear energy in our daily life, is nuclear energy safe?, what is radiation?, radiation spread in pur daily life and radiation like a spy. It adds nuclear energy story through quiz. This book with pictures is for kids to explain nuclear energy easily.

  16. The Global Surge in Energy Innovation

    Directory of Open Access Journals (Sweden)

    Aidan Rhodes

    2014-08-01

    Full Text Available Policymakers are seeking a transformation of the energy system driven by concerns about climate change, energy security and affordability. At the same time, emerging developments in underpinning science and engineering are opening up new possibilities across the whole technology spectrum covering renewables and other supply side technologies, energy demand and energy infrastructure. This paper reviews both the “policy pull” for energy innovation activities and the “science and technology push”. It explores the expectations of a variety of organisations in both the public and private sector regarding these pressures and possibilities by assessing various scenarios and outlook exercises that have been published since 2013. It reveals a wide range of beliefs about the future development of the energy system. The paper then moves on to analyse private sector expenditure on energy research and development (R&D and public sector budgets for energy R&D and demonstration (RD&D. This analysis demonstrates significant divergences in patterns of innovation between the private and public sectors and leads to the hypothesis that the private sector is, broadly, taking measures to reinforce the existing energy paradigm while the public sector is focusing on new energy technologies that support wider policy objectives. This pattern is consistent with past technological transitions, with innovation efforts that would transform the energy system being counteracted by countervailing efforts that reinforce the existing fossil fuel-based paradigm.

  17. Energy: nuclear energy; Energies: l'energie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Lung, M. [Societe Generale pour les Techniques Nouvelles (SGN), 78 - Saint-Quentin-en-Yvelines (France)

    2000-11-01

    Convinced that the nuclear energy will be the cleaner, safer, more economical and more respectful of the environment energy of the future, the author preconizes to study the way it can be implemented, to continue to improve its production, to understand its virtues and to better inform the public. He develops this opinion in the presentation of the principal characteristics of the nuclear energy: technology, radioactive wastes, radiation protection, the plutonium, the nuclear accidents, the proliferation risks, the economics and nuclear energy and competitiveness, development and sustainability. (A.L.B.)

  18. Nuclear energy and nuclear weapons

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1983-06-01

    We all want to prevent the use of nuclear weapons. The issue before us is how best to achieve this objective; more specifically, whether the peaceful applications of nuclear energy help or hinder, and to what extent. Many of us in the nuclear industry are working on these applications from a conviction that without peaceful nuclear energy the risk of nuclear war would be appreciably greater. Others, however, hold the opposite view. In discussing the subject, a necessary step in allaying fears is understanding some facts, and indeed facing up to some unpalatable facts. When the facts are assessed, and a balance struck, the conclusion is that peaceful nuclear energy is much more part of the solution to preventing nuclear war than it is part of the problem

  19. Nuclear energy data

    International Nuclear Information System (INIS)

    2004-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers additional graphical information as compared with previous editions allowing a rapid comparison between capacity and requirements in the various phases of the nuclear fuel cycle. It provides the reader with a comprehensive but easy-to-access overview on the status of and trends in the nuclear power and fuel cycle sector. This publication is an authoritative information source of interest to policy makers, experts and academics involved in the nuclear energy field. (author)

  20. The Political Economy of Energy Innovation

    OpenAIRE

    Dasgupta, Shouro; De Cian, Enrica; Verdolini, Elena

    2017-01-01

    This paper empirically investigates the effects of environmental policy, institutions, political orientation, and lobbying on energy innovation and finds that they significantly affect the incentives to innovate and create cleaner energy efficient technologies. We conclude that political economy factors may act as barriers even in the presence of stringent environmental policy, implying that, to move towards a greener economy, countries should combine environmental policy with a general stren...

  1. Required Assets for a Nuclear Energy Applied R&D Program

    Energy Technology Data Exchange (ETDEWEB)

    Harold F. McFarlane; Craig L. Jacobson

    2009-03-01

    This report is one of a set of three documents that have collectively identified and recommended research and development capabilities that will be required to advance nuclear energy in the next 20 to 50 years. The first report, Nuclear Energy for the Future: Required Research and Development Capabilities—An Industry Perspective, was produced by Battelle Memorial Institute at the request of the Assistant Secretary of Nuclear Energy. That report, drawn from input by industry, academia, and Department of Energy laboratories, can be found in Appendix 5.1. This Idaho National Laboratory report maps the nuclear-specific capabilities from the Battelle report onto facility requirements, identifying options from the set of national laboratory, university, industry, and international facilities. It also identifies significant gaps in the required facility capabilities. The third document, Executive Recommendations for Nuclear R&D Capabilities, is a letter report containing a set of recommendations made by a team of senior executives representing nuclear vendors, utilities, academia, and the national laboratories (at Battelle’s request). That third report can be found in Appendix 5.2. The three reports should be considered as set in order to have a more complete picture. The basis of this report was drawn from three sources: previous Department of Energy reports, workshops and committee meetings, and expert opinion. The facilities discussed were winnowed from several hundred facilities that had previously been catalogued and several additional facilities that had been overlooked in past exercises. The scope of this report is limited to commercial nuclear energy and those things the federal government, or more specifically the Office of Nuclear Energy, should do to support its expanded deployment in order to increase energy security and reduce carbon emissions. In the context of this report, capabilities mean innovative, well-structured research and development programs

  2. Global patterns of renewable energy innovation, 1990–2009

    OpenAIRE

    Bayer, Patrick; Dolan, Lindsay; Urpelainen, Johannes

    2013-01-01

    Cost-effective approaches to mitigating climate change depend on advances in clean energy technologies, such as solar and wind power. Given increased technology innovation in developing countries, led by China, we focus our attention on global patterns of renewable energy innovation. Utilizing highly valuable international patents as our indicator of innovation, we examine the economic and political determinants of energy innovation in 74 countries across the world, 1990–2009. We find that hi...

  3. Nuclear energy. Selective bibliography

    International Nuclear Information System (INIS)

    2011-07-01

    This bibliography gathers articles and books from the French National Library about civil nuclear energy, its related risks, and its perspectives of evolution: general overview (figures, legal framework, actors and markets, policies); what price for nuclear energy (environmental and health risks, financing, non-proliferation policy); future of nuclear energy in energy policies (nuclear energy versus other energies, nuclear phase-out); web sites selection

  4. Development of a strategic plan for an international R and D project on innovative nuclear fuel cycles and power plants

    International Nuclear Information System (INIS)

    Kendall, J.; Choi, J.S.

    2002-01-01

    The long-term outlook for nuclear energy should be considered in a broader perspective of future energy needs, operational safety, proliferation and environmental impacts. An Advisory Group Meeting (AGM) on Development of a Strategic Plan for an International R and D Project on Innovative Nuclear Fuel Cycles and Power Plants was convened in Vienna in October 1999 to assess the criteria, the needs for international cooperation, and to formulate a strategic plan for project integration. (author)

  5. Innovative nuclear fuels: results and strategy

    International Nuclear Information System (INIS)

    Stan, Marius

    2009-01-01

    To facilitate the discovery and design of innovative nuclear fuels, multi-scale models and simulations are used to predict irradiation effects on the thermal conductivity, oxygen diffusivity, and thermal expansion of oxide fuels. The multi-scale approach is illustrated using results on ceramic fuels with a focus on predictions of point defect concentrations, stoichiometry, and phase stability. The high performance computer simulations include coupled heat transport, diffusion, and thermal expansion, gas bubble formation and temperature evolution in a fuel element consisting of UO2 fuel and metallic cladding. The second part of the talk is dedicated to a discussion of an international strategy for developing advanced, innovative nuclear fuels. Four initiative are proposed to accelerate the discovery and design of new materials: (a) Develop an international pool of experts, (b) Create Institutes for Materials Discovery and Design, (c) Create an International Knowledge base for experimental data, models (mathematical expressions), and simulations (codes) and (d) Organize international workshops and conference sessions. The paper ends with a discussion of existing and emerging international collaborations.

  6. Safety of evolutionary and innovative nuclear reactors: IAEA activities and world efforts

    International Nuclear Information System (INIS)

    Saito, T.; Gasparini, M.

    2004-01-01

    'Defence in Depth' approach constitutes the basis of the IAEA safety standards for nuclear power plants. Lessons learned from the current generation of reactors suggest that, for the next generation of reactor designs, the Defence in Depth philosophy should be retained, and that its implementation should be guided by the probabilistic insights. Recent developments in the area of general safety requirements based on Defence in Depth approach are examined and summarized. Global efforts to harmonize safety requirements for evolutionary nuclear power plants have involved many countries and organizations such as IAEA, US EPRI and European Utility EUR Organization. In recent years, developments of innovative nuclear power plants are also being discussed. The IAEA is currently developing a safety approach specifically for innovative nuclear reactors. This approach will eventually lead to a proposal of safety requirements for innovative reactors. Such activities related to safety requirements of evolutionary and innovative reactors are introduced. Various evolutionary and innovative reactor designs are reported in the world. The safety design features of evolutionary large LWRs, innovative LWRs, Modular High Temperature Gas Reactors and Small Liquid Metal Cooled LMRs are also introduced. Enhanced safety features proposed in such reactors are discussed and summarized according to the levels of Defence in Depth. For future nuclear plants, international cooperation and harmonization, especially in the area of safety, appear to be inevitable. Based on the past experience with many member states, the IAEA believes itself to be the uniquely positioned international organization to play this key role. (authors)

  7. Development of technologies on innovative-simplified nuclear power plant using high-efficiency steam injectors. (2) Analysis of heat balance of innovative-simplified nuclear power plant

    International Nuclear Information System (INIS)

    Goto, Shoji; Ohmori, Shuichi; Mori, Mitchitsugu

    2004-01-01

    It is possible to established simplified systems and reduced space and equipments using high-efficiency Steam Injector (SI) instead of low-pressure feed water heaters in Nuclear Power Plant (NPP). The SI works as a heat exchanger through direct contact between feedwater from condenser and extracted steam from turbine. It can get a higher pressure than supplied steam pressure, so it can reduce the feedwater pumps. The maintenance and reliability are still higher because SI has no movable parts. This paper describes the analysis of the heat balance and plant efficiency of this Innovative-Simplified NPP with high-efficiency SI. The plant efficiency is compared with the electric power of 1100MWe class original BWR system and the Innovative-Simplified BWR system with SI. The SI model is adapted into the heat balance simulator with a simplified model. The results show plant efficiencies of the Innovated-Simplified BWR system are almost equal to the original BWR one. The present research is one of the projects that are carried out by Tokyo Electric Power Company, Toshiba Corporation, and six Universities in Japan, funded from the Institute of Applied Energy (IAE) of Japan as the national public research-funded program. (author)

  8. Energy prices, technological knowledge and green energy innovation. A dynamic panel analysis of patent counts

    International Nuclear Information System (INIS)

    Kruse, Juergen; Wetzel, Heike; Koeln Univ.

    2014-01-01

    We examine the effect of energy prices and technological knowledge on innovation in green energy technologies. In doing so, we consider both demand-pull effects, which induce innovative activity by increasing the expected value of innovations, and technology-push effects, which drive innovative activity by extending the technological capability of an economy. Our analysis is conducted using patent data from the European Patent Office on a panel of 26 OECD countries over the period 1978-2009. Utilizing a dynamic count data model for panel data, we analyze 11 distinct green energy technologies. Our results indicate that the existing knowledge stock is a significant driver of green energy innovation for all technologies. Furthermore, the results suggest that energy prices have a positive impact on innovation for some but not all technologies and that the e.ect of energy prices and technological knowledge on green energy innovation becomes more pronounced after the Kyoto protocol agreement in 1997.

  9. New Technologies for Seawater Desalination Using Nuclear Energy

    International Nuclear Information System (INIS)

    2015-01-01

    As seawater desalination technologies are rapidly evolving and more States are opting for dual purpose integrated power plants (i.e. cogeneration), the need for advanced technologies suitable for coupling to nuclear power plants and leading to more efficient and economic nuclear desalination systems is obvious. The Coordinated Research Programme (CRP) New Technologies for Seawater Desalination using Nuclear Energy was organized in the framework of the Technical Working Group on Nuclear Desalination (TWG-ND). The TWGND was established in 2008 with the purpose of advising the IAEA Deputy Director General and promoting the exchange of technical information on national programmes in the field of seawater desalination using nuclear energy. This CRP project was conducted within the Nuclear Power Technology Development Section of the IAEA. It was launched in 2009 and completed by 2011, with research proposals received from nine Member States: Algeria, Egypt, France, India, Indonesia, Pakistan, the Syrian Arab Republic, the United Kingdom and the United States of America. The project aimed to review innovative technologies for seawater desalination which could be coupled to main types of existing nuclear power plant. Such coupling is expected to help making nuclear desalination safer and more economical, and hence more attractive for newcomer States interested in nuclear desalination. The project also aimed to collect ideas and suggestions necessary to update the IAEA desalination economic evaluation program (DEEP) software to become more robust and versatile. The specific objectives of the project were the introduction of innovative technologies and their economic viability, which could help make nuclear desalination a globally viable option for the safe and sustainable production of fresh water. The technologies under scrutiny in this CRP involve the low temperature horizontal tube multi-effect distillation, heat recovery systems using heat pipe based heat exchangers

  10. Nuclear energy today

    International Nuclear Information System (INIS)

    2003-01-01

    Energy is the power of the world's economies, whose appetite for this commodity is increasing as the leading economies expand and developing economies grow. How to provide the energy demanded while protecting our environment and conserving natural resources is a vital question facing us today. Many parts of our society are debating how to power the future and whether nuclear energy should play a role. Nuclear energy is a complex technology with serious issues and a controversial past. Yet it also has the potential to provide considerable benefits. In pondering the future of this imposing technology, people want to know. - How safe is nuclear energy? - Is nuclear energy economically competitive? - What role can nuclear energy play in meeting greenhouse gas reduction targets? - What can be done with the radioactive waste it generates? - Does its use increase the risk of proliferation of nuclear weapons? - Are there sufficient and secure resources to permit its prolonged exploitation? - Can tomorrow's nuclear energy be better than today's? This publication provides authoritative and factual replies to these questions. Written primarily to inform policy makers, it will also serve interested members of the public, academics, journalists and industry leaders. (author)

  11. Waste Oriented Innovation Culture-Transparency-Public Trust Cycle : Success Key for Nuclear Facility Management in Indonesia

    International Nuclear Information System (INIS)

    Susetyo Hario Putero; Haryono B Santosa

    2007-01-01

    Radioactive matter that is a primary material in a nuclear facility, including nuclear power generation, is a part of hazardous materials. Its existence will lead a controversy, although the precise management system for handling it is available. Public sometimes reject the nuclear technology due to the lack of understanding and wrong perception on that technology, especially the radioactive waste treatment. So, strategies should be designed for correcting public perception, until public acceptance on utilization of nuclear technology in Indonesia increase. The innovation development on radioactive waste management was studied by observing and interviewing managements and operators of Japan Atomic Energy Agency (JAEA), Japan. The constructing of concept was based on study result. Based on assumption that the current state of the radioactive waste treatment is suitable and there is serious improvement of technology, therefore systematic and precise oriented corrective efforts of public perception could be done. Transparency, intensive communication, and public participation that show responsible action for emerging mutual trust are basic of strategy that should be developed. High level public acceptance on utilization of nuclear technology is expected to be able for stimulating and supporting sustainable technology innovation culture. (author)

  12. Fusion-related work at the Nuclear Energy Agency Data Bank

    International Nuclear Information System (INIS)

    Henriksson, H.; Mompean, F.J.; Kodeli, I.

    2007-01-01

    The OECD Nuclear Energy Agency (NEA) Data Bank is part of an international network of data centres in charge of the compilation and dissemination of basic nuclear reaction data. Through its activities in the reaction data field, the NEA participates in the preparation of data for the modelling of future nuclear facility concepts and the development of reactor installations. A working party at the NEA on international nuclear data evaluation cooperation (WPEC) is established to promote the exchange of nuclear data evaluations, measurements, nuclear model calculations and validation. WPEC provides a framework for co-operative activities, such as the high priority request list for experimental data of special interest for certain applications, such as IFMIF or ITER. The NEA Data Bank administrates the collection and validation as well as the distribution of the Joint Evaluated Fusion and Fission (JEFF) library, where the activities in the European Fusion and Activation File projects (EFF and EAF respectively) play an important role for new data evaluations. The topics cover verification of activation and transport data, calculation methods and validation via integral experiments. The EFF project brings together all available expertise in Europe related to the nuclear data requirements of existing and future fusion devices, and the project contributed greatly to the internationally recognised nuclear data library JEFF-3.1, released in May 2005. The NEA also provides tools for the EFF project, such as computer codes for nuclear energy and radiation physics applications. Of special interest for fusion applications are the integral experiments collected in the Shielding Integral Benchmark Archive Database (SINBAD) database. SINBAD is an internationally established set of radiation shielding and dosimetry data containing over 80 experiments relevant for reactor and accelerator shielding. About 30 of these experiments are dedicated to fusion blanket neutronics. Materials

  13. Energy, environment and technological innovation

    Directory of Open Access Journals (Sweden)

    Fernando José Pereira da Costa

    2015-08-01

    Full Text Available The development problems can not be addressed without taking account of the environmental and energy issues, as well as the intimate relationship and the intense interaction between the two. In fact, the energy issue can not be analyzed separately from environmental issues, nor the advances in technological innovation, integrating dynamic-systemic way and so positioning address the issue of the development model to set the bulge the transition process experienced by the world since the seventies of the twentieth century. This transition, in turn, implies the passage of Paradigm of Fossil Fuels to Renewable Energy also called the Paradigm of renewable sources of energy, not just holding the energy problem, but towards to environmental and technological components. It is within this relatively slow and long process, instigator of high levels of volatility, turbulence inducing and motor of technological innovation, which is (re raises the question of the development model that defines how a new model/style development.

  14. Technical modifications and management innovations in exporting nuclear reactor projects

    International Nuclear Information System (INIS)

    Mao Xiaoming; Qin Xijiu; Ding Hu; Xue Zhaoqun; Wen Shengjun

    2009-01-01

    As a main channel for the foreign economic cooperation of China nuclear industry, China Zhongyuan Engineering Corporation (CZEC) has been constantly engaged in technical modifications and management innovations in its exporting nuclear reactor projects. In the implementation of heavy water research reactor contract in Algeria, CZEC had established a complete and adequate design standards system in compliance with the international standards, and made significant modifications to the reference reactor in the aspects of reactor power and reactor safety, solved quite some technical issues which-affected the reactor technical performance. The modifications and improvements enabled the technical parameters, safety features, reactor multipurpose application to attain to the advanced level in the world. In the 300 MWe PWR NPPs in Pakistan, safety features had been updated in line with upgrading regulatory requisites. The design philosophy and technology application demonstrated CZEC' s creation and innovation on basis of constant safety enhancement of nuclear power projects. Efforts had also been made by CZEC' s creation and innovation on basis of constant safety enhancement of nuclear power projects. Efforts had also been made by CZEC in promoting China made equipment items and components exportation. (authors)

  15. Nuclear energy consumption, oil prices, and economic growth: Evidence from highly industrialized countries

    International Nuclear Information System (INIS)

    Lee, Chien-Chiang; Chiu, Yi-Bin

    2011-01-01

    This study utilizes the Johansen cointegration technique, the Granger non-causality test of Toda and Yamamoto (1995), the generalized impulse response function, and the generalized forecast error variance decomposition to examine the dynamic interrelationship among nuclear energy consumption, real oil price, oil consumption, and real income in six highly industrialized countries for the period 1965-2008. Our empirical results indicate that the relationships between nuclear energy consumption and oil are as substitutes in the U.S. and Canada, while they are complementary in France, Japan, and the U.K. Second, the long-run income elasticity of nuclear energy is larger than one, indicating that nuclear energy is a luxury good. Third, the results of the Granger causality test find evidence of unidirectional causality running from real income to nuclear energy consumption in Japan. A bidirectional relationship appears in Canada, Germany and the U.K., while no causality exists in France and the U.S. We also find evidence of causality running from real oil price to nuclear energy consumption, except for the U.S., and causality running from oil consumption to nuclear energy consumption in Canada, Japan, and the U.K., suggesting that changes in price and consumption of oil influence nuclear energy consumption. Finally, the results observe transitory initial impacts of innovations in real income and oil consumption on nuclear energy consumption. In the long run the impact of real oil price is relatively larger compared with that of real income on nuclear energy consumption in Canada, Germany, Japan, and the U.S.

  16. Nuclear energy consumption, oil prices, and economic growth: Evidence from highly industrialized countries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chien-Chiang, E-mail: cclee@cm.nsysu.edu.tw; Chiu, Yi-Bin

    2011-03-15

    This study utilizes the Johansen cointegration technique, the Granger non-causality test of Toda and Yamamoto (1995), the generalized impulse response function, and the generalized forecast error variance decomposition to examine the dynamic interrelationship among nuclear energy consumption, real oil price, oil consumption, and real income in six highly industrialized countries for the period 1965-2008. Our empirical results indicate that the relationships between nuclear energy consumption and oil are as substitutes in the U.S. and Canada, while they are complementary in France, Japan, and the U.K. Second, the long-run income elasticity of nuclear energy is larger than one, indicating that nuclear energy is a luxury good. Third, the results of the Granger causality test find evidence of unidirectional causality running from real income to nuclear energy consumption in Japan. A bidirectional relationship appears in Canada, Germany and the U.K., while no causality exists in France and the U.S. We also find evidence of causality running from real oil price to nuclear energy consumption, except for the U.S., and causality running from oil consumption to nuclear energy consumption in Canada, Japan, and the U.K., suggesting that changes in price and consumption of oil influence nuclear energy consumption. Finally, the results observe transitory initial impacts of innovations in real income and oil consumption on nuclear energy consumption. In the long run the impact of real oil price is relatively larger compared with that of real income on nuclear energy consumption in Canada, Germany, Japan, and the U.S.

  17. Technology Roadmaps: Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This nuclear energy roadmap has been prepared jointly by the IEA and the OECD Nuclear Energy Agency (NEA). Unlike most other low-carbon energy sources, nuclear energy is a mature technology that has been in use for more than 50 years. The latest designs for nuclear power plants build on this experience to offer enhanced safety and performance, and are ready for wider deployment over the next few years. Several countries are reactivating dormant nuclear programmes, while others are considering nuclear for the first time. China in particular is already embarking on a rapid nuclear expansion. In the longer term, there is great potential for new developments in nuclear energy technology to enhance nuclear's role in a sustainable energy future.

  18. Understanding energy technology developments from an innovation system perspective

    Energy Technology Data Exchange (ETDEWEB)

    Borup, M.; Nygaard Madsen, A. [Risoe National Lab., DTU, Systems Analysis Dept., Roskilde (Denmark); Gregersen, Birgitte [Aalborg Univ., Department of Business Studies (Denmark)

    2007-05-15

    With the increased market-orientation and privatisation of the energy area, the perspective of innovation is becoming more and more relevant for understanding the dynamics of change and technology development in the area. A better understanding of the systemic and complex processes of innovation is needed. This paper presents an innovation systems analysis of new and emerging energy technologies in Denmark. The study focuses on five technology areas: bio fuels, hydrogen technology, wind energy, solar cells and energy-efficient end-use technologies. The main result of the analysis is that the technology areas are quite diverse in a number of innovation-relevant issues like actor set-up, institutional structure, maturity, and connections between market and non-market aspects. The paper constitutes background for discussing the framework conditions for transition to sustainable energy technologies and strengths and weaknesses of the innovation systems. (au)

  19. Nuclear re-think [The case for nuclear energy

    International Nuclear Information System (INIS)

    Moore, P.

    2006-01-01

    In the early 1970s, Patrick Moore, a co-founder of Greenpeace, believed that nuclear energy was synonymous with nuclear holocaust. Thirty years on, his views have changed because nuclear energy is the only non-greenhouse-gas-emitting power source that can effectively replace fossil fuels while satisfying the world's increasing demand for energy. Today, 441 nuclear plants operating globally avoid the release of nearly 3 billion tonnes of CO 2 emissions annually-the equivalent of the exhaust from more than 428 million cars. Concerns associated with nuclear energy are discussed including costs of nuclear energy, safety of nuclear plants, radioactive waste management, vulnerability of nuclear plants to terrorist attacks and diversion of nuclear fuel for weaponization. It is concluded that nuclear energy is the best way to produce safe, clean, reliable baseload electricity, and will play a key role in achieving global energy security. With climate change at the top of the international agenda, we must all do our part to encourage a nuclear energy renaissance

  20. Implications of Frugal Innovations on Sustainable Development: Evaluating Water and Energy Innovations

    Directory of Open Access Journals (Sweden)

    Jarkko Levänen

    2015-12-01

    Full Text Available Frugal innovations are often associated with sustainable development. These connections, however, are based on anecdotal assumptions rather than empirical evidence. This article evaluates the sustainability of four frugal innovations from water and energy sectors. For the purposes of the evaluation, a set of indicators was developed. Indicators are drawn from sustainable development goals by the United Nations and they encompass central dimensions of sustainability: ecological, social and economic. In this article, frugal innovations are compared to solutions that are currently used in similar low-income contexts. Studied frugal innovations were found more sustainable in terms of energy production and water purification capacity than the existing solutions. In terms of social sustainability, larger differences between innovations were found. For example, business models of frugal energy solutions focus on capacity building and the inclusion of marginalized low-income people, whereas business models of water purification solutions focus on more traditional corporate social responsibility activities, such as marketing awareness campaigns and cooperation with non-governmental organizations. Three major sustainability challenges for frugal innovators were identified: (1 the proper integration of material efficiency into product or service systems; (2 the patient promotion of inclusive employment; and (3 the promotion of inclusive and sustainable local industrialization. The article concludes that despite indisputable similarities between frugality and sustainability, it is problematic to equate the two conceptually.

  1. 11-th International conference Nuclear power safety and nuclear education - 2009. Abstracts. Part 1. Session: Safety of nuclear technology; Innovative nuclear systems and fuel cycle; Nuclear knowledge management

    International Nuclear Information System (INIS)

    2009-01-01

    The book includes abstracts of the 11-th International conference Nuclear power safety and nuclear education - 2009 (29 Sep - 2 Oct, 2009, Obninsk). Problems of safety of nuclear technology are discussed, innovative nuclear systems and fuel cycles are treated. Abstracts on professional education for nuclear power and industry are presented. Nuclear knowledge management are discussed

  2. ENERGY MANAGEMENT INNOVATION IN THE US SKI INDUSTRY

    Science.gov (United States)

    Ski areas represent a unique opportunity to develop innovative energy management practices in an industrial setting. Through a unique synergy of onsite generation, preferably by renewable sources and innovative technologies, and the energy storage potential of exis...

  3. Innovation in the processes of formation and training of nuclear professionals

    International Nuclear Information System (INIS)

    Ruiz Martinez, F. J.; Lambistos Agustin, A.

    2015-01-01

    Innovation is the intoduction of new products and services, new processes, new sources of supply and changes in industrial organization, and continuous customer, consumer or user oriented (J. A. Schumpeter). According to this idea, three mental restrictions usually apply to the innovative break: not only are new products, not only are technological developments, not only are revolutionary ideas so also. From the innovative tradition of Tecnatom Formacion Nuclear materailized in examples like the SGI or Human Factors simulators, in recent years has made considerable progress in the function with innovative solutions to improve the results of nuclear power plants, made available to our customers, as significant as the Training Programs for Shift Supervisors, the OJT/TPE processes, seminars Diagnostic Techniques, EDMG Simulator or ROI and ROIF projects. (Author)

  4. Nuclear energy dictionary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-15

    This book is a dictionary for nuclear energy which lists the technical terms in alphabetical order. It adds four appendixes. The first appendix is about people involved with nuclear energy. The second one is a bibliography and the third one is a checklist of German, English and Korean. The last one has an index. This book gives explanations on technical terms of nuclear energy such as nuclear reaction and atomic disintegration.

  5. Nuclear energy dictionary

    International Nuclear Information System (INIS)

    1978-03-01

    This book is a dictionary for nuclear energy which lists the technical terms in alphabetical order. It adds four appendixes. The first appendix is about people involved with nuclear energy. The second one is a bibliography and the third one is a checklist of German, English and Korean. The last one has an index. This book gives explanations on technical terms of nuclear energy such as nuclear reaction and atomic disintegration.

  6. Proceedings of the International Conference Nuclear Energy for New Europe 2002

    International Nuclear Information System (INIS)

    Jencic, I.; Tkavc, M.

    2002-01-01

    International Conference Nuclear Energy for New Europe is an annual meeting of the Nuclear Society of Slovenia. This CD-ROM is the collection of the 79 articles from Slovenia, surrounding countries and countries of the Central and Eastern European Region presented at the title conference. Topics are: innovative and alternative reactor concepts, thermal hydraulics and computational fluid dynamics, reactor and neutron physics, core and fuel management, severe accidents, policy issues and public information, nuclear power plant operation, probabilistic safety analysis, NPP accident analysis and support tools, accident analysis - integrated test facilities and research reactors, radioactive waste management and environmental impact

  7. International Youth Nuclear Congress (IYNC)

    International Nuclear Information System (INIS)

    Janin, D.

    2017-01-01

    International Youth Nuclear Congress (IYNC) is the global network of a new generation of nuclear professionals to: Communicate the benefits of nuclear energy; Promote the peaceful use of nuclear science and technology; Facilitate knowledge transfer between generations; Provide a platform for networking. The benefits of IYNC's biannual congress maintain IYNC. Innovation for Nuclear: To propose and reward innovative ideas focused on nuclear technologies for a sustainable development; To support young energy in thinking innovative solutions. The congress is funded from sponsorship (between 1000 and 45,000 euros) and individual participant's registration fees (400 euros including meals, technical visit and networking events). Knowledge Transfer at IYNC congress involves Speakers: top managers and nuclear experts, Publication of technical papers, Face-to-face with keynote speakers and organising Workshops

  8. Nuclear energy

    International Nuclear Information System (INIS)

    Seidel, J.

    1990-01-01

    This set of questions is based on an inquiry from the years 1987 to 1989. About 250 people af all age groups - primarily, however, young people between 16 and 25 years of age - were asked to state the questions they considered particularly important on the subject of nuclear energy. The survey was carried out without handicaps according to the brain-storming principle. Although the results cannot claim to be representative, they certainly reflect the areas of interest of many citizens and also their expectations, hopes and fears in connection with nuclear energy. The greater part of the questions were aimed at three topic areas: The security of nuclear power-stations, the effects of radioactivity on people and the problem of waste disposal. The book centres around these sets of questions. The introduction gives a general survey of the significance of nuclear energy as a whole. After this follow questions to do with the function of nuclear power stations, for the problems of security and waste disposal - which are dealt with in the following chapters - are easier to explain and to understand if a few physical and technical basics are understood. In the final section of the book there are questions on the so-called rejection debate and on the possibility of replacing nuclear energy with other energy forms. (orig./HP) [de

  9. Nuclear power a viable energy choice for the future

    International Nuclear Information System (INIS)

    Omoto, Akira

    2005-01-01

    Global energy use will most likely increase to more than double by 2050, which is e.g. the medium value of the projection in the Intergovernmentals Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES). How to reconcile the projections with the current nuclear status? In its first fifty years, nuclear power has grown from 5 MWe of power production to an installed worldwide capacity of 360 GWe in 30 countries. Nuclear power provides about 16% of the total electricity in the world and is contributing to the reduction of the emission of greenhouse gases from the power sector. The SRES scenarios identify a gap between the current electricity generation capacity and the capacity requirements in 2050 of 360 GWe and 1 500 GWe. Three key factors will determine the future contribution of nuclear power: - improved economics, - national energy choice and supporting infrastructure as well as institutional arrangement, and - the degree to which advances are implemented in evolutionary and innovative reactor and fuel cycle technologies, to address safety, waste and proliferation concerns, as well as economic competitiveness. The economics of nuclear power are one main topic in industrial countries. A Japanese case study on energy security credit shows that nuclear power will eventually be a winner in the long term perspective due to amortisation and stable fuel prices. Nuclear power is also a part of nuclear technologies to address daunting challenges in the developing countries - hunger, disease, poverty, and shortage of drinking water and electricity. (orig.)

  10. The status and role of nuclear energy in the sustainable energy development strategy in China

    International Nuclear Information System (INIS)

    Pan Ziqiang; Wang Yongping; Zhao Shoufeng; Zheng Yuhui

    2005-01-01

    improvement of ecological environment and an inexhaustible resource in the long term. At the end of the paper, conclusions are made and some suggestions are put forward to the nuclear energy development in China. China now still largely relies on conventional energy to satisfy its consumption needs, as coal and oil account for about two-thirds and one quarter of the total energy consumption mix respectively, Delivering sustainability has become a clear priority of the energy sector consisting with national objectives for sustainable development. In order to realize the strategic goal of economic and social development, a sustainable development strategy should be adopted concerning energy in the new era: focusing on the theme of sustainable development, following the main thread of structure adjustment and optimization, giving impetus to comprehensive innovation, improving competitiveness and energy efficiency, and promoting coordinated development among energy, economy and environment. (authors)

  11. Innovation Priorities in Nuclear and Radiation Technologies in Russia. View from Skolkovo

    International Nuclear Information System (INIS)

    Fertman, A.; Kovalevich, D.; Turtikov, V.; Zaytseva, N.

    2012-01-01

    The direction for the modernization and technological development of 'Nuclear Technologies' sector of the Russian economy comprises a group of scientific and engineering subjects (atomic engineering, technologies on the basis of radiation, change of properties of materials, radiation resistant microelectronics, etc.), and serves as the foundation of one of the most high-tech industries. The innovative development of nuclear technologies is an integral condition for the strengthening (and in some directions of conquering) a country's position as a global technological leader and preservation of defensive capability of the nation. For this reason, nuclear technologies became one of the priority areas for the activity of the Skolkovo Center. The wide opportunities offered by the application of nuclear technologies were already clear at the deployment stage of the 'Nuclear Project - 1'. In 1958, at the 2nd International conference on the peaceful use of nuclear energy in Geneva, the USSR presented more than 200 reports and communiques in all civil use of atomic energy directions.One of the major results of the development of the nuclear branch have become the developments in the sphere of control of radiation and magnetic fields (radiation technologies). This group of technologies have actively developed in collaboration with design and manufacturing of different types of equipment, including accelerators, neutron generators, lasers, HF-systems, detectors of particles and radiation, microscopes and telescopes, microwave microelectronics, etc. Today these technologies and equipment are used in a variety of other (non-power and not military) markets - and the list of these markets grows constantly. Among the fastest growing ones, we can list the markets of nuclear medicine, sterilization and disinfection, safety and non-destructive testing, ecology and water processing, extraction and the processing of minerals. Historically, the development of nuclear technologies

  12. Nuclear Energy Infrastructure Database Description and User’s Manual

    Energy Technology Data Exchange (ETDEWEB)

    Heidrich, Brenden [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    In 2014, the Deputy Assistant Secretary for Science and Technology Innovation initiated the Nuclear Energy (NE)–Infrastructure Management Project by tasking the Nuclear Science User Facilities, formerly the Advanced Test Reactor National Scientific User Facility, to create a searchable and interactive database of all pertinent NE-supported and -related infrastructure. This database, known as the Nuclear Energy Infrastructure Database (NEID), is used for analyses to establish needs, redundancies, efficiencies, distributions, etc., to best understand the utility of NE’s infrastructure and inform the content of infrastructure calls. The Nuclear Science User Facilities developed the database by utilizing data and policy direction from a variety of reports from the U.S. Department of Energy, the National Research Council, the International Atomic Energy Agency, and various other federal and civilian resources. The NEID currently contains data on 802 research and development instruments housed in 377 facilities at 84 institutions in the United States and abroad. The effort to maintain and expand the database is ongoing. Detailed information on many facilities must be gathered from associated institutions and added to complete the database. The data must be validated and kept current to capture facility and instrumentation status as well as to cover new acquisitions and retirements. This document provides a short tutorial on the navigation of the NEID web portal at NSUF-Infrastructure.INL.gov.

  13. Dossier nuclear energy

    International Nuclear Information System (INIS)

    1993-11-01

    The present Dutch government compiled the title document to enable the future Dutch government to declare its opinion on the nuclear energy problemacy. The most important questions which occupy the Dutch society are discussed: safe application and risks of nuclear energy, radioactive wastes and other environmental aspects, and the possible danger of misusing nuclear technology. In chapter two attention is paid to the policy, as formulated by the Dutch government, with regard to risks of nuclear power plants. Next the technical safety regulations that have to be met are dealt with. A brief overview is given of the state of the art of commercially available nuclear reactors, as well as reactors under development. The nuclear waste problem is the subject of chapter three. Attention is paid to the Dutch policy that has been formulated and is executed, the OPLA-program, in which the underground storage of radioactive wastes is studied, the research on the conversion of long-lived radioactive isotopes to short-lived radioactive isotopes, and planned research programs. In chapter four, other environmental effects of the use of nuclear power are taken into consideration, focusing on the nuclear fuel cycle. International obligations and agreements to guarantee the peaceful use of nuclear energy (non-proliferation) are mentioned and discussed in chapter four. In chapter six the necessity to carry out surveys to determine public support for the use of nuclear energy is outlined. In the appendices nuclear energy reports in the period 1986-present are listed. Also the subject of uranium supplies is discussed and a brief overview of the use of nuclear energy in several other countries is given. 2 tabs., 5 annexes, 63 refs

  14. Nuclear energy inquiries

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1993-02-01

    Our choice of energy sources has important consequences for the economy and the environment. Nuclear energy is a controversial energy source, subject to much public debate. Most individuals find it difficult to decide between conflicting claims and allegations in a variety of technical subjects. Under these circumstances, knowledge of various relevant inquiries can be helpful. This publication summarizes the composition and major findings of more than thirty nuclear energy inquiries. Most of the these are Canadian, but others are included where they have relevance. The survey shows that, contrary to some claims, virtually every aspect of nuclear energy has been subject to detailed scrutiny. The inquiries' reports include many recommendations on how nuclear energy can be exploited safely, but none rejects it as an acceptable energy source when needed. (Author) 38 refs

  15. Boot-camps, facilitators for innovation in the American nuclear sector

    International Nuclear Information System (INIS)

    Martinez Sancho, L.; Avrin, A.P.

    2017-01-01

    One of the first Nuclear Innovation Boot-camps was organized by the Berkeley University in august 2016, its aim was to develop innovation in nuclear technology through a collective approach in which people from different sectors share information and knowledge. The rules to follow come from the EFICA method: first, no censorship during the 'construction' phase, any idea is welcome; secondly, the more ideas, the more likely to get a relevant one; thirdly, unrealistic ideas can be turned into realistic ideas more often than expected so participants have to be imaginative; and fourthly, favor discussions in which ideas from different participants combine and generate new ideas. The Breakthrough Institute has made 5 propositions to favour innovation in the American nuclear sector: 1) to reform the certification process so that small companies can take part into it; 2) to make public laboratory equipment available to private enterprises; 3) to increase the public financing of research; 4) to let the private sector select the most appropriate technology even if there are public funds in the process. (A.C.)

  16. Sustainable nuclear energy dilemma

    Directory of Open Access Journals (Sweden)

    Afgan Naim H.

    2013-01-01

    Full Text Available Sustainable energy development implies the need for the emerging potential energy sources which are not producing adverse effect to the environment. In this respect nuclear energy has gained the complimentary favor to be considered as the potential energy source without degradation of the environment. The sustainability evaluation of the nuclear energy systems has required the special attention to the criteria for the assessment of nuclear energy system before we can make firm justification of the sustainability of nuclear energy systems. In order to demonstrate the sustainability assessment of nuclear energy system this exercise has been devoted to the potential options of nuclear energy development, namely: short term option, medium term option, long term option and classical thermal system option. Criteria with following indicators are introduced in this analysis: nuclear indicator, economic indicator, environment indicator, social indicator... The Sustainability Index is used as the merit for the priority assessment among options under consideration.

  17. Market potential for non-electric applications of nuclear energy

    International Nuclear Information System (INIS)

    2002-01-01

    The objective of this report is to assess the market potential for the non-electric applications of nuclear energy in the near (before 2020) and long (2020-2050) terms. The main non-electric applications are defined here as district heating, desalination (of sea, brackish and waste water), industrial heat supply, ship propulsion and the energy supply for spacecraft. This report is principally devoted to these applications, although a less detailed assessment of some innovative applications (e.g. hydrogen production and coal gasification) is also provided. While the technical details of these applications are covered briefly, emphasis is placed on the economic and other factors that may promote or hinder the penetration of the nuclear option into the market for non-electric energy services. The report is intentionally targeted towards expected demands. It is for this reason that its sections are structured by demand categories and not according to possible reactor types. At the same time, the orientation on the demand side can result in overlaps at the supply side, because the same nuclear reactor can often serve more than one type of demand. Such cases are noted as appropriate. Each section characterizes a specific non-electric application in terms of its market size, its prospects for nuclear technologies and the economic competitiveness of the technologies

  18. Policies and programs for sustainable energy innovations renewable energy and energy efficiency

    CERN Document Server

    Kim, Jisun; Iskin, Ibrahim; Taha, Rimal; Blommestein, Kevin

    2015-01-01

    This volume features research and case studies across a variety of industries to showcase technological innovations and policy initiatives designed to promote renewable energy and sustainable economic development. The first section focuses on policies for the adoption of renewable energy technologies, the second section covers the evaluation of energy efficiency programs, and the final section provides evaluations of energy technology innovations. Environmental concerns, energy availability, and political pressure have prompted governments to look for alternative energy resources that can minimize the undesirable effects for current energy systems.  For example, shifting away from conventional fuel resources and increasing the percentage of electricity generated from renewable resources, such as solar and wind power, is an opportunity to guarantee lower CO2 emissions and to create better economic opportunities for citizens in the long run.  Including discussions of such of timely topics and issues as global...

  19. TM-INES2: The 2nd Tokyo Tech-MIT symposium on innovative nuclear energy systems. Presentation materials

    International Nuclear Information System (INIS)

    2007-07-01

    The symposium of the title was held with four technical sessions; Innovative fast reactors, Advances in heat transfer, Nuclear hydrogen and synthetic fuels, Technologies for closing fuel cycle with 70 participants including 13 persons of MIT guests and 26 oral presentations in addition to a student poster session and the special educational session with over 150 participants. (J.P.N.)

  20. Nuclear energy and nuclear technology in Switzerland

    International Nuclear Information System (INIS)

    Graf, P.

    1975-01-01

    The energy crisis, high fuel costs and slow progress in the development of alternative energy sources, e.g. solar energy have given further impetus to nuclear power generation. The Swiss nuclear energy programme is discussed and details are given of nuclear station in operation, under construction, in the project stage and of Swiss participation in foreign nuclear stations. Reference is made to the difficulties, delays and resulting cost increases caused by local and regional opposition to nuclear power stations. The significant contributions made by Swiss industry and Swiss consulting engineers are discussed. (P.G.R.)

  1. Nuclear Knowledge Innovations Assimilation: The Impact of Organizational Knowledge Frames and Triple Helix Dynamics of Knowledge Base

    International Nuclear Information System (INIS)

    Hossain, M. D.; Sultana, T.

    2016-01-01

    Full text: Previous research did not investigate the impact of the TH dynamics of knowledge innovations on the nuclear knowledge innovations adoption/assimilation in the organizational context. Hence, the recommendation of R&D policy reformulation seems too broad. These gaps are the prime motivators for the research. In the organizational context, we posit that TH dynamics of knowledge base innovation serves as complements to managers’ knowledge frames related to a technology innovation. We examine interactions between three knowledge frames—integration frame, opportunism frame, and policy knowledge frame, and two TH dynamics of knowledge innovations—bilateral TH dynamics of knowledge innovations and trilateral TH dynamics of knowledge innovations, and their relationship with the assimilation of nuclear knowledge innovations. We aim to research on the issues of the dynamics of knowledge base of innovations involving TH collaborations (university, industry and government) in Bangladesh as a new build nuclear project. As a result, we can find out the impact of TH collaborations on organizational nuclear knowledge innovations management as well as core institutional problems of the knowledge base of innovation systems in terms of R&D policy. Finally, findings identify lack in production of nuclear knowledge innovations and concrete recommendation of R&D policy reformulation. (author

  2. Nuclear energy data

    International Nuclear Information System (INIS)

    1990-01-01

    Nuclear Energy Data is the OECD Nuclear Energy Agency's annual compilation of basic statistics on electricity generation and nuclear power in OECD countries. The reader will find quick and easy reference to the present status of and projected trends in total electricity generating capacity, nuclear generating capacity, and actual electricity production as well as on supply and demand for nuclear fuel cycle services [fr

  3. Nuclear energy and the nuclear industry

    International Nuclear Information System (INIS)

    Chester, K.

    1982-01-01

    In order to make a real contribution to the nuclear energy debate (is nuclear energy the limitless solution to man's energy problems or the path to man's destruction) people must be aware of the facts. The Science Reference Library (SRL) has a collection of the primary sources of information on nuclear energy - especially journals. This guideline aims to draw attention to the up-to-date literature on nuclear energy and its technology, freely available for consultation in the main Holborn reading room. After explanations of where to look for particular types of information and the SRL classification, the booklet gives lists and brief notes on the sources held. These are abstracting and indexing periodicals and periodicals. Reports, conference proceedings, patents, bibliographies, directories, year-books and buyer's guides are covered very briefly but not listed. Nuclear reactor data and organisations are also listed with brief details of each. (U.K.)

  4. Nuclear power - assures the energy future. V. 2

    International Nuclear Information System (INIS)

    1982-01-01

    Papers presented at the conference surveyed the present status of nuclear projects and future nuclear power plans, the export of electricity and technology, Canada's nuclear industry, and innovative nuclear opportunities

  5. Innovation of Energy Technologies: the role of taxes

    OpenAIRE

    Copenhagen Economics

    2011-01-01

    The study deals with the links between energy taxation and innovation and presents also new empirical evidence on the impact of energy taxes on patenting activities related to energy technologies. The study suggests that while taxation is a very effective driver of innovation, it can be usefully complemented with other public policy tools, such as public research grants and other technology policies.

  6. INPRO Methodology to evaluate the Mexico nuclear energy system; Metodologia INPRO para evaluar el sistema de energia nuclear de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Cruz S, R. R.; Martin del C, C., E-mail: crzslns.ricardoruben@gmail.com [UNAM, Facultad de Ingenieria, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico)

    2016-09-15

    The International Atomic Energy Agency has developed the so-called International Project on Fuel Cycles and Innovative Nuclear Reactors (INPRO), in order to make nuclear energy available to meet the energy needs of the 21 century, in a sustainable way. One of the tasks of the project is the evaluation of the nuclear systems, to check whether they meet the objectives of the project and whether they are sustainable. This paper explains the rationale and general characteristics of the project in the evaluation of nuclear energy systems based on the concept of sustainable development. It describes the methodology developed to carry out this evaluation, divided into seven areas, such as economic, environmental, security, etc., which together make up the sustainable development of energy through nuclear systems. The economic area is analyzed and the evaluation criteria and parameters established by INPRO are discussed, in order to evaluate the Mexican nuclear energy system using Nest (software developed within the same project) as a tool to support the economic evaluation of nuclear systems. Based on the energy strategy proposed by the Energy Secretary of the Mexican Government which seeks to reduce the greenhouse gas emissions from the national electricity generation park, two types of reactor of currently available technology (A BWR and AP1000), were compared and these in turn with other alternative energy generation technologies, such as combined cycle, geothermal and wind plants. Also, the results of the application of the INPRO methodology are presented. Finally, the recommendations on actions that could lead the Mexican nuclear energy system towards sustainable development and conclusions on the application of the methodology to the Mexican case are mentioned. (Author)

  7. Development of technologies on innovative-simplified nuclear power plant using high-efficiency steam injectors (2) analysis of heat balance of innovative-simplified nuclear power plant

    International Nuclear Information System (INIS)

    Goto, S.; Ohmori, S.; Mori, M.

    2005-01-01

    It is possible to establish simplified system with reduced space and total equipment weight using high-efficiency Steam Injector (SI) instead of low-pressure feedwater heaters in Nuclear Power Plant (NPP)(1)-(6). The SI works as a heat exchanger through direct contact between feedwater from the condensers and extracted steam from the turbines. It can get a higher pressure than supplied steam pressure, so it can reduce the feedwater pumps. The maintenance and reliability are still higher because SI has no movable parts. This paper describes the analysis of the heat balance and plant efficiency of this Innovative- Simplified NPP with high-efficiency SI. The plant efficiency is compared with the electric power of 1100MWe-class BWR system and the Innovative- Simplified BWR system with SI. The SI model is adapted into the heat balance simulator with a simplified model. The results show plant efficiencies of the Innovated-Simplified BWR system are almost equal to the original BWR one. The present research is one of the projects that are carried out by Tokyo Electric Power Company, Toshiba Corporation, and six Universities in Japan, funded from the Institute of Applied Energy (IAE) of Japan as the national public research-funded program. (authors)

  8. Nuclear energy data 2010

    CERN Document Server

    2010-01-01

    This 2010 edition of Nuclear Energy Data , the OECD Nuclear Energy Agency's annual compilation of official statistics and country reports on nuclear energy, provides key information on plans for new nuclear plant construction, nuclear fuel cycle developments as well as current and projected nuclear generating capacity to 2035 in OECD member countries. This comprehensive overview provides authoritative information for policy makers, experts and other interested stakeholders.

  9. Nuclear Materials Management U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO)

    International Nuclear Information System (INIS)

    Jesse Schreiber

    2008-01-01

    In light of the changing Defense Complex mission, the high cost to storing and protecting nuclear materials, and in consideration of scarcity of resources, it is imperative that the U.S. Department of Energy (DOE) owned nuclear materials are managed effectively. The U.S. Department of Energy, National Nuclear Security Administration (NNSA) Strategic Action Plan outlines the strategy for continuing to meet America's nuclear security goals, meeting the overall mission challenges of DOE and NNSA as well as giving focus to local missions. The mission of the NNSA/NSO Nuclear Materials Management (NMM) Program is to ensure that nuclear material inventories are accurately assessed and reported, future material needs are adequately planned, and that existing Nevada Test Site (NTS) inventories are efficiently utilized, staged, or dispositioned. The NNSA/NSO understands that the NTS has unique characteristics to serve and benefit the nation with innovative solutions to the complex problems involving Special Nuclear Materials, hazardous materials, and multi-agency, integrated operations. The NNSA/NSO is defining infrastructure requirements for known future missions, developing footprint consolidation strategic action plans, and continuing in the path of facility modernization and improvements. The NNSA/NSO is striving for the NTS to be acknowledged as an ideal location towards mission expansion and growth. The NTS has the capability of providing isolated, large scale construction and development locations for nuclear power or alternate energy source facilities, expanded nuclear material storage sites, and for new development in 'green' technology

  10. The economics of nuclear power: four essays on the role of innovation and industrial organization

    International Nuclear Information System (INIS)

    Berthelemy, Michel

    2013-01-01

    This thesis studies the role of innovation and industrial structures in the nuclear power sector. The analysis of innovation is based on the use of patent data as a measure of innovation effort. On the one hand, we study the determinants of innovation and, on the other hand, its impact on operating and safety performance of existing nuclear reactors and on construction costs. We show that nuclear safety regulation can induce innovation and improve safety performance, but at the same time contributes to increases in construction costs. The analysis of the role of industrial structures allows us to study the impact of learning by doing opportunities both for construction and operation of reactors, as well as the effect of electricity market liberalization on operating performance. In particular, we show that the divestiture of electricity production and distribution activities induces a substantial improvement in the availability of nuclear reactors. (author)

  11. A “Grammar” for assessing the performance of power-supply systems: Comparing nuclear energy to fossil energy

    International Nuclear Information System (INIS)

    Diaz-Maurin, François; Giampietro, Mario

    2013-01-01

    This article illustrates an innovative approach for the characterization and comparison of the performance of power-supply systems. The concept of ‘grammar’ forces to declare the pre-analytical decisions about: (i) semantic and formal categories used for the accounting – primary energy sources (PES), energy carriers (EC), and production factors; (ii) the set of functional and structural elements of the power-supply system included in the analysis. After having tamed the systemic ambiguity associated with energy accounting, it becomes possible to generate a double assessment referring to: (i) external constraints – the consumption of PES and the generation of waste and pollution; and (ii) internal constraints – the requirements of production factors such as human labor, power capacity, internal consumption of EC for making EC. The case study provided compares the production of EC (electricity) with “nuclear energy” and “fossil energy”. When considering internal constraints, nuclear energy requires about twice as much power capacity (5.9–9.5 kW/GWh vs. 2.6–2.9 kW/GWh) and 5–8 times more labor (570–640 h/GWh vs. 80–115 h/GWh). Things do not improve for nuclear energy when looking at external constraints – e.g. the relative scarcity of PES. This may explain the difficulties faced by nuclear energy to gain interest from investors. -- Highlights: ► A new approach to assess the performance of power-supply systems is provided. ► A biophysical analysis of the production process is based on the concept of grammar. ► A grammar is capable of handling the inherent ambiguity associated with energy. ► The performance of nuclear energy and fossil energy is compared using this grammar. ► Nuclear energy demonstrates a lower performance than fossil energy in making electricity.

  12. Freedom from nuclear energy myth

    International Nuclear Information System (INIS)

    Kim, Wonsik

    2001-09-01

    This book generalizes the history of nuclear energy with lots of myths. The contents of this book are a fundamental problem of nuclear power generation, the myth that nuclear energy is infinite energy, the myth that nuclear energy overcomes the crisis of oil, the myth that nuclear energy is cheap, safe and clean, the myth that nuclear fuel can be recycled, the myth that nuclear technology is superior and the future and present of nuclear energy problem related radiation waste and surplus of plutonium.

  13. Nuclear energy in Finland

    International Nuclear Information System (INIS)

    2011-01-01

    The purpose of the booklet is to provide an up-to-date overview of the use of nuclear energy in Finland as well as future plans regarding the nuclear energy sector. It is intended for people working in the nuclear energy or other energy sectors in other countries, as well as for those international audiences and decision-makers who would like to have extra information on this particular energy sector. Nuclear energy is described as part of the Finnish electricity market. (orig.)

  14. Is nuclear energy ethically justifiable?

    International Nuclear Information System (INIS)

    Zuend, H.

    1987-01-01

    Nuclear technology offers the chance to make an extremely long term contribution to the energy supply of the earth. The use of nuclear energy is ethically justifiable, provided that several fundamental rules are obeyed during the technical design of nuclear installations. Such fundamental rules were unequivocally violated in the nuclear power plant Chernobyl. They are, however, fulfilled in the existing Swiss nuclear power plants. Improvements are possible in new nuclear power plants. Compared to other usable energy systems nuclear energy is second only to natural gas in minimal risk per generated energy unit. The question of ethical justification also may rightly be asked of the non-use of nuclear energy. The socially weakest members of the Swiss population would suffer most under a renunciation of nuclear energy. Future prospects for the developing countries would deteriorate considerably with a renunciation by industrial nations of nuclear energy. The widely spread fear concerning the nuclear energy in the population is a consequence of non-objective discussion. 8 refs., 2 figs

  15. Nuclear energy questions

    International Nuclear Information System (INIS)

    This work pack contains illustrated booklets entitled: 'Uranium mining'; 'Reactors and radiation'; 'Nuclear waste'; 'Work book on energy'; 'Alternatives now'; 'Future energy choices'; 'Resources handbook'; and 'Tutors' guidelines': a map entitled 'Nuclear power in Britain': and two coloured pictures entitled 'Nuclear prospects' and 'Safe energy'. A cover note states that the material has been prepared for use in schools and study groups. (U.K.)

  16. Innovative public information programs. 1. Judgment of Opinion Leaders on Nuclear Energy Use

    International Nuclear Information System (INIS)

    Kim, Jong Seok

    2001-01-01

    Nuclear energy use requires a delicate balance, which arises between the technological factors involved in generating the power and the socio-psychological factors involved in bringing the power for consumer use. It appears that there are several forces such as media enterprise, civil activists, and political leaders that shape public opinion on nuclear power programs that include the assignment of new sites for nuclear power plants or radioactive waste disposal facilities. These forces often make matters worse or sometimes relieve the public of overstated facts. This paper reviews the structure of public acceptance and examines an extended perception model on nuclear energy among opinion leaders (see Fig. 1). A survey was carried out on 500 opinion leaders in Korean society, including political leaders, professors, seniors in media enterprises, executive members of business, and responsible civil activists in August 2000. The sample included a reasonable mix of opinion leaders. However, males represented 87% of the sample while females represented 13%. Skilled interviewers were joined in visiting the respondents for collecting data. For the data, the structural equation modeling approach was chosen to test the proposed model implied by the hypotheses developed by earlier studies. The model was analyzed using the program AMOS, from SmallWaters Corporation. The model yielded a good fit to the data (GFI = 0.972), which shows general features that indicate a reasonable fit of data to the proposed model. The model gives structural coefficients, and the values in the figure represent standardized estimates. The higher values represent more influence on the affected variables. Opinion leaders believe it should play an important role in providing electricity, and it can be dangerous if it is not controlled properly. Here, risks perceived could be assessed by hazards to health or the environment from radiation and the disaster of a possible accident at a nuclear power

  17. A Study on the Nuclear Technology Policy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. J.; Lim, C. Y.; Yang, M. H. (and others)

    2008-03-15

    The objective of the study was to make policy-proposes for enhancing the effectiveness and efficiency of national nuclear technology development programs. To do this, changes of international nuclear energy policy environment and trends of nuclear technology development was surveyed and analyzed. In the viewpoint of analysis of the changes in the global policy environment surrounding nuclear technology development and development of national nuclear R and D strategy, this study (1) analyzed trends of nuclear technology policies and (2) developed the nuclear energy R and D innovation strategies. To put it in more detail, each subject was further explored as follows; (1) themes to analyze trends of nuclear policies: nuclear Renaissance and forecast for nuclear power plant, International collaboration for advanced nuclear technologies in GIF, INPRO and I-NERI, The present situation and outlook for world uranium market (2) themes to develop of nuclear energy R and D innovation strategies: The mid-term strategy plan of the KAERI, The technological innovation case of the KAERI.

  18. A Study on the Nuclear Technology Policy

    International Nuclear Information System (INIS)

    Kim, H. J.; Lim, C. Y.; Yang, M. H.

    2008-03-01

    The objective of the study was to make policy-proposes for enhancing the effectiveness and efficiency of national nuclear technology development programs. To do this, changes of international nuclear energy policy environment and trends of nuclear technology development was surveyed and analyzed. In the viewpoint of analysis of the changes in the global policy environment surrounding nuclear technology development and development of national nuclear R and D strategy, this study (1) analyzed trends of nuclear technology policies and (2) developed the nuclear energy R and D innovation strategies. To put it in more detail, each subject was further explored as follows; (1) themes to analyze trends of nuclear policies: nuclear Renaissance and forecast for nuclear power plant, International collaboration for advanced nuclear technologies in GIF, INPRO and I-NERI, The present situation and outlook for world uranium market (2) themes to develop of nuclear energy R and D innovation strategies: The mid-term strategy plan of the KAERI, The technological innovation case of the KAERI

  19. Nuclear energy data 2011

    CERN Document Server

    2011-01-01

     . Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of statistics and country reports on nuclear energy, contains official information provided by OECD member country governments on plans for new nuclear plant construction, nuclear fuel cycle developments as well as current and projected nuclear generating capacity to 2035. For the first time, it includes data for Chile, Estonia, Israel and Slovenia, which recently became OECD members. Key elements of this edition show a 2% increase in nuclear and total electricity production and a 0.5% increase in nuclear generating ca

  20. International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). 2008 progress report

    International Nuclear Information System (INIS)

    2009-02-01

    The purpose of the work is to review the progress of the IAEA international project for innovative reactors and fuel cycle technologies (INPRO). The publication reports about the recognition of INPRO and on general Information on INPRO, its strengths, memberships, collaboration with other international initiatives, the INPRO organization and management and the history of INPRO. The section on the progress of INPRO in 2008 contains task 1: INPRO Methodology, task 2: Assessment Studies, task 3: Nuclear Energy Visions for the 21st Century, task 4: Infrastructure and Institutional Innovation, task 5: Common User Considerations and task 6: Collaborative Projects. Conclusions and New Trends are followed by a bibliography. Annex I deals with the INPRO project management in 2008 and Annex II provides a selection of photographs from 2008. Finally a list of acronyms is provided

  1. A Study to Improve the Role of Nuclear Energy Technology for the National New Growth Engine

    International Nuclear Information System (INIS)

    Kim, H. J.; Oh, K. B.; Chung, W. S.; Yun, S. W.; Jeong, Ik; Lee, J. H.; Won, B. C.

    2006-04-01

    This Paper aimed at looking for the new growth engines in the nuclear R and D field which leads the national prosperity and people's welfare in the 21st Century. As new growth engines in the nuclear R and D field, 17 innovative technologies(eight nuclear energy innovation system technologies and nine radiation fusion technologies) were selected. Selected technologies were evaluated through a expert group's peer review in accordance with criteria such as the aspect of technology, economy, and national strategy. In accordance with the expected commercialization time of the innovative technologies in the leading countries, these were categorized into two or three groups and In the aspect of their technology development level, 20 ∼ 40% technological gaps were shown. According to the business aspect, it was expected that innovative nuclear technologies selected as the new growth engines would have world markets of the range of 0.01 ∼ 100 billion $/year and the sales of 0.001 ∼ 10 billion $/year. Technology development strategy was suggested through colligation of the expert survey and an innovation theory. From the viewpoint of innovation stage, most of new growth engines in the nuclear R and D field were in position of the transitional phase(world) and the adaption stage(home). It was required that process and product technologies should be standardization in accordance with each innovation stage. For the successful commercialization, it was more important that R and D capability in R and D institutions should be improved and that appropriate funding and R and D infra should be well established and supportive. The results of this study will contribute to the establishment of the effective technology development strategy in the nuclear R and D field

  2. Nuclear energy in Spain

    International Nuclear Information System (INIS)

    Villota, C. de

    2007-01-01

    Carlos Villota. Director of Nuclear Energy of UNESA gave an overview of the Spanish nuclear industry, the utility companies and the relevant institutions. Companies of the nuclear industry include firms that produce heavy components or equipment (ENSA), manufacturers of nuclear fuel (ENUSA), engineering companies, the National Company for Radioactive Waste Management (ENRESA), and nuclear power plants (nine units at seven sites). Nuclear energy is a significant component of the energy mix in Spain: 11% of all energy produced in Spain is of nuclear origin, whilst the share of nuclear energy in the total electricity generation is approximately 23%. The five main players of the energy sector that provide for the vast majority of electricity production, distribution, and supply have formed the Spanish Electricity Industry Association (UNESA). The latter carries out co-ordination, representation, management and promotion tasks for its members, as well as the protection of their business and professional interests. In the nuclear field, UNESA through its Nuclear Energy Committee co-ordinates aspects related to nuclear safety and radiological protection, regulation, NPP operation and R and D. Regarding the institutional framework of the nuclear industry, ENSA, ENUSA and ENRESA are controlled by the national government through the Ministry of Economy and Finance and the Ministry of Science and Technology. All companies of the nuclear industry are licensed by the Ministry of Industry, Tourism and Trade (MITYC), while the regulatory body is the Nuclear Safety Council (CSN). It is noteworthy that CSN is independent of the government, as it reports directly to Parliament. (author)

  3. Nuclear energy in Finland

    International Nuclear Information System (INIS)

    2008-01-01

    The booklet provides and up-to-date overview of the use of nuclear energy in Finland as well as future plans regarding the nuclear energy sector. It is intended for people working in the nuclear or energy sector in other countries, as well as for those international audiences and decision-makers who would like to have extra information on this particular energy sector. In the booklet nuclear energy is described as part of the Finnish electricity market

  4. Nuclear Energy General Objectives

    International Nuclear Information System (INIS)

    2011-01-01

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world'. One way it achieves this objective is to issue publications in various series. Two of these series are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III, paragraph A.6, of the IAEA Statute, the IAEA safety standards establish 'standards of safety for protection of health and minimization of danger to life and property.' The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are primarily written in a regulatory style, and are binding on the IAEA for its own activities. The principal users are Member State regulatory bodies and other national authorities. The IAEA Nuclear Energy Series consists of reports designed to encourage and assist research on, and development and practical application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia and politicians, among others. The information is presented in guides, reports on the status of technology and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The series complements the IAEA's safety standards, and provides detailed guidance, experience, good practices and examples on the five areas covered in the IAEA Nuclear Energy Series. The Nuclear Energy Basic Principles is the highest level publication in the IAEA Nuclear Energy Series and describes the rationale and vision for the peaceful uses of nuclear energy. It presents eight Basic Principles on which nuclear energy systems should be based to fulfil nuclear energy's potential to help meet growing global energy needs. The Nuclear Energy Series Objectives are the second level publications. They describe what needs to be

  5. Clean Energy Innovation: Sources of Technical and Commercial Breakthroughs

    Energy Technology Data Exchange (ETDEWEB)

    Perry, T. D., IV; Miller, M.; Fleming, L.; Younge, K.; Newcomb, J.

    2011-03-01

    Low-carbon energy innovation is essential to combat climate change, promote economic competitiveness, and achieve energy security. Using U.S. patent data and additional patent-relevant data collected from the Internet, we map the landscape of low-carbon energy innovation in the United States since 1975. We isolate 10,603 renewable and 10,442 traditional energy patents and develop a database that characterizes proxy measures for technical and commercial impact, as measured by patent citations and Web presence, respectively. Regression models and multivariate simulations are used to compare the social, institutional, and geographic drivers of breakthrough clean energy innovation. Results indicate statistically significant effects of social, institutional, and geographic variables on technical and commercial impacts of patents and unique innovation trends between different energy technologies. We observe important differences between patent citations and Web presence of licensed and unlicensed patents, indicating the potential utility of using screened Web hits as a measure of commercial importance. We offer hypotheses for these revealed differences and suggest a research agenda with which to test these hypotheses. These preliminary findings indicate that leveraging empirical insights to better target research expenditures would augment the speed and scale of innovation and deployment of clean energy technologies.

  6. The energy innovation network : fuelling an integrated energy future

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, E. [Alberta Energy Research Inst., Edmonton, AB (Canada)

    2005-07-01

    Global primary energy demand is expected to increase by 1.7 per cent annually from 2000 to 2030, reaching an annual level of 15.3 billion tonnes of oil equivalent. Fossil fuels are expected to supply over 90 per cent of global incremental energy demand through 2030, while gas consumption is estimated to double between 2000 and 2030 due to its cost competitiveness, high availability and environmental advantages. Oil will remain the largest fuel source with demand increasing by 1.6 per cent annually. In order to tap the vast Canadian resource potential, innovative new technologies are needed to unlock the remaining conventional oil and gas reserves. It was argued that no single source of energy will be sufficient to meet world or Canadian demand. Therefore, there is also a need for a collaborative initiative to facilitate a long-term effort to implement an integrated energy innovation strategy. The Energy Innovation Network (EnergyINet) was created help industry, governments, and the research community address the challenges of ensuring an abundant supply of environmentally responsible energy. Given the right technologies, bitumen, coal, and coalbed methane have hundreds of years of production remaining. Production of those reserves depends on finding effective solutions to production costs, cost and availability of feedstocks needed to produce higher valued products, market limitations, and land, water, air, and greenhouse gas issues. The main challenge is to finance the development of such technologies into reliable, large-scale commercial applications. It was concluded that Canada's ability to maintain competitive energy supplies from conventional and non-conventional energy systems will be severely limited as the need to protect the environment, reduce greenhouse gas emissions, and conserve water moves higher on the public agenda. 13 refs.

  7. Status and trends of nuclear technologies - Report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). Additional information (Companion CD-ROM)

    International Nuclear Information System (INIS)

    2009-09-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was launched in the year 2000, based on a resolution by the IAEA General Conference (GC(44)/RES/21). INPRO intends to help to ensure that nuclear energy is available in the 21st century in a sustainable manner, and seeks to bring together all interested Member States, both technology holders and technology users, to consider, jointly, actions to achieve desired innovations. INPRO is taking care of the specific needs of developing countries. This IAEA publication is part of Phase 1 of INPRO. It intends to provide an overview on history, present situation and future perspectives of nuclear fuel cycle technologies. While this overview focuses on technical issues, nevertheless, the aspects of economics, environment, and safety and proliferation resistance are important background issues for this study. After a brief description about the INPRO project and an evaluation of existing and future reactor designs the publication covers nuclear fuel cycle issues in detail. It is expected that this documentation will provide IAEA Member States and their nuclear engineers and designers, as well as policy makers with useful information on status and trends of future nuclear fuel cycle technologies. Due to the size of the full report it was decided to attach a CD-ROM in the back of the summary report

  8. Nuclear energy data 2005

    CERN Document Server

    Publishing, OECD

    2005-01-01

    This 2005 edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers a projection horizon lengthened to 2025 for the first time.  It presents the reader with a comprehensive overview on the status and trends in nuclear electricity generation in OECD countries and in the various sectors of the nuclear fuel cycle.

  9. Southwest Energy Innovation Forum: Summary Report

    Science.gov (United States)

    Ewing Marion Kauffman Foundation, 2010

    2010-01-01

    The Ewing Marion Kauffman Foundation, Arizona State University (ASU), and U.S. Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E) co-convened a conference on Energy Innovation in the Southwest region of the United States that included participation by entrepreneurs, state government officials, representatives of academia,…

  10. Nuclear energy data 2007

    International Nuclear Information System (INIS)

    2007-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers projections lengthened to 2030 for the first time and information on the development of new centrifuge enrichment capacity in member countries. The compilation gives readers a comprehensive and easy-to-access overview of the current situation and expected trends in various sectors of the nuclear fuel cycle, providing authoritative information to policy makers, experts and academics working in the nuclear energy field

  11. Soft energy vs nuclear energy

    International Nuclear Information System (INIS)

    Ando, Yoshio

    1981-01-01

    During the early 1960s, a plentiful, inexpensive supply of petroleum enabled Japanese industry to progress rapidly; however, almost all of this petroleum was imported. Even after the first oil crisis of 1973, the recent annual energy consumption of Japan is calculated to be about 360 million tons in terms of petroleum, and actual petroleum forms 73% of total energy. It is necessary for Japan to reduce reliance on petroleum and to diversify energy resources. The use of other fossil fuels, such as coal, LNG and LPG, and hydraulic energy, is considered as an established alternative. In this presentation, the author deals with new energy, namely soft energy and nuclear energy, and discusses their characteristics and problems. The following kinds of energy are dealt with: a) Solar energy, b) Geothermal energy, c) Ocean energy (tidal, thermal, wave), d) Wind energy, e) Biomass energy, f) Hydrogen, g) Nuclear (thermal, fast, fusion). To solve the energy problem in future, assiduous efforts should be made to develop new energy systems. Among them, the most promising alternative energy is nuclear energy, and various kinds of thermal reactor systems have been developed for practical application. As a solution to the long-term future energy problem, research on and development of fast breeder reactors and fusion reactors are going on. (author)

  12. Nuclear energy: a vital energy choice

    International Nuclear Information System (INIS)

    Pecqueur, Michel

    1980-01-01

    Speaking from the platform of the XIIIth annual session of the International Atomic Energy Agency, at New Delhi, AEC managing director Michel Pecqueur made a solemn appeal to the world community for the decisions which are needed on energy. The present energy crisis can lead the world to a recession and be a factor in grave troubles for peace and balance in the world. The crisis cannot be resolved without accrued recourse to the use of nuclear energy. Two essential themes were outlined: the development of nuclear energy in the world, and the increased reduction of proliferation risks. In concluding, he expressed the hop that with a greater effort in information media, the nuclear fact-of-life would be better accepted by the general public in future, for it is there that lies a brake which may hinder nuclear energy development [fr

  13. Nuclear energy. Economical aspects

    International Nuclear Information System (INIS)

    Legee, F.

    2010-01-01

    This document present 43 slides of a power point presentation containing detailed data on economical and cost data for nuclear energy and nuclear power plants: evolution from 1971 to 2007 of world total primary energy supply, development of nuclear energy in the world, nuclear power plants in the world in 2009, service life of nuclear power plants and its extension; nuclear energy market and perspectives at 2030, the EPR concept (generation III) and its perspectives at 2030 in the world; cost assessment (power generation cost, nuclear power generation cost, costs due to nuclear safety, comparison of investment costs for gas, coal and nuclear power generation, costs for building a nuclear reactor and general cost; cost for the entire fuel cycle, the case of the closed cycle with recycling (MOX); costs for radioactive waste storage; financial costs and other costs such as environmental impacts, strategic stocks, comparative evaluation of the competitiveness of nuclear versus coal and gas

  14. Essays on Energy Technology Innovation Policy

    Science.gov (United States)

    Chan, Gabriel Angelo Sherak

    Motivated by global climate change, enhancing innovation systems for energy technologies is seen as one of the largest public policy challenges of the near future. The role of policy in enhancing energy innovation systems takes several forms: public provision of research and develop funding, facilitating the private sector's capability to develop new technologies, and creating incentives for private actors to adopt innovative and appropriate technologies. This dissertation explores research questions that span this range of policies to develop insights in how energy technology innovation policy can be reformed in the face of climate change. The first chapter of this dissertation explores how decision making to allocate public research and development funding could be improved through the integration of expert technology forecasts. I present a framework to evaluate and optimize the U.S. Department of Energy's research and development portfolio of applied energy projects, accounting for spillovers from technical complimentary and competition for the same market share. This project integrates one of the largest and most comprehensive sets of expert elicitations on energy technologies (Anadon et al., 2014b) in a benefit evaluation framework. This work entailed developing a new method for probability distribution sampling that accommodates the information that can be provided by expert elicitations. The results of this project show that public research and development in energy storage and solar photovoltaic technologies has the greatest marginal returns to economic surplus, but the methodology developed in this chapter is broadly applicable to other public and private R&D-sponsoring organizations. The second chapter of this dissertation explores how policies to transfer technologies from federally funded research laboratories to commercialization partners, largely private firms, create knowledge spillovers that lead to further innovation. In this chapter, I study the U

  15. Nuclear energy national plan. The directions for nuclear energy policy in Japan

    International Nuclear Information System (INIS)

    2006-11-01

    Nuclear energy is a key attaining an integrated solution for energy security and global warming issues. Under the Framework for Nuclear Energy Policy Japan aims to (1) maintain the 30 to 40% or more share of nuclear energy on electricity generation up to 2030 and afterwards, (2) promote the nuclear fuel cycle and (3) commercialize the fast-breeder reactors. As for policies to realize the basic targets, the 'Nuclear Energy National Plan' was compiled in August 2006 as follows: (1) Investment to construct new nuclear power plants and replace existing reactors in an era of electric power liberalization, 2) Appropriate use of existing nuclear power plants with assuring safety as a key prerequisite, (3) Steady advancement of the nuclear fuel cycle and strategic reinforcement of nuclear fuel cycle industries, (4) Strategy to secure uranium supplied, (5) Early commercialization of the fast breeder reactor cycle, (6) Achieving and developing advanced, technologies, industries and personnel, (7) Assisting the Japanese nuclear industry in promoting the international development, (8) Involved in and/or creating international frameworks to uphold both nonproliferation and expansion of nuclear power generation, (9) Fostering trust between the sates and communities where plants are located by making public hearings and public relations highly detailed and (10) Steady promotion of measures for disposal of radioactive wastes. Implementation policies were presented in details in this book with relevant data and documents. (T. Tanaka)

  16. Innovation and practice on assessment of nuclear power engineering management procedures

    International Nuclear Information System (INIS)

    Li Shaogang; Sun Ying

    2011-01-01

    This article has introduced the innovative implementation method and process adopted by Shandong Nuclear Power Company in procedure management for AP1000 nuclear power project, summarized its effects, and also analyzed advantages and disadvantages of this management method. (authors)

  17. The development of a neuroscience-based methodology for the nuclear energy learning/teaching process

    International Nuclear Information System (INIS)

    Barabas, Roberta de C.; Sabundjian, Gaiane

    2015-01-01

    When compared to other energy sources such as fossil fuels, coal, oil, and gas, nuclear energy has perhaps the lowest impact on the environment. Moreover, nuclear energy has also benefited other fields such as medicine, pharmaceutical industry, and agriculture, among others. However, despite all benefits that result from the peaceful uses of nuclear energy, the theme is still addressed with prejudice. Education may be the starting point for public acceptance of nuclear energy as it provides pedagogical approaches, learning environments, and human resources, which are essential conditions for effective learning. So far nuclear energy educational researches have been conducted using only conventional assessment methods. The global educational scenario has demonstrated absence of neuroscience-based methods for the teaching of nuclear energy, and that may be an opportunity for developing new strategic teaching methods that will help demystifying the theme consequently improving public acceptance of this type of energy. This work aims to present the first step of a methodology in progress based on researches in neuroscience to be applied to Brazilian science teachers in order to contribute to an effective teaching/learning process. This research will use the Implicit Association Test (IAT) to verify implicit attitudes of science teachers concerning nuclear energy. Results will provide data for the next steps of the research. The literature has not reported a similar neuroscience-based methodology applied to the nuclear energy learning/teaching process; therefore, this has demonstrated to be an innovating methodology. The development of the methodology is in progress and the results will be presented in future works. (author)

  18. The development of a neuroscience-based methodology for the nuclear energy learning/teaching process

    Energy Technology Data Exchange (ETDEWEB)

    Barabas, Roberta de C.; Sabundjian, Gaiane, E-mail: robertabarabas@usp.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    When compared to other energy sources such as fossil fuels, coal, oil, and gas, nuclear energy has perhaps the lowest impact on the environment. Moreover, nuclear energy has also benefited other fields such as medicine, pharmaceutical industry, and agriculture, among others. However, despite all benefits that result from the peaceful uses of nuclear energy, the theme is still addressed with prejudice. Education may be the starting point for public acceptance of nuclear energy as it provides pedagogical approaches, learning environments, and human resources, which are essential conditions for effective learning. So far nuclear energy educational researches have been conducted using only conventional assessment methods. The global educational scenario has demonstrated absence of neuroscience-based methods for the teaching of nuclear energy, and that may be an opportunity for developing new strategic teaching methods that will help demystifying the theme consequently improving public acceptance of this type of energy. This work aims to present the first step of a methodology in progress based on researches in neuroscience to be applied to Brazilian science teachers in order to contribute to an effective teaching/learning process. This research will use the Implicit Association Test (IAT) to verify implicit attitudes of science teachers concerning nuclear energy. Results will provide data for the next steps of the research. The literature has not reported a similar neuroscience-based methodology applied to the nuclear energy learning/teaching process; therefore, this has demonstrated to be an innovating methodology. The development of the methodology is in progress and the results will be presented in future works. (author)

  19. Role of nuclear fusion in future energy systems and the environment under future uncertainties

    International Nuclear Information System (INIS)

    Tokimatsu, Koji; Fujino, Jun'ichi; Konishi, Satoshi; Ogawa, Yuichi; Yamaji, Kenji

    2003-01-01

    Debates about whether or not to invest heavily in nuclear fusion as a future innovative energy option have been made within the context of energy technology development strategies. This is because the prospects for nuclear fusion are quite uncertain and the investments therefore carry the risk of quite large regrets, even though investment is needed in order to develop the technology. The timeframe by which nuclear fusion could become competitive in the energy market has not been adequately studied, nor has roles of the nuclear fusion in energy systems and the environment. The present study has two objectives. One is to reveal the conditions under which nuclear fusion could be introduced economically (hereafter, we refer to such introductory conditions as breakeven prices) in future energy systems. The other objective is to evaluate the future roles of nuclear fusion in energy systems and in the environment. Here we identify three roles that nuclear fusion will take on when breakeven prices are achieved: (i) a portion of the electricity market in 2100, (ii) reduction of annual global total energy systems cost, and (iii) mitigation of carbon tax (shadow price of carbon) under CO 2 constraints. Future uncertainties are key issues in evaluating nuclear fusion. Here we treated the following uncertainties: energy demand scenarios, introduction timeframe for nuclear fusion, capacity projections of nuclear fusion, CO 2 target in 2100, capacity utilization ratio of options in energy/environment technologies, and utility discount rates. From our investigations, we conclude that the presently designed nuclear fusion reactors may be ready for economical introduction into energy systems beginning around 2050-2060, and we can confirm that the favorable introduction of the reactors would reduce both the annual energy systems cost and the carbon tax (the shadow price of carbon) under a CO 2 concentration constraint

  20. Nuclear energy and society

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Shimooka, Hiroshi; Tanaka, Yasumasa; Fujii, Yasuhiko; Misima, Tsuyoshi

    2004-01-01

    Nuclear energy has a strong relation to a society. However, due to accidents and scandals having occurred in recent years, people's reliability to nuclear energy has significantly swayed and is becoming existence of a worry. Analyzing such a situation and grasping the problem contained are serious problems for people engaging in nuclear field. In order that nuclear energy is properly used in society, communication with general public and in nuclear power plant site area are increasingly getting important as well as grasping the situation and surveying measures for overcoming the problems. On the basis of such an analysis, various activities for betterment of public acceptance of nuclear energy by nuclear industry workers, researchers and the government are proposed. (J.P.N.)

  1. Approaches for the Assessment of the Innovative Nuclear System of Ukraine on the Base of INPRO Methodology

    International Nuclear Information System (INIS)

    Afanas'ev, A.A.; Vlasenko, N.I.

    2007-01-01

    Approaches for the preliminary and comparative assessment of Innovative Nuclear System (INS) of Ukraine using INPRO methodology (IAEA TECDOC-1434) suggested for the period up to 2030, which must answer the comprehensive purpose of sustainable development, contribute to strengthening of the non-proliferation principles and solving an energy problems supply on national and regional levels are presented in the paper. Using assessment results of the INS based on evolutionary designs will allow Ukraine to build informative, methodological and technical basis for choice of the INS based on innovative design which could be offered for deployment in Ukraine after 1030

  2. Nuclear Energy Infrastructure Database Description and User's Manual

    International Nuclear Information System (INIS)

    Heidrich, Brenden

    2015-01-01

    In 2014, the Deputy Assistant Secretary for Science and Technology Innovation initiated the Nuclear Energy (NE)–Infrastructure Management Project by tasking the Nuclear Science User Facilities, formerly the Advanced Test Reactor National Scientific User Facility, to create a searchable and interactive database of all pertinent NE-supported and -related infrastructure. This database, known as the Nuclear Energy Infrastructure Database (NEID), is used for analyses to establish needs, redundancies, efficiencies, distributions, etc., to best understand the utility of NE's infrastructure and inform the content of infrastructure calls. The Nuclear Science User Facilities developed the database by utilizing data and policy direction from a variety of reports from the U.S. Department of Energy, the National Research Council, the International Atomic Energy Agency, and various other federal and civilian resources. The NEID currently contains data on 802 research and development instruments housed in 377 facilities at 84 institutions in the United States and abroad. The effort to maintain and expand the database is ongoing. Detailed information on many facilities must be gathered from associated institutions and added to complete the database. The data must be validated and kept current to capture facility and instrumentation status as well as to cover new acquisitions and retirements. This document provides a short tutorial on the navigation of the NEID web portal at NSUF-Infrastructure.INL.gov.

  3. Nuclear energy and nuclear weapons proliferation

    International Nuclear Information System (INIS)

    1989-01-01

    A summary of the report dispatched in the middle of 1978 by the Atlantic Council of United States, organized by North American citizens, is presented. The report considers the relation between the production of nucleoelectric energy and the capacity of proliferation of nuclear weapons. The factors which affect the grade of proliferation risk represented by the use of nuclear energy in the world comparing this risk with the proliferation risks independently of nuclear energy, are examined. (M.C.K.) [pt

  4. Review of nuclear energy

    International Nuclear Information System (INIS)

    Mattila, L.; Anttila, M.; Pirilae, P.; Vuori, S.

    1997-05-01

    The report is an overview on the production of the nuclear energy all over the world. The amount of production at present and in future, availability of the nuclear fuel, development of nuclear technology, environmental and safety issues, radioactive waste management and commissioning of the plants and also the competitivity of nuclear energy compared with other energy forms are considered. (91 refs.)

  5. Assessment of Nuclear Energy Systems Based on a Closed Nuclear Fuel Cycle with Fast Reactors. A report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2010-01-01

    A Joint Study was started in 2005 and completed in 2007 within the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). Canada, China, France, India, Japan, the Republic of Korea, the Russian Federation, and Ukraine participated in this study. The objectives were to assess a nuclear energy system based on a closed fuel cycle (CNFC) with fast reactors (FR) regarding its sustainability, determine milestones for the nuclear energy system deployment, and establish frameworks for, and areas of, collaborative R and D work. The assessment was carried out in accordance with the requirements of INPRO methodology and guiding documents of the Joint Study developed and approved by the participating parties (Canada and Ukraine participated in the discussions during the Joint Study, but did not contribute to the assessments themselves). The Joint Study was implemented in steps. In its first step, nominated experts, during the course of extensive discussions, analyzed the country/region/world context data; discussed national and global scenarios of introduction of the CNFC-FR systems; identified technologies suitable for the INS; and arrived at a broad definition of a common CNFC-FR system. In the second step, the participants of the study examined characteristics of CNFC-FR systems for compliance with criteria of sustainability developed in the INPRO methodology in the area of economics, safety, environment, waste management, proliferation resistance, and infrastructure. The results of the study were submitted to and endorsed by the INPRO Steering Committee in meetings held in Vienna 2005 - 2007. The authors of the Joint Study report highly appreciate the valuable comments provided by delegates of the INPRO Steering Committee meetings as well as the advice and assistance of the other experts. Due to the length of the Joint Study report, a summary of the results was produced, which is the content of this publication. The full text of the Joint Study

  6. Assessment of Nuclear Energy Systems based on a Closed Nuclear Fuel Cycle with Fast Reactors. A Report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2012-09-01

    A Joint Study was started in 2005 and completed in 2007 within the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). Canada, China, France, India, Japan, the Republic of Korea, the Russian Federation, and Ukraine participated in this study. The objectives were to assess a nuclear energy system based on a closed fuel cycle (CNFC) with fast reactors (FR) regarding its sustainability, determine milestones for the nuclear energy system deployment, and establish frameworks for, and areas of, collaborative R and D work. The assessment was carried out in accordance with requirements of INPRO methodology and guiding documents of the Joint Study developed and approved by the participating parties (Canada and Ukraine participated in the discussions during the Joint Study but did not contribute to the assessments themselves). The Joint Study was implemented in steps. In its first step, nominated experts in course of extensive discussions analyzed the country/region/world context data, discussed national and global scenarios of introduction of the INS CNFC-FR, identified technologies suitable for the INS, and arrived at a broad definition of a common INS CNFC-FR. In the second step, the participants of the study examined characteristics of INS CNFC-FR for compliance with criteria of sustainability developed in the INPRO methodology in the domain of economics, safety, environment, waste management, proliferation resistance, physical protection and infrastructure. The results of the study were submitted to and endorsed by the INPRO Steering Committee meetings held in Vienna 2005-2007. The authors of the report highly appreciate the valuable comments provided by delegates of INPRO Steering Committee meetings as well as the advice and assistance of the other experts. Due to the length of the Joint Study report a summary of the results was produced, which was published as a hard copy. The full text of the Joint Study report is available on the CD

  7. Nuclear science, technology and innovation in Canada - securing the future

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R.S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    As a Tier 1 Nuclear Nation, Canada has a rich and proud history of achievement in nuclear Science, Technology and Innovation (ST&I) -- from commercializing the CANDU power system around the world, advancing fuel technology and nuclear safety, to protecting human health through nuclear medicine and cancer therapy technology. Today, the nuclear industry in Canada is actively working to secure its promising, long-term place in the world and is embracing the change necessary to fulfill the enormous potential for good of nuclear technology. For its part, the Canadian Government is taking a bold new public policy approach to nuclear ST&I, by restructuring its large, multi-faceted AECL Nuclear Laboratories. Through the restructuring, AECL, as Canada's premier nuclear science and technology organization, will be better positioned for success via an incentivized 'Government-owned-Contractor-operated', private-sector management model. The aim of this new approach is to enhance and grow high-value nuclear innovation for the marketplace, strengthen the competitiveness of Canada's nuclear sector, and reduce costs to the Government of Canada with time. This approach will play a key role in ensuring a bright future for the Canadian Nuclear Industry domestically and globally as it launches its 25-year Vision and Action Plan, where one of the priority action areas is support for a strong, forward-looking, nuclear ST&I agenda. As the new model for the Nuclear Laboratories is moved forward by the Government, with the support of AECL and industry, Canada's nuclear expertise and knowledge continue to be expanded and deepened through the work of the Laboratories' ten Centres of Excellence, where AECL's fundamental approach is guided by the reality that ST&I is needed in all aspects of the nuclear cycle, including decommissioning, waste management and environmental protection. (author)

  8. Nuclear Energy and the Environment.

    Science.gov (United States)

    International Atomic Energy Agency, Vienna (Austria).

    "Nuclear Energy and the Environment" is a pocket folder of removable leaflets concerned with two major topics: Nuclear energy and Nuclear Techniques. Under Nuclear Energy, leaflets concerning the topics of "Radiation--A Fact of Life,""The Impact of a Fact: 1963 Test Ban Treaty,""Energy Needs and Nuclear Power,""Power Reactor Safety,""Transport,"…

  9. Nuclear energy and jobs

    International Nuclear Information System (INIS)

    Goldfinger, N.

    1976-01-01

    Mr. Goldfinger, Research Director of AFL-CIO, examines the problem of energy in general, nuclear in particular, and the employment relationship. The energy shortages in the U.S. and its dependence on oil are cited. Directly connected with this serious problem relating to energy are jobs, income, and living standards. If energy is not available, industries will be unable to expand to meet the needs of the growing population; and prices of goods will rise. From an evaluation of what experts have said, Mr. Goldfinger concludes that increased coal production and better coal technology cannot meet energy demands; so the sharp increase both in volume and as a percentage of total energy needed in the future will have to come from nuclear power. Development of alternative sources is necessary, he feels, and intense research on these is needed now. The employment impact in the nuclear energy scenario is analyzed according to the trades involved. It is estimated that 1.5 million jobs in the nuclear industry would be open by the year 2000 if nuclear is to provide one-fourth of energy supplies. The employment picture, assuming abandonment of nuclear energy, is then discussed

  10. Proceedings of the fourth international symposium on advanced nuclear energy research

    International Nuclear Information System (INIS)

    1992-12-01

    The papers presented and discussed in the 4th International Symposium on Advanced Nuclear Energy Research, of which subject was focussed on the Roles and Direction of Material Science in Nuclear Technology are contained. The sessions organized for the aural session of the symposium were (1) Processing Science for New Materials, (2) New Tools for Advanced Materials Research, (3) Challenge of Materials Database and (4) Frontier of Materials Technology in New Power Systems, from which 18 invited and 77 contributed papers were selected for the publication. The volume includes also summaries of the panel discussions titled as (1) Computer Simulation for Materials Innovation and (2) What is Expected for Materials Science in Future Nuclear Energy Developments ?, with which a complete recording of the discussions for the latter subject was attempted by the Editorial Working Group of the Program Committee. The 65 of the presented papers are indexed individually. (J.P.N.)

  11. Energy Innovations-GHG Emissions Nexus: Fresh Empirical Evidence from OECD Countries

    International Nuclear Information System (INIS)

    Álvarez-Herránz, Agustín; Balsalobre, Daniel; Cantos, José María; Shahbaz, Muhammad

    2017-01-01

    This study explores the impact of improvements in energy research development (ERD) on greenhouse gas (GHG) emissions using environmental Kuznets curve hypothesis for 28 OECD countries over the period of 1990–2014. In doing so, we have employed a panel data where public budget in energy research development and demonstration (ERD&D) has transformed into a finite inverted V-lag distribution model developed by De Leeuw (1962). This model considers that energy innovation accumulates in time and presents empirical evidence, how energy innovation contributes in reducing energy intensity and environmental pollution as well. Our results indicate that energy innovation measures require lapses of time to reach their full effect i.e. innovation applied to measures for environmental correction does not reach its whole effect immediately, requiring instead a certain amount of time to pass. Innovation policies have recommended for improving environmental quality. - Highlights: • This study analyses the impact of public budget in energy RD&D for 28 OECD countries on environmental quality. • Energy innovation contributes positively to reduce greenhouse gas emissions. • Advances in energy technology seem to be the key of improved environmental quality.

  12. Innovation information seeking and innovation adoption: Facilities and plant managers' energy outlook comparing linear to nonlinear models

    Science.gov (United States)

    Jacobsen, Joseph J.

    One focal point of concern, policy and a new research will involve identifying individual and organizational facilitative and obstructive factors within the context of energy innovation diffusion in the U.S. This interdisciplinary intersection of people, technology and change is one of serious consequence and has broad implications that span national security, energy infrastructure, the economy, organizational change, education and the environment. This study investigates facilities and plant managers' energy innovation information seeking and energy adoption evolution. The participants are managers who consume more electrical energy than all other groups in the world and are among the top users of natural gas and oil in the United States. The research calls upon the Theory of Planned Behavior, the Diffusion of Innovations and nonlinear dynamics in a study of adoption patterns for 13 energy-related innovations. Cusp catastrophe models and power laws were compared to linear multiple regression to examine and characterize data. Findings reveal that innovation adoption and information seeking differences are slight between private and public sector facilities and plant managers and that the group as a whole may resist change. Of the 13 innovations, some exhibit very strong cusp catastrophe distributions while support for multiple linear regression and the power law were found.

  13. Finnish energy outlook - role of nuclear energy

    International Nuclear Information System (INIS)

    Santaholma, J.

    2004-01-01

    New nuclear power partly covers additional electricity demand and replaces retiring power plants in coming decades after 2010. Nuclear energy secures stable, economical and predictable electricity price as well as operation environment for the electricity intensive industry for coming decades. Nuclear energy also reduces the dependence on electricity import of Finland. Nuclear energy partly enables, together with renewable, fulfilment of Finland's Kyoto commitments. Solutions for nuclear waste management are a condition sine qua non for sound nuclear programmes. Funding has been arranged. All this is carried out in Finland in a transparent way and in accordance with any democratic requirements. (author)

  14. Linking energy efficiency and innovation practices: Empirical evidence from the foundry sector

    International Nuclear Information System (INIS)

    Cagno, Enrico; Ramirez-Portilla, Andres; Trianni, Andrea

    2015-01-01

    The Europe 2020 strategy currently promotes energy efficiency and innovation through disconnected targets focusing on either energy or R&D. Similar policies indicate that in practice, these two concepts are usually perceived as mutually exclusive. Furthermore, evidence in the literature regarding the relationship between R&D and energy efficiency is still highly limited. This exploratory study aims to address this gap by investigating the link between innovation practices and energy efficiency through a multiple case study of 30 foundries in Northern Italy. We analysed the firms' innovativeness, measured by internal R&D and Open Innovation practices (inbound and outbound), and energy efficiency, measured by specific energy consumption, level of adoption of energy-efficient technologies and barriers to energy efficiency. The results seem to show that those foundries complementing internal R&D with inbound practices have a higher level of energy efficiency, a higher level of adoption of available technologies, and a lower perception of barriers to efficiency improvements. This finding suggests that diversifying innovation practices could lead to better performance with respect to all three indicators of energy efficiency analysed. This study contributes to understanding how more innovative firms can be more energy efficient, providing interesting highlights for managers and policymakers. -- Highlights: •The relation between innovation practices and energy efficiency is articulated. •The link between innovation practices and energy efficiency is tested for foundries. •Energy efficiency is measured with three different indicators. •Analyses of the relations between these indicators support the link with innovation. •Concurrent adoption of internal R&D and inbound practices leads to higher efficiency

  15. Institute for Nuclear Research and Nuclear Energy and Nuclear Science

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences is the leading Bulgarian Institute for scientific investigations and applications of nuclear science. The main Institute's activities in the field of elementary particles and nuclear physics, high energy physics and nuclear energy, radiochemistry, radioecology, radioactive wastes treatment, monitoring of the environment, nuclear instruments development ect. are briefly described. Several examples for: environmental radiation monitoring; monitoring of the radioactivity and heavy metals in aerosols, 99m Tc clinical use, Boron Neutron Capture Therapy application of IRT-2000 Research Reactor, neutron fluence for reactor vessel embrittlement, NPP safety analysis, nuclear fuel modelling are also presented

  16. Energy conservation in the industry. Innovators talking; Energiebesparing in de industrie. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on energy conservation in the industry [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar energiebesparing in de industrie.

  17. Nuclear knowledge portal for supporting licensing and controlling nuclear activities in the Brazilian Nuclear Energy Commission

    International Nuclear Information System (INIS)

    Gomes, E.; Braga, F.

    2005-01-01

    The knowledge economy is pivotal for moving the wealth and development of traditional industrial sectors - abundant in manual labour, raw materials and capital - to areas whose products, processes and services are rich in technology and knowledge. Even in research areas such as nuclear energy, where goods are based on high technology, the ability to transform information into knowledge, and knowledge into decisions and actions, is extremely important. Therefore, the value of products from these areas depends more and more on the degree of innovation, technology and intelligence incorporated by them. Thus, it has become increasingly important and relevant to acquire strategic knowledge and make it available to the organisation. Therefore, the objective of this paper is to present the construction of a Nuclear Knowledge Portal for aiding and streamlining the Licensing and Management activities of the CNEN. (author)

  18. Nuclear knowledge portal to support licensing and control nuclear activities in the Brazilian Nuclear Energy Commission

    International Nuclear Information System (INIS)

    Gomes, M.E.; Braga, M.F.

    2004-01-01

    The Knowledge Economy is pivotal for moving the wealth and development of traditional industrial sectors - abundant in manual labor, raw materials and capital - to areas whose products, processes and services are rich in technology and knowledge. Even in research areas such as nuclear energy, where goods are based on high technology, the ability to transform information into knowledge, and knowledge into decisions and actions, is extremely important. Therefore, the value of products from these areas depends more and more on the degree of innovation, technology and intelligence incorporated by them. Thus, it has become increasingly important and relevant to acquire strategic knowledge and make it available to the organization. Therefore, the objective of this article is to present the construction of a Nuclear Knowledge Portal for aiding and streamlining the Licensing and Management activities of the CNEN. (author)

  19. The church and nuclear energy

    International Nuclear Information System (INIS)

    Phillips, G.O.

    1978-03-01

    The subject is covered in sections, entitled: foreword (explaining that report is a synopsis of the Hearing on Nuclear Energy arranged by the World Council of Churches, held in Sigtune, Sweden, June 24 to 29, 1975); humanity's energy needs); alternative sources of energy (nuclear fission, nuclear fusion, non-nuclear processes; some generalisations (concerning the advantages and disadvantages of nuclear energy to various sections of the world); what risks are acceptable (radiation hazards, reactor safety, radioactive wastes, misuse of Pu, safeguarding); nuclear weapons; nuclear energy - a challenge to the Churches; social and ethical issues; certain conclusions; postscript -the American move. (U.K.)

  20. A century of nuclear energy

    International Nuclear Information System (INIS)

    Hug, M.

    2009-01-01

    The author proposes a history of the French nuclear industry and nuclear energy since the Nobel prizes of 1903 and 1911. He describes and comments the context of the energy production sector before the development of the nuclear energy, the development of the institutional context, the successive and different nuclear technologies, the main characteristics of the French program at its beginning, the relationship between the nuclear energy and the public, the main accidents and lessons learned from them, the perspectives of evolution of nuclear energy

  1. European activities on crosscutting thermal-hydraulic phenomena for innovative nuclear systems

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X., E-mail: xu.cheng@kit.edu [Karlsruhe Institute of Technology (KIT) (Germany); Batta, A. [Karlsruhe Institute of Technology (KIT) (Germany); Bandini, G. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) (Italy); Roelofs, F. [Nuclear Research and Consultancy Group (NRG) (Netherlands); Van Tichelen, K. [Studiecentrum voor Kernenergie – Centre d’étude de l’Energie Nucléaire (SCK-CEN) (Belgium); Gerschenfeld, A. [Commissariat à l’Energie Atomique (CEA) (France); Prasser, M. [Paul Scherrer Institute (PSI) (Switzerland); Papukchiev, A. [Gesellschaft für Anlagen- und Reaktorsicherheit mbH (GRS) (Germany); Hampel, U. [Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR) (Germany); Ma, W.M. [Kungliga Tekniska Högskolan (KTH) (Sweden)

    2015-08-15

    Highlights: • This paper serves as a guidance of the special issue. • The technical tasks and methodologies applied to achieve the objectives have been described. • Main results achieved so far are summarized. - Abstract: Thermal-hydraulics is recognized as a key scientific subject in the development of innovative reactor systems. In Europe, a consortium is established consisting of 24 institutions of universities, research centers and nuclear industries with the main objectives to identify and to perform research activities on important crosscutting thermal-hydraulic issues encountered in various innovative nuclear systems. For this purpose the large-scale integrated research project THINS (Thermal-Hydraulics of Innovative Nuclear Systems) is launched in the 7th Framework Programme FP7 of European Union. The main topics considered in the THINS project are (a) advanced reactor core thermal-hydraulics, (b) single phase mixed convection, (c) single phase turbulence, (d) multiphase flow, and (e) numerical code coupling and qualification. The main objectives of the project are: • Generation of a data base for the development and validation of new models and codes describing the selected crosscutting thermal-hydraulic phenomena. • Development of new physical models and modeling approaches for more accurate description of the crosscutting thermal-hydraulic phenomena. • Improvement of the numerical engineering tools for the design analysis of the innovative nuclear systems. This paper describes the technical tasks and methodologies applied to achieve the objectives. Main results achieved so far are summarized. This paper serves also as a guidance of this special issue.

  2. Expected role of nuclear science and technology to support the sustainable supply of energy in Indonesia

    International Nuclear Information System (INIS)

    Soentono, Soedyartomo; Aziz, Ferhat

    2008-01-01

    Energy resources are available in Indonesia but small per capita. The increase of oil price and its reserve depletion rate dictates to decrease the oil consumption. Therefore, it is imperative to increase the shares of other fossils as well as the new and renewable sources of energy in various energy sectors substituting the oil. The introduction of nuclear power plant becomes more indispensable, although the share is to be small but significantly important for electric generation in Java-Madura-Bali grid. Nuclear technology can have also important role enabling the increase of the shares of renewable, e.g. geothermal, hydro and bio-fuels as well as fossil energies to meet more sustainable energy mix sufficing the energy demand to attain intended economic and population growths while maintaining the environment. The first introduced nuclear power plant is to be the proven ones, but the innovative nuclear energy systems being developed by various countries will eventually also be partially employed to further improve the sustainability. The nuclear science and technology are to be symbiotic and synergistic to other sources of energy to enhance the sustainable supply of energy. (author)

  3. User Innovators in the Smart Energy Transition

    DEFF Research Database (Denmark)

    Nyborg, Sophie; Borch, Kristian; Bentzen, Martin Mose

    Notions of "smart energy systems" are pervasive in discussions of a low carbon transition and much work is devoted to developing "smart energy technologies" and analyzing their economic potential. However, users, i.e. civil society receive only little attention and are mainly described as "energy...... consumers". The aim of this research project is to explore how civil society can get a more active role in the transition towards a low carbon energy system. Through qualitative case-study methods and scenario work, we explore the role of "energy users" for the innovative design and development of large...... technological systems. We ask whether the envisioned smart energy systems have potential to support more active innovation roles for the individuals using energy systems than what have been described by previous studies. Moreover, we discuss whether and how such roles allow for a democratic as well as socially...

  4. The power of design product innovation in sustainable energy technologies

    CERN Document Server

    Reinders, Angele H; Brezet, Han

    2012-01-01

    The Power of Design offers an introduction and a practical guide to product innovation, integrating the key topics that are necessary for the design of sustainable and energy-efficient products using sustainable energy technologies. Product innovation in sustainable energy technologies is an interdisciplinary field. In response to its growing importance and the need for an integrated view on the development of solutions, this text addresses the functional principles of various energy technologies next to the latest design processes and innovation methods. From the perspec

  5. Media and risk. A phase model elucidating media attention to nuclear energy risk

    International Nuclear Information System (INIS)

    Kristiansen, Silje

    2017-01-01

    In today's risk-filled society, it is vital to recognize not only the risks that we face every day, but also that knowledge of such risks spreads, above all, via mass media. Risk-related information contributes to our knowledge and affects how we perceive risks and what risk decisions we ultimately make. Among the most memorable disasters of risks taken in recent memory, the nuclear energy accident in Fukushima, Japan, in 2011 changed how the public, policymakers, and media outlets perceive and deliberate the risk of nuclear energy. In response, the research question of this study interrogates how media portrayed the risk of nuclear energy and how coverage of the technology changed after the accident at Fukushima. The study concentrates on how two Swiss newspapers covered nuclear energy between 2010 and early 2015. By using a broad definition of risk and an innovative empirical operationalization of the concept, the study identifies different risk attention phases in media coverage, each characterized by different focus on risk dimensions. Interestingly, results show that those media paid considerable attention to political decisions about the use of nuclear energy, and surprisingly, the detrimental dimension of risk was in focus even before the 2011 nuclear accident in Japan. Although the benefits of nuclear technology became obscured after Fukushima, they recuperated interest as early as a year later. Such results raise a question regarding risk decisions and the use of nuclear energy - namely, when do societies decide upon risks, and how do media portray the risk at that moment in time?

  6. Media and risk. A phase model elucidating media attention to nuclear energy risk

    Energy Technology Data Exchange (ETDEWEB)

    Kristiansen, Silje

    2017-07-01

    In today's risk-filled society, it is vital to recognize not only the risks that we face every day, but also that knowledge of such risks spreads, above all, via mass media. Risk-related information contributes to our knowledge and affects how we perceive risks and what risk decisions we ultimately make. Among the most memorable disasters of risks taken in recent memory, the nuclear energy accident in Fukushima, Japan, in 2011 changed how the public, policymakers, and media outlets perceive and deliberate the risk of nuclear energy. In response, the research question of this study interrogates how media portrayed the risk of nuclear energy and how coverage of the technology changed after the accident at Fukushima. The study concentrates on how two Swiss newspapers covered nuclear energy between 2010 and early 2015. By using a broad definition of risk and an innovative empirical operationalization of the concept, the study identifies different risk attention phases in media coverage, each characterized by different focus on risk dimensions. Interestingly, results show that those media paid considerable attention to political decisions about the use of nuclear energy, and surprisingly, the detrimental dimension of risk was in focus even before the 2011 nuclear accident in Japan. Although the benefits of nuclear technology became obscured after Fukushima, they recuperated interest as early as a year later. Such results raise a question regarding risk decisions and the use of nuclear energy - namely, when do societies decide upon risks, and how do media portray the risk at that moment in time?.

  7. Energy-political stagnation or innovation

    International Nuclear Information System (INIS)

    Kitschelt, H.

    1982-01-01

    The author discusses the enquete report 1980. He makes an inventory for a political and sociological interpretation of the interim report between meaningful innovation and political insignificance as well as intellectual stagnation. The report is considered as an indicator for the transformation of the energy-political arena in the Federal Republic of Germany over the last years. ''Stagnation'' or ''innovation'' of the argumentation patterns in the report of the enquete commission relate to the question whether the analyses in that document are rather a brake or a motor to a shift of political perspectives in energy policy. A progress can be seen in the report regarding political debate about energy-options in the semi-official political spectrum of the Federal Republic of Germany, in as far as differring options of energy-political development are being acknowledged for the first time. At the same time, debate inside the commission directs the attention to issues of institutional policy in the energy sector. Considering the fights within the commission before the report was agreed on, it seems doubtful if its proposals for compromise will prove a sound political basis. The tensions inside the commission are just a first sign of the power conflicts due above all if the recommendations for energy conservation are intransigently carried out. (orig./HSCH) [de

  8. Energy, electricity and nuclear power

    International Nuclear Information System (INIS)

    Reuss, P.; Naudet, G.

    2008-01-01

    After an introduction recalling what energy is, the first part of this book presents the present day energy production and consumption and details more particularly the electricity 'vector' which is an almost perfect form of energy despite the fact that it is not a primary energy source: it must be generated from another energy source and no large scale storage of this energy is possible. The second part of the book is devoted to nuclear energy principles and to the related technologies. Content: 1 - What does energy mean?: the occurrence of the energy concept, the classical notion of energy, energy notion in modern physics, energy transformations, energy conservation, irreversibility of energy transformations, data and units used in the energy domain; 2 - energy production and consumption: energy systems, energy counting, reserves and potentialities of energy resources, production of primary energies, transport and storage of primary energies, energy consumption, energy saving, energy markets and prices, energy indicators; 3 - electric power: specificity of electricity and the electric system, power networks, power generation, electricity storage, power consumption and demand, power generation economics, electricity prices and market; 4 - physical principles of nuclear energy: nuclei structure and binding energy, radioactivity and nuclear reactions, nuclear reactions used in energy generation, basics of fission reactors physics; 5 - nuclear techniques: historical overview, main reactor types used today, perspectives; 6 - fuel cycle: general considerations, uranium mining, conversion, enrichment, fuel fabrication, back-end of the cycle, plutonium recycle in water cooled reactors; 7 - health and environmental aspects of nuclear energy: effects on ionizing radiations, basics of radiation protection, environmental impacts of nuclear energy, the nuclear wastes problem, specific risks; 8 - conclusion; 9 - appendixes (units, physics constants etc..)

  9. Nuclear energy

    International Nuclear Information System (INIS)

    Hladky, S.

    1985-01-01

    This booklet appeared in a series on technical history. It tries to communicate some of the scientific, technical and social stresses, which have been connected with the application of nuclear energy since its discovery. The individual sections are concerned with the following subjects: the search for the 'smallest particles'; the atomic nucleus; nuclear fission; the 'Manhattan Project'; the time after this - from the euphoria of the 1950's via disillusionment and change of opinion to the state of nuclear energy at the start of the 1980's. The booklet contains many details and is generously illustrated. (HSCH) [de

  10. Fail forward: Mitigating failure in energy research and innovation

    DEFF Research Database (Denmark)

    Brix, Jacob

    2015-01-01

    Almost three quarters of all innovation projects disappoint or fail. Instead of 'wasting' human and financial resources on energy projects that end up being terminated or ineffectual, this study offers a potential antidote coined the 'Origins of Failure in Energy Innovation' (OFEI) model. Based o...

  11. Innovation in the Safety of nuclear systems: fundamental aspects

    International Nuclear Information System (INIS)

    Herranz, L. E.

    2009-01-01

    Safety commercial nuclear reactors has been an indispensable condition for future enlargement of power generation based on nuclear technology. Its fundamental principle, defence in depth, far from being outdated, is still adopted as a key foundation in the advanced nuclear system (generations III and IV). Nevertheless, the cumulative experience gained in the operation and maintenance of nuclear reactors, the development of methodologies like the probabilistic safety analysis, the use of passive safety systems and, even, the inherent characteristics of some new design (which exclude accident scenarios), allow estimating safety figures of merit even more outstanding that those achieved in the second generation of nuclear reactors. This safety innovation of upcoming nuclear reactors has entailed a huge investigation program (generation III) that will be focused on optimizing and demonstrating the postulated safety of future nuclear systems (Generation IV). (Author)

  12. Neutron excess generation by fusion neutron source for self-consistency of nuclear energy system

    International Nuclear Information System (INIS)

    Saito, Masaki; Artisyuk, V.; Chmelev, A.

    1999-01-01

    The present day fission energy technology faces with the problem of transmutation of dangerous radionuclides that requires neutron excess generation. Nuclear energy system based on fission reactors needs fuel breeding and, therefore, suffers from lack of neutron excess to apply large-scale transmutation option including elimination of fission products. Fusion neutron source (FNS) was proposed to improve neutron balance in the nuclear energy system. Energy associated with the performance of FNS should be small enough to keep the position of neutron excess generator, thus, leaving the role of dominant energy producers to fission reactors. The present paper deals with development of general methodology to estimate the effect of neutron excess generation by FNS on the performance of nuclear energy system as a whole. Multiplication of fusion neutrons in both non-fissionable and fissionable multipliers was considered. Based on the present methodology it was concluded that neutron self-consistency with respect to fuel breeding and transmutation of fission products can be attained with small fraction of energy associated with innovated fusion facilities. (author)

  13. Nuclear knowledge portal to support licensing and control nuclear activities in the Brazilian Nuclear Energy Commission

    International Nuclear Information System (INIS)

    Gomes, Elizabeth; Braga, Fabiane

    2004-01-01

    Full text: The Knowledge economy moves the axis of the wealth and the development of the traditional industrial sectors - abundant in labour, raw material and capital - to areas whose products, processes and services are rich in technology and Knowledge. Even on research areas as nuclear energy where the goods are based on high technology, the capacity to transform information on Knowledge, and Knowledge on decisions and actions are extremely important. Therefore, the value of the products from these areas depends on the percentage of the innovation, technology and the intelligence attributed incorporated by them. The OECD report observes that back in 2002, more than 60% of the GDP (Gross Domestic Product) of the developed nations should be credited to the Knowledge usage. The report highlights the fact that the increasing reduction of the costs and the easy access to information show clearly a growing of the Knowledge participation in generating wealth for the organizations, regions and countries. This means that the management today shall use the organization's existent Knowledge to generate better results. The organizations, private or publics, must be productive, and the main point to determine the technological innovation and the increasing of productivity is knowledge management. Therefore, we cannot feel contented simply by generating new Knowledge, or making the research for the research itself, or, yet, by simply collecting information and saving them. Without innovation capacity, such as to create new products, new process or new services, organizations will not survive in the knowledge society. Many authors have proposed models of Knowledge management, such as Sveiby, Stewart and Edvinsson, the pioneers of Knowledge Management. For these authors, the value of the enterprises full of in Knowledge is no longer related to its tangible goods, such as buildings and machinery, but is being now quoted by its intangible goods. The models emphasizing the

  14. The challenges and directions for nuclear energy policy in Japan. Japan's nuclear energy national plan

    International Nuclear Information System (INIS)

    Yanase, Tadao

    2007-01-01

    According to the 'framework for nuclear energy policy' (October, 2005 adopted by cabinet), basic goals of nuclear policy are (1) for nuclear energy to continue to meet more than around 30-40% of electricity supply, and also (2) to further promote a fuel cycle steadily aiming at commercial introduction of a fast breeder by 2050. In order to realize an aim of this framework for nuclear energy policy', the nuclear energy subcommittee of the METI advisory committee deliberated concrete actions and the subcommittee recommendations were drawn up as 'Japan's nuclear energy national plan' in August, 2006 and incorporated as main part of the revised 'basic plan on energy' adopted by the cabinet in March 2007. Backgrounds and directions of future actions for nuclear energy policy were described. (T. Tanaka)

  15. Nuclear energy outlook 2008

    International Nuclear Information System (INIS)

    2008-01-01

    With the launch today of its first Nuclear Energy Outlook, the OECD Nuclear Energy Agency (NEA) makes an important contribution to ongoing discussions of nuclear energy's potential role in the energy mixes of its member countries. As world energy demand continues to grow unabated, many countries face serious concerns about the security of energy supplies, rising energy prices and climate change stemming from fossil fuel consumption. In his presentation, the NEA Director-General Luis Echavarri is emphasizing the role that nuclear power could play in delivering cost-competitive and stable supplies of energy, while also helping to reduce greenhouse gas emissions. In one Outlook scenario, existing nuclear power technologies could provide almost four times the current supply of nuclear-generated electricity by 2050. Under this scenario, 1400 reactors of the size commonly in use today would be in operation by 2050. But in order to accomplish such an expansion, securing political and societal support for the choice of nuclear energy is vital. An ongoing relationship between policy makers, the nuclear industry and society to develop knowledge building and public involvement will become increasingly important, the publication notes. Moreover, governments have a clear responsibility to maintain continued effective safety regulation, advance efforts to develop radioactive waste disposal solutions and uphold and reinforce the international non-proliferation regime. The authors find that the security of energy from nuclear power is more reliable than that for oil or gas. Additionally, uranium's high energy density means that transport is less vulnerable to disruption, and storing a large energy reserve is easier than for fossil fuels. One tonne of uranium produces the same energy as 10 000 to 16 000 tonnes of oil using current technology. Ongoing technological developments are likely to improve that performance even more. Until the middle of the century the dominant reactor

  16. The social responsibility of nuclear energy

    International Nuclear Information System (INIS)

    Mizuo, Junichi

    2008-01-01

    Interest in the concept of Social Responsibility (SR) has increased recently. Continuing advances in the pace of innovative science and information technology development, growing competition in the world's markets, economic globalization and harsh criticism from communities have all drawn attention to the behavior of different organizations. As a way of drawing global attention to the fulfillment of SR, the goal of coexistence assumes an increasingly significant role from the standpoint of sustainable development of organizations and society. This implies that SR involves two responsibilities: the primary responsibility being an obligation to society, and the secondary responsibility being a positive contribution to society. Seen from the same perspective, Nuclear Energy (NE) is expected to make a positive contribution to the advancement of society and to encourage a safety culture that prevents serious accidents while also encouraging the sound development of organizations and society. ('Society' includes the environment and the economy, with the same sense as a 'triple bottom line'.) Considering the Social Responsibility of Nuclear Energy (NSR) from these points-of-view, NE should coexist with multiple stakeholders. The purpose of this paper is to clarify the relationship between NE and society, to define a framework for problem-solving, and finally to suggest changes in NSR as a whole. (author)

  17. Nuclear energy and renewable energies

    International Nuclear Information System (INIS)

    1994-01-01

    The nuclear energy and the renewable energies namely: solar energy, wind energy, geothermal energy and biomass are complementary. They are not polluting and they are expected to develop in the future to replace the fossil fuels

  18. Nuclear energy

    International Nuclear Information System (INIS)

    1996-01-01

    Several issues concerning nuclear energy in France during 1996 are presented: permission of a demand for installing underground laboratories in three sites (Marcoule, Bure and Chapelle-Baton); a report assessing the capacity of Superphenix plant to operate as a research tool; the project of merging between Framatome and Gec-Alsthom companies; the revision of a general report on nuclear energy in France; the issue of military plutonium management

  19. Nuclear energy in Armenia

    International Nuclear Information System (INIS)

    Gevorgyan, S.; Kharazyan, V.

    2000-01-01

    This summary represents an overview of the energy situation in Armenia and, in particular, the nuclear energy development during the last period of time. the energy sector of Armenia is one of the most developed economy branches of the country. The main sources of energy are oil products, natural gas, nuclear energy, hydropower, and coal. In the period of 1985-1988 the consumption of these energy resources varied between 12-13 million tons per year of oil equivalent. Imported energy sources accounted for 96% of the consumption. During the period 1993-1995 the consumption dropped to 3 million tons per year. Electricity in Armenia is produced by three thermal, one nuclear, and two major hydroelectric cascades together with a number small hydro units. The total installed capacity is 3558 MW. Nuclear energy in Armenia began its development during the late 1960's. Since the republic was not rich in natural reserves of primary energy sources and the only domestic source of energy was hydro resource, it was decided to build a nuclear power plant in Armenia. The Armenian Nuclear Power Plant (ANPP) Unit 1 was commissioned in 1996 and Unit 2 in 1980. The design of the ANPP was developed in 1968-1969 and was based on the project of Units 3 and 4 of the Novovoronezh NPP. Both units of the plant are equipped with reactors WWER-440 (V -270) type, which are also in use in some power stations in Russian Federation, Bulgaria, and Slovakia. Currently in Armenia, 36% of the total electricity production is nuclear power electricity. (authors)

  20. Energy conservation in the industry. Innovators talking; Energiebesparing in de industrie. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on energy conservation in the industry [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar energiebesparing in de industrie.

  1. Finnish energy outlook - role of nuclear energy

    International Nuclear Information System (INIS)

    Santaholma, J.

    2004-01-01

    In this presentation author deals with production a consumption of electricity in the Finland. New nuclear power partly covers additional electricity demand and replaces retiring power plants in coming decades after 2010. Nuclear energy secures stable, economical and predictable electricity price as well as operation environment for the electricity intensive industry for coming decades. Nuclear energy also reduces the dependence on electricity import of Finland. Nuclear energy partly enables, together with renewable, fulfilment of Finland's Kyoto commitments. Solutions for nuclear waste management are a condition sine qua non for sound nuclear programmes. Funding has been arranged. All this is carried out in Finland in a transparent way and in accordance with any democratic requirements. (author)

  2. Opening Statement to ICTP/IAEA School of Nuclear Energy Management, 8 August 2011, Trieste, Italy

    International Nuclear Information System (INIS)

    Bychkov, A.

    2011-01-01

    turn a crisis into a challenge for which solutions could be found. We started to cooperate on an international level. My team played a key role in experimental research and development of the new technology and established its place in the international community. Today, pyrochemical approaches for fast reactor fuel recycling are one of the promising innovative technologies. Before I joined the Agency last February, I was Director General of the Institute for the past five years. It was a difficult and challenging time. Sometimes we were not able to pay salaries on time. But we worked very hard, and we managed to restore the stability of the work, enhance productivity and increase safety. In the end, we have been able to prove to the government that the Institute is the best place for some new, innovative technology projects in Russia. Why do I underline these episodes? I want to emphasize that my own development as a nuclear manager continues all the time. The nuclear field is very high-tech and not without potential danger. It is my firm opinion that the nuclear manager of the 21st century must be three things: first, a good specialist in one of the nuclear areas (such as fuel cycle, reactor technology, reactor physics or others); second, he or she must have broad knowledge of all nuclear branches, and; third, a basic understanding of economics, social science and psychology is required. If you constantly continue your professional development and add to your pool of knowledge, you will understand my slogan: ''There are no problems, only engineering and scientific challenges that are awaiting our decisions.'' These challenges are also faced by the IAEA Department of Nuclear Energy which I lead. The Department has principal responsibility for all aspects of Nuclear Power, Fuel Cycle and Waste Technology. Our work can be described in three brief words: support - catalyze - build. We support existing, expanding and new nuclear power programmes around the world. We

  3. Innovation on Smart Grids and energy storage. IA Special; Innovation on Smart Grids and energy storage. IA Special

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-15

    In this special edition of the Innovation Network Attache a large number of short articles on aspects of ICT aspects of intellligent energy networks, the security and integrity of the use and control of those networks, and energy storage. In this special an overview is given of the most important developments in Israel, Russian Federation, Brazil, Netherlands, France, Germany, Singapore, Japan, Taiwan, China, South Korea, India, United States and Canada [Dutch] In deze special van het Innovation Attache Netwerk een groot aantal korte artikelen over de ICT aspecten van intellligente energie netten, de veiligheid en integriteit van het gebruik en sturing ervan, en energie opslag. In de special een overzicht van in het oog springende ontwikkelingen in de landen Israel, Rusland, Brazilie, Nederland, Frankrijk, Duitsland, Singapore, Japan, Taiwan, China, Zuid-Korea, India, Verenigde Staten en Canada.

  4. Quantum nuclear pasta and nuclear symmetry energy

    Science.gov (United States)

    Fattoyev, F. J.; Horowitz, C. J.; Schuetrumpf, B.

    2017-05-01

    Complex and exotic nuclear geometries, collectively referred to as "nuclear pasta," are expected to appear naturally in dense nuclear matter found in the crusts of neutron stars and supernovae environments. The pasta geometries depend on the average baryon density, proton fraction, and temperature and are critically important in the determination of many transport properties of matter in supernovae and the crusts of neutron stars. Using a set of self-consistent microscopic nuclear energy density functionals, we present the first results of large scale quantum simulations of pasta phases at baryon densities 0.03 ≤ρ ≤0.10 fm-3 , proton fractions 0.05 ≤Yp≤0.40 , and zero temperature. The full quantum simulations, in particular, allow us to thoroughly investigate the role and impact of the nuclear symmetry energy on pasta configurations. We use the Sky3D code that solves the Skyrme Hartree-Fock equations on a three-dimensional Cartesian grid. For the nuclear interaction we use the state-of-the-art UNEDF1 parametrization, which was introduced to study largely deformed nuclei, hence is suitable for studies of the nuclear pasta. Density dependence of the nuclear symmetry energy is simulated by tuning two purely isovector observables that are insensitive to the current available experimental data. We find that a minimum total number of nucleons A =2000 is necessary to prevent the results from containing spurious shell effects and to minimize finite size effects. We find that a variety of nuclear pasta geometries are present in the neutron star crust, and the result strongly depends on the nuclear symmetry energy. The impact of the nuclear symmetry energy is less pronounced as the proton fractions increase. Quantum nuclear pasta calculations at T =0 MeV are shown to get easily trapped in metastable states, and possible remedies to avoid metastable solutions are discussed.

  5. Nuclear energy and its synergies with renewable energies

    International Nuclear Information System (INIS)

    Carre, F.; Mermilliod, N.; Devezeaux De Lavergne, J.G.; Durand, S.

    2011-01-01

    France has the ambition to become a world leader in both nuclear industry and in renewable energies. 3 types of synergies between nuclear power and renewable energies are highlighted. First, nuclear power can be used as a low-carbon energy to produce the equipment required to renewable energy production for instance photovoltaic cells. Secondly, to benefit from the complementary features of both energies: continuous/intermittency of the production, centralized/local production. The future development of smart grids will help to do that. Thirdly, to use nuclear energy to produce massively hydrogen from water and synthetic fuels from biomass. (A.C.)

  6. Innovation and energy. ECRIN day; Innovation et energie. Journee ECRIN

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    ECRIN is an association jointly created by the French atomic energy commission (CEA) and the French national center of scientific research (CNRS). It gathers experts from the research and industry worlds, representatives of institutions and decision making peoples in order to work on important topics like energy. This document gathers the working documents and transparencies presented at the ECRIN day on energy and innovation: opening talk of C. Birraux (head of the parliamentary office of evaluation of scientific and technological choices); the energy of seas (offshore wind power, wave energy, tide currents energy, thermal energy of seas, osmotic energy, tidal energy); synthetic fuels (stakes, possible options, Fischer-Tropsch synthesis, GTL, CTL, BTL, production with CO{sub 2} recycling); capture and geological sequestration of CO{sub 2}: a general overview (stakes, solutions, capture and sequestration, transport, geologic disposal, present day situation and perspectives); geothermal energy: new prospects (enhanced geothermal systems, hot-dry-rocks and hot fractured rocks, advances, cost, advantages and drawbacks); heat pumps and valorization of low temperature heat sources (space heating, district heating networks, heat pumps, artificial geothermal energy, low temperature water transport, thermal potentiality); heat and coldness storage and transport (use of intermittent energy sources, cogeneration, optimisation of processes, recovery of heat losses, CO{sub 2} capture, present-day situation, problems to be solved, integration of systems and processes); plastic photovoltaic solar cells (market, stakes, potentialities of organic materials for photovoltaic conversion, state-of-the-art, research in Europe and France, perspectives); conclusion of the Ecrin day (challenges, diversification of energy sources, energy efficiency, abatement of CO{sub 2} emissions, role of ECRIN). (J.S.)

  7. Dare nuclear energy with the Australian Nuclear Association

    International Nuclear Information System (INIS)

    Anon.

    2016-01-01

    Australian authorities have been traditionally opposed to nuclear energy. The interdiction to build nuclear power plants in the Australian states without the approval of the federal authority was even officially written in the environment code in 1999. Today coal provides 75% of the electricity needs of Australia. Because of climate warming, things are changing, the Australian government is now considering the possibility of using nuclear energy and a site located in southern Australian has been selected for the disposal of low and intermediate level radioactive wastes. In this context the Australian Nuclear Association (ANA) is developing an ambitious program for the promotion of all the applications of nuclear energy through the organisation of conferences and meetings with various experts of nuclear industry. The aim is to make the public aware of the assets of nuclear energy. (A.C.)

  8. Nuclear Energy Data - 2017

    International Nuclear Information System (INIS)

    2017-01-01

    Nuclear Energy Data is the Nuclear Energy Agency's annual compilation of statistics and country reports documenting nuclear power status in NEA member countries and in the OECD area. Information provided by governments includes statistics on total electricity produced by all sources and by nuclear power, fuel cycle capacities and requirements, and projections to 2035, where available. Country reports summarise energy policies, updates of the status in nuclear energy programs and fuel cycle developments. In 2016, nuclear power continued to supply significant amounts of low-carbon baseload electricity, despite strong competition from low-cost fossil fuels and subsidised renewable energy sources. Three new units were connected to the grid in 2016, in Korea, Russia and the United States. In Japan, an additional three reactors returned to operation in 2016, bringing the total to five under the new regulatory regime. Three reactors were officially shut down in 2016 - one in Japan, one in Russia and one in the United States. Governments committed to having nuclear power in the energy mix advanced plans for developing or increasing nuclear generating capacity, with the preparation of new build projects making progress in Finland, Hungary, Turkey and the United Kingdom. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports

  9. Nuclear Energy Data 2013

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear Energy Data is the OECD Nuclear Energy Agency's annual compilation of statistics and country reports documenting the status of nuclear power in the OECD area. Information provided by member country governments includes statistics on installed generating capacity, total electricity produced by all sources and by nuclear power, nuclear energy policies and fuel cycle developments, as well as projected generating capacity and electricity production to 2035, where available. Total electricity generation at nuclear power plants and the share of electricity production from nuclear power plants declined in 2012 as a result of operational issues at some facilities and suspended operation at all but two reactors in Japan. Nuclear safety was further strengthened in 2012 following safety reviews prompted by the Fukushima Daiichi nuclear power plant accident. Governments committed to maintaining nuclear power in the energy mix pursued initiatives to increase nuclear generating capacity. In Turkey, plans were finalised for the construction of the first four reactors for commercial electricity production. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports. This publication contains 'Statlinks'. For each StatLink, the reader will find a URL which leads to the corresponding spreadsheet. These links work in the same way as an Internet link [fr

  10. Renewable energy-driven innovative energy-efficient desalination technologies

    KAUST Repository

    Ghaffour, NorEddine; Lattemann, Sabine; Missimer, Thomas M.; Ng, Kim Choon; Sinha, Shahnawaz; Amy, Gary L.

    2014-01-01

    Globally, the Kingdom of Saudi Arabia (KSA) desalinates the largest capacity of seawater but through energy-intensive thermal processes such as multi-stage flash (MSF) distillation (>10 kW h per m3 of desalinated water, including electrical and thermal energies). In other regions where fossil energy is more expensive and not subsidized, seawater reverse osmosis (SWRO) is the most common desalination technology but it is still energy-intensive (3-4 kW h_e/m3). Both processes therefore lead to the emission of significant amounts of greenhouse gases (GHGs). Moreover, MSF and SWRO technologies are most often used for large desalination facilities serving urban centers with centralized water distribution systems and power grids. While renewable energy (RE) sources could be used to serve centralized systems in urban centers and thus provide an opportunity to make desalination greener, they are mostly used to serve rural communities off of the grid. In the KSA, solar and geothermal energy are of most relevance in terms of local conditions. Our group is focusing on developing new desalination processes, adsorption desalination (AD) and membrane distillation (MD), which can be driven by waste heat, geothermal or solar energy. A demonstration solar-powered AD facility has been constructed and a life cycle assessment showed that a specific energy consumption of <1.5 kW h_e/m3 is possible. An innovative hybrid approach has also been explored which would combine solar and geothermal energy using an alternating 12-h cycle to reduce the probability of depleting the heat source within the geothermal reservoir and provide the most effective use of RE without the need for energy storage. This paper highlights the use of RE for desalination in KSA with a focus on our group's contribution in developing innovative low energy-driven desalination technologies. © 2014 Elsevier Ltd. All rights reserved.

  11. Renewable energy-driven innovative energy-efficient desalination technologies

    KAUST Repository

    Ghaffour, Noreddine

    2014-04-13

    Globally, the Kingdom of Saudi Arabia (KSA) desalinates the largest capacity of seawater but through energy-intensive thermal processes such as multi-stage flash (MSF) distillation (>10 kW h per m3 of desalinated water, including electrical and thermal energies). In other regions where fossil energy is more expensive and not subsidized, seawater reverse osmosis (SWRO) is the most common desalination technology but it is still energy-intensive (3-4 kW h_e/m3). Both processes therefore lead to the emission of significant amounts of greenhouse gases (GHGs). Moreover, MSF and SWRO technologies are most often used for large desalination facilities serving urban centers with centralized water distribution systems and power grids. While renewable energy (RE) sources could be used to serve centralized systems in urban centers and thus provide an opportunity to make desalination greener, they are mostly used to serve rural communities off of the grid. In the KSA, solar and geothermal energy are of most relevance in terms of local conditions. Our group is focusing on developing new desalination processes, adsorption desalination (AD) and membrane distillation (MD), which can be driven by waste heat, geothermal or solar energy. A demonstration solar-powered AD facility has been constructed and a life cycle assessment showed that a specific energy consumption of <1.5 kW h_e/m3 is possible. An innovative hybrid approach has also been explored which would combine solar and geothermal energy using an alternating 12-h cycle to reduce the probability of depleting the heat source within the geothermal reservoir and provide the most effective use of RE without the need for energy storage. This paper highlights the use of RE for desalination in KSA with a focus on our group\\'s contribution in developing innovative low energy-driven desalination technologies. © 2014 Elsevier Ltd. All rights reserved.

  12. Ultimate Choice for Energy: The Nuclear Energy

    Directory of Open Access Journals (Sweden)

    Metin Yıldırım*

    2007-06-01

    Full Text Available Increases in the prices of oil, hard coal and natural gas, emergence of Russia as a not reliable resource for the natural and the developments in the security of the energy supply again have been started the nuclear energy as a hotly debated issue in the world. This is also a sensitive topic among the opponents and proponents of the nuclear energy in Turkey. Nuclear energy is very important since it provides about 17 % of the electric energy in the world and is used in industry and medical area. However, Turkey has not declared any policy about this yet, because of the worries about the environmental reasons and has not gained any progress about nuclear energy. First of all, Turkey must use her geothermal, hydropower, hard coal, solar and wind energies. Otherwise, Turkey may find herself in a competition with her neighboring countries

  13. Electricity and nuclear energy

    International Nuclear Information System (INIS)

    Krafft, P.

    1987-01-01

    Consequences of getting out from nuclear energy are discussed. It is concluded that the Chernobyl accident is no reason to withdraw confidence from Swiss nuclear power plants. There are no sufficient economizing potential and other energies at disposal to substitute nuclear energy. Switching to coal, oil and gas would increase environmental damages. Economic and social cost of getting out would be too high

  14. Nuclear energy: a sensible alternative

    International Nuclear Information System (INIS)

    Ott, K.O.; Spinrad, B.I.

    1985-01-01

    This book presents information on energy futures; energy demand, energy supplies; exclusive paths and difficult choices--hard, soft, and moderate energy paths; an energy-deficient society; energy shortages; economics of light-water reactors; fast breeder reactor economics; international cooperation in the nuclear field; nuclear recycling; alternative fuels, fuel cycles, and reactors; the nuclear weapons proliferation issue; paths to a world with more reliable nuclear safeguards; the homemade bomb issue; LWR risk assessment; accident analysis and risk assessment; the waste disposal risk; radon problems; risks in our society; health effects of low-level radiation; routine releases of radioactivity from the nuclear industry; low-level radioactivity and infant mortality; the myth of plutonium toxicity; myths about high-level radioactive waste; the aging reactor myth; the police state myth; insurance and nuclear power--the Price-Anderson Act; and solar and nuclear power as partners

  15. Techbelt Energy Innovation Center

    Energy Technology Data Exchange (ETDEWEB)

    Marie, Hazel [Youngstown State Univ., OH (United States); Nestic, Dave [TechBelt Energy Innovation Center, Warren, OH (United States); Hripko, Michael [Youngstown State Univ., OH (United States); Abraham, Martin [Youngstown State Univ., OH (United States)

    2017-06-30

    This project consisted of three main components 1) The primary goal of the project was to renovate and upgrade an existing commercial building to the highest possible environmentally sustainable level for the purpose of creating an energy incubator. This initiative was part of the Infrastructure Technologies Program, through which a sustainable energy demonstration facility was to be created and used as a research and community outreach base for sustainable energy product and process incubation; 2) In addition, fundamental energy related research on wind energy was performed; a shrouded wind turbine on the Youngstown State University campus was commissioned; and educational initiatives were implemented; and 3) The project also included an education and outreach component to inform and educate the public in sustainable energy production and career opportunities. Youngstown State University and the Tech Belt Energy Innovation Center (TBEIC) renovated a 37,000 square foot urban building which is now being used as a research and development hub for the region’s energy technology innovation industry. The building houses basic research facilities and business development in an incubator format. In addition, the TBEIC performs community outreach and education initiatives in advanced and sustainable energy. The building is linked to a back warehouse which will eventually be used as a build-out for energy laboratory facilities. The projects research component investigated shrouded wind turbines, and specifically the “Windcube” which was renamed the “Wind Sphere” during the course of the project. There was a specific focus on the development in the theory of shrouded wind turbines. The goal of this work was to increase the potential efficiency of wind turbines by improving the lift and drag characteristics. The work included computational modeling, scale models and full-sized design and construction of a test turbine. The full-sized turbine was built on the YSU

  16. The sustainable development of nuclear energy

    International Nuclear Information System (INIS)

    Guo Huifang

    2012-01-01

    The wide use of nuclear energy has promoted the development of China's economy and the improvement of people's living standards. To some extent, the exploitation of nuclear power plants will solve the energy crisis faced with human society. Before the utilization of nuclear fusion energy, nuclear fission energy will be greatly needed for the purpose of alleviating energy crisis for a long period of time. Compared with fossil fuel, on the one hand, nuclear fission energy is more cost-efficient and cleaner, but on the other hand it will bring about many problems hard to deal with, such as the reprocessing and disposal of nuclear spent fuel, the contradiction between nuclear deficiency and nuclear development. This paper will illustrate the future and prospect of nuclear energy from the perspective of the difficulty of nuclear development, the present reprocessing way of spent fuel, and the measures taken to ensure the sustainable development of nuclear energy. By the means of data quoting and comparison, the feasibility of sustainable development of nuclear energy will be analyzed and the conclusion that as long as the nuclear fuel cycling system is established the sustainable development of nuclear energy could be a reality will be drawn. (author)

  17. Energy at the Frontier: Low Carbon Energy System Transitions and Innovation in Four Prime Mover Countries

    Science.gov (United States)

    Araujo, Kathleen M.

    All too often, discussion about the imperative to change national energy pathways revolves around long timescales and least cost economics of near-term energy alternatives. While both elements certainly matter, they don't fully reflect what can drive such development trajectories. This study explores national energy transitions by examining ways in which four prime mover countries of low carbon energy technology shifted away from fossil fuels, following the first global oil crisis of 1973. The research analyzes the role of readiness, sectoral contributions and adaptive policy in the scale-up and innovations of advanced, alternative energy technologies. Cases of Brazilian biofuels, Danish wind power, French nuclear power and Icelandic geothermal energy are analyzed for a period of four decades. Fundamentally, the research finds that significant change can occur in under 15 years; that technology complexity need not necessarily impede change; and that countries of different governance approaches and consumption levels can effectuate such transitions. This research also underscores that low carbon energy technologies may be adopted before they are competitive and then become competitive in the process. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  18. Nuclear energy, the climate and nuclear disarmament

    International Nuclear Information System (INIS)

    Knapp, V.

    1998-01-01

    The main concern of Pugwash, with very good reason, is nuclear disarmament, but a negative attitude towards nuclear energy is not only futile, but counterproductive as it misses opportunities to appropriately influence its development. Since nuclear energy cannot be abandoned for ecological (decrease in greenhouse gases emission) and economic reasons as a long term energy source, then efforts should be devoted to make it safe from proliferation, which is possible from scientific and technological point of view

  19. IFP Energies nouvelles. 2016 Activity Report - Innovating for energy

    International Nuclear Information System (INIS)

    2017-01-01

    IFP Energies Nouvelles is a major research and training player in the fields of energy, transport and the environment. From research to industry, technological innovation is central to all its activities, structured around three strategic priorities: sustainable mobility, new energies and responsible oil and gas. As part of the public-interest mission with which it has been tasked by the public authorities, IFPEN focuses on: - providing solutions to take up the challenges facing society in terms of energy and the climate, promoting the transition towards sustainable mobility and the emergence of a more diversified energy mix; - creating wealth and jobs by supporting French and European economic activity, and the competitiveness of related industrial sectors. An integral part of IFPEN, its graduate engineering school - IFP School - prepares future generations to take up these challenges. IFPEN has proven expertise across the entire value chain, from fundamental research to innovation. It is funded both by a state budget and by its own resources provided by industrial partners. The latter account for over 50% of IFPEN's total budget, a configuration that is quasi unique in France. The aim of IFPEN's R and I programs is to overcome existing scientific and technological challenges in order to develop innovations that can be used by industry. IFPEN's fundamental research program aims to create a bedrock of knowledge essential for the development of innovations. The scientific expertise of IFPEN's researchers is internationally recognized and they are regularly consulted by the public authorities to provide their insight in their specific fields to inform the decision-making process. IFPEN's economic model is based on the transfer to industry of the technologies developed by its researchers. This technology transfer to industry generates jobs and business, fostering the economic development of fields and approaches related to the mobility, energy and eco-industry sectors

  20. Institute of Energy and Climate Research IEK-6. Nuclear Waste Management report 2011/2012. Material science for nuclear waste management

    International Nuclear Information System (INIS)

    Klinkenberg, M.; Neumeier, S.; Bosbach, D.

    2013-01-01

    The nuclear waste management section of the Institute of Energy and Climate Research IEK-6 in Juelich is focused on research on radiochemistry aspects/materials science relevant for the long-term safety of nuclear waste storage and disposal. Studies on innovative waste management strategies include partitioning o actinides and the development of ceramic waste forms. Structural research is covering solid state chemistry, crystallography and computational science to model actinide containing compounds. With respect to waste management concepts nondestructive essay techniques, waste treatment procedures and product quality control strategies were developed.

  1. Environmentalists for nuclear energy

    International Nuclear Information System (INIS)

    Comby, B.

    2001-01-01

    Fossil fuels such as coal oil, and gas, massively pollute the Earth atmosphere (CO, CO 2 , SOX, NOX...), provoking acid rains and changing the global climate by increasing the greenhouse effect, while nuclear energy does not participate in these pollutions and presents well-founded environmental benefits. Renewable energies (solar, wind) not being able to deliver the amount of energy required by populations in developing and developed countries, nuclear energy is in fact the only clean and safe energy available to protect the planet during the 21 century. The first half of the book, titled The Atomic Paradox, describes in layman language the risks of nuclear power, its environmental impact, quality and safety standards, waste management, why a power reactor is not a bomb, energy alternatives, nuclear weapons, and other major global and environmental problems. In each case the major conclusions are framed for greater emphasis. Although examples are taken from the French nuclear power program, the conclusions are equally valid elsewhere. The second half of the book is titled Information on Nuclear Energy and the Environment and briefly provides a historical survey, an explanation of the different types of radiation, radioactivity, dose effects of radiation, Chernobyl, medical uses of radiation, accident precautions, as well as a glossary of terms and abbreviations and a bibliography. (author)

  2. Quantitative data study on energy innovation; Kwantitatief data onderzoek Energie-innovaties

    Energy Technology Data Exchange (ETDEWEB)

    Clocquet, R. [DHV, Eindhoven (Netherlands)

    2012-05-15

    NL Agency desires, on the basis of the study 'State of the Land energy innovation of the built environment', to gain insight in the market, in particular where it concerns the process approach towards innovation. The study consists of a quantitative and a qualitative part [Dutch] Agentschap NL wil aan de hand van het onderzoek Stand van het Land energie-innovaties gebouwde omgeving een beeld geven waar de markt staat op het gebied van met name de procesaanpak ten behoeve van innovatie. Het onderzoek bestaat uit een kwantitatief en een kwalitatief deel.

  3. Energy conservation techniques as innovations, and their diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Darley, J M

    1978-04-01

    Many effective products, procedures, and techniques for achieving energy conservation have been discovered by researchers. This paper focuses on the conditions under which these procedures and techniques will be adopted voluntarily. It is suggested, first, that an economic incentive for the utilization of those energy-conserving techniques is not a sufficient condition for their adoption, and second, that a psychologically-based theory of the diffusion of innovation will identify the critical variables for promoting the adoption of energy-conserving products and techniques. Based on preliminary, small-scale observations of homeowners' reactions to a complex, time-controlled thermostat, the initial parameters of a diffusion theory for energy innovation are suggested.

  4. Dictionary of nuclear energy termination

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-04-15

    This book lists termination of nuclear energy such as abbreviation, symbol, unit of nuclear energy, radiological unit, the symbol for element, isotope chart and the periodic table. This book contains about 5500 words involving to nuclear energy with index in Korean and English. It arranges alphabetically. So, with this book, it is easy and fast to find out the glossary, unit and symbol on nuclear energy.

  5. Dictionary of nuclear energy termination

    International Nuclear Information System (INIS)

    1983-04-01

    This book lists termination of nuclear energy such as abbreviation, symbol, unit of nuclear energy, radiological unit, the symbol for element, isotope chart and the periodic table. This book contains about 5500 words involving to nuclear energy with index in Korean and English. It arranges alphabetically. So, with this book, it is easy and fast to find out the glossary, unit and symbol on nuclear energy.

  6. Nuclear energy of hope and dream

    International Nuclear Information System (INIS)

    2009-02-01

    This book describes nuclear energy as hopeful and helpful energy for our life. It includes a lot of introductions of carbon energy, green energy, an atomic reactor for generation of electricity and research, a nuclear fuel cycle, radiation in life, radiation measurement, a radioisotope, the principle of utilization of radiation, utilization for clinical medicine, nuclear energy and economy, international cooperation of nuclear energy and control of nuclear energy.

  7. IRSN opinion on nuclear safety within the frame of the National Debate on Energy Transition

    International Nuclear Information System (INIS)

    2013-06-01

    This note aims at outlining that nuclear safety must be taken into consideration in the debate on energy transition, and more particularly major accidents which may have a radiological impact on populations and on the environment. It outlines that the nuclear sector is generally perceived as a source of innovation, a booster for scientific, industrial and economic excellence, and that reducing the share of nuclear energy could affect these abilities. It discusses the relationship between ageing and safety for the French nuclear reactor fleet. It addresses the issue of a possible accident and the necessary provision of compensation costs. It finally outlines that, even though the probability of severe accidents for reactors of new generation is low, improvement actions are still to be studied, notably regarding the organisational and human context

  8. Nuclear Energy Data - 2014

    International Nuclear Information System (INIS)

    2014-01-01

    Nuclear Energy Data is the OECD Nuclear Energy Agency's annual compilation of statistics and country reports documenting the status of nuclear power in the OECD area. Information provided by member country governments includes statistics on installed generating capacity, total electricity produced by all sources and by nuclear power, nuclear energy policies and fuel cycle developments, as well as projected generating capacity and electricity production to 2035, where available. Total electricity generation at nuclear power plants and the share of electricity production from nuclear power plants remained steady in 2013 despite the progressive shutdown of all reactors in Japan leading up to September and the permanent closure of six reactors in the OECD area. Governments committed to maintaining nuclear power in the energy mix advanced plans for increasing nuclear generating capacity, and progress was made in the development of deep geological repositories for spent nuclear fuel, with Finland expected to have the first such facility in operation in the early 2020's. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports. This publication contains 'StatLinks'. For each StatLink, the reader will find a URL which leads to the corresponding spreadsheet. These links work in the same way as an Internet link. (authors)

  9. Germany bars nuclear energy

    International Nuclear Information System (INIS)

    Gaullier, V.

    1999-01-01

    Germany wants a future without nuclear energy, the different steps about the going out of nuclear programs are recalled. The real choice is either fossil energies with their unquestionable safety levels but with an increase of the greenhouse effect or nuclear energy with its safety concerns and waste management problems but without pollutant emission. The debate will have to be set in most European countries. (A.C.)

  10. Economic analysis of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Myung; Lee, M.K.; Moon, K.H.; Kim, S.S.; Lim, C.Y.; Song, K.D.; Kim, H

    2001-12-01

    The objective of this study is to evaluate the contribution of nuclear energy to the energy use in the economical way, based on the factor survey performed on the internal and external environmental changes occurred recent years. Internal and external environmental changes are being occurred recent years involving with using nuclear energy. This study summarizes the recent environmental changes in nuclear energy such as sustainable development issues, climate change talks, Doha round and newly created electricity fund. This study also carried out the case studies on nuclear energy, based on the environmental analysis performed above. The case studies cover following topics: role of nuclear power in energy/environment/economy, estimation of environmental external cost in electric generation sector, economic comparison of hydrogen production, and inter-industrial analysis of nuclear power generation.

  11. Economic analysis of nuclear energy

    International Nuclear Information System (INIS)

    Lee, Han Myung; Lee, M.K.; Moon, K.H.; Kim, S.S.; Lim, C.Y.; Song, K.D.; Kim, H.

    2001-12-01

    The objective of this study is to evaluate the contribution of nuclear energy to the energy use in the economical way, based on the factor survey performed on the internal and external environmental changes occurred recent years. Internal and external environmental changes are being occurred recent years involving with using nuclear energy. This study summarizes the recent environmental changes in nuclear energy such as sustainable development issues, climate change talks, Doha round and newly created electricity fund. This study also carried out the case studies on nuclear energy, based on the environmental analysis performed above. The case studies cover following topics: role of nuclear power in energy/environment/economy, estimation of environmental external cost in electric generation sector, economic comparison of hydrogen production, and inter-industrial analysis of nuclear power generation

  12. The nuclear energy debate

    International Nuclear Information System (INIS)

    Hardy, D.

    1984-01-01

    We have not been able to obtain closure in the nuclear energy debate because the public perception of nuclear energy is out of sync with reality. The industry has not been about to deal with the concerns of those opposed to nuclear energy because its reaction has been to generate and disseminate more facts rather than dealing with the serious moral and ethical questions that are being asked. Nuclear proponents and opponents appeal to different moral communities, and those outside each community cannot concede that the other might be right. The Interfaith Program for Public Awareness of Nuclear Issues (IPPANI) has been formed, sponsored by members of the Jewish, Baha'i, Roman Catholic, United, and Anglican faiths, to provide for a balanced discussion of the ethical aspects of energy. (L.L.)

  13. Climate change and radical energy innovation: the policy issues

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Keith

    2009-01-15

    How can we sustain global economic performance while reducing and perhaps eliminating climate impacts? This dual objective ultimately requires the innovation of radically new low- or zero-emitting energy technologies. But what is involved in such innovation, and why and how should governments support it? What are the implications for innovation policy makers? The paper discusses the nature of the innovation challenge of climate change, develops a framework for analyzing modes of innovation, applies the framework to energy technologies and analyses policies for energy innovation. The overall argument is that we are 'locked in' to an unsustainable but large-scale hydrocarbon energy system. The innovation problem is to develop alternatives to this system as a whole. Yet despite widespread environmental innovation efforts and incentives, these are not yet addressing the innovation challenge on an adequate scale. The analytical framework sees technologies not as single techniques but as multi-faceted technological 'regimes'. Technological regimes comprise production systems and methods, scientific and engineering knowledge organization, infrastructures, and social patterns of technology use. We live not with individual energy technologies but with a complex hydrocarbon regime. Against this background we can identify three modes of innovation, with very different characteristics. They are; Incremental innovations - upgrades to existing technologies, producing innovation within existing technological regimes, such as increases in the capabilities and speeds of microprocessors; Disruptive innovations - new methods of performing existing technical functions, changing how things are done, but not changing the overall regime, such as the shift from film to digital imaging; Radical innovations - technological regime shifts, involving wholly new technical functions, new knowledge bases, and new organizational forms, such as the transition from steam power

  14. 75 FR 32657 - Delegations to Office of Energy Policy and Innovation

    Science.gov (United States)

    2010-06-09

    ...; Order No. 736] Delegations to Office of Energy Policy and Innovation May 28, 2010. AGENCY: Federal... regulations to delegate authority to the newly established Office of Energy Policy and Innovation to allow... Innovation (OEPI) to provide leadership in the development and formulation of policies and regulations to...

  15. Innovative waste treatment and conditioning technologies at nuclear power plants

    International Nuclear Information System (INIS)

    2006-05-01

    The objective of this publication is to provide Member States with information on the most innovative technologies and strategies used in waste treatment and conditioning. At present, some of those technologies and strategies might not be widely implemented at nuclear power plants (NPP), but they have an important potential for their use as part of the long range NPP, utility, or national strategy. Thus, the target audience is those decision makers at the national and organizational level responsible for selecting waste processing technologies and strategies over a period of three to ten years. Countries and individual nuclear plants have limited financial resources which can be applied toward radioactive waste processing (treatment and conditioning). They are challenged to determine which of the many available technologies and strategies are best suited to meet national or local needs. This publication reduces the selection of processes for wastes generated by nuclear power plants to those technologies and strategies which are considered innovative. The report further identifies the key benefits which may derive from the adoption of those technologies, the different waste streams to which each technology is relevant, and the limitations of the technologies. The technologies and strategies identified have been evaluated to differentiate between (1) predominant technologies (those that are widely practiced in multiple countries or a large number of nuclear plants), and (2) innovative technologies (those which are not so widely used but are considered to offer benefits which make them suitable for broader application across the industry). Those which fall into the second category are the primary focus of this report. Many IAEA publications address the technical aspects of treatment and conditioning for radioactive wastes, covering research, technological advances, and safety issues. These studies and reports primarily target the research and technical staff of a

  16. Innovative fission reactors for this century

    International Nuclear Information System (INIS)

    Minguez, E.

    2007-01-01

    It is well known that global trends indicate a rebirth of nuclear energy due to several items: the climate change and the use of energies that emits CO 2 , the cost and dependence of gas and oil, the new innovative reactors which are competitive, safer, and sustainable and can support the Kyoto Protocol. The Advanced Reactors have safer systems than those developed in the Generation II, which demonstrates that are sustainable for the present and nuclear industry has also developed new concepts for the future which also will be sustainable. Now the new power plants that have being constructed are classified in the Generation III. Several units of this technology are in operation in Japan and other countries of the Pacific. Europe is now constructing the first unit in Finland (Olkilouto) with European technology: the European Pressurized Reactor (EPR). France has announced the beginning of the construction of an EPR in Flamanville next year. In 2000, several countries with advanced nuclear technology established the Generation IV International Forum (GIF) to develop and demonstrate nuclear energy systems that offer advantages in the following areas: sustainability, economics, safety and reliability and proliferation resistance and physical protection. These new systems will be deployed commercially after 2030. Six innovative concepts are under research, and the aim is not only produce electricity, but also hydrogen using the operational conditions of several concepts. Developed countries with NPPs in operation have strategies for the future of the nuclear energy. For the short term is to extend the operation of the NPPs until 60 years, or alternatively construction of new units of Generation III, to substitute those closed for decommissioning, keeping the percentage of contribution to the electricity generated. Between the period 2030-50, the solution is to operate the new innovative systems of the Generation IV, which uses the passive concept, and in the second part

  17. Can Slovakia to survive without nuclear energy? State and perspectives of nuclear energetics. Attitudes of public to nuclear energy

    International Nuclear Information System (INIS)

    Suchomel, J.; Murinova, S.

    2004-01-01

    In this presentation authors deals with the review of the state of nuclear energetics in the Slovak Republic. Perspectives of nuclear energy and renewable sources of energy as well as attitudes of public to nuclear energy are discussed

  18. Innovative Nuclear Power Plant Building Arrangement in Consideration of Decommissioning

    OpenAIRE

    Won-Jun Choi; Myung-Sub Roh; Chang-Lak Kim

    2017-01-01

    A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA) strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research...

  19. White paper on nuclear energy, 1996

    International Nuclear Information System (INIS)

    1996-01-01

    Japan has scant energy resources, and more than 80% of its energy demand depends on other countries. The energy problem should be considered not only from the domestic viewpoint of energy supply and demand but also from the global viewpoint. Japanese nuclear power generation accounts for about 30% of its total electric power. The main strategy of Japan is to secure stable energy supply through the establishment of nuclear fuel cycle, and to efficiently use the plutonium and residual uranium recovered from spent nuclear fuel. The sodium leakage from the prototype FBR 'Monju' in December, 1995 raised the anxiety about the nuclear policy. People living in Japan should be assured the peace of mind about the development and utilization of nuclear energy. Regarding coexistence of nuclear energy and people, stronger demand of clearer reflection of public opinion to nuclear policy, holding of the round table conferences on nuclear policy, various efforts toward the coexistence of nuclear energy and people and so on are discussed. The development and utilization of nuclear energy in Japan and overseas are reported on nuclear nonproliferation, safety assurance, information disclosure, present and future of nuclear power generation, international cooperation and others. (K.I.)

  20. Energy paper II: Nuclear energy revival

    International Nuclear Information System (INIS)

    Anonymous

    2008-01-01

    ESI Energy paper is called 'Issue Paper' awarded by think-tank Energy Security Institute. The second issue focuses on the energy security of countries from the perspective of Renaissance of construction of nuclear power plants. Topicality is documented by fluctuations in fossil fuel prices on the world commodity markets and by extortionate potential, disposed by their main producers. The Slovak Republic is actively engaged into international dialogue on the need for the development of nuclear energy.

  1. Nuclear energy achievements and prospects

    International Nuclear Information System (INIS)

    Lewiner, Colette

    1992-01-01

    Within half a century nuclear energy achieved very successful results. Only for European Community, nuclear energy represents 30% in electricity generation. At this stage, one state that the nuclear energy winning cards are competitiveness and Gentleness to the environment. Those winning cards will still be master cards for the 21st century, provided nuclear energy handles rigorously: Safety in concept and operation of power plants; radioactive waste management, and communication

  2. Evaluation of nuclear energy in the context of energy security

    International Nuclear Information System (INIS)

    Irie, Kazutomo; Kanda, Keiji

    2002-01-01

    This paper analyzes the view expressed by the Japanese government on the role of nuclear energy for energy security through scrutiny of Japan's policy documents. The analysis revealed that the contribution by nuclear energy to Japan's energy security has been defined in two ways. Nuclear energy improves short-term energy security with its characteristics such as political stability in exporting countries of uranium, easiness of stockpiling of nuclear fuels, stability in power generation cost, and reproduction of plutonium and other fissile material for use by reprocessing of spent fuel. Nuclear energy also contributes to medium- and long-term energy security through its characteristics that fissile material can be reproduced (multiplied in the case of breeder reactor) from spent fuels. Further contribution can be expected by nuclear fusion. Japan's energy security can be strengthened not only by expanding the share of nuclear energy in total energy supply, but also by improving nuclear energy's characteristics which are related to energy security. Policy measures to be considered for such improvement will include (a) policy dialogue with exporting countries of uranium, (b) government assistance to development of uranium mines, (c) nuclear fuel stockpiling, (d) reprocessing and recycling of spent fuels, (e) development of fast breeder reactor, and (f) research of nuclear fusion. (author)

  3. The categorization of the impacts of the results of scientific and technological innovation in the Agency of Nuclear energy and advanced technologies (AENTA)

    International Nuclear Information System (INIS)

    Rodriguez Cardona, R.; Cobas Aranda, M.

    2010-01-01

    Science and technology are essential to the development of contemporary societies, however, there are different concepts and methodologies internationally to assess the economic and social impact of science and technology. In our country he has worked intensely with this aim and has established a national nomenclature of impact of science, technology and innovation. The Agency of Nuclear energy and advanced technologies (AEN-TA) is intended to improve the management of the programmes and projects management system framed within the system of science and technological innovation of the Republic of Cuba (SCIT) and one of the aspects of your special attention is the proper selection and follow-up (ex - before and during) projects to ensure that they contribute to improving the level of economic and social of our country one of his fundamental premises. This work has aims to show how the bases of the categorization of the impacts of the projects were established in the AEN-Mt management programs, as a management tool for the selection and monitoring of them, and which are characterized by a flexibility that keeping their identity do not differ from the established in the country. (author)

  4. Innovative Commercialization Efforts Underway at the National Renewable Energy Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Cheesbrough, Kate; Bader, Meghan

    2016-08-26

    New clean energy and energy efficiency technology solutions hold the promise of significant reductions in energy consumption. However, proven barriers for these technologies, including the technological and commercialization valleys of death, result in promising technologies falling to the wayside. To address these gaps, NREL's Innovation & Entrepreneurship Center designs and manages advanced programs aimed at supporting the development and commercialization of early stage clean energy technologies with the goal of accelerating new technologies to market. These include: Innovation Incubator (IN2) in partnership with Wells Fargo: this technology incubator supports energy efficiency building-related startups to overcome market gaps by providing access to technical support at NREL; Small Business Voucher Pilot: this program offers paid vouchers for applicants to access a unique skill, capability, or facility at any of the 17 DOE National Laboratories to bring next-generation clean energy technologies to market; Energy Innovation Portal: NREL designed and developed the Energy Innovation Portal, providing access to EERE focused intellectual property available for licensing from all of the DOE National Laboratories; Lab-Corps: Lab-Corps aims to better train and empower national lab researchers to understand market drivers and successfully transition their discoveries into high-impact, real world technologies in the private sector; Incubatenergy Network: the Network provides nationwide coordination of clean energy business incubators, share best practices, support clean energy entrepreneurs, and help facilitate a smoother transition to a more sustainable clean energy economy; Industry Growth Forum: the Forum is the perfect venue for clean energy innovators to maximize their exposure to receptive capital and strategic partners. Since 2003, presenting companies have collectively raised more than $5 billion in growth financing.

  5. Energy Outlook and Nuclear Energy in China

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Mooneon; Kang, Jun-young; Song, Kiwon; Park, Hyun Sun; Park, Chang Kue [Pohang university of science and technology, Pohang (Korea, Republic of)

    2015-05-15

    China receives attention from the whole world as not only have they become a country spending the most energy in the world, but also the amount of energy they need is still increasing. Consequently, many problems related to environmental pollution have occurred in China. Recently, China agreed to reduce carbon emission in order to deal with this issue. Therefore, they need to find energy sources other than fossil fuel; the nuclear energy could be an alternative. In addition, it is considered to be a base load owing to its low fuel cost and continuation of electricity generation. In reality, the Chinese government is planning to build about 400 Nuclear Power Plants (NPPs) up to 2050. Therefore, it is expected that China will become a giant market in the nuclear industry. It could give us either chances to join the huge market or challenges to meet not merely nuclear fuel price crisis but competitors from China in the world nuclear power plant market. In any case, it is obvious that the energy policy of China would influence us significantly. Accordingly, we need appropriate prediction of the Chinese nuclear industry to cope with the challenges.

  6. Is nuclear energy ethically justifiable?

    International Nuclear Information System (INIS)

    Zuend, H.

    1988-01-01

    Nuclear technology brings the chance to provide an essential long term contribution to the energy supply of the world population and to use the raw materials uranium and thorium which have no other use. The use of nuclear energy is ethically justifiable providing certain simple fundamental rules for the design of nuclear facilities are observed. Such rules were clearly violated before the reactor accident at Chernobyl. They are, however, observed in our existing nuclear power plants. Compared with other energy systems nuclear energy has, with the exception of natural gas, the lowest risk. The consideration of the ethical justification of nuclear energy must also include the question of withdrawal. A withdrawal would have considerable social consequences for the industrial nations as well as for the developing countries. The problem of spreading alarm (and concern) by the opponents of nuclear energy should also be included in the ethical justification. 8 refs., 2 figs

  7. Innovative-Simplified Nuclear Power Plant Efficiency Evaluation with High-Efficiency Steam Injector System

    International Nuclear Information System (INIS)

    Shoji, Goto; Shuichi, Ohmori; Michitsugu, Mori

    2006-01-01

    It is possible to establish simplified system with reduced space and total equipment weight using high-efficiency Steam Injectors (SI) instead of low-pressure feedwater heaters in Nuclear Power Plant (NPP). The SI works as a heat exchanger through direct contact between feedwater from condensers and extracted steam from turbines. It can get higher pressure than supplied steam pressure. The maintenance and reliability are still higher than the feedwater ones because SI has no movable parts. This paper describes the analysis of the heat balance, plant efficiency and the operation of this Innovative-Simplified NPP with high-efficiency SI. The plant efficiency and operation are compared with the electric power of 1100 MWe-class BWR system and the Innovative-Simplified BWR system with SI. The SI model is adapted into the heat balance simulator with a simplified model. The results show that plant efficiencies of the Innovated-Simplified BWR system are almost equal to original BWR ones. The present research is one of the projects that are carried out by Tokyo Electric Power Company, Toshiba Corporation, and six Universities in Japan, funded from the Institute of Applied Energy (IAE) of Japan as the national public research-funded program. (authors)

  8. West Europe without Nuclear Energy

    International Nuclear Information System (INIS)

    1999-01-01

    This document contains basic conclusions of discussion if West Europe can exist without nuclear energy: 1. Presumptions for the nuclear energy removal 2. Regional and international consulting 3. Economic competition 4. Role of the nuclear energy 5. Situation in the energetic industry 6. Costs, safety and public relations 7. Energy policy

  9. Technological development with reference to hydro-power, nuclear, and alternative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    Burns, T R; Baumgartner, T

    1985-01-01

    This report outlines a theoretical framework for describing and analyzing the introduction of new technologies and the development of socio-technical systems associated with such innovations. While the report is largely theoretical in nature, it refers to certain strategic aspects of the development of nuclear, hydro-power and alternative energy systems. The ease with which technological innovation and development occur, the directions they take, and the impacts they have on the social and physical environments depend not only on purely technical and economic factors. Barriers, regulators and facilitators are inherent in the socio-political, institutional and cultural structures within which any attempts at innovation and technological development take place. The final section of the report explores some of the implications of the theory for policy and strategy, including consideration of environmental policy.

  10. Molten salts and nuclear energy production

    International Nuclear Information System (INIS)

    Le Brun, Christian

    2007-01-01

    Molten salts (fluorides or chlorides) were considered near the beginning of research into nuclear energy production. This was initially due to their advantageous physical and chemical properties: good heat transfer capacity, radiation insensitivity, high boiling point, wide range solubility for actinides. In addition it was realised that molten salts could be used in numerous situations: high temperature heat transfer, core coolants with solid fuels, liquid fuel in a molten salt reactor, solvents for spent nuclear solid fuel in the case of pyro-reprocessing and coolant and tritium production in the case of fusion. Molten salt reactors, one of the six innovative concepts chosen by the Generation IV international forum, are particularly interesting for use as either waste incinerators or thorium cycle systems. As the neutron balance in the thorium cycle is very tight, the possibility to perform online extraction of some fission product poisons from the salt is very attractive. In this article the most important questions that must be addressed to demonstrate the feasibility of molten salt reactor will be reviewed

  11. The new economics of nuclear energy

    International Nuclear Information System (INIS)

    Salian, Ramesh; Prasanna Kumar, N.

    2012-01-01

    With 15% of the world's population and an economic growth rate that increases the aspiration of its people to better quality of life, India has a voracious appetite for energy. Nuclear power is one of the options of providing safe, environmentally benign, reliable and economically competitive energy services. Nuclear power world over provides about 16% of electricity through 440 nuclear power plants with a total installed capacity of 361.582 GW (as of January 2004, IAEA PRIS data). Nuclear energy has traditionally played a small role in meeting India's energy requirements. Nuclear power makes up only 4,120 MW, constituting 2.6%, of the total electricity generation capacity. India is a power hungry nation and needs to switch over from its tremendous dependence on fossil fuels to alternative sources of energy like solar energy, bio energy and nuclear energy. Indian nuclear power plants have progressively attained excellent operation performances. However, the changing economic and geopolitical situation in the energy sector has made it imperative to emphasize the significance of nuclear energy in the future energy landscape of the country. The present paper discuss the importance, demand and supply pattern of nuclear energy and its economics. (author)

  12. Nuclear energy and society

    International Nuclear Information System (INIS)

    Bakacs, Istvan; Czeizel, Endre; Hajdu, Janos; Marx, Gyoergy.

    1984-01-01

    The text of a round-table discussion held on the occasion of the 50th anniversary of the discovery of neutron is given. The participants were the Chief Engineer of the Paks Nuclear Power Plant, the first nuclear power plant in Hungary started in November 1982, a geneticist treating the problems of genetic damages caused by nuclear and chemical effects, a nuclear physicist and a journalist interested in the social aspects of nuclear energy. They discussed the political, economical and social problems of nuclear energy in the context of its establishment in Hungary. (D.Gy.)

  13. What makes nuclear energy (not) acceptable?

    Energy Technology Data Exchange (ETDEWEB)

    Turcanu, C.; Perko, T. [Belgian Nuclear Research Centre (SCK-CEN), Mol (Belgium). Society and Policy Support; Kermisch, C. [Universite Libre de Bruxelles (Belgium). Fonds de la Recherche Scientifique

    2013-08-15

    Higher knowledge has long been hypothesized as leading to better acceptance of nuclear energy, but in the last years other factors such as risk perception and trust in nuclear risk governance were also recognized as key elements. While stakeholder involvement is now fully recognized as a key element for nuclear energy acceptance, there are still questions about the impact of higher knowledge. This paper investigates the relation between knowledge about the nuclear domain, risk perception of nuclear risks, confidence in the management of nuclear technologies, on the one hand, and the attitude towards nuclear energy and opinion about nuclear energy, on the other hand. It also studies the factors that are pleading in favour or against nuclear energy and their relation with the forementioned variables. The study is based on empirical data from a large scale opinion survey in Belgium between 25/05/2011 and 24/06/2011, i.e. the third month after the accident in Fukushima. The sample consisted of 1020 respondents and is representative for the Belgian adult population (18+) with respect to gender, age, region, province, habitat and social class. Our results show that confidence in the safe management of nuclear technologies as well as the perceived strength of the arguments pro/against nuclear are driving factors for people's attitude towards nuclear energy. Higher confidence and stronger adherence to the arguments in favour of nuclear energy lead to higher acceptance. The correlation between knowledge and attitude/opinion towards nuclear energy is statistically significant, but rather low, showing only a weak effect of knowledge on attitudes or opinions about nuclear energy. A weak effect is also observed for risk perception of nuclear risks, lower risk perception leading to a somewhat more positive attitude/opinion about nuclear energy. In the study we also highlight that the main factors seen as pleading in favour or against nuclear energy are the same, both for

  14. Nuclear energy in Korea

    International Nuclear Information System (INIS)

    Ahn, J.-H.

    2000-01-01

    The total electricity generated in 1998 was 215,300 GWh with 43,261 MWe of total installed capacity of electric power, while in 1978 when the first Nuclear Power Plant began operation it was 31,510 GWh with 6,916 MWe installed capacity. The share of nuclear power generation in 1998 increased up to 41.7%. Currently, 16 units of nuclear power are operating with an additional four units under construction. Nuclear power has contributed to enhancing energy security and supplying stable energy for Korea. The government's strong commitment to the nuclear power program together with a long-term national policy resulted in favorable conditions for KEPCO to manage the program and promote increasing levels of national participation in successive nuclear power projects. The role of nuclear power as a sustainable energy resource can not be emphasized enough with respect to global environmental issues. Increasing the share of nuclear power in the total installed capacity for electricity generation will undoubtedly play a very important role. (author)

  15. 18 CFR 1316.9 - Nuclear energy hazards and nuclear incidents.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Nuclear energy hazards... Text of Conditions and Certifications § 1316.9 Nuclear energy hazards and nuclear incidents. When so... documents or actions: Nuclear Energy Hazards and Nuclear Incidents (Applicable only to contracts for goods...

  16. Foreign versus indigenous innovation and energy intensity: Further research across Chinese regions

    International Nuclear Information System (INIS)

    Herrerias, M.J.; Cuadros, A.; Luo, D.

    2016-01-01

    Highlights: • We analyze foreign and indigenous innovation on energy intensity. • We consider different types of investment ownership in China. • Our results suggest that both foreign and domestic innovation are important. • The interaction between foreign and domestic innovation still is modest. • Geographical location is important for energy policy purpose. - Abstract: The aim of this work is to analyze the role played by both foreign and indigenous innovation on energy intensity as well as the possible interactions between them across 30 Chinese regions. In addition, we consider different types of corporate ownership that operate in China. We control our estimates by energy price and the composition effect. We provide a complete picture of energy sector by examining all sources of energy. We use Beck and Katz estimator in order to take into account heterocedasticity and serial correlation over the period 2006–2010. Our results suggest that both foreign and domestic innovation efforts played a significant role in improving energy efficiency in China. However, the interaction between foreign and indigenous innovations is modest. We observe significant differences among investment ownership due to its geographical location. These findings have important policy implications for energy sector in China.

  17. Proceedings of the nuclear energy symposium, 'nuclear energy and scientists in Asia'

    International Nuclear Information System (INIS)

    1996-03-01

    This publication is the collection of the paper presented at the title meeting on the nuclear energy symposium, nuclear energy and scientists in Asia. The 9 of the presented papers are indexed individually. (J.P.N.)

  18. Nuclear Energy Data - 2016

    International Nuclear Information System (INIS)

    2016-01-01

    Nuclear Energy Data is the Nuclear Energy Agency's annual compilation of statistics and country reports documenting nuclear power status in NEA member countries and in the OECD area. Information provided by governments includes statistics on installed generating capacity, total electricity produced by all sources and by nuclear power, nuclear energy policies and fuel cycle developments, as well as projections of nuclear generating capacity and electricity production to 2035, where available. Total electricity generation at nuclear power plants and the share of electricity production from nuclear power plants increased slightly in 2015, by 0.2% and 0.1%, respectively. Two new units were connected to the grid in 2015, in Russia and Korea; two reactors returned to operation in Japan under the new regulatory regime; and seven reactors were officially shut down - five in Japan, one in Germany and one in the United Kingdom. Governments committed to having nuclear power in the energy mix advanced plans for developing or increasing nuclear generating capacity, with the preparation of new build projects progressing in Finland, Hungary, Turkey and the United Kingdom. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports. This publication contains 'Stat Links'. For each Stat Link, the reader will find a URL which leads to the corresponding spreadsheet. These links work in the same way as an Internet link. (authors)

  19. Nuclear energy

    International Nuclear Information System (INIS)

    1978-01-01

    2 1/2 years ago a consultation group was formed to help the Section for Social Questions of the Council of Churches in the Netherlands, to answer questions in the area of nuclear energy. During this time the character of the questions has changed considerably. In the beginning people spoke of fear and anxiety over the plans for the application of this new technical development but later this fear and anxiety turned to protest and opposition. This brochure has been produced to enlighten people and try and answer their alarm, by exploring the many facets of the problems. Some of these problems are already being deeply discussed by the public, others play no role in the forming of public opinion. The points of view of the churches over nuclear energy are not expressed, the brochure endeavours to express that nuclear energy problems are a concern for the churches. Technical and economic information and the most important social questions are discussed. (C.F.)

  20. Energy geostructures innovation in underground engineering

    CERN Document Server

    Laloui, Lyesse

    2013-01-01

    Energy geostructures are a tremendous innovation in the field of foundation engineering and are spreading rapidly throughout the world. They allow the procurement of a renewable and clean source of energy which can be used for heating and cooling buildings. This technology couples the structural role of geostructures with the energy supply, using the principle of shallow geothermal energy. This book provides a sound basis in the challenging area of energy geostructures.The objective of this book is to supply the reader with an exhaustive overview on the most up-to-date and available knowledge

  1. Nuclear energy in the European energy mix operation

    International Nuclear Information System (INIS)

    Gueldner, R.

    2009-01-01

    The world nuclear energy is on the upswing. This is shown by lifetime extensions up to 60 years and the construction of new nuclear power plants. Especially, the progressive climate change requires new, definitive, fast and decisive solutions. Europe has to find the right energy mix for the future having the magic triangle of environmental sustainability, security of supply and economic affordability in mind. At the centre of all the efforts made by many countries all over the world, nuclear is one vital key technology to face and combat global warming. Nuclear has a positive eco-balance, nuclear gives security of supply and nuclear power generation is competitive. Beside this the most important fact is and will be the high safety to run a nuclear power plant. The energy mix in the EU of the next decades will be defined today. It is vital to consider every option, which can contribute to a sustainable energy mix. Nuclear alone is not the solution for all problems but there will be no sustainable solution without nuclear. (author)

  2. Framework for Assessing Dynamic Nuclear Energy Systems for Sustainability: Final Report of the INPRO Collaborative Project GAINS

    International Nuclear Information System (INIS)

    2013-01-01

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.' One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property'. The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. As an integral part of Phase 2 of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), several collaborative projects (CPs) were established by INPRO members. The CP, 'Global Architecture of Innovative Nuclear Energy Systems Based on Thermal and Fast Reactors Including a Closed Fuel Cycle (GAINS)', was one of them. This CP was jointly implemented in 2008-2011 by Belgium, Canada, China, the Czech Republic, France, India, Italy, Japan, the Republic of Korea, the Russian Federation, Slovakia, Ukraine, the United States of America and the European Commission

  3. Business model innovation for sustainable energy: German utilities and renewable energy

    International Nuclear Information System (INIS)

    Richter, Mario

    2013-01-01

    The electric power sector stands at the beginning of a fundamental transformation process towards a more sustainable production based on renewable energies. Consequently, electric utilities as incumbent actors face a massive challenge to find new ways of creating, delivering, and capturing value from renewable energy technologies. This study investigates utilities' business models for renewable energies by analyzing two generic business models based on a series of in-depth interviews with German utility managers. It is found that utilities have developed viable business models for large-scale utility-side renewable energy generation. At the same time, utilities lack adequate business models to commercialize small-scale customer-side renewable energy technologies. By combining the business model concept with innovation and organization theory practical recommendations for utility mangers and policy makers are derived. - Highlights: • The energy transition creates a fundamental business model challenge for utilities. • German utilities succeed in large-scale and fail in small-scale renewable generation. • Experiences from other industries are available to inform utility managers. • Business model innovation capabilities will be crucial to master the energy transition

  4. Public acceptance of nuclear energy

    International Nuclear Information System (INIS)

    Reis, J.S.B.

    1984-01-01

    Man, being unacquainted with the advantages of Nuclear Energy associates it with the manufacture of weaponry. However, the benefits of Nuclear Energy is received daily. In Brazil the public has not taken an anti-nuclear position; it is recognized that the Nuclear Plan exists exclusively for peaceful purposes and the authorities keep the community well informed. The Comision Nacional de Energia Nuclear along with the Instituto de Radioproteccion y Dosimetria, Instituto de Ingenieria Nuclear and the Instituto de Investigaciones Energeticas y Nucleares has developed in 27 years of existence, a gradual, accute and effective long term programme for the formation of potentially receptive opinion of Nuclear Energy. (Author)

  5. New nuclear projects in the world. Sustainable Nuclear Energy

    International Nuclear Information System (INIS)

    Leon, P. T.

    2011-01-01

    Nuclear power has experienced a major boom in the last few years, primarily because it is a non-CO 2 emitting energy source, it can be produced at competitive costs and it can boost a country's security of supply. there are still two issues to be addressed in relation to the currently used technologies: the degree to which the energy content of nuclear fuel is used, and wastes. A solution to both these aspects would ut nuclear power in the category of sustainable energy. The article provides details on current nuclear plans in the wold, the impact of the Fukushima accident on different countries nuclear plans and the European initiatives for sustainable nuclear energy development. (Author)

  6. Government funded renewable energy innovation in China

    International Nuclear Information System (INIS)

    Huang, Cui; Su, Jun; Zhao, Xiaoyuan; Sui, Jigang; Ru, Peng; Zhang, Hanwei; Wang, Xin

    2012-01-01

    With the rapid development of the economy, China is facing pressures caused by traditional energy deficiency and environmental pollution in recent years, which has forced the Chinese government to start to pay attention to the development and utilization of renewable energy (RE). This article, based on data and statistics available up to 2008, studies features of China's RE technology innovation and problems thereof. It finds that national science and technology programs are the main aspect of China's RE technology innovation, and most of R and D funds for the RE technology come from China's three main national programs. Besides, the overall expenditures on RE technology innovation constitute only a small proportion of China's total domestic R and D funding and seem not enough. This paper also finds that, compared with research and development stages of RE technology, the demonstration and diffusion of RE technology in China are given less attention and thus are relatively less sufficient. Furthermore, influenced by China's traditional scientific research system, there appears lack of sufficient incentives and opportunities for private sectors to fully participate in RE technology innovation because most national programs are undertaken by universities or research institutes. - Highlights: ► We study statistically China's renewable energy technology innovation (RETI). ► National science and technology (S and T) programs are the main aspect of China's RETI. ► Most of R and D funds come from China's three main national (S and T) programs. ► The overall expenditure on RETI is small proportion of China's total domestic R and D funding. ► The demonstration and diffusion of RETI in China are relatively less sufficient.

  7. Innovation and Safety. A prestudy; Innovation och saekerhet. En foerstudie

    Energy Technology Data Exchange (ETDEWEB)

    Rollenhagen, Carl; Hansson, Sven Ove; Hortberg, Johan; Jakobsson, Fredrik; Zhau, Victoria Jing; Mojeri, Sara

    2010-04-15

    The project summarized in this report was initiated to explore relations between innovation and safety. The first two sections of the report discuss some previously conducted research and give a general background to the subject. It is concluded that safety research and innovation research, by and large, has developed as separate academic disciplines. The concepts of 'innovative safety culture' and 'safe innovation cultures' are suggested as two concepts that can be used to integrate research: innovative safety cultures depart from safety culture research but attempts to introduce an innovative dimension with the aim to create adaptive and innovative safety cultures that efficiently can handle risks arising from existing innovations. Safe innovation cultures have focus on innovation itself, but with the ambition to introduce concepts and methods from safety research in the innovative processes. Three subprojects conducted in the context of the present research are summarized. The first project examines how an existing organization (e.g. SKB - Swedish Nuclear Fuel and Waste Management) attempts to integrate both innovative activities and operative activities in the same organisation. Interviews with key personnel explored different views about how innovative and safety work coexists in the organisation. The second project focuses on how major retrofit projects of a nuclear power plant is managed in parallel to operative activities (e.g. operating the plant on an everyday basis). By means of an innovative technique (e.g. system groups) seminars were held to suggest improvements in the technical change process. The third project conducted a risk analysis of a major organisational change (e.g. control centres for energy distribution). Experiences from the three projects are finally discussed in terms of similarities and differences associated with the cultures for innovation and safety. Suggestions for further research are made

  8. Evaluation of economical introduction of nuclear fusion based on a long-term world energy and environment model

    International Nuclear Information System (INIS)

    Tokimatsu, K.; Asaoka, Y.; Okano, K.; Konishi, S.; Ogawa, Y.; Yamaji, K.

    2003-01-01

    Debates about whether or not to invest heavily in nuclear fusion as a future innovative energy option have been made within the context of energy technology development strategies. The time frame by which nuclear fusion could become competitive in the energy market has not been adequately studied, nor has roles of the nuclear fusion in energy systems and the environment. The present study has two objectives. One is to reveal the conditions under which nuclear fusion could be introduced economically (hereafter, we refer to such introductory conditions as breakeven prices) in future energy systems. The other objective is to evaluate the future roles of nuclear fusion in energy systems and in the environment. Here we chose two roles that nuclear fusion will take on when breakeven prices are achieved: i) reduction of annual global total energy systems cost, and ii) mitigation of carbon tax (shadow price of carbon) under CO 2 constraints. Future uncertainties are key issues in evaluating nuclear fusion. Here we treated the following uncertainties: energy demand scenarios, introduction time frame for nuclear fusion, capacity projections of nuclear fusion, CO 2 target in 2100. From our investigations, we conclude that the presently designed nuclear fusion reactors may be ready for economical introduction into energy systems beginning around 2050-2060, and we can confirm that the favorable introduction of the reactors would reduce both the annual energy systems cost and the carbon tax (the shadow price of carbon) under a CO 2 concentration constraint; however, latter introduction of them decreases the cost and the tax less than five times. Earlier introduction of nuclear fusion reactors are desirable for energy systems and environment. (author)

  9. Nuclear energy and the environment

    International Nuclear Information System (INIS)

    El-Hinnawi, E.E.

    1980-01-01

    Chapters are presented concerning the environmental impact of mining and milling of radioactive ores, upgrading processes, and fabrication of nuclear fuels; environmental impacts of nuclear power plants; non-radiological environmental implications of nuclear energy; radioactive releases from nuclear power plant accidents; environmental impact of reprocessing; nuclear waste disposal; fuel cycle; and the future of nuclear energy

  10. Nuclear energy and public acceptance

    International Nuclear Information System (INIS)

    El Osery, I.A.

    1988-01-01

    The soundness of use of nuclear energy in electric energy generation has received public concern due to the public highly exaggerated fear of nuclear power. It is the purpose of this paper to clear up some issues of public misunderstanding of nuclear power. Those of most importance are the unjustified fears about safety of nuclear power plants and the misunderstanding of nuclear risks and fears of nuclear power plants environmental impact. The paper is addressed to the public and aims at clarifying these issues in simple, correct, and convincing terms in such a way that links the gap between the scientists of nuclear energy and the general public; this gap which the media has failed to cover and failed to convey honestly and correctly the scientific facts about nuclear energy from the scientists standards to the public

  11. Nuclear energy - a professional assessment

    International Nuclear Information System (INIS)

    1984-01-01

    The report falls under the headings: the role of the Watt Committee in nuclear energy; supply and demand, and economics of nuclear power; technical means (types of reactor; fuel cycle; nuclear energy for applications other than large-scale electricity generation); availability of resources (nuclear fuel; British industrial capacity; manpower requirements for a British nuclear power programme); environment (environmental issues; disposal of radioactive wastes); balance of risk and advantage in the peaceful use of nuclear energy (proliferation; safety and risk; benefits; public acceptability, awareness, education); summary and general comments. (U.K.)

  12. Nuclear energy - a professional assessment

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    The report falls under the headings: the role of the Watt Committee in nuclear energy; supply and demand, and economics of nuclear power; technical means (types of reactor; fuel cycle; nuclear energy for applications other than large-scale electricity generation); availability of resources (nuclear fuel; British industrial capacity; manpower requirements for a British nuclear power programme); environment (environmental issues; disposal of radioactive wastes); balance of risk and advantage in the peaceful use of nuclear energy (proliferation; safety and risk; benefits; public acceptability, awareness, education); summary and general comments.

  13. NREL Spectrum of Clean Energy Innovation: Issue 3 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2012-11-01

    This quarterly magazine is dedicated to stepping beyond the technical journals to reveal NREL's vital work in a real-world context for our stakeholders. Continuum provides insights into the latest and most impactful clean energy innovations, while spotlighting those talented researchers and unique facilities that make it all happen. This edition focuses on the NREL Spectrum of Clean Energy Innovation.

  14. Nuclear energy promise or peril?

    International Nuclear Information System (INIS)

    Van der Zwaan, B.C.C.; Hill, C.R.; Ripka, G.

    1999-01-01

    Nuclear energy will inevitably become an important worldwide issue in the 21. century. The authors are authorities in their own fields and their contributions have been read, discussed and criticized by a wide, international group of experts. The today status of nuclear power is exposed, the authors weigh the pros and cons of nuclear energy. In a near future nuclear energy could play a major role in preventing climate change and atmospheric pollution. The main challenges that put at risk nuclear energy are: nuclear safety, radiation protection, the management of radioactive wastes, the problem of plutonium stocks and the risk of proliferation. For each of these open questions, a specialist makes a precise survey of the situation

  15. Information report nuclear energy in Europe

    International Nuclear Information System (INIS)

    Montesquiou, A. de

    2002-01-01

    This report takes stock on the nuclear energy situation in Europe. The European Union with more than 40% of the nuclear power capacity in the world, is already confronted with the nuclear energy place and stakes in the future energy policy. The report si presented in two main parts. The first part, ''the assets and the weaknesses of the nuclear energy'', deals with the economical aspects which historically based the choice of the nuclear energy and the induced impacts on the environment. The competitiveness of the nuclear energy but also the wastes management problem are discussed. The second part, ''the diplomatic and juridical framework of the nuclear energy development'', details and presents the limits of the EURATOM treaty. (A.L.B.)

  16. Nuclear energy: a reassessment

    International Nuclear Information System (INIS)

    McClure, J.A.; Nader, R.; Udall, M.K.; Walske, C.

    1980-01-01

    This edited transcript of a televised American Enterprise Institute Public Poicy Forum explores the role of nuclear technology in energy production in the US today. A panel made up of Senator James A. McClure, Ralph Nader, Representative Morris K. Udall, and Dr. Carl Walske and moderated by John Charles Daly examines the lessons learned from the accident at the Three Mile Island Nuclear Plant and the public attitudes toward nuclear energy, particularly in light of this accident. The experts discuss alternative energy sources, such as coal, gas, biomass, and solar power as well as conservation and more efficient use of present facilities. The issues of nuclear waste disposal and transport and US commitments to countries not self-sufficient in their energy needs are also explored

  17. Role of nuclear energy in Thailand

    International Nuclear Information System (INIS)

    Chongkum, Somporn

    2003-01-01

    Nuclear energy in Thailand can be highlighted when the Office of Atomic Energy for Peace (OAEP) was established since 1961 for taking role of nuclear safety regulation, conducting research and promotion for peaceful uses of nuclear energy. Its main facilities were the 1 megawatt Thai Research Reactor-1 (TRR-1) and the Cobalt-60 Gamma Irradiator. Since then there have been substantial progress made on utilization of nuclear energy in various institutions and in private sectors. Nowaday, there are around 500 units of nuclear energy users in Thailand, i.e. 100 units in medicine, 150 units in education and 250 units in industry. In terms of nuclear power for electricity generation, the Electricity Generating Authority of Thailand (EGAT) has conducted the activities to support the nuclear power plant project since 1972 however, because there is widespread public concerned about nuclear safety, waste disposal and recently economic problems in Thailand, nuclear energy option is not put in immediate plan for alternative energy resource. Within the short future, increased in economical, demand fir electricity and safe operation of nuclear plants will likely be demonstrated and recognized. Nuclear energy should remain as an option in the long-term energy strategies for Thailand. (author)

  18. Open discussions on nuclear energy

    International Nuclear Information System (INIS)

    1978-01-01

    In the first part, economic prospects in the world and in the European Community and their repercussions on energy demand are examined. Supply structure and growth scenari are outlined. Present and potential contribution of nuclear energy to energy supply is developed. The pros and cons are given. In the second part is examined how the production and use of various form of energy including nuclear energy, can affect health and the environment, with special reference to waste of all kinds. Safety problems and risk of accidents are examined in both non nuclear and nuclear sectors. Prospects for a low energy society and economic and social implications of the use of new forms of energy are also discussed

  19. Public opinion survey on the relationship between society and nuclear energy

    International Nuclear Information System (INIS)

    Shinoda, Yoshihiko; Yamano, Naoki; Torii, Hiroyuki

    2008-01-01

    The social research group of the 21st century COE program 'Innovative Nuclear Energy Systems for Sustainable Development of the World' has studied under the theme coevolution of nuclear technology and society. As part of this study, this group conducted a questionnaire survey of 2,500 adults (collection rate of 22.0%; 551 replies) who live in the Tokyo metropolitan area. The purpose of this survey asking opinion about the relationship between attitude toward nuclear technology utilization and social awareness is to determine their request, exception and concern about nuclear technology utilization. The survey reveals that the differences of attitudes towards nuclear technology utilization can be explained in terms of differences of general views on the society, such as the directionality of social progress. Thus, it is necessary to argue with citizens about the strategy on nuclear technology utilization from the viewpoint of the directionality of the future society. The social decision-making process on nuclear technology utilization has to be renovated through dialogue among citizens as the partner taking on the achievement and contribution toward the directionality of the future society. (author)

  20. Nuclear energy and nuclear technology

    International Nuclear Information System (INIS)

    Luescher, E.

    1982-01-01

    This book originated in the training courses for teachers of grammar- and secondary schools in Dillingen (Bavaria). The aim of these courses is to become informed about the latest state in one field of physics. The lectures are well-known experts in the respective fields. In the latest study (1980) of the National Academy of Sciences the experts came to the conclusion that without further development nuclear power plants the utilization of too much coal would become necessary and involve irreversible environmental damage (see chapter 6). There are two important obstacles impeding the further extension of nuclear energy. The first problem to be solved is the processing and storage of radioactive waste. This is a more technical task and can be treated in a satisfactory way. The second obstacle is less easy to take as the population has to be convinced that a nuclear power plant can be operated with almost unbelievable safety (see chapter 5) and be shut down safely in the case of incidents. The most promising possibility of controlled nuclear fusion as energy source is still many decades- if feasible at all- away from being performed (see chapter. 7). In the Soviet Union 25% of the electric energy production shall be proceed from nuclear power plants by the year 1990. (orig./GL) [de

  1. Energy innovation and renewable energy consumption in the correction of air pollution levels

    International Nuclear Information System (INIS)

    Alvarez-Herranz, Agustin; Balsalobre-Lorente, Daniel; Shahbaz, Muhammad; Cantos, José María

    2017-01-01

    This study analyses the relationship between economic growth and environmental pollution. Specifically, it investigates the presence of an environmental Kuznets curve (EKC) in 17 OECD countries over the period of 1990–2012. The results confirm the existence of an N-shaped EKC relationship between income and environmental degradation. The study offers a novel methodological contribution that makes it possible to explain the environmental pollution process through the analysis of low-carbon technologies. This demonstrates how income levels affect energy consumption and how higher energy demand leads to a larger share of fossil sources in the energy mix and, thus, increased greenhouse gas (GHG) emissions. The effect on per capita GHG emissions is explored in a model containing a dampening variable that moderates the relationship between energy consumption and income. This empirical evidence helps to explain the interaction between energy regulation, economic growth and carbon emissions. This study also confirms the positive effect that energy innovation process exerts on environmental pollution. Finally, it is noted that renewable energy sources help to improve air quality. - Highlights: • An inverted N-shaped relationship between economic growth and environmental degradation in OECD countries is validated. • Energy regulatory policies exert positive effect on environmental quality. • Energy innovation processes delays the technical obsolescence. • Energy innovation process requires a time lag to become fully efficient.

  2. Symposium on Nuclear Energy. Proceedings

    International Nuclear Information System (INIS)

    1981-01-01

    The energy problem poses a big challenge to a developing country like the Philippines. The development of renewable energy sources is not enough. Aware then of the limitations of these energy sources, in spite of arguments against nuclear energy we have no other recourse but to go nuclear. This symposium emphasizes the importance of energy development to attain the country's progress and discusses the pros and economics of nuclear power. (RTD)

  3. Perspectives for nuclear energy

    International Nuclear Information System (INIS)

    Baugnet, J.-M.; Abderrahim, H.A.; Dekeyser, J.; Meskens, G.

    1998-09-01

    In Belgium, approximately 60 percent of the produced electricity is generated by nuclear power. At present, nuclear power production tends to stagnate in Europe and North America but is still growing in Asia. The document gives an overview of the present status and the future energy demand with emphasis on electric power. Different evaluation criteria including factors hindering and factors promoting the expansion of nuclear power as well as requirements of new nuclear power plants are discussed. The extension of the lifetime of existing facilities as well as fuel supply are taken into consideration. A comparative assesment of nuclear power with other energy sources is made. The report concludes with estimating the contribution and the role of nuclear power in future energy demand as well as with an overview of future reactors and research and development programmes

  4. Nuclear energy: considerations about nuclear trade

    International Nuclear Information System (INIS)

    Goes Fischer, M.D. de.

    1988-01-01

    A general view of historical aspects of nuclear energy and the arrangements to assure its use for peaceful purposes are presented. Then the internal character of nuclear energy in a juride context is demonstrated; some consideration about the international organizations and conventions and the Brazilian Legislation in the nuclear area are examined. It also deals with the political aspects of nuclear trade and the function of IAEA in this are. Furthermore the restrictions imposed by Non-Proliferation Treaty-NPT, the objectures of the Tlatelolco Treaty and ''London Club'' guidelines. Afterwards the bilateral cooperation under taken by countries and its agreements are discussed. Besides some aspects of agreements made between United States, France Germany and Brazil are discussed [pt

  5. Nuclear energy

    International Nuclear Information System (INIS)

    Panait, A.

    1994-01-01

    This is a general report presenting the section VII entitled Nuclear Power of the National Conference on Energy (CNE '94) held in Neptun, Romania, on 13-16 June 1994. The problems addressed were those relating to electric power produced by nuclear power plant, to heat secondary generation, to quality assurance, to safety, etc. A special attention was paid to the commissioning of the first Romanian nuclear power unit, the Cernavoda-1 reactor of CANDU type. The communications were grouped in four subsections. These were: 1. Quality assurance, nuclear safety, and environmental protection; 2. Nuclear power plant, commissioning, and operation; 3. Nuclear power plant inspection, maintenance, and repairs, heavy water technology; 4. Public opinion education. There were 22 reports, altogether

  6. Nuclear energy. Risk or advantage

    International Nuclear Information System (INIS)

    Boettiger, Helmut

    2011-01-01

    Nuclear energy is controversial. But what's all about really in the controversy? It's about more than safty or electricity prices. Nuclear energy is not only a technical or political question, but also a moral, a human. The discussion enter various rational and irrational arguments, beside straightforward arguments various misleading and mendacious exist. The present publication is comprehensively dedicated to the thema of nuclear energy - its pro and contra - and considers its risks and advantages. Thereby the sources of energy, the processes in the nuclear reactor, and the risk potentials (Harrisburg, Chernobyl, Fukushima) are illustratively and reproducibly presented. Extensively the text explains the forms of the radiation, its doses, and the tolerance of it. Also to the theme waste and final disposal an explaining chapter is dedicated and the question for the exit from nuclear energy elucidated. Finally the author appoints with the question ''How considers mankind nuclear energy world-wide'' the international comparison.

  7. Daya Bay Nuclear Power Station equipment reliability management system innovation

    International Nuclear Information System (INIS)

    Gao Ligang; Wang Zongjun

    2006-01-01

    Daya Bay Nuclear Power Station has achieved good performance since its commercial operation in 1994. The equipment reliability management system that features Daya Bay characteristics has been established through constant technology introduction, digestion and innovation. It is also based on the success of operational system, equipment maintenance system and technical support system. The system lays a solid foundation for the long-term safe operation of power station. This article emphasizes on the innovation part of equipment reliability management system in Daya Bay. (authors)

  8. Nuclear energy and fuel mix. Impacts of new nuclear power plants after 2020 in the nuclear energy scenarios of the Energy Report 2008

    International Nuclear Information System (INIS)

    Seebregts, A.J.; Snoep, H.J.M.; Van Deurzen, J.; Lako, P.; Poley, A.D.

    2010-03-01

    This report presents facts and figures on new nuclear energy in the Netherlands, in the period after 2020. The information is meant to support a stakeholder discussion process on the role of new nuclear power in the transition to a sustainable energy supply for the Netherlands. The report covers a number of issues relevant to the subject. Facts and figures on the following issues are presented: Nuclear power and the power market (including impact of nuclear power on electricity market prices); Economic aspects (including costs of nuclear power and external costs and benefits, impact on end user electricity prices); The role of nuclear power with respect to security of supply; Sustainability aspects, including environmental aspects; The impact of nuclear power in three 'nuclear energy scenarios' for the Netherlands, within the context of a Northwest European energy market. The scenarios are: (1a) No new nuclear power in the Netherlands ('Base case'); (1b) After closure of the existing Borssele nuclear power plant by the end of 2033, the construction of new nuclear power plant that will operate in 2040. That plant is assumed to be designed not to have a serious core melt down accident (e.g. PBMR) (200 to 500 MWe); (2) New nuclear power shortly after closure the Borssele nuclear power plant in 2033 (1000 to 1600 MWe, 3rd Generation); (3) New nuclear power plants shortly after 2020 (2000 to 5000 MWe, 3rd Generation). Two electricity demand scenario background scenario variants have been constructed based on an average GDP growth of about 2% per year up to 2040. The first variant is based on a steadily growing electricity demand and on currently established NL and EU policies and instruments. It is expected to be largely consistent with a new and forthcoming reference projection 'Energy and Emissions 2010-2020' for the Netherlands (published by ECN and PBL in 2010). A lower demand variant is based on additional energy savings and on higher shares of renewable

  9. 76 FR 67717 - Nuclear Energy Advisory Committee

    Science.gov (United States)

    2011-11-02

    ... DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear...: [email protected]nuclear.energy.gov . SUPPLEMENTARY INFORMATION: Background: The Nuclear Energy Advisory...

  10. 77 FR 26274 - Nuclear Energy Advisory Committee

    Science.gov (United States)

    2012-05-03

    ... DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear[email protected]nuclear.energy.gov . SUPPLEMENTARY INFORMATION: Background: The Nuclear Energy Advisory Committee...

  11. 75 FR 67351 - Nuclear Energy Advisory Committee

    Science.gov (United States)

    2010-11-02

    ... DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Office of Nuclear Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear... [email protected]nuclear.energy.gov . SUPPLEMENTARY INFORMATION: Background: The Nuclear Energy Advisory...

  12. 75 FR 13269 - Nuclear Energy Advisory Committee

    Science.gov (United States)

    2010-03-19

    ... DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear[email protected]nuclear.energy.gov . SUPPLEMENTARY INFORMATION: Background: The Nuclear Energy Advisory Committee...

  13. Energy conservation in the built environment. Innovators talking; Energiebesparing in de gebouwde omgeving. Innovators aan het woord

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Qualitative studies have been conducted of the results of completed projects focused on energy innovation, spread over the seven themes of the top sector Energy: Energy saving in industry, Energy conservation in the built environment, Gas, Bio-energy, Smart grids, Offshore Wind, Solar PV. This provides insight into the follow-up activities and lessons of some EOS (Energy Research Subsidy) completed projects with the aim to inspire, connect and strengthen the TKIs (Topconsortia for Knowledge and Innovation) and individual companies and researchers working on energy innovation. This report concerns the research on energy conservation in the built environment [Dutch] Er is een kwalitatief onderzoek uitgevoerd naar de resultaten van afgeronde projecten gericht op energie-innovatie, verdeeld over de zeven thema's van de topsector Energie: Energiebesparing in de industrie; Energiebesparing in de gebouwde omgeving; Gas; Bio-energie; Smart grids; Wind op zee; Zon-pv. Daarmee wordt inzicht gegeven in de vervolgactiviteiten en lessen van een aantal afgesloten EOS-projecten (Energie Onderzoek Subsidie) met het oog op het inspireren, verbinden en versterken van de TKI's (Topconsortia voor Kennis en Innovatie) en individuele bedrijven en onderzoekers die werken aan energie-innovatie. Dit rapport betreft het onderzoek naar energiebesparing in de gebouwde omgeving.

  14. Political aspects of nuclear energy

    International Nuclear Information System (INIS)

    Kiener, E.

    1989-01-01

    In Switzerland as in other countries public opinion on nuclear energy has drastically changed with time. Surveys show that a majority at present favours abandoning nuclear energy in Switzerland, but does not consider feasible an immediate switchover to other forms of energy. The behaviour is contradictory because increasingly more electric power is used, even after Chernobyl. The resistence has many facets. The debate is largely focused on the question of future technological and economic development. Nuclear energy also became the scapegoat for a development of the last few decades it has not been responsible for (destruction of the environment, waste of natural resources). For the sake of the environment and future economic development, the continued use of nuclear energy has to be ensured. This calls for great efforts in order to convince the people that nuclear power is an essential and logical part of our energy supply. In this process, the fear of a nuclear energy and the unease about industrial society must not be dismissed as irrelevant. (orig.)

  15. Nuclear energy prospects to 2000

    International Nuclear Information System (INIS)

    1982-01-01

    This report describes the potential and trends of electricity use in OECD-countries as the main parameter of nuclear power development, including oil displacement and future generation mix, gives a most recent assessment of nuclear power growth to the year 2000, deals with supply and demand considerations covering the whole fuel cycle, assesses the impact of the nuclear contribution on the overall energy situation according to three energy scenarios and the consequences of a possible nuclear shortfall, and finally reviews other factors influencing nuclear energy growth such as security of supply, economics of nuclear power production as wells as public and utility confidence in nuclear power

  16. Topsector Energy. Innovation Officers Network; Topsector Energie. Innovatie Attache Netwerk

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    The Top Sector policy of the Ministry of Economic Affairs, Agriculture and Innovation (ELI) has resulted in strongly worded plans with big ambitions for the various priority sectors. In this publication the Dutch Network of Innovation Officers gives an overview for the Top Sector Energy of developments taking place in the leading countries of the world in the field of Research, Development and Innovation. The information provides clues for the establishment and strengthening of international R and D strategy for the top sector and related options for cooperation with foreign parties [Dutch] Het topsectorenbeleid van onder meer het Ministerie van Economische zaken, Landbouw en Innovatie (ELI) heeft geresulteerd in scherp geformuleerde plannen met flinke ambities voor de diverse topsectoren. Het Netwerk van Innovatie Attachés geeft in deze publikatie een overzicht voor de Topsector Energie wat er in de meest toonaangevende landen van de wereld gebeurt op het terrein van Research and Development en Innovatie. De informatie biedt aanknopingspunten voor het opzetten en versterken van een internationale R and D strategie voor de topsector en daar toe behorende samenwerking met buitenlandse partijen.

  17. Nuclear energy and environment

    International Nuclear Information System (INIS)

    Alves, R.N.

    1987-01-01

    A general view about the use of energy for brazilian development is presented. The international situation of the nuclear field and the pacific utilization of nuclear energy in Brazil are commented. The safety concepts used for reactor and nuclear facilities licensing, the environmental monitoring program and radiation protection program used in Brazil are described. (E.G.) [pt

  18. 78 FR 70932 - Nuclear Energy Advisory Committee

    Science.gov (United States)

    2013-11-27

    ... DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Office of Nuclear Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear[email protected]nuclear.energy.gov . SUPPLEMENTARY INFORMATION: Background: The Nuclear Energy Advisory Committee (NEAC...

  19. Nuclear energy and international cooperation

    International Nuclear Information System (INIS)

    Oshima, Keiichi

    1981-01-01

    There is no need to emphasize that nuclear energy cannot be developed without international cooperation at either the industrial or the academic level. In the meanwhile, there have been some marked political, economic and social changes in recent years which are posing constraints to the international cooperation in nuclear energy. The problems and constraints impeding nuclear power programs cannot be overcome by only one nation; international cooperation with common efforts to solve the problems is essential. Nuclear energy is different from fossil energy resources in that it is highly technology-intensive while others are resource-intensive. International cooperation in technology has an entirely different importance in the field of nuclear energy. Educational institutions will play a role in a new era of the international cooperation. (Mori, K.)

  20. Incorporation of Nuclear Knowledge Management to the Integrated System of Quality and Technological Innovation in Cubaenergía

    International Nuclear Information System (INIS)

    Oviedo Rivero, I.; González García, A.; Amado Picasso, M.; Yera López, B.; Contreras, M.; López Núñez, A.; García Rodríguez, B.; Elías Hardy, L. L.; Rivero Blanco, J. M.; Peña Tornet, A.; Quintana Castillo, N.

    2016-01-01

    Full text: Technical knowledge management and innovation become important tools for organizations to meet the needs and expectations of the market and society in general; especially those related to the peaceful use of nuclear energy. Since 2011 Cubaenergia, under the model of the UNE 166002, integrated process management Scientific and Technological Innovation to the requirements of NC-ISO 9001, compliance with national regulations applicable to the sector. In September 2015 the new ISO 9001 includes a clause that makes explicit mention knowledge. Although this clause is not a standard for knowledge management nor does it imply its obligatory; Cubaenergia decided to expand its integrated management system to include the Nuclear Knowledge Management system. In this article the conceptual framework for the integration of these three systems, diagnosis in the organization and the proposed design and implementation plan of management knowledge management integrated analyzes R&D and the quality management system in Cubaenergía. (author

  1. Green Energy-Industrial Innovation: A Comparative Study of Green Energy Transformations in Northern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Eikeland, Per Ove; Christiansen, Atle Christer; Koefoed, Anne Louise; Midttun, Atle; Tangen, Kristian

    1999-07-01

    Greening of industry is a prominent topic on the European agenda and has received a new impetus with the Kyoto process, where the European Union and its member states are facing new obligations. Due to its role as a major infrastructure sector and due to its extensive emissions, the electricity sector has become a focal industry in this context. These same factors, as well as the large public ownership has, in fact, traditionally placed energy in a central public political focus. The energy and electricity sector hence exemplify the intertwined nature of economics and politics in sector developments, where technology choices and capacity expansions have numerous motivations and diverse interests to please. This report discusses ''green'' innovation in the energy industry. By selecting some of the most advanced examples of breakthrough for new green technologies in Europe, it explores the basic elements of successful greening of industry. To account for the fact that product innovation- and diffusion-processes are embedded in a complex politico-economic setting, we have developed an analytical framework, incorporating both economic, political and societal elements and the interplay between them. More specifically, environmentally oriented innovation is seen as evolving out of the interplay between: 1) a technical-commercial core (major market agents, i.e. the renewable energy supply industry, associated complementary industries and consumers); 2) the political-administrative system; and 3) the societal basis, referring to existing societal customs, norms, and modes of social organisation. Drawing on Porter's (1990) analysis of business clusters, we have termed our focus ''green energy-industrial cluster'' emergence and growth. We have taken Porter's attempt to break out of a limited market analysis into a broader strategic focus one step further, where the political and institutional dimensions are more explicitly included. This implies that we see the emergence of

  2. Green Energy-Industrial Innovation: A Comparative Study of Green Energy Transformations in Northern Europe

    International Nuclear Information System (INIS)

    Eikeland, Per Ove; Christiansen, Atle Christer; Koefoed, Anne Louise; Midttun, Atle; Tangen, Kristian

    1999-01-01

    Greening of industry is a prominent topic on the European agenda and has received a new impetus with the Kyoto process, where the European Union and its member states are facing new obligations. Due to its role as a major infrastructure sector and due to its extensive emissions, the electricity sector has become a focal industry in this context. These same factors, as well as the large public ownership has, in fact, traditionally placed energy in a central public political focus. The energy and electricity sector hence exemplify the intertwined nature of economics and politics in sector developments, where technology choices and capacity expansions have numerous motivations and diverse interests to please. This report discusses ''green'' innovation in the energy industry. By selecting some of the most advanced examples of breakthrough for new green technologies in Europe, it explores the basic elements of successful greening of industry. To account for the fact that product innovation- and diffusion-processes are embedded in a complex politico-economic setting, we have developed an analytical framework, incorporating both economic, political and societal elements and the interplay between them. More specifically, environmentally oriented innovation is seen as evolving out of the interplay between: 1) a technical-commercial core (major market agents, i.e. the renewable energy supply industry, associated complementary industries and consumers); 2) the political-administrative system; and 3) the societal basis, referring to existing societal customs, norms, and modes of social organisation. Drawing on Porter's (1990) analysis of business clusters, we have termed our focus ''green energy-industrial cluster'' emergence and growth. We have taken Porter's attempt to break out of a limited market analysis into a broader strategic focus one step further, where the political and institutional dimensions are more explicitly included. This implies that we see the emergence of

  3. Expert judgment for nuclear energy

    International Nuclear Information System (INIS)

    Choi, Young Sung; Lee, Sun Ho; Lee, Byong Whi

    2000-01-01

    Public perception on nuclear energy is much influenced by subjective impressions mostly formed through sensational and dramatic news of mass media or anti-nuclear groups. However, nuclear experts, those who have more relevant knowledge and information about nuclear energy, may have reasonable opinion based on scientific facts or inferences. Thus their opinion and consensus should be examined and taken into account during the process of nuclear energy policy formulation. For the purpose of eliciting experts' opinion, the web-based on-line survey system (eBOSS) was developed. Using the survey system, experts' views on nuclear energy were tallied, analyzed and compared with the public's. Based on the survey results, the paper suggests some recommendations about the future direction of the public information program in Korea

  4. Nuclear: an energy in territories

    International Nuclear Information System (INIS)

    Le Ngoc, Boris

    2016-01-01

    After having briefly outlined that introducing a relationship between geography and nuclear energy is a quite recent approach, and by often quoting a researcher (Teva Meyer) specialised in Swedish energy issues, the author briefly discusses how nuclear energy structures territories through meshing and 'polarisation' effects, and economic and social impacts. He also discusses whether territories then become dependent on nuclear activity, what happens when a nuclear plant stops, how the existence of a nuclear plant becomes an identity market for a territory, and how material flows also deal with geography. In the last part, the author notices that in Germany, nuclear industry is considered as an industry like any other one. He finally outlines that geography could be useful to achieve energy transition

  5. Economic Aspects of Innovations in Energy Storage

    OpenAIRE

    Strielkowski, Wadim; Lisin, Evgeny

    2017-01-01

    Energy storage is emerging as a potential method for addressing global energy system challenges across many different application areas. However, there are technical and non-technical barriers to the widespread deployment of energy storage devices. With regard to the above, it seems crucial to identify innovation processes, mechanisms and systems (in a broad sense) that can allow energy storage to help meet energy system challenges, and also deliver industrial growth from technology developme...

  6. Nuclear energy and the greenhouse problem

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    2001-01-01

    Last November - almost in parallel with the Hague Meeting on Climate Change - more than 1,500 of the world's top nuclear scientists and energy technologists met in Washington DC, at the Joint Conference of the American Nuclear Society, the European Nuclear Society, the Nuclear Energy Institute and the International Nuclear Energy Academy. Unlike the United Nations follow up to the Kyoto protocol, which ended in disarray, a note of high optimism and informed realism pervaded the nuclear conference which, among its multiple streams of subject material and papers by international experts, carried the two main themes of Long Term Globally Sustainable Energy Options and Nuclear Energy and the Greenhouse Problem. This paper considers the immense contribution to Greenhouse gas emission minimisation made by nuclear energy in 1999. In that year the global electricity production by the world's 435 nuclear power stations was 2,398 TWh or 16% of total electricity generation or 5% of total primary energy production. The amount of avoided carbon dioxide emission because of the use of nuclear energy in 1999 was 2.4 billion tonnes. This is 10% of total emissions. Japan's 54 nuclear power stations alone save the equivalent of Australia's total Greenhouse emissions. The secret of this success is Australia's uranium fuel

  7. Nuclear energy for the 21. century

    International Nuclear Information System (INIS)

    2005-03-01

    This document gathers 5 introductory papers to this conference about nuclear energy for the 21. century: the French energy policy during the last 30 years (situation of France with respect to the energy supply and demand, main trends of the French energy policy, future of the French nuclear policy); presentation of IAEA (technology transfer, nuclear safety, non-proliferation policy, structure and financial resources, council of governors, general conference, secretariat); nuclear power and sustainable development; promoting safety at nuclear facilities (promoting safety, basics of safety, safety at the design stage, risk management, regulatory control and efficiency of the regulation organization, role of IAEA); nuclear energy today (contribution to sustainable development, safety, best solution for the management of radioactive wastes, future of nuclear energy). (J.S.)

  8. Nuclear and energy policy in Korea. Unchanging illusion of nuclear energy and citizens' challenge

    International Nuclear Information System (INIS)

    Leem, S.J.

    2006-01-01

    Korea is the tenth largest energy consumer in the world; the country ranks sixth in oil consumption, seventh in electricity consumption, and ninth in total CO2 emission. Korea now has 20 reactors in operation, nuclear power producing about 40% of its electricity. Its generating capacity from nuclear power plants is the sixth largest in the world; Korea currently exports nuclear technology. The rapid growth of this industry is attributed to extensive subsidy and protection from the Korean government; supported by government-initiated programs a powerful interest group, which consists of nuclear industries, technocrats, and governmental organizations concerned with nuclear policy, now exerts a major influence upon Korea's energy policy for nuclear expansion. Korea's nuclear power policymakers have, however, met opposition since End of the 1980s. The government's attempt to build a nuclear waste repository has provoked strong resistance from environmental movements and local citizens. Even if the government recently succeeded in designating Kyoungju as the nuclear waste site, the nuclear waste issue has awakened public interest in nuclear problems and strengthening public denunciation of Korea's expansive nuclear power policy. In addition, the activation of the Kyoto Protocol in February 2005 has impelled the government to redirect its energy policy towards a sustainable direction. This article focuses on the status and perspectives of Korea's nuclear power policy, enabling a discussion of the degree to which Korea's nuclear and energy policy has changed yet in many ways remains unchanged. (orig.)

  9. Nuclear energy and the public

    International Nuclear Information System (INIS)

    Kyd, D.R.

    1994-01-01

    This paper is the opening speech from a national seminar on the uses for nuclear energy in everyday life. The speaker, the public information director for the International Atomic Energy Agency (IAEA), stresses the peaceful uses of nuclear energy. He points out that used for peaceful purposes, and prudently, nuclear energy applications have, tremendous benefits to offer mankind in both the industrial world and developing nations

  10. Nuclear energy in the future

    International Nuclear Information System (INIS)

    Chaussade, J.P.

    1994-01-01

    Nuclear energy plays a major role in the French economy because of the lack of fossil fuels on the French territory. About 75% of the French electric power is of nuclear origin. This paper gives an analysis of the French public attitude about nuclear energy and the methods used by the nuclear industrialists to better the electro-nuclear image. Communication, advertising and transparency are the best attitudes for a suitable public information and are necessary to reduce the public anxiety after the Chernobyl accident. Television advertising, magazines and organized visits of nuclear installations have allowed to explain the interest of nuclear energy in the environmental reduction of pollutants. However, public information must include the topic about nuclear wastes to remain credible. (J.S.)

  11. Hydrogen as an energy carrier and its production by nuclear power

    International Nuclear Information System (INIS)

    1999-05-01

    The impact of power generation on environment is becoming an ever increasing concern in decision making when considering the energy options and power systems required by a country in order to sustain its economic growth and development. Hydrogen is a strong emerging candidate with a significant role as a clean, environmentally benign and safe to handle major energy carrier in the future. Its enhanced utilization in distributed power generation as well as in propulsion systems for mobile applications will help to significantly mitigate the strong negative effects on the environment. It ia also the nuclear power that will be of utmost importance in the energy supply of many countries over the next decades. The development of new, innovative reactor concepts utilizing passive safety features for process heat and electricity generation are considered by many to play a substantial role in the world's energy future in helping to reduce greenhouse gas emissions. This report produced by IAEA documents past and current activities in Member States in the development of hydrogen production as an energy carrier and its corresponding production through the use of nuclear power. It provides an introduction to nuclear technology as a means of producing hydrogen or other upgraded fuels and to the energy carries hydrogen and its main fields of application. Emphasis is placed on high-temperature reactor technology which can achieve the simultaneous generation of electricity and the production of high-temperature process heat

  12. Hydrogen as an energy carrier and its production by nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The impact of power generation on environment is becoming an ever increasing concern in decision making when considering the energy options and power systems required by a country in order to sustain its economic growth and development. Hydrogen is a strong emerging candidate with a significant role as a clean, environmentally benign and safe to handle major energy carrier in the future. Its enhanced utilization in distributed power generation as well as in propulsion systems for mobile applications will help to significantly mitigate the strong negative effects on the environment. It ia also the nuclear power that will be of utmost importance in the energy supply of many countries over the next decades. The development of new, innovative reactor concepts utilizing passive safety features for process heat and electricity generation are considered by many to play a substantial role in the world`s energy future in helping to reduce greenhouse gas emissions. This report produced by IAEA documents past and current activities in Member States in the development of hydrogen production as an energy carrier and its corresponding production through the use of nuclear power. It provides an introduction to nuclear technology as a means of producing hydrogen or other upgraded fuels and to the energy carries hydrogen and its main fields of application. Emphasis is placed on high-temperature reactor technology which can achieve the simultaneous generation of electricity and the production of high-temperature process heat Refs, figs, tabs

  13. Nuclear energy technology

    Science.gov (United States)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  14. Digital Innovation and Nuclear Engineering Education in UNED: Challenges, Trends and Opportunities

    International Nuclear Information System (INIS)

    Alonso-Ramos, M.; Sánchez-Elvira Paniagua, Á.; Martín, S.; Castro Gil, M.; Sanz Gozalo, J.

    2016-01-01

    Full text: Innovation in nuclear engineering education should reflect the current challenges, trends and opportunities that digital technologies are promoting in the whole educational field. The European Commission has recently stressed that technology and open educational resources represent clear opportunities to reshape EU education, contributing to the necessary modernization of higher education in order to give response to XXI century challenges. In this paper, the innovations that the Spanish National Distance Education University (UNED) are making in the digital education domain, including open educational resources (OER) and massive open online courses (MOOCs) developments applied to science, technology, engineering and mathematics (STEM) and the nuclear engineering field, are presented. (author

  15. Organisational, technological and economic innovations: the nuclear industry reinvents itself to face 2030 challenges

    International Nuclear Information System (INIS)

    Faudon, Valerie; Jouette, Isabelle; Le Ngoc, Boris

    2016-06-01

    As the French nuclear industry is facing a major challenge (financial weakness, an electric power market in crisis, 15 years without building any reactor, delayed works), this report first outlines why innovation is necessary to guarantee a low carbon and competitive electricity, to comfort the leadership position of this sector in the world, and to respond to expectations of civil society. Then, it describes how the French nuclear industry is already implementing organisational, technological and social innovations, notably through the development of digital technologies. The third part identifies priorities of new public policies: to imagine a new business model for nuclear (a better visibility for investors, taking all induced costs in the power system into account in a diversified mix, reform of the carbon market, taking avoided atmospheric pollution into account), to rethink regulation in order to free innovation spirit, and to prepare the future by investing in research

  16. Trace of nuclear energy with pictures

    International Nuclear Information System (INIS)

    1992-05-01

    This book traces the history of development over nuclear energy with pictures, which contains preface, development history of the world, development history of Korea, nuclear power plant in Kori, nuclear power plant in Wolseong, nuclear power plant in Yeonggwang, nuclear power plant in Uljin, nuclear fuel, using of radiation and radioactive isotope, development of nuclear energy in the world and a Chronological table of nuclear energy. This book is written to record the development history of Korea through pictures of the nuclear power plants in Korea.

  17. Research, Education and Innovation Bundling Forces towards a Sustainable European Energy Future

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    New technologies and applied innovation in the field of sustainable energy are needed in order to achieve a competitive and climate neutral Europe. As one of the first three Knowledge and Innovation Communities (KIC) of the European Institute of Innovation and Technology (EIT), KIC InnoEnergy invests in innovation projects and new educational programmes and provides business creation service with the purpose of delivering the disruptive technologies and innovations that Europe requires to meet this ambitious goal. Its stakeholders are top European players in the industry, research institutes, universities and business schools. Six regionally bundled European hubs – Barcelona/Lisbon, Grenoble, Eindhoven, Karlsruhe, Stockholm and Krakow - lead one thematic field each in sustainable energy. The thematic fields addressed range from Intelligent “Energy-efficient Residential Buildings and Cities” over “Energy from Chemical Fuels”, “Renewable Energies”, “Clean Coal Technologies” to “European Smar...

  18. The nuclear energy debate

    International Nuclear Information System (INIS)

    Rippon, S.

    1976-01-01

    With reference to the public discussion which is taking place at the moment concerning the future of nuclear energy in the UK, the document from the Advisory Council on Research and Development for Fuel and Power and also the report of the Royal Commission on Environmental Pollution are considered. Although there have been many other projections of UK and world energy requirements prepared by many different organisations, few cover such a wide range of scenarios in such detail as the ACORD report. The Royal Commission report contains many reassuring findings on the more extreme claims of the worldwide anti-nuclear movement, but one cannot read it without gaining the impression that the nuclear option is the energy source they would most like to do without. It is felt that against this background, it would seem to be time for the power industry to stop defending nuclear energy as an acceptable necessity and rather promoting it as the best energy option. (U.K.)

  19. Nuclear hybrid energy infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  20. IFPEN Transports Energy Carnot Institute. Annual report 2016. Innovating mobility

    International Nuclear Information System (INIS)

    2017-01-01

    Under the authority of IFP Energies nouvelles, the IFPEN Transports Energie Carnot Institute develops efficient, clean and sustainable technological innovations in the fields of power-train and propulsion systems, energy sectors and industrial thermal processes with CO_2 capture. IFPEN Transports Energie Carnot Institute is a R and D center serving industry, leader in the fields of transport and energy: - Innovative solutions to address technological challenges and market needs (high-efficiency, low-emission power-trains, power-train electrification, energy optimization and onboard control, alternative fuels with low CO_2 emissions, energy generation based on chemical looping combustion); - High-performance experimental resources and digital tools resulting in innovations with reduced costs and development times; - A proactive industrial protection policy; - Support for industrial sectors, covering a very broad range of technological readiness levels; - Transfer of R and D results via joint product development with licensing out operations, strategic partnerships and collaborative research agreements; - An innovation support policy, aimed particularly at micro-companies, SMEs and intermediate-sized companies. IFPEN Transports Energie Carnot Institute has close ties with industry: from micro-companies, SMEs and intermediate-sized companies to major industrial groups; A strong commitment within competitiveness clusters (Mov'eo, LUTB, Systematic, Astech, etc.); A leadership of the automobile sector and the Transport Alliance within the Carnot Institutes; A synergy with networks of academic partners and R and D laboratories with an international influence