WorldWideScience

Sample records for innovation nuclear systems

  1. Innovative nuclear energy systems roadmap

    International Nuclear Information System (INIS)

    2007-12-01

    Developing nuclear energy that is sustainable, safe, has little waste by-product, and cannot be proliferated is an extremely vital and pressing issue. To resolve the four issues through free thinking and overall vision, research activities of 'innovative nuclear energy systems' and 'innovative separation and transmutation' started as a unique 21st Century COE Program for nuclear energy called the Innovative Nuclear Energy Systems for Sustainable Development of the World, COE-INES. 'Innovative nuclear energy systems' include research on CANDLE burn-up reactors, lead-cooled fast reactors and using nuclear energy in heat energy. 'Innovative separation and transmutation' include research on using chemical microchips to efficiently separate TRU waste to MA, burning or destroying waste products, or transmuting plutonium and other nuclear materials. Research on 'nuclear technology and society' and 'education' was also added in order for nuclear energy to be accepted into society. COE-INES was a five-year program ending in 2007. But some activities should be continued and this roadmap detailed them as a rough guide focusing inventions and discoveries. This technology roadmap was created for social acceptance and should be flexible to respond to changing times and conditions. (T. Tanaka)

  2. Structural materials for innovative nuclear systems (SMINS)

    International Nuclear Information System (INIS)

    2008-01-01

    Structural materials research is a field of growing relevance in the nuclear sector, especially for the different innovative reactor systems being developed within the Generation IV International Forum (GIF), for critical and subcritical transmutation systems, and of interest to the Global Nuclear Energy Partnership (GNEP). Under the auspices of the NEA Nuclear Science Committee (NSC) the Workshop on Structural Materials for Innovative Nuclear Systems (SMINS) was organised in collaboration with the Forschungszentrum Karlsruhe in Germany. The objectives of the workshop were to exchange information on structural materials research issues and to discuss ongoing programmes, both experimental and in the field of advanced modelling. These proceedings include the papers and the poster session materials presented at the workshop, representing the international state of the art in this domain. (author)

  3. A Roadmap of Innovative Nuclear Energy System

    Science.gov (United States)

    Sekimoto, Hiroshi

    2017-01-01

    Nuclear is a dense energy without CO2 emission. It can be used for more than 100,000 years using fast breeder reactors with uranium from the sea. However, it raises difficult problems associated with severe accidents, spent fuel waste and nuclear threats, which should be solved with acceptable costs. Some innovative reactors have attracted interest, and many designs have been proposed for small reactors. These reactors are considered much safer than conventional large reactors and have fewer technical obstructions. Breed-and-burn reactors have high potential to solve all inherent problems for peaceful use of nuclear energy. However, they have some technical problems with materials. A roadmap for innovative reactors is presented herein.

  4. Cycle for innovative nuclear Gen 4. systems=

    International Nuclear Information System (INIS)

    2004-01-01

    In the framework of the development of nuclear systems of the 4. generation, the preliminary and schematic reprocessing goals are a cleaning of fission products without a priori separation of the different actinides. The objective of the workshop is to exchange information about the potential efficiency of innovative fuel processing treatments in order to evaluate the impact of impurities on the design of the fuel during its re-fabrication and re-introduction inside the reactor, and on the materials and systems. This document gathers the slides of the 18 presentations given at this workshop: 1 - from the PWR fuel to the closed cycle fast spectrum concepts of generation 4 systems (P. Anzieu, F. Carre, Ph. Brossard, M. Delpech); 2 - the double strata scenarios: objectives and characteristics (S. David and F. Varaine); 3 - why a molten salts thorium file (D. Heuer); 4 - the common 'molten salts' research program of the CNRS (D. Heuer, S. Sanchez); 5 - the hydro-metallurgical reprocessing, the knowledge gained and the statuses of the 5. PCRD, synthesis of the OECD works (C. Madic); 6 - pyro-chemistry: Pyropep status (H. Boussier); 7 - technological bolts identified during the Most project of the 5. PCRD (C. Renault, Ch. Le Brun, M. Delpech and C. Garzenne); 8 - the molten salt reactor concept and its reprocessing options, expected efficiencies (L. Mathieu); 9 - methodology of evaluation of pyro-chemical fuel reprocessing schemes (H. Boussier); 10 - molten salt reactor, design-aided tools for the reactor and the reprocessing plant (O. Gastaldi, E. Walle, O. Koberl, D. Lecarpentier); 11 - status of CEA's prospective studies for the front-end of the fuel reprocessing process/dry ways (S. Bourg); 12 - results of activity coefficient measurements in liquid metals (J. Finne, E. Walle, G. Picard, S. Sanchez and O. Conocar); 13 - potentialities of electrolytic separation and liquid-liquid extraction processes (molten salts/molten metal) for the multi-recycling of actinides (J

  5. Development of integrated nuclear data utilization system for innovative reactors

    International Nuclear Information System (INIS)

    Naoki, Yamano; Masayuki, Igashira; Akira, Hasegawa; Kiyoshi, Kato

    2005-01-01

    An integrated nuclear data utilization system has been developing for innovative nuclear energy systems such as innovative reactors and accelerator-driven systems. The system has been constructed as a modular code system, which consists of a managing system and two subsystems. The management system named CONDUCT controls system resource management of the PC Linux server and the user authentication through Internet access. A subsystem is the nuclear data search and plotting subsystem based on a SPES engine developed by Hokkaido University. Nuclear data such as EXFOR, JENDL-3.3, ENDF/B-VI and JEFF-3.1 can be searched and plotted in the subsystem. The other is the nuclear data processing and utilization subsystem, which is able to handle JENDL-3.3, ENDF/B-VI and JEFF-3.1 to generate point-wise and group cross sections in several formats, and perform various criticality and shielding benchmarks for verification of nuclear data and validation of design methods for innovative reactors. This paper presents an overview of the integrated nuclear data utilization system, describes the progress of the system development to examine the operability of the user interface and discuss specifications of the two subsystems. (authors)

  6. Innovation in the Safety of nuclear systems: fundamental aspects

    International Nuclear Information System (INIS)

    Herranz, L. E.

    2009-01-01

    Safety commercial nuclear reactors has been an indispensable condition for future enlargement of power generation based on nuclear technology. Its fundamental principle, defence in depth, far from being outdated, is still adopted as a key foundation in the advanced nuclear system (generations III and IV). Nevertheless, the cumulative experience gained in the operation and maintenance of nuclear reactors, the development of methodologies like the probabilistic safety analysis, the use of passive safety systems and, even, the inherent characteristics of some new design (which exclude accident scenarios), allow estimating safety figures of merit even more outstanding that those achieved in the second generation of nuclear reactors. This safety innovation of upcoming nuclear reactors has entailed a huge investigation program (generation III) that will be focused on optimizing and demonstrating the postulated safety of future nuclear systems (Generation IV). (Author)

  7. Daya Bay Nuclear Power Station equipment reliability management system innovation

    International Nuclear Information System (INIS)

    Gao Ligang; Wang Zongjun

    2006-01-01

    Daya Bay Nuclear Power Station has achieved good performance since its commercial operation in 1994. The equipment reliability management system that features Daya Bay characteristics has been established through constant technology introduction, digestion and innovation. It is also based on the success of operational system, equipment maintenance system and technical support system. The system lays a solid foundation for the long-term safe operation of power station. This article emphasizes on the innovation part of equipment reliability management system in Daya Bay. (authors)

  8. Innovative nuclear system based on liquid fuel

    International Nuclear Information System (INIS)

    Delpech, S.; Jaskierowicz, S.; Picard, G.; Merle-Lucotte, E.; Heuer, D.; Doligez, X.

    2009-01-01

    The aim of this paper is to present the physical properties and characteristics of the innovative concept of Molten Salt Fast Reactor (MSFR) developed by CNRS (France) and the corresponding fuel salt reprocessing proposed to clean up the fuel salt based on an analytical approach of lanthanides and actinides extraction. (author)

  9. 11-th International conference Nuclear power safety and nuclear education - 2009. Abstracts. Part 1. Session: Safety of nuclear technology; Innovative nuclear systems and fuel cycle; Nuclear knowledge management

    International Nuclear Information System (INIS)

    2009-01-01

    The book includes abstracts of the 11-th International conference Nuclear power safety and nuclear education - 2009 (29 Sep - 2 Oct, 2009, Obninsk). Problems of safety of nuclear technology are discussed, innovative nuclear systems and fuel cycles are treated. Abstracts on professional education for nuclear power and industry are presented. Nuclear knowledge management are discussed

  10. A study on national innovation system for the improvement of nuclear R and D performance

    Energy Technology Data Exchange (ETDEWEB)

    Yun, S. W.; Oh, K. B.; Kim, H. J.; Cheong, H. S.; Cheong, I.; Lee, J. H.; Won, B. C.; Cheong, C. E.; Lee, K. H.; Choi, H. M

    2006-01-15

    Review basic concept and analytical method concerned with technological innovation and NIS : concept and defition of technological innovation and NIS, background and evolution of the NIS theory, basic elements of NIS and their relationship. Identification on scientific-technological characteristics of the nuclear R and D and technological innovation : special aspect of the nuclear R and D and technological innovation, difficulty(or complexity) of the nuclear R and D and technological, innovation. Defining organizational-institutional elements of nuclear R and D and innovation allowing for nuclear scientific-technological peculiarity. Developing the model of national nuclear innovation system for analysis of the national R and D performance. Developing the analytical model including performance measure and procedure for national nuclear innovation system led mainly by national Rand D in Korea. Discussion about the national innovation system with other OECD/NEA member countries.

  11. A study on national innovation system for the improvement of nuclear R and D performance

    International Nuclear Information System (INIS)

    Yun, S. W.; Oh, K. B.; Kim, H. J.; Cheong, H. S.; Cheong, I.; Lee, J. H.; Won, B. C.; Cheong, C. E.; Lee, K. H.; Choi, H. M.

    2006-01-01

    Review basic concept and analytical method concerned with technological innovation and NIS : concept and defition of technological innovation and NIS, background and evolution of the NIS theory, basic elements of NIS and their relationship. Identification on scientific-technological characteristics of the nuclear R and D and technological innovation : special aspect of the nuclear R and D and technological innovation, difficulty(or complexity) of the nuclear R and D and technological, innovation. Defining organizational-institutional elements of nuclear R and D and innovation allowing for nuclear scientific-technological peculiarity. Developing the model of national nuclear innovation system for analysis of the national R and D performance. Developing the analytical model including performance measure and procedure for national nuclear innovation system led mainly by national Rand D in Korea. Discussion about the national innovation system with other OECD/NEA member countries

  12. The innovation and application of the nuclear power construction management information system MISNPC

    International Nuclear Information System (INIS)

    Wang Kaihua; Tang Zihui; Zhang Baiqi; Sun Guangwei; Zhu Guodong; Qian Fuhua

    2009-01-01

    This paper focuses on introducing the innovation achievements on the management information system of nuclear power construction (MISNPC). The innovation is achieved through summarizing the practice of nuclear power construction in China and drawing on advanced experience of international nuclear power construction. The innovation, including the management standard for nuclear power construction, the standard of construction process, the standard of nuclear-power basic codes and the standard for nuclear power construction and control, can be rapidly copied for application in various nuclear power construction projects. The application of the innovation may play an essential role in ensuring safe construction and operation of nuclear power plants in China and improving economic benefits. (authors)

  13. Innovation research on the safety supervision system of nuclear and radiation safety in Jiangsu province

    International Nuclear Information System (INIS)

    Zhang Qihong; Lu Jigen; Zhang Ping; Wang Wanping; Dai Xia

    2012-01-01

    As the rapid development of nuclear technology, the safety supervision of nuclear and radiation becomes very important. The safety radiation frame system should be constructed, the safety super- vision ability for nuclear and radiation should be improved. How to implement effectively above mission should be a new subject of Provincial environmental protection department. Through investigating the innovation of nuclear and radiation supervision system, innovation of mechanism, innovation of capacity, innovation of informatization and so on, the provincial nuclear and radiation safety supervision model is proposed, and the safety framework of nuclear and radiation in Jiangsu is elementally established in the paper. (authors)

  14. The International Atomic Energy Agency shows keen interest. Innovative warning system for nuclear proliferation

    International Nuclear Information System (INIS)

    Smet, S.; Van der Meer, K.

    2011-01-01

    In order to prevent nuclear proliferation, nuclear fuels and other strategic materials have to be responsibly managed. Non-proliferation aims to counteract the uncontrolled proliferation of nuclear materials worldwide. SCK-CEN is developing an innovative nuclear warning system based on political and economic indicators. Such a system should allow the early detection of the development of a nuclear weapons programme.

  15. Materials for innovative lead alloy cooled nuclear systems: Overview

    International Nuclear Information System (INIS)

    Mueller, Georg; Weisenburger, Alfons; Fetzer, Renate; Heinzel, Annette; Jianu, Adrian

    2015-01-01

    One of the most challenging issues for all future innovative nuclear systems including Gen IV reactors are materials. The selection of the structural materials determines the design which has to consider the properties and the availability of the materials. Beside general requirements for material properties that are common for all fast reactor types specific issues arise from coolant compatibility. The high solubility of steel alloying elements in liquid Pb-alloys at reactor relevant temperatures is clearly detrimental. Therefore, all steels that are considered as structural materials have to be protected by dissolution barriers. The most common barriers for steels under consideration are oxide scales that form in situ during operation. However, increasing the temperature above 500 deg. C will result either in dissolution attack or in enhanced oxidation. For higher temperatures additional barriers like alumina forming surface alloys are discussed and investigated. Mechanical loads like creep stress and fretting will act on the steels. These mechanical loads will interact with the coolant and can increase the negative effects. For a LFR (Lead Fast Reactor) Demonstrator and MYHRRA (ADS) austenitic steels (316L) are selected for most in core components. The 15-15Ti is the choice for the fuel cladding of MYHRRA and a Pb cooled demonstrator. For an industrial LFR (Lead Fast Reactor) the ferritic martensitic steel T91 was selected as fuel clad material due to its improved irradiation resistance. T91 is in both designs the material to be used for the heat exchanger. Surface alloying with alumina forming alloys is considered to assure material functionality at higher temperatures and is therefore selected for fuel cladding of the ELFR and the heat exchanger tubes. This presentation will give an overview on the selected materials for innovative Pb alloy cooled nuclear systems considering, beside pure compatibility, the influence of mechanical interaction like creep and

  16. Innovation in civil construction system of nuclear power plant

    International Nuclear Information System (INIS)

    Takami, Masahiro

    1996-01-01

    Nowadays, the computer-aided production systems have been already introduced to almost all kinds of industries. The construction industry, which has been said to be conservative for the modernization of production system, now expects the CIC (Computer Integrated Construction) as the means to innovate the construction production process. Shimizu Corporation has developed the new computer-aided production system, 'SIPS: Shimizu Integrated Production System', and has used it in the actual construction projects. In the system, the computer supports every phase of construction projects like market researching, design, material purchase, construction work, and maintenance. The project of Kashiwazaki-kariwa Nuclear Power Station Unit No.7 is one of the model cases. Here we applied following three concepts, (1) the full use and integration of 3D-CAD data-base through all phases of construction, (2) the setting-up of the information network system among the site office, the head office, and the mechanical and electrical manufacturer, (3) the introduction of advanced construction technologies such as large block prefabrication method. (author)

  17. Innovation in nuclear technology

    International Nuclear Information System (INIS)

    Bertel, E.

    2007-01-01

    Innovation has been a driving force for the success of nuclear energy and remains essential for its future. For the continued safe and economically effective operation and maintenance of existing nuclear systems, and to meet the goals set out by projects aiming at designing and implementing advanced systems for the future, efficient innovation systems are needed. Consequently, analysing innovation systems is essential to understand their characteristics and enhance their performance in the nuclear sector. Lessons learnt from innovation programmes that have already been completed can help enhance the effectiveness of future programmes. The analysis of past experience provides a means for identifying causes of failure as well as best practices. Although national and local conditions are important factors, the main drivers for the success of innovative endeavors are common to all countries. Cooperation and coordination among the various actors are major elements promoting success. All interested stakeholders, including research organisations, industrial actors, regulators and civil society, have a role to play in supporting the success of innovation, but governments are an essential trigger, especially for projects with long durations and very ambitious objectives. Governments have a major role to play in promoting innovation because they are responsible for the overall national energy policy which sets the stage for the eventual deployment of innovative products and processes. Moreover, only governments can create the stable legal and regulatory framework favourable to the undertaking and successful completion of innovation programmes. International organisations such as the NEA may help enhance the effectiveness of national policies and innovation programmes by providing a forum for exchanging information, facilitating multilateral collaboration and joint endeavors, and offering technical support for the management of innovative programmes

  18. Nuclear innovation in Saskatchewan: innovation

    International Nuclear Information System (INIS)

    Alexander, N.

    2015-01-01

    This paper describes nuclear innovation in Saskatchewan. The first stage is the Canadian Institute for Science and Innovation Policy (CSIP) and how you have a successful discussion about a technically complex issue, understand what information people need in order to have an informed discussion, understand how to convey that information to those people in a constructive way.

  19. Cross-cutting european thermal-hydraulics research for innovative nuclear systems

    International Nuclear Information System (INIS)

    Roelofs, F.; Class, A.; Cheng, X.; Meloni, P.; Van Tichelen, K.; Boudier, P.; Prasser, M.

    2010-01-01

    Thermal-hydraulics is recognized as a key scientific subject in the development of different innovative nuclear reactor systems. From the thermal-hydraulic point of view, different innovative reactors are mainly characterized by their coolants (gas, water, liquid metals and molten salt). This results in different micro- and macroscopic behavior of flow and heat transfer and requires specific models and advanced analysis tools. However, many common thermal-hydraulic issues are identified among various innovative nuclear systems. In Europe, such cross-cutting thermal-hydraulic issues are the subject of the 7. framework programme THINS (Thermal-Hydraulics of Innovative Nuclear Systems) project which runs from 2010 until 2014. This paper will describe the activities in this project which address the main identified thermal hydraulics issues for innovative nuclear systems. (authors)

  20. The Rise of the Nuclear System of Innovation in Sweden

    International Nuclear Information System (INIS)

    Jonter, Thomas; Fjaestad, Maja

    2008-04-01

    The purpose of this article is twofold. Firstly, the ambition is to analyze the role of the government in relation to private industry in the development of the nuclear power infrastructure in Sweden in the period of 1945-1970. Secondly, the purpose is to account for what was actually made in terms of education, research and financial funding in 'the Swedish line' and to assess its importance for the swift take over by the light water reactor system

  1. Transmutation potential of current and innovative nuclear power systems

    International Nuclear Information System (INIS)

    Slessarev, I.; Salvatores, M.; Uematsu, M.

    1993-01-01

    In the present paper we have investigated the transmutation potential of different nuclear systems from a physical point of view. Transuranium (TRU) elements have been considered, but also long lived fission products (LLFP). The potential for transmutation has to take into account not only the consumption of a specific nucleus (or of a specific 'family' of nuclei), but also the reproduction of other nuclei of higher masses. The present study allows an intercomparison taking into account both aspects. Technological, safety and design constraints were not considered at this stage. However strategic indications for future studies have been obtained. 3 refs., 3 tabs

  2. Management practice and innovation in digital I and C system maintenance of nuclear power plant

    International Nuclear Information System (INIS)

    Huang Qian; Shi Qingwei; Huang Yaning

    2012-01-01

    This essay introduces the application situation of new ideas and methods in aspects of risk analysis, equipment status monitoring, defect tracing and maintenance management network in the course of maintaining the digital I and C system of Tianwan Nuclear Power Station, gives a detail description about the enhancement of the enterprise culture and scientific innovation in the field of digital I and C system maintenance. The practices in the past several years show that the management practice and the innovation means in the field of digital I and C system maintenance of Tianwan Nuclear Power Station are effective, and can provide reference for the other projects in this regard. (authors)

  3. National assessment study in Armenia using innovative nuclear reactors and fuel cycles methodology for an innovative nuclear systems in a country with small grid

    International Nuclear Information System (INIS)

    Sargsyan, V.H.; Galstyan, A.A.; Gevorgyan, A.A.

    2010-01-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was launched in November 2000 under the aegis of the IAEA. Phases 1A and IB (first Part) of the Project were dedicated to elaboration, testing and validation of the INPRO Methodology. At the Technical Meeting in Vienna (13-15 October 2004) Armenia has proposed an assessment using the INPRO Methodology for an Innovative Nuclear Energy System in a country with a small electrical grid. Such kind of study helps Armenia in analysis of Innovative Nuclear Energy System (INS), including fuel cycle options, as well as shows applicability of INPRO methodology for small countries, like Armenia. This study was based on the results given in [3] and [4], and also on the main objectives, declared by the Government of Armenia in the paper 'Energy Sector Development Strategies in the Context of Economic Development in Armenia'

  4. Challenges of structural materials for innovative nuclear systems in Europe

    International Nuclear Information System (INIS)

    Serrano, M.; Gomez-Briceno, D.

    2009-01-01

    New fusion and fission reactors for generation IV are envisaged to operate at conditions well above the actual ones for commercial fission reactors. This type of reactor combined a high operation temperature with a high neutron dose and an aggressive coolant, which imply new challenges for structural materials. One of the key issues to assure the safety and feasibility of these new nuclear systems is the selection of the structural materials, especially for in core components. Beside the differences between them, especially the amount of transmutation He in fusion reactors, similar structural materials have been selected. Some of the selected materials are well characterized at least at medium temperatures, as conventional ferritic/martensitic steels, but the qualification for higher temperatures is needed. For other materials, as ODS steels, there is a need for a complete characterization and qualification. In this paper a review of the operating conditions and selected structural materials for generation IV and fusion reactors within Europe is made. The needs for a complete characterization of these candidate materials are identified in terms of high temperature behaviour, radiation damage and coolant compatibility. (author)

  5. Users' Requirements for Environmental Effects From Innovative Nuclear Energy Systems and Their Fuel Cycles

    International Nuclear Information System (INIS)

    Carreter, M.; Gray, M.; Falck, E.; Bonne, A.; Bell, M.

    2002-01-01

    The objective of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) is to support the safe, sustainable, economic and proliferation resistant use of nuclear technology to meet the needs of the 21. century. The first part of the project focusses on the development of an understanding of the requirements of possible users of innovative concepts for reactors and fuel cycle applications. This paper reports progress made on the identification of user requirements as they relate to the environment and environmental protection. The user requirements being formulated are intended to limit adverse environmental effects from the different facilities involved in the nuclear fuel cycles to be well below maximum acceptable levels. To determine if the user requirements are met, it is necessary to identify those factors that are relevant to assessment of the environmental performance of innovative nuclear systems. To this effect, Environmental Impact Assessment (EIA) and the Material Flow accounting (MFA) methodologies are being appraised for the suitability for application. This paper develops and provides the rationale for the 'users' requirements' as they are currently defined. Existing Environmental Impact Assessment and Materials Flow Accounting methodologies that can be applied to determine whether or not innovative technologies conform to the User Requirements are briefly described. It is concluded that after establishing fundamental principles, it is possible to formulate sets of general and specific users' requirements against which, the potential adverse environmental effects to be expected from innovative nuclear energy systems (INES) can be assessed. The application of these users' requirements should keep the adverse environmental effects from INES's within acceptable limits. (authors)

  6. The innovation and practice of management improved by integration management information system in nuclear enterprise

    International Nuclear Information System (INIS)

    Zhang Fan; Cheng Lihong; Li Qisheng; Ge Zhengfa

    2012-01-01

    This article expounds that Hunan Taohuajiang Nuclear Power Company generally programs the route of company's core business and implements its integration through referencing the experience of informationization construction of other enterprises at the beginning of the foundation of this company, and summarizes the experience of system construction and analyses the innovation and signification of the integrative management information system to the nu- clear power enterprise management from data unified, resources sharing and business electronic and the management improvement of this company. (authors)

  7. Nuclear Innovation Workshops Report

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, John Howard [Idaho National Lab. (INL), Idaho Falls, ID (United States); Allen, Todd Randall [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hildebrandt, Philip Clay [Idaho National Lab. (INL), Idaho Falls, ID (United States); Baker, Suzanne Hobbs [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The Nuclear Innovation Workshops were held at six locations across the United States on March 3-5, 2015. The data collected during these workshops has been analyzed and sorted to bring out consistent themes toward enhancing innovation in nuclear energy. These themes include development of a test bed and demonstration platform, improved regulatory processes, improved communications, and increased public-private partnerships. This report contains a discussion of the workshops and resulting themes. Actionable steps are suggested at the end of the report. This revision has a small amount of the data in Appendix C removed in order to avoid potential confusion.

  8. European activities on crosscutting thermal-hydraulic phenomena for innovative nuclear systems

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X., E-mail: xu.cheng@kit.edu [Karlsruhe Institute of Technology (KIT) (Germany); Batta, A. [Karlsruhe Institute of Technology (KIT) (Germany); Bandini, G. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) (Italy); Roelofs, F. [Nuclear Research and Consultancy Group (NRG) (Netherlands); Van Tichelen, K. [Studiecentrum voor Kernenergie – Centre d’étude de l’Energie Nucléaire (SCK-CEN) (Belgium); Gerschenfeld, A. [Commissariat à l’Energie Atomique (CEA) (France); Prasser, M. [Paul Scherrer Institute (PSI) (Switzerland); Papukchiev, A. [Gesellschaft für Anlagen- und Reaktorsicherheit mbH (GRS) (Germany); Hampel, U. [Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR) (Germany); Ma, W.M. [Kungliga Tekniska Högskolan (KTH) (Sweden)

    2015-08-15

    Highlights: • This paper serves as a guidance of the special issue. • The technical tasks and methodologies applied to achieve the objectives have been described. • Main results achieved so far are summarized. - Abstract: Thermal-hydraulics is recognized as a key scientific subject in the development of innovative reactor systems. In Europe, a consortium is established consisting of 24 institutions of universities, research centers and nuclear industries with the main objectives to identify and to perform research activities on important crosscutting thermal-hydraulic issues encountered in various innovative nuclear systems. For this purpose the large-scale integrated research project THINS (Thermal-Hydraulics of Innovative Nuclear Systems) is launched in the 7th Framework Programme FP7 of European Union. The main topics considered in the THINS project are (a) advanced reactor core thermal-hydraulics, (b) single phase mixed convection, (c) single phase turbulence, (d) multiphase flow, and (e) numerical code coupling and qualification. The main objectives of the project are: • Generation of a data base for the development and validation of new models and codes describing the selected crosscutting thermal-hydraulic phenomena. • Development of new physical models and modeling approaches for more accurate description of the crosscutting thermal-hydraulic phenomena. • Improvement of the numerical engineering tools for the design analysis of the innovative nuclear systems. This paper describes the technical tasks and methodologies applied to achieve the objectives. Main results achieved so far are summarized. This paper serves also as a guidance of this special issue.

  9. Enhanced defence in depth: a fundamental approach for innovative nuclear systems recommended by INPRO

    International Nuclear Information System (INIS)

    Kuczera, B.; Juhn, P.E.

    2004-01-01

    In May 2001, the IAEA initiated the 'International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)'. Having in mind that nuclear power will be an important option for meeting future electricity needs, the scope of INPRO covers nuclear reactors expected to come into service in the next fifty years, together with their associated fuel cycles. This article deals with enhanced defence in depth (DID) strategy that is recommended by INPRO. This strategy is twofold: first, to prevent accidents and second, if prevention fails, to limit their potential consequences and prevent any evolution to more serious conditions. Accident prevention is the first priority. For innovative nuclear systems, the effectiveness of preventive measures should be enhanced compared with existing systems. DID is generally structured in 5 levels of protection, including successive barriers preventing the release of radioactive material to the environment. These levels are: 1) prevention of abnormal operation and failures, 2) control of abnormal operation and detection of failures, 3) control of accidents within the design basis, 4) control of severe plant conditions, including prevention and mitigation of the consequences of severe accidents, and 5) mitigation of radiological consequences of significant release of radioactive materials. In the area of nuclear safety, INPRO has set 5 principles: 1) incorporate DID as a part of the safety approach and make the 5 levels of DID more independent from each other than in current installations; 2) prevent, reduce or contain releases of radioactive or hazardous materials in any normal or abnormal plant operation; 3) incorporate increased emphasis on inherent safety characteristics and passive safety features; 4) include research and development work to bring the capability of computer codes used for the safety of innovative nuclear systems to the standard of codes used for the safety of current reactors; and 5) include a holistic life

  10. State-of-the-art Report on Innovative Fuels for Advanced Nuclear Systems

    International Nuclear Information System (INIS)

    Chauvin, N.; Minato, K.; Ogata, T.; Lee, C.B.; Pouchon, M.A.; Pasamehmetoglu, K.O.; Choi, Y.J.; Kennedy, J.R.; Massara, S.; Cornet, S.; ); Sommers, J.; ); McClellan, K.

    2014-01-01

    Development of innovative fuels such as homogeneous and heterogeneous fuels, ADS fuels, and oxide, metal, nitride and carbide fuels is an important stage in the implementation process of advanced nuclear systems. Several national and international R and D programmes are investigating minor actinide-bearing fuels due to their ability to help reduce the radiotoxicity of spent fuel and therefore decrease the burden on geological repositories. Minor actinides can be converted into a suitable fuel form for irradiation in reactor systems where they are transmuted into fission products with a significantly shorter half-life. This report compares recent studies of fuels containing minor actinides for use in advanced nuclear systems. The studies review different fuels for several types of advanced reactors by examining various technical issues associated with fabrication, characterisation, irradiation performance, design and safety criteria, as well as technical maturity. (authors)

  11. An approach for evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems

    International Nuclear Information System (INIS)

    Nakae, Nobuo; Ozawa, Takayuki; Ohta, Hirokazu; Ogata, Takanari; Sekimoto, Hiroshi

    2014-01-01

    One of the important issues in the study of Innovative Nuclear Energy Systems is evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems. An approach for evaluating the integrity of the fuel is discussed here based on the procedure currently used in the integrity evaluation of fast reactor fuel. The fuel failure modes determining fuel life time were reviewed and fuel integrity was analyzed and compared with the failure criteria. Metal and nitride fuels with austenitic and ferritic stainless steel (SS) cladding tubes were examined in this study. For the purpose of representative irradiation behavior analyses of the fuel for Innovative Nuclear Energy Systems, the correlations of the cladding characteristics were modeled based on well-known characteristics of austenitic modified 316 SS (PNC316), ferritic–martensitic steel (PNC–FMS) and oxide dispersion strengthened steel (PNC–ODS). The analysis showed that the fuel lifetime is limited by channel fracture which is a nonductile type (brittle) failure associated with a high level of irradiation-induced swelling in the case of austenitic steel cladding. In case of ferritic steel, on the other hand, the fuel lifetime is controlled by cladding creep rupture. The lifetime evaluated here is limited to 200 GW d/t, which is lower than the target burnup value of 500 GW d/t. One of the possible measures to extend the lifetime may be reducing the fuel smeared density and ventilating fission gas in the plenum for metal fuel and by reducing the maximum cladding temperature from 650 to 600 °C for both metal and nitride fuel

  12. An approach for evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nakae, Nobuo, E-mail: nakae-nobuo@jnes.go.jp [Center for Research into Innovative Nuclear Energy System, Tokyo Institute of Technology, 2-12-1-N1-19, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Ozawa, Takayuki [Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency, 4-33, Muramatsu, Tokai-mura, Ibaraki-ken 319-1194 (Japan); Ohta, Hirokazu; Ogata, Takanari [Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry, 2-11-1, Iwado Kita, Komae-shi, Tokyo 201-8511 (Japan); Sekimoto, Hiroshi [Center for Research into Innovative Nuclear Energy System, Tokyo Institute of Technology, 2-12-1-N1-19, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-03-15

    One of the important issues in the study of Innovative Nuclear Energy Systems is evaluating the integrity of fuel applied in Innovative Nuclear Energy Systems. An approach for evaluating the integrity of the fuel is discussed here based on the procedure currently used in the integrity evaluation of fast reactor fuel. The fuel failure modes determining fuel life time were reviewed and fuel integrity was analyzed and compared with the failure criteria. Metal and nitride fuels with austenitic and ferritic stainless steel (SS) cladding tubes were examined in this study. For the purpose of representative irradiation behavior analyses of the fuel for Innovative Nuclear Energy Systems, the correlations of the cladding characteristics were modeled based on well-known characteristics of austenitic modified 316 SS (PNC316), ferritic–martensitic steel (PNC–FMS) and oxide dispersion strengthened steel (PNC–ODS). The analysis showed that the fuel lifetime is limited by channel fracture which is a nonductile type (brittle) failure associated with a high level of irradiation-induced swelling in the case of austenitic steel cladding. In case of ferritic steel, on the other hand, the fuel lifetime is controlled by cladding creep rupture. The lifetime evaluated here is limited to 200 GW d/t, which is lower than the target burnup value of 500 GW d/t. One of the possible measures to extend the lifetime may be reducing the fuel smeared density and ventilating fission gas in the plenum for metal fuel and by reducing the maximum cladding temperature from 650 to 600 °C for both metal and nitride fuel.

  13. Innovative-Simplified Nuclear Power Plant Efficiency Evaluation with High-Efficiency Steam Injector System

    International Nuclear Information System (INIS)

    Shoji, Goto; Shuichi, Ohmori; Michitsugu, Mori

    2006-01-01

    It is possible to establish simplified system with reduced space and total equipment weight using high-efficiency Steam Injectors (SI) instead of low-pressure feedwater heaters in Nuclear Power Plant (NPP). The SI works as a heat exchanger through direct contact between feedwater from condensers and extracted steam from turbines. It can get higher pressure than supplied steam pressure. The maintenance and reliability are still higher than the feedwater ones because SI has no movable parts. This paper describes the analysis of the heat balance, plant efficiency and the operation of this Innovative-Simplified NPP with high-efficiency SI. The plant efficiency and operation are compared with the electric power of 1100 MWe-class BWR system and the Innovative-Simplified BWR system with SI. The SI model is adapted into the heat balance simulator with a simplified model. The results show that plant efficiencies of the Innovated-Simplified BWR system are almost equal to original BWR ones. The present research is one of the projects that are carried out by Tokyo Electric Power Company, Toshiba Corporation, and six Universities in Japan, funded from the Institute of Applied Energy (IAE) of Japan as the national public research-funded program. (authors)

  14. Innovation in nuclear energy technology

    International Nuclear Information System (INIS)

    Dujardin, Th.; Bertel, E.; Kwang Seok, Lee; Foskolos, K.

    2007-01-01

    Innovation has been a driving force for the success of nuclear energy and remains essential for its sustainable future. Many research and development programmes focus on enhancing the performance of power plants in operation, current fuel design and characteristics, and fuel cycle processes used in existing facilities. Generally performed under the leadership of the industry. Some innovation programmes focus on evolutionary reactors and fuel cycles, derived from systems of the current generation. Such programmes aim at achieving significant improvements, in the field of economics or resource management for example, in the medium term. Often, they are undertaken by the industry with some governmental support as they require basic research together with technological development and adaptation. Finally, large programmes, often undertaken in an international, intergovernmental framework are devoted to design and development of a new generation of systems meeting the goals of sustainable development in the long term. Driving forces for nuclear innovation vary depending on the target technology, the national framework and the international context surrounding the research programme. However, all driving factors can be grouped in three categories: market drivers, political drivers and technology drivers. Globally, innovation in the nuclear energy sector is a success story but is a lengthy process that requires careful planning and adequate funding to produce successful outcomes

  15. Cycle for innovative nuclear Gen 4. systems=; Cycle des systemes du futur

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    In the framework of the development of nuclear systems of the 4. generation, the preliminary and schematic reprocessing goals are a cleaning of fission products without a priori separation of the different actinides. The objective of the workshop is to exchange information about the potential efficiency of innovative fuel processing treatments in order to evaluate the impact of impurities on the design of the fuel during its re-fabrication and re-introduction inside the reactor, and on the materials and systems. This document gathers the slides of the 18 presentations given at this workshop: 1 - from the PWR fuel to the closed cycle fast spectrum concepts of generation 4 systems (P. Anzieu, F. Carre, Ph. Brossard, M. Delpech); 2 - the double strata scenarios: objectives and characteristics (S. David and F. Varaine); 3 - why a molten salts thorium file (D. Heuer); 4 - the common 'molten salts' research program of the CNRS (D. Heuer, S. Sanchez); 5 - the hydro-metallurgical reprocessing, the knowledge gained and the statuses of the 5. PCRD, synthesis of the OECD works (C. Madic); 6 - pyro-chemistry: Pyropep status (H. Boussier); 7 - technological bolts identified during the Most project of the 5. PCRD (C. Renault, Ch. Le Brun, M. Delpech and C. Garzenne); 8 - the molten salt reactor concept and its reprocessing options, expected efficiencies (L. Mathieu); 9 - methodology of evaluation of pyro-chemical fuel reprocessing schemes (H. Boussier); 10 - molten salt reactor, design-aided tools for the reactor and the reprocessing plant (O. Gastaldi, E. Walle, O. Koberl, D. Lecarpentier); 11 - status of CEA's prospective studies for the front-end of the fuel reprocessing process/dry ways (S. Bourg); 12 - results of activity coefficient measurements in liquid metals (J. Finne, E. Walle, G. Picard, S. Sanchez and O. Conocar); 13 - potentialities of electrolytic separation and liquid-liquid extraction processes (molten salts/molten metal) for the multi

  16. Methodological considerations in evaluating a proliferation resistance of innovative nuclear energy systems

    International Nuclear Information System (INIS)

    Kikuchi, Masahiro; Takaki, Naoyuki; Murajiri, Masahiro; Nakagome, Yoshihiro; Tokiwai, Moriyasu

    2004-01-01

    Over 25 years ago, INFCE studied the evaluation methodology of proliferation resistance. Recently, INPRO and GEN-IV coordinated by the IAEA and the USDOE respectively seek an appropriate innovative fuel cycle system for next generation that is furnished safer, sustainable, economical and reliable features. The evaluation methodology of the proliferation resistance is also assigned as an essential part of both studies. The IAEA established and has been strictly implementing the verification measures with accurate material accountancy system from the early of the 1970s in order to detect diversion of plutonium that is individually separated from irradiated nuclear material and recycled as MOX fuel. This paper firstly identifies the impedibility of intrinsic features of innovative fuel cycles and the safeguardability of selected nonproliferation measures as two individual essential parameters for evaluation of a proliferation resistance capability. As a next step, this paper also shows methodological considerations in evaluating the proliferation resistance levels as a multiple model of several clusters that are identified the ability of each parameter. (author)

  17. The molten salt reactors (MSR) pyro chemistry and fuel cycle for innovative nuclear systems

    International Nuclear Information System (INIS)

    Brossard, Ph.; Garzenne, C.; Mouney, H.

    2002-01-01

    In the frame of the studies on next generation nuclear systems, and especially for the molten salt reactors and for the integrated fuel cycle (as IFR), the fuel cycle constraints must be taken into account in the preliminary studies of the system to improve the cycle and reactor optimisation. Among the purposes for next generation nuclear systems, sustainability and waste (radio-toxicity and mass) management are important goals. These goals imply reprocessing and recycling strategies. The objectives of this workshop are to present and to share the different strategies and scenarios, the needs based on these scenarios, the experimental facilities available today or in the future and their capabilities, the needs for demonstration. It aims at: identifying the needs for fuel cycle based on solid fuel or liquid fuel, and especially, the on-line reprocessing or clean up for the molten salt reactors; assessing the state-of-the-art on the pyro-chemistry applied to solid fuel and to present the research activities; assessing the state-of-the-art on liquid fuels (or others), and to present the research activities; expressing the R and D programs for pyro-chemistry, molten salt, and also to propose innovative processes; and proposing some joint activities in the frame of GEDEON and PRACTIS programs. This document brings together the transparencies of 18 contributions dealing with: scenario studies with AMSTER concept (Scenarios, MSR, breeders (Th) and burners); fuel cycle for innovative systems; current reprocessing of spent nuclear fuel (SNF) in molten salts (review of pyro-chemistry processes (non nuclear and nuclear)); high temperature NMR spectroscopies in molten salts; reductive extraction of An from molten fluorides (salt - liquid metal extraction); electrochemistry characterisation; characterisation with physical methods - extraction coefficient and kinetics; electrolytic extraction; dissolution-precipitation of plutonium in the eutectic LiCl-KCl (dissolution and

  18. Euratom innovation in nuclear fission: Community research in reactor systems and fuel cycles

    International Nuclear Information System (INIS)

    Goethem, G. van; Hugon, M.; Bhatnagar, V.; Manolatos, P.; Deffrennes, M.

    2007-01-01

    The following questions are naturally at the heart of the current Euratom research and training framework programme:(1)What are the challenges facing the European Union nuclear fission research community in the short (today), medium (2010) and long term (2040)? (2)What kind of research and technological development (RTD) does Euratom offer to respond to these challenges, in particular in the area of reactor systems and fuel cycles? In the general debate about energy supply technologies there are challenges of both a scientific and technological (S/T) as well as an economic and political (E/P) nature. Though the Community research programme acts mainly on the former, there is nevertheless important links with Community policy. These not only exist in the specific area of nuclear policy, but also more generally as is depicted in the following figure. It is shown in the particular area of nuclear fission, to what extent Euratom research, education and innovation ('Knowledge Triangle' in above figure) respond to the following long-term criteria: (1) sustainability, (2) economics, (3) safety, and (4) proliferation resistance. Research and innovation in nuclear fission technology has broad and extended geographical, disciplinary and time horizons:- the community involved extends to all 25 EU Member States and beyond; - the research assembles a large variety of scientific disciplines; - three generations of nuclear power technologies (called II, III and IV) are involved, with the timescales extending from now to around the year 2040. To each of these three generations, a couple of challenges are associated (six in total):- Generation II (1970-2000, today): security of supply+environmental compatibility; - Generation III (around 2010): enhanced safety and competitiveness (economics); - Generation IV (around 2040): cogeneration of heat and power, and full recycling. At the European Commission (EC), the research related to nuclear reactor systems and fuel cycles is

  19. Global architecture of innovative nuclear energy

    International Nuclear Information System (INIS)

    Andreeva-Andrievskaya, L.N.; Kagramanyan, V.S.; Usanov, V.I.; )

    2011-01-01

    The study Global Architecture of Innovative Nuclear Energy Systems Based on Thermal and Fast Reactors including a Closed Fuel Cycle (GAINS), aimed at harmonization of tools used to assess various options for innovative development of nuclear energy, modeling of jointly defined scenarios and analysis of obtained results is presented in the paper. Objectives and methods of the study, issues of spent fuel and fissile materials management are discussed. Investment risks and economic indicators are also described [ru

  20. International conference on innovative technologies for nuclear fuel cycles and nuclear power. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    A wide range of issues relevant to the innovative technologies for nuclear power cycle and nuclear power were addressed. The 7 sessions of the conference were entitled: (1) no title; (2) needs, prospects and challenges for innovation; (3) evolution of technical, social, economic and political conditions; (4) panel on challenges for the deployment of innovative technologies; (5) international programmes on innovative nuclear systems; (6) innovative nuclear systems and related R and D programmes; (7) concluding panel.

  1. Organizing Systemic Innovation

    NARCIS (Netherlands)

    F.P.H. Jaspers (Ferdinand)

    2009-01-01

    textabstractSystemic innovation refers to product development activities that involve the change of multiple interdependent components. Unlike autonomous innovation, which refers to components that change independently, systemic innovation is for many firms the norm rather than the exception. This

  2. Incorporation of Nuclear Knowledge Management to the Integrated System of Quality and Technological Innovation in Cubaenergía

    International Nuclear Information System (INIS)

    Oviedo Rivero, I.; González García, A.; Amado Picasso, M.; Yera López, B.; Contreras, M.; López Núñez, A.; García Rodríguez, B.; Elías Hardy, L. L.; Rivero Blanco, J. M.; Peña Tornet, A.; Quintana Castillo, N.

    2016-01-01

    Full text: Technical knowledge management and innovation become important tools for organizations to meet the needs and expectations of the market and society in general; especially those related to the peaceful use of nuclear energy. Since 2011 Cubaenergia, under the model of the UNE 166002, integrated process management Scientific and Technological Innovation to the requirements of NC-ISO 9001, compliance with national regulations applicable to the sector. In September 2015 the new ISO 9001 includes a clause that makes explicit mention knowledge. Although this clause is not a standard for knowledge management nor does it imply its obligatory; Cubaenergia decided to expand its integrated management system to include the Nuclear Knowledge Management system. In this article the conceptual framework for the integration of these three systems, diagnosis in the organization and the proposed design and implementation plan of management knowledge management integrated analyzes R&D and the quality management system in Cubaenergía. (author

  3. Approaches for the Assessment of the Innovative Nuclear System of Ukraine on the Base of INPRO Methodology

    International Nuclear Information System (INIS)

    Afanas'ev, A.A.; Vlasenko, N.I.

    2007-01-01

    Approaches for the preliminary and comparative assessment of Innovative Nuclear System (INS) of Ukraine using INPRO methodology (IAEA TECDOC-1434) suggested for the period up to 2030, which must answer the comprehensive purpose of sustainable development, contribute to strengthening of the non-proliferation principles and solving an energy problems supply on national and regional levels are presented in the paper. Using assessment results of the INS based on evolutionary designs will allow Ukraine to build informative, methodological and technical basis for choice of the INS based on innovative design which could be offered for deployment in Ukraine after 1030

  4. Achieving Nuclear Sustainability through Innovation

    International Nuclear Information System (INIS)

    2013-01-01

    In 2000, the IAEA Member States recognized that concerted and coordinated research and development is needed to drive innovation that ensures that nuclear energy can help meet energy needs sustainably in the 21st century. Following an IAEA General Conference resolution, an international 'think tank' and dialogue forum were established. The resulting organization, the IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), helps nuclear technology holders and users coordinate the national and international studies, research and other activities needed to achieve innovations in nuclear reactor designs and fuel cycles. Currently, 38 countries plus the European Commission are participating in the project. This group includes both developing and developed economies that represent more than 75% of the world's population and 85% of its gross domestic product. INPRO undertakes collaborative projects among IAEA Member States, which analyse development scenarios and examine how nuclear energy can support the United Nations' goals for sustainable development in the 21st century. The results of these projects can be applied by IAEA Member States in their national nuclear energy strategies and can lead to international cooperation resulting in beneficial innovations in nuclear energy technology and its deployment. For example, INPRO studies the 'back end' of the fuel cycle, including recycling of spent fuel to increase resource use efficiency and to reduce the waste disposal burdens.

  5. INPRO Assessment of the Planned Nuclear Energy System of Belarus. A report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2013-09-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was started in 2001 on the basis of IAEA General Conference resolution GC(44)/RES/21. INPRO activities have since been continuously endorsed by IAEA General Conference resolutions and by the General Assembly of the United Nations. The objectives of INPRO are to help ensure that nuclear energy is available to contribute, in a sustainable manner, to the goal of meeting the energy needs of the 21st century, and to bring together technology holders and users so that they can jointly consider the international and national actions required for ensuring sustainability of nuclear energy through innovations in technology and/or institutional arrangements. To fulfill these objectives, INPRO has developed a set of basic principles, user requirements and criteria, and an assessment method which, taken together, comprise the INPRO methodology for the evaluation of the long term sustainability of innovative nuclear energy systems. The INPRO methodology is documented in IAEA-TECDOC-1575 Rev.1, comprising an overview volume and eight additional volumes covering economics, institutional measures (infrastructure), waste management, proliferation resistance, physical protection, environment (impact of stressors and availability of resources), safety of reactors, and safety of nuclear fuel cycle facilities. This publication is the final report of an assessment of the planned nuclear energy system of Belarus using the INPRO methodology. The assessment was performed in 2009-2011 by Belarusian experts in a strategic partnership with the Russian Federation and with support from the IAEA's INPRO Group

  6. INPRO Assessment of the Planned Nuclear Energy System of Belarus. A report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-15

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was started in 2001 on the basis of IAEA General Conference resolution GC(44)/RES/21. INPRO activities have since been continuously endorsed by IAEA General Conference resolutions and by the General Assembly of the United Nations. The objectives of INPRO are to help ensure that nuclear energy is available to contribute, in a sustainable manner, to the goal of meeting the energy needs of the 21st century, and to bring together technology holders and users so that they can jointly consider the international and national actions required for ensuring sustainability of nuclear energy through innovations in technology and/or institutional arrangements. To fulfill these objectives, INPRO has developed a set of basic principles, user requirements and criteria, and an assessment method which, taken together, comprise the INPRO methodology for the evaluation of the long term sustainability of innovative nuclear energy systems. The INPRO methodology is documented in IAEA-TECDOC-1575 Rev.1, comprising an overview volume and eight additional volumes covering economics, institutional measures (infrastructure), waste management, proliferation resistance, physical protection, environment (impact of stressors and availability of resources), safety of reactors, and safety of nuclear fuel cycle facilities. This publication is the final report of an assessment of the planned nuclear energy system of Belarus using the INPRO methodology. The assessment was performed in 2009-2011 by Belarusian experts in a strategic partnership with the Russian Federation and with support from the IAEA's INPRO Group.

  7. Triggering system innovation in agricultural innovation systems

    NARCIS (Netherlands)

    Turner, James A.; Williams, Tracy; Nicholas, Graeme; Foote, Jeff; Rijswijk, Kelly; Barnard, Tim; Beechener, Sam; Horita, Akiko

    2017-01-01

    This article describes a process for stimulating engagement among change agents to develop a shared understanding of systemic problems in the agricultural innovation system (AIS), challenge prevalent institutional logics and identify actions they might undertake to stimulate system innovation.

  8. Innovation in nuclear power

    International Nuclear Information System (INIS)

    Blomgren, J.

    2017-01-01

    Institute for Nuclear Business Excellence Roots in Sweden and Finland in Global operation Services on nuclear business leadership: Independent advice, Executive training and Build-up of emerging nuclear countries. Plant construction and safety Plant construction: Plants are larger more complex with increased redundancy. Projects Failure in large technology is due to Corruption, Licensing mis-communication and Unclear roles and responsibilities. The chain of knowledge Design → construction→ operation → lifetime management → waste handling→ decommissioning. Maintenance and ageing start at the drawing table. Plant health monitoring. Today: Sensors are cheap Digital readout Enormous read out capacity''Internet of things''

  9. Innovations in nuclear concrete constructions

    International Nuclear Information System (INIS)

    Tatum, C.B.

    1983-01-01

    The technical requirements and scope of concrete work on nuclear projects present significant engineering and construction challenges. These demands represent the extremes in many areas of construction operations. In meeting these challenges, engineering and construction forces have developed several innovations which can be beneficially applied to other types of construction. Innovative approaches in the general categories of engineering scope, construction input to engineering, work planning, special methods and techniques, and satisfaction of quality assurance requirements are given in this paper. The transfer of this technology to other segments of the construction industry will improve overall performance by avoiding the problem areas encountered on nuclear projects

  10. The indicators of the management system of projects of research, development and technological innovation of the Cuban Nuclear program

    International Nuclear Information System (INIS)

    Rodriguez Cardona, R.; Cobas Aranda, M.

    2012-01-01

    Organizations responsible for managing projects organised in programmes and projects, require as one of their main demands for the implementation of effective project management systems, i.e., in which to achieve the planned activities and expected results to be achieved. Indicators are key for any system management tools for its management. The objective of this work is to show a set of indicators used by the management system (SGP) projects of I+D+i (research, development and technological innovation) of the nuclear sector, which demonstrate that these indicators have correlation and are feasible for the characterization and management of the system. (author)

  11. Introduction to the use of the INPRO methodology in a nuclear energy system assessment. A report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2010-01-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in 2001 on the basis of an IAEA General Conference resolution in 2000 (GC(44)/RES/21). INPRO activities have since that time been continuously endorsed by resolutions of the IAEA General Conference and by the General Assembly of the United Nations. The objectives of INPRO are to: Help ensure that nuclear energy is available to contribute, in a sustainable manner, to the goal of meeting energy needs in the 21st century; Bring together technology holders and users so that they can jointly consider the international and national actions required to ensure the sustainability of nuclear energy through innovations in technology and/or institutional arrangements. To fulfil these objectives, INPRO developed a set of basic principles, user requirements and criteria, along with an assessment method, which are the basis of the INPRO methodology for evaluation of the sustainability of innovative nuclear energy systems. To provide additional guidance in using the INPRO methodology, the nine volume INPRO Manual was developed; it consists of an overview volume and eight volumes covering the areas of economics, institutional measures (infrastructure), waste management, proliferation resistance, physical protection, environment (including the impact of stressors and the availability of resources), reactor safety, and the safety of nuclear fuel cycle facilities. To assist Member States in applying the INPRO methodology, the nuclear energy system assessment (NESA) support package is being developed. This includes a database (containing input data for assessment), provision of training courses in the INPRO methodology and examples of comprehensive assessments. This publication provides guidance on how a variety of potential users, including nuclear technology developers, experienced users and prospective first time nuclear technology users (newcomers) can apply the INPRO methodology for

  12. Scenarios and innovative systems

    International Nuclear Information System (INIS)

    2001-11-01

    The purpose of this workshop is to present to the GEDEON community the scenarios for the deployment of innovative nuclear solutions. Both steady state situations and possible transitions from the present to new reactors and fuel cycles are considered. Innovative systems that satisfy improved natural resource utilization and waste minimization criteria will be described as well as the R and D orientations of various partners. This document brings together the transparencies of 17 communications given at this workshop: general policy for transmutation and partitioning; Amster: a molten salt reactor (MSR) concept; MSR capabilities; potentials and capabilities of accelerator driven systems (ADS); ADS demonstrator interest as an experimental facility; innovative systems: gas coolant technologies; Pu management in EPR; scenarios with thorium fuel; scenarios at the equilibrium state; scenarios for transition; partitioning and specific conditioning; management of separated radio-toxic elements; European programs; DOE/AAA (Advanced Accelerator Applications) program; OECD scenario studies; CEA research programs and orientations; partitioning and transmutation: an industrial point of view. (J.S.)

  13. Major Findings of the IAEA/INPRO Collaborative Project on Global Architectures of Innovative Nuclear Energy Systems with Thermal and Fast Reactors and a Closed Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kuznetsov, V.; Fesenko, G.; Kriachko, M.; Dixon, B.; Hayashi, H.; Usanov, V.

    2013-01-01

    GAINS objectives: Rationale: • Increasing interest in MSs in joint modelling of global and regional trends in nuclear power taking into account technical innovations and multilateral cooperation; • Modelling of the kind requires agreed methodological platform to analyse transition strategies from the present to future nuclear energy system (NES). Overall objectives: Address technical & institutional issues of developing a global architecture for the sustainable NES in the 21st century: • develop a framework (common methodological platform, databases, assumptions & boundary conditions); • perform sample studies; • indicate potential areas for application of GAINS framework

  14. Research Reactors for the Development of Materials and Fuels for Innovative Nuclear Energy Systems

    International Nuclear Information System (INIS)

    2017-01-01

    This publication presents an overview of research reactor capabilities and capacities in the development of fuels and materials for innovative nuclear reactors, such as GenIV reactors. The compendium provides comprehensive information on the potential for materials and fuel testing research of 30 research reactors, both operational and in development. This information includes their power levels, mode of operation, current status, availability and historical overview of their utilization. A summary of these capabilities and capacities is presented in the overview tables of section 6. Papers providing a technical description of the research reactors, including their specific features for utilization are collected as profiles on a CD-ROM and represent an integral part of this publication. The publication is intended to foster wider access to information on existing research reactors with capacity for advanced material testing research and thus ensure their increased utilization in this particular domain. It is expected that it can also serve as a supporting tool for the establishment of regional and international networking through research reactor coalitions and IAEA designated international centres based on research reactors.

  15. Organisations in Innovation Systems

    DEFF Research Database (Denmark)

    Borrás, Susana

    Organisations are crucial elements in an innovation system. Yet, their role is so ubiquitous that it is difficult to grasp and to examine from the perspective of public policy. Besides, links between the literature at firm and system levels on the one hand, and public policy and governance studies......, it distinguishes between different types of organisations in the innovation system, a crucial topic in understanding innovation dynamics and blurring borders. Secondly, it identifies the organisation-related bottlenecks in the innovation system, and examines the policy instruments to solve them. Thirdly...

  16. Neighbourhood System of Innovation

    DEFF Research Database (Denmark)

    Muchie, Mammo; Kraemer-Mbula, Erika

    2010-01-01

    The innovation systems literature has provided a useful framework to analyse the linkages of firms and other organisations with both domestic and foreign actors. Although the concept of innovation systems was originally developed at the national level (Freeman, 1982; Nelson & Winter, 1982; Lundvall......, 1985; Nelson, 1988, etc), the literature has expanded rapidly over the years. Since its origins innovation systems have been defined at different levels. National, regional, local, sectoral and technological systems of innovation now constituted alternative units of analysis to better understand...

  17. Guidance for the application of an assessment methodology for innovative nuclear energy systems. INPRO manual - Physical protection. Vol. 6 of the final report of phase 1 of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2008-11-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in the year 2000, based on a resolution of the IAEA General Conference (GC(44)/RES/21). The main objectives of INPRO are (1) to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner, (2) to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles; and (3) to create a forum to involve all relevant stakeholders that will have an impact on, draw from, and complement the activities of existing institutions, as well as ongoing initiatives at the national and international level. This document follows the guidelines of the INPRO report M ethodology for the assessment of innovative nuclear reactors and fuel cycles, Report of Phase 1B (first part) of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) , IAEA-TECDOC-1434 (2004), together with its previous report G uidance for the evaluation for innovative nuclear reactors and fuel cycles, Report of Phase 1A of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), IAEATECDOC-1362 (2003). This INPRO manual is comprised of an overview volume and eight additional volumes covering the areas of economics (Volume 2), infrastructure (Volume 3), waste management (Volume 4), proliferation resistance (Volume 5), physical protection (Volume 6), environment (Volume 7), safety of reactors (Volume 8), and safety of nuclear fuel cycle facilities (Volume 9). The INPRO Manual for the area of physical protection (Volume 6) provides guidance to the assessor of an INS (innovative nuclear energy system) under a physical protection regime in a country that is planning to install a nuclear power program (or maintaining or enlarging an existing one), and describes the application of the

  18. Validation and application of the system code TRACE for safety related investigations of innovative nuclear energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Wadim

    2011-12-19

    The system code TRACE is the latest development of the U.S. Nuclear Regulatory Commission (US NRC). TRACE, developed for the analysis of operational conditions, transients and accidents of light water reactors (LWR), is a best-estimate code with two fluid, six equation models for mass, energy, and momentum conservation, and related closure models. Since TRACE is mainly applied to LWR specific issues, the validation process related to innovative nuclear systems (liquid metal cooled systems, systems operated with supercritical water, etc.) is very limited, almost not existing. In this work, essential contribution to the validation of TRACE related to lead and lead alloy cooled systems as well as systems operated with supercritical water is provided in a consistent and corporate way. In a first step, model discrepancies of the TRACE source code were removed. This inconsistencies caused the wrong prediction of the thermo physical properties of supercritical water and lead bismuth eutectic, and hence the incorrect prediction of heat transfer relevant characteristic numbers like Reynolds or Prandtl number. In addition to the correction of the models to predict these quantities, models describing the thermo physical properties of lead and Diphyl THT (synthetic heat transfer medium) were implemented. Several experiments and numerical benchmarks were used to validate the modified TRACE version. These experiments, mainly focused on wall-to-fluid heat transfer, revealed that not only the thermo physical properties are afflicted with inconsistencies but also the heat transfer models. The models for the heat transfer to liquid metals were enhanced in a way that the code can now distinguish between pipe and bundle flow by using the right correlation. The heat transfer to supercritical water was not existing in TRACE up to now. Completely new routines were implemented to overcome that issue. The comparison of the calculations to the experiments showed, on one hand, the necessity

  19. Lessons Learned from Nuclear Energy System Assessments (NESA) Using the INPRO Methodology. A Report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2009-11-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in 2001 on the basis of a resolution of the IAEA General Conference in 2000 (GC(44)/RES/21). INPRO activities have since been continuously endorsed by resolutions of IAEA General Conferences and by the General Assembly of the United Nations. The objectives of INPRO are to: Help ensure that nuclear energy is available to contribute, in a sustainable manner, to meeting the energy needs of the 21st century; Bring together technology holders and users so that they can consider jointly the international and national actions required for achieving desired innovations in nuclear reactors and fuel cycles. INPRO is proceeding in steps. In its first step, referred to as Phase 1, 2001 to 2006, INPRO developed a set of basic principles, user requirements and criteria together with an assessment method, which taken together, comprise the INPRO methodology for the evaluation of innovative nuclear energy systems. To provide additional guidance in using the INPRO methodology an INPRO Manual was developed; it is comprised of an overview volume and eight additional volumes covering the areas of economics, infrastructure, waste management, proliferation resistance, physical protection, environment, safety of reactors, and safety of the nuclear fuel cycle facilities. Based on a decision of the 9 INPRO steering committee in July 2006, INPRO has entered into Phase 2. This phase has three main directions of activity: methodology improvement, infrastructure/institutional aspects and collaborative projects. As of March 2009, INPRO had 28 members: Argentina, Armenia, Belarus, Belgium, Brazil, Bulgaria, Canada, Chile, China, Czech Republic, France, Germany, India, Indonesia, Japan, Republic of Korea, Morocco, Netherlands, Pakistan, the Russian Federation, Slovakia, South Africa, Spain, Switzerland, Turkey, Ukraine, United States of America and the European Commission. This IAEA-TECDOC is part of

  20. Structural Materials for Innovative Nuclear Systems (SMINS-3) - Workshop Proceedings, Idaho National Laboratory, Idaho Falls, United States, 7-10 October 2013

    International Nuclear Information System (INIS)

    2015-01-01

    The development of innovative nuclear systems such as Gen IV reactors or critical and subcritical transmutation systems requires a good knowledge of the properties of the materials used for designing these reactors. A common feature in developing nuclear systems is the widely recognised need for experimental programmes to select and characterise structural materials. Structural materials research, both at national and international level, can significantly contribute to the future deployment of new systems. Since 2007, the OECD Nuclear Energy Agency Nuclear Science Committee organises a series of workshop on Structural Materials for Innovative Nuclear Systems (SMINS) to stimulate an exchange of information on current materials research programmes for innovative nuclear systems with a view to identifying and developing potential synergies. The third workshop was held on 7-10 October 2013 in Idaho Falls (United States) and organised through the collaboration of the Working Party on Scientific Issues of the Fuel Cycle (WPFC) and the Working Party on Multi-Scale Modelling of Fuels and Structural Materials for Nuclear Systems (WPMM) in co-operation with the European Community (EC) and the International Atomic Energy Agency (IAEA). A total of 74 abstracts were received for either an oral and poster presentation. These proceedings include the papers presented at the workshop

  1. Innovative ways of decontaminating nuclear facilities

    International Nuclear Information System (INIS)

    Bremmer, Jan; Gentes, Sascha; Ambos, Frank

    2009-01-01

    The great variety of surfaces to be decontaminated in a nuclear power plant increases demand for economic solutions and efficient processing systems. The Institute for Technology and Management in Building (TMB) of the University of Karlsruhe (TH) is working on this task in the new professorship of Sascha Gentes and, together with sat Kerntechnik GmbH, developing innovative techniques and tools for surface decontamination. In this effort, sat.Kerntechnik GmbH contributes 50% to the funding of the new professorship at the Karlsruhe Institute of Technology, the merger of the University of Karlsruhe and the Karlsruhe Research Center. The new professorship will extend its work also to various other innovative concepts to be employed not only in demolition but also in maintenance and operation of nuclear facilities. Above and beyond theoretical approaches, practical solutions are in the focus of work. For this reason, new developments are elaborated in close cooperation with the respective users. (orig.)

  2. Activities performed within the program of nuclear safety research on structural and cladding materials for innovative reactor system able to transmute nuclear waste

    International Nuclear Information System (INIS)

    Fazio, C.; Rieth, M.; Lindau, R.; Aktaa, J.; Schneider, H-C.; Konys, J.; Yurechko, M.; Mueller, G.; Weisenburger, A.

    2009-01-01

    The transmutation of nuclear waste to reduce the burden on a geological repository is a relevant topic within the Program of Nuclear Safety Research of the Research Centre Karlsruhe. Several studies have confirmed that a high efficiency of transmutation of actinides is reached in fast neutron spectrum reactor system. Therefore, an important effort is dedicated to the study of transmutation strategies with different fast reactors and their associated technologies. Moreover, in international contexts as Generation IV International Forum (GIF) and Sustainable Nuclear Energy Technology Platform (SNETP), fast reactors are considered in the frame of sustainable development of nuclear energy and reduction of waste. The systems that are currently under investigation, in the frame of the different fuel cycle scenarios, are liquid metal cooled and gas cooled fast reactors as well as Accelerator Driven Sub-critical Transmutation devices (ADS). These innovative reactor systems, call for structural and clad materials, which are able to perform in a safe manner under the envisaged operational and postulated transient conditions. In this context the European Commission supports the FP7 project GETMAT, with the objective to contribute to the development and selection of reference structure materials for core components and primary systems of fast neutron reactors. Several institutes of the Research Centre Karlsruhe are involved in this project with activities in the area of 9Cr ODS steel development and mechanical characterisation; optimisation and ranking of weld and joining techniques as Electron Beam, TIG and Diffusion Bonding; assessment of materials behaviour in corrosive environment and in neutron and neutron/proton irradiation field; and development of corrosion protection barriers for cladding and primary system components and their characterisation. The objective of this contribution is to describe the context in which the GETMAT activities are embedded in the Program

  3. Innovativeness in production systems

    DEFF Research Database (Denmark)

    Blichfeldt, Henrik; Knudsen, Mette Præst

    Alignment of market demand and manufacturing capabilities are directly linked to the potential competitive advantage. Pressure for manufacturing companies to customize increase the need for productions systems to handle innovations, especially in SMEs. The paper claims that innovativeness has...... a positive influence of the ability of the manufacturing system to provide specific capabilities that enables the entire production system to positively influence the competitiveness. A comparative case study of three SMEs shows that competitive advantages are obtained through innovative technologies......, but revealed also automation potential in data and information management to be more responsive and cost-effective....

  4. The NRNU MEPhI activities in the development and applications of advanced tools for innovative nuclear energy systems sustainability assessments - 5020

    International Nuclear Information System (INIS)

    Andrianov, A.; Dogov, A.; Kuptsov, I.; Fedorova, E.; Svetlichnyy, L.; Utianskaia, T.; Korovin, Y.

    2015-01-01

    This report delineates the multi-objective optimization and uncertainty treatment modules for the IAEA energy planning software MESSAGE developed at the National Research Nuclear University MEPhI and the Obninsk Institute for Nuclear Power Engineering intended for multi-objective optimization and sustainability assessments of innovative nuclear energy systems with account of uncertainty. The authors present some results of implementation of these tools for multi-objective nuclear energy system optimization studies. The developed software allows searching for compromises between the conflicting factors that determine the nuclear energy systems' effectiveness and calculating corresponding trade-off rates; carrying out comparative multi-criteria analysis of alternatives as well as choosing, ranking, and sorting corresponding options taking into account the evolution dynamics, structure and organization of a nuclear fuel cycle and the most important system constraints and restrictions. (authors)

  5. Strategizing on innovation systems

    DEFF Research Database (Denmark)

    Jofre, Sergio

    developments enabling proper policy actions. The concept of innovation systems assumes that flows of technology and information among people, companies and institutions are crucial to the innovative process. At national level, innovation and technical development are the result of a complex set of interactions......This paper explores the strategic context of the implementation of the European Institute of Technology (EIT) from the perspective of National Innovation Systems (NIS) and the Triple Helix of University-Government-Industry relationship. The analytical framework is given by a comparative study...... implemented several action plans and programmes aiming at improving its technological and non-technological innovation capability, its performance in the global context is yet week, particularly if compared to rival economies such as Japan and the US (EC, 2008a). A recent initiative to foster Europe...

  6. Analysis of Russian transition scenarios to innovative nuclear energy system based on thermal and fast reactors with closed nuclear fuel cycle using INPRO methodology

    International Nuclear Information System (INIS)

    Kagramanyan, V.S.; Poplavskaya, E.V.; Korobeynikov, V.V.; Kalashnikov, A.G.; Moseev, A.L.; Korobitsyn, V.E.; Andreeva-Andrievskaya, L.N.

    2011-01-01

    This paper presents the results of the analysis of modeling of Russian nuclear energy (NE) scenarios on the basis of thermal and fast reactors with closed nuclear fuel cycle (NFC). Modeling has been carried out with use of CYCLE code (SSC RF IPPE's tool) designed for analysis of Nuclear Energy System (NES) with closed NFC taking into account plutonium and minor actinides (MA) isotopic composition change during multi-recycling of fuel in fast reactors. When considering fast reactor introduction scenarios, one of important questions is to define optimal time for their introduction and related NFC's facilities. Analysis of the results obtained has been fulfilled using the key INPRO indicators for sustainable energy development. It was shown that a delay in fast reactor introduction led to serious ecological, social and finally economic risks for providing energy security and sustainable development of Russia in long-term prospects and loss of knowledge and experience in mastering innovative technologies of fast reactors and related nuclear fuel cycle. (author)

  7. The Canadian Centre for Nuclear Innovation

    Energy Technology Data Exchange (ETDEWEB)

    Root, J., E-mail: John.Root@usask.ca [Canadian Centre for Nuclear Innovation, Inc., Saskatoon, Saskatchewan (Canada)

    2013-07-01

    The Canadian Centre for Nuclear Innovation (CCNI) was incorporated on December 20, 2011, to help place Saskatchewan among global leaders of nuclear research, development and training, through investment in partnerships with academia and industry for maximum societal and economic benefit. As the CCNI builds a community of participants in the nuclear sector, the province of Saskatchewan expects to see positive impacts in nuclear medicine, materials research, nuclear energy, environmental responsibility and the quality of social policy related to nuclear science and technology. (author)

  8. TM-INES2: The 2nd Tokyo Tech-MIT symposium on innovative nuclear energy systems. Presentation materials

    International Nuclear Information System (INIS)

    2007-07-01

    The symposium of the title was held with four technical sessions; Innovative fast reactors, Advances in heat transfer, Nuclear hydrogen and synthetic fuels, Technologies for closing fuel cycle with 70 participants including 13 persons of MIT guests and 26 oral presentations in addition to a student poster session and the special educational session with over 150 participants. (J.P.N.)

  9. Innovative global architecture for sustainable nuclear power

    International Nuclear Information System (INIS)

    Wheeler, John; Kagramanyan, Vladimir; Poplavskaya, Elena; Edwards, Geoffrey; Dixon, Brent; Usanov, Vladimir; Hayashi, Hideyuki; Beatty, Randall

    2011-01-01

    The INPRO collaborative project 'Global architecture of innovative nuclear energy systems based on thermal and fast reactors with the inclusion of a closed nuclear fuel cycle (GAINS)' was one of several scenario studies implemented in the IAEA in recent years. The objective of GAINS was to develop a standard framework for assessing future nuclear energy systems (NESs) taking into account sustainable development, and to validate the results through sample analyses. Belgium, Canada, China, the Czech Republic, France, India, Italy, Japan, the Republic of Korea, the Russian Federation, Slovakia, Ukraine, USA, the European Commission and Argentina as an observer participated in the project. The results received are discussed in the paper, including: development of a heterogeneous multi-group model of a global NES, estimation of nuclear energy demand, identification of a representative set of reactors and fuel cycles, evaluation capability of available analytical and modelling tools, and quantitative analysis of the different options of the global architecture. It was shown that the approach used contributes to development of a coherent vision of driving forces for nuclear energy system development and deployment. (author)

  10. National Innovation Systems

    DEFF Research Database (Denmark)

    Lundvall, Bengt-Åke

    2007-01-01

    The term national system of innovation has been around for more than 20 years and today it has become widely spread among policy makers as well as among scholars all over the world. This paper takes stock and looks ahead from a somewhat personal point of view. It also gives some insight into how...... and why the concept came about. The paper argues that a key to progress is to get a better understanding of knowledge and learning as the basis for innovation and to understand how difference modes of innovation complement each other and find support in the specific national context. A core...... of the innovation system is defined and it is illustrated that it is necessary both to understand micro-behaviour in the core and understand "the wider setting" within which the core operates. Concepts used in organization theory referring to fit and misfit may be used to enrich the understanding of the performance...

  11. Supercritical Water Nuclear Steam Supply System: Innovations In Materials, Neutronics and Thermal-Hydraulics

    International Nuclear Information System (INIS)

    Anderson, Mark; Corradini, M.L.; Sridharan, K.; Wilson, P.; Cho, D.; Kim, T.K.; Lomperski, S.

    2004-01-01

    In the 1990's supercritical light-water reactors were considered in conceptual designs. A nuclear reactor cooled by supercritical waster would have a much higher thermal efficiency with a once-through direct power cycle, and could be based on standardized water reactor components (light water or heavy water). The theoretical efficiency could be improved by more than 33% over that of other water reactors and could be simplified with higher reliability; e.g., a boiling water reactor without steam separators or dryers

  12. Innovative simulation systems

    CERN Document Server

    Jędrasiak, Karol

    2016-01-01

    This monograph provides comprehensive guidelines on the current and future trends of innovative simulation systems. In particular, their important components, such as augmented reality and unmanned vehicles are presented. The book consists of three parts. Each part presents good practices, new methods, concepts of systems and new algorithms. Presented challenges and solutions are the results of research and conducted by the contributing authors. The book describes and evaluates the current state of knowledge in the field of innovative simulation systems. Throughout the chapters there are presented current issues and concepts of systems, technology, equipment, tools, research challenges and current, past and future applications of simulation systems. The book is addressed to a wide audience: academic staff, representatives of research institutions, employees of companies and government agencies as well as students and graduates of technical universities in the country and abroad. The book can be a valuable sou...

  13. The promise of innovation: Nuclear energy horizons

    International Nuclear Information System (INIS)

    Mourogov, V.

    2003-01-01

    The 21st century promises the most open, competitive, and globalized markets in human history, as well as the most rapid pace of technological change ever. For nuclear energy, as any other, that presents challenges. Though the atom now supplies a good share of world electricity, its share of total energy is relatively small, anywhere from four to six per cent depending on how it is calculated. And, while energy is most needed in the developing world, four of every five nuclear plants are in industrialized countries. Critical problems that need to be overcome are well known - high capital costs for new plants, and concerns over proliferation risks and safety, (including safety of waste disposal) stand high among them. The IAEA and other programmes are confronting these problems through ambitious initiatives involving both industrialized and developing countries. They include the collaborative efforts known as the Generation-IV International Forum (GIF) and the IAEA International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). They use ideas, results and the best experiences from today's research and development tools and advanced types of nuclear energy systems to meet tomorrow's challenges. Though the market often decides the fate of new initiatives, the market is not always right for the common good. Governments, and the people that influence them, play an indispensable role in shaping progress in energy fields for rich and poor countries alike. They shoulder the main responsibilities for fundamental science, basic research, and long-term investments. For energy in particular, government investment and support will prove instrumental in the pace of innovation toward long-term options that are ready to replace limited fossil fuel supplies, and respond to the growing premium put on clean energy alternatives. Yet governments cannot go it alone. The challenges are too diverse and complex, and public concerns - about proliferation or safety - go beyond

  14. Union innovation in Ontario's nuclear industry

    International Nuclear Information System (INIS)

    MacKinnon, D.

    2003-01-01

    Over the last decade the Power Worker's Union (PWU) has embarked on a number of innovative approaches that have provided significant benefit to the nuclear industry. These include advanced labour relations approaches, equity participation and groundbreaking skills training initiatives. This presentation outlines these and other initiatives in the context of the union's view of the nuclear generation industry's future. (author)

  15. Scenarios and innovative systems; Scenarii et systemes innovants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-11-01

    The purpose of this workshop is to present to the GEDEON community the scenarios for the deployment of innovative nuclear solutions. Both steady state situations and possible transitions from the present to new reactors and fuel cycles are considered. Innovative systems that satisfy improved natural resource utilization and waste minimization criteria will be described as well as the R and D orientations of various partners. This document brings together the transparencies of 17 communications given at this workshop: general policy for transmutation and partitioning; Amster: a molten salt reactor (MSR) concept; MSR capabilities; potentials and capabilities of accelerator driven systems (ADS); ADS demonstrator interest as an experimental facility; innovative systems: gas coolant technologies; Pu management in EPR; scenarios with thorium fuel; scenarios at the equilibrium state; scenarios for transition; partitioning and specific conditioning; management of separated radio-toxic elements; European programs; DOE/AAA (Advanced Accelerator Applications) program; OECD scenario studies; CEA research programs and orientations; partitioning and transmutation: an industrial point of view. (J.S.)

  16. Innovative designs of nuclear reactors

    International Nuclear Information System (INIS)

    Gabaraev, B.A.; Cherepnin, Y.S.

    2010-01-01

    The world development scenarios predict at least a 2.5 time increase in the global consumption of primary energy in the first half of the twenty-first century. Much of this growth can be provided by the nuclear power which possesses important advantages over other energy technologies. However, the large deployment of nuclear sources may take place only when the new generation of reactors appears on the market and will be free of the shortcomings found in the existing nuclear power installations. The public will be more inclined to accept nuclear plants that have better economics; higher safety; more efficient management of the radioactive waste; lower risk of nuclear weapons proliferation, and provided that the focus is made on the energy option free of ∇ e 2 generation. Currently, the future of nuclear power is trusted to the technology based on fast reactors and closed fuel cycle. The latter implies reprocessing of the spent nuclear fuel of the nuclear plants and re-use of plutonium produced in power reactors

  17. Innovations shape the nuclear services of tomorrow

    International Nuclear Information System (INIS)

    Apel, Frank

    2008-01-01

    The worldwide renaissance of nuclear energy production is getting up to speed. Thus Nuclear Services has the unique chance to develop and to implement exciting innovations. The driver for future innovations is the area of new builds as new customers are demanding new service solutions. Such are e.g. high availability concepts, full scope services and fully computerized datasets. AREVA NP Services. organization is prepared best to deliver innovative solutions, learning form being the first company building a new generation nuclear power plant, the EPR in OL3. AREVA involved Services in a very early stage to the design of the EPR to optimize plants maintainability. The newly developed tools and IT-solutions for new builds will as well support existing plants in improving their maintenance activities. Additionally AREVA takes advantage of being a global player in exchanging consequently experiences between all regions. (orig.)

  18. Kazakhstan innovation projects in nuclear technologies field

    International Nuclear Information System (INIS)

    Shkol'nik, V.S.; Tukhvatulin, Sh.T.

    2005-01-01

    At present in the Republic of Kazakhstan in preparation and realization stage there are several innovation projects related with use of advanced nuclear technologies. Projects are as follows: 'Implementation of Kazakhstan thermonuclear reactor tokamak (KTM)'; 'Implementation at the L.N. Gumilev Eurasian National University the inter-disciplinary research complex on the heavy ions accelerator base'; 'Development of the Technological Park 'Nuclear Technologies Center in Kurchatov city'; 'Development the first in the Central-Asian region Center of Nuclear Medicine and Biophysics'. The initiator and principal operator of these projects is the National Nuclear Center of the Republic of Kazakhstan

  19. Innovative Nuclear Energy Systems: State-of-the Art Survey on Evaluation and Aggregation Judgment Measures Applied to Performance Comparison

    Directory of Open Access Journals (Sweden)

    Vladimir Kuznetsov

    2015-04-01

    Full Text Available This paper summarizes the experience gained in the application of multi-criteria decision making and uncertainty treatment methods to a comparative assessment of nuclear energy systems and related nuclear fuel cycles. These judgment measures provide a means for comprehensive evaluation according to different conflicting criteria, such as costs, benefits and risks, which are inevitably associated with the deployment of advanced technologies. Major findings and recommendations elaborated in international and national projects and studies are reviewed and discussed. A careful analysis is performed for multi-criteria comparative assessment of nuclear energy systems and nuclear fuel cycles on the basis of various evaluation and screening results. The purpose of this paper is to discuss the lessons learned, to share the identified solutions, and indicate promising future directions.

  20. Innovation system foresight

    DEFF Research Database (Denmark)

    Dahl Andersen, Allan; Andersen, Per Dannemand

    2014-01-01

    an improved integration of the contemporary understanding of innovation into foresight. Furthermore, the article explores four preliminary implications of ISF on the conceptual design of foresight, including the goal of foresight, system definition and boundary setting, participation of actors, and finally......The practice and concept of foresight have developed over several decades. However, the academic literature that addresses foresight is mainly descriptive, and it is generally acknowledged that there is a gap between practice and theory in foresight. This article contributes to building...

  1. Interorganizational Innovation in Systemic Networks

    DEFF Research Database (Denmark)

    Seemann, Janne; Dinesen, Birthe; Gustafsson, Jeppe

    2013-01-01

    patients with chronic obstructive pulmonary disease (COPD) to avoid readmission, perform self monitoring and to maintain rehabilitation in their homes. The aim of the paper is to identify, analyze and discuss innovation dynamics in the COPD network and on a preliminary basis to identify implications...... for managing innovations in systemic networks. The main argument of this paper is that innovation dynamics in systemic networks should be understood as a complex interplay of four logics: 1) Fragmented innovation, 2) Interface innovation, 3) Competing innovation, 4) Co-innovation. The findings indicate...... that linear n-stage models by reducing complexity and flux end up focusing only on the surface of the network and are thus unable to grasp important aspects of network dynamics. The paper suggests that there is a need for a more dynamic innovation model able to grasp the whole picture of dynamics in systemic...

  2. System Innovation for Sustainability

    DEFF Research Database (Denmark)

    System Innovation for Sustainability 2 focuses on change towards sustainable personal mobility based on implemented cases analysed from a system perspective. It examines what changes can be made to help us reduce our need for mobility, or start to make use of more sustainable mobility systems...... in order to provide sustainable solutions to our current ‘lock-in’ problems. Three major problem areas are considered (the ‘three Cs’): carbon emissions (and the growing contribution of mobility to the climate change crisis), congestion, and casualties. And each strategy proposed addresses one or more...... of these problem areas. Among the cases discussed are: Norway’s carbon compensation scheme for air travel; Madrid’s high-occupancy vehicle lanes; London’s congestion charge scheme; market-based instruments such as eco-labelling for cars; and taxation. The book identifies opportunities for actors...

  3. Innovative microstructures in nuclear fuels

    International Nuclear Information System (INIS)

    Kutty, T.R.G.; Kumar, Arun; Kamath, H.S.

    2009-01-01

    For cleaner and safe nuclear power, new processes are required to design better nuclear fuels and make more efficient reactors to generate nuclear power. Therefore, one must understand how the microstructure changes during reactor operation. Accordingly, the materials scientists and engineers can then design and fabricate fuels with higher reliability and performance. Microstructure and its evolution are big unknowns in nuclear fuel. The basic requirements for the high performance of a fuel are: a) Soft pellets - To reduce Pellet clad mechanical interaction (PCMI) b) Large grain size - To reduce fission gas release (FGR). The strength of the pellet at room temperature is related to grain size by the Hall-Petch relation. Accordingly, the lower grain sized pellets will have high strength. But at high temperature (above equicohesive temperature) the grain boundaries becomes weaker than grain matrix. Since the small grain sized pellets have more grain boundary areas, these pellet become softer than pellet that have large grain sizes. Also as grain size decreases, creep rate of the fuel increases. Therefore, pellets with small grain size have higher creep rate and better plasticity. Therefore, these pellets will be useful to reduce the PCMI. On the other hand, pellet with large grain size is beneficial to reduce the fission gas release. In developing thermal reactor fuels for high burn-up, this factor should be taken into consideration. The question being asked is whether the microstructure can be tailored for irradiation hardening, fracture resistance, fission-gas release. This paper deals with the role played by microstructure for better irradiation performance. (author)

  4. The NEA Nuclear Innovation 2050 Initiative

    International Nuclear Information System (INIS)

    Rayment, Fiona; ); Deffrennes, Marc; )

    2017-01-01

    The NEA launched its Nuclear Innovation 2050 (NI2050) Initiative with the aim of identifying research and development (R and D) strategies and associated priorities to achieve commercial readiness of innovative, sustainable nuclear fission technologies in a fast and cost-effective way. As defined at the beginning of the process, these R and D strategies would be elaborated with NEA stakeholders at large, in particular involving nearly all NEA committees, nuclear research organisations, industry, regulators and technical safety organisations. The NI2050 Initiative has evolved over the last year to become an NEA incubator for the selection and development of a number of large nuclear fission R and D programs (and infrastructures) that can support the role of nuclear energy in a low carbon future, mainly by accelerating innovation and the market deployment of technologies. This article provides a brief overview and the next steps of the initiative, which has reached the stage where more concrete outcomes might now be expected, in particular in terms of programs of action to be proposed for co-operative implementation

  5. Research on process management of nuclear power technological innovation

    International Nuclear Information System (INIS)

    Yang Hua; Zhou Yu

    2005-01-01

    Different from the other technological innovation processes, the technological innovation process of nuclear power engineering project is influenced deeply by the extensive environmental factors, the technological innovation of nuclear power engineering project needs to make an effort to reduce environmental uncertainty. This paper had described the mechanism of connection technological innovation process of nuclear power engineering project with environmental factors, and issued a feasible method based on model of bargaining to incorporate technological innovation process management of nuclear power engineering project with environmental factors. This method has realistic meanings to guide the technological innovation of nuclear power engineering project. (authors)

  6. Nuclear science, technology and innovation in Canada - securing the future

    Energy Technology Data Exchange (ETDEWEB)

    Walker, R.S. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    As a Tier 1 Nuclear Nation, Canada has a rich and proud history of achievement in nuclear Science, Technology and Innovation (ST&I) -- from commercializing the CANDU power system around the world, advancing fuel technology and nuclear safety, to protecting human health through nuclear medicine and cancer therapy technology. Today, the nuclear industry in Canada is actively working to secure its promising, long-term place in the world and is embracing the change necessary to fulfill the enormous potential for good of nuclear technology. For its part, the Canadian Government is taking a bold new public policy approach to nuclear ST&I, by restructuring its large, multi-faceted AECL Nuclear Laboratories. Through the restructuring, AECL, as Canada's premier nuclear science and technology organization, will be better positioned for success via an incentivized 'Government-owned-Contractor-operated', private-sector management model. The aim of this new approach is to enhance and grow high-value nuclear innovation for the marketplace, strengthen the competitiveness of Canada's nuclear sector, and reduce costs to the Government of Canada with time. This approach will play a key role in ensuring a bright future for the Canadian Nuclear Industry domestically and globally as it launches its 25-year Vision and Action Plan, where one of the priority action areas is support for a strong, forward-looking, nuclear ST&I agenda. As the new model for the Nuclear Laboratories is moved forward by the Government, with the support of AECL and industry, Canada's nuclear expertise and knowledge continue to be expanded and deepened through the work of the Laboratories' ten Centres of Excellence, where AECL's fundamental approach is guided by the reality that ST&I is needed in all aspects of the nuclear cycle, including decommissioning, waste management and environmental protection. (author)

  7. Innovations in Nuclear Infrastructure and Education

    Energy Technology Data Exchange (ETDEWEB)

    John Bernard

    2010-12-13

    The decision to implement the Innovation in Nuclear Infrastructure and Engineering Program (INIE) was an important first step towards ensuring that the United States preserves its worldwide leadership role in the field of nuclear science and engineering. Prior to INIE, university nuclear science and engineering programs were waning, undergraduate student enrollment was down, university research reactors were being shut down, while others faced the real possibility of closure. For too long, cutting edge research in the areas of nuclear medicine, neutron scattering, radiochemistry, and advanced materials was undervalued and therefore underfunded. The INIE program corrected this lapse in focus and direction and started the process of drawing a new blueprint with positive goals and objectives that supports existing as well the next generation of educators, students and researchers.

  8. Innovations in Nuclear Infrastructure and Education

    International Nuclear Information System (INIS)

    Bernard, John

    2010-01-01

    The decision to implement the Innovation in Nuclear Infrastructure and Engineering Program (INIE) was an important first step towards ensuring that the United States preserves its worldwide leadership role in the field of nuclear science and engineering. Prior to INIE, university nuclear science and engineering programs were waning, undergraduate student enrollment was down, university research reactors were being shut down, while others faced the real possibility of closure. For too long, cutting edge research in the areas of nuclear medicine, neutron scattering, radiochemistry, and advanced materials was undervalued and therefore underfunded. The INIE program corrected this lapse in focus and direction and started the process of drawing a new blueprint with positive goals and objectives that supports existing as well the next generation of educators, students and researchers.

  9. Nuclear Energy Innovation Workshops. Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Todd [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jackson, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hildebrandt, Phil [Idaho National Lab. (INL), Idaho Falls, ID (United States); Baker, Suzy [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    The nuclear energy innovation workshops were organized and conducted by INL on March 2-4, 2015 at the five NUC universities and Boise State University. The output from these workshops is summarized with particular attention to final summaries that were provided by technical leads at each of the workshops. The current revision includes 3-4 punctuation corrections and a correction of the month of release from May to June.

  10. Assessment of Nuclear Energy Systems Based on a Closed Nuclear Fuel Cycle with Fast Reactors. A report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2010-01-01

    A Joint Study was started in 2005 and completed in 2007 within the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). Canada, China, France, India, Japan, the Republic of Korea, the Russian Federation, and Ukraine participated in this study. The objectives were to assess a nuclear energy system based on a closed fuel cycle (CNFC) with fast reactors (FR) regarding its sustainability, determine milestones for the nuclear energy system deployment, and establish frameworks for, and areas of, collaborative R and D work. The assessment was carried out in accordance with the requirements of INPRO methodology and guiding documents of the Joint Study developed and approved by the participating parties (Canada and Ukraine participated in the discussions during the Joint Study, but did not contribute to the assessments themselves). The Joint Study was implemented in steps. In its first step, nominated experts, during the course of extensive discussions, analyzed the country/region/world context data; discussed national and global scenarios of introduction of the CNFC-FR systems; identified technologies suitable for the INS; and arrived at a broad definition of a common CNFC-FR system. In the second step, the participants of the study examined characteristics of CNFC-FR systems for compliance with criteria of sustainability developed in the INPRO methodology in the area of economics, safety, environment, waste management, proliferation resistance, and infrastructure. The results of the study were submitted to and endorsed by the INPRO Steering Committee in meetings held in Vienna 2005 - 2007. The authors of the Joint Study report highly appreciate the valuable comments provided by delegates of the INPRO Steering Committee meetings as well as the advice and assistance of the other experts. Due to the length of the Joint Study report, a summary of the results was produced, which is the content of this publication. The full text of the Joint Study

  11. Guidance for the application of an assessment methodology for innovative nuclear energy systems. INPRO manual - Environment. Vol. 7 of the final report of phase 1 of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2008-11-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in the year 2000, based on a resolution of the IAEA General Conference (GC(44)/RES/21). The main objectives of INPRO are (1) to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner, (2) to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles; and (3) to create a forum to involve all relevant stakeholders that will have an impact on, draw from, and complement the activities of existing institutions, as well as ongoing initiatives at the national and international level. The INPRO manual is comprised of an overview volume (No. 1), and eight additional volumes covering the areas of economics (Volume 2), infrastructure (Volume 3), waste management (Volume 4), proliferation resistance (Volume 5), physical protection (Volume 6), environment (laid out in this volume) (Volume 7), safety of nuclear reactors (Volume 8), and safety of nuclear fuel cycle facilities (Volume 9). This volume should provide guidance to the assessor of an INS that is planned (or maintained or enlarged), describing how to apply the INPRO methodology in the area of environment. It follows the guidelines of the INPRO report 'Methodology for the assessment of innovative nuclear reactors and fuel cycles', together with its previous report 'Guidance for the evaluation for innovative nuclear reactors and fuel cycles'. The INPRO Manual starts with an introduction in Chapter 1. In Chapter 2 an overview is presented what kind of information must be available to an INPRO assessor to perform his environmental assessment. In Chapter 3 the background of the INPRO environmental basic principle BP1, the corresponding user requirements (UR) and criteria (CR) consisting of indicators (IN) and acceptance

  12. Garlic breeding system innovations

    NARCIS (Netherlands)

    Zheng, S.J.; Kamenetsky, R.; Féréol, L.; Barandiaran, X.; Rabinowitch, H.D.; Chovelon, V.; Kik, C.

    2007-01-01

    This review outlines innovative methods for garlic breeding improvement and discusses the techniques used to increase variation like mutagenesis and in vitro techniques, as well as the current developments in florogenesis, sexual hybridization, genetic transformation and mass propagation. Sexual

  13. Biotechnology and Innovation Systems

    International Development Research Centre (IDRC) Digital Library (Canada)

    3 Linkages between bio-innovation, knowledge production and policy in Uruguay ..... Which actors were relevant for designing the strategy and what were the ...... From those interviewed by Silva only one – a manufacturer of diagnostic kits ...

  14. Innovations in PHWR design, integration of nuclear power stations into power systems and role of small size nuclear power plants in a developing country

    International Nuclear Information System (INIS)

    Mehta, S.K.; Kakodkar, A.; Balakrishnan, M.R.; Ray, R.N.; Murthy, L.G.K.; Chamany, B.F.; Kati, S.L.

    1977-01-01

    PHWR concept of thermal reactors has been considered with a view to exploiting the limited resources of natural uranium and keeping in mind the projected nuclear power programme covering fast breeder reactors. Experience in engineering of current PHWR units in India, gradual build up of necessary infrastructure and operational experience with one unit, have helped in building up design and technological capability in the country. The R and D facilities have been so planned that additional data required for the design of bigger reactor units (i.e.500/600 MWe) could be generated with minimal augmentation. Satisfactory operation of a nuclear power station demands certain prerequisites from the connected power system. The grid should have load patterns suitable for base load operation of these stations, should be stiff so far as voltage and frequency fluctuations are concerned and should have high reliability. A typical power grid in this country is characterised by heavy loads during peak hours and very light loads during night. Regional grids are of small size and the few interconnections existing between the regional grids consist of weak tie lines. Amongst all types of the power stations, it is the nuclear system which undergoes maximum strain and economic penalty while operating when connected to such a power system. Consistent with the above, phase installation of small-size power reactor units of about 200 MWe capacity may facilitate setting up of larger unit sizes at a later date. The effect of any possible reduction in the capital cost of a larger unit power station will enable the power station to partially meet the demand of the more productive types of loads. This paper deals with some of the major design changes that are being incorporated in the PHWR type power reactors currently being set up and the research and development back-up required for the purpose. Since the unit sizes of the power reactors presently contemplated are small compared to nuclear

  15. Working methodologically on system innovations

    NARCIS (Netherlands)

    Vogelezang, J.V.M.; Wijnands, F.G.

    2011-01-01

    Dutch agriculture is facing the challenge to develop into a sustainable sector. To achieve this goal, innovations are needed which force breaks with past trends and speed up the tempo of sustainable development. The System Innovation Programmes developed by Wageningen UR contribute with new,

  16. The Brazilian sugarcane innovation system

    International Nuclear Information System (INIS)

    Tosi Furtado, Andre; Gaya Scandiffio, Mirna Ivonne; Barbosa Cortez, Luis Augusto

    2011-01-01

    Ethanol has recently been of great interest worldwide because it is a viable economic alternative to petroleum products and it is a renewable source of energy that mitigates the emission of greenhouse gases. Brazilian bioethanol from sugarcane is the most successful case at the world level because of its low cost and low level of greenhouse gas emissions. Brazil's success with sugarcane cannot be understood as based solely on a natural comparative advantage, but as a result of efforts that culminated in a positive trajectory of technological learning, relying mostly on incremental innovations. The purpose of this article is to analyze the key aspects of the innovation system built around the Brazilian sugarcane industry. It is based on the national innovation systems approach according to which innovation results from the interaction of different institutional actors. Institutional arrangements are analyzed as the basis for the innovative process, in particular R and D and the innovation policies and strategies of the main players in the sugarcane sector, including sugar and ethanol mills, industrial goods suppliers, public and private research institutions, and governmental agencies. - Research Highlights: → The Brazilian success in bioethanol is due to the sugarcane innovation system. → Private funds for R and D became central after IAA closure. → Nowadays Brazilian innovation system is transforming to keep its leadership. → Public funds for research in the second generation bioethanol.

  17. Guidance for the application of an assessment methodology for Innovative Nuclear Energy Systems. INPRO manual - Economics. Vol. 2 of the final report of phase 1 of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2008-11-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in the year 2000, based on a resolution of the IAEA General Conference (GC(44)/RES/21). The main objectives of INPRO are (1) to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner, (2) to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles; and (3) to create a forum to involve all relevant stakeholders that will have an impact on, draw from, and complement the activities of existing institutions, as well as ongoing initiatives at the national and international level. This publication elaborates on the guidance given in the INPRO report 'Methodology for the assessment of innovative nuclear reactors and fuel cycles', IAEA-TECDOC-1434 (2004), and the previous INPRO report 'Guidance for the evaluation for innovative nuclear reactors and fuel cycles', IAEA-TECDOC-1362 (2003) in the area of economics. The information presented in Volume 1 of the INPRO manual should be considered to be an integral part of this volume and the user should be familiar with that information. The goal of the INPRO Manual for the area of economics (Volume 2) is to provide guidance for performing an INPRO assessment, as described in Volume 1 of the INPRO manual, in the area of economics. The manual is not intended to provide guidance on how to design an INS to meet the INPRO requirements in the area of economics: rather, the focus is on the assessment method and the evaluation of the INPRO criteria in the area of economics. The INPRO assessor, i.e. the individual or group of individuals carrying out the assessment, is assumed to be knowledgeable in the area of economics and financial analysis. The INPRO assessment will either confirm that the INPRO economic criteria are fulfilled

  18. Assessment of Nuclear Energy Systems based on a Closed Nuclear Fuel Cycle with Fast Reactors. A Report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2012-09-01

    A Joint Study was started in 2005 and completed in 2007 within the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). Canada, China, France, India, Japan, the Republic of Korea, the Russian Federation, and Ukraine participated in this study. The objectives were to assess a nuclear energy system based on a closed fuel cycle (CNFC) with fast reactors (FR) regarding its sustainability, determine milestones for the nuclear energy system deployment, and establish frameworks for, and areas of, collaborative R and D work. The assessment was carried out in accordance with requirements of INPRO methodology and guiding documents of the Joint Study developed and approved by the participating parties (Canada and Ukraine participated in the discussions during the Joint Study but did not contribute to the assessments themselves). The Joint Study was implemented in steps. In its first step, nominated experts in course of extensive discussions analyzed the country/region/world context data, discussed national and global scenarios of introduction of the INS CNFC-FR, identified technologies suitable for the INS, and arrived at a broad definition of a common INS CNFC-FR. In the second step, the participants of the study examined characteristics of INS CNFC-FR for compliance with criteria of sustainability developed in the INPRO methodology in the domain of economics, safety, environment, waste management, proliferation resistance, physical protection and infrastructure. The results of the study were submitted to and endorsed by the INPRO Steering Committee meetings held in Vienna 2005-2007. The authors of the report highly appreciate the valuable comments provided by delegates of INPRO Steering Committee meetings as well as the advice and assistance of the other experts. Due to the length of the Joint Study report a summary of the results was produced, which was published as a hard copy. The full text of the Joint Study report is available on the CD

  19. The innovative simulator for nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kurosawa, A [The Inst. of Applied Energy, Tokyo (Japan); Ohashi, H; Akiyama, M [Univ. of Tokyo (Japan). Dept. of Nuclear Engineering

    1994-12-31

    Nuclear power simulators are becoming more and more important tools for ensuring the safety and the reliability during the whole cycle of plants from design to operation. Recently, there has been remarkable progress in computer science such as increase of computing speed, refinement of mathematical models and emergence of various AI technologies. By fully exploiting this progress to nuclear plant simulators, it becomes possible to achieve much faster, more extensive and more realistic simulation than ever. The Institute of Applied Energy (IAE) has organized a feasibility study on the advanced simulator since 1990, to develop the concept of nuclear power plant simulators in future. In this study, several academic organizations make fundamental researches on parallelization of transient analyses, large-scale parallel computing, thermal-hydraulic analysis using cellular automata, code development methodology by module-integration and task scheduling methods for parallel compilers. The concept and impact of the innovative simulator, as a multipurpose simulator complex, are summarized from the viewpoints of wide range scenarios including severe accidents, 3D multi-media interface, much faster than real-time simulation, and innovative algorithms for analyses of thermal-hydraulics, structure, neutronkinetics and their coupled phenomena. (orig.) (2 refs., 2 figs.).

  20. The innovative simulator for nuclear power plants

    International Nuclear Information System (INIS)

    Kurosawa, A.; Ohashi, H.; Akiyama, M.

    1994-01-01

    Nuclear power simulators are becoming more and more important tools for ensuring the safety and the reliability during the whole cycle of plants from design to operation. Recently, there has been remarkable progress in computer science such as increase of computing speed, refinement of mathematical models and emergence of various AI technologies. By fully exploiting this progress to nuclear plant simulators, it becomes possible to achieve much faster, more extensive and more realistic simulation than ever. The Institute of Applied Energy (IAE) has organized a feasibility study on the advanced simulator since 1990, to develop the concept of nuclear power plant simulators in future. In this study, several academic organizations make fundamental researches on parallelization of transient analyses, large-scale parallel computing, thermal-hydraulic analysis using cellular automata, code development methodology by module-integration and task scheduling methods for parallel compilers. The concept and impact of the innovative simulator, as a multipurpose simulator complex, are summarized from the viewpoints of wide range scenarios including severe accidents, 3D multi-media interface, much faster than real-time simulation, and innovative algorithms for analyses of thermal-hydraulics, structure, neutronkinetics and their coupled phenomena. (orig.) (2 refs., 2 figs.)

  1. Passive Safety Systems in Advanced Water Cooled Reactors (AWCRS). Case Studies. A Report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2013-09-01

    This report presents the results from the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) collaborative project (CP) on Advanced Water Cooled Reactor Case Studies in Support of Passive Safety Systems (AWCR), undertaken under the INPRO Programme Area C. INPRO was launched in 2000 - on the basis of a resolution of the IAEA General Conference (GC(44)/RES/21) - to ensure that nuclear energy is available in the 21st century in a sustainable manner, and it seeks to bring together all interested Member States to consider actions to achieve innovation. An important objective of nuclear energy system assessments is to identify 'gaps' in the various technologies and corresponding research and development (R and D) needs. This programme area fosters collaboration among INPRO Member States on selected innovative nuclear technologies to bridge technology gaps. Public concern about nuclear reactor safety has increased after the Fukushima Daiichi nuclear power plant accident caused by the loss of power to pump water for removing residual heat in the core. As a consequence, there has been an increasing interest in designing safety systems for new and advanced reactors that are passive in nature. Compared to active systems, passive safety features do not require operator intervention, active controls, or an external energy source. Passive systems rely only on physical phenomena such as natural circulation, thermal convection, gravity and self-pressurization. Passive safety features, therefore, are increasingly recognized as an essential component of the next-generation advanced reactors. A high level of safety and improved competitiveness are common goals for designing advanced nuclear power plants. Many of these systems incorporate several passive design concepts aimed at improving safety and reliability. The advantages of passive safety systems include simplicity, and avoidance of human intervention, external power or signals. For these reasons, most

  2. Nuclear power as a high-order innovation and its role in scientific and technical development

    Energy Technology Data Exchange (ETDEWEB)

    Trnka, J [Ceskoslovenska Komise pro Atomovou Energii, Prague

    1979-04-01

    The systems approach to technical innovation, the developmental trends of the knowledge of inanimate nature and their technical applications in social production are described. The system of technical innovation orders is based on the definitions of the whole range of technical innovation, classified into several orders. Nine technical innovation orders are described. The concept defines the approach to defining the overall position of nuclear power and some of its development changes.

  3. Nuclear power as a high-order innovation and its role in scientific and technical development

    International Nuclear Information System (INIS)

    Trnka, J.

    1979-01-01

    The systems approach to technical innovation, the developmental trends of the knowledge of inanimate nature and their technical applications in social production are described. The system of technical innovation orders is based on the definitions of the whole range of technical innovation, classified into several orders of which. Nine technical innovation orders are described. The concept defines the approach to defining the overall position of nuclear power and some of its development changes. (J.P.)

  4. Human resources in innovation systems

    DEFF Research Database (Denmark)

    Nielsen, René Nesgaard

    2007-01-01

    Human resources in innovation systems: With focus on introduction of highly educated labour in small Danish firms This thesis has two purposes: (1) a ‘general' purpose to enhance our knowledge on the relationship between innovation, technological and organisational change, and human resources......, including knowledge and skills embodied in human resources, and (2) a more ‘specific' purpose to enhance our knowledge on introduction of highly educated labour, innovation, and upgrading changes in small Danish firms. Chapter 1 establishes the relevance of this research interest, and it also states...... stemming from human resources - such as insight, understanding, creativity, and action - are inherently important to all innovation processes. The chapter also suggests a tentative conceptual and analytical framework for studying human resources and their development within a system of innovation approach...

  5. Accelerating Innovation: How Nuclear Physics Benefits Us All

    Science.gov (United States)

    2011-01-01

    Innovation has been accelerated by nuclear physics in the areas of improving our health; making the world safer; electricity, environment, archaeology; better computers; contributions to industry; and training the next generation of innovators.

  6. Organising for innovation in regional innovation systems

    DEFF Research Database (Denmark)

    Brink, Tove

    2017-01-01

    The research in this paper reveals how organising the innovation ecosystem can enable the achievement of the aim for innovation and competiveness. The research was conducted from June 2014 to May 2015 using a qualitative deductive approach among operation & maintenance (O&M) actors in offshore wind...

  7. China's Innovation System

    DEFF Research Database (Denmark)

    Gu, Shulin; Schwaag Serber, Sylvia; Lundvall, Bengt-Åke

    2016-01-01

    In their 2006 article on innovation in China in this journal, Gu and Lundvall pointed to some weaknesses and challenges for China’s growth and they also outlined ideas for policy action to overcome those. In this short note, written in collaboration with Sylvia Schwag Serger, they go back...... and assess China's social and economic development in the 10 years that followed in the light of their original analysis of challenges and ideas for policy action...

  8. System thinking shaping innovation ecosystems

    Science.gov (United States)

    Abreu, António; Urze, Paula

    2016-11-01

    Over the last few decades, there has been a trend to build innovation platforms as enablers for groups of companies to jointly develop new products and services. As a result, the notion of co-innovation is getting wider acceptance. However, a critical issue that is still open, despite some efforts in this area, is the lack of tools and models that explain the synergies created in a co-innovation process. In this context, the present paper aims at discussing the advantages of applying a system thinking approach to understand the mechanisms associated with co-innovation processes. Finally, based on experimental results from a Portuguese co-innovation network, a discussion on the benefits, challenges and difficulties found are presented and discussed.

  9. Value system for distruptive innovation

    DEFF Research Database (Denmark)

    Li, Jizhen; Zhang, Si; Hu, Yimei

    After reviewing the theory of disruptive innovation, this paper forms a new framework for analyzing disruptive innovation from the perspective of value system, which suggests that the technology per se is the value source, industrial Ecosystem is the carrier, business model is the instrument...... and the market trajectory is the terminal, through the coordination of the elements in the value system the success of firms in disruptive innovation could be obtained and sustained. In other words, with the understanding of how value system works in disruptive innovation, the failure of incumbent firms may...... hopefully find its root. According to the framework, it summarizes different types of disruption that LED brings to traditional lighting industry in Guangdong Province, and proposes policy recommendations to accelerate the development of LED lighting industry in Guangdong Province....

  10. Innovative nuclear fuels: results and strategy

    International Nuclear Information System (INIS)

    Stan, Marius

    2009-01-01

    To facilitate the discovery and design of innovative nuclear fuels, multi-scale models and simulations are used to predict irradiation effects on the thermal conductivity, oxygen diffusivity, and thermal expansion of oxide fuels. The multi-scale approach is illustrated using results on ceramic fuels with a focus on predictions of point defect concentrations, stoichiometry, and phase stability. The high performance computer simulations include coupled heat transport, diffusion, and thermal expansion, gas bubble formation and temperature evolution in a fuel element consisting of UO2 fuel and metallic cladding. The second part of the talk is dedicated to a discussion of an international strategy for developing advanced, innovative nuclear fuels. Four initiative are proposed to accelerate the discovery and design of new materials: (a) Develop an international pool of experts, (b) Create Institutes for Materials Discovery and Design, (c) Create an International Knowledge base for experimental data, models (mathematical expressions), and simulations (codes) and (d) Organize international workshops and conference sessions. The paper ends with a discussion of existing and emerging international collaborations.

  11. Technical modifications and management innovations in exporting nuclear reactor projects

    International Nuclear Information System (INIS)

    Mao Xiaoming; Qin Xijiu; Ding Hu; Xue Zhaoqun; Wen Shengjun

    2009-01-01

    As a main channel for the foreign economic cooperation of China nuclear industry, China Zhongyuan Engineering Corporation (CZEC) has been constantly engaged in technical modifications and management innovations in its exporting nuclear reactor projects. In the implementation of heavy water research reactor contract in Algeria, CZEC had established a complete and adequate design standards system in compliance with the international standards, and made significant modifications to the reference reactor in the aspects of reactor power and reactor safety, solved quite some technical issues which-affected the reactor technical performance. The modifications and improvements enabled the technical parameters, safety features, reactor multipurpose application to attain to the advanced level in the world. In the 300 MWe PWR NPPs in Pakistan, safety features had been updated in line with upgrading regulatory requisites. The design philosophy and technology application demonstrated CZEC' s creation and innovation on basis of constant safety enhancement of nuclear power projects. Efforts had also been made by CZEC' s creation and innovation on basis of constant safety enhancement of nuclear power projects. Efforts had also been made by CZEC in promoting China made equipment items and components exportation. (authors)

  12. The international project on innovative nuclear reactors and fuel cycles (INPRO) - status and trends

    International Nuclear Information System (INIS)

    Gowin, Peter J.; Beatty, Randy L.

    2010-01-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in 2000. As of April 2010, INPRO has 31 members and is implementing activities in five programme areas: A: Nuclear Energy System Assessments (NESA) using the INPRO Methodology Assisting Member States in performing Nuclear Energy System Assessments (NESA) using the INPRO methodology, in support of long-term strategic planning and nuclear energy deployment decision making. B: Global Vision Developing global and regional nuclear energy scenarios, on the basis of a scientific-technical pathway analysis, that lead to a global vision on sustainable nuclear energy development in the 21. century, and supporting Member States in working towards that vision. C: Innovations in Nuclear Technology Fostering collaboration among INPRO Member States on selected innovative nuclear technologies and related R and D that contribute to sustainable nuclear energy. D: Innovations in Institutional Arrangements Investigating and fostering collaboration on innovative institutional and legal arrangements for the use of innovative nuclear systems in the 21. century and supporting Member States in developing and implementing such innovative arrangements. E: INPRO Dialogue Forum Bringing together technology holders and technology users to discuss, debate and share information on desirable innovations, both technical and institutional, but also national long-term nuclear planning strategies and approaches and, on the highest level, the global nuclear energy system. The paper presents main INPRO achievements to date, the current status of activities in these five programme areas and recent INPRO publications, in particular in support of nuclear energy system assessments (NESA) using the INPRO methodology. (authors)

  13. Progress and status of the international project on innovative nuclear reactors and fuel cycles (INPRO) - 5182

    International Nuclear Information System (INIS)

    Ponomarev, A.; Fesenko, G.; Grigoriev, F.G.; Korinny, A.; Phillips, J.R.; Rho, K.

    2015-01-01

    The IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was established in 2000 through IAEA General Conference resolution. INPRO cooperates with Member States to ensure that sustainable nuclear energy is available to help meet the energy needs of the 21. century. INPRO membership has grown to 41 members and 16 observers. The paper presents the current prospectus of the INPRO programme and details the most recent achievements in the following 7 projects: 1) the GAINS project (Global Architecture of Innovative Nuclear Energy Systems with thermal and fast reactors and a closed nuclear fuel cycle); 2) the SYNERGIES project applies and amends the analytical framework developed in GAINS project to examine more specifically the various forms of regional collaboration among nuclear energy suppliers and users; 3) the KIND project (Key Indicators for Innovative Nuclear Energy Systems) has the objective of developing guidance on the evaluation on innovative nuclear technologies; 4) the ROADMAPS project addresses several possible stages toward nuclear energy sustainability; 5) the RISC project aims at demonstrating that the evolution of safety requirements and technical innovations provide continual progress towards the avoidance of evacuation measures outside NPP sites in case of severe accidents; 6) the FANES project has the objective of carrying out feasibility analyses of advanced and innovative fuels for different reactor systems; and 7) the WIRAF project aims at identifying problematic waste from innovative reactor designs and corresponding nuclear fuel cycles

  14. Guidance for the application of an assessment methodology for innovative nuclear energy systems. INPRO manual - Proliferation resistance. Vol. 5 of the final report of phase 1 of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2008-11-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in the year 2000, based on a resolution of the IAEA General Conference (GC(44)/RES/21). The main objectives of INPRO are (1) to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner, (2) to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles; and (3) to create a forum to involve all relevant stakeholders that will have an impact on, draw from, and complement the activities of existing institutions, as well as ongoing initiatives at the national and international level. The INPRO manual is comprised of an overview volume (No. 1), and eight additional volumes covering the areas of economics (Volume 2), infrastructure (Volume 3), waste management (Volume 4), proliferation resistance (laid out in this report) (Volume 5), physical protection (Volume 6), environment (Volume 7), safety of nuclear reactors (Volume 8), and safety of nuclear fuel cycle facilities (Volume 9). This volume of the INPRO manual is based on the results of an INPRO study on proliferation resistance of the DUPIC fuel cycle performed by the Republic of Korea during 2005 and 2006, recommendations from IAEA consultancy meetings, and on a special service agreement with G. Pshakin (Russian Federation). The INPRO Manual starts with an introduction in Chapter 1. In Chapter 2, the necessary information is described to perform an INPRO assessment in the area of proliferation resistance. Explanatory notes on the INPRO basic principles (BP) and user requirements (UR) in the area of proliferation resistance, are reproduced in Chapter 3 to provide context for the assessor; additionally, background of each criterion (CR) and a corresponding procedure is described how to perform an INPRO assessment. The

  15. Guidance for the application of an assessment methodology for innovative nuclear energy systems. INPRO manual - Waste management. Vol. 4 of the final report of phase 1 of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2008-11-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in the year 2000, based on a resolution of the IAEA General Conference (GC(44)/RES/21). The main objectives of INPRO are (1) to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner, (2) to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles; and (3) to create a forum to involve all relevant stakeholders that will have an impact on, draw from, and complement the activities of existing institutions, as well as ongoing initiatives at the national and international level. The INPRO manual is comprised of an overview volume (No. 1), and eight additional volumes covering the areas of economics (Volume 2), infrastructure (Volume 3), waste management (Volume 4), proliferation resistance (laid out in this report) (Volume 5), physical protection (Volume 6), environment (Volume 7), safety of nuclear reactors (Volume 8), and safety of nuclear fuel cycle facilities (Volume 9). This volume of the INPRO manual is based on the results of an INPRO study on proliferation resistance of the DUPIC fuel cycle performed by the Republic of Korea during 2005 and 2006, recommendations from IAEA consultancy meetings, and on a special service agreement with G. Pshakin (Russian Federation). The INPRO Manual starts with an introduction in Chapter 1. In Chapter 2, the necessary information is described to perform an INPRO assessment in the area of proliferation resistance. Explanatory notes on the INPRO basic principles (BP) and user requirements (UR) in the area of proliferation resistance, are reproduced in Chapter 3 to provide context for the assessor; additionally, background of each criterion (CR) and a corresponding procedure is described how to perform an INPRO assessment. The

  16. International project on innovative nuclear reactors and fuel cycles

    International Nuclear Information System (INIS)

    Cherepnin, Yu.S.; Bezzubtsev, V.S.; Gabaraev, B.A.

    2002-01-01

    international and national measures required for reaching the desired level of innovations in nuclear reactors and fuel cycles using a reliable and economically competitive technology based (as much as possible) on systems with inherent safety features and for the minimizing the proliferation risk and environmental impact. The practical work on the INPRO project was started since January 2001. Currently, ten European, Asian and American countries participate in the the project. The first project stage - preparation of requirements and criteria for evaluation of innovative nuclear power and fuel cycle projects - is nearing completion. The report presents the purposes and objectives of the INPRO project, management principles, current status and organization structure of the project work in Russia

  17. Supporting innovation. International Project on Innovative Nuclear Reactors and Fuel Cycles moves into first phase

    International Nuclear Information System (INIS)

    Gowin, Peter J.; Kupitz, Juergen

    2001-01-01

    energy needs and environmental impact. In order for nuclear energy to play a meaningful role in the global energy supply in the foreseeable future, innovative approaches will be required to address concerns about economic competitiveness, safety, waste and potential proliferation risks.' INPRO's objectives, as defined in the Terms of Reference, are: to help to ensure that nuclear energy is available to contribute in fulfilling, in a sustainable manner, energy needs in the 21st century; to bring together all interested Member States, both technology holders and technology users, to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles that use sound and economically competitive technology, are based - to the extent possible - on systems with inherent safety features and minimise the risk of proliferation and the impact on the environment; to create a process that involves all relevant stake holders that will have an impact on, draw from, and complement the activities of existing institutions, as well as ongoing initiatives at the national and international level. INPRO is an Agencywide project, with contributions from all relevant IAEA Departments within available resources. The Project will be implemented in two phases. Phase I was initiated in early 2001 and is planned to run to 2003. In the first phase, work will proceed in five subject areas recognized as important for the future development of nuclear energy technology, and on two parallel tracks. Upon successful completion of INPRO's first phase, taking into account advice from the Steering Committee, and with the approval of participating Member States, a second phase of INPRO may be initiated. Drawing on the results from the first phase, it would be directed at: examining in the context of available technologies the feasibility of commencing an international project; and identifying technologies which might be appropriate for

  18. Considerations on innovation in the development of nuclear agricultural sciences

    International Nuclear Information System (INIS)

    Wang Zhidong; Gao Meixu

    2008-01-01

    The development status and existing problems in the field of nuclear agricultural sciences (NAS) are reviewed. Including the application of nuclear technology in mutation breeding by irradiation, isotopic technique application, food irradiation and sterile insect technique, etc. China has made great achievements in the research and application of nuclear technique in agriculture from 1950s to 1990s. Due to lack of enough financial support to the basic research and reformation of science and research system in China, the development of NAS now meets its tough time. Through analyzing the difference and reasons of NAS development between China and the USA, it is recognized that the innovation in research and scientific system is important for promoting the development speed and research level of NAS. (authors)

  19. Innovative health solutions using nuclear techniques

    International Nuclear Information System (INIS)

    Bailey, Dale

    2013-01-01

    Australian nuclear medicine is currently amongst the highest standard of anywhere in the world. Its origins here are firmly entrenched in Internal Medicine, with its emphasis on physiology and function, unlike many other countries such as the USA where a Radiology orientation dominates. In addition, Australia has been well served by extremely competent and innovative physical scientists working in universities, government research facilities (e.g., AAEC, ANSTO) and tertiary referral hospitals who have established their main affiliations as being within the highly multidisciplinary nuclear medicine community. Nuclear medicine in the past 10-15 years has experienced a massive shift towards 'hybrid' imaging - where two (or more) complementary imaging modalities, such as X-ray CT and a Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) scanner, are combined into a functionally single device which provides high resolution spatial anatomical (form, or structure) and radionuclide distribution (function) images. In addition, the nuclear imaging techniques maintain their quantitative characteristics and thus combined structure-function imaging results in a significant improvement in diagnostic capability - looking beyond simple forms to quantifying degree of disease, e.g., malignancy of a cancer. Recently, PET scanners have been combined with NMR Imaging (MRI) and these will provide new areas of application, especially in magnetic resonance spectroscopy and radionuclide imaging. The techniques are extremely valuable in monitoring response to treatment, allowing treatments to be changed if proving ineffective. In addition, new techniques are emerging using radionuclides for therapy, combined with the improvements in imaging. This permits exquisite targeting and optimal patient selection. This talk will highlight a number of these achievements and ask the question as to what is holding back developments in Australia at present.

  20. Guidance for the application of an assessment methodology for innovative nuclear energy systems. INPRO manual - Infrastructure. Vol. 3 of the final report of phase 1 of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2008-11-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in the year 2000, based on a resolution of the IAEA General Conference (GC(44)/RES/21). The main objectives of INPRO are (1) to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner, (2) to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles; and (3) to create a forum to involve all relevant stakeholders that will have an impact on, draw from, and complement the activities of existing institutions, as well as ongoing initiatives at the national and international level. The INPRO manual is comprised of an overview volume and eight additional volumes covering the areas of economics (Volume 2), infrastructure (Volume 3, outlined here), waste management (Volume 4), proliferation resistance (Volume 5), physical protection (Volume 6), environment (Volume 7), safety of reactors (Volume 8), and safety of nuclear fuel cycle facilities (Volume 9). Within INPRO, the term infrastructure can be defined as the collection of capabilities of institutions involved in a nuclear power program in a given country that are necessary for the successful deployment (or enlargement) and operation of an INS, including legal and institutional, industrial and economic, and socio-political features. Within INPRO, the definition of an INS includes activities and facilities (i.e. components) at both the front end of the fuel cycle (e.g., mining, enrichment, fuel fabrication) and the back end (e.g., reprocessing, storage, and repository) (Section 4.2.1 of Volume 1 of the INPRO manual. Consequently, within INPRO, such facilities are not considered to be a part of the INPRO area of infrastructure, albeit that they influence the size of the necessary infrastructure required in a given

  1. Technological Innovation, R & D Activities and Innovation System Between Organizations

    Directory of Open Access Journals (Sweden)

    Jonas Pedro Fabris

    2015-08-01

    Full Text Available This theoretical paper aimed to explicit, through the rescue of theoretical assumptions, the innovation, the innovation system, and the research and development (R & D activities. The innovation, especially technological innovation, is now seen as essential in differentiation strategies, competitiveness and growth in a greater number of businesses. Innovation is not only the result of financial investments by companies. For it to exist, it is necessary the existence of innovative capacity that should be present at all stages of the innovation process, and a favorable institutional environment and, increasingly, of specific incentive policies. That is, there are internal and external factors to companies and other institutions involved in the process. Innovation systems were discovered to resolve the variations in the degree of competitiveness of different economies and, above all, in relation to the technological performance and the ability to innovate these economies face the growing importance of international markets for high-tech products. Thus, it was found that successful innovators are not successful just because of their personal qualities and actions but as a result of their interaction with research and innovation systems that inhabit the quality of such systems.

  2. Innovation of nuclear power operation in KHNP

    International Nuclear Information System (INIS)

    Lee, Byung Sik

    2007-01-01

    KHNP has operated the nuclear plants with two major functional areas, operation and maintenance very similar to fossil plant operation. KHNP has recently sent engineers to high performing nuclear power plants in usa and canada for training and familiarization with the engineering organization operation, processes and programs. KHNP has also established a system engineering section at each plant since July 2003. However the system engineering section has not achieved desired results because of a lack of understanding to implement the engineering function and processes. This indicates poor change management preparedness and implementation at KHNP. In September 2005. K SET/(KHNP Special Engineering Task Force Team) was established to enhance KHNP's engineering capability: especially the System Engineering function. The team consists of 13 members: 9 KHNP engineers (including one team manager) who have more than one year's experience working or training in USA or Canada, and 4 foreign engineers who have a wide range of experience and knowledge of engineering areas in Nuclear Power Plants of USA. The team first performed a gap analysis comparing performance and work behavior of 2 nd plant to those of world best practice. this was done by interviewing employees and reviewing relevant document. The team identified 26 significant performance gaps among 120 function areas, prioritized the 26 gape, and verified the effectiveness of the selection of gaps by comparing it to SNPM(standard nuclear performance model) developed by NEI

  3. Guidance for the application of an assessment methodology for innovative nuclear energy systems. INPRO manual - Overview of the methodology. Vol. 1 of 9 of the final report of phase 1 of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) including a CD-ROM comprising all volumes

    International Nuclear Information System (INIS)

    2008-11-01

    INPRO requirements reflect the goals of sustainable development in chapter 2. It provides an overview or summary of the INPRO requirements in all subject areas, in chapter 3. It presents an overview of the INPRO method of assessment in Chapter 4, including basic features and terminology, and a description of screening and comparative assessment. In chapter 5 it describes the use of energy scenarios and modelling in defining an INS (innovative nuclear energy system) that would become the subject of an INPRO assessment. Annex A provides tables provided with INPRO basic principles, user requirements and criteria in all areas. Annex B discusses additional examples of approaches to aggregate INPRO results and Annex C lays out the objectives of the INPRO portal. An INPRO assessment of an INS is intended to be a comprehensive and holistic assessment, and hence will require the participation of a team of experts (i.e. persons with a general background in the INPRO areas). An INPRO assessor responsible for a given INPRO area should be familiar with the information presented in this overview volume and with the detailed information presented in the volume dealing with his/her area of interest

  4. Finland: Innovation Policy Tools under National Innovation System Crisis

    Directory of Open Access Journals (Sweden)

    Daria A. Vorobeva

    2017-01-01

    Full Text Available Purpose: the for a long time Finland’s national innovation system (NIS had been being one of the most successful and effective in the world. But some years ago the situation changed: Finland’s NIS run into system crisis. And today Finnish government tries to work out anticrisis innovation policy. So the purpose of this article is to show up the innovation policy instruments which are able put an end to the crisis and to determine conditions of their successful use. Methods: the article is based on the national innovation systems concept and government policy-mix aimed at the NIS development. Results: the authors show up how Finnish government looks for optimal policy-mix to overcome the crisis, demonstrate in details complementary components of the relevant innovation policy, describe conditions for their success and effectiveness to consider whether they are useful in other countries. Conclusions and Relevance: to overcome the NIS crisis the Finnish government uses such instruments as strategic programs of socio-economic development with targets which can’t be achieved without adequate high technology and innovative development complemented by incentives to make business innovate actively. The conditions of such policy success are: 1 such feature of Finnish society as all stakeholders of economic development consensus on one issue: the main factor of development are innovations; 2 anticrisis stage of Finnish innovative policy is based previously accumulated knowledge and know-how. 

  5. Regional innovation systems in the Lisbon strategy

    NARCIS (Netherlands)

    Bruijn, P.J.M. de; Lagendijk, A.

    2005-01-01

    This contribution explores the framing of the concept of Regional Innovation Systems (RISs) within European ecoruomic policies. Regional innovation systems are analytically and empirically assessed within the policy corltext of the Lisbon strategy, with special reference to regional dimensions in

  6. Nuclear energy: The role of innovation. Vienna, 23 June 2003. Conference on innovative technologies for nuclear fuel cycles and nuclear power

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2003-01-01

    month approved the Phase 1A report, and made a number of recommendations for moving forward, including the pursuit of case studies that would enable Member States and independent analysts to apply INPRO methodology in specific situations. But the Committee also recommended - as I have been encouraging for some time - that INPRO strengthen its co-operation with other initiatives on innovative nuclear energy systems, including the US-initiated Generation IV project. The results of INPRO's efforts to date will be presented later in this conference, as will the results of Generation IV and other projects. It is my hope that these presentations will make evident more opportunities for collaboration among these projects - collaboration that will be of mutual benefit to all concerned. Fourth, it should be emphasized that innovation efforts must be more than purely technical. The evaluation of new design aspects by the nuclear industry should be accompanied, throughout the nuclear community, by a re-evaluation of technology policy issues

  7. Nuclear waste transmutation and related innovative technologies

    International Nuclear Information System (INIS)

    2002-01-01

    The main topics of the summer school meeting were 1. Motivation and programs for waste transmutation: The scientific perspective roadmaps; 2. The physics and scenarios of transmutation: The physics of transmutation and adapted reactor types. Impact on the fuel cycle and possible scenarios; 3. Accelerator driven systems and components: High intensity accelerators. Spallation targets and experiments. The sub critical core safety and simulation physics experiments; 4. Technologies and materials: Specific issues related to transmutation: Dedicated fuels for transmutation. Fuel processing - the role of pyrochemistry. Materials of irradiation. Lead/lead alloys. 5. Nuclear data: The N-TOF facility. Intermediate energy data and experiments. (orig./GL)

  8. Guidance for the application of an assessment methodology for innovative nuclear energy systems. INPRO manual - Safety of nuclear fuel cycle facilities. Vol. 9 of the final report of phase 1 of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2008-11-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was initiated in the year 2000, based on a resolution of the IAEA General Conference (GC(44)/RES/21). The main objectives of INPRO are (1) to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner, (2) to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles; and (3) to create a forum to involve all relevant stakeholders that will have an impact on, draw from, and complement the activities of existing institutions, as well as ongoing initiatives at the national and international level. The INPRO manual is comprised of an overview volume (No. 1), and eight additional volumes covering the areas of economics (Volume 2), infrastructure (Volume 3), waste management (Volume 4), proliferation resistance (Volume 5), physical protection (Volume 6), environment (Volume 7), safety of nuclear reactors (Volume 8), and safety of nuclear fuel cycle facilities (laid out in this report) (Volume 9).This report elaborates on the guidance given in the INPRO report 'Methodology for the assessment of innovative nuclear reactors and fuel cycles', IAEA-TECDOC-1434, and the previous INPRO report 'Guidance for the evaluation for innovative nuclear reactors and fuel cycles', IAEA-TECDOC-1362 (2003), in the area of safety of nuclear reactors. The present version of this manual deals with safety issues related to design and operation of mining, milling, refining, conversion, enrichment, fuel fabrication, fuel storage and fuel reprocessing facilities. The INPRO Manual starts with an introduction in Chapter 1. Chapter 2 sets out the necessary input for an INPRO assessment of the safety of an innovative nuclear fuel cycle facility. This includes information on the design for the plant and the safety

  9. INNOVATIVE DEVELOPMENT OF EDUCATIONAL SYSTEMS: CATEGORICAL MEANING

    Directory of Open Access Journals (Sweden)

    Natalia Tretyak

    2017-06-01

    Full Text Available This article discusses the concept of «development», «innovation» and «innovation development» in relation to the educational systems, as to create a new conceptual framework for quality education. Peculiarities of development of educational systems. Correlation concepts «organization development» and «innovation», defined birth of innovation as syncope in music. On the basis of the study given to the notion of innovation development of educational systems and identified conditions for their successful innovation development.

  10. Venture Capitalists in Systems of Innovation

    DEFF Research Database (Denmark)

    Munk, Kasper B.; Vintergaard, Christian

    regional innovation systems.In attempt to locate and determine the potentials and importance of the venture capitalists in the innovationsystem a two-dimensional taxonomy is constructed and used to illuminate their role and position. Thetaxonomy gains insights through theoretical reasoning and the possible...... initiatives to be taken to raise venture capitalists to a more direct and formal role in the contextof systems of innovation.Key words: Venture capital, innovation systems, innovation....

  11. Regional systems of innovation: an evolutionary perspective

    OpenAIRE

    P Cooke; M G Uranga; G Etxebarria

    1998-01-01

    The authors develop the concept of regional systems of innovation and relate it to preexisting research on national systems of innovation. They argue that work conducted in the 'new regional science' field is complementary to systems of innovation approaches. They seek to link new regional work to evolutionary economics, and argue for the development of evolutionary regional science. Common elements of interest to evolutionary innovation research and new regional science are important in unde...

  12. Comparative analysis of operation and safety of subcritical nuclear systems and innovative critical reactors; Analyse comparative du fonctionnement et de la surete de systemes sous-critiques et de reacteurs critiques innovants

    Energy Technology Data Exchange (ETDEWEB)

    Bokov, P.M

    2005-05-01

    The main goal of this thesis work is to investigate the role of core subcriticality for safety enhancement of advanced nuclear systems, in particular, molten salt reactors, devoted to both energy production and waste incineration/transmutation. The inherent safety is considered as ultimate goal of this safety improvement. An attempt to apply a systematic approach for the analysis of the subcriticality contribution to inherent properties of hybrid system was performed. The results of this research prove that in many cases the subcriticality may improve radically the safety characteristics of nuclear reactors, and in some configurations it helps to reach the 'absolute' intrinsic safety. In any case, a proper choice of subcriticality level makes all analyzed transients considerably slower and monotonic. It was shown that the weakest point of the independent-source systems with respect to the intrinsic safety is thermohydraulic unprotected transients, while in the case of the coupled-source systems the excess reactivity/current insertion events remain a matter of concern. To overcome these inherent drawbacks a new principle of realization of a coupled sub-critical system (DENNY concept) is proposed. In addition, the ways to remedy some particular safety-related problems with the help of the core sub-criticality are demonstrated. A preliminary safety analysis of the fast-spectrum molten salt reactor (REBUS concept) is also carried out in this thesis work. Finally, the potential of the alternative (to spallation) neutron sources for application in hybrid systems is examined. (author)

  13. Simultaneous nuclear data target accuracy study for innovative fast reactors

    International Nuclear Information System (INIS)

    Aliberti, G.; Palmiotti, G.; Salvatores, M.

    2007-01-01

    The present paper summarizes the major outcomes of a study conducted within a Nuclear Energy Agency Working Party on Evaluation Cooperation (NEA WPEC) initiative aiming to investigate data needs for future innovative nuclear systems, to quantify them and to propose a strategy to meet them. Within the NEA WPEC Subgroup 26 an uncertainty assessment has been carried out using covariance data recently processed by joint efforts of several US and European Labs. In general, the uncertainty analysis shows that for the wide selection of fast reactor concepts considered, the present integral parameters uncertainties resulting from the assumed uncertainties on nuclear data are probably acceptable in the early phases of design feasibility studies. However, in the successive phase of preliminary conceptual designs and in later design phases of selected reactor and fuel cycle concepts, there will be the need for improved data and methods, in order to reduce margins, both for economic and safety reasons. It is then important to define as soon as possible priority issues, i.e. which are the nuclear data (isotope, reaction type, energy range) that need improvement, in order to quantify target accuracies and to select a strategy to meet the requirements needed (e.g. by some selected new differential measurements and by the use of integral experiments). In this context one should account for the wide range of high accuracy integral experiments already performed and available in national or, better, international data basis, in order to indicate new integral experiments that will be needed to account for new requirements due to innovative design features, and to provide the necessary full integral data base to be used for validation of the design simulation tools.

  14. International project on innovative nuclear reactors and fuel cycles (INPRO)

    International Nuclear Information System (INIS)

    Omoto, A.

    2006-01-01

    The IAEA's project INPRO was initiated in order to provide a forum for discussion of experts and policy makers on all aspects of nuclear energy planning as well as on the development and deployment of innovative nuclear energy systems (INS). It brings together technology holders users and potential users to consider jointly the international and national actions required for achieving desired innovations in nuclear reactors and fuel cycles, but it pays particular attention to the needs of developing countries. Currently INPRO members count 24 including even three countries, which are not yet operating nuclear reactors. Its initial phase has produced an outlook into the future of the energy markets and defined basic principles, user requirements and criteria in the following areas as TECDOC1362 in June 2003; Economics, Environment, Fuel Cycle and Waste, Safety, Proliferation Resistance and Crosscutting Issues. This assessment methodology can be applied for screening an INS, comparing different INS to find a preferred INS consistent with the needs of a given state, and identifying RD and D needs. The methodology has be validated through case studies and updated as TECDOC1434 in December 2004. Currently, besides producing a manual for each chapter of TECDOC1434, six assessment studies of various INS options are being carried out and the number of such studies is increasing. Further several tasks are ongoing including modeling and analysis of global and regional balance of resources and INS deployment scenarios in order to gain the better perspective of future implication of INS deployment as well as to identify challenges and opportunities of INS. It is envisioned that INPRO will continue to develop with three planned major pillars of activity; methodology, infrastructure and coordination for planning of R and D activities. The paper discusses the progress and status of INPRO as well as the future prospect of INPRO activities

  15. Innovative issues in intelligent systems

    CERN Document Server

    Yager, Ronald; Kacprzyk, Janusz; Jotsov, Vladimir

    2016-01-01

    This book presents a broad variety of different contemporary IT methods and applications in Intelligent Systems is displayed. Every book chapter represents a detailed, specific, far reaching and original re-search in a respective scientific and practical field. However, all of the chapters share the common point of strong similarity in a sense of being innovative, applicable and mutually compatible with each other. In other words, the methods from the different chapters can be viewed as bricks for building the next generation “thinking machines” as well as for other futuristic logical applications that are rapidly changing our world nowadays.

  16. Nuclear systems

    CERN Document Server

    Todreas, Neil E

    2011-01-01

    Principal Characteristics of Power ReactorsIntroductionPower CyclesPrimary Coolant SystemsReactor CoresFuel AssembliesAdvanced Water- and Gas-Cooled Reactors (Generation III And III+)Advanced Thermal and Fast Neutron Spectrum Reactors (Generation IV)ReferencesProblemsThermal Design Principles and ApplicationIntroductionOverall Plant Characteristics Influenced by Thermal Hydraulic ConsiderationsEnergy Production and Transfer ParametersThermal Design LimitsThermal Design MarginFigures of Merit for Core Thermal PerformanceThe Inverted Fuel ArrayThe Equivalent Annulus ApproximationReferencesProble

  17. Research and education on innovative nuclear engineering in 21. century COE program in Japan (COE-INES)

    International Nuclear Information System (INIS)

    Hiroshi Sekimoto

    2004-01-01

    -In the year 2002 and 2003 the Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) started the 'Priority Assistance for the Formation of Worldwide Renowned Centers of Research - The 21. Century Center of Excellence (COE) Program'. A program proposed by Tokyo Institute of Technology (TITech) 'Innovative Nuclear Energy Systems for Sustainable Development of the World (COE-INES)' was selected as the only one program in nuclear engineering. Here the innovative nuclear energy systems include innovative nuclear reactors and innovative separation and transmutation technologies. This program is planned to continue for 5 years, and the monetary support for the first year (2003-4) is already fixed to be 196 M yens. International collaboration will be promoted for research and education on innovative nuclear energy systems. Several international meetings and intensive personnel exchanges will be performed. (author)

  18. Innovations in and by nuclear technology - review and perspectives

    International Nuclear Information System (INIS)

    Barthelt, K.

    1984-01-01

    An innovative technology like nuclear technology does not make progress by itself once it has to prove its profitability. It was a long way from technical to economic perfection which took courageous managemental descisions. Since nuclear fission was discovered, its exploitation as an energy source has been perfected. Now it is not only technically safe, reliable and ecological; it has also proved to be economically efficient as compared with the competing primary energies. As with other great innovations, the innovative force of nuclear technology is characterized by two directions: its assimilating capacity and its expanding capacity. Further issues are the so-called technological spin-off of nuclear technology and the fresh impetus nuclear technology gives to other fields. Another aspect beyond technological spin-off affecting all of our society: It was the first large technology requiring risk analyses to be carried out. Discussion broke out in public on the question: ''How safe is nuclear technology''. To sum up, the basic innovation of nuclear technology is now an important economic factor. It came just in time. It is capable of providing relief to the world's energy problems. It is up to us to use it in an intelligent way in the future despite any short-breathed complaints. (orig./HSCH) [de

  19. ECONOMIC AND MATHEMATICAL MODELING INNOVATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    D.V. Makarov

    2014-06-01

    Full Text Available The paper presents one of the mathematical tools for modeling innovation processes. With the help of Kondratieff long waves can define innovation cycles. However, complexity of the innovation system implies a qualitative description. The article describes the problems of this area of research.

  20. SYSTEMIC INNOVATION IN CONSTRUCTION: THE

    DEFF Research Database (Denmark)

    Jensen, Jens Stissing; Koch, Christian

    2007-01-01

    -based. This approach evaluates the outcome of the program against the main intentions formulated in the tender material. Drawing on systemic innovation theory an alternative evaluative approach is suggested which focuses on the build-up of organizational and institutional resources to support the development...... of an emerging ICT trajectory. While the result-based evaluation points to some weaknesses in the quality of the best-practice and cross-organizational elements of the case-material, the systemic approach point to some important sideeffects of the program, such as the stabilization and enrolment of the industry......This paper offers an evaluation of a best practice program called ‘Best in Construction’ (BiC) which aimed to identify and document cases of successful ICT use in the Danish construction industry. The program is evaluated using two different approaches. The first approach is result...

  1. Cooperative technological innovation and competitiveness in the nuclear arena

    International Nuclear Information System (INIS)

    Castro Galvan, A.; Marco Pelegrin, M.; Salve Galiana, R.; Vallejo Haya, J.; Tagle Gonzalez, J. A.

    2000-01-01

    R and D and, more recently, technological innovation and its relationship with competitivity are more and more part of conferences, books, articles and political speeches and very often are the central part of them. Innovation has become fashionable and many initiatives have come out in connection with it. However, the relationship between technological innovation and competitivity are not always obvious. The current article intends to illustrate some mechanisms that link these two concepts through a specific case, DTN, that is already providing results for the Spanish nuclear industry and whose example can be extrapolated to other industrial sectors. The importance given by the nuclear to the innovation, the research and the technological development it is not new either exclusively belong to any specific organisation but makes evident the coherence between its traditional approach and the current idea of modernizing the country promoting the national technological capacity. (Author)

  2. ATALANTE, innovation for the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Anon.

    2016-01-01

    At Marcoule (France) CEA has been operating a facility called ATALANTE since the beginning of the eighties and dedicated to research on the nuclear fuel cycle. 4 lines of research are pursued: a technical support for nuclear industry, advanced nuclear fuel cycles, the recycling of minor actinides, and the vitrification of high level radioactive wastes. ATALANTE facility consists of 17 laboratories working on 250 glove boxes and 11 shielded hot cells. The latter allow the handling of highly gamma emitting materials through 59 workstations equipped with remote manipulatory arms, while the former allow the handling of contaminating (but low irradiating) materials like most actinides. In 2013 ATALANTE was rewarded the 'Nuclear historic landmark' by the American Nuclear Society that awards facilities that have led to major advances in scientific knowledge

  3. Prediction of heat and mass transfer in innovative nuclear reactors

    International Nuclear Information System (INIS)

    Ambrosini, W.; Forgione, N.; Manfredini, A.; Oriolo, F.

    2000-01-01

    This paper proposes a short review of the different forms adopted to express the analogy between heat and mass transfer for application in correlating data from condensation and evaporation experiments. In particular, the assumptions at the basis of the various forms presented by classical textbooks as well as recent research work are qualitatively discussed, proposing a unified treatment of the different models. On this background, the results of the application of one of the considered forms of the analogy to a problem having relevance for nuclear reactor safety are then discussed. The work performed in this frame is related to condensation on finned tube heat exchangers, proposed as key components in passive containment cooling systems adopted in some innovative reactor concepts. The application of the model to the experimental dana also allowed to obtain interesting information about the effect of different parameters on the cooling capabilities of this compact heat exchangers. (author)

  4. The potential for disruptive innovations in nuclear power

    International Nuclear Information System (INIS)

    Adams, F.P.

    2014-01-01

    The concept of 'disruptive innovation' is a management tool that provides a framework for understanding the structure and dynamics of technology markets, especially their sometimes acute response to innovation. The concept was used in a preliminary assessment of a number of energy technologies, including renewable energy technologies and energy storage, as well as nuclear technologies, as they interact in industry and the marketplace. The technologies were assessed and perspectives were provided on their current potential for innovation to disrupt the value networks behind electricity markets. The findings indicate that this concept may provide useful guidance for the planning of technology development. (author)

  5. The potential for disruptive innovations in nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Adams, F.P., E-mail: fred.adams@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2014-12-01

    The concept of 'disruptive innovation' is a management tool that provides a framework for understanding the structure and dynamics of technology markets, especially their sometimes acute response to innovation. The concept was used in a preliminary assessment of a number of energy technologies, including renewable energy technologies and energy storage, as well as nuclear technologies, as they interact in industry and the marketplace. The technologies were assessed and perspectives were provided on their current potential for innovation to disrupt the value networks behind electricity markets. The findings indicate that this concept may provide useful guidance for the planning of technology development. (author)

  6. Nuclear Knowledge Innovations Assimilation: The Impact of Organizational Knowledge Frames and Triple Helix Dynamics of Knowledge Base

    International Nuclear Information System (INIS)

    Hossain, M. D.; Sultana, T.

    2016-01-01

    Full text: Previous research did not investigate the impact of the TH dynamics of knowledge innovations on the nuclear knowledge innovations adoption/assimilation in the organizational context. Hence, the recommendation of R&D policy reformulation seems too broad. These gaps are the prime motivators for the research. In the organizational context, we posit that TH dynamics of knowledge base innovation serves as complements to managers’ knowledge frames related to a technology innovation. We examine interactions between three knowledge frames—integration frame, opportunism frame, and policy knowledge frame, and two TH dynamics of knowledge innovations—bilateral TH dynamics of knowledge innovations and trilateral TH dynamics of knowledge innovations, and their relationship with the assimilation of nuclear knowledge innovations. We aim to research on the issues of the dynamics of knowledge base of innovations involving TH collaborations (university, industry and government) in Bangladesh as a new build nuclear project. As a result, we can find out the impact of TH collaborations on organizational nuclear knowledge innovations management as well as core institutional problems of the knowledge base of innovation systems in terms of R&D policy. Finally, findings identify lack in production of nuclear knowledge innovations and concrete recommendation of R&D policy reformulation. (author

  7. Innovative technology for safe, sustainable nuclear energy

    International Nuclear Information System (INIS)

    2016-01-01

    The report presents the ONET experience many areas related to nuclear energy, such as: new facility design and; construction & plant; revamping; operations support; maintenance; testing and inspection; decontamination, dismantling; waste treatment; asbestos removal; training and other engineering and logistic services

  8. The Places of National Innovation Systems

    DEFF Research Database (Denmark)

    Sørensen, Ole Henning

    1998-01-01

    The paper contains a review and comparison of four different approaches to national systems of innovation. These approaches are "National Systems of Innovation" (Freeman, 1995), "National Innovation Systems" (Nelson, 1993), "National Systems of Innovation" (Lundvall, 1992) and "The Competitive...... Advantage of Nations" (Porter, 1990). The paper develops a discussion of time, space and place in order to discuss critically the different theories. It is asserted that a process of globalization is leading to a new production of time-space perceptions and practices where localization and globalization...... is becoming increasingly important....

  9. Sustainability and Cities as Systems of Innovation

    DEFF Research Database (Denmark)

    Johnson, Bjørn; Lehmann, Martin

    Cities often constitute relevant environments for interactive learning and innovation potentially capable of tackling sustainability problems. In this paper we ask if the concept of systems of innovation can increase our understanding of city dynamics and help promoting the sustainable development...... of cities. Through a combination of the innovation system approach and the perspective of creative cities, we argue that a slightly modified concept – sustainable city systems of innovation – may be helpful in this context. To underline this, we discuss certain ‘city-traits’ of sustainability and conclude...

  10. Innovative Nuclear Power Plant Building Arrangement in Consideration of Decommissioning

    OpenAIRE

    Won-Jun Choi; Myung-Sub Roh; Chang-Lak Kim

    2017-01-01

    A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA) strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research...

  11. European nuclear data studies for fast systems

    International Nuclear Information System (INIS)

    Rullhusen, P.; Hambsch, F.-J.; Mondelaers, W.; Plompen, A.J.M.; Schillebeeckx, P.

    2010-01-01

    Nuclear data needs for fast systems are highlighted and the following projects are described: Joint European research projects: MUSE Experiments for Sub-critical Neutronics Validation; High- and Intermediate Energy Nuclear Data for ADS (HINDAS); and the Time-Of-Flight facility for Nuclear Data Measurements for ADS (n T OF N D A DS); European Research Programme for the Transmutation of High Level Nuclear Waste in an Accelerator Driven System (EUROTRANS-NUDATRA); and CANDIDE; Programmes for transnational access to experimental facilities in Europe: European Facilities for Nuclear Data Measurements (EFNUDAT); Neutron Data Measurements at IRMM (NUDAME); European facility for innovative reactor and transmutation neutron data (EUFRAT) (P.A.)

  12. NUKEM. Innovative solutions for nuclear engineering

    International Nuclear Information System (INIS)

    Scheffler, Beate

    2011-01-01

    Management of radioactive waste, handling spent fuel elements, decommissioning of nuclear facilities, and engineering and consulting activities are services associated with the name of NUKEM all over the world. The company's scientists and engineers develop solution concepts combining the latest technologies with proven techniques and many years of experience. The company;s history and the services offered to the nuclear industry began more than 5 decades ago. The predecessor, NUKEM Nuklear-Chemie-Metallurgie, was founded in 1960 as one of the earliest nuclear companies in Germany. Originally, the firm produced fuel elements for a variety of reactor lines. As early as in the 1970s, logical extensions of these business activities were nuclear engineering and plant construction. In the meantime, NUKEM Technologies GmbH has developed a worldwide reputation for its activities. Numerous reference projects bear witness to optimum project management and customer satisfaction. Since 2009, NUKEM Technologies has been a wholly owned subsidiary of the Russian Atomstroyexport. NUKEM Technologies operates sales and project offices outside Germany, e.g. in Russia, China, Lithuania, France, and Bulgaria. In this way, the company is present in its target markets of Russia, Western and Eastern Europe as well as Asia, offering customers and partners fast and direct contacts. (orig.)

  13. Digital innovations for teaching and nuclear training

    International Nuclear Information System (INIS)

    Fanjas, Y.; Schoevaerts, D.; Beliazi, L.

    2017-01-01

    The article reviews various digital tools that have been developed for nuclear training. The 'internet virtual laboratory' has been developed by the IAEA, it allows the live broadcasting through the web of experiments and practical exercises performed on the ISIS reactor located in France at Saclay. Virtual reality is booming and allows professionals to move in a nuclear facility virtually. For instance the SecureVI tool is based on 360 degrees photographs of the facility that are associated with goggles to get the immersive effect. The last generation of full-scale reactor simulators are based on 3-dimensional calculations made by the latest version of neutron transport codes and thermal-hydraulic codes. The EPR-FA3 simulator represents the control room of the Flamanville EPR, it is used for the training of reactor operators. The X1300 simulator replicates PWR operations and the SOFIA tool allows the trainees to understand how a nuclear reactor works. The CAVE tool was first developed to be used as an help to engineers and now it has been adapted to training purposes: CAVE allows a complete immersion in a nuclear facility. (A.C.)

  14. Notes on innovation systems and economic development

    DEFF Research Database (Denmark)

    Lundvall, Bengt-Åke

    2011-01-01

    This paper gives a brief history and background for the concept 'national innovation system' and discusses its usefulness for understanding and managing economic development.......This paper gives a brief history and background for the concept 'national innovation system' and discusses its usefulness for understanding and managing economic development....

  15. Nuclear Electric Visitor Centres - Innovation and inspiration

    International Nuclear Information System (INIS)

    Fenton, Bob

    1998-01-01

    Full text: This eight minute video demonstrates the approach taken by Nuclear Electric to exhibitions that are open to the public. The information is given both visually - with excerpts from some of the attractions on display at the centres - and in comments from interviews with visitors, the centre guides and the man responsible for many of the exhibits featured in the video. on one side are the schoolchildren who are visiting the exhibition and are seen both playing and learning as they press buttons, watch videos, 'meet' Michael Faraday, and learn about radiation - its disposal and its safe transportation. The headmaster of the school is interviewed and explains that the exhibition is helping his children understand the importance of electricity to their world. on the other side is Jackie Lucas, the visitor centre manager, explaining what the public make of the exhibition. We see her staff greeting the children and helping them to understand the show. The designer of the exhibition, Len Upton explains how you go about making an exhibition such as this both informative and fun. Also interviewed is the man behind many of the exhibitions featured at Nuclear Electric's visitor centres up and down the country, Nicholas Mullane. He explains the purpose of the exhibition and what messages it imparts. The video is presented in split-screen or composite format, whereby the interviewee and children are often presented together. Excerpts from the various videos on display are presented as both how they are seen from the floor, as well as the full screen effect of the various programmes. The video gives much of the feeling of fun to be gained at the exhibition, as well as showing the educational benefits to be gained from a couple of hours at one of Nuclear Electric's visitor centres. Copies of the video can be obtained from Bob Fenton at Nuclear Electric. (Fax: ++44 1 452 652 443). (author)

  16. Innovation exploration and practice on communication between publics and nuclear power plant

    International Nuclear Information System (INIS)

    Xu Liuhua

    2014-01-01

    It is a fundamental job for nuclear industry's development to realize smooth communication and deep fusion between nuclear energy and the public. Tracing back to Haiyan people's history in contacting with nuclear energy, it is easily found that the local government did quite a few works on public's awareness on nuclear energy safety concern. The local authority tell people the scientific reason and related knowledge by printing and propagating easily-understood pamphlets and pictures, or to explain the nuclear safety by publicizing testing data and related research results. In a word, the local authority used easily-understood ways and reasonable facts to ease the public's over worry about nuclear safety problem. The local authority has set up a mutual interacted communication system with nuclear power plant while focusing on key issues in this important period of nuclear power development. Meanwhile it has set up a weekly report system and appointed news spoksman for nuclear safety concern to public. The nuclear edition volume on the local government's website and micro-blog for nuclear news releasing have been constructed already, to realizing the public transparency. The public has gradually changed their stand from worry to disburden, from nuclear-avoid to nuclear favored, from economy burden to pillar industry. Later, Haiyan county will focus on implementation of public education and deep fused cooperation between local and nuclear power plant, endeavoring to exploit an innovative way on mutual communication for 2 parts in future. (author)

  17. Organisational, technological and economic innovations: the nuclear industry reinvents itself to face 2030 challenges

    International Nuclear Information System (INIS)

    Faudon, Valerie; Jouette, Isabelle; Le Ngoc, Boris

    2016-06-01

    As the French nuclear industry is facing a major challenge (financial weakness, an electric power market in crisis, 15 years without building any reactor, delayed works), this report first outlines why innovation is necessary to guarantee a low carbon and competitive electricity, to comfort the leadership position of this sector in the world, and to respond to expectations of civil society. Then, it describes how the French nuclear industry is already implementing organisational, technological and social innovations, notably through the development of digital technologies. The third part identifies priorities of new public policies: to imagine a new business model for nuclear (a better visibility for investors, taking all induced costs in the power system into account in a diversified mix, reform of the carbon market, taking avoided atmospheric pollution into account), to rethink regulation in order to free innovation spirit, and to prepare the future by investing in research

  18. Fuelling innovation: Countries look to the next generation of nuclear power

    International Nuclear Information System (INIS)

    Perera, Judith

    2004-01-01

    The past few years have seen several multinational initiatives looking at the prospects for the medium and long-term development of nuclear energy. These include: the US-led Generation IV International Forum (GIF), the IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), and the European Michelangelo network for competitiveness and sustainability of nuclear energy in the EU (Micanet). There have also been two major studies - a joint investigation by the IAEA together with the OECD's International Energy Agency (IEA) and Nuclear Energy Agency (NEA), Innovative Nuclear Reactor Development; Opportunities for International Co-operation; and an interdisciplinary study by the Massachusetts Institute of Technology (MIT) on The Future of Nuclear Energy. All these cover much of the same ground, looking at innovative nuclear systems including reactors and fuel cycles. But, while they were prompted by the same set of underlying imperatives, they also differ to some extent, not least in the importance they attach to the nuclear fuel cycle. GIF and INPRO are two initiatives where enhanced international cooperation could emerge

  19. Nuclear information access system

    International Nuclear Information System (INIS)

    Ham, C. H.; Yang, M. H.; Yoon, S. W.

    1998-01-01

    The energy supply in the countries, which have abundant energy resources, may not be affected by accepting the assertion of anti-nuclear and environment groups. Anti-nuclear movements in the countries which have little energy resources may cause serious problem in securing energy supply. Especially, it is distinct in Korea because she heavily depends on nuclear energy in electricity supply(nuclear share in total electricity supply is about 40%).The cause of social trouble surrounding nuclear energy is being involved with various circumstances. However, it is very important that we are not aware of the importance of information access and prepared for such a situation from the early stage of nuclear energy's development. In those matter, this paper analyzes the contents of nuclear information access system in France and Japan which have dynamic nuclear development program and presents the direction of the nuclear access regime through comparing Korean status and referring to progresses of the regime

  20. The international project on innovative nuclear reactors and fuel cycles (INPRO): status and outlook

    International Nuclear Information System (INIS)

    Steur, R.; Kupitz, J.; Depisch, F.

    2004-01-01

    Full text: During the last fifty years remarkable results are achieved in the application of nuclear technology for the production of electricity. Looking ahead to the next fifty years it is clear that the demand for energy will grow considerably and also new requirements for the way the energy will be supplied have to be fulfilled. Following a resolution of the General Conference of the IAEA in the year 2000 an International Project on Innovative Nuclear Reactors and Fuel Cycles, referred to as INPRO, was initiated. The main objectives of INPRO are to: Help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21st century in a sustainable manner; and Bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles. Within INPRO the future of the energy demand and supply was explored and several scenario's identified. A leading requirement for energy supply is coming up and will play a crucial role: sustainability of the way the energy supply will be realized. Fulfilling the growing need for energy in developing countries is as well an important issue. Based on these scenario's for the next fifty years, requirements for the different aspects of the future of nuclear energy systems, such as economics, sustain ability and environment, safety, waste and proliferation resistance have been identified as well a methodology developed. to assess innovative nuclear systems and fuel cycles. On the base of this assessment, the need for innovations and breakthroughs in existing technology can be defined. To facilitate the deployment of innovative nuclear systems also different aspects of the infrastructure, technical as well institutional have been reviewed and recommendations for changes are made to anticipate main developments in the world such as the ongoing globalisation. As a contribution to the conference

  1. Innovative inspection system for reactor pressure vessels

    International Nuclear Information System (INIS)

    Mertens, K.; Trautmann, H.

    1999-01-01

    The versatile, compact and modern underwater systems described, the DELPHIN manipulators and MIDAS submarines, are innovative systems enabling RPV inspections at considerably reduced efforts and time, thus reducing the total time required for ISI of reactors. (orig./CB) [de

  2. Innovation systems, Douglas, Douglass and beyond

    NARCIS (Netherlands)

    Röling, N.G.

    2016-01-01

    Innovation systems (IS) are taken to be coherent and consistent narratives or discourses. This chapter uses the Group/Grid or Cultural Theory (CT) to distinguish four competing IS narratives, each with their own theory of change, criterion variables, strategies, pathways of innovation and designs

  3. Nuclear Future is Ten Years Old. Innovative Nuclear Technology Celebrates Anniversary at General Conference

    International Nuclear Information System (INIS)

    Verlini, Giovanni

    2011-01-01

    IAEA-led International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) marked today its tenth anniversary with a ceremony held on the opening day of the IAEA's annual General Conference. INPRO was established in 2000 to ensure that sustainable nuclear energy is available to meet the energy needs of the twenty-first century.

  4. Development of a new national innovation system

    Directory of Open Access Journals (Sweden)

    Domazet Dragan S.

    2003-01-01

    Full Text Available The paper describes a reference model of the national innovation system of Serbia planned to be gradually developed. The model presented is not complete, but is sufficient to illustrate its usage. The development of a national innovation system may be achieved by implementing a phased and segmented approach. This means that parts of the innovation system that are related to specific industrial sectors may be developed separately according to national priorities. Also, the system may be improved and expanded in later phases of its development. The approach suggested is demonstrated in the case of the innovation system of the software industry. The necessary programs and measures for supporting the development of the software industry are listed. Once these programs and measures are implemented, the software industry in Serbia may be able to reach global competitiveness.

  5. Future nuclear systems technology

    International Nuclear Information System (INIS)

    Brooks, H.

    1979-01-01

    Five directions can be identified for evolution of nuclear systems, possibly a sixth. These are, first, and perhaps most important, toward a means of extending fissile resources through improvement of the efficiency of their use; second, improvements in nuclear safety; third, reduction in the environmental impacts of nuclear electric power generation, particularly water requirements; fourth, improvements in proliferation resistance of the nuclear fuel cycle; and fifth, improvements in economics. And added in a sixth, and somewhat more speculative direction, the use of nuclear power for purposes other than the direct generation of electricity

  6. The IAEA international project on innovative nuclear reactors and fuel cycles (INPRO): current and future activities

    International Nuclear Information System (INIS)

    Kupitz, J.; Depisch, F.; Kuznetsov, V.

    2004-01-01

    Upon resolutions of the IAEA General Conference in 2000, the IAEA initiated International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). The objective of INPRO, which comprises two phases, is to support sustainable deployment and use of nuclear technology to meet the global energy needs in the next 50 years and beyond. During Phase I, work is subdivided into two sub phases. Phase 1A focused on determining user requirements in the areas of economics, environment, safety, proliferation resistance, and recommendations in the area of so-called crosscutting issues, which are legal, institutional, and infrastructure issues accompanying the deployment of nuclear power, and is targeted at developing a methodology and guidelines for the assessment of various nuclear reactor and fuel cycle concepts and approaches. Phase 1A was finalised in June 2003 with its results now available as IAEA TECDOC-1362. Phase 1B has started in July 2003. During this phase interested Member States are performing case studies to validate the INPRO methodology and, later on, to assess selected innovative nuclear energy systems using the updated INPRO methodology. In accordance with the INPRO Terms of Reference, after successful completion of Phase I, Phase II may be initiated to examine the feasibility of commencing international projects on innovative nuclear energy systems. The paper contains a description of the current and future activities of INPRO and summarizes the outcome of the project.(author)

  7. Guidance for the evaluation of innovative nuclear reactors and fuel cycles. Report of Phase 1A of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2003-06-01

    technicians of the calibre and size needed to support a truly substantial nuclear contribution to global energy supplies. To set out the boundary conditions for the desired innovations of nuclear energy systems, INPRO established several task groups to define: Prospects and Potentials of nuclear power within the next 50 years; User Requirements for innovative nuclear energy systems (INS) in the area of Economics, Sustainability and Environment, Safety, Waste Management, Proliferation Resistance, and Cross Cutting Issues; and Methodology for Assessment of INS. Having completed these tasks, it is planned that several Member States will apply the INPRO methodology to make a judgement on the potential of INS under consideration for development, to specify corresponding research, development and demonstration (RD and D) needs for their development, and to identify improvements in the methodology. The results achieved as of the end of April 2003 (Phase 1A) are presented in this report. It is intended to issue separately the working material on which this report is based and which was produced at a number of consultancy meetings held during the course of the Project

  8. R and D and Innovation Needs for Decommissioning Nuclear Facilities

    International Nuclear Information System (INIS)

    Farr, Harvey; LaGuardia, Thomas S.

    2014-01-01

    Nuclear decommissioning activities can greatly benefit from research and development (R and D) projects. This report examines applicable emergent technologies, current research efforts and innovation needs to build a base of knowledge regarding the status of decommissioning technology and R and D. This base knowledge can be used to obtain consensus on future R and D that is worth funding. It can also assist in deciding how to collaborate and optimise the limited pool of financial resources available among NEA member countries for nuclear decommissioning R and D. (authors)

  9. Analyzing Innovation Systems (Burkina Faso) | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Under the supervision of the national centre for scientific and technological research (CNRST), the forum on scientific research and technological innovation (FRSIT) will identify the principal players in the national system of ... Journal articles.

  10. Innovative waste treatment and conditioning technologies at nuclear power plants

    International Nuclear Information System (INIS)

    2006-05-01

    The objective of this publication is to provide Member States with information on the most innovative technologies and strategies used in waste treatment and conditioning. At present, some of those technologies and strategies might not be widely implemented at nuclear power plants (NPP), but they have an important potential for their use as part of the long range NPP, utility, or national strategy. Thus, the target audience is those decision makers at the national and organizational level responsible for selecting waste processing technologies and strategies over a period of three to ten years. Countries and individual nuclear plants have limited financial resources which can be applied toward radioactive waste processing (treatment and conditioning). They are challenged to determine which of the many available technologies and strategies are best suited to meet national or local needs. This publication reduces the selection of processes for wastes generated by nuclear power plants to those technologies and strategies which are considered innovative. The report further identifies the key benefits which may derive from the adoption of those technologies, the different waste streams to which each technology is relevant, and the limitations of the technologies. The technologies and strategies identified have been evaluated to differentiate between (1) predominant technologies (those that are widely practiced in multiple countries or a large number of nuclear plants), and (2) innovative technologies (those which are not so widely used but are considered to offer benefits which make them suitable for broader application across the industry). Those which fall into the second category are the primary focus of this report. Many IAEA publications address the technical aspects of treatment and conditioning for radioactive wastes, covering research, technological advances, and safety issues. These studies and reports primarily target the research and technical staff of a

  11. Nuclear and radiation applications in industry: Tools for innovation

    International Nuclear Information System (INIS)

    Machi, S.; Iyer, R.

    1994-01-01

    Applications of nuclear and radiation technologies have been contributing to industrial efficiency, energy conservation, and environmental protection for many years. Some of these are: Manufacturing industries: Radiation processing technologies are playing increasing roles during manufacturing of such everyday products as wire and cable, automobile tires, plastic films and sheets, and surface materials. Production processes: Other techniques employing radioisotope gauges are indispensable for on-line thickness measurements during paper, plastic, and steel plate production. Processing and quality checks are made using nucleonic control systems that are common features of industrial production lines. Sterilization of medical products using electron beam accelerators or cobalt-60 radiation is better than the conventional methods. Industrial safety and product quality: Non-destructive examination or testing using gamma- or X-ray radiography is widely used for checking welds, casting, machinery, and ceramics to ensure quality and safety. Additionally, radiotracer techniques are unique tools for the optimization of chemical processes in reactors, leakage detection, and wear and corrosion studies, for example. Environmental protection: An innovative technology using electron beams to simultaneously remove sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ) has been under development. The electron beam technology is very cost competitive and its byproduct can be used as agricultural fertilizer

  12. Managing innovation systems in transition economies

    OpenAIRE

    Baković, Tomislav

    2010-01-01

    Successfully managing innovations has become the basic precondition for the development of both companies and national economies. At the national level governments are forming innovation systems whose primary goal is to create conditions at which science and technology can flourish and then transfer their findings trough private sector into new revolutionary products and services. Unfortunately not all countries have the same preconditions for creating such systems and transition economies du...

  13. A new prize system for drug innovation.

    Science.gov (United States)

    Gandjour, Afschin; Chernyak, Nadja

    2011-10-01

    We propose a new prize (reward) system for drug innovation which pays a price based on the value of health benefits accrued over time. Willingness to pay for a unit of health benefit is determined based on the cost-effectiveness ratio of palliative/nursing care. We solve the problem of limited information on the value of health benefits by mathematically relating reward size to the uncertainty of information including information on potential drug overuse. The proposed prize system offers optimal incentives to invest in research and development because it rewards the innovator for the social value of drug innovation. The proposal is envisaged as a non-voluntary alternative to the current patent system and reduces excessive marketing of innovators and generic drug producers. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Innovative nuclear reactor development. Opportunities for international co-operation

    International Nuclear Information System (INIS)

    2002-08-01

    A number of countries wish to expand their use of nuclear energy or keep open the option of doing so in the future. Any new nuclear generating capacity will be built in the context of increasingly privatized and de-regulated energy markets coupled with heightened public concern over nuclear power. New nuclear power plants must maintain or exceed current levels of safety and must be economically competitive with alternative ways of generating electricity. They must address other challenges as well, among them waste disposal and nonproliferation concerns. This report reviews how some of the innovative nuclear-fission technologies being developed today attempt to address the challenges facing nuclear energy. It suggests some areas for collaborative research and development that could reduce the time and cost required to develop new technologies. The report is a product of the 'Three-Agency Study', a joint project among the International Energy Agency (IEA), the OECD Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA). (authors)

  15. What drives innovation in nuclear reactors technologies? An empirical study based on patent counts

    International Nuclear Information System (INIS)

    Berthelemy, Michel

    2012-01-01

    This paper examines the evolution of innovation in nuclear power reactors between 1974 and 2008 in twelve OECD countries and assesses to what extent nuclear innovation has been driven by economic incentives, political decisions and safety regulation considerations. We use priority patent applications related to Nuclear Power Plants (NPPs) as a proxy for innovating activity. Our results highlight that nuclear innovation is partly driven by the conventional paradigm where both demand-pull, measured by NPPs constructions in the innovating country and in the rest of the world, and technology-push, measured by Research and Development (R and D) expenditures specific to NPPs, have a positive and significant impact on innovation. Our results also evidence that the impact of public R and D expenditures and national NPPs construction on innovation is stronger when the quality of innovation, measured by forward patent citations, is taken into account, and have a long run positive impact on innovation through the stock of knowledge available to innovators. In contrast, we show that political decisions following the Three Miles Island and Chernobyl nuclear accidents, measured by NPPs cancellations, have a negative impact on nuclear innovation. Finally, we find that the nuclear safety authority has an ambivalent effect on innovation. On one hand, regulatory inspections have a positive impact on innovation, one the other hand, regulatory decisions to temporarily close a NPP have an adverse impact on innovation. (author)

  16. Open innovation in urban energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, M. [Technische Universitaet Muenchen, TUM School of Management, Freising (Germany); Barth, V. [Carl von Ossietzky Universitaet Oldenburg, Ecological Economics, Oldenburg (Germany)

    2012-08-15

    Despite recent efforts, existing urban energy systems still hardly meet the demands of sustainable development or climate change. Meeting these targets thus will require innovations that use energy much more efficiently and emit far less greenhouse gases. These innovations need to be made on the production as well as the consumption side, on all levels, and need to cover not only technical aspects, but even more service solutions. While many of these solutions still need to be developed, some are already invented but only exist in limited market segments. Opening closed urban planning processes and using open innovation tools can foster bottom-up urban energy system transformation by addressing the interactive ways of decision-making integrating company representatives and citizens. While open innovation tools like (open) innovation workshops or ideas competitions are already used by several companies to find and develop new designs and products, there is yet little experience with energy efficiency ideas and bottom-up changes. Therefore, we analyse energy-efficient ideas generated in three different ideas competitions. We discuss the findings for theory and research on open innovation approaches and bottom-up urban changes. Our results show that there are a vast number of ideas available in the public. Open innovation tools offer advanced possibilities to generate energy-efficient solutions.

  17. The Systems Approach to Innovation Studies

    Directory of Open Access Journals (Sweden)

    Karen Manley

    2002-05-01

    Full Text Available The academic literature, and business practice, reveals a shift in the way analysts understand innovation processes. This shift is not revealed as a cohesive trend, rather it comprises contributions from a wide range of academic disciplines and empirical evidence. Building on Edquist (1997 this paper ties together the diverse new ideas which stress a systems approach to successful innovation. The paper presents an up-to-date overview of this fast moving field, with a view to assisting public policy makers and business managers in designing more effective innovation processes.

  18. Systemic problems hampering innovation in the New Zealand agricultural innovation system

    NARCIS (Netherlands)

    Turner, J.A.; Rijswijk, K.; Williams, T.; Klerkx, L.W.A.; Barnard, T.

    2014-01-01

    This study identifies systemic problems in the New Zealand Agricultural Innovation System (AIS) that affect the ability of participants in the agricultural sectors to co-develop technologies. We integrate structural and functional streams of innovation system enquiry, gathering data through 30

  19. Innovative nuclear power plant building arragement in consideration of decommissioning

    International Nuclear Information System (INIS)

    Choi, Won Jun; Roh, Myung Sub; Kim, Chang Lak

    2017-01-01

    A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA) strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research paper, the concept and the implementation method of the INBA strategy will be described. Two primary benefits will be further described: (1) early site restoration; and (2) radioactive waste reduction. Several other potential benefits will also be identified. For the estimation of economic benefit, the INBA strategy, with two primary benefits, will be compared with the immediate dismantling strategy. The effect of a short life cycle nuclear power plant in combination with the INBA strategy will be reviewed. Finally, some of the major impediments to the realization of this strategy will be discussed

  20. Paris Agreement and opportunities for innovative nuclear power

    International Nuclear Information System (INIS)

    Tam, Cecilia

    2017-01-01

    How far can technology take us? Pushing energy technology to achieve carbon neutrality by 2060 could meet the mid-point of the range of ambitions expressed in Paris. Nuclear additions need to double current rate to meet 2DS. 2016 saw the highest nuclear capacity additions since 1990, but new construction starts down sharply. The fuel mix to generate electricity is vastly different to today. The average carbon intensity of power generation falls from around 520 gCO2/kWh today to Below zero in the B2DS. Nuclear innovation could also target need for decarbonised heat. Heating and cooling in industry and buildings accounts for more than 40% of final energy consumption and 30% of global CO2 emissions

  1. Innovative nuclear power plant building arragement in consideration of decommissioning

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Won Jun; Roh, Myung Sub; Kim, Chang Lak [Dept. of Nuclear Power Plant Engineering, KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2017-04-15

    A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA) strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research paper, the concept and the implementation method of the INBA strategy will be described. Two primary benefits will be further described: (1) early site restoration; and (2) radioactive waste reduction. Several other potential benefits will also be identified. For the estimation of economic benefit, the INBA strategy, with two primary benefits, will be compared with the immediate dismantling strategy. The effect of a short life cycle nuclear power plant in combination with the INBA strategy will be reviewed. Finally, some of the major impediments to the realization of this strategy will be discussed.

  2. Innovative Nuclear Power Plant Building Arrangement in Consideration of Decommissioning

    Directory of Open Access Journals (Sweden)

    Won-Jun Choi

    2017-04-01

    Full Text Available A new concept termed the Innovative Nuclear Power Plant Building Arrangement (INBA strategy is a new nuclear power plant building arrangement method which encompasses upfront consideration of more efficient decommissioning. Although existing decommissioning strategies such as immediate dismantling and differed dismantling has the advantage of either early site restoration or radioactive decommissioning waste reduction, the INBA strategy has the advantages of both strategies. In this research paper, the concept and the implementation method of the INBA strategy will be described. Two primary benefits will be further described: (1 early site restoration; and (2 radioactive waste reduction. Several other potential benefits will also be identified. For the estimation of economic benefit, the INBA strategy, with two primary benefits, will be compared with the immediate dismantling strategy. The effect of a short life cycle nuclear power plant in combination with the INBA strategy will be reviewed. Finally, some of the major impediments to the realization of this strategy will be discussed.

  3. Innovative Tools to Assess Systems Thinking Ability

    Science.gov (United States)

    2017-12-01

    addition to the six cognitive ability constructs, there are two motivational attributes that are highly relevant to systems thinking performance...roles of the habenular complex, the reward system , and the cingulate motor area revealed by functional magnetic resonance imaging. Journal of...Technical Report 1362 Innovative Tools to Assess Systems Thinking Ability Cory Adis Michelle Wisecarver Chelsey Raber Personnel

  4. Mobile nuclear power systems

    International Nuclear Information System (INIS)

    Andersson, B.

    1988-11-01

    This report is meant to present a general survey of the mobile nuclear power systems and not a detailed review of their technical accomplishments. It is based in published material mainly up to 1987. Mobile nuclear power systems are of two fundamentally different kinds: nuclear reactors and isotopic generators. In the reactors the energy comes from nuclear fission and in the isotopic generators from the radioactive decay of suitable isotopes. The reactors are primarily used as power sourves on board nuclear submarines and other warships but have also been used in the space and in remote places. Their thermal power has ranged from 30 kWth (in a satellite) to 175 MWth (on board an aircraft carrier). Isotopic generators are suitable only for small power demands and have been used on board satellites and spaceprobes, automatic weatherstations, lighthouses and marine installations for navigation and observation. (author)

  5. Structural Conditions for Collaboration and Learning in Innovation Networks: Using an Innovation System Performance Lens to Analyse Agricultural Knowledge Systems

    NARCIS (Netherlands)

    Hermans, F.; Klerkx, L.W.A.; Roep, D.

    2015-01-01

    Purpose: We investigate how the structural conditions of eight different European agricultural innovation systems can facilitate or hinder collaboration and social learning in multidisciplinary innovation networks. Methodology: We have adapted the Innovation System Failure Matrix to investigate the

  6. IAEA activities in the development of innovative nuclear technology – the Role of INPRO

    International Nuclear Information System (INIS)

    Drace, Z.

    2013-01-01

    INPRO provides for: • Development of global and regional nuclear energy evolution scenarios and visions to inform national policy development and collaboration among Member States; • Improved understanding of practical steps in transitions to regionally and globally sustainable NESs; • Improved understanding of innovations in technical and institutional features of NES that support transition to sustainable NES; • Holistic assessment of proposed and planned NES to assure that the stated objective of sustainability is rigorously measureable using a defensible consensus approach; and • Communication of insights gained through INPRO activities, and other subjects of direct shared interest to sustainable nuclear energy development, to all involved and interested stakeholders through the INPRO Dialogue Forum. All INPRO activities combined seek to develop a structured holistic approach to assessment and dynamic analysis of NES sustainability. This, together with consideration of both innovative technology and institutional arrangements, may potentially lead to improved understanding of the approach to globally sustainable nuclear energy systems

  7. Innovation of specialists's training system

    International Nuclear Information System (INIS)

    Malach, A.

    1983-01-01

    Briefly described is the activity of the Centre for the Research of Instruction Methods and Aids and experiences gained by the centre presented. The Centre is oriented to the research and testing of instruction and training objectives and content (curricula, programmes, professiograms), new methods (methodologies of individual subjects) and educational technologies (teaching aids, simulators, microcomputer Hvezda 1). Research works are carried out also Dukovany nuclear power plant training centre. (B.S.)

  8. Nuclear propulsion systems engineering

    International Nuclear Information System (INIS)

    Madsen, W.W.; Neuman, J.E.: Van Haaften, D.H.

    1992-01-01

    The Nuclear Energy for Rocket Vehicle Application (NERVA) program of the 1960's and early 1970's was dramatically successful, with no major failures during the entire testing program. This success was due in large part to the successful development of a systems engineering process. Systems engineering, properly implemented, involves all aspects of the system design and operation, and leads to optimization of theentire system: cost, schedule, performance, safety, reliability, function, requirements, etc. The process must be incorporated from the very first and continued to project completion. This paper will discuss major aspects of the NERVA systems engineering effort, and consider the implications for current nuclear propulsion efforts

  9. The molten salt reactors (MSR) pyro chemistry and fuel cycle for innovative nuclear systems; Congres sur les reacteurs a sels fondus (RSF) pyrochimie et cycles des combustibles nucleaires du futur

    Energy Technology Data Exchange (ETDEWEB)

    Brossard, Ph. [GEDEON, Groupement de Recherche CEA CNRS EDF FRAMATOME (France); Garzenne, C.; Mouney, H. [and others

    2002-07-01

    In the frame of the studies on next generation nuclear systems, and especially for the molten salt reactors and for the integrated fuel cycle (as IFR), the fuel cycle constraints must be taken into account in the preliminary studies of the system to improve the cycle and reactor optimisation. Among the purposes for next generation nuclear systems, sustainability and waste (radio-toxicity and mass) management are important goals. These goals imply reprocessing and recycling strategies. The objectives of this workshop are to present and to share the different strategies and scenarios, the needs based on these scenarios, the experimental facilities available today or in the future and their capabilities, the needs for demonstration. It aims at: identifying the needs for fuel cycle based on solid fuel or liquid fuel, and especially, the on-line reprocessing or clean up for the molten salt reactors; assessing the state-of-the-art on the pyro-chemistry applied to solid fuel and to present the research activities; assessing the state-of-the-art on liquid fuels (or others), and to present the research activities; expressing the R and D programs for pyro-chemistry, molten salt, and also to propose innovative processes; and proposing some joint activities in the frame of GEDEON and PRACTIS programs. This document brings together the transparencies of 18 contributions dealing with: scenario studies with AMSTER concept (Scenarios, MSR, breeders (Th) and burners); fuel cycle for innovative systems; current reprocessing of spent nuclear fuel (SNF) in molten salts (review of pyro-chemistry processes (non nuclear and nuclear)); high temperature NMR spectroscopies in molten salts; reductive extraction of An from molten fluorides (salt - liquid metal extraction); electrochemistry characterisation; characterisation with physical methods - extraction coefficient and kinetics; electrolytic extraction; dissolution-precipitation of plutonium in the eutectic LiCl-KCl (dissolution and

  10. Energy innovation systems indicator report 2012

    Energy Technology Data Exchange (ETDEWEB)

    Borup, M. [Technical Univ. of Denmark. DTU Management Engineering, Kgs. Lyngby (Denmark); Klitkou, A.; Iversen, E. [Nordic Institute for Studies in Innovation, Research and Education, Oslo (Norway)

    2012-12-15

    Knowledge about the innovation systems with respect to new energy solutions and technologies is of central importance for understanding the dynamics of change in the energy sector and assessment of opportunities for moving towards more climate-friendly and sustainable energy systems and for socio-economic development in the field, creation of new businesses, work places, etc.. This is the topic that in general is addressed in the research activities of the ''EIS - Strategic research alliance for Energy Innovation Systems and their dynamics - Denmark in global competition''. As part of this, the present report gives an overview of the available indicators of energy innovation systems and points out some of the limitations and potentials there currently are in this connection. Focus is on Denmark. Figures for other countries, primarily Nordic or European, are in some cases showed as well, offering a comparative perspective. (Author)

  11. Nuclear's second wind: innovative 'fast' nuclear power plants may be a strategic imperative

    International Nuclear Information System (INIS)

    Adamov, Evgeny

    2004-01-01

    Nuclear power needed 50 years to gain the same position in global energy production as the one achieved by hydropower over hundreds of years. All those years, proposals for new reactor concepts would come up every now and then alongside mainstream reactor technologies. In the nuclear-friendly 1960s and 1970s, some of those 'innovative' concepts even led to demonstration or pilot projects. Yet for all the diversity of new ideas, nuclear power entered the new century still moving in a rut of older mainstream technologies. Most were devised at the dawn of nuclear engineering, when reactors for production of weapon-grade isotopes and reactors for nuclear submarines propelled development. Unless we understand the reasons why innovative technologies failed to make any appreciable progress way back then, it is impossible to answer the question of whether there is a need for them now or in the foreseeable future. Few people, perhaps, may remember that nuclear power was not brought into existence by energy deficiency. Its advent was caused by the Second World War and the associated pressing necessity for increasing the power of weapons. Once the war ended, nuclear plans were fuelled by the intentions of both weapons designers (e.g., Russia's I. Kurchatov who initiated construction of the world's first nuclear power plant in Obninsk and US politicians led by President Dwight Eisenhower's 'Atoms for Peace' Initiative in 1953) to counterbalance the military effort by encouraging peaceful nuclear applications

  12. International conference on innovative technologies for nuclear fuel cycles and nuclear power. Unedited proceedings

    International Nuclear Information System (INIS)

    2004-01-01

    Nuclear power is a significant contributor to the global supply of electricity, and continues to be the major source that can provide electricity on a large scale with a comparatively minimal impact on the environment. But it is evident that, despite decades of experience with this technology, nuclear power today remains mainly in a holding position, with its future somewhat uncertain primarily due to concerns related to waste, safety and security. One of the most important factors that would influence future nuclear growth is the innovation in reactor and fuel cycle technologies to successfully maximize the benefits of nuclear power while minimizing the associated concerns. The main objectives of the Conference were to facilitate exchange of information between senior experts and policy makers from Member States and international organizations on important aspects of the development of innovative technologies for future generations of nuclear power reactors and fuel cycles; to create an understanding of the social, environmental and economic conditions that would facilitate innovative and sustainable nuclear technologies; and to identify opportunities for collaborative work between Member States and international organizations and programmes. All relevant aspects of innovative technologies for nuclear fuel cycles and nuclear power were discussed in an open, frank and objective manner. These proceedings contain a summary of the results of the conference, invited and contributed papers, and summaries of panel discussions. No large increase in the use of nuclear energy is foreseen in the near and medium term, but is likely in the long term if developing country per-capita electricity consumption reaches that of the developed world. The nuclear sector including regulators view an increased use of nuclear energy as the solution for global sustainable energy needs considering that significant reductions in CO 2 emissions would be required. Although the current nuclear

  13. On Brazil's participation in the International Project on Innovative Nuclear Reactors and Fuels Cycles (INPRO)

    International Nuclear Information System (INIS)

    Goncalves Filho, Orlando Joao Agostinho

    2007-01-01

    In response to a resolution of its 44th General Conference (GC(44)/RES/21) held in September 2000, the International Atomic Energy Agency launched in May 2001 the International Project on Innovative Nuclear Reactors and Fuels Cycles (INPRO) with the objective of supporting the safe, sustainable, economic and proliferation-resistant use of nuclear technology to meet the global energy needs of the 21st century. Brazil joined the project from its beginnings and in 2005 submitted a proposal for the screening assessment using INPRO methodology of two small-size light-water reactors as potential components of an innovative nuclear reactor system (INS) completed with a conventional open nuclear fuel cycle. The INS reactor components currently being assessed are the International Reactor Innovative and Secure (IRIS) that is being developed by an international consortium made of 21 organizations from 10 countries (Brazil included) led by the Westinghouse Company, and the Fixed Bed Nuclear Reactor (FBNR) that is being developed at the Federal University of Rio Grande do Sul. This paper gives an overview of Brazil's participation in INPRO, highlighting the objective, scope and intermediate results of the assessment study being performed, and the possibilities for participation in one or two collaborative research projects under INPRO Phase 2 Action Plan for 2008-2009. (author)

  14. Innovative and practical technical development of nuclear energy. Efforts on proposal and recruitment type technical development of nuclear energy

    International Nuclear Information System (INIS)

    Matsui, Kazuaki; Shioiri, Akio; Hamada, Jun; Kanagawa, Takashi; Mori, Yukihide; Kouno, Koji

    2003-01-01

    In technical development of nuclear energy conceiving a view on energy environment problem at the 21st Century, technical development on innovative nuclear energy system as well as next generation LWR is an important subject. Even in Japan, on the 'Long-term program for research, development and utilization of nuclear energy (LPRNE)' summarized by the Atomic Energy Commission, investigation on R and Ds of innovative reactors under cooperation of government, industrial field, and universities is required. In the Energy Generalized Engineering Institute, by receiving a subsidy from the Ministry of Economy and Industry since 2000, a proposal recruitment business on innovative and practical technical development of nuclear energy has been carried out. Here were introduced hopeful and unique five themes out of them applied to the recruitment, such as a super-critical pressure water cooling reactor (SCPR), an integrated modular LWR (IMR): technical development for practice, technical development on general purpose boiling transitional analysis method, technical development on direct extraction of U and Pu from consumed fuels based on super-DIREX reprocessing method, and material transfer forecasting in natural barriers at landfill disposal of radioactive wastes. (G.K.)

  15. Innovation and knowledge generation in cooperation nets: challenges for regulations in the nuclear safety area in Brazil

    International Nuclear Information System (INIS)

    Staude, Fabio

    2014-01-01

    The importance of inter-organisational cooperation within the innovation process has been increasingly recognized. In fact, all organisations, at some point, need to look to external sources for inputs to the process of building up technological competence. In this sense, through a detailed case study, this thesis examine theoretical and empirically how collaborative initiatives have supported the Brazilian nuclear regulatory body in the development and implementation of innovations, in order to verify the positive relationship between the collaboration and the organisational innovation performance. Emphasizing the importance of both internal sources of knowledge and external participation, the study encompasses documentary analysis, a preliminary survey and semi-structured interviews with the regulatory body employers in charge of controlling medical and research facilities and activities involving radiation sources. The thesis demonstrates that innovations developed and implemented in the Brazilian nuclear safety and security area are associated with collaborative initiatives, in order to improve the organizational capability to fulfill safety obligations, providing some important implications for regulatory body managers concerned with the management of innovation. The findings also identified actors with a significant degree of influence in the innovation process. The result reveals that the support provided by these actors has a significant influence on the innovation performance of the Brazilian nuclear regulatory body, suggesting that Brazil should adopt more interactive models of innovation and knowledge transfer. In addition, the findings show that these key actors can play a very distinctive role in the context of sectoral systems of innovation information regime. (author)

  16. Energy Innovation Systems Indicator Report 2016

    DEFF Research Database (Denmark)

    Borup, Mads; Klitkou, Antje; Iversen, Eric

    This report collates a set of indicators, figures and tables for the energy innovation system in Denmark. Emphasis is on renewable energy and other technologies for moving towards sustainability. The purpose is to provide an overview of indicators available for illuminating dynamics and character...... in “EIS – Strategic research alliance for Energy Innovation Systems and their dynamics – Denmark in global competition”. EIS is funded by the Danish Council for Strategic Research (Innovation Fund Denmark) and by the involved research organisations.......This report collates a set of indicators, figures and tables for the energy innovation system in Denmark. Emphasis is on renewable energy and other technologies for moving towards sustainability. The purpose is to provide an overview of indicators available for illuminating dynamics...... and characteristics of energy innovation systems and to the extent possible offer figures of the developments in the individual indicators. The report is an update of a report published in 2012. Graphs and numbers are updated with the most recent data available. The text is updated where needed in connection...

  17. Nuclear imaging system

    International Nuclear Information System (INIS)

    Barrett, H.H.; Horrigan, F.A.

    1975-01-01

    This invention relates to a nuclear imaging system for mapping the source of high energy nuclear particles from a living organ which has selectively absorbed a radioactive compound by spatially coding the energy from the source in a Fresnel pattern on a detector and decoding the detector output to prouce an image of the source. The coding is produced by a Fresnel zone plate interposed between the nuclear energy source and the detector whose position is adjustable with respect to the detector to focus the slices of the nuclear source on the detector. By adjusting the zone plate to a plurality of positions, data from a plurality of cross-sectional slices are produced from which a three-dimensional image of the nuclear source may be obtained. (Patent Office Record)

  18. An innovative nuclear reactor as a solution to global warming

    International Nuclear Information System (INIS)

    Silva, Robson Silva da; Sefidvash, Farhang

    2007-01-01

    The problem of global warming is no longer a philosophical discussion, but it is a fact seriously threatening the future of humanity. In this paper a practical solution to the problem of global warming resulting from the fossil fuelled energy suppliers is presented. The energy conservation and alternative forms of energy such as solar, wind, and bio even though having important roles, do not satisfy the energy demand generated by an increasing world population that desires to increase its standard of living. The fission process in the nuclear reactors does not produce greenhouse gases that cause global warming. The new paradigm in nuclear energy is the future innovative reactors that meet the new standards set by the INPRO Program of the IAEA. One such a reactor is presented in this paper, namely the Fixed Bed Nuclear Reactor (FBNR) that is supported by the International Atomic Energy (IAEA) in its program of Small Reactors Without On-Site Refuelling (SRWOSR), being one of the four water cooled reactors in this program. The other three reactor concepts are PFPWR50 of Japan, BWRPB of Russia and AFPR-100 of USA. It is shown that the nuclear energy of the future is totally different than what is today in respect to safety, economics, environmental impact and proliferation. In this manner, the public perception of nuclear energy will change and its acceptability is promoted. (author)

  19. Innovative real time simulation training and nuclear probabilistic risk assessment

    International Nuclear Information System (INIS)

    Reisinger, M.F.

    1991-01-01

    Operator errors have been an area of public concern for the safe operation of nuclear power plants since the TMI2 incident. Simply stated, nuclear plants are very complex systems and the public is skeptical of the operators' ability to comprehend and deal with the vast indications and complexities of potential nuclear power plant events. Prior to the TMI2 incident, operator errors and human factors were not included as contributing factors in the Probabilistic Risk Assessment (PRA) studies of nuclear power plant accidents. More recent efforts in nuclear risk assessment have addressed some of the human factors affecting safe nuclear plant operations. One study found four major factors having significant impact on operator effectiveness. This paper discusses human factor PRAs, new applications in simulation training and the specific potential benefits from simulation in promoting safer operation of future power plants as well as current operating power plants

  20. The system of management of innovative potential of economic systems

    Directory of Open Access Journals (Sweden)

    Kostyshak Mikhail

    2018-01-01

    Full Text Available The purpose of the research is to develop a mechanism for managing the innovative potential of a development organization, which is capable to ensure the transformation of real estate objects due to the changes in market needs. The main approaches to the development of innovative potential of economic systems are presented. Efficiency criteria of management of innovation potential of development organizations are formed. A model based on joint use of system and resource and potential approaches to the management of innovative potential of a development organization is formed. The analysis of modern tendencies of development of innovative potential of economic systems, based on rationalization of management of innovative potential of a development organization is conducted.

  1. Cultural tourism innovation systems - the roskilde festival

    DEFF Research Database (Denmark)

    Hjalager, Anne Mette

    2009-01-01

    It is only recently that the "innovation systems approach" has become a framework for micro-economic research in new institutional economics in tourism-related businesses and activities. There is still much to be explored. Cultural tourism phenomena constitute noteworthy objects for illustrative...... case studies, embedded as they are in business as well as maintaining relations with public governance structures and voluntary organizations. Since 1971, Roskilde Festival (Denmark) has developed its role as a leading element in an emerging cultural innovation system. Festival organizers maintain long...

  2. Innovation system and knowledge-intensive entrepreneurship

    DEFF Research Database (Denmark)

    Timmermans, Bram

    2011-01-01

    The goal of this deliverable is to investigate the properties and the nature of knowledge-intensive entrepreneurship as a largely distributed phenomenon at firm, sector and national levels in Denmark. Following the guidelines previously developed in the Deliverable 2.2.1 “Innovation systems...... and knowledge-intensive entrepreneurship: Analytical framework and guidelines for case study research” I will investigate the interplay between national innovation systems and knowledge- intensive entrepreneurship by focusing on two main sectors: machine tools, and computer and related activities....

  3. Energy Innovation Systems Indicator Report 2012

    DEFF Research Database (Denmark)

    Klitkou, Antje; Borup, Mads; Iversen, Eric

    This report is the first report in a series of reports on energy innovation system indicators produced as part of the activities in the “EIS Strategic research alliance for Energy Innovation Systems and their dynamics – Denmark in global competition”. The work is based on a number of existing......). The report received also valuable input from a project commissioned by IPTS. This project addressed co-operation patterns and knowledge flows in patent documents in the fields of wind energy, photovoltaic energy and concentrating solar power (Iversen and Patel, 2010). The results relevant for this project...

  4. Cross-border regional innovation systems

    DEFF Research Database (Denmark)

    Makkonen, Teemu; Rohde, Stephan

    2016-01-01

    . This paper discusses the reasons behind this mismatch which means that the concept still rests upon and draws policy suggestions based on a thin evidence base. Directions for further research are pointed out by underlining the need for holistic empirical validations of the concept together with the need......The concept of cross-border regional innovation systems (CBRIS) surfaced in the literature on economic geography through discourses that highlighted the need of broadening innovation systems to cross-border contexts. Since these early discussions, the theoretical backgrounds of CBRIS have been...

  5. 2nd Symposium on applied nuclear physics and innovative technologies

    CERN Document Server

    2014-01-01

    Symposium on Applied Nuclear Physics and Innovative Technologies will be held for the second time at Collegium Maius, the oldest building of the Jagiellonian University in Cracow, the same building where Nicolaus Copernicus has studied astronomy. Symposium is organized in the framework of the MPD programme carried out by the Foundation for Polish science based on the European Structural Funds. The aim of this conference is to gather together young scientists and experts in the field of applied and fundamental nuclear as well as particle physics. Aiming at interplay of fundamental and applied science the conference will be devoted to the following topics: * Medical imaging and radiotherapy * New materials and technologies in radiation detection * Fission, fusion and spallation processes * High-performance signal processing and data analysis * Tests of foundations of physics and search for a new kind of sub-atomic matter

  6. Cross-border regional innovation system integration

    DEFF Research Database (Denmark)

    Makkonen, Teemu; Weidenfeld, Adi; Williams, Allan

    2017-01-01

    The importance of inter-regional cooperation and innovation are widely accepted in the development rhetoric of the European Union. The highlighted importance of both themes in the context of borderlands has recently led to the coining of a new concept, cross-border regional innovation system...... of cross-border cooperation in a regional innovation system setting. The framework was further tested with illustrative empirical cases that demonstrate its feasibility........ However, little attention has been given to the empirical analysis of the concept. This paper suggests a framework for empirically validating the concept by examining the levels of integration between cross-border regions. The outcome is a proposed framework can be operationalized by measurable indicators...

  7. Iran’s Pharmaceutical Sectoral Innovation System

    Directory of Open Access Journals (Sweden)

    Bahman Kargar Shahamat

    2017-12-01

    Full Text Available Abstract By reviewing economic performance, two main phenomena could be identified: The first phenomenon is prior to the third wave of the Industrial Revolution in which limited resources are the predominant input; in other words, physical and natural resources are much more credited than human resources. The second phenomenon resonates with the third wave of industrial revolution to the present time, suggesting the pivotal role of humans in production and accumulation of wealth, in which limited resources are no longer considered as predominant input. The present research seeks to understand the behavioral logic of the players of Iran's pharmaceutical sector so as to infer the innovative treatment of the firms in this sector. The concept of innovative system is indebted to the efforts economists and other scientists have made by analyzing economic development based upon technological development. Meanwhile, sectoral innovation system (SIS is a tool for analyzing a technological sector in the context of evolutionary economics with an emphasis on institutional capabilities. The structure of such an approach is composed of some components through which performance analysis of certain technological sector could be made possible. In research, we use expert panel with 12 experts from Universities, Companies, Governmental institutes. The current study wishes to explain structural model of institutional elements in this technological sector. Subsequently, in light of such an explanation, structural elements of this sector would be analyzed through identification of legal and regulatory framework, innovative culture, innovative infrastructure, financial resources, information resources, technology transfer mechanisms, commercialization support and marketing.

  8. Innovations in power systems reliability

    CERN Document Server

    Santora, Albert H; Vaccaro, Alfredo

    2011-01-01

    Electrical grids are among the world's most reliable systems, yet they still face a host of issues, from aging infrastructure to questions of resource distribution. Here is a comprehensive and systematic approach to tackling these contemporary challenges.

  9. A brief history of design studies on innovative nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sekimoto, Hiroshi, E-mail: hsekimot@gmail.com [Emeritus Professor, Tokyo Institute of Technology (Japan)

    2014-09-30

    In a short period after the success of CP1, many types of nuclear reactors were proposed and investigated. However, soon only a small number of reactors were selected for practical use. Around 1970, only LWRs with small number of CANDUs were operated in the western world, and FBRs were under development. It was about the time when Apollo moon landing was accomplished. However, at the same time, the future of human being was widely considered pessimistic and Limits to Growth was published. In the end of 1970’s the TMI accident occurred and many nuclear reactor contracts were cancelled in USA and any more contracts had not been concluded until recent years. From the reflection of this accident, many Inherent Safe Reactors (ISRs) were proposed, though none of them were constructed. A common idea of ISRs is smallness of their size. Tokyo Institute of Technology (TokyoTech) held a symposium on small reactors, SR/TIT, in 1991, where many types of small ISRs were presented. Recently small reactors attract interest again. The most ideas employed in these reactors were the same discussed in SR/TIT. In 1980’s the radioactive wastes from fuel cycle became a severe problem around the world. In TokyoTech, this issue was discussed mainly from the viewpoint of nuclear transmutations. The neutron economy became inevitable for these innovative nuclear reactors especially small long-life reactors and transmutation reactors.

  10. A brief history of design studies on innovative nuclear reactors

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi

    2014-01-01

    In a short period after the success of CP1, many types of nuclear reactors were proposed and investigated. However, soon only a small number of reactors were selected for practical use. Around 1970, only LWRs with small number of CANDUs were operated in the western world, and FBRs were under development. It was about the time when Apollo moon landing was accomplished. However, at the same time, the future of human being was widely considered pessimistic and Limits to Growth was published. In the end of 1970’s the TMI accident occurred and many nuclear reactor contracts were cancelled in USA and any more contracts had not been concluded until recent years. From the reflection of this accident, many Inherent Safe Reactors (ISRs) were proposed, though none of them were constructed. A common idea of ISRs is smallness of their size. Tokyo Institute of Technology (TokyoTech) held a symposium on small reactors, SR/TIT, in 1991, where many types of small ISRs were presented. Recently small reactors attract interest again. The most ideas employed in these reactors were the same discussed in SR/TIT. In 1980’s the radioactive wastes from fuel cycle became a severe problem around the world. In TokyoTech, this issue was discussed mainly from the viewpoint of nuclear transmutations. The neutron economy became inevitable for these innovative nuclear reactors especially small long-life reactors and transmutation reactors

  11. Integrated systems innovations and applications

    CERN Document Server

    2015-01-01

    This book presents the results of discussions and presentation from the latest ISDT event (2014) which was dedicated to the 94th birthday anniversary of Prof. Lotfi A. Zade, father of Fuzzy logic. The book consists of three main chapters, namely: Chapter 1: Integrated Systems Design Chapter 2: Knowledge, Competence and Business Process Management Chapter 3: Integrated Systems Technologies Each article presents novel and scientific research results with respect to the target goal of improving our common understanding of KT integration.

  12. Innovative Nuclear Reactors Implementation in the Armenian Energy Sector

    International Nuclear Information System (INIS)

    Gevorgyan, A.

    2006-01-01

    The purpose of the present paper is to demonstrate the importance of nuclear energy development in Armenia with the use of innovative nuclear reactors when considering the long-term energy planning, taking into account the specific conditions and tendencies, which are formed and developed in economy of Armenia and, in particular, in fuel-energy complex of the country. When developing the long-term program, the main factors among others considered were assumed to be the energy independence and energy security of a country, and not only the least 'cost factor', as it was usually done before. When that program was under development, such social aspects as application of the infrastructure existing within the relevant sphere, and financing of decommissioning of existing units of the Armenian NNP were also took into consideration. The studies performed have shown that implementation of innovative medium size reactors would enable the energy sector of Armenia to meet all those requirements. The issues of environmental protection were also taken into consideration when developing that program. (authors)

  13. Systems Innovation and Education Management Systems (EMS)

    Science.gov (United States)

    Rao, Nageswararao A. V.

    2006-01-01

    Many researchers and practitioners contend that all institutions respond to changing market need and can create competitive advantage through innovation and creativity. Each year, institutions expend significant resources developing new products and processes and yet research shows that more than half these initiatives fail. Successful…

  14. Experience-based innovations in management of nuclear power plant technology

    International Nuclear Information System (INIS)

    Wagner, R.L.; Bradbury, R.B.; Freeman, D.V.; Jacobs, S.B.

    1987-01-01

    During 45 years of nuclear technology development and experience, Stone and Webster (S and W) has developed and successfully applied various innovative techniques to numerous nuclear projects. These techniques, developed primarily in response to the increasing scope and complexity of nuclear power plants, have been used and refined to provide efficient management of the two major nuclear project acticities-design and construction. For this paper, these techniques have been divided into: 1) engineering-based innovations, 2) construction-based innovations, and 3) management-based innovations. (author)

  15. Experience-based innovations in management of nuclear power plant technology

    International Nuclear Information System (INIS)

    Wagner, R.L.; Bradbury, R.B.; Freeman, D.V.; Jacobs, S.B.

    1988-01-01

    During 45 years of nuclear technology development and experience, Stone and Webster (S and W) has developed and successfully applied various innovative techniques to numerous nuclear projects. These techniques, developed primarily in response to the increasing scope and complexity of nuclear power plants, have been used and refined to provide efficient management of the two major nuclear project activities - design and construction. For this paper, these techniques have been divided into: (1) engineering-based innovations, (2) construction-based innovations, and (3) management-based innovations

  16. Development of technologies on innovative-simplified nuclear power plant using high-efficiency steam injectors (2) analysis of heat balance of innovative-simplified nuclear power plant

    International Nuclear Information System (INIS)

    Goto, S.; Ohmori, S.; Mori, M.

    2005-01-01

    It is possible to establish simplified system with reduced space and total equipment weight using high-efficiency Steam Injector (SI) instead of low-pressure feedwater heaters in Nuclear Power Plant (NPP)(1)-(6). The SI works as a heat exchanger through direct contact between feedwater from the condensers and extracted steam from the turbines. It can get a higher pressure than supplied steam pressure, so it can reduce the feedwater pumps. The maintenance and reliability are still higher because SI has no movable parts. This paper describes the analysis of the heat balance and plant efficiency of this Innovative- Simplified NPP with high-efficiency SI. The plant efficiency is compared with the electric power of 1100MWe-class BWR system and the Innovative- Simplified BWR system with SI. The SI model is adapted into the heat balance simulator with a simplified model. The results show plant efficiencies of the Innovated-Simplified BWR system are almost equal to the original BWR one. The present research is one of the projects that are carried out by Tokyo Electric Power Company, Toshiba Corporation, and six Universities in Japan, funded from the Institute of Applied Energy (IAE) of Japan as the national public research-funded program. (authors)

  17. Development of technologies on innovative-simplified nuclear power plant using high-efficiency steam injectors. (2) Analysis of heat balance of innovative-simplified nuclear power plant

    International Nuclear Information System (INIS)

    Goto, Shoji; Ohmori, Shuichi; Mori, Mitchitsugu

    2004-01-01

    It is possible to established simplified systems and reduced space and equipments using high-efficiency Steam Injector (SI) instead of low-pressure feed water heaters in Nuclear Power Plant (NPP). The SI works as a heat exchanger through direct contact between feedwater from condenser and extracted steam from turbine. It can get a higher pressure than supplied steam pressure, so it can reduce the feedwater pumps. The maintenance and reliability are still higher because SI has no movable parts. This paper describes the analysis of the heat balance and plant efficiency of this Innovative-Simplified NPP with high-efficiency SI. The plant efficiency is compared with the electric power of 1100MWe class original BWR system and the Innovative-Simplified BWR system with SI. The SI model is adapted into the heat balance simulator with a simplified model. The results show plant efficiencies of the Innovated-Simplified BWR system are almost equal to the original BWR one. The present research is one of the projects that are carried out by Tokyo Electric Power Company, Toshiba Corporation, and six Universities in Japan, funded from the Institute of Applied Energy (IAE) of Japan as the national public research-funded program. (author)

  18. What Is a Complex Innovation System?

    Science.gov (United States)

    Katz, J. Sylvan

    2016-01-01

    Innovation systems are sometimes referred to as complex systems, something that is intuitively understood but poorly defined. A complex system dynamically evolves in non-linear ways giving it unique properties that distinguish it from other systems. In particular, a common signature of complex systems is scale-invariant emergent properties. A scale-invariant property can be identified because it is solely described by a power law function, f(x) = kxα, where the exponent, α, is a measure of scale-invariance. The focus of this paper is to describe and illustrate that innovation systems have properties of a complex adaptive system. In particular scale-invariant emergent properties indicative of their complex nature that can be quantified and used to inform public policy. The global research system is an example of an innovation system. Peer-reviewed publications containing knowledge are a characteristic output. Citations or references to these articles are an indirect measure of the impact the knowledge has on the research community. Peer-reviewed papers indexed in Scopus and in the Web of Science were used as data sources to produce measures of sizes and impact. These measures are used to illustrate how scale-invariant properties can be identified and quantified. It is demonstrated that the distribution of impact has a reasonable likelihood of being scale-invariant with scaling exponents that tended toward a value of less than 3.0 with the passage of time and decreasing group sizes. Scale-invariant correlations are shown between the evolution of impact and size with time and between field impact and sizes at points in time. The recursive or self-similar nature of scale-invariance suggests that any smaller innovation system within the global research system is likely to be complex with scale-invariant properties too. PMID:27258040

  19. What Is a Complex Innovation System?

    Directory of Open Access Journals (Sweden)

    J Sylvan Katz

    Full Text Available Innovation systems are sometimes referred to as complex systems, something that is intuitively understood but poorly defined. A complex system dynamically evolves in non-linear ways giving it unique properties that distinguish it from other systems. In particular, a common signature of complex systems is scale-invariant emergent properties. A scale-invariant property can be identified because it is solely described by a power law function, f(x = kxα, where the exponent, α, is a measure of scale-invariance. The focus of this paper is to describe and illustrate that innovation systems have properties of a complex adaptive system. In particular scale-invariant emergent properties indicative of their complex nature that can be quantified and used to inform public policy. The global research system is an example of an innovation system. Peer-reviewed publications containing knowledge are a characteristic output. Citations or references to these articles are an indirect measure of the impact the knowledge has on the research community. Peer-reviewed papers indexed in Scopus and in the Web of Science were used as data sources to produce measures of sizes and impact. These measures are used to illustrate how scale-invariant properties can be identified and quantified. It is demonstrated that the distribution of impact has a reasonable likelihood of being scale-invariant with scaling exponents that tended toward a value of less than 3.0 with the passage of time and decreasing group sizes. Scale-invariant correlations are shown between the evolution of impact and size with time and between field impact and sizes at points in time. The recursive or self-similar nature of scale-invariance suggests that any smaller innovation system within the global research system is likely to be complex with scale-invariant properties too.

  20. Nuclear Systems Kilopower Overview

    Science.gov (United States)

    Palac, Don; Gibson, Marc; Mason, Lee; Houts, Michael; McClure, Patrick; Robinson, Ross

    2016-01-01

    The Nuclear Systems Kilopower Project was initiated by NASAs Space Technology Mission Directorate Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Nuclear Systems Kilopower Project consists of two elements. The primary element is the Kilopower Prototype Test, also called the Kilopower Reactor Using Stirling Technology(KRUSTY) Test. This element consists of the development and testing of a fission ground technology demonstrator of a 1 kWe fission power system. A 1 kWe system matches requirements for some robotic precursor exploration systems and future potential deep space science missions, and also allows a nuclear ground technology demonstration in existing nuclear test facilities at low cost. The second element, the Mars Kilopower Scalability Study, consists of the analysis and design of a scaled-up version of the 1 kWe reference concept to 10 kWe for Mars surface power projected requirements, and validation of the applicability of the KRUSTY experiment to key technology challenges for a 10 kWe system. If successful, these two elements will lead to initiation of planning for a technology demonstration of a 10 kWe fission power capability for Mars surface outpost power.

  1. Economics of seawater desalination with innovative nuclear reactors and other energy sources: the EURODESAL project

    International Nuclear Information System (INIS)

    Nisan, S.; Volpi, L.

    2004-01-01

    This paper summarises our recent investigations undertaken as part of the EURODESAL project on nuclear desalination, which were carried out by a consortium of four EU and one Canadian, Industrials and two leading EU R and D organisations. Major results of the project, in particular of its economic evaluation work package as discussed in this paper, are: 1. A coherent demonstration of the technical feasibility of nuclear desalination through the development of technical principles for the optimum cogeneration of electricity and water and by exploring the unique capabilities of the innovative nuclear reactors and desalination technologies; verification that the integrated system design does not adversely affect nuclear reactor safety. 2. The development of codes and methods for an objective assessment of the competitiveness and sustainability of proposed solutions through comparison, in European conditions, with fossil and renewable energy based solutions. The results obtained so far seem to be quite encouraging as regards the economical viability of nuclear desalination options. Thus, for example, specific desalination costs ($/m 3 of desalted water) for nuclear systems such as the AP600 and the French PWR900 (reference base case), coupled to Multiple Effect Distillation (MED) or the Reverse Osmosis (RO) processes, are 30% to 60% lower than fossil energy based systems using pulverised coal and natural gas with combined cycle, at low discount rates and recommended fuel prices. Even in the most unfavourable scenarios for nuclear energy (discount rates = 10%, low fossil fuel prices) desalination costs with the nuclear options with the nuclear reactors are 7% to 15% lower, depending upon the desalination capacities. Furthermore, with the high performance coupling schemes developed by the EURODESAL partners, the specific desalination costs of nuclear systems are reduced by another 2% to 14%, even without system and design optimisation. (author)

  2. On the selfacting safe limitation of fission power and fuel temperature in innovative nuclear reactors

    International Nuclear Information System (INIS)

    Scherer, W.; Brockmann, H.; Drecker, S.; Gerwin, H.; Haas, K.A.; Kugeler, K.; Ohlig, U.; Ruetten, H.J.; Teuchert, E.; Werner, H.; Wolf, L.

    1994-08-01

    Nuclear energy probably will not contribute significantly to the future worldwide energy supply until it can be made catastrophe-free. Therefore it has to be shown, that the consequences of even largest accidents will have no major impact to the environment of a power plant. In this paper one of the basic conditions for such a nuclear technology is discussed. Using mainly the modular pebble-bed high-temperature reactor as an example, the design principles, analytical methods and the level of knowledge as given today in controlling reactivity accidents by inherent safety features of innovative nuclear reactors are described. Complementary possibilities are shown to reach this goal with systems of different types of construction. Questions open today and resulting requirements for future activities are discussed. Today's knowledge credibly supports the possibility of a catastrophe-free nuclear technology with respect to reactivity events. (orig.)

  3. The IAEA International Project on Innovative Reactors and Fuel Systems

    International Nuclear Information System (INIS)

    Mourogov, V.M.

    2001-01-01

    Full text: Nuclear power is faced with a dilemma. From one side, there is no doubt (particularly in our community) that nuclear power can play an outstanding role in a sustainable energy system worldwide due to its well known potential advantages. From the other side we have near-term nuclear power projections and prospects that are not so promising. In 2000 nuclear's share was 3% of total global electricity capacity additions which is more then three times lower that nuclear's 10% share of today's currently installed global capacity. It is also unfortunate that nuclear capacity additions in developing countries, where the main increase in energy demand is expected, are relatively insignificant compared to fossil and hydro capacity additions in recent years. Most near-term projections show no drastic changes in these recent trends How can we address this dilemma? If the nuclear power sector is to increase its role, it cannot simply continue to do what it has been doing and expect that factors outside its control, such as fossil fuel prices or environmental taxes, will change to make nuclear power's prospects more favorable. To reach a different outcome than that indicated by current near- and intermediate-term trends, something must be done within the nuclear community to generate new technological solutions. The challenge is to look to the future, to identify what innovations and new directions - that build upon and make good use of existing expertise and accomplishments - are most promising for helping nuclear power capture a growing share of a growing market. There are several challenges that we have to deal to facilitate large-scale global nuclear power development. These are: achieving economic competitiveness of new NPPs in most parts of the world; successfully demonstrating effective nuclear waste management; responsiveness to public safety concerns; responsiveness to proliferation concerns. And as a result building support for nuclear power among the public

  4. System for technical innovation support

    International Nuclear Information System (INIS)

    2011-08-01

    This book lists field of support system, which includes tax, development work, basic research project, industrial technology, information and communications field, energy field, part and materials field, local industry, the small and medium business such as technical development field, and industry-university collaboration like summary of investment and financing support and guarantee, support of manpower such as brain pool and contact Korea, support of technique like development technology and strategy for patent, support on certification such as company and technical goods, purchase support.

  5. Innovation and practice on assessment of nuclear power engineering management procedures

    International Nuclear Information System (INIS)

    Li Shaogang; Sun Ying

    2011-01-01

    This article has introduced the innovative implementation method and process adopted by Shandong Nuclear Power Company in procedure management for AP1000 nuclear power project, summarized its effects, and also analyzed advantages and disadvantages of this management method. (authors)

  6. Oasis-an innovative system for alpha spectroscopy

    International Nuclear Information System (INIS)

    Seymour, R.; Richards, W.; Knight, K.; El-Sayad, G.

    1995-01-01

    Until recently, instrumental alpha spectroscopy has behind the technical developments of instrumentation and software that are available for low background o c/ counting, liquid scintillation, and gamma spectroscopy instruments. We report in this paper, the development of Oasis, a new family of alpha spectroscopy systems from oxford instruments Inc., Nuclear measurements Group. The Oasis instruments incorporate many hardware and software innovations providing an automated and integrated production environment for alpha spectroscopy. These instruments are needed because of the large number of samples to be measured and the required throughput of production laboratories processing these samples. Oasis is also useful for facilities because of their sophisticated vacuum control, management, and analysis features. One of the most important innovations is the electronic vacuum system and cartesian diver. Many additional features contribute to improving accuracy, lowering cost per sample, improving sample throughput, and ensuring accountability of laboratory results. 5 figs

  7. Oasis-an innovative system for alpha spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Seymour, R; Richards, W; Knight, K; El-Sayad, G [Oxford Instruments Inc., P.O. Box 2560, Oak Ridge, TN 37831-2560 (United States)

    1995-10-01

    Until recently, instrumental alpha spectroscopy has behind the technical developments of instrumentation and software that are available for low background o c/ counting, liquid scintillation, and gamma spectroscopy instruments. We report in this paper, the development of Oasis, a new family of alpha spectroscopy systems from oxford instruments Inc., Nuclear measurements Group. The Oasis instruments incorporate many hardware and software innovations providing an automated and integrated production environment for alpha spectroscopy. These instruments are needed because of the large number of samples to be measured and the required throughput of production laboratories processing these samples. Oasis is also useful for facilities because of their sophisticated vacuum control, management, and analysis features. One of the most important innovations is the electronic vacuum system and cartesian diver. Many additional features contribute to improving accuracy, lowering cost per sample, improving sample throughput, and ensuring accountability of laboratory results. 5 figs.

  8. Institutional innovations required for widespread use of nuclear power

    International Nuclear Information System (INIS)

    Johnson, W.R.

    1992-01-01

    The social and economic benefits of additional electrical generating capacity in lesser developed countries are unquestioned, and a case can be made from economic and environmental considerations that much of this capacity should be nuclear powered. Obstacles to the introduction of nuclear power in the developing world include lack of a technical infrastructure and capital cost. Manpower shortage also detracts from a country's ability to effectively regulate a nuclear power enterprise. Two variations on the traditional institutional methods for supplying and regulating nuclear electric power are proposed. The first would be independent international companies that would design, finance, build, operate and maintain nuclear power stations, and sell electricity to local systems. The second would be an international safety regulatory system that could offer uniform, effective regulations and enforcement of the entire nuclear power enterprise at a level consistent with accepted world standards. These proposals coupled with the modular Advanced Liquid Metal Reactor based on Integral Fast Reactor technology would make possible a safe, economically feasible nuclear power operation that could be located anywhere in the world. (author). 7 refs

  9. The Role of Technological Innovations for Dry Storage of Used Nuclear Fuel

    International Nuclear Information System (INIS)

    Issard, H.

    2015-01-01

    We cannot predict the recovery from the financial crisis, but regardless of whether it is slow or quick, the global need for energy and the growth of electricity consumption have been confirmed. Many countries throughout the world are pursuing or have publicly expressed their intention to pursue the construction of Nuclear Power Plants or to extend the life of existing nuclear reactors and to address the back end of the fuel cycle. As always in history, when economic constraints become more severe, the answer is often innovation. Maintaining the high level of performance of nuclear energy and increasing safety with an attractive cost is today’s challenge. It is true for reactors, true also for fuel cycle and in particular for the back end: recycling and interim storage. Interim storage equipment or systems of used fuel are considered in this presentation. The industry is ready to provide support to countries and utilities for the development of radioactive material transportation and storage, and is striving to develop innovative solutions in wet or dry storage systems and casks and to bring them to the market. This presentation will elaborate on the two following questions: Where are the most crucial needs for technological innovations? What is the role of innovation? The needs of technological innovation are important in 3 domains: storage equipment design, interfaces and handling of used fuel and safety justification methodology. Concerning the design, continuous effort for optimisation of used fuel storage equipment requires innovations. These designs constitute the new generation of dry storage casks. The expectations are a higher payload thanks to new materials (such as metal matrix composites) and optimised geometry for criticality-safety, better thermal evacuation efficiency to accept higher fuel characteristics (more enrichment, burnup, shorter cooling time), resistance to impact of airplanes. Designs are also expected to be optimised for sustainable

  10. National Innovation System and Disruptive Innovations in Synthetic Rubber and Tire Technology

    Directory of Open Access Journals (Sweden)

    Ray R. Gehani

    2008-01-01

    Full Text Available The current models of National Innovation Systems (NIS are based on interactions and learning across three institutions: government, university and industry. This empirical study of the evolution of innovations in rubber and tire technologies such as the collaborative innovative suppliers (of raw materials and human capital and disruptive rival innovators to the traditional tri-helical model of National Innovation System. This was empirically examined for the evolution of rubber and tire technology and the rise and decline of its innovative region: the Rubber Capital of the World in Akron, Ohio.

  11. Innovation and Cooperation in the Basque Country’s Regional Innovation System

    Directory of Open Access Journals (Sweden)

    Beatriz Otero

    2015-01-01

    Full Text Available This study analyses the relation between innovation in industrial SMEs and cooperation with key players in the field of innovation in the context of an innovation system set up in the Basque Country. The empirical information used in the study is from samples of microdata taken from the Company Innovation Survey 2008 regarding 650 industrial SMEs in the Basque Country, and from 12 interviews conducted with important operators in the Regional Innovation System. The study demonstrates a positive relation between government policies on technology, the innovation carried out by companies, cooperation between the different participants and the subsidies that they receive

  12. Power Nuclear Reactors: technology and innovation for development in future

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2009-01-01

    The conference is about some historicals task of the fission technology as well as many types of Nuclear Reactors. Enrichment of fuel, wastes, research reactors and power reactors, a brief advertisment about Uruguay electric siystem and power generation, energetic worldwide, proliferation, safety reactors, incidents, accidents, Three-Mile Island accident, Chernobil accident, damages, risks, classification and description of Power reactors steam generation, nuclear reactor cooling systems, future view

  13. Combining the technological innovation systems framework with the entrepreneurs’ perspective on innovation

    NARCIS (Netherlands)

    Planko, Julia; Cramer, Jacqueline; Hekkert, Marko P.; Chappin, Maryse M H

    2017-01-01

    For their technological sustainability innovations to become successful, entrepreneurs can strategically shape the technological field in which they are involved. The technological innovation systems (TISs) literature has generated valuable insights into the processes which need to be stimulated for

  14. The Use of National Systems of Innovation Models to Develop Indicators of Innovation and Technological Capacity

    OpenAIRE

    Holbrook, J. A.

    1997-01-01

    This paper addresses various models that can be used to assess indicators of innovation and technical capacity. It stresses the importance of looking at the national system of innovation (NSI) to gain a complete understanding of industry capacity.

  15. International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). 2011 Progress Report. Enhancing Global Nuclear Energy Sustainability

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-05-15

    When INPRO was established in 2000, some key characteristics and main objectives for the project were determined and remain basically unchanged to this day: to help ensure that nuclear energy is available to contribute to satisfying energy needs in the 21st century in a sustainable manner and to bring together technology holders, technology users and other stakeholders to consider jointly the national and international actions required to achieve desired innovations in nuclear reactors and fuel cycles. I wish to use the occasion of this INPRO Progress Report to review some of the key highlights of the past year and share with you my views and vision of INPRO's future. The ''Great East Japan Earthquake and Tsunami'' and the resulting accident at TEPCO's Fukushima Daiichi nuclear power plant occurred on 11 March 2011. In response to this accident and at the request of its Member States, the IAEA drafted an Action Plan which defines a programme of work o strengthen the global nuclear safety framework. The activities proposed in the Action Plan are meant to be implemented in the near term, to assess the safety of operating nuclear power plants n the light of lessons learned from the Fukushima Daiichi accident. The assessment covers both technical elements, specifically the design of nuclear power plants with regard to site specific extreme natural hazards, and institutional elements, such as the effectiveness of regulatory bodies, operating organizations and the international legal framework in regard to the implementation of IAEA Safety tandards and Conventions. The lessons learned in the medium and long terms will also be reflected n a periodic update of the design requirements for nuclear power plants, international safety tandards, regulations issued by national supervisory authorities, operational procedures, emergency planning and safety assessment methodologies. INPRO has a long term perspective and provides an assessment of the whole nuclear system. Ensuring

  16. International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). 2011 Progress Report. Enhancing Global Nuclear Energy Sustainability

    International Nuclear Information System (INIS)

    2012-05-01

    When INPRO was established in 2000, some key characteristics and main objectives for the project were determined and remain basically unchanged to this day: to help ensure that nuclear energy is available to contribute to satisfying energy needs in the 21st century in a sustainable manner and to bring together technology holders, technology users and other stakeholders to consider jointly the national and international actions required to achieve desired innovations in nuclear reactors and fuel cycles. I wish to use the occasion of this INPRO Progress Report to review some of the key highlights of the past year and share with you my views and vision of INPRO's future. The ''Great East Japan Earthquake and Tsunami'' and the resulting accident at TEPCO's Fukushima Daiichi nuclear power plant occurred on 11 March 2011. In response to this accident and at the request of its Member States, the IAEA drafted an Action Plan which defines a programme of work o strengthen the global nuclear safety framework. The activities proposed in the Action Plan are meant to be implemented in the near term, to assess the safety of operating nuclear power plants n the light of lessons learned from the Fukushima Daiichi accident. The assessment covers both technical elements, specifically the design of nuclear power plants with regard to site specific extreme natural hazards, and institutional elements, such as the effectiveness of regulatory bodies, operating organizations and the international legal framework in regard to the implementation of IAEA Safety tandards and Conventions. The lessons learned in the medium and long terms will also be reflected n a periodic update of the design requirements for nuclear power plants, international safety tandards, regulations issued by national supervisory authorities, operational procedures, emergency planning and safety assessment methodologies. INPRO has a long term perspective and provides an assessment of the whole nuclear system. Ensuring

  17. Innovative power conversion system for the French SFR prototype, ASTRID

    International Nuclear Information System (INIS)

    Cachon, L.; Biscarrat, C.; Morin, F.; Haubensack, D.; Rigal, E.; Moro, I.; Baque, F.; Madeleine, S.; Rodriguez, G.; Laffont, G.

    2012-01-01

    In the framework of the French Act of 28 June 2006 about nuclear materials and waste management, the prototype ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration), foreseen in operation by the 20's, will have to demonstrate not only the minor actinide transmutation capability, but also the progress made in Sodium Fast Reactor (SFR) technology on an industrial scale, by qualifying innovative options. Some of these options still require improvements, especially in the field of operability and safety. In fact, one of the main issues with the standard steam/water Power Conversion System (PCS) of SFR is the fast and energetic chemical reaction between water and sodium, which could occur in steam generators in case of tube failure. To manage the sodium/water reaction, one way consists in minimizing the impact of such event: hence studies are carried out on steam generator design, improvement of the physical knowledge of this phenomenon, development of numerical simulation to predict the reaction onset and consequences, and associated detection improvement. On the other hand, the other way consists in eliminating sodium/water reaction. In this frame, the CEA contribution to the feasibility evaluation of an alternative innovative PCS (replacing steam/water by 180 bar pressurised nitrogen) is focused on the following main topics: - The parametric study leading to nitrogen selection: the thermodynamic cycle efficiency optimisation on Brayton cycles is performed with several gases at different pressures. - The design of innovative compact heat exchangers for the gas loop: here the key points are the nuclear codification associated with inspection capability, the innovative welding process and the thermal-hydraulic and thermal-mechanic optimisations. After a general introduction of the ASTRID project, this paper presents in detail these different feasibility studies being led on the innovative gas PCS for an SFR. (authors)

  18. Nuclear fuel preheating system

    International Nuclear Information System (INIS)

    Andrea, C.

    1975-01-01

    A nuclear reactor new fuel handling system which conveys new fuel from a fuel preparation room into the reactor containment boundary is described. The handling system is provided with a fuel preheating station which is adaptd to heat the new fuel to reactor refueling temperatures in such a way that the fuel is heated from the top down so that fuel element cladding failure due to thermal expansions is avoided. (U.S.)

  19. Broadening the analysis of innovation systems

    DEFF Research Database (Denmark)

    Lundvall, Bengt-Åke; Christensen, Jesper Lindgaard

    2003-01-01

    Traditionally, innovation systems have been analysed as rooted either in the R&D system or in the production system. This chapter suggests a broader approach, seeing them as rooted in the national production and human resource development systems. The argument is linked to the literature...... for the job losses imposed by increased competition. It is shown that increased competition does not seem to affect the relative position of workers without vocational training at the level of the firm. But it is also shown that massive job losses for workers without vocational training tend to take place...

  20. The IAEA international project on innovative nuclear reactors and fuel cycles (INPRO):status, development of approaches and outlook

    International Nuclear Information System (INIS)

    Khoroshev, M.; Sokolov, Y.; Facer, I.

    2005-01-01

    During the last fifty years remarkable results have been achieved in the application of nuclear technology for the production of electricity. Looking ahead to the next fifty years it is clear that the demand for energy will grow considerably and also new requirements have to be fulfilled for the way nuclear energy will be supplied, UNCSD, WSSD, IPCC and others have emphasized the substantial growth in 21st century energy supplies needed to meet sustainable development (SD) goals. This will be driven by continuing population growth, economic development and aspiration to provide access to modern energy systems to be 1,6 billion people now without such access, the growth demand on limiting greenhouse gas emissions, and reducing the risk oaf climate change. A key factor to the future of nuclear power is the degree to which innovative nuclear technologies can be developed to meet challenges of economic competitiveness, safety,waste and proliferation concerns. There are two major international initiatives in the area of innovative nuclear technology: the IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycle (INPRO) and the Generation IV International Forum. Following a resolution of the General Conference of the IAEA in the year 2000 an International Project on Innovative Nuclear Reactors and Fuel Cycles, referred to as INPRO, was initiated (Authors)

  1. An innovative pool with a passive heat removal system

    International Nuclear Information System (INIS)

    Vitale Di Maio, Damiano; Naviglio, Antonio; Giannetti, Fabio; Manni, Fabio

    2012-01-01

    Heat removal systems are of primary importance in several industrial processes. As heat sink, a water pool or atmospheric air may be selected. The first solution takes advantage of high heat transfer coefficient with water but it requires active systems to maintain a constant water level; the second solution takes benefit from the unlimited heat removal capacity by air, but it requires a larger heat exchanger to compensate the lower heat transfer coefficient. In NPPs (nuclear power plants) during a nuclear reactor shutdown, as well as in some chemical plants to control runaway reactions, it is possible to use an innovative heat sink that joins the advantages of the two previous solutions. This solution is based on a special heat exchanger submerged in a water pool designed so that when heat removal is requested, active systems are not required to maintain the water level; due to the special design, when the pool is empty, atmospheric air becomes the only heat sink. The special heat exchanger design allows to have a heat exchanger without being oversized and to have a system able to operate for unlimited period without external interventions. This innovative system provides an economic advantage as well as enhanced safety features.

  2. An innovative way of thinking nuclear waste management - Neutron physics of a reactor directly operating on SNF.

    Science.gov (United States)

    Merk, Bruno; Litskevich, Dzianis; Bankhead, Mark; Taylor, Richard J

    2017-01-01

    A solution for the nuclear waste problem is the key challenge for an extensive use of nuclear reactors as a major carbon free, sustainable, and applied highly reliable energy source. Partitioning and Transmutation (P&T) promises a solution for improved waste management. Current strategies rely on systems designed in the 60's for the massive production of plutonium. We propose an innovative strategic development plan based on invention and innovation described with the concept of developments in s-curves identifying the current boundary conditions, and the evolvable objectives. This leads to the ultimate, universal vision for energy production characterized by minimal use of resources and production of waste, while being economically affordable and safe, secure and reliable in operation. This vision is transformed into a mission for a disruptive development of the future nuclear energy system operated by burning of existing spent nuclear fuel (SNF) without prior reprocessing. This highly innovative approach fulfils the sustainability goals and creates new options for P&T. A proof on the feasibility from neutronic point of view is given demonstrating sufficient breeding of fissile material from the inserted SNF. The system does neither require new resources nor produce additional waste, thus it provides a highly sustainable option for a future nuclear system fulfilling the requests of P&T as side effect. In addition, this nuclear system provides enhanced resistance against misuse of Pu and a significantly reduced fuel cycle. However, the new system requires a demand driven rethinking of the separation process to be efficient.

  3. The IAEA international project on innovative nuclear reactors and fuel cycles (INPRO): study on opportunities and challenges of large-scale nuclear energy development

    International Nuclear Information System (INIS)

    Khoroshev, M.; Subbotin, S.

    2006-01-01

    Existing scenarios for global energy use project that demand will at least double over the next 50 years. Electricity demand is projected to grow even faster. These scenarios suggest that the use of all available generating options, including nuclear energy, will inevitably be required to meet those demands. If nuclear energy is to play a meaningful role in the global energy supply in the foreseeable future, innovative approaches will be required to address concerns about economic competitiveness, environment, safety, waste management, potential proliferation risks and necessary infrastructure. In the event of a renaissance of nuclear energy, adequate infrastructure development will become crucial for Member States considering the future use of nuclear power. The IAEA should be ready to provide assistance in this area. A special resolution was adopted by the General Conference in September 2005 on 'Strengthening the Agency's Activities Related to Nuclear Science, Technology and Applications: Approaches to Supporting Nuclear Power Infrastructure Development'. Previously, in 2000, taking into account future energy scenarios and the needs of Member States, the IAEA General Conference had adopted a resolution initiating the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). Based on scenarios for the next fifty years, INPRO identified requirements for different aspects of future nuclear energy systems, such as economics, environment, safety, waste management, proliferation resistance and infrastructure and developed a methodology to assess innovative nuclear systems and fuel cycles. Using this assessment tool, the need for innovations in nuclear technology can be defined, which can be achieved through research, development and demonstration (RD and D). INPRO developed these requirements during its first stage, Phase 1A, which lasted from 2001 to mid-2003. In the second stage, Phase 1B (first part), INPRO organized 14 case studies (8 by

  4. VISION: a Versatile and Innovative SIlicOn tracking system

    CERN Document Server

    Lietti, Daniela; Vallazza, Erik

    This thesis work focuses on the study of the performance of different tracking and profilometry systems (the so-called INSULAB, INSUbria LABoratory, and VISION, Versatile and Innovative SIlicON, Telescopes) used in the last years by the NTA-HCCC, the COHERENT (COHERENT effects in crystals for the physics of accelerators), ICE-RAD (Interaction in Crystals for Emission of RADiation) and CHANEL (CHAnneling of NEgative Leptons) experiments, four collaborations of the INFN (Istituto Nazionale di Fisica Nucleare) dedicated to the research in the crystals physics field.

  5. Assessment of two small-sized innovative nuclear reactors for electricity generation in Brazil using INPRO methodology

    International Nuclear Information System (INIS)

    Goncalves Filho, Orlando Joao Agostinho; Sefidvash, Farhang

    2009-01-01

    This paper presents the main results of the assessment study of two small-sized innovative reactors for electricity generation in Brazil using the methodology developed under the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO), co-ordinated by the International Atomic Energy Agency (IAEA). INPRO was initiated in 2001 and has the main objective of helping to ensure that nuclear energy is available to contribute in a sustainable manner to the energy needs of the 21st century. Brazil joined the INPRO project since its beginning and in 2005 submitted a proposal for the assessment using INPRO methodology of two small-sized reactors (IRIS - International Reactor Innovative and Secure, and FBNR - Fixed Bed Nuclear Reactor) as potential components of an innovative nuclear energy system (INS) completed by a conventional open nuclear fuel cycle based on enriched uranium. The scope of this assessment study was restricted to the reactor component of the INS and to the methodology areas of economics and safety for IRIS, and proliferation resistance and safety for FBNR. The results indicate that both IRIS and FBNR innovative designs comply mostly with the basic principles of the areas assessed and have potential to comply with the remaining ones. (author)

  6. International project on innovative nuclear reactors and fuel cycles

    International Nuclear Information System (INIS)

    Mourogov, V. M.; Juhn, P. E.

    2003-01-01

    In response to two IAEA General Conference Resolutions in September 2000, the IAEA has launched the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) in May 2001. As of February 2003, 12 IAEA Member States and the European Commission have become members of INPRO. In total, 19 cost-free experts have been nominated by these Member States and the European Commission to work for the INPRO project at the IAEA. Four meetings of the INPRO Steering Committee (SC), which is the decision and review body of INPRO, were held, two in 2001 and another two in 2002. The objective of INPRO, which is composed of two phases (Phase 1 and Phase 2), is to support safe, economic and proliferation resistant use of nuclear technology, in a sustainable manner, to meet the global energy needs in the next 50 years and beyond. During Phase 1, work is also subdivided in two sub phases: The currently on-going Phase 1A is focussing on the selection of criteria and development of methodologies and guidelines for the comparison of different reactor and fuel cycle concepts and approaches, taking into account the compilation and review of such concepts and approaches, and determination of user requirements in the areas of economics; environment; safety; proliferation-resistance; and cross cutting issues. The preliminary results of Phase 1A with respect to user requirements are summarized in the paper

  7. A Systemic Innovation Policy Framework: The Cases of Scottish and Dutch Agrifood Innovation Systems

    OpenAIRE

    Lamprinopoulou-Kranis, Chrysa; Renwick, Alan W.; Klerkx, Laurens; Hermans, Frans; Islam, Md. Mofakkarul; Roep, Dirk

    2012-01-01

    Innovation and knowledge exchange are receiving increased attention among policy makers as a means to address sustainable economic development challenges (European Commission, 2011). However, a range of factors such as inappropriate structures and institutional or capabilities barriers may negatively influence the spread or direction of processes of innovation and knowledge exchange (Klein-Woolthuis et al., 2005). These problems are often referred to as systemic weaknesses or failures, and hi...

  8. The IAEA's international project on innovative nuclear reactors and fuel cycles (INPRO)

    International Nuclear Information System (INIS)

    Kuptiz, Juergen; )

    2002-01-01

    This paper presents the IAEA International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). It defines its rationale, key objectives and specifies the organizational structure. The IAEA General Conference (2000) has invited all interested Member states to combine their efforts under the aegis of the Agency in considering the issues of the nuclear fuel cycle, in particular by examining innovative and proliferation-resistant nuclear technology and invited Member states to consider to contribute to a task force on innovative nuclear reactors and fuel cycle

  9. THE CONTRIBUTION OF INNOVATION SYSTEMS AND ORGANIZATIONAL CULTURE FOR INNOVATION GENERATION

    Directory of Open Access Journals (Sweden)

    Elaine da Silva

    2018-04-01

    Full Text Available Introduction: Emphasizes the role of innovation in the Information and Knowledge Society as a favorable element of developing regional, national and global levels. Objective: The aim is reflect about the coming of innovation in the context of production systems and their respective role for the development of society. Methodology: The research sets up a qualitative approach to literature and exploratory nature. Results: As from selected literature review, presents conceptual aspects of innovation in the context of production systems and analyzes its contribution to the national innovation system and the role of organizational culture focused on innovation. Conclusions: Think about innovation from the systemic approach, based on the interaction of the different relevant agents to influence and contribute to the generation of innovation is fundamental in the current conjuncture, characterized by the agility of the transformations in social, economic, political and technological contexts.

  10. Nuclear reactor monitoring system

    International Nuclear Information System (INIS)

    Drummond, C.N.; Bybee, R.T.; Mason, F.L.; Worsham, H.J.

    1976-01-01

    The invention pertains to an improved monitoring system for the neutron flux in a nuclear reactor. It is proposed to combine neutron flux detectors, a thermoelement, and a background radiation detector in one measuring unit. The spatial arrangement of these elements is fixed with great exactness; they are enclosed by an elastic cover and are brought into position in the reactor with the aid of a bent tube. The arrangement has a low failure rate and is easy to maintain. (HP) [de

  11. Nuclear reactor shutdown system

    International Nuclear Information System (INIS)

    Mangus, J.D.; Cooper, M.H.

    1982-01-01

    An improved nuclear reactor shutdown system is described comprising a temperature sensitive device connected to control the electric power supply to a magnetic latch holding a body of a neutron absorbing material. The temperature sensitive device is exposed to the reactor coolant so that when the reactor coolant temperature rises above a specific level, the temperature sensitive device will cause deenergization of the magnetic latch to allow the body of neutron absorbing material to enter the reactor core. (author)

  12. Innovative nuclear thermal propulsion technology evaluation: Results of the NASA/DOE Task Team study

    International Nuclear Information System (INIS)

    Howe, S.; Borowski, S.; Helms, I.; Diaz, N.; Anghaie, S.; Latham, T.

    1991-01-01

    In response to findings from two NASA/DOE nuclear propulsion workshops held in the summer of 1990, six task teams were formed to continue evaluation of various nuclear propulsion concepts. The Task Team on Nuclear Thermal Propulsion (NTP) created the Innovative Concepts Subpanel to evaluate thermal propulsion concepts which did not utilize solid fuel. The Subpanel endeavored to evaluate each of the concepts on a ''level technological playing field,'' and to identify critical technologies, issues, and early proof-of-concept experiments. The concepts included the liquid core fission, the gas core fission, the fission foil reactors, explosively driven systems, fusion, and antimatter. The results of the studies by the panel will be provided. 13 refs., 6 figs., 2 tabs

  13. Innovative control systems for tracked vehicle platforms

    CERN Document Server

    2014-01-01

     This book has been motivated by an urgent need for designing and implementation of innovative control algorithms and systems for tracked vehicles. Nowadays the unmanned vehicles are becoming more and more common. Therefore there is a need for innovative mechanical constructions capable of adapting to various applications regardless the ground, air or water/underwater environment. There are multiple various activities connected with tracked vehicles. They can be distributed among three main groups: design and control algorithms, sensoric and vision based in-formation, construction and testing mechanical parts of unmanned vehicles. Scientists and researchers involved in mechanics, control algorithms, image processing, computer vision, data fusion, or IC will find this book useful.

  14. A review of the Mexican national innovation system

    Directory of Open Access Journals (Sweden)

    Samantha Rullán

    2015-12-01

    Full Text Available Governments and business leaders are increasingly aware of the role that innovation plays in economic growth, development and competitiveness. There are imperative challenges for Latin American countries, among them, poverty, social inclusion, sustainable development, climate change, natural disasters, productivity, improve the quality of education and health. Innovations are essential to drive economic growth and prosperity in the region. According to the Global Innovation Index (2015, Mexico is ranked 57th. Most of the research on innovation performance is mostly focused on technological innovation. Therefore, the main variables used, such as patents and number of scientific publications, do not always reflect the other types of innovations (i.e. business model, organizational, etc. that are developing in emerging markets. The aim of this paper is to analyze the Mexican innovation system using a broad concept with a focus on other types of innovation including cultural aspects to identify the main characteristics that distinguish and determine how innovation in Mexico is formed. Although the Mexican government has improved its institutional structure for innovation and its support policies, they need to evaluate programs and adjust incentive schemes based on performance to improve their innovation policy. Purpose – The purpose of this paper is to examine the Mexican National Innovation System using a broad concept with a focus on other types of innovation and including cultural aspects to identify some of the main characteristics that determine how innovation in Mexico is formed. Design/methodology/approach – The national innovation systems framework is used to review the Mexican innovation policy.A review of relevant literature on national innovation systems and Mexican innovation policies with data from the Global Innovation Index and INEGI were used for this paper. Findings – Higher private investment in R&D is needed to enhance

  15. The IAEA international project on innovative nuclear reactors and fuel cycles (INPRO): Status, ongoing activities and outlook

    International Nuclear Information System (INIS)

    Kupitz, J.; Depisch, F.; Khorochev, M.

    2004-01-01

    The IAEA General Conference (2000) invited 'all interested Member States to combine their efforts under the aegis of the IAEA in considering the issues of the nuclear fuel cycle, in particular by examining innovative and proliferation-resistant nuclear technology'. In response to this invitation, the IAEA initiated the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). The overall objectives of INPRO are to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21 st century in a sustainable manner; and to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles. INPRO is addressing the identification of full spectrum of user requirements for innovative technologies as well as the development of methodologies and guidelines for the comparison of different innovative approaches taking into account variations in potential demands across countries. INPRO can make major contributions by focusing on economic aspects, and societal acceptability issues and those areas where IAEA can make unique contributions such as proliferation resistance, nuclear safety, waste management and sustainability issues and providing assistance to the user community. To enhance the potential for the deployment of innovative technologies, some changes in the infrastructure under which nuclear energy is developed and used; should be envisaged. In order to fulfil these objectives, the first phase of INPRO dealt with the development of a methodology to assess and compare the performance of innovative nuclear energy systems (INS). This methodology includes the definition of a set of Basic principles, User requirements and Criteria to be met in different areas (Economics, Sustainability and environment, Safety of nuclear installations, Waste management and Proliferation resistance). The result of

  16. Nuclear reactor safety system

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1983-01-01

    The invention provides a safety system for a nuclear reactor which uses a parallel combination of computer type look-up tables each of which receives data on a particular parameter (from transducers located in the reactor system) and each of which produces the functional counterpart of that particular parameter. The various functional counterparts are then added together to form a control signal for shutting down the reactor. The functional counterparts are developed by analysis of experimental thermal and hydraulic data, which are used to form expressions that define safe conditions

  17. Nuclear reactor safety systems

    International Nuclear Information System (INIS)

    Ball, R.M.; Roberts, R.C.

    1980-01-01

    A safety system for shutting down a nuclear reactor under overload conditions is described. The system includes a series of parallel-connected computer memory type look-up tables each of which receives data on a particular reactor parameter and in each of which a precalculated functional value for that parameter is stored indicative of the percentage of maximum reactor load that the parameter contributes. The various functional values corresponding to the actual measured parameters are added together to provide a control signal used to shut down the reactor under overload conditions. (U.K.)

  18. Sectoral Systems and Innovation and Technology Policy

    Directory of Open Access Journals (Sweden)

    Franco Malerba

    2003-01-01

    Full Text Available Este artigo usa o conceito de sistema setorial de inovações que permite a utilização de uma visão multidimensional integrada e dinâmica da inovação em seus setores. Sistemas setoriais apresentam três dimensões que afetam tanto a geração e adoção de novas tecnologias quanto a organização da inovação e produção nos seguintes níveis setoriais: conhecimento, atores e redes e instituições. O artigo discute o escopo conceitual dos sistemas setoriais, apresenta cinco análises de setores principais e examina suas tendências principais, seus desafios e suas transformações. O artigo também oferece uma análise sobre implicações políticas públicas e sugestões do ponto de vista do sistema setorial de inovações.This paper uses the concept of sectoral system of innovation which aims to provide a multidimensional, integrated and dynamic view of innovation in sectors. Sectoral systems have three dimensions that affect the generation and adoption of new technologies and the organization of innovation and production at the sectoral level: knowledge (and the related boundaries, actors and networks, and institutions. The paper discusses the conceptual framework of sectoral systems, presents five main sectoral systems and examines their major trends, challenges and transformation. The paper then examines which are the main policy implications and indications in a sectoral system perspective.

  19. ASSESSING THE PROLIFERATION RESISTANCE OF INNOVATIVE NUCLEAR FUEL CYCLES

    International Nuclear Information System (INIS)

    BARI, R.; ROGLANS, J.; DENNING, R.; MLADINEO, S.

    2003-01-01

    The National Nuclear Security Administration is developing methods for nonproliferation assessments to support the development and implementation of U.S. nonproliferation policy. This paper summarizes the key results of that effort. Proliferation resistance is the degree of difficulty that a nuclear material, facility, process, or activity poses to the acquisition of one or more nuclear weapons. A top-level measure of proliferation resistance for a fuel cycle system is developed here from a hierarchy of metrics. At the lowest level, intrinsic and extrinsic barriers to proliferation are defined. These barriers are recommended as a means to characterize the proliferation characteristics of a fuel cycle. Because of the complexity of nonproliferation assessments, the problem is decomposed into: metrics to be computed, barriers to proliferation, and a finite set of threats. The spectrum of potential threats of nuclear proliferation is complex and ranges from small terrorist cells to industrialized countries with advanced nuclear fuel cycles. Two general categories of methods have historically been used for nonproliferation assessments: attribute analysis and scenario analysis. In the former, attributes of the systems being evaluated (often fuel cycle systems) are identified that affect their proliferation potential. For a particular system under consideration, the attributes are weighted subjectively. In scenario analysis, hypothesized scenarios of pathways to proliferation are examined. The analyst models the process undertaken by the proliferant to overcome barriers to proliferation and estimates the likelihood of success in achieving a proliferation objective. An attribute analysis approach should be used at the conceptual design level in the selection of fuel cycles that will receive significant investment for development. In the development of a detailed facility design, a scenario approach should be undertaken to reduce the potential for design vulnerabilities

  20. Advanced nuclear systems in comparison

    International Nuclear Information System (INIS)

    Brogli, R.; Foskolos, K.; Goetzmann, C.; Kroeger, W.; Stanculescu, A.; Wydler, P.

    1996-09-01

    This study aims at a comparison of future reactor concepts, paying particular attention to aspects of safety, of the fuel cycle, the economics, the experience-base and the state of development. Representative examples of typical development lines, that could possibly be 'of interest' within a time horizon of 50 years were selected for comparison. This can be divided into three phases: - Phase I includes the next 10 years and will be characterised mainly by evolutionary developments of light water reactors (LWR) of large size; representative: EPR, - Phase II: i.e. the time between 2005 and 2020 approximately, encompasses the forecasted doubling of today's world-wide installed nuclear capacity; along with evolutionary reactors, innovative systems like AP600, PIUS, MHTGR, EFR will emerge, - Phase III covers the time between 2020 and 2050 and is characterised by the issue of sufficient fissile material resources; novel fast reactor systems including hybrid systems can, thus, become available; representatives: IFR, EA, ITER (the latter being). The evaluated concepts foresee partly different fuel cycles. Fission reactors can be operated in principle on the basis of either a Uranium-Plutonium-cycle or a Thorium-Uranium-cycle, while combinations of these cycles among them or with other reactor concepts than proposed are possible. With today's nuclear park (comprising mainly LWRs), the world-wide plutonium excess increases annually by about 100 t. Besides strategies based on reprocessing like: - recycling in thermal and fast reactors with mixed oxide fuels, - plutonium 'burning' in reactors with novel fuels without uranium or in 'hybrid' systems, allowing a reduction of this excess, direct disposal of spent fuel elements including their plutonium content ('one-through') is being considered. (author) figs., tabs., 32 refs

  1. Nuclear Innovation 2050: Charting a Path for the Nuclear Energy Future

    International Nuclear Information System (INIS)

    Magwood, William D.

    2017-01-01

    The NEA: 33 Countries Seeking Excellence in Nuclear Safety, Technology, and Policy. •33 member countries + key partners (e.g., China) •7 standing committees and 86 working parties and expert groups •The NEA Data Bank - providing nuclear data, code, and verification services •23 international joint projects (e.g., the Halden Reactor Project in Norway). COP 21 and Energy Production: •UN-sponsored meeting concluded with 195 countries agreeing to develop approaches to limit global warming to below 2°C. •Energy represents 60% of global CO2 emissions - 3/4 of global electric power production today is based on fossil fuels. •Many countries – including China and India indicate that nuclear will play a large role. 2015 NEA/IEA Technology Roadmap - Contents and Approaches: •Provides an overview of global nuclear energy today. •Identifies key technological milestones and innovations that can support significant growth in nuclear energy. •Identifies potential barriers to expanded nuclear development. •Provides recommendations to policy-makers on how to reach milestones & address barriers. •Case studies developed with experts to support recommendations

  2. Development, calibration and experimental results obtained with an innovative calorimeter (CALMOS) for nuclear heating measurements

    International Nuclear Information System (INIS)

    Carcreff, H.; Cloute-Cazalaa, V.; Salmon, L.

    2011-01-01

    Nuclear heating inside an MTR reactor has to be known in order to be able to control samples temperature during irradiation experiments. An R and D program has been carried out at CEA to design a new type of in-core calorimetric system. This new development, started in 2002, has for main objective to manufacture a calorimeter suitable to monitoring nuclear heating inside the 70 MWth OSIRIS material testing reactor operated by CEA's Nuclear Energy Div. at the Saclay research center. An innovative calorimetric probe, associated to a specific handling system, has been designed to provide access to measurements both along the fissile height and on the upper part of the core, where nuclear heating still remains high. Two mock-ups of the probe were manufactured and tested in 2005 and 2009 in ex-core area of OSIRIS reactor for process validation, while a displacement system has been especially studied to move the probe along a given axial measurement range. This paper deals with the development, tests on preliminary mock-ups and the finalization of the probe. Main modeling and experimental results are presented. Moreover, alternative methods to calibration for nuclear heating rate measurements which are now possible with this new calorimeter are presented and discussed. (authors)

  3. Development, calibration, and experimental results obtained with an innovative calorimeter (CALMOS) for nuclear heating measurements

    International Nuclear Information System (INIS)

    Carcreff, Hubert; Cloute-Cazalaa, Veronique; Salmon, Laurent

    2012-01-01

    Nuclear heating inside an MTR reactor has to be known in order to be able to control samples temperature during irradiation experiments. An R and D program has been carried out at CEA to design a new type of in-core calorimetric system. This new development, started in 2002, has for main objective to manufacture a calorimeter suitable to monitoring nuclear heating inside the 70 MWth OSIRIS material testing reactor operated by CEA's Nuclear Energy Division at the Saclay research center. An innovative calorimetric probe, associated to a specific handling system, has been designed to provide access to measurements both along the fissile height and on the upper part of the core, where nuclear heating still remains high. Two mock-ups of the probe were manufactured and tested in 2005 and 2009 in ex-core area of OSIRIS reactor for process validation, while a displacement system has been especially studied to move the probe along a given axial measurement range. This paper deals with the development, tests on preliminary mock-ups and the finalization of the probe. Main modeling and experimental results are presented. Moreover, alternative methods to calibration for nuclear heating rate measurements which are now possible with this new calorimeter are presented and discussed. (authors)

  4. The economics of nuclear power: four essays on the role of innovation and industrial organization

    International Nuclear Information System (INIS)

    Berthelemy, Michel

    2013-01-01

    This thesis studies the role of innovation and industrial structures in the nuclear power sector. The analysis of innovation is based on the use of patent data as a measure of innovation effort. On the one hand, we study the determinants of innovation and, on the other hand, its impact on operating and safety performance of existing nuclear reactors and on construction costs. We show that nuclear safety regulation can induce innovation and improve safety performance, but at the same time contributes to increases in construction costs. The analysis of the role of industrial structures allows us to study the impact of learning by doing opportunities both for construction and operation of reactors, as well as the effect of electricity market liberalization on operating performance. In particular, we show that the divestiture of electricity production and distribution activities induces a substantial improvement in the availability of nuclear reactors. (author)

  5. Proceedings of the NEA International Workshop on the Nuclear Innovation road-map (NI2050)

    International Nuclear Information System (INIS)

    Ha, Jaejoo HA; Deffrennes, Marc; ); Tromm, Walter; Ait Abderrahim, Hamid; Fernandez Fernandez, Alberto; Speranzini, Robert; Jeong, Ik; Lee, Gye Seok; Castelao Lopez, Carlos; Pasamehmetoglu, Kemal; Puska, Eija Karita; Cordier, Pierre-Yves; Horvath, Akos; Agostini, Pietro; Kamide, Hideki; Nakatsuka, Toru; Roelofs, Ferry; Wrochna, Grzegorz; Zezula, Lubor; Rayment, Fiona; Cizelj, Leon; Zimmermann, Martin A.; Schmitz, Bruno; Martin-Ramos, Manuel; Andreeva-Andrievskaya, Lyudmila N.; Monti, Stefano; ); Paillere, Henri; ); Caron-Charles, Marylise; Gulliford, Jim; ); Breest, Axel; ); McGrath, Margaret; Bignan, Gilles

    2015-07-01

    The two-day workshop held at the OECD Headquarters in Paris on 7-8 July 2015, brought together some of the leading experts in the field of nuclear fission research, development and demonstration. The purpose was to launch the NEA Nuclear Innovation 2050 Initiative, aiming, after a first survey phase, at producing a road-map of main priority research programmes and infrastructures necessary to support the role nuclear energy may play in the low carbon power sector of the future. This might then further lead to some ad-hoc cooperation frameworks that help to effectively implement key priorities coming out of the road-mapping. The workshop was organised into the following five sessions: 1 - Opening session on NI2050: vision and main objectives; 2 - National presentations on nuclear fission research and innovation activities (programmes, infrastructures, budgets); 3 - Presentations on some existing international nuclear fission road-maps and co-operation frameworks; 4 - Defining the way forward for NI2050: survey, road-mapping and priorities and co-operation; 5 - Open discussion. These proceedings bring together the available presentations (slides) given during the workshop: 1. Opening session on NI2050: vision and main objectives: Setting the scene: NEA/IEA Nuclear Energy road-map 2050 (Jaejoo Ha); Proposed scope and organisation of the NI2050 project launching, taking stock of the IEA Energy RD and D survey and going further (Marc Deffrennes); 2. National presentations on nuclear fission research and innovation activities (programmes, infrastructures, budgets): Overview of German Situation with focus on HGF NUSAFE - HELMHOLTZ (W. Tromm); Investing in Nuclear Innovation in Belgium - SCKCEN (Hamid Ait Abderrahim and Alberto Fernandez); Canadian Nuclear Laboratories: Nuclear S and T and Innovation (R. Speranzini); ROK's Nuclear Policies and R and D Programs - KAERI (Ik Jeong and Lee Gye Seok); R and D Spanish Nuclear Platform (C. Castelao); NOE-NE Programs and

  6. Nuclear power system

    International Nuclear Information System (INIS)

    Yampolsky, J.S.; Cavallaro, L.; Paulovich, K.F.; Schleicher, R.W.

    1989-01-01

    This patent describes an inherently safe modular nuclear power system for producing electrical power at acceptable efficiency levels using working fluids at relatively low temperatures and pressures. The system comprising: a reactor module for heating a first fluid; a heat exchanger module for transferring heat from the first fluid to a second fluid; a first piping system effecting flow of the first fluid in a first fluid circuit successively through the reactor module and the heat exchanger module; a power conversion module comprising a turbogenerator driven by the second fluid, and means for cooling the second fluid upon emergence thereof from the turbogenerator; a second piping system comprising means for effecting flow of the second fluid in a second fluid circuit successively through the heat exchanger module and the power conversion module; and a plurality of pits for receiving the modules

  7. The IAEA International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO): Status, Ongoing Activities and Outlook

    International Nuclear Information System (INIS)

    Kupitz, Juergen; Depisch, Frank; Azpitarte, Osvaldo

    2004-01-01

    The IAEA General Conference (2000) invited 'all interested Member States to combine their efforts under the aegis of the IAEA in considering the issues of the nuclear fuel cycle, in particular by examining innovative and proliferation-resistant nuclear technology'. In response to this invitation, the IAEA initiated the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). The overall objectives of INPRO are to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21. century in a sustainable manner, and to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles. In order to fulfil these objectives, the first phase of INPRO dealt with the development of a methodology to assess and compare the performance of innovative nuclear energy systems. This methodology includes the definition of a set of Basic principles, User requirements and Criteria to be met in different areas (Economics, Sustainability and environment, Safety of nuclear installations, Waste management and Proliferation resistance). The result of this phase was presented in a IAEA document (IAEA-TECDOC-1362, Guidance for the evaluation of innovative nuclear reactors and fuel cycles) issued in June 2003. In the present phase of the project, case studies are being carried out in order to validate and improve the developed methodology and the defined set of Basic principles, User requirements and Criteria. This paper shortly summarizes the results published in IAEA-TECDOC-1362 and the ongoing actions related to case studies. Finally, an outlook of INPRO activities is presented. (authors)

  8. Sectoral innovation system foresight in practice: Nordic facilities management foresight

    DEFF Research Database (Denmark)

    Andersen, Per Dannemand; Dahl Andersen, Allan; Jensen, Per Anker

    2014-01-01

    a proposal for a common Nordic facilities management research agenda. The paper finds that three elements of the innovation system literature are of particular interest for the practice of foresight: innovation systems and context dependency, learning and user-producer interactions, and the role of knowledge...... and knowledge production. These elements are embedded into a simple sectoral innovation system model (including actors, knowledge flows, and the strategic environment).......A number of studies have explored the interconnection between the foresight literature and the innovation system literature. This paper adds to these studies by investigating how theoretical elements of the innovation system approach can contribute to the design and practice of foresight processes...

  9. Nuclear criticality information system

    International Nuclear Information System (INIS)

    Koponen, B.L.; Hampel, V.E.

    1981-01-01

    The nuclear criticality safety program at LLNL began in the 1950's with a critical measurements program which produced benchmark data until the late 1960's. This same time period saw the rapid development of computer technology useful for both computer modeling of fissile systems and for computer-aided management and display of the computational benchmark data. Database management grew in importance as the amount of information increased and as experimental programs were terminated. Within the criticality safety program at LLNL we began at that time to develop a computer library of benchmark data for validation of computer codes and cross sections. As part of this effort, we prepared a computer-based bibliography of criticality measurements on relatively simple systems. However, it is only now that some of these computer-based resources can be made available to the nuclear criticality safety community at large. This technology transfer is being accomplished by the DOE Technology Information System (TIS), a dedicated, advanced information system. The NCIS database is described

  10. National Innovation Systems in Brazil, Russia, India, China and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Brazil, Russia, India, China and South Africa (BRICS) have put innovation at the centre of their development strategies. In each case, however, there exists scant knowledge about the national innovation system and its impact on the economy. This grant will support a comparative analysis of innovation systems in the five ...

  11. An assessment method for system innovation and transition (AMSIT)

    NARCIS (Netherlands)

    Bos, Marc W.; Hofman, Erwin; Kuhlmann, Stefan

    2016-01-01

    To address comprehensive system innovations that may occur in a future transition, a suitable ex ante assessment method is required. The technological innovation system approach is useful for the retrospective study of the conditions for success or failure of innovation trajectories, and the

  12. National innovation system as a focus of state in-novation policy

    Directory of Open Access Journals (Sweden)

    Olexandr Fedirko

    2007-02-01

    Full Text Available The article offers a systematic review of tools and mechanisms utilised by developed countries (United States, Japan, EU to pursue their innovation policies, and classifies methods which support innovation and ways that help to strengthen the innovation capacity. It describes the evolution of research and development (R&D policy in other countries. The article examines arguments in support of a trend in the innovation policy which promotes the development of national innovation systems. It reviews the substance and components of the national innovation system. It also explores the trends of R&D cooperation. The article outlines the variety of domestic tools which regulate innovation in EU countries (framework programs, the European Research Area Initiative.

  13. Policies for the Energy Technology Innovation System (ETIS)

    NARCIS (Netherlands)

    Grubler, A.; Aguayo, F.; Gallagher, K.; Hekkert, M.P.; Jiang, K.; Mytelka, L.; Neij, L.; Nemet, G.; Wilson, C.

    2012-01-01

    Innovation and technological change are integral to the energy system transformations described in the Global Energy Assessment (GEA) pathways. Energy technology innovations range from incremental improvements to radical breakthroughs and from technologies and infrastructure to social institutions

  14. Innovative designs and technologies of nuclear power. IV International scientific and technical conference. Book of abstracts

    International Nuclear Information System (INIS)

    2016-01-01

    IV International scientific and technical conference “Innovative designs and technologies of nuclear power” has been organized and is conducted by JSC NIKIET with support from Rosatom State Corporation, the International Atomic Energy Agency, the Russian Academy of Sciences and the Nuclear Society of Russia. The conference topics include: innovative designs of nuclear facilities for various applications, nuclear fuel and new materials, closed fuel cycle technologies, SNF and RW management, technological answers to nonproliferation problems, small power reactors (stationary, transportable, floatable, propulsion, space), integrated codes of a new generation for safety analysis of nuclear power plants and fuel cycles, controlled fusion [ru

  15. Inter-organisational knowledge transfer: building and sustaining the sources of innovation in nuclear safety and security

    International Nuclear Information System (INIS)

    Staude, Fabio; Ramirez, Matias

    2013-01-01

    The current complexity of innovation processes has led to an understanding that the models of innovation have changed from linear model to a model characterised by multiple interactions and complex networks. Within this more multifaceted environment, has emerged a new set of actors, generally termed as intermediaries, performing a variety of tasks in the innovation process. The innovation literature has recognised various important supporting activities performed by intermediaries, by linking and facilitating the movement of information and knowledge between actors within an innovation system, in order to fill information gaps. Complementary, we make the assumption that the intermediary can assume a more central role in the innovation process, performing activities beyond to filling information gaps, since they intervene to create, prioritise, and articulate meaning to practices. Under this argument, this paper explores how intermediaries work in making innovation happen in the Brazilian nuclear safety and security area, demonstrating the influence of intermediary organisations in improving nuclear regulatory activities. We make sense of these processes by analyzing intermediary roles in the recent regulatory activities improvements, specifically those related to the practices involving radiation sources in medicine. Thus, through an empirical case study, this paper examines the issue of intermediation in a wide sense, including strategic activities preformed by intermediaries, associated with accessing, diffusing, coordinating and enabling knowledge activities. (author)

  16. INNOVATIONS – PREREQUISITE FOR PENSION SYSTEMS ADEQUACY

    Directory of Open Access Journals (Sweden)

    Ivanka Daneva

    2017-09-01

    Full Text Available The paper examines the views of Bulgarian and foreign researchers on the essential characteristics of the pension system adequacy and its modern characteristics. Adequacy is highlighted by financial security and equivalence in pension insurance. A definition of adequate income in the form of a pension is proposed. The main exogenous factors characterizing the need for modern innovations in the pension system have been characterized. The main directions in which the changes in the pension insurance models are taking place are defined. It is argued that in every modern state the generosity of the social security system is predetermined by the relative effectiveness of the alternative to the pay-as-you-go system.

  17. Nuclear reactor sealing system

    International Nuclear Information System (INIS)

    McEdwards, J.A.

    1983-01-01

    A liquid metal-cooled nuclear reactor sealing system is disclosed. The nuclear reactor includes a vessel sealed at its upper end by a closure head. The closure head comprises at least two components, one of which is rotatable; and the two components define an annulus therebetween. The sealing system includes at least a first and second inflatable seal disposed in series in an upper portion of the annulus. The system further includes a dip seal extending into a body of insulation located adjacent a bottom portion of the closure head. The dip seal comprises a trough formed by a lower portion of one of the components, and a seal blade pendently supported from the other component and extending downwardly into the trough. A body of liquid metal is contained in the trough which submerges a portion of the seal blade. The seal blade is provided with at least one aperture located above the body of liquid metal for providing fluid communication between the annulus intermediate the dip seal and the inflatable seals, and a body of cover gas located inside the vessel. There also is provided means for introducing a purge gas into the annulus intermediate the inflatable seals and the seal blade. The purge gas is introduced in an amount sufficient to substantially reduce diffusion of radioactive cover gas or sodium vapor up to the inflatable seals. The purge gas mixes with the cover gas in the reactor vessel where it can be withdrawn from the vessel for treatment and recycle to the vessel

  18. The nuclear reactor systems

    International Nuclear Information System (INIS)

    Bacher, P.

    2008-01-01

    This paper describes the various nuclear reactor systems, starting with the Generation II, then the present development of the Generation III and the stakes and challenges of the future Generation IV. Some have found appropriate to oppose reactor systems or generations one to another, especially by minimizing the enhancements of generation III compared to generation II or by expecting the earth from generation IV (meaning that generation III is already obsolete). In the first part of the document (chapter 2), some keys are given to the reader to develop its proper opinion. Chapter 3 describes more precisely the various reactor systems and generations. Chapter 4 discusses the large industrial manoeuvres around the generation III, and the last chapter gives some economical references, taking into account, for the various means of power generation, the impediments linked to climate protection

  19. Technology Transmission Across National Innovation Systems

    DEFF Research Database (Denmark)

    Haakonsson, Stine Jessen; Slepniov, Dmitrij

    This paper advances our understanding of how technology upgrading in the Chinese wind turbine industry is linked to internationalisation of Danish component suppliers. In order to grasp the interlinkages and implications hereof, the paper combines perspectives of global value chains (GVC), national.......e. linking up with global suppliers in the wind turbine global value chain, and the new role of component suppliers as technology transmitters across national innovation systems into emerging markets. Conceptually, the paper contributes to understanding how technological catching up in value chains links...

  20. Technology Transmission Across National Innovation Systems

    DEFF Research Database (Denmark)

    Haakonsson, Stine Jessen; Slepniov, Dmitrij

    2018-01-01

    This paper advances our understanding of how technology upgrading in the Chinese wind turbine industry is linked to internationalisation of Danish component suppliers. In order to grasp the interlinkages and implications hereof, the paper combines perspectives of global value chains (GVC), national.......e. linking up with global suppliers in the wind turbine global value chain, and the new role of component suppliers as technology transmitters across national innovation systems into emerging markets. Conceptually, the paper contributes to understanding how technological catching up in value chains links...

  1. INFORMATION SYSTEMS (IS AND INNOVATION: BIBLIOMETRIC STUDY

    Directory of Open Access Journals (Sweden)

    Fernanda de Carvalho Pereira

    2016-04-01

    Full Text Available Information Systems (IS and innovation are two issues currently discussed. The purpose of this articleis to verify the completeness of the literature with regard to the treatment of these two topics together. With this purpose, a bibliometric research was conducted using bases in ISI Web of Science, Scopus and Scielo. 134 articles were analyzed and generated some results, such as: predominance of publications from Brazil and the United States of America; higher recurrence of the Enterprise Resource Planning citation (ERP in comparison to other tools; and predominance of practical researches, which apply concepts from the literature in real situations.

  2. International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). Introduction and status

    International Nuclear Information System (INIS)

    2002-01-01

    INPRO is a response to the invitation of the IAEA General Conference to combine efforts in considering the issues of the nuclear fuel cycle, in particular by examining innovative and proliferation resistant nuclear technology. The objective if INPRO is to support the safe, sustainable, economic and proliferation-resistant use of nuclear technology to meet the global energy needs of the 21st century

  3. Current status and future direction of INPRO (International Project on Innovative Nuclear Reactors and Fuel Cycles)

    International Nuclear Information System (INIS)

    Omoto, Akira; Moriwaki, Masanao; Sugimoto, Jun; Nakai, Ryodai

    2007-01-01

    INPRO is an international forum to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles so as to ensure that nuclear energy is available to contribute to a sustainable development of the human, and IAEA becomes the secretariat for INPRO. The number of the members counts 28 by recent participation of Japan and U.S.A. now, and it is a unique forum to bring together both technology users and technology holders, that includes 5 countries which do not still have nuclear power generation. Until now it was phase I, and focused its activities to make clear the desired characteristics of nuclear energy system toward the future, and to develop methodology to evaluate various nuclear energy systems, but it shifted to phase II from July, 2006, and it planned three areas of activities such as improvement of evaluation methodology, institutional/infrastructure oriented activities and a collaborative project of technology development. Current status and future direction of INPRO was presented to encourage Japan in significant contributions of these three areas. (T. Tanaka)

  4. Review of the ISTC innovative nuclear programs (information review)

    Energy Technology Data Exchange (ETDEWEB)

    Tocheny, L. V. [ISTC - International Science and Technology Center, Moscow (Russian Federation)

    2006-07-01

    The information will be included in the review, with special attention on details of corresponding experimental programs: Novel reactor concepts, fit with GIF and INPRO: Supercritical Pressure Water aspects, Heavy metals (Lead, Lead-Bismuth) technology, HTGR critical modeling, engineering. Molten salts. Reactor data benchmarking, Accelerator Driven Systems (experimental modelling), Nuclear data measurements, Severe accident study (corium modelling, QUENCH, Chernobyl), Experimental Analysis of Hydraulically Induced Vibrations in Compact Curling Tube Steam Generators. (authors)

  5. Innovative applications of technology for nuclear power plant productivity improvements

    International Nuclear Information System (INIS)

    Naser, J. A.

    2012-01-01

    The nuclear power industry in several countries is concerned about the ability to maintain high plant performance levels due to aging and obsolescence, knowledge drain, fewer plant staff, and new requirements and commitments. Current plant operations are labor-intensive due to the vast number of operational and support activities required by commonly used technology in most plants. These concerns increase as plants extend their operating life. In addition, there is the goal to further improve performance while reducing human errors and increasingly focus on reducing operations and maintenance costs. New plants are expected to perform more productively than current plants. In order to achieve and increase high productivity, it is necessary to look at innovative applications of modern technologies and new concepts of operation. The Electric Power Research Inst. is exploring and demonstrating modern technologies that enable cost-effectively maintaining current performance levels and shifts to even higher performance levels, as well as provide tools for high performance in new plants. Several modern technologies being explored can provide multiple benefits for a wide range of applications. Examples of these technologies include simulation, visualization, automation, human cognitive engineering, and information and communications technologies. Some applications using modern technologies are described. (authors)

  6. Proposal of system for work with innovative ideas, opportunities and innovations in the company

    Directory of Open Access Journals (Sweden)

    Viliam Lendel

    2013-01-01

    Full Text Available The paper is based on a detailed analysis of literature and conducted research to create a system for work with innovative ideas, opportunities and innovations in company. This paper reports the main results of the research that authors conducted on a sample of 318 respondents. Main purpose of the research was to identify the key elements of the use of innovation in marketing management system for work with innovation, opportunities, knowledge and application of lateral thinking. This paper deals with the identification of the main preconditions for successful use of the proposed system for work with innovative ideas, opportunities and innovations in business. Attention is also paid to the identification of the most common problems in the use of innovation and innovative ideas in business. The paper presents a series of recommendations to minimize the described problems and serves valuable tool for marketing manager for the efficient use of labour with innovative ideas, opportunities, innovation and expertise in the company. Following methods were used for research: comparative method of qualitative evaluation method, the method of structured and structured interviews, observation method, the method of document analysis (method of content analysis and questionnaire method.

  7. International trend on development of an innovative nuclear reactor and its meanings

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Kazuaki [Institute of Applied Energy, Tokyo (Japan)

    2002-01-01

    On outlining on flow of so-called innovative or new type nuclear reactor, at first, an improvement line of large-scale WHR, contains ABWR-2, APWR and its successive APWR+ in Japan, APR in Korea, and EPR in Europe, all of which have super large-scale output of 1.5MKW to use their scale merits in maximum. And, the second type is fast reactor only in Russia and Japan which are under reviewing its actual using plan of its already established development route. Furthermore, nuclear industry in the world is allowable to say a has-been industry, even its R and D system is decrepit, its researchers are much aged, and even utilization and foreign development of nuclear energy as a protecting measure of global warming are pronounced its self-control at the Bonn Conference in last year. However, the Generation 4 International Forum led by U.S.A. since early of 2000 and the Innovative Reactor Development Program (INPRO) through the International Atomic Energy Association (IAEA) due to initiative of Russia are planned to cooperatively promote their programs. In order to obtain any priority on small-scale production considerable technical jump is required or R and D and technical development elements with technical gap is necessary, which must be proved establishment of a target to overcome their scale demerit. (G.K.)

  8. Nuclear reactor refueling system

    International Nuclear Information System (INIS)

    Wade, E.E.

    1978-01-01

    A system for transferring fuel assemblies between a nuclear reactor core and a fuel storage area while the fuel assembies remain completely submerged in a continuous body of coolant is described. The system comprises an in-vessel fuel transfer machine located inside the reactor vessel and an ex-vessel fuel transfer machine located in a fuel storage tank. The in-vessel fuel transfer machine comprises two independently rotatable frames with a pivotable fuel transfer apparatus disposed on the lower rotatable frame. The ex-vessel fuel transfer machine comprises one frame with a pivotable fuel transfer apparatus disposed thereon. The pivotable apparatuses are capable of being aligned with each other to transfer a fuel assembly between the reactor vessel and fuel storage tank while the fuel assembly remains completely submerged in a continuous body of coolant. 9 claims, 7 figures

  9. INNOVATIVE SYSTEM OF FIXED CAPITAL REPRODUCTION

    Directory of Open Access Journals (Sweden)

    G. S. Merzlikina

    2015-01-01

    Full Text Available The article presents the basic problems of fixed capital reproduction. There are considered a significant depreciation of fixed assets of Russian enterprises. There are presented arguments in favor of urgency of the problem of reproduction of fixed assets of the Russian Federation. The paper presents theoretical evidence base basic types of fixed capital reproduction. There are identified all possible sources of simple and expanded reproduction of capital. There are considered the role of value and feasibility of depreciation in the formation of Reserve reproduction. Suggested the formation of accounting and analytical management provision fixed capital, as well as an innovative system of fixed capital reproduction, which implies the creation of depreciation , capital, revaluation, liquidation reserves. The algorithm of business valuation based on an innovative system of capital reproduction. The algorithm and the possibility of formation of reserves are considered on a concrete example of one of the industrial enterprises of the city Volgograd. On the basis of the algorithm presented calculations of business valuation of the enterprise. Calculations have shown an increase in value of the business condition of the formation of special reserves, which underlines the necessary and urgency of their formation in accounting policy and economy organizations and enterprises of Russia as a whole.

  10. Nuclear fuel cycle system analysis

    International Nuclear Information System (INIS)

    Ko, W. I.; Kwon, E. H.; Kim, S. G.; Park, B. H.; Song, K. C.; Song, D. Y.; Lee, H. H.; Chang, H. L.; Jeong, C. J.

    2012-04-01

    The nuclear fuel cycle system analysis method has been designed and established for an integrated nuclear fuel cycle system assessment by analyzing various methodologies. The economics, PR(Proliferation Resistance) and environmental impact evaluation of the fuel cycle system were performed using improved DB, and finally the best fuel cycle option which is applicable in Korea was derived. In addition, this research is helped to increase the national credibility and transparency for PR with developing and fulfilling PR enhancement program. The detailed contents of the work are as follows: 1)Establish and improve the DB for nuclear fuel cycle system analysis 2)Development of the analysis model for nuclear fuel cycle 3)Preliminary study for nuclear fuel cycle analysis 4)Development of overall evaluation model of nuclear fuel cycle system 5)Overall evaluation of nuclear fuel cycle system 6)Evaluate the PR for nuclear fuel cycle system and derive the enhancement method 7)Derive and fulfill of nuclear transparency enhancement method The optimum fuel cycle option which is economical and applicable to domestic situation was derived in this research. It would be a basis for establishment of the long-term strategy for nuclear fuel cycle. This work contributes for guaranteeing the technical, economical validity of the optimal fuel cycle option. Deriving and fulfillment of the method for enhancing nuclear transparency will also contribute to renewing the ROK-U.S Atomic Energy Agreement in 2014

  11. Towards sustainable innovation : analysing and dealing with systemic problems in innovation systems

    NARCIS (Netherlands)

    Wieczorek, Anna

    2014-01-01

    Technological Innovation System (TIS) perspective became a popular tool to analyse and understand the diffusion of particular, mostly renewable, technologies and their contribution to sustainability transitions. The core of the current TIS studies comprise of the analyses of the emergent structural

  12. Understanding innovation system build up. The rise and fall of the Dutch PV Innovation System

    International Nuclear Information System (INIS)

    Negro, S.O.; Vasseur, V.; Hekkert, M.P.; Van Sark, W.G.J.H.M.

    2009-01-01

    Renewable energy technologies have a hard time to break through in the existing energy regime. In this paper we focus on analysing the mechanisms behind this problematic technology diffusion. We take the theoretical perspective of innovation system dynamics and apply this to photovoltaic solar energy technology (PV) in the Netherlands. The reason for this is that there is a long history of policy efforts in The Netherlands to stimulate PV but results in terms of diffusion of PV panels is disappointingly low, which clearly constitutes a case of slow diffusion. The history of the development of the PV innovation system is analysed in terms of seven key processes that are essential for the build up of innovation systems. We show that the processes related to knowledge development are very stable but that large fluctuations are present in the processes related to 'guidance of the search' and 'market formation'. Surprisingly, entrepreneurial activities are not too much affected by fluctuating market formation activities. We relate this to market formation in neighbouring countries and discuss the theoretical implications for the technological innovation system framework.

  13. Innovation Priorities in Nuclear and Radiation Technologies in Russia. View from Skolkovo

    International Nuclear Information System (INIS)

    Fertman, A.; Kovalevich, D.; Turtikov, V.; Zaytseva, N.

    2012-01-01

    The direction for the modernization and technological development of 'Nuclear Technologies' sector of the Russian economy comprises a group of scientific and engineering subjects (atomic engineering, technologies on the basis of radiation, change of properties of materials, radiation resistant microelectronics, etc.), and serves as the foundation of one of the most high-tech industries. The innovative development of nuclear technologies is an integral condition for the strengthening (and in some directions of conquering) a country's position as a global technological leader and preservation of defensive capability of the nation. For this reason, nuclear technologies became one of the priority areas for the activity of the Skolkovo Center. The wide opportunities offered by the application of nuclear technologies were already clear at the deployment stage of the 'Nuclear Project - 1'. In 1958, at the 2nd International conference on the peaceful use of nuclear energy in Geneva, the USSR presented more than 200 reports and communiques in all civil use of atomic energy directions.One of the major results of the development of the nuclear branch have become the developments in the sphere of control of radiation and magnetic fields (radiation technologies). This group of technologies have actively developed in collaboration with design and manufacturing of different types of equipment, including accelerators, neutron generators, lasers, HF-systems, detectors of particles and radiation, microscopes and telescopes, microwave microelectronics, etc. Today these technologies and equipment are used in a variety of other (non-power and not military) markets - and the list of these markets grows constantly. Among the fastest growing ones, we can list the markets of nuclear medicine, sterilization and disinfection, safety and non-destructive testing, ecology and water processing, extraction and the processing of minerals. Historically, the development of nuclear technologies

  14. Innovative configuration of a hybrid nuclear-solar tower power plant

    International Nuclear Information System (INIS)

    Popov, Dimityr; Borissova, Ana

    2017-01-01

    This paper proposes a combination of a nuclear and a CSP plant and performs a thermodynamic analysis of the potential benefit. Most of today's operating nuclear reactor systems are producing saturated steam at relatively low pressure. This, in turn, limits their thermodynamic efficiency. Superheating of nuclear steam with solar thermal energy has the potential to overcome this drawback. Accordingly, an innovative configuration of a hybrid nuclear-CSP plant is assembled and simulated. It brings together pressurized water reactor and solar tower. The solar heat is transferred to nuclear steam to raise its temperature. Continuous superheating is provided through thermal energy storage. The results from design point calculations show that solar superheating has the potential to increase nuclear plant electric efficiency significantly, pushing it to around 37.5%. Solar heat to electricity conversion efficiency reaches unprecedented rates of 56.2%, approaching the effectiveness of the modern combined cycle gas turbine plants. Off-design model was used to simulate 24-h operation for one year by simulating 8760 cases. Due to implementation of thermal energy storage non-stop operation is manageable. The increased efficiency leads to solar tower island installed cost reductions of up to 25% compared to the standalone CSP plant, particularly driven by the smaller solar field. - Highlights: • External superheating of nuclear steam with solar thermal energy is proposed. • Novel hybrid plant configuration is assembled, modeled and simulated. • Substantial increase of nuclear plant capacity and efficiency is reported. • Superior efficiency of solar heat to electricity conversion is achieved. • Substantial decrease of solar field investment cost is reported.

  15. A Blueprint for Innovation to Achieve Health System Transformation.

    Science.gov (United States)

    Snowdon, Anne W

    2017-01-01

    Global health systems are challenged by escalating costs and growing demands for care created by the demands of aging populations and rising rates of chronic illness which place unsustainable pressure on health systems to meet population health needs. To overcome these challenges, transformational change is needed to strengthen health system performance and sustainability. Innovation is widely viewed as the strategy to drive transformational change in health systems; yet to date, innovation has lacked a clearly defined focus or agenda to achieve transformation. An actionable innovation agenda is needed to achieve transformational change for health systems. The key conditions for success as an innovation strategy are examined, including clearly defined innovation objectives, key milestones, and actionable steps every system stakeholder must pursue in order to guide the innovation agenda and ultimately accelerate the transformational changes needed for a sustainable healthcare system that delivers value to populations.

  16. Social Innovation Systems for Building Resilient Communities

    Directory of Open Access Journals (Sweden)

    Donagh Horgan

    2018-02-01

    Full Text Available Social innovation—while not a new practice in itself—has re-emerged since the global financial crisis in 2008 as an approach to solving our collective intractable global challenges. Despite its renewed popularity, there is no common definition for the phenomenon, not least in the context of its application when planning the built environment or civic infrastructures. This paper seeks to position the practice of social innovation as a means for holistic collaboration between disciplines to develop sustainable social ecologies and systems that provide for resilient communities. It tests a hypothesis that social innovation develops over phases (feedback loops—that of the network, framework and architecture phase—to design for social, environmental and economic resilience. It looks to theories emerging in other subject areas like sociology and technology, that can inform its application in a planning context, such as Actor-Network and Adaptive Complexity theories. It explores the mechanisms that provide for resilience through action research and engagement with a number of international case studies and scenarios. Lastly, the paper identifies further avenues of research pertaining to networks, frameworks and architectures to develop models of best practice for inclusive, sustainable and iterative community development.

  17. The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO): General description and implications for the research reactor infrastructure needed for R and D

    International Nuclear Information System (INIS)

    Sokolov, Yury A.

    2005-01-01

    The substantial growth in 21st century energy supplies needed to meet sustainable development goals has been emphasized by UNCSD, WSSD, IPCC and others. This will be driven by continuing population growth, economic development and aspiration to provide access to modern energy systems to the 1,6 billion people now without such access, the growth demand on limiting greenhouse gas emissions, and reducing the risk of climate change. A key factor to the future of nuclear power is the degree to which innovative nuclear technologies can be developed to meet challenges of economic competitiveness, safety, waste and proliferation concerns. There are two major international initiatives in the area of innovative nuclear technology: the IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycle (INPRO) and the Generation IV International Forum. With INPRO some scenarios of future energy needs were identified and the methodology for holistic assessment of the innovative nuclear energy systems (INS), which can be developed to meet these scenarios, was developed.. The current status of the INPRO project and details of the INPRO methodology will be reported. The research needs identified due to Agency's activities on innovative nuclear system development assume the use of research reactors. The areas crucial for the development of INS which critically dependent of the RR experiments and following requirements addressed to the RR will be discussed. These areas include the development of advanced fuel and core materials for proposed innovative power reactor concepts. (author)

  18. European BWR R and D cluster for innovative passive safety systems

    International Nuclear Information System (INIS)

    Hicken, E.F.; Lensa, W. von

    1996-01-01

    The main technological innovation trends for future nuclear power plants tend towards a broader use of passive safety systems for the prevention, mitigation and managing of severe accident scenarios. Several approaches have been undertaken in a number of European countries to study and demonstrate the feasibility and charateristics of innovative passive safety systems. The European BWR R and D Cluster combines those experimental and analytical efforts that are mainly directed to the introduction of passive safety systems into boiling water reactor technology. The Cluster is grouped around thermohydraulic test facilities in Europe for the qualification of innovative BWR safety systems, also taking into account especially the operating experience of the nuclear power plant Dodewaard and other BWRs, which already incorporated some passive safety features. The background, the objectives, the structure of the project and the work programme are presented in this paper as well as an outline of the significance of the expected results. (orig.) [de

  19. Portfolio of patents after the Brazilian Innovation Act: the case of the Comissao Nacional de Energia Nuclear - CNEN (Brazilian National Nuclear Energy Commission)

    International Nuclear Information System (INIS)

    Pereira, Gustavo Jose; Guimaraes, Regia Ruth Ramirez; Perry, Katia da Silva Peixoto; Teruya, Dirceu Yoshikazu

    2013-01-01

    The process of technological development is due to the need to promote a solution to a particular problem of agents, compete with products and/or processes on the international market and to promote scientific advancement. Thus, the patent system is a repository of knowledge for protection, for promotion of diffusion through licensing agreements and an indicator of technological development. In 2004, the Brazilian Government enacted the Brazilian Innovation Act and the mechanisms were improved for cooperation between firms and public education, science and technology organisations and also promoted the commercialisation of technology produced by public education, science and technology organisations and the mandatory establishment of Technology Transfer Offices. The Comissao Nacional de Energia Nuclear (CNEN) is a federal agency responsible for basic and applied research in the field of nuclear technology and has used the patent system since the 1980s to protect its knowledge. With the advent of the Innovation Act in 2004, there was a significant boost in requests for patents in CNEN which also established an internal set of normative acts and created a System of Innovation Management and Technology Innovation Offices in its research institutes to support management and dissemination of knowledge. The aim of this case study is to present the profile of the requests for patents by CNEN before and after the enactment of the Brazilian Innovation Act covering the period of time between 1980 and 2010. (author)

  20. Innovation

    Science.gov (United States)

    EPA frames innovation as critical to the protection of human health and the environment through initiatives such as sustainable practices, innovative research, prize competitions, innovation awards, partnerships, and community activities.

  1. Nuclear reactor trip system

    International Nuclear Information System (INIS)

    Cook, B.M.

    1982-01-01

    Each parameter of the processes of a nuclear reactor and components operatively associated with it is monitored by a set of four like sensors. A trip system normally operates on a ''two out four'' configuration; i.e., to trip the reactor it is necessary that at least two sensors of a set sense an off-normal parameter. This assumes that all sensors are in normal operating condition. However, when a sensor is in test or is subject to maintenance or is defective or disabled, the ''two out of four''configuration would be reduced to a ''one out of three'' configuration because the affected sensor is taken out of service. This would expose the system to the possibility that a single sensor failure, which may be spurious, will cause a trip of the reactor. To prevent this, it is necessary that the affected sensor be bypassed. If only one sensor is bypassed, the system operates on a ''two out of three'' configuration. With two sensors bypassed, the sensing of an off-normal parameter by a third sensor trips the reactor. The by-pass circuit also disables the circuit coupling the by-passed sensor to the trip circuit. (author)

  2. Nuclear system vaporization

    International Nuclear Information System (INIS)

    Bougault, R.; Brou, R.; Colin, J.; Cussol, D.; Durand, D.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Nakagawa, T.; Peter, J.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Yuasa-Nakagawa, K.; Wieloch, A.

    1998-01-01

    A particular case of the hot nuclei de-excitation is the total nuclear dislocation into light particles (n, p, d, t, 3 He and α). Such events were first observed at bombarding energies lower than 100 MeV/nucleon due to high detection performances of the INDRA multidetector. The light system Ar + Ni was studied at several bombarding energies ranging from 32 to 95 MeV/nucleon. The events associated to a total vaporization of the system occur above the energy threshold of ∼ 50 MeV/nucleon. A study of the form of these events shows that we have essentially two sources. The excitation energy of these sources may be determined by means of the kinematic properties of their de-excitation products. A preliminary study results in excitation energy values of the order 10 - 14 MeV/nucleon. The theoretical calculation based on a statistical model modified to take into account high excitation energies and excited levels in the lightest nuclei predicts that the vaporization of the two partner nuclei in the Ar + Ni system takes place when the excitation energy exceeds 12 MeV/nucleon what is qualitatively in agreement with the values deduced from calorimetric analysis

  3. Nuclear medicine imaging system

    Science.gov (United States)

    Bennett, Gerald W.; Brill, A. Bertrand; Bizais, Yves J. C.; Rowe, R. Wanda; Zubal, I. George

    1986-01-01

    A nuclear medicine imaging system having two large field of view scintillation cameras mounted on a rotatable gantry and being movable diametrically toward or away from each other is disclosed. In addition, each camera may be rotated about an axis perpendicular to the diameter of the gantry. The movement of the cameras allows the system to be used for a variety of studies, including positron annihilation, and conventional single photon emission, as well as static orthogonal dual multi-pinhole tomography. In orthogonal dual multi-pinhole tomography, each camera is fitted with a seven pinhole collimator to provide seven views from slightly different perspectives. By using two cameras at an angle to each other, improved sensitivity and depth resolution is achieved. The computer system and interface acquires and stores a broad range of information in list mode, including patient physiological data, energy data over the full range detected by the cameras, and the camera position. The list mode acquisition permits the study of attenuation as a result of Compton scatter, as well as studies involving the isolation and correlation of energy with a range of physiological conditions.

  4. Innovations on nuclear energy - what can a small country contribute?

    International Nuclear Information System (INIS)

    Smodis, B.; Cercek, M.

    2007-01-01

    The Slovenian energy policy gives priority to the use of renewable energy resources. The energy policy defined in the Resolution on the National Energy Program adopted in 2004 foresees increasing of renewable energy (RES) sources in the primary energy consumption up to 12 % in 2010. The share of electricity from RES in total electricity production in the year 2004 was 29,1%. The share of RES in the primary energy balance in the same year was 10,7 %, with about half of this coming from hydropower. The electricity power produced by co-generation is about 8 % and expected to double by 2010. However, the Krsko nuclear power plant produces about one third of electricity needed within the country. Consequently, Slovenia has long tradition in research pertaining to development and utilisation of nuclear technology. Furthermore, Slovenian scientists have long been collaborating in numerous fusion-related projects. The major equipment available include an ion-beam accelerator with material diagnostics installations, the TRIGA nuclear research reactor, high-temperature furnaces, an advanced, dedicated fully-integrated high-resolution microscope facility for investigations of nano structured materials, computer systems for simulations, structural mechanical analysis and CAD, and much more. The researchers at the Jozef Stefan Institute study the processes that occur on plasma facing materials and in the edge plasma of tokamak reactors and involve neutral hydrogen/deuterium molecules. These molecules are typically vibrationally excited that influences respective reaction cross sections. Therefore, a special experimental technique for vibrational spectroscopy of molecules was developed and an ion beam analytical technique ERDA is used for characterizing hydrogen content on and beneath the material surface. Ion beam analytical methods are also being developed for the studies of plasma wall interaction processes such as erosion, deposition, fuel retention and material migration in

  5. Learning towards system innovation: Evaluating a systemic instrument

    NARCIS (Netherlands)

    Mierlo, B. van; Leeuwis, C.; Smits, R.; Klein Woolthuis, R.J.A.

    2010-01-01

    In this paper we develop an analytical framework for studying learning processes in the context of efforts to bring about system innovation by building new networks of actors who are willing to work on a change towards sustainable development. We then use it to evaluate two specific intervention

  6. Health System Transformation through a Scalable, Actionable Innovation Strategy.

    Science.gov (United States)

    Snowdon, Anne

    2017-01-01

    The authors who contributed to this issue of Healthcare Papers have provided rich insights into a promising innovation agenda to support transformational change aimed at achieving high-performing, person-centric health systems that are sustainable and deliver value. First and foremost, the commentaries make clear that a focused innovation agenda with defined goals, objectives and milestones is needed, if innovation is to be a viable and successful strategy to achieve health system transformation. To date, innovation has been a catch-all term for solving the many challenges health systems are experiencing. Yet, innovation on its own cannot fix all the ills of a health system; strategic goals and objectives are needed to define the way forward if innovation is to achieve value for Canadians. To this end, the authors identify goals and objectives that are worthy of serious consideration by all health system stakeholders.

  7. Nuclear data information system for nuclear materials

    International Nuclear Information System (INIS)

    Fujita, Mitsutane; Noda, Tetsuji; Utsumi, Misako

    1996-01-01

    The conceptual system for nuclear material design is considered and some trials on WWW server with functions of the easily accessible simulation of nuclear reactions are introduced. Moreover, as an example of the simulation on the system using nuclear data, transmutation calculation was made for candidate first wall materials such as 9Cr-2W steel, V-5Cr-5Ti and SiC in SUS316/Li 2 O/H 2 O(SUS), 9Cr-2W/Li 2 O/H 2 O(RAF), V alloy/Li/Be(V), and SiC/Li 2 ZrO 3 /He(SiC) blanket/shield systems based on ITER design model. Neutron spectrum varies with different blanket/shield compositions. The flux of low energy neutrons decreases in order of V< SiC< RAF< SUS blanket/shield systems. Fair amounts of W depletion in 9Cr-2W steel and the increase of Cr content in V-5Cr-5Ti were predicted in SUS or RAF systems. Concentration change in W and Cr is estimated to be suppressed if Li coolant is used in place of water. Helium and hydrogen production are not strongly affected by the different blanket/shield compositions. (author)

  8. Local innovation systems in Poland - the beginning of the road

    Directory of Open Access Journals (Sweden)

    Dziemianowicz Wojciech

    2017-06-01

    Full Text Available Local innovation systems (LIS constitute a relatively new term as usually the discussion about the systemic approach to innovation has focused on the level of countries, and most of all - regions. In this article an attempt was made to assess Polish municipalities from the perspective of their potential for development of local innovative systems. The performed factor analysis allowed characterization of five types of institution networks which may impact creation and development of LIS. The study was completed with case studies in selected voivodeship cities as centres of the highest concentration of institutions usually building local innovation systems, three of which were capitals of the poorest regions in Poland.

  9. original article an innovation systems perspectives on tertiary-level

    African Journals Online (AJOL)

    agricultural education from an innovation systems perspective, an approach ... 5 Sustainable Agriculture, Land and Water, Lancaster Environment Centre ( ... Ethiopia's capacity to leverage science ..... mobilization, project management; and.

  10. Innovation Happens in Systems: Implications for Science, Technology and Innovation Policy

    OpenAIRE

    Holbrook, J.A.

    2005-01-01

    This report addresses the regional systems of innovation in Canada, and looks at the ways that policy instruments play a role in the process. Recommendations are made to encourage the development of policies that foster the development of innovation clusters in Canada.

  11. Open Innovation, Triple Helix and Regional Innovation Systems: Exploring CATAPULT Centres in the UK

    Science.gov (United States)

    Kerry, Christopher; Danson, Michael

    2016-01-01

    Through the lens of UK CATAPULT Centres this conceptual paper presents an examination of the links between open innovation, the Triple Helix model and regional innovation systems. Highlighting the importance of boundary-spanning intermediaries, the combined role of these concepts is explored in detail. A conceptual model is then proposed which…

  12. Stimulating technological innovation : problem identification and intervention formulation with the technological innovation systems framework

    NARCIS (Netherlands)

    Kieft, A.C.

    2017-01-01

    The technological innovation systems (TIS) framework provides a theory to understand under what conditions technological innovations are successfully developed and implemented. The objective of this dissertation is to further strengthen this TIS intervention framework, which is the part of the TIS

  13. Nuclear desalination option for the international reactor innovative and secure (IRIS) design

    International Nuclear Information System (INIS)

    Ingersoll, D. T.; Binder, J. L.; Conti, D.; Ricotti, M. E.

    2004-01-01

    The worldwide demand for potable water is on the rise. A recent market survey by the World Resources Institute shows a doubling in desalinated water production every ten years from both seawater and brackish water sources. The production of desalinated water is energy intensive, requiring approximately 3-6 kWh per cubic meter of produced desalted water. At current U.S. water use rates, 1 kW of energy capacity per capita (or 1000 MW for every one million people) would be required to meet water needs with desalted water. The choice of the desalination technology determines the form of energy required: electrical energy for reverse osmosis systems, relatively low quality thermal energy for distillation systems, and both electrical and thermal energy for hybrid systems such as pre-heat RO systems. Nuclear energy plants are attractive for large scale desalination application. Nuclear plants can provide both electrical and thermal energy in an integrated, co-generated fashion to produce a spectrum of energy products including electricity, desalted water, process heat, district heating, and potentially hydrogen generation. A particularly attractive option for nuclear desalination is to couple it with an advanced, modular, passively safe reactor design such as the International Reactor Innovative and Secure (IRIS) plant. This allows for countries with smaller electrical grid needs and infrastructure to add new electrical and desalination capacity in smaller increments and at distributed sites. The safety by design nature of the IRIS reactor will ensure a safe and reliable source of energy even for countries with limited nuclear power experience and infrastructure. Two options for the application of the IRIS nuclear power plant to the cogeneration of electricity and desalted water are presented, including a coupling to a reverse osmosis plant and a multistage flash distillation plant. The results from an economic assessment of the two options are also presented.(author)

  14. Thermionic nuclear reactor systems

    International Nuclear Information System (INIS)

    Kennel, E.B.

    1986-01-01

    Thermionic nuclear reactors can be expected to be candidate space power supplies for power demands ranging from about ten kilowatts to several megawatts. The conventional ''ignited mode'' thermionic fuel element (TFE) is the basis for most reactor designs to date. Laboratory converters have been built and tested with efficiencies in the range of 7-12% for over 10,000 hours. Even longer lifetimes are projected. More advanced capabilities are potentially achievable in other modes of operation, such as the self-pulsed or unignited diode. Coupled with modest improvements in fuel and emitter material performance, the efficiency of an advanced thermionic conversion system can be extended to the 15-20% range. Advanced thermionic power systems are expected to be compatible with other advanced features such as: (1) Intrinsic subcritically under accident conditions, ensuring 100% safety upon launch abort; (2) Intrinsic low radiation levels during reactor shutdown, allowing manned servicing and/or rendezvous; (3) DC to DC power conditioning using lightweight power MOSFETS; and (4) AC output using pulsed converters

  15. An innovative way of thinking nuclear waste management - Neutron physics of a reactor directly operating on SNF.

    Directory of Open Access Journals (Sweden)

    Bruno Merk

    Full Text Available A solution for the nuclear waste problem is the key challenge for an extensive use of nuclear reactors as a major carbon free, sustainable, and applied highly reliable energy source. Partitioning and Transmutation (P&T promises a solution for improved waste management. Current strategies rely on systems designed in the 60's for the massive production of plutonium. We propose an innovative strategic development plan based on invention and innovation described with the concept of developments in s-curves identifying the current boundary conditions, and the evolvable objectives. This leads to the ultimate, universal vision for energy production characterized by minimal use of resources and production of waste, while being economically affordable and safe, secure and reliable in operation. This vision is transformed into a mission for a disruptive development of the future nuclear energy system operated by burning of existing spent nuclear fuel (SNF without prior reprocessing. This highly innovative approach fulfils the sustainability goals and creates new options for P&T. A proof on the feasibility from neutronic point of view is given demonstrating sufficient breeding of fissile material from the inserted SNF. The system does neither require new resources nor produce additional waste, thus it provides a highly sustainable option for a future nuclear system fulfilling the requests of P&T as side effect. In addition, this nuclear system provides enhanced resistance against misuse of Pu and a significantly reduced fuel cycle. However, the new system requires a demand driven rethinking of the separation process to be efficient.

  16. An innovative way of thinking nuclear waste management – Neutron physics of a reactor directly operating on SNF

    Science.gov (United States)

    Litskevich, Dzianis; Bankhead, Mark; Taylor, Richard J.

    2017-01-01

    A solution for the nuclear waste problem is the key challenge for an extensive use of nuclear reactors as a major carbon free, sustainable, and applied highly reliable energy source. Partitioning and Transmutation (P&T) promises a solution for improved waste management. Current strategies rely on systems designed in the 60’s for the massive production of plutonium. We propose an innovative strategic development plan based on invention and innovation described with the concept of developments in s-curves identifying the current boundary conditions, and the evolvable objectives. This leads to the ultimate, universal vision for energy production characterized by minimal use of resources and production of waste, while being economically affordable and safe, secure and reliable in operation. This vision is transformed into a mission for a disruptive development of the future nuclear energy system operated by burning of existing spent nuclear fuel (SNF) without prior reprocessing. This highly innovative approach fulfils the sustainability goals and creates new options for P&T. A proof on the feasibility from neutronic point of view is given demonstrating sufficient breeding of fissile material from the inserted SNF. The system does neither require new resources nor produce additional waste, thus it provides a highly sustainable option for a future nuclear system fulfilling the requests of P&T as side effect. In addition, this nuclear system provides enhanced resistance against misuse of Pu and a significantly reduced fuel cycle. However, the new system requires a demand driven rethinking of the separation process to be efficient. PMID:28749952

  17. Safety of evolutionary and innovative nuclear reactors: IAEA activities and world efforts

    International Nuclear Information System (INIS)

    Saito, T.; Gasparini, M.

    2004-01-01

    'Defence in Depth' approach constitutes the basis of the IAEA safety standards for nuclear power plants. Lessons learned from the current generation of reactors suggest that, for the next generation of reactor designs, the Defence in Depth philosophy should be retained, and that its implementation should be guided by the probabilistic insights. Recent developments in the area of general safety requirements based on Defence in Depth approach are examined and summarized. Global efforts to harmonize safety requirements for evolutionary nuclear power plants have involved many countries and organizations such as IAEA, US EPRI and European Utility EUR Organization. In recent years, developments of innovative nuclear power plants are also being discussed. The IAEA is currently developing a safety approach specifically for innovative nuclear reactors. This approach will eventually lead to a proposal of safety requirements for innovative reactors. Such activities related to safety requirements of evolutionary and innovative reactors are introduced. Various evolutionary and innovative reactor designs are reported in the world. The safety design features of evolutionary large LWRs, innovative LWRs, Modular High Temperature Gas Reactors and Small Liquid Metal Cooled LMRs are also introduced. Enhanced safety features proposed in such reactors are discussed and summarized according to the levels of Defence in Depth. For future nuclear plants, international cooperation and harmonization, especially in the area of safety, appear to be inevitable. Based on the past experience with many member states, the IAEA believes itself to be the uniquely positioned international organization to play this key role. (authors)

  18. Comparative Analysis of Innovative Systems in the Russian Regions

    Directory of Open Access Journals (Sweden)

    Nadezhda Nikolaevna Mikheeva

    2014-12-01

    Full Text Available This article was conducted with the financial support of the Program of fundamental studies of the Presidium of the Russian Academy of Sciences No. 31, «The Role of Space in the Modernization of Russia: Natural and Socio-Economic Potential» (project 7.2 «Tools of Regional Policy and the Effectiveness of Their Use» Despite the abundance of literature on innovation in the regions, there is no frame of reference about the patterns and mechanisms of formation of regional innovation systems (RIS. So it’s next to impossible to differentiate approaches to stimulation of innovations in the regions taking into account their specific characters. Therefore, the author attempts to formalize the definition of RIS and to provide not only qualitative but also quantitative evaluation of different types of regional innovation systems. This paper is trying to find a set of models of RIS development in Russian regions with specific characters. These regional peculiarities play a key role in a process of selecting methods for further RIS development, including methods of state support of innovation, which are adequate to the characteristics of the regional innovation system. The author obtained the following results: 1 presentation of various approaches to define regional innovative systems; 2 proposition of RIS structure that includes 5 blocks (creation of innovations; production and realization of innovative goods and services in the region; innovative infrastructure of the region; demand for innovations and innovative policy and 3 development of the system of statistical indicators that characterize RIS. On the basis of formal and substantive analysis of these indicators the researcher defined 6 models of regional innovative systems prevailing in the Russian circumstances

  19. Innovative inspection system for reactor pressure vessels; Innovative Pruefsysteme fuer Reaktordruckbehaelter

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, K.; Trautmann, H.

    1999-08-01

    The versatile, compact and modern underwater systems described, the DELPHIN manipulators and MIDAS submarines, are innovative systems enabling RPV inspections at considerably reduced efforts and time, thus reducing the total time required for ISI of reactors. (orig./CB) [Deutsch] Die vorgestellten kleinen, flexiblen und modernen Schwimmsysteme (DELPHIN-Manipulatoren und MIDAS-U-Boote) sind innovative Systeme fuer die Reduzierung der Aufwaende und Zeit zur Pruefung des Reaktordruckbehaelters und damit zur Reduktion der Revisionszeiten der Reaktoranlagen. (orig.)

  20. Technical features to enhance proliferation resistance of nuclear energy systems

    International Nuclear Information System (INIS)

    2010-01-01

    It is generally accepted that proliferation resistance is an essential issue for the continued development and sustainability of nuclear energy. Several comprehensive assessment activities on the proliferation resistance of the nuclear fuel cycle have previously been completed, notably the International Nuclear Fuel Cycle Evaluation (INFCE) carried out under the auspices of the IAEA, and the Non-proliferation Alternative Systems Assessment Program (NASAP) review carried out by the USA. There have been, however, relatively few comprehensive treatments of the issue following these efforts in the 1970s. However, interest in and concern about this issue have increased recently, particularly because of greater interest in innovative nuclear fuel cycles and systems. In 2000, the IAEA initiated the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) and the US Department of Energy initiated the Generation IV International Forum (GIF). These projects are aimed at the selection and development of concepts of innovative nuclear energy systems and fuel cycles. Proliferation resistance is one of the fundamental considerations for both projects. In this context, the IAEA in 2001 initiated a study entitled 'Technical Aspects of Increasing Proliferation Resistance of the Nuclear Fuel Cycle'. This task is not intended as an effort to assess the merits of a particular fuel cycle system for the future, but to describe a qualitative framework for an examination of the proliferation resistance provided by the intrinsic features of an innovative nuclear energy system and fuel cycle. This task also seeks to provide a high level survey of a variety of innovative nuclear energy systems and fuel cycles with respect to that framework. The concept of proliferation resistance is considered in terms of intrinsic features and extrinsic measures. The intrinsic features, sometimes referred to as the physical/technical aspects, are those features that result from the

  1. Topics for application of expert systems for nuclear power plants

    International Nuclear Information System (INIS)

    Trovato, S.A.; Aydin, F.

    1992-01-01

    Expert systems are an innovative form of computer software which offer to enhance productivity and improve operations of nuclear power plants. A survey and assessment of opportunities for application of this technology at Consolidated Edison Company of New York, Inc.'s (Con Edison) Indian Point 2 nuclear power plant was conducted. Eleven topics for expert systems are discussed in this paper. 1 ref., 2 figs., 2 tabs

  2. Innovative designs for low-level nuclear waste disposal trenches

    International Nuclear Information System (INIS)

    Nowatzki, E.A.; Armstrong, G.; McCray, J.

    1985-01-01

    Shallow land burial of low-level nuclear wastes presents many problems that are within the scope of civil engineering analysis and design. These include groundwater seepage, surface water runoff and collection, and the subsidence of trench backfills. Unfortunately, at the time the first disposal sites were being developed, major emphasis was placed on the health-physics aspects of the problem with the result that many of the civil engineering aspects were overlooked and severe problems relating to site integrity exist today. This paper presents the results of a U.S. Nuclear Regulatory Commission (USNRC) sponsored research project conducted at the University of Arizona, Tucson, Arizona, to assess trench cap design from the viewpoint of stability, water infiltration, and economy. Full-scale trenches were constructed that incorporated four different designs. These designs range from a relatively simple cap consisting of engineered backfill with a sloping, compacted soil crown to a more complex cap-crown system that incorporates compacted backfill and a steel reinforced soil-cement cap with an overlaying ''wick'' drain. The results of structural and hydrological monitoring over a period of approximately 15 months are presented. Recommendations are made regarding standard design criteria for future sites based on the results of this research

  3. Nuclear power plant diagnostic system

    International Nuclear Information System (INIS)

    Prokop, K.; Volavy, J.

    1982-01-01

    Basic information is presented on diagnostic systems used at nuclear power plants with PWR reactors. They include systems used at the Novovoronezh nuclear power plant in the USSR, at the Nord power plant in the GDR, the system developed at the Hungarian VEIKI institute, the system used at the V-1 nuclear power plant at Jaslovske Bohunice in Czechoslovakia and systems of the Rockwell International company used in US nuclear power plants. These diagnostic systems are basically founded on monitoring vibrations and noise, loose parts, pressure pulsations, neutron noise, coolant leaks and acoustic emissions. The Rockwell International system represents a complex unit whose advantage is the on-line evaluation of signals which gives certain instructions for the given situation directly to the operator. The other described systems process signals using similar methods. Digitized signals only serve off-line computer analyses. (Z.M.)

  4. Assessments of nuclear systems

    International Nuclear Information System (INIS)

    Ekholm, R.

    1978-01-01

    Assessments of competing energy systems are gaining increased importance as a means for an optimal choice of energy source for each specific major application considering the growing energy needs and the shortage of supply. However it is important to make sure that the assessments reflect scientific facts rather than private interests. If this is not achieved, scientists will lose credibility and one will lose the basis for political decisions. It is concluded that to accomplish the globally justified needs for thousands of nuclear reactors soon after the year 2000 and to save a maximum of lives with a minimum of environmental impact, emphasis must be put on low energy costs and on a good fuel and capital resource utilization. This goal can be best accomplished by expendient introduction of the fast breeders and of promising advanced reactors. The gas cooled breeder and the high temperature reactor have outstanding short and long terms merits on this respect, but are not enjoying the financial support that they deserve. (UK)

  5. Evolution of an Innovation Network in Tourism: Towards Sectoral Innovation Eco-System

    Directory of Open Access Journals (Sweden)

    Metka Stare

    2018-05-01

    Full Text Available Networks broaden the space for sourcing knowledge and skills for innovation in tourism beyond traditional actors and provide the framework for interactions, cooperation and knowledge sharing among them. The research focuses on complex relationships between the actors linked via web platform in generating ideas and implementing innovation in tourism. It assesses the dynamics of web platform evolution towards sectoral innovation eco-system in tourism. Applying case study methodology and unique data set we analyse the Bank of Tourism Potentials in Slovenia (BTPS, a web platform for the promotion of innovation in tourism. BTPS is considered an organizational innovation that leverages innovation in tourism and results in a number of new services, processes and business models. The originality of the paper derives from an in-depth analysis of actors’ networking, collaboration and mutual learning in implementing innovation. The characteristics of interactions between actors translate into the emerging patterns of BTPS development and suggest that the web platform is assuming the characteristics of the innovation eco-system in tourism that can be transferred to other environments as well. Finally, areas of future research are proposed.

  6. DESIGNING AN INTEGRATED OPEN INNOVATION SYSTEM: TOWARDS ORGANIZATIONAL WHOLENESS

    DEFF Research Database (Denmark)

    Baka, Vasiliki

    2014-01-01

    sociotechnical arrangement within the paradigm of open innovation. We explore how effectively technological platforms address emergent collaboration and innovation practices within and across organizations and to which extent existing technologies act as strategic catalysts of open innovation. We argue...... that in embracing wholeness and in treating technologies as inseparable constitutive parts of organizational architecture, we foster organizational and institutional collaboration and encourage innovative practices. The focus of the paper is on how the design of sociotechnical systems as wholes, that is systems...... that are concurrently acting as corporate websites, internal collaboration spaces, extranets and social media aggregators, actively promotes open innovation in practice. We close with a presentation of six cases that are illustrative of how such a system could be applicable within the open innovation paradigm, namely...

  7. Assessing the performance of national innovation systems in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Edquist, C.; Zabala-Iturriagagoitia, J.M.

    2016-07-01

    To support the establishment of the European Innovation Union, the European Commission is using the Innovation Union Scoreboard (IUS). In this paper, the performance of EU28 national innovation systems are analyzed from an efficiency perspective by using exactly the same data as those provided by the IUS for years 2010-2015. This efficiency analysis was carried out using Data Envelopment Analysis. Our analysis demonstrates that the results based on efficiency measures reflect that in general terms innovation systems are widely underexploited in Europe and that there are important variances among territories. We have shown that many countries which devote fewer resources than the innovation leaders, achieve outstanding levels of efficiency and, contrary to what the IUS predicts, countries with consolidated innovation systems, do not show efficiency levels commensurate with their expected competitiveness. (Author)

  8. Innovative technology summary report: Pipe Explorertrademark system

    International Nuclear Information System (INIS)

    1996-01-01

    The Pipe Explorertrademark system, developed by Science and Engineering Associates, Inc. (SEA), under contract with the US Department of Energy (DOE) Morgantown Energy Technology Center, has been used to transport various characterizing sensors into piping systems that have been radiologically contaminated. DOE's nuclear facility decommissioning program must characterize radiological contamination inside piping systems before the pipe can be recycled, remediated, or disposed. Historically, this has been attempted using hand-held survey instrumentation, surveying only the accessible exterior portions of pipe systems. Various measuring difficulties, and in some cases, the inability to measure threshold surface contamination values and worker exposure, and physical access constraints have limited the effectiveness of traditional survey approaches. The Pipe Explorertrademark system provides a viable alternative. The heart of the system is an air-tight membrane, which is initially spooled inside a canister. The end of the membrane protrudes out of the canister and attaches to the pipe being inspected. The other end of the tubular membrane is attached to the tether and characterization tools. When the canister is pressurized, the membrane inverts and deploys inside the pipe. The characterization detector and its cabling is attached to the tethered end of the membrane. As the membrane is deployed into the pipe, the detector and its cabling is towed into the pipe inside the protective membrane; measurements are taken from within the protective membrane. Once the survey measurements are completed, the process is reversed to retrieve the characterization tools

  9. System approach to machine building enterprise innovative activity management

    Directory of Open Access Journals (Sweden)

    І.V. Levytska

    2016-12-01

    Full Text Available The company, which operates in a challenging competitive environment should focus on new products and provide innovative services that enhance their innovation to maintain the company’s market position. The article deals with the peculiarities of such an activity in the company. The authors analyze the various approaches used in the management, and supply the advantages and disadvantages of each. It is determine that the most optimal approach among them is a system approach. The definition of the consepts "a system" and "a systematic approach to innovative activity management" are suggested. The article works out the system of machine building enterprise innovative activity management, the organization of machine building enterprise innovative activity; the planning of machine building enterprise innovative activity; the control in the system of machine building enterprise innovative activity management; the elements of the control subsystem. The properties, typical for the system of innovative management, are supplied. The managers, engaged in enterprise innovative activity management, must perform a number of the suggested tasks, which affect the efficiency of the enterprise as a whole. These exact tasks are performed using the systematic approach, providing the enterprise competitive operation and quick adaptation to changes in the external environment.

  10. An Overview of National Trends Related to Innovative Ventilation Systems

    DEFF Research Database (Denmark)

    Heijmans, Nicolas; Wouters, Peter; Heiselberg, Per

    2008-01-01

    This paper summarises the discussion related to innovative (ventilation) systems that took place at the AIVC workshop organised in Ghent, Belgium, in March 2008.......This paper summarises the discussion related to innovative (ventilation) systems that took place at the AIVC workshop organised in Ghent, Belgium, in March 2008....

  11. Learning from the Field : Innovating China's Higher Education System

    International Development Research Centre (IDRC) Digital Library (Canada)

    2008-04-15

    Learning from the Field : Innovating China's Higher Education System. Couverture du livre Learning from the Field : Innovating China's Higher Education System. Editor(s):. Ronnie Vernooy, Li Xiaoyun, Xu Xiuli, Lu Min, et Qi Gubo. Publisher(s):. Foundation Book, CRDI. April 15, 2008. ISBN: 9788175966017. 260 pages.

  12. Building a Healthcare System's Innovation Program.

    Science.gov (United States)

    Conger, Michelle D

    2016-01-01

    OSF HealthCare, based in Peoria, Illinois, has developed an innovative strategy to adapt to the changes and forces disrupting the healthcare environment. This strategy evolved organically from the performance improvement efforts we began more than 15 years ago, as well as from the lessons we learned from years of research into the innovative practices and platforms of other healthcare institutions and of companies in other industries. More important, the strategy reflects our mission "to serve persons with the greatest care and love."The OSF innovation model has three components: internal innovations, partnering with external entities, and validating innovations through simulation. OSF has an ongoing and comprehensive commitment to innovation. Examples include our initiative to transform our model of care in primary care clinics by expanding access, reducing costs, and increasing efficiency; our partnerships with outside entities to find revolutionary solutions and products in which we can invest; and our establishment of a world-class simulation and education center.OSF HealthCare could not do any of this if it lacked the support of its people. To that end, we continue to work on embedding a culture of innovation across all of our facilities. Ours is a culture in which everyone is encouraged to voice creative ideas and no one is afraid to fail-all for the betterment of our organization and the patients we serve.

  13. Scottish Nuclear's information systems strategy

    International Nuclear Information System (INIS)

    Inglis, P.

    1991-01-01

    Scottish Nuclear, the company which has owned and operated Scotland's nuclear power generating capacity since privatization, inherited a substantial amount of computer hardware and software from its predecessor, the South of Scotland Electricity Board. Each of the two power stations, Torness and Hunterston, were using Digital Vax clusters as the Scottish Nuclear company was formed. This had a major influence on the information systems strategy which has subsequently been adopted. (UK)

  14. Innovative measurement for injection systems; Innovative Messtechnik fuer Einspritzsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Janetzky, Bjoern; Majer, Clemens; Doell, Reinahrd [Robert Bosch GmbH, Stuttgart (Germany)

    2011-07-01

    The treatise introduces a new measuring method to determine the injection quantity and injection rate. In this method the change in pressure within a hydraulic chamber is measured during injection. Also the momentary pressure-dependent speed of sound of the medium inside the chamber is measured. With this information the desired injection quantity can be derived with high precision. A measuring technique (HDA) based on this method is described. Measurement with HDA are performed based on actual requirements from the Diesel-Injection-System, results from these measurements are presented in example. Results are compared with those achieved by using a known measuring technique (EMI). (orig.)

  15. An Evolutionary Approach to Water Innovation: Comparing the Water Innovation Systems in China and Europe

    DEFF Research Database (Denmark)

    Moro, Mariú Abritta

    The recent rise of the ‘green economy’ agenda has increased the attention to eco-innovations globally, with issues related to water stress identified as one of the major bottlenecks for sustainable economic growth. Water being a critical resource, more and more countries worldwide are recognizing...... the need for increasing their innovative capacity within the water sector. Using evolutionary economic theory, this thesis undertakes a longitudinal and comparative analysis of the water innovation dynamics in Europe and China, representing respectively a developed, green early mover economy......, and a centrally-planned economy and green late mover. The thesis aims to assess the similarities and differences in the mechanisms applied across these two regions, with a focus on outlining what drives eco-innovation development in the water sector. The thesis builds more specifically on the innovation system...

  16. Surveillance and Measurement System (SAMS). Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    2001-01-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for the decontamination and decommissioning (D and D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology sponsors large-scale demonstration and deployment projects (LSDDPs) to identify and demonstrate technologies that will be safer and more cost-effective. At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects as well as others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased cost of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) LSDDP generated a list of need statements defining specific needs or problems where improved technologies could be incorporated into ongoing D and D tasks. Advances in characterization technologies are continuously being sought to decrease the cost of sampling and increase the speed of obtaining results. Currently it can take as long as 90 days to receive isotopic analysis of radioactive samples from laboratories on soil, liquid, and paint samples. The cost to analyze these types of samples for radionuclides is about $150 per sample. This demonstration investigated the feasibility of using the Surveillance and Measurement System (SAMS) (innovative technology) to make in situ isotopic radiation measurements in paint and soil. Sample collection and on-site laboratory analysis (baseline technology) is currently being used on D and D sampling activities. Benefits expected from using the innovative technology include: Significant decrease in time to receive results on radiological samples; Decrease in cost associated with sample collection, preparation, analysis, and disposal; Equivalent data quality to laboratory analysis; and Fewer

  17. Building an integrative framework for national systems of innovation

    DEFF Research Database (Denmark)

    Wang, Yuandi; Zhou, Zhao

    2011-01-01

    development of functional view of national systems of innovation, and the effective approach. Design/methodology/approach – As a theoretical research paper, the paper reviews and analyses intensive literature on national system of innovation from the perspectives of functional, structural, and effectiveness......Purpose – This paper proposes a way to integrate three different analytical approaches into a consistent framework of national systems of innovation that can benefit academia and policy makers. The approaches include the traditional structural method of national systems of innovation, the new...... approaches. Findings – The paper argues that these three approaches reflect different perspectives of national systems of innovation. Instead of contradicting each other, they could be integrated into a coherent framework. Originality/value – The paper builds an integrative framework to bring different...

  18. Wind Energy Innovative Systems conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Vas, I. E. [ed.

    1979-12-01

    Separate abstracts are included for 20 of the 22 papers presented concerning innovative wind turbines which vary in design from the standard horizontal-axis propellor-type wind turbines. Two papers have been previously included in the data base.

  19. Product Service System Innovation in the Smart City

    OpenAIRE

    Cook, Matthew

    2018-01-01

    Product service systems (PSS) may usefully form part of the mix of innovations necessary to move society toward more sustainable futures. However, despite such potential, PSS implementation is highly uneven and limited. Drawing on an alternate socio-technical perspective of innovation, this paper provides fresh insights, on among other things the role of context in PSS innovation, to address this issue. Case study research is presented focusing on a use orientated PSS in an urban environment:...

  20. Innovation Cycles Concerning Strategic Planning of Product-Service-Systems

    OpenAIRE

    Hepperle, Clemens;Mörtl, Markus;Lindemann, Udo

    2017-01-01

    This paper proposes a research program for identifying, understanding and describing innovation cycles concerning strategic planning of product-service-systems. A general overview about the background of cycle management in innovation processes, which the proposed research program is part of, is given before focusing cycles concerning strategic planning. As companies offer more and more complex products in order to satisfy market needs, the innovation process of such products becomes also mor...

  1. Innovation

    DEFF Research Database (Denmark)

    Nielsen, Janni; Yaganeh, Suzanne; Bloch Rasmussen, Leif

    2013-01-01

    This paper contributes to a theoretical discussion of creation of innovation with participants in, or outside, organisations. We address the creation of innovation with a complex theoretical understanding drawing on the Scandinavian and the Participatory Design tradition introducing two approaches...... to the processes of innovation. We ask if innovation can be initiated and enhanced looking at two collaborative approaches; participatory innovation (PIN) and cooperative innovation (COIN). We invite to dialogue and reflections on PIN’s conflict and creative frictions on one side and COIN’s complexity......, complementarity in diversity and the didactic scaffolding of the innovation process on the other side. Our contribution focuses on the methods and practices for facilitation of co-creating activities between different groups leading to cooperation, and innovation in thinking....

  2. From translational research to open technology innovation systems.

    Science.gov (United States)

    Savory, Clive; Fortune, Joyce

    2015-01-01

    The purpose of this paper is to question whether the emphasis placed within translational research on a linear model of innovation provides the most effective model for managing health technology innovation. Several alternative perspectives are presented that have potential to enhance the existing model of translational research. A case study is presented of innovation of a clinical decision support system. The paper concludes from the case study that an extending the triple helix model of technology transfer, to one based on a quadruple helix, present a basis for improving the performance translational research. A case study approach is used to help understand development of an innovative technology within a teaching hospital. The case is then used to develop and refine a model of the health technology innovation system. The paper concludes from the case study that existing models of translational research could be refined further through the development of a quadruple helix model of heath technology innovation that encompasses greater emphasis on user-led and open innovation perspectives. The paper presents several implications for future research based on the need to enhance the model of health technology innovation used to guide policy and practice. The quadruple helix model of innovation that is proposed can potentially guide alterations to the existing model of translational research in the healthcare sector. Several suggestions are made for how innovation activity can be better supported at both a policy and operational level. This paper presents a synthesis of the innovation literature applied to a theoretically important case of open innovation in the UK National Health Service. It draws in perspectives from other industrial sectors and applies them specifically to the management and organisation of innovation activities around health technology and the services in which they are embedded.

  3. Innovation and knowledge generation in cooperation nets: challenges for regulations in the nuclear safety area in Brazil; Inovacao e geracao de conhecimento nas redes de cooperacao: desafios para a regulacao na area de seguranca nuclear no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Staude, Fabio

    2014-07-01

    The importance of inter-organisational cooperation within the innovation process has been increasingly recognized. In fact, all organisations, at some point, need to look to external sources for inputs to the process of building up technological competence. In this sense, through a detailed case study, this thesis examine theoretical and empirically how collaborative initiatives have supported the Brazilian nuclear regulatory body in the development and implementation of innovations, in order to verify the positive relationship between the collaboration and the organisational innovation performance. Emphasizing the importance of both internal sources of knowledge and external participation, the study encompasses documentary analysis, a preliminary survey and semi-structured interviews with the regulatory body employers in charge of controlling medical and research facilities and activities involving radiation sources. The thesis demonstrates that innovations developed and implemented in the Brazilian nuclear safety and security area are associated with collaborative initiatives, in order to improve the organizational capability to fulfill safety obligations, providing some important implications for regulatory body managers concerned with the management of innovation. The findings also identified actors with a significant degree of influence in the innovation process. The result reveals that the support provided by these actors has a significant influence on the innovation performance of the Brazilian nuclear regulatory body, suggesting that Brazil should adopt more interactive models of innovation and knowledge transfer. In addition, the findings show that these key actors can play a very distinctive role in the context of sectoral systems of innovation information regime. (author)

  4. Reverse innovation: an opportunity for strengthening health systems.

    Science.gov (United States)

    Snowdon, Anne W; Bassi, Harpreet; Scarffe, Andrew D; Smith, Alexander D

    2015-02-07

    Canada, when compared to other OECD countries, ranks poorly with respect to innovation and innovation adoption while struggling with increasing health system costs. As a result of its failure to innovate, the Canadian health system will struggle to meet the needs and demands of both current and future populations. The purpose of this initiative was to explore if a competition-based reverse innovation challenge could mobilize and stimulate current and future leaders to identify and lead potential reverse innovation projects that address health system challenges in Canada. An open call for applications took place over a 4-month period. Applicants were enticed to submit to the competition with a $50,000 prize for the top submission to finance their project. Leaders from a wide cross-section of sectors collectively developed evaluation criteria and graded the submissions. The criteria evaluated: proof of concept, potential value, financial impact, feasibility, and scalability as well as the use of prize money and innovation team. The competition received 12 submissions from across Canada that identified potential reverse innovations from 18 unique geographical locations that were considered developing and/or emerging markets. The various submissions addressed health system challenges relating to education, mobile health, aboriginal health, immigrant health, seniors health and women's health and wellness. Of the original 12 submissions, 5 finalists were chosen and publically profiled, and 1 was chosen to receive the top prize. The results of this initiative demonstrate that a competition that is targeted to reverse innovation does have the potential to mobilize and stimulate leaders to identify reverse innovations that have the potential for system level impact. The competition also provided important insights into the capacity of Canadian students, health care providers, entrepreneurs, and innovators to propose and implement reverse innovation in the context of the

  5. The importance of innovations for the development of franchising systems

    Directory of Open Access Journals (Sweden)

    Stanković Milica

    2013-01-01

    Full Text Available In today's global competitive business environment, innovations are crucial for the success of the company. It is necessary to emphasize the importance of understanding wishes and needs of consumers and an innovative manner in which their needs can be met more efficiently in comparison to competition. Franchising is, certainly, one of the business concepts that is difficult to associate with innovation, as it presents the use of a proven business model. At the global level, there is a constant tendency in the development of existing and new franchise systems. In this regard, the paper points out the importance of innovation for the development and improvement of the franchise systems. The phenomenon of open innovation is increasingly important in recent years. The paper highlights the importance of open innovation as the best way to innovate the franchising company's business through the adoption of ideas from the external environment and the exchange of internally created ideas. The model of open innovation involves the integration of customers, suppliers and franchisees in the new product development process. The open strategy of new product development is very important for franchising companies that want to be leaders. The paper reviews the development perspectives of open innovation in franchising systems in the future.

  6. Use of liquid metals in nuclear and thermonuclear engineering, and in other innovative technologies

    Science.gov (United States)

    Rachkov, V. I.; Arnol'dov, M. N.; Efanov, A. D.; Kalyakin, S. G.; Kozlov, F. A.; Loginov, N. I.; Orlov, Yu. I.; Sorokin, A. P.

    2014-05-01

    By now, a good deal of experience has been gained with using liquid metals as coolants in nuclear power installations; extensive knowledge has been gained about the physical, thermophysical, and physicochemical properties of these coolants; and the scientific principles and a set of methods and means for handling liquid metals as coolants for nuclear power installations have been elaborated. Prototype and commercialgrade sodium-cooled NPP power units have been developed, including the BOR-60, BN-350, and BN-600 power units (the Soviet Union); the Rapsodie, Phenix, and Superphenix power units (France), the EBR-II power unit (the United States); and the PFR power unit (the United Kingdom). In Russia, dedicated nuclear power installations have been constructed, including those with a lead-bismuth coolant for nuclear submarines and with sodium-potassium alloy for spacecraft (the Buk and Topol installations), which have no analogs around the world. Liquid metals (primarily lithium and its alloy with lead) hold promise for use in thermonuclear power engineering, where they can serve not only as a coolant, but also as tritium-producing medium. In this article, the physicochemical properties of liquid metal coolants, as well as practical experience gained from using them in nuclear and thermonuclear power engineering and in innovative technologies are considered, and the lines of further research works are formulated. New results obtained from investigations carried out on the Pb-Bi and Pb for the SVBR and BREST fast-neutron reactors (referred to henceforth as fast reactors) and for controlled accelerator systems are described.

  7. Innovation in the processes of formation and training of nuclear professionals

    International Nuclear Information System (INIS)

    Ruiz Martinez, F. J.; Lambistos Agustin, A.

    2015-01-01

    Innovation is the intoduction of new products and services, new processes, new sources of supply and changes in industrial organization, and continuous customer, consumer or user oriented (J. A. Schumpeter). According to this idea, three mental restrictions usually apply to the innovative break: not only are new products, not only are technological developments, not only are revolutionary ideas so also. From the innovative tradition of Tecnatom Formacion Nuclear materailized in examples like the SGI or Human Factors simulators, in recent years has made considerable progress in the function with innovative solutions to improve the results of nuclear power plants, made available to our customers, as significant as the Training Programs for Shift Supervisors, the OJT/TPE processes, seminars Diagnostic Techniques, EDMG Simulator or ROI and ROIF projects. (Author)

  8. The Russian Nuclear Society, engineers and researchers to encourage innovation

    International Nuclear Information System (INIS)

    Anon.

    2015-01-01

    The Russian Nuclear Society (NSR) was born in 1989 just after the Chernobyl accident in order to help the public to overcome its fear and worries about nuclear power. Now NSR's purposes are manifold from communication about nuclear issues to the development and sharing of knowledge. The president is elected for 2 years with a rotating presidency for representing in turn nuclear sciences, industry and energy. Hundreds of events like conferences, international meetings, workshops, exhibitions have been organized so far. These events took place at Moscow and in the regional NSR centers. One of today's NSR objectives is to encourage the youth to embrace jobs and careers in nuclear industry. On the 5. may 2016 NSR and French SFEN renewed their cooperation agreement concerning the closure of the fuel cycle among other things. (A.C.)

  9. Innovative nuclear thermal rocket concept utilizing LEU fuel for space application

    International Nuclear Information System (INIS)

    Nam, Seung Hyun; Venneri, Paolo; Choi, Jae Young; Jeong, Yong Hoon; Chang, Soon Heung

    2015-01-01

    Space is one of the best places for humanity to turn to keep learning and exploiting. A Nuclear Thermal Rocket (NTR) is a viable and more efficient option for human space exploration than the existing Chemical Rockets (CRs) which are highly inefficient for long-term manned missions such as to Mars and its satellites. NERVA derived NTR engines have been studied for the human missions as a mainstream in the United States of America (USA). Actually, the NERVA technology has already been developed and successfully tested since 1950s. The state-of-the-art technology is based on a Hydrogen gas (H_2) cooled high temperature reactor with solid core utilizing High-Enriched Uranium (HEU) fuel to reduce heavy metal mass and to use fast or epithermal neutron spectrums enabling simple core designs. However, even though the NTR designs utilizing HEU is the best option in terms of rocket performance, they inevitably provoke nuclear proliferation obstacles on all Research and Development (R and D) activities by civilians and non-nuclear weapon states, and its eventual commercialization. To surmount the security issue to use HEU fuel for a NTR, a concept of the innovative NTR engine, Korea Advanced NUclear Thermal Engine Rocket utilizing Low-Enriched Uranium fuel (KANUTER-LEU) is presented in this paper. The design goal of KANUTER-LEU is to make use of a LEU fuel for its compact reactor, but does not sacrifice the rocket performance relative to the traditional NTRs utilizing HEU. KANUTER-LEU mainly consists of a fission reactor utilizing H_2 propellant, a propulsion system and an optional Electricity Generation System as a bimodal engine. To implement LEU fuel for the reactor, the innovative engine adopts W-UO_2 CERMET fuel to drastically increase uranium density and thermal neutron spectrum to improve neutron economy in the core. The moderator and structural material selections also consider neutronic and thermo-physical characteristics to reduce non-fission neutron loss and

  10. Organizing for manufacturing innovation. The case of Flexible Manufacturing Systems

    DEFF Research Database (Denmark)

    Boer, Harry; Krabbendam, Koos

    1992-01-01

    addressing the manufacturing innovation process are even fewer and provide little insight into its true nature. Consequently, little is known about the effective organization of such processes. In the present article an organization model of manufacturing innovation is described, and its practicability...... the implementation of new technology effectively. This is not surprising, considering the innovative nature of this process. Although there is a host of literature on innovation, organization and (the benefits of) new technology, the literature in which these areas are linked together is scarce. Publications...... assessed using the results of seven case studies of the implementation of flexible manufacturing systems in British, Belgian and Dutch mechanical engineering companies....

  11. Nuclear Medicine National Headquarter System

    Data.gov (United States)

    Department of Veterans Affairs — The Nuclear Medicine National HQ System database is a series of MS Excel spreadsheets and Access Database Tables by fiscal year. They consist of information from all...

  12. Stimulating technological innovation : problem identification and intervention formulation with the technological innovation systems framework

    OpenAIRE

    Kieft, A.C.

    2017-01-01

    The technological innovation systems (TIS) framework provides a theory to understand under what conditions technological innovations are successfully developed and implemented. The objective of this dissertation is to further strengthen this TIS intervention framework, which is the part of the TIS theoretical framework that facilitates the identification of inhibiting problems and the formulation of interventions. Theoretical adaptations and extensions are proposed and their merits subsequent...

  13. Understanding energy technology developments from an innovation system perspective

    Energy Technology Data Exchange (ETDEWEB)

    Borup, M.; Nygaard Madsen, A. [Risoe National Lab., DTU, Systems Analysis Dept., Roskilde (Denmark); Gregersen, Birgitte [Aalborg Univ., Department of Business Studies (Denmark)

    2007-05-15

    With the increased market-orientation and privatisation of the energy area, the perspective of innovation is becoming more and more relevant for understanding the dynamics of change and technology development in the area. A better understanding of the systemic and complex processes of innovation is needed. This paper presents an innovation systems analysis of new and emerging energy technologies in Denmark. The study focuses on five technology areas: bio fuels, hydrogen technology, wind energy, solar cells and energy-efficient end-use technologies. The main result of the analysis is that the technology areas are quite diverse in a number of innovation-relevant issues like actor set-up, institutional structure, maturity, and connections between market and non-market aspects. The paper constitutes background for discussing the framework conditions for transition to sustainable energy technologies and strengths and weaknesses of the innovation systems. (au)

  14. The Sylvia Fedoruk Canadian Centre for Nuclear Innovation: advancing knowledge through partnerships

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, N.; Root, J.H., E-mail: neil.alexander@usask.ca, E-mail: john.root@usask.ca [Sylvia Fedoruk Canadian Centre for Nuclear Innovation, Saskatoon, SK (Canada); Chad, K., E-mail: karen.chad@usask.ca [Univ. of Saskatchewan, Saskatoon, SK (Canada); Bereznai, G., E-mail: george.bereznai@uoit.ca [Univ. of Ontario Inst. of Tech., Faculty of Energy Systems and Nuclear Science, Oshawa, ON (Canada); Dalzell, M.T.J., E-mail: matthew.dalzell@usask.ca [Sylvia Fedoruk Canadian Centre for Nuclear Innovation, Saskatoon, SK (Canada)

    2014-07-01

    The vision of the Sylvia Fedoruk Canadian Centre for Nuclear Innovation is to place the Canadian province of Saskatchewan among global leaders in nuclear research, development and training through partnerships with industry and academia for economic and social benefit. Saskatchewan is one of the world's largest producers of uranium and home to pioneering research in nuclear medicine, most notably the development of cobalt-60 teletherapy. The Fedoruk Centre is striving to build on this legacy through the attainment of four strategic goals: (1) building nuclear expertise and capacity through the support to academic programs and research projects in partnership with industry, academic institutions and research organizations in nuclear medicine, materials research, energy and the environment; (2) enhancing innovation in partnership with the research community and industry; (3) engaging communities and increasing understanding of risks, benefits and potential impacts of nuclear technologies; and (4) ensuring the sustainability and accountability of the Centre and its resources. The Fedoruk Centre's mandate includes the stewardship of select nuclear facilities, the first being a 24 MeV cyclotron and nuclear substances laboratory as a resource for the development of novel imaging agents, training and production of radioisotopes for clinical diagnoses. By attracting new research leadership in the nuclear domain, developing networks of expertise, training highly-qualified personnel in nuclear disciplines, stimulating industrial partnerships, and creating conditions for fact-based conversation regarding nuclear issues, the Fedoruk Centre is working to establish a research and innovation capacity to support a vibrant nuclear sector in Saskatchewan. (author)

  15. The Sylvia Fedoruk Canadian Centre for Nuclear Innovation: advancing knowledge through partnerships

    International Nuclear Information System (INIS)

    Alexander, N.; Root, J.H.; Chad, K.; Bereznai, G.; Dalzell, M.T.J.

    2014-01-01

    The vision of the Sylvia Fedoruk Canadian Centre for Nuclear Innovation is to place the Canadian province of Saskatchewan among global leaders in nuclear research, development and training through partnerships with industry and academia for economic and social benefit. Saskatchewan is one of the world's largest producers of uranium and home to pioneering research in nuclear medicine, most notably the development of cobalt-60 teletherapy. The Fedoruk Centre is striving to build on this legacy through the attainment of four strategic goals: (1) building nuclear expertise and capacity through the support to academic programs and research projects in partnership with industry, academic institutions and research organizations in nuclear medicine, materials research, energy and the environment; (2) enhancing innovation in partnership with the research community and industry; (3) engaging communities and increasing understanding of risks, benefits and potential impacts of nuclear technologies; and (4) ensuring the sustainability and accountability of the Centre and its resources. The Fedoruk Centre's mandate includes the stewardship of select nuclear facilities, the first being a 24 MeV cyclotron and nuclear substances laboratory as a resource for the development of novel imaging agents, training and production of radioisotopes for clinical diagnoses. By attracting new research leadership in the nuclear domain, developing networks of expertise, training highly-qualified personnel in nuclear disciplines, stimulating industrial partnerships, and creating conditions for fact-based conversation regarding nuclear issues, the Fedoruk Centre is working to establish a research and innovation capacity to support a vibrant nuclear sector in Saskatchewan. (author)

  16. Analyzing Innovation Systems (Burkina Faso) | CRDI - Centre de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project aims to improve the efficiency of the nascent innovation system in Burkina Faso by strengthening exchanges between researchers, inventors and innovators and public ... L'Initiative des conseils subventionnaires de la recherche scientifique en Afrique subsaharienne remporte le prix de la diplomatie scientifique.

  17. Framing in innovation. Towards sustainable agro-food systems

    NARCIS (Netherlands)

    Zwartkruis, J.V.

    2013-01-01

    Sustainability issues in the agro-food sector have become increasingly important, and in order to deal with these sustainability issues, innovations are deemed necessary. Only introducing new technologies is not enough, system innovations are needed in which changes in the whole socio-technical

  18. Electronic Ticketing System As a Process of Innovation

    Directory of Open Access Journals (Sweden)

    Rafael Mendes Lübeck

    2012-02-01

    Full Text Available Considering the increased complexity in the competitive landscape, innovation is the keyword of the post-industrial era, and in order to be attained by the enterprises, it requires new strategies, capabilities and competencies. Considering this scenario this study included analysis of improvements achieved with the implementation of the e-ticketing system in a case of public transport in major cities of southern Brazil categorized as cases β and γ. Furthermore, it aimed to ascertain whether the improvements in information management provided by electronic ticketing qualify it as an innovation. The research was based on the theoretical model of innovation described in Tables 1, 2, 3, 4 in order to guide the research activities described. Qualitative data was collected through interviews and document analysis. The collected information was analyzed using content analysis and the amount of vehicles and passengers in the cities covered by the survey were used as secondary data. The characteristic effects of innovation were found to be in line with the results of e-ticketing in the cases analyzed, making this system a way to attain innovation. In accordance with the guidelines set for this study, it is worth emphasizing that the impacts of the e-ticketing system were considered innovative, not the system itself, because electronic billing was a means to achieve innovation and not an innovation per se.

  19. Systemic perspectives on scaling agricultural innovations. A review

    NARCIS (Netherlands)

    Wigboldus, Seerp; Klerkx, Laurens; Leeuwis, Cees; Schut, Marc; Muilerman, Sander; Jochemsen, Henk

    2016-01-01

    Agricultural production involves the scaling of agricultural innovations such as disease-resistant and drought-tolerant maize varieties, zero-tillage techniques, permaculture cultivation practices based on perennial crops and automated milking systems. Scaling agricultural innovations should take

  20. Innovation systems as patent networks: the Netherlands, India and nanotech

    NARCIS (Netherlands)

    Dolfsma, W.; Leydesdorff, L.

    2011-01-01

    Research in the domain of 'Innovation Studies' has been claimed to allow for the study of how technology will develop in the future. Some suggest that the National and Sectoral Innovation Systems literature has become bogged down, however, into case studies of how specific institutions affect

  1. Innovative technology summary report: Transportable vitrification system

    International Nuclear Information System (INIS)

    1998-09-01

    At the end of the cold war, many of the Department of Energy's (DOE's) major nuclear weapons facilities refocused their efforts on finding technically sound, economic, regulatory compliant, and stakeholder acceptable treatment solutions for the legacy of mixed wastes they had produced. In particular, an advanced stabilization process that could effectively treat the large volumes of settling pond and treatment sludges was needed. Based on this need, DOE and its contractors initiated in 1993 the EM-50 sponsored development effort required to produce a deployable mixed waste vitrification system. As a consequence, the Transportable Vitrification System (TVS) effort was undertaken with the primary requirement to develop and demonstrate the technology and associated facility to effectively vitrify, for compliant disposal, the applicable mixed waste sludges and solids across the various DOE complex sites. After 4 years of development testing with both crucible and pilot-scale melters, the TVS facility was constructed by Envitco, evaluated and demonstrated with surrogates, and then successfully transported to the ORNL ETTP site and demonstrated with actual mixed wastes in the fall of 1997. This paper describes the technology, its performance, the technology applicability and alternatives, cost, regulatory and policy issues, and lessons learned

  2. Digital Innovation and Nuclear Engineering Education in UNED: Challenges, Trends and Opportunities

    International Nuclear Information System (INIS)

    Alonso-Ramos, M.; Sánchez-Elvira Paniagua, Á.; Martín, S.; Castro Gil, M.; Sanz Gozalo, J.

    2016-01-01

    Full text: Innovation in nuclear engineering education should reflect the current challenges, trends and opportunities that digital technologies are promoting in the whole educational field. The European Commission has recently stressed that technology and open educational resources represent clear opportunities to reshape EU education, contributing to the necessary modernization of higher education in order to give response to XXI century challenges. In this paper, the innovations that the Spanish National Distance Education University (UNED) are making in the digital education domain, including open educational resources (OER) and massive open online courses (MOOCs) developments applied to science, technology, engineering and mathematics (STEM) and the nuclear engineering field, are presented. (author

  3. Nuclear fusion system

    International Nuclear Information System (INIS)

    Dow, W.G.

    1981-01-01

    The invention pertains to the method and apparatus for the confining of a stream of fusible positive ions at values of density and high average kinetic energy, primarily of tightly looping motions, to produce nuclear fusion at a useful rate; more or less intimately mixed with the fusible ions will be lowerenergy electrons at about equal density, introduced solely for the purpose of neutralizing the positive space charge of the ions

  4. Innovation of power management structure in Czechoslovakia and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Cibula, M

    1979-01-01

    The estimate is briefly indicated of power demand in Czechoslovakia till 1990 with the objective of attaining 142 mil. tonnes of specific fuel in that year. The demand will be met from domestic resources by 49%, exports by 44.2% and nuclear power by 6.8%. A brief comparison is presented of capital and fuel costs of brown coal fired power plants, hydroelectric plants and nuclear power plants in Czechoslovakia in 1990.

  5. Nuclear energy. The innovations of the N4 reactor

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    The coupling to the electric network of the two first units of N4 type reactors, on the site of Chooz in the Ardennes, marks the third great step of the French nuclear programme of PWR type reactors, after the realization of 34 units of 900 MWe and 20 units of 1300 M We. The nuclear boiler N4, realizes a new evolution in power, in performances and in reliability. (N.C.)

  6. Nuclear system test simulator

    International Nuclear Information System (INIS)

    Sawyer, S.D.; Hill, W.D.; Wilson, P.A.; Steiner, W.M.

    1987-01-01

    A transportable test simulator is described for a nuclear power plant. The nuclear power plant includes a control panel, a reactor having actuated rods for moving into and out of a reactor for causing the plant to operate, and a control rod network extending between the control panel and the reactor rods. The network serially transmits command words between the panel and rods, and has connecting interfaces at preselected points remote from the control panel between the control panel and rods. The test simulator comprises: a test simulator input for transport to and connection into the network at at least one interface for receiving the serial command words from the network. Each serial command includes an identifier portion and a command portion; means for processing interior of the simulator for the serial command words for identifying that portion of the power plant designated in the identifier portion and processing the word responsive to the command portion of the word after the identification; means for generating a response word responsive to the command portion; and output means for sending and transmitting the response word to the nuclear power plant at the interface whereby the control panel responds to the response word

  7. Innovative Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    International Nuclear Information System (INIS)

    Hill, T.; Noble, C.; Martinell, J.; Borowski, S.

    2000-01-01

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonably assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible

  8. Innovation Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hill, T.; Noble, C.; Martinell, J. (INEEL); Borowski, S. (NASA Glenn Research Center)

    2000-07-14

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonably assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible.

  9. Innovative Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Thomas Johnathan; Noble, Cheryl Ann; Noble, C.; Martinell, John Stephen; Borowski, S.

    2000-07-01

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonable assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible.

  10. International Project on Innovative Nuclear Reactors and Fuel Cycles: Introduction and Education and Training Activity

    International Nuclear Information System (INIS)

    Fesenko, G.; Kuznetsov, V.; Phillips, J.R.; Rho, K.; Grigoriev, A.; Korinny, A.; Ponomarev, A.

    2015-01-01

    The IAEA’s International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was established in 2000 through IAEA General Conference resolution with aim to ensure that sustainable nuclear energy is available to help meet the energy needs of the 21st century. INPRO seeks to bring together technology holders, users and newcomers to consider jointly the international and national actions required for achieving desired innovations in nuclear reactors and fuel cycles, with a particular focus on sustainability and needs of developing countries. It is a mechanism for INPRO Members to collaborate on topics of joint interest. INPRO activities are undertaken in close cooperation with Member States in the following main areas: Global Scenarios, Innovations, Sustainability Assessment and Strategies, Policy and Dialogue. The paper presents short introduction in INPRO and specifically the distant Education and Training INPRO activity on important topics of nuclear energy sustainability to audiences in different Member States. These activities can support capacity building and national human resource development in the nuclear energy sector. The main benefit of such training courses and workshops is that it is not only targeted to students, but also to lecturers of technical and nuclear universities. Moreover, young professionals working at nuclear energy departments, electric utilities, energy ministries and R&D institutions can participate in such training and benefit from it. (authors)

  11. Constructing China’s wind energy innovation system

    International Nuclear Information System (INIS)

    Klagge, Britta; Liu Zhigao; Campos Silva, Pedro

    2012-01-01

    The rapid rise of China as the largest wind energy market worldwide with several global leaders in turbine manufacturing received much attention from both scholarly and policy-analytical work. However, little attention has been given to the innovation activities of the Chinese wind industry. In our paper, we aim to address this gap, based on second-hand sources and over 50 personal interviews with wind energy-related experts. We argue that China’s wind industry has made great progress in terms of manufacturing and installing, but is confronted with various challenges and problems regarding the development of its indigenous innovation capabilities. Using innovation systems approaches as an analytical tool and focusing on institutions, actors, technology and their interaction in supporting innovation activities, we decompose the elements of China’s wind energy innovation system and their role in developing the domestic wind industry. Against this backdrop we identify and discuss challenges and obstacles in the development of an innovation-driven wind industry in China. The paper strongly argues that more attention should be paid to improve the coordination and cooperation among the various actors of the wind energy innovation system, to the build-up of a market-oriented education and training system as well as to intellectual property protection. - Highlights: ► Innovation systems concepts as analytical tool to understand wind energy in China. ► Focus on institutions, actor constellations and technology development in China. ► Analysis of success in manufacturing and the rapid rise of China’s wind industry. ► Identification of challenges and problems regarding innovation activities. ► Recommendation to (better) integrate innovation policy and wind industry policy.

  12. Prestressed cast iron pressure vessels as burst-proof pressure vessels for innovative nuclear applications

    International Nuclear Information System (INIS)

    Froehling, W.; Boettcher, A.; Bounin, D.; Steinwarz, W.; Geiss, M.; Trauth, M.

    2000-01-01

    The amendment to the German Atomic Energy Act from July 28, 1994 requires that events 'whose occurrence is practically excluded by the measures against damages', i.e. events of the category residual risk, must not necessitate far reaching protective measures outside the plant. For a conventional reactor pressure vessel, the residual risk consists in the very small probability of a catastrophic failure (formation of a large fracture opening, bursting of the vessel). With a prestressed cast iron vessel (PCIV), the formation of a large fracture opening or bursting of the vessel, respectively, is impossible due to its design properties. Against this background the possibility of the use of this type of pressure vessel for lightwater reactors has been studied in the frame of a 'Working Group for Innovative Nuclear Technology', founded by different research institutes and industrial companies. Furthermore, it has been studied whether the use of the PCIV support the realization of a corecatcher system. The results are presented in this report. Already many years earlier, Siempelkamp has performed industrial development and Forschungszentrum Juelich related experimental and theoretical safety research for the PCIV as an innovative, bust-proof pressure vessel concept. This development of the PCIV as well as its safety properties are also presented in a conclusive manner. (orig.) [de

  13. Semer: a simple calculational tool for the economic evaluations of reactor systems and associated innovations

    Energy Technology Data Exchange (ETDEWEB)

    Nisan, S. [CEA Cadarache, Nuclear Reactor Directorate, DRN, Dept. of Reactor Studies, DER, Reactor and Innovative Systems Service, SERSI, 13 - Saint Paul lez Durance (France); Rouyer, J.L. [Electricite de France (EDF), Pole Industrie, Div. Ingenierie et Services, 93 - Saint-Denis (France)

    2001-07-01

    This paper summarises part of our on-going investigations on the economic evaluations of various nuclear and fossil energy systems and related innovations. These investigations are principally concerned with the development of the code system SEMER and its validation. SEMER has been developed to furnish top management and project leaders a simple tool for cost evaluations enabling a choice between competitive technological options. The cost evaluation models, actually integrated in the SEMER system, already cover a very wide range of electricity producing systems and, where relevant, their associated fuel cycles: The ''global models'', allowing rapid but relatively approximate overall cost estimations (about 15 % error). These include: Almost all the electricity producing systems using fossil energies (Oil, Coal, Gas, including gas turbines with combined cycles); Nuclear reactor systems including all the French PWRs, HTRs, Compact PWRs, and PWRs for nuclear propulsion systems. (author)

  14. Semer: a simple calculational tool for the economic evaluations of reactor systems and associated innovations

    International Nuclear Information System (INIS)

    Nisan, S.; Rouyer, J.L.

    2001-01-01

    This paper summarises part of our on-going investigations on the economic evaluations of various nuclear and fossil energy systems and related innovations. These investigations are principally concerned with the development of the code system SEMER and its validation. SEMER has been developed to furnish top management and project leaders a simple tool for cost evaluations enabling a choice between competitive technological options. The cost evaluation models, actually integrated in the SEMER system, already cover a very wide range of electricity producing systems and, where relevant, their associated fuel cycles: The ''global models'', allowing rapid but relatively approximate overall cost estimations (about 15 % error). These include: Almost all the electricity producing systems using fossil energies (Oil, Coal, Gas, including gas turbines with combined cycles); Nuclear reactor systems including all the French PWRs, HTRs, Compact PWRs, and PWRs for nuclear propulsion systems. (author)

  15. The news and innovations in radiation protection systems and equipment

    International Nuclear Information System (INIS)

    Hetes, M.

    2014-01-01

    ENVINET as the part of the Nuvia Group is well known for the engineering supplies and services for the nuclear power. Nevertheless, the development, manufacturing and service of the radiometric systems, including unique manufacturing of the ionizing radiation detectors, supplemented by the specific equipment such as led-free shielding material and specialized software products has dominant and firm position in the company's portfolio.ENVINET continually reflects with the large scale of instrumentation and systems on the specific needs within the field of detection and measurement of ionizing radiation. The company provides comprehensive services covering the radiation protection requirements in the energy industry, health, education, science and research. Offered systems are flexibly adaptable to various scales - 'on-the spot', national and international, different conditions - 'in-house' or terrain, and various modes - discontinuous or in-situ continuous measurements.The technique of the ENVNETs own development and production series is the result of the long-term experience in the nuclear power, and the co-operation with renowned research institutes, armed forces and first response groups. These traditionally include radioactive waste characterization instruments, numerous devices intended for terrain radiation survey and detection of the ionizing radiation, large scale of the plastic scintillators and NaI(Tl) detectors, digital analyzers, photomultipliers and preamplifiers, along with various types of lead and lead-free shielding.The automatic sample changer - NuLAB ASC100 stands for the news on the market, mirroring the great skill in the industrial automation and the experience in the radiation protection. The device represents advanced solution for high-resolution gamma spectrometry and is designed for automatic identification and quantification of radioisotopes in different types of samples.Daughter company Pico Envirotec continues

  16. Innovative Energy Planning and Nuclear Option Using CANDLE Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sekimoto, H; Nagata, A; Mingyu, Y [Tokyo Institute of Technology, Tokyo (Japan)

    2008-07-01

    fuel management becomes much easier, and the total system becomes free from nuclear proliferation.(author)

  17. Innovative Energy Planning and Nuclear Option Using CANDLE Reactors

    International Nuclear Information System (INIS)

    Sekimoto, H.; Nagata, A.; Mingyu, Y.

    2008-01-01

    fuel management becomes much easier, and the total system becomes free from nuclear proliferation.(author)

  18. Renewing the Future: Social Innovation Systems, Sector Shift, and Innoweave

    Directory of Open Access Journals (Sweden)

    Stephen Huddart

    2012-07-01

    Full Text Available Against a backdrop of various “occupy” movements signifying civic dissatisfaction with the social contract, and in an era of fiscal restraint affecting governments and communities in many parts of the world, we need new and more effective ways to address complex social challenges. While continuous innovation is commonly understood to be a source of growth, productivity improvement, and competitive advantage in the technology and manufacturing sectors, the author’s focus is on social innovation systems, designed to replace maladaptive institutions and obsolete policy frameworks with novel and disruptive means for improving outcomes on issues such as population health and climate change. This article proposes a definition of such systems, and examines how system-level tools including impact investing, open data platforms, and “change labs” are fostering collaboration among the private, public, and community sectors. We argue that a key priority at this time is to make these and other tools and processes for social innovation available to community organizations and their government and business partners everywhere, in a manner that allows for continuous cycles of implementation and learning. The author describes one such project currently being developed in Canada by Social Innovation Generation and other partners, called Innoweave. Innoweave is a technology-enabled social innovation system for sharing the tools and processes of social innovation with the community sector. The article concludes with a call for multi-sectoral participation in social innovation systems as an investment in society’s adaptive capacity and future wellbeing.

  19. Waste Oriented Innovation Culture-Transparency-Public Trust Cycle : Success Key for Nuclear Facility Management in Indonesia

    International Nuclear Information System (INIS)

    Susetyo Hario Putero; Haryono B Santosa

    2007-01-01

    Radioactive matter that is a primary material in a nuclear facility, including nuclear power generation, is a part of hazardous materials. Its existence will lead a controversy, although the precise management system for handling it is available. Public sometimes reject the nuclear technology due to the lack of understanding and wrong perception on that technology, especially the radioactive waste treatment. So, strategies should be designed for correcting public perception, until public acceptance on utilization of nuclear technology in Indonesia increase. The innovation development on radioactive waste management was studied by observing and interviewing managements and operators of Japan Atomic Energy Agency (JAEA), Japan. The constructing of concept was based on study result. Based on assumption that the current state of the radioactive waste treatment is suitable and there is serious improvement of technology, therefore systematic and precise oriented corrective efforts of public perception could be done. Transparency, intensive communication, and public participation that show responsible action for emerging mutual trust are basic of strategy that should be developed. High level public acceptance on utilization of nuclear technology is expected to be able for stimulating and supporting sustainable technology innovation culture. (author)

  20. Nuclear database management systems

    International Nuclear Information System (INIS)

    Stone, C.; Sutton, R.

    1996-01-01

    The authors are developing software tools for accessing and visualizing nuclear data. MacNuclide was the first software application produced by their group. This application incorporates novel database management and visualization tools into an intuitive interface. The nuclide chart is used to access properties and to display results of searches. Selecting a nuclide in the chart displays a level scheme with tables of basic, radioactive decay, and other properties. All level schemes are interactive, allowing the user to modify the display, move between nuclides, and display entire daughter decay chains

  1. Innovations in the Use of Nuclear Energy for Sustainable Manufacturing

    International Nuclear Information System (INIS)

    Herring, J. Stephen

    2010-01-01

    Over the next 50 years, nuclear energy will become increasingly important in providing the electricity and heat needed both by the presently industrialized countries and by those countries which are now developing their manufacturing industries. The twin concerns of global climate change and of the vulnerability of energy supplies caused by increasing international competition will lead to a greater reliance on nuclear energy for both electricity and process heat. Conservative estimates of new nuclear construction indicate a 50% increase in capacity by 2030. Other estimates predict a tripling of present capacity. Required machine tool technologies will include the improvements in the manufacture of standard LWR components, such as pressure vessels and pumps. Further in the future, technologies for working high temperature metals and ceramics will be needed and will require new machining capabilities.

  2. Innovations in the Use of Nuclear Energy for Sustainable Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    J. Stephen Herring

    2010-10-01

    Abstract Over the next 50 years, nuclear energy will become increasingly important in providing the electricity and heat needed both by the presently industrialized countries and by those countries which are now developing their manufacturing industries. The twin concerns of global climate change and of the vulnerability of energy supplies caused by increasing international competition will lead to a greater reliance on nuclear energy for both electricity and process heat. Conservative estimates of new nuclear construction indicate a 50% increase in capacity by 2030. Other estimates predict a tripling of present capacity. Required machine tool technologies will include the improvements in the manufacture of standard LWR components, such as pressure vessels and pumps. Further in the future, technologies for working high temperature metals and ceramics will be needed and will require new machining capabilities.

  3. Innovative concept for an ultra-small nuclear thermal rocket utilizing a new moderated reactor

    Directory of Open Access Journals (Sweden)

    Seung Hyun Nam

    2015-10-01

    Full Text Available Although the harsh space environment imposes many severe challenges to space pioneers, space exploration is a realistic and profitable goal for long-term humanity survival. One of the viable and promising options to overcome the harsh environment of space is nuclear propulsion. Particularly, the Nuclear Thermal Rocket (NTR is a leading candidate for near-term human missions to Mars and beyond due to its relatively high thrust and efficiency. Traditional NTR designs use typically high power reactors with fast or epithermal neutron spectrums to simplify core design and to maximize thrust. In parallel there are a series of new NTR designs with lower thrust and higher efficiency, designed to enhance mission versatility and safety through the use of redundant engines (when used in a clustered engine arrangement for future commercialization. This paper proposes a new NTR design of the second design philosophy, Korea Advanced NUclear Thermal Engine Rocket (KANUTER, for future space applications. The KANUTER consists of an Extremely High Temperature Gas cooled Reactor (EHTGR utilizing hydrogen propellant, a propulsion system, and an optional electricity generation system to provide propulsion as well as electricity generation. The innovatively small engine has the characteristics of high efficiency, being compact and lightweight, and bimodal capability. The notable characteristics result from the moderated EHTGR design, uniquely utilizing the integrated fuel element with an ultra heat-resistant carbide fuel, an efficient metal hydride moderator, protectively cooling channels and an individual pressure tube in an all-in-one package. The EHTGR can be bimodally operated in a propulsion mode of 100 MWth and an electricity generation mode of 100 kWth, equipped with a dynamic energy conversion system. To investigate the design features of the new reactor and to estimate referential engine performance, a preliminary design study in terms of neutronics and

  4. Innovative concept for an ultra-small nuclear thermal rocket utilizing a new moderated reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Venneri, Paolo; Kim, Yong Hee; Lee, Jeong Ik; Chang, Soon Heung; Jeong, Yong Hoon [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-10-15

    Although the harsh space environment imposes many severe challenges to space pioneers, space exploration is a realistic and profitable goal for long-term humanity survival. One of the viable and promising options to overcome the harsh environment of space is nuclear propulsion. Particularly, the Nuclear Thermal Rocket (NTR) is a leading candidate for near-term human missions to Mars and beyond due to its relatively high thrust and efficiency. Traditional NTR designs use typically high power reactors with fast or epithermal neutron spectrums to simplify core design and to maximize thrust. In parallel there are a series of new NTR designs with lower thrust and higher efficiency, designed to enhance mission versatility and safety through the use of redundant engines (when used in a clustered engine arrangement) for future commercialization. This paper proposes a new NTR design of the second design philosophy, Korea Advanced NUclear Thermal Engine Rocket (KANUTER), for future space applications. The KANUTER consists of an Extremely High Temperature Gas cooled Reactor (EHTGR) utilizing hydrogen propellant, a propulsion system, and an optional electricity generation system to provide propulsion as well as electricity generation. The innovatively small engine has the characteristics of high efficiency, being compact and lightweight, and bimodal capability. The notable characteristics result from the moderated EHTGR design, uniquely utilizing the integrated fuel element with an ultra heat-resistant carbide fuel, an efficient metal hydride moderator, protectively cooling channels and an individual pressure tube in an all-in-one package. The EHTGR can be bimodally operated in a propulsion mode of 100 MW{sub th} and an electricity generation mode of 100 kW{sub th}, equipped with a dynamic energy conversion system. To investigate the design features of the new reactor and to estimate referential engine performance, a preliminary design study in terms of neutronics and

  5. Innovative concept for an ultra-small nuclear thermal rocket utilizing a new moderated reactor

    International Nuclear Information System (INIS)

    Nam, Seung Hyun; Venneri, Paolo; Kim, Yong Hee; Lee, Jeong Ik; Chang, Soon Heung; Jeong, Yong Hoon

    2015-01-01

    Although the harsh space environment imposes many severe challenges to space pioneers, space exploration is a realistic and profitable goal for long-term humanity survival. One of the viable and promising options to overcome the harsh environment of space is nuclear propulsion. Particularly, the Nuclear Thermal Rocket (NTR) is a leading candidate for near-term human missions to Mars and beyond due to its relatively high thrust and efficiency. Traditional NTR designs use typically high power reactors with fast or epithermal neutron spectrums to simplify core design and to maximize thrust. In parallel there are a series of new NTR designs with lower thrust and higher efficiency, designed to enhance mission versatility and safety through the use of redundant engines (when used in a clustered engine arrangement) for future commercialization. This paper proposes a new NTR design of the second design philosophy, Korea Advanced NUclear Thermal Engine Rocket (KANUTER), for future space applications. The KANUTER consists of an Extremely High Temperature Gas cooled Reactor (EHTGR) utilizing hydrogen propellant, a propulsion system, and an optional electricity generation system to provide propulsion as well as electricity generation. The innovatively small engine has the characteristics of high efficiency, being compact and lightweight, and bimodal capability. The notable characteristics result from the moderated EHTGR design, uniquely utilizing the integrated fuel element with an ultra heat-resistant carbide fuel, an efficient metal hydride moderator, protectively cooling channels and an individual pressure tube in an all-in-one package. The EHTGR can be bimodally operated in a propulsion mode of 100 MW th and an electricity generation mode of 100 kW th , equipped with a dynamic energy conversion system. To investigate the design features of the new reactor and to estimate referential engine performance, a preliminary design study in terms of neutronics and thermohydraulics

  6. Developing a Framework for Ethnomedicine Innovation System in ...

    African Journals Online (AJOL)

    Nigerian Journal of Natural Products and Medicine ... This paper examines the interactions within the national Innovation System in ... technical assistance, technology-based strategic alliances, among others in the field of ethnomedicine.

  7. Innovation Systems for Inclusive Development : Lessons from Rural ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Both China and India are currently attempting to balance rapid economic growth, ... Interrogating innovation systems : challenges of the excluded rural in India ... IWRA/IDRC webinar on climate change and adaptive water management.

  8. Social capital and the Danish system of innovation

    DEFF Research Database (Denmark)

    Gjerding, Allan Næs

    2005-01-01

    The paper explores the concept of social capital and applies it to the Danish national system of innovation. It is argued that social capital is important to the working of the national system of innovation, and that the way in which the concept of social capital informs the study of national...... systems of innovation is in accordance with fundamental contributions in the field. Reviewing a number of approaches to social capital, the paper shows that even though different views exist there seem to be a number of common features that will facilitate research both within individual fields and cross......-disciplinary. Regarding the Danish national system of innovation, social capital plays an important role, and a number of features facilitating social capital prevail. However, a number of challenges are present and calling for political action and future research. The main argument of the paper is that social capital...

  9. SUBSURFACE VOLATIZATION AND VENTILATION SYSTEM (SVVS) - INNOVATIVE TECHNOLOGY REPORT

    Science.gov (United States)

    This report summarizes the findings associated with a Demonstration Test of Environmental Improvement Technologies’ (EIT) Subsurface Volatilization and Ventilation System (SVVS) process. The technology was evaluated under the EPA Superfund Innovative Technology Evaluation (SITE) ...

  10. Biotechnology and Innovation Systems: The Role of Public Policy ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2012-02-29

    Feb 29, 2012 ... This book explores how policies targeting public research institutions, ... such approaches work under different economic and social conditions. ... innovation systems, higher education, and development will find this book an ...

  11. Learning from the Field: Innovating China's Higher Education System

    International Development Research Centre (IDRC) Digital Library (Canada)

    2008-04-15

    Apr 15, 2008 ... Learning from the Field: Innovating China's Higher Education System ... to translating China's higher education policy reforms into practice. The editors. Ronnie Vernooy is Senior Program Specialist, International Development ...

  12. Mapping organizational linkages in the agricultural innovation system of Azerbaijan

    NARCIS (Netherlands)

    Temel, T.

    2004-01-01

    This study describes the evolving context and organisational linkages in the agricultural innovation system of Azerbaijan and suggests ways to promote effective organisational ties for the development, distribution and use of new or improved information and knowledge related to agriculture.

  13. The new innovative medical education system in Ethiopia ...

    African Journals Online (AJOL)

    User

    Background: A New Innovative Medical Education Initiative (NIMEI) had been launched in Ethiopia in February ... development as well as for the overall health system of the country. .... A national survey was conducted in all regions of Ethiopia.

  14. Innovations in pricing of transportation systems : theory and practice.

    Science.gov (United States)

    2011-08-15

    This report summarizes results from the conference titled Innovations in Pricing of : Transportation Systems on May 12 14, 2010 at the Royal Plaza Hotel in Orlando, Florida. : The primary objective of the conference is to bring together pra...

  15. Gender Analysis of Risk in Innovation System

    DEFF Research Database (Denmark)

    Ayinde, Ope; Muchie, Mammo; Abaniyan, E. O.

    2011-01-01

    the new maize variety. The analytical tools used include descriptive statistics, regression model; risk utility functions and risk parameter analysis. The result showed that invasion by animals, disease and pest, lack of access to credit wind and price fluctuation were the major risk facing the maize......This study analyzed risk by gender in innovation in Kwara state, Nigeria, using downy mildew resistant maize production as case study. The study employed primary and secondary data. The primary data were collected from well-structured questionnaires administered to both male and female producing...... producers in the area in the usage of the new innovation. The study also revealed that male producers were willing to take risk in the new maize variety production than the female, while the females were more indifferent to the risk involved in the new maize production variety than males. None...

  16. Design and development of innovative passive valves for Nuclear Power Plant applications

    Energy Technology Data Exchange (ETDEWEB)

    Sapra, M.K., E-mail: sapramk@barc.gov.in; Kundu, S.; Pal, A.K.; Vijayan, P.K.; Vaze, K.K.; Sinha, R.K.

    2015-05-15

    Highlights: • Passive valves are self-acting valves requiring no external energy to function. • These valves have been developed for Advanced Heavy Water Reactor (AHWR) of India. • Passive valves are core components of passive safety systems of the reactor. • Accumulator Isolation Passive Valve (AIPV) has been developed and tested for ECSS. • AIPV provided passive isolation and flow regulation in ECCS of Integral Test Loop. - Abstract: The recent Fukushima accident has resulted in an increased need for passive safety systems in upcoming advanced reactors. In order to enhance the global contribution and acceptability of nuclear energy, proven evidence is required to show that it is not only green but also safe, in case of extreme natural events. To achieve and establish this fact, we need to design, demonstrate and incorporate reliable ‘passive safety systems’ in our advanced reactor designs. In Nuclear Power Plants (NPPs), the use of passive safety systems such as accumulators, condensing and evaporative heat exchangers and gravity driven cooling systems provide enhanced safety and reliability. In addition, they eliminate the huge costs associated with the installation, maintenance and operation of active safety systems that require multiple pumps with independent and redundant electric power supplies. As a result, passive safety systems are preferred for numerous advanced reactor concepts. In current NPPs, passive safety systems which are not participating in day to day operation, are kept isolated, and require a signal and external energy source to open the valve. It is proposed to replace these valves by passive components and devices such as self-acting valves, rupture disks, etc. Some of these innovative passive valves, which do not require external power, have been recently designed, developed and tested at rated conditions. These valves are proposed to be used for various passive safety systems of an upcoming Nuclear Power Plant being designed

  17. Innovators.

    Science.gov (United States)

    NEA Today, 2001

    2001-01-01

    Describes various innovations that have been developed to enhance education. These innovations include: helping educators help at-risk students succeed; promoting high school journalism; ensuring quality online learning experiences; developing a student performing group that uses theater to address social issues; and having students design their…

  18. Application of optimization methods for nuclear energy system performance assessment by the MESSAGE software

    International Nuclear Information System (INIS)

    Andrianov, A.A.; Kuptsov, I.S.; Utyanskaya, T.V.

    2016-01-01

    This paper defines the multi-objective optimization and uncertainty treatment modules for the IAEA energy planning software MESSAGE intended for multi-objective optimization and sustainability assessments of innovative nuclear energy systems with account of uncertainty [ru

  19. Sustainable Innovation, Management Accounting and Control Systems, and International Performance

    Directory of Open Access Journals (Sweden)

    Ernesto Lopez-Valeiras

    2015-03-01

    Full Text Available This study analyzes how Management Accounting and Control Systems (MACS facilitate the appropriation of the benefits of sustainable innovations in organizations. In particular, this paper examines the moderating role of different types of MACS in the relationships between sustainable innovation and international performance at an organizational level. We collected survey data from 123 Spanish and Portuguese organizations. Partial Least Square was used to analyze the data. Results show that the effect of sustainable innovations on international performance is enhanced by contemporary rather than traditional types of MACS. Overall our findings show that MACS can help managers to develop and monitor organizational activities (e.g., costumer services and distribution activities, which support the appropriation of the potential benefits from sustainable innovation. This paper responds to recent calls for in-depth studies about the organizational mechanism that may enhance the success of sustainable innovation.

  20. Establishment of the system of innovative management of global corporations

    Directory of Open Access Journals (Sweden)

    Yevhen Panchenko

    2011-06-01

    Full Text Available There have been highlighted the relevant issues of system establishment of the innovative management of global corporations and generalized the experience of the leading world corporations in the achievement and keeping leading positions on the highly technological segments of the global market. It shows the significance of the creative personal qualities of managers in the generation and implementation of effective innovative solutions in the global business, grounds the categorical and functional imperatives of the innovative development of global corporations. In the context of formation of the new knowledge economy there were highlighted contradictions and available instruments of reinforcement of leading positions among the leading global corporations in the innovative sphere. There was paid attention to the implementation of the new concepts of global corporations’ leadership of BRIC countries, in particular, Chinese highly technological companies. There has been made a conclusion about global institutionalization of the innovative activity.

  1. Combating Climate Change through Eco-innovation - Towards the Green Innovation System

    DEFF Research Database (Denmark)

    Andersen, Maj Munch

    2009-01-01

    This book presents more than 20 innovative policies that, instead of framing mitigation as a burden, are conducive to the shift to a low-emission world-system that is sustainable in all its pillars (environment, society, economy), both in developed and in developing countries.......This book presents more than 20 innovative policies that, instead of framing mitigation as a burden, are conducive to the shift to a low-emission world-system that is sustainable in all its pillars (environment, society, economy), both in developed and in developing countries....

  2. GC Side Event: Nuclear Energy Innovation and the Paris Agreement. Presentations

    International Nuclear Information System (INIS)

    2017-01-01

    This event presented roadmaps for nuclear energy innovation linked to nationally determined contributions (NDCs) to the global response to climate change. It covered enabling conditions for research and development, the regulatory framework and infrastructure to support Member States’ NDC updates from 2020 to 2050

  3. User requirements in the area of safety of innovative nuclear reactors and fuel cycle installations

    International Nuclear Information System (INIS)

    Kuczera, B.; Juhn, P.E.; Fukuda, K.; )

    2002-01-01

    Full text: Against the background of already existing IAEA and INSAC publications in the area of safety, in the framework of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) a set of user requirements for the safety of future nuclear installations has been established. Five top-level requirements are expected to apply to any type of innovative design. They should foster an increased level of safety that is transparent to and fully accepted by the general public. The approach to future reactor safety includes two complementary strategies: increased emphasis on inherent safety characteristics and enhancement of defense in depth. As compared to existing plants, the effectiveness of preventing measures should be highly enhanced, resulting in fewer mitigation measures. The targets and possible approaches of each of the five levels of defense developed for innovative reactor designs are outlined in the paper

  4. Performance Assessment of Passive Gaseous Provisions (PGAP). Report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2013-07-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was launched in 2000 on the basis of IAEA General Conference resolution GC(44)/RES/21. INPRO helps to ensure the availability of sustainable nuclear energy in the 21st century and seeks to bring together all interested Member States - both technology holders and technology users - to consider joint actions to achieve desired innovations. To contribute to an international consensus on the definition of the reliability of passive systems that involve natural circulation, and on a methodology to assess this reliability, INPRO initiated a collaborative project on Performance Assessment of Passive Gaseous Provisions (PGAP) in 2007. Advanced nuclear reactor designs incorporate several passive systems in addition to active ones, not only to enhance the operational safety of the reactors but also to mitigate the consequences of a severe accident should one occur. However, the reliability of passive safety systems is crucial and must be assessed before they are used extensively in future nuclear power plants. Several physical parameters affect the performance of a passive safety system, and their values at the time of operation are a priori unknown. The functions of many passive systems are based on thermohydraulic principles, which until recently were considered as not being subject to any kind of failure. Hence, large and consistent efforts are required to quantify the reliability of such systems. Three participants from three INPRO Member States were involved in this collaborative project. Reliability methods for passive systems (RMPS) and assessment of passive system reliability (APSRA) methodologies were used by the participants to assess the performance and reliability of the passive decay heat removal system of the French gas cooled fast reactor design for station blackout and a loss of coolant accident combined with loss of off-site power, respectively. This publication presents the

  5. Understanding healthcare innovation systems: the Stockholm region case.

    Science.gov (United States)

    Larisch, Lisa-Marie; Amer-Wåhlin, Isis; Hidefjäll, Patrik

    2016-11-21

    Purpose There is an increasing interest in understanding how innovation processes can address current challenges in healthcare. The purpose of this paper is to analyze the wider socio-economic context and conditions for such innovation processes in the Stockholm region, using the functional dynamics approach to innovation systems (ISs). Design/methodology/approach The analysis is based on triangulation using data from 16 in-depth interviews, two workshops, and additional documents. Using the functional dynamics approach, critical structural and functional components of the healthcare IS were analyzed. Findings The analysis revealed several mechanisms blocking innovation processes such as fragmentation, lack of clear leadership, as well as insufficient involvement of patients and healthcare professionals. Furthermore, innovation is expected to occur linearly as a result of research. Restrictive rules for collaboration with industry, reimbursement, and procurement mechanisms limit entrepreneurial experimentation, commercialization, and spread of innovations. Research limitations/implications In this study, the authors analyzed how certain functions of the functional dynamics approach to ISs related to each other. The authors grouped knowledge creation, resource mobilization, and legitimacy as they jointly constitute conditions for needs articulation and entrepreneurial experimentation. The economic effects of entrepreneurial experimentation and needs articulation are mainly determined by the stage of market formation and existence of positive externalities. Social implications Stronger user involvement; a joint innovation strategy for healthcare, academia, and industry; and institutional reform are necessary to remove blocking mechanisms that today prevent innovation from occurring. Originality/value This study is the first to provide an analysis of the system of innovation in healthcare using a functional dynamics approach, which has evolved as a tool for public

  6. Status and trends of nuclear technologies - Report of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2009-09-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was launched in the year 2000, based on a resolution by the IAEA General Conference (GC(44)/RES/21). INPRO intends to help to ensure that nuclear energy is available in the 21st century in a sustainable manner, and seeks to bring together all interested Member States, both technology holders and technology users, to consider, jointly, actions to achieve desired innovations. INPRO is taking care of the specific needs of developing countries. This IAEA publication is part of Phase 1 of INPRO. It intends to provide an overview on history, present situation and future perspectives of nuclear fuel cycle technologies. While this overview focuses on technical issues, nevertheless, the aspects of economics, environment, and safety and proliferation resistance are important background issues for this study. After a brief description about the INPRO project and an evaluation of existing and future reactor designs the publication covers nuclear fuel cycle issues in detail. It is expected that this documentation will provide IAEA Member States and their nuclear engineers and designers, as well as policy makers with useful information on status and trends of future nuclear fuel cycle technologies. Due to the size of the full report it was decided to create a summary of the information and attach a CD-ROM in the back of this summary report with the full text of the report

  7. NUKEM. Innovative solutions for nuclear engineering; Innovative Loesungen rund um nukleares Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Scheffler, Beate [NUKEM Technologies GmbH, Alzenau (Germany)

    2011-03-15

    Management of radioactive waste, handling spent fuel elements, decommissioning of nuclear facilities, and engineering and consulting activities are services associated with the name of NUKEM all over the world. The company's scientists and engineers develop solution concepts combining the latest technologies with proven techniques and many years of experience. The company;s history and the services offered to the nuclear industry began more than 5 decades ago. The predecessor, NUKEM Nuklear-Chemie-Metallurgie, was founded in 1960 as one of the earliest nuclear companies in Germany. Originally, the firm produced fuel elements for a variety of reactor lines. As early as in the 1970s, logical extensions of these business activities were nuclear engineering and plant construction. In the meantime, NUKEM Technologies GmbH has developed a worldwide reputation for its activities. Numerous reference projects bear witness to optimum project management and customer satisfaction. Since 2009, NUKEM Technologies has been a wholly owned subsidiary of the Russian Atomstroyexport. NUKEM Technologies operates sales and project offices outside Germany, e.g. in Russia, China, Lithuania, France, and Bulgaria. In this way, the company is present in its target markets of Russia, Western and Eastern Europe as well as Asia, offering customers and partners fast and direct contacts. (orig.)

  8. Adapting the innovation systems approach to agricultural development in Vietnam

    DEFF Research Database (Denmark)

    Friederichsen, Rupert; Thai, Thi Minh; Neef, Andreas

    2013-01-01

    into the still-dominant transfer of technology model. We show how extensionists draw selectively on these diverse discourses to foster interaction with outsiders and clients, and bolster their livelihood strategies. We conclude that the conceptual framework suggested by the innovation systems (IS) approach......Competing models of innovation informing agricultural extension, such as transfer of technology, participatory extension and technology development, and innovation systems have been proposed over the last decades. These approaches are often presented as antagonistic or even mutually exclusive....... This article shows how practitioners in a rural innovation system draw on different aspects of all three models, while creating a distinct local practice and discourse. We revisit and deepen the critique of Vietnam’s “model” approach to upland rural development, voiced a decade ago in this journal. Our...

  9. Nuclear power systems: Their safety

    International Nuclear Information System (INIS)

    Myers, L.C.

    1993-01-01

    Mankind utilizes energy in many forms and from a variety of sources. Canada is one of a growing number of countries which have chosen to embrace nuclear-electric generation as a component of their energy systems. As of August 1992 there were 433 power reactors operating in 35 countries and accounting for more than 15% of the world's production of electricity. In 1992, thirteen countries derived at least 25% of their electricity from nuclear units, with France leading at nearly 70%. In the same year, Canada produced about 16% of its electricity from nuclear units. Some 68 power reactors are under construction in 16 countries, enough to expand present generating capacity by close to 20%. No human endeavour carries the guarantee of perfect safety and the question of whether or not nuclear-electric generation represents an 'acceptable' risk to society has long been vigorously debated. Until the events of late April 1986, nuclear safety had indeed been an issue for discussion, for some concern, but not for alarm. The accident at the Chernobyl reactor in the USSR has irrevocably changed all that. This disaster brought the matter of nuclear safety back into the public mind in a dramatic fashion. This paper discusses the issue of safety in complex energy systems and provides brief accounts of some of the most serious reactor accidents which have occurred to date. (author). 7 refs

  10. Activities of passive cooling applications and simulation of innovative nuclear power plant design

    International Nuclear Information System (INIS)

    Aglar, F.; Tanrykut, A.

    2002-01-01

    This paper gives a general insight on activities of the Turkish Atomic Energy Authority (TAEA) concerning passive cooling applications and simulation of innovative nuclear power plant design. The condensation mode of heat transfer plays an important role for the passive heat removal application in advanced water-cooled reactor systems. But it is well understood that the presence of noncondesable (NC) gases can greatly inhibit the condensation process due to the build up of NC gas concentration at the liquid/gas interface. The isolation condenser of passive containment cooling system of the simplified boiling water reactors is a typical application area of in-tube condensation in the presence of NC. The test matrix of the experimental investigation undertaken at the METU-CTF test facility (Middle East Technical University, Ankara) covers the range of parameters; Pn (system pressure) : 2-6 bar, Rev (vapor Reynolds number): 45,000-94,000, and Xi (air mass fraction): 0-52%. This experimental study is supplemented by a theoretical investigation concerning the effect of mixture flow rate on film turbulence and air mass diffusion concepts. Recently, TAEA participated to an international standard problem (OECD ISP-42) which covers a set of simulation of PANDA test facility (Paul Scherrer Institut-Switzerland) for six different phases including different natural circulation modes. The concept of condensation in the presence of air plays an important role for performance of heat exchangers, designed for passive containment cooling, which in turn affect the natural circulation behaviour in PANDA systems. (author)

  11. 2-D linear motion system. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-11-01

    The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker trademark, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m 2 of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology. However

  12. Conditions for the inauguration of a second nuclear era: chances of success of radical innovation

    International Nuclear Information System (INIS)

    Finon, D.

    1999-01-01

    Facing the stagnation of the world nuclear capacity, the commitments of Kyoto, the chances of re-mobilizing this technology in order to tackle the stakes of stabilisation of CO 2 emissions are assessed. The evolutionist economy of technical change offers a conceptual framework for the identification of factors of the incompatibility of nuclear technology with regard to the industrial, social and political environment in the majority of industrial economies. On the basis of this type of analysis, an examination of the conditions and chances for the re-launch of nuclear technology based on radical innovation designed to be in line with this environment is given. (author)

  13. The IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    Juergen Kupitz

    2002-01-01

    This paper presents the IAEA International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). It defines its rationale, key objectives and specifies the organizational structure. The IAEA General Conference (2000) has invited 'all interested Member States to combine their efforts under the aegis of the Agency in considering the issues of the nuclear fuel cycle, in particular by examining innovative and proliferation-resistant nuclear technology' (GC(44)/RES/21) and invited Member States to consider to contribute to a task force on innovative nuclear reactors and fuel cycle (GC(44)/RES/22). In response to this invitation, the IAEA initiated an 'International Project on Innovative Nuclear Reactors and Fuel Cycles', INPRO. The Terms of Reference for INPRO were adopted at a preparatory meeting in November 2000, and the project was finally launched by the INPRO Steering Committee in May 2001. At the General Conference in 2001, first progress was reported, and the General Conference adopted a resolution on 'Agency Activities in the Development of Innovative Nuclear Technology' [GC(45)/RES/12, Tab F], giving INPRO a broad basis of support. The resolution recognized the 'unique role that the Agency can play in international collaboration in the nuclear field'. It invited both 'interested Member States to contribute to innovative nuclear technology activities' at the Agency as well as the Agency itself 'to continue it's efforts in these areas'. Additional endorsement came in a UN General Assembly resolution in December 2001 (UN GA 2001, A/RES/56/94), that again emphasized 'the unique role that the Agency can play in developing user requirements and in addressing safeguards, safety and environmental questions for innovative reactors and their fuel cycles' and stressed 'the need for international collaboration in the development of innovative nuclear technology'. As of February 2002, the following countries or entities have become members of INPRO: Argentina

  14. Computer systems and nuclear industry

    International Nuclear Information System (INIS)

    Nkaoua, Th.; Poizat, F.; Augueres, M.J.

    1999-01-01

    This article deals with computer systems in nuclear industry. In most nuclear facilities it is necessary to handle a great deal of data and of actions in order to help plant operator to drive, to control physical processes and to assure the safety. The designing of reactors requires reliable computer codes able to simulate neutronic or mechanical or thermo-hydraulic behaviours. Calculations and simulations play an important role in safety analysis. In each of these domains, computer systems have progressively appeared as efficient tools to challenge and master complexity. (A.C.)

  15. Innovations in Nuclear Infrastructure and Education From the SW Consortium

    International Nuclear Information System (INIS)

    Reece, Warren

    2011-01-01

    This report describes the final expenditures for the INIE project during FY 08/09. (There were no expenditures during FY09/10 or during FY10/11.) To see the list of accomplishments done using the INIE funds, please see the reports included here. The last of the FY 07/08 funds were brought forward and used to complete two distance education modules teaching reactor experiments. These modules and parts from the modules are still being used and are being disseminated off-campus as a part of our distance education effort. The second largest expenditure was sending students to the ANS to present student papers on work that they had done the previous year underwritten by INIE funds. The remaining expenditures were IDC charges and minor travel expenses to give students a tour of a medical facility. Once again we wish to express of sincere appreciation of the INIE program and hope that the return on investment is appreciated by the DOE. Although INIE has come to a close, looking back at all the Consortium has accomplished is astounding. And, as was hoped, these funds have proved to be a springboard for continuing work, particularly at Texas A and M. With the resurgence of nuclear power, the utilities have realized that the nuclear workforce in the near future will be too small for the task of bringing dozens of new plants on line and have turned their attention to the URRs to help feed the workforce pipeline. The distance education modules developed at the A and M are soon to be broadcast throughout the country to help train a new generation of nuclear workers. Our students at the Nuclear Science Center at being snapped up by the nuclear power plants after graduating. Our research projects at A and M have all ended with new data, new ways of looking at old problems, and produced a covey of good students. I want to say 'Thanks' with utmost sincerity because without the INIE funds our efforts would yield a small fraction of the accomplishments you see in this report.

  16. Innovations in Nuclear Infrastructure and Education From the SW Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Reece, Warren

    2011-03-22

    This report describes the final expenditures for the INIE project during FY 08/09. (There were no expenditures during FY09/10 or during FY10/11.) To see the list of accomplishments done using the INIE funds, please see the reports included here. The last of the FY 07/08 funds were brought forward and used to complete two distance education modules teaching reactor experiments. These modules and parts from the modules are still being used and are being disseminated off-campus as a part of our distance education effort. The second largest expenditure was sending students to the ANS to present student papers on work that they had done the previous year underwritten by INIE funds. The remaining expenditures were IDC charges and minor travel expenses to give students a tour of a medical facility. Once again we wish to express of sincere appreciation of the INIE program and hope that the return on investment is appreciated by the DOE. Although INIE has come to a close, looking back at all the Consortium has accomplished is astounding. And, as was hoped, these funds have proved to be a springboard for continuing work, particularly at Texas A&M. With the resurgence of nuclear power, the utilities have realized that the nuclear workforce in the near future will be too small for the task of bringing dozens of new plants on line and have turned their attention to the URRs to help feed the workforce pipeline. The distance education modules developed at the A&M are soon to be broadcast throughout the country to help train a new generation of nuclear workers. Our students at the Nuclear Science Center at being snapped up by the nuclear power plants after graduating. Our research projects at A&M have all ended with new data, new ways of looking at old problems, and produced a covey of good students. I want to say 'Thanks' with utmost sincerity because without the INIE funds our efforts would yield a small fraction of the accomplishments you see in this report.

  17. Probabilistic risk assessment from potential exposures to the public applied for innovative nuclear installations

    International Nuclear Information System (INIS)

    Dvorzhak, Alla; Mora, Juan C.; Robles, Beatriz

    2016-01-01

    Potential exposures are those that may occur as a result of unanticipated operational performance or accidents. Potential exposure situations are probabilistic in nature because they depend on uncertain events such as equipment failure, operator errors or external initiators beyond the control of the operator. Consequently, there may exist a range of possible radiological impacts that need to be considered. In this paper a Level 3 Probabilistic Safety Assessment (PSA) for a hypothetical scenario relevant to Innovative Nuclear Energy Systems (INS) was conducted using computer code MACCS (MELCOR Accident Consequence Code Systems). The acceptability of an INS was analyzed taking into account the general requirement that relocation or evacuation measures must not be necessary beyond the site boundary. In addition, deterministic modeling of the accident consequences for the critical meteorological conditions was carried out using the JRODOS decision support system (Real-time On-line Decision Support system for off-site emergency management in Europe). The approach used for dose and risk assessment from potential exposure of accidental releases and their comparison with acceptance criteria are presented. The methodology described can be used as input to the licensing procedure and engineering design considerations to help satisfy relevant health and environmental impact criteria for fission or fusion nuclear installations. - Highlights: • PSA Level-3 based on WinMACCS code is carried out for accidental release. • Family curves of percentiles for radiation exposure doses are constructed. • Risk indicators for potential exposure are defined. • Using of risk acceptance curve criteria is proposed for decision making process.

  18. A gap analysis of the South African innovation system for water ...

    African Journals Online (AJOL)

    A gap analysis of the South African innovation system for water. ... Two major approaches to science and innovation from the innovation systems ... infrastructure and data sharing; reorganising the research environment within universities; ...

  19. Innovation is the only way forward to re-launch nuclear power

    International Nuclear Information System (INIS)

    Chapuis, F.; L'Hostis, N.

    2014-01-01

    Constituting a high value added sector for France, civil nuclear power is faced with regulatory, societal and economic constraints, all of which weigh on industry's various participants. In a world context, where electricity production is booming, the future share of nuclear power is under threat. Nuclear power has important assets: reliability and independence but has also to face societal, political and economic pressures. The outlook for mature electronuclear technology is dependent on the innovations that its actors can promote. The 4. generation reactors are far more innovative than the previous generation in terms of a far better utilisation rate of uranium resource, or of co-production of electric power and heat that can be used for instance for hydrogen production. Innovations can also be found in the size of reactors: small and medium sized reactors can be proposed to meet the energy demand of countries whose energy consumption grows faster than the development of their infra-structures. Another step necessary for the development of nuclear power is the implementing of the same international high standards of nuclear safety any where in the world

  20. EURATOMM RDDD in innovative reactor systems and fuel cycles

    International Nuclear Information System (INIS)

    Van Goethem, G.

    2008-01-01

    In this introductory overview paper, the following questions are addressed: 1) What are the innovation challenges in energy technologies, in particular, in nuclear fission, that the European industry and research organisations are faced with? In the short (today), medium (2015) and long term (2040)? 2) What kind of response do the EURATOM research, development, demonstration and deployment (RDDD) programmes offer as solution to the above challenges? And what has been achieved so far, using the Community instruments? (author)

  1. Global Positioning Radiometric Scanner System. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    2001-01-01

    The US DOE continually seeks safer and more cost-effective technologies for use in decontamination and decommissioning (D and D) of nuclear facilities. To this end, the Deactivation and Decommissioning Focus Area (DDFA) of the DOE OST sponsors the Large Scale Demonstration and Deployment Projects (LSDDP). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) LSDDP generated a list of statements defining specific needs or problems where improved technology could be incorporated into ongoing D and D tasks. One of the stated needs was for developing technologies that would reduce costs and shorten DDOE/EM--0552DOE/EM--0552 and D schedules by providing radiological characterizations to meet the free-release criteria. The Global Positioning Radiometric Scanner (GPRS system shown in Figure 1) utilizes a detection system; a portable computer, a differential global positioning system (d-gps), and a four wheel drive vehicle. Once the survey data has been collected, a software program called GeoSofttrademark generates a graphical representation of the radiological contamination extent. Baseline technology involves gridding the area and hand surveying each grid. This demonstration investigated the associated costs and the required time to evaluate the radiological characterization data from the GPRS with respect to the baseline technology. The GPRS system performs in-situ, real-time analyses to identify the extent of radiological contamination. Benefits expected from using the new innovative technology (GPRS) include: Reduced labor hours associated with performing the survey; Increased number of survey data points; Reduced

  2. Collaborative business modeling for systemic and sustainability innovations

    DEFF Research Database (Denmark)

    Rohrbeck, René; Konnertz, L.; Knab, S.

    2013-01-01

    Sustainability innovations are characterized by a systemic nature, and require that multiple organizations act in an orchestrated fashion. To jointly identify opportunities and plan sustainability innovations, new methods and approaches are needed. In this article we describe a case study where 8...... firms have collaborated to envision and create new business models in the energy industry. After describing this collaborative business modelling (CBM) approach, we discuss its strengths and limitations and compare it to two alternative methods of strategy and innovation planning: scenario technique...

  3. A new option for exploitage of future nuclear energy. Accelerator driven radioactive clean nuclear power system

    International Nuclear Information System (INIS)

    Ding Dazhao

    2000-01-01

    Nuclear energy is an effective, clean and safe energy resource. But some shortages of the nuclear energy system presently commercial available obstruct further development of the nuclear energy by heavy nuclear fission. Those are final disposal of the high level radioactive waste, inefficient use of the uranium resource and safety issue of the system. Innovative technical option is seeking for by the nuclear scientific community in recent ten years in aiming to overcome these obstacles, namely, accelerator driven sub-critical system (ADS). This hybrid system may bridge over the gap between presently commercial available nuclear power system and the full exploitation of the fusion energy. The basic principle of ADS is described and its capability in waste transmutation, conversion of the nuclear fuel are demonstrated by two examples--AD-fast reactor and AD-heavy water thermal reactor. The feasibility of ADS and some projects in US, Japan, etc are briefly discussed. The rationale in promoting the R and D of ADS in China is emphasized as China is at the beginning stage of its ambitious project in construction of the nuclear power

  4. Advanced nuclear systems. Review study

    International Nuclear Information System (INIS)

    Liebert, Wolfgang; Glaser, Alexander; Pistner, Christoph; Baehr, Roland; Hahn, Lothar

    1999-04-01

    The task of this review study is to from provide an overview of the developments in the field of the various advanced nuclear systems, and to create the basis for more comprehensive studies of technology assessment. In an overview the concepts for advanced nuclear systems pursued worldwide are subdivided into eight subgroups. A coarse examination raster (set pattern) is developed to enable a detailed examination of the selected systems. In addition to a focus on enhanced safety features, further aspects are also taken into consideration, like the lowering of the proliferation risk, the enhancement of the economic competitiveness of the facilities and new usage possibilities (for instance concerning the relaxation of the waste disposal problem or the usage of alternative fuels to uranium). The question about the expected time span for realization and the discussion about the obstacles on the way to a commercially usable reactor also play a substantial role as well as disposal requirements as far as they can be presently recognized. In the central chapter of this study, the documentation of the representatively selected concepts is evaluated as well as existing technology assessment studies and expert opinions. In a few cases where this appears to be necessary, according technical literature, further policy advisory reports, expert statements as well as other relevant sources are taken into account. Contradictions, different assessments and dissents in the literature as well as a few unsettled questions are thus indicated. The potential of advanced nuclear systems with respect to economical and societal as well as environmental objectives cannot exclusively be measured by the corresponding intrinsic or in comparison remarkable technical improvements. The acceptability of novel or improved systems in nuclear technology will have to be judged by their convincing solutions for the crucial questions of safety, nuclear waste and risk of proliferation of nuclear weapons

  5. EC-sponsored research activities on innovative passive safety systems

    International Nuclear Information System (INIS)

    Bermejo, J.M.; Goethem, G. van

    2000-01-01

    On April 26th 1994, the European Union (EU) adopted via a Council Decision a EURATOM Multiannual Programme for community activities in the field of Nuclear Fission Safety (NFS) Research for the period 1994 to 1998. An area of work having, as an objective, to 'explore innovative approaches' to improve the safety of future and existing reactors, was introduced in this programme. Most of the projects selected in this area, which have been grouped under a common cluster known as 'INNO', are currently being carried out on a 'cost-shared' basis, i.e. contribution of the European Commission is up to 50% of the total cost. At present, the 'INNO' cluster is composed of 10 projects in which 25 different organisations, representing research centres, universities, regulators, utilities and vendors from 7 EU member states and Switzerland, are involved. These projects are proving to be an efficient means to gain the necessary phenomenological knowledge and to solve the challenging problems, many times of generic nature, posed among others by the characteristically small driving forces of the systems studied and by the lack of really prototypical test facilities. (author)

  6. Innovation

    African Journals Online (AJOL)

    In recent years ULA has emphasized advocacy, and contributed to progress towards new legislation (freedom of information, copyright, the ... East African Community e-government strategy) of importance to the library and ... Innovation Vol.

  7. Public-Private Partnerships and Sustainable Regional Innovation Systems

    DEFF Research Database (Denmark)

    Lehmann, Martin; Christensen, Per; Johnson, Bjørn

    -private partnerships. The role of universities if and when actively participating in ‘life outside the ivory tower’ is addressed. These partnerships are also discussed in a regional context. With point of departure in innovation theory, we combine ‘sustainable development’ with the Regional System of Innovation...... approach to propose a new concept – Sustainable Regional Innovation System – in which regional initiatives such as Public-Private(-Academic) Partnerships play an integrated role, not least in the context of ‘learning and innovation for sustainable development’. Two cases are presented to underline...... be playing in public-private partnerships for sustainable development, and the links and benefits this may provide towards universities fulfilling their first (science) and second (education) missions. In this paper, the first part is dedicated to the discussion and clarification of the concept of public...

  8. The Development of Innovation System Research: Towards meaningful implications for innovation policy?

    DEFF Research Database (Denmark)

    Rakas, Marija; Hain, Daniel

    and private organizations. This proposition has stimulated discussions across academic disciplines and been applied in various fields of study, such as innovation management, economic geography, growth economics, and the study of socio-technological transitions. While the general idea of “system thinking......” nowadays can be considered as pervasive across academic traditions associated with the broader field of innovation studies, we observe significant heterogeneity with respect to the building blocks of the NIS concept emphasized as well as the problems tackled and implications provided. Yet, this diversity...

  9. Heat stress monitoring system. Innovative technology summary report

    International Nuclear Information System (INIS)

    1998-11-01

    The US Department of Energy's (DOE) nuclear facility decontamination and decommissioning (D and D) program involves the need to decontaminate and decommission buildings expeditiously and cost-effectively. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. Often, D and D workers must perform duties in inclement weather, and because they also frequently work in contaminated areas, they must wear personal protective clothing and/or respirators. Monitoring the health status of workers under these conditions is an important component of ensuring their safety. The MiniMitter VitalSense Telemetry System's heat stress monitoring system (HSMS) is designed to monitor the vital signs of individual workers as they perform work in conditions that might be conducive to heat exhaustion or heat stress. The HSMS provides real-time data on the physiological condition of workers which can be monitored to prevent heat stress or other adverse health situations. This system is particularly useful when workers are wearing personal protective clothing or respirators that make visual observation of their condition more difficult. The MiniMitter VitalSense Telemetry System can monitor up to four channels (e.g., heart rate, body activity, ear canal, and skin temperature) and ten workers from a single supervisory station. The monitors are interfaced with a portable computer that updates and records information on individual workers. This innovative technology, even though it costs more, is an attractive alternative to the traditional (baseline) technology, which measures environmental statistics and predicts the average worker's reaction to those environmental conditions without taking the physical condition of the individual worker into consideration. Although use of the improved technology might be justified purely on the basis of improved safety, it has the potential to pay for itself by reducing worker time lost caused by heat

  10. CANDU nuclear power system

    International Nuclear Information System (INIS)

    1981-01-01

    This report provides a summary of the components that make up a CANDU reactor. Major emphasis is placed on the CANDU 600 MW(e) design. The reasons for CANDU's performance and the inherent safety of the system are also discussed

  11. Cooperation networks and innovation: A complex system perspective to the analysis and evaluation of a EU regional innovation policy programme

    OpenAIRE

    Russo, Margherita; Rossi, Federica

    2008-01-01

    Recent developments in innovation theory and policy have led policymakers to assign particular importance to supporting networks of cooperation among heterogeneous economic actors, especially in production systems composed of small and medium enterprises. Such innovative policies call for parallel innovations in policy analysis, monitoring and assessment. Our analysis of a policy experiment aimed at supporting innovation networks in the Italian region of Tuscany intends to address some issues...

  12. Innovative training techniques in the Canadian nuclear regulatory environment

    International Nuclear Information System (INIS)

    Martin, D.J.

    1996-01-01

    One of the contributors to the safety of nuclear installations is properly-trained personnel. This applies equally to the staff of a regulatory agency, as they are charged with the task of evaluating the safety of installations and operations involving radioactive materials. In 1990, the nuclear regulatory agency of Canada, the Atomic Energy Control Board, set up a Training Center to train AECB staff and to provide assistance to foreign regulatory agencies who had asked for such assistance. In setting up the Training Centre, the authors considered factors which adversely affect the efficacy of training courses. The technical content must, of course, be of sufficiently high quality, but there are other, significant factors which are independent of the content: consider a presentation in which the lecturer shows a slide which is unreadable from the back of the room. The training value of this slide is zero, even though the content may be sound. Pursuing this thought, they decided to examine the mechanics of presentations and the form of training materials, with a view to optimizing their effectiveness in training. The results of this examination were that they decided to use three technologies as the basis for production of training, support and presentation materials. This paper briefly describes these technologies and their advantages. The technologies are: desktop publishing, video and multimedia

  13. The AP1000R nuclear power plant innovative features for extended station blackout mitigation

    International Nuclear Information System (INIS)

    Vereb, F.; Winters, J.; Schulz, T.; Cummins, E.; Oriani, L.

    2012-01-01

    Station Blackout (SBO) is defined as 'a condition wherein a nuclear power plant sustains a loss of all offsite electric power system concurrent with turbine trip and unavailability of all onsite emergency alternating current (AC) power system. Station blackout does not include the loss of available AC power to buses fed by station batteries through inverters or by alternate AC sources as defined in this section, nor does it assume a concurrent single failure or design basis accident...' in accordance with Reference 1. In this paper, the innovative features of the AP1000 plant design are described with their operation in the scenario of an extended station blackout event. General operation of the passive safety systems are described as well as the unique features which allow the AP1000 plant to cope for at least 7 days during station blackout. Points of emphasis will include: - Passive safety system operation during SBO - 'Fail-safe' nature of key passive safety system valves; automatically places the valve in a conservatively safe alignment even in case of multiple failures in all power supply systems, including normal AC and battery backup - Passive Spent Fuel Pool cooling and makeup water supply during SBO - Robustness of AP1000 plant due to the location of key systems, structures and components required for Safe Shutdown - Diverse means of supplying makeup water to the Passive Containment Cooling System (PCS) and the Spent Fuel Pool (SFP) through use of an engineered, safety-related piping interface and portable equipment, as well as with permanently installed onsite ancillary equipment. (authors)

  14. The AP1000{sup R} nuclear power plant innovative features for extended station blackout mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Vereb, F.; Winters, J.; Schulz, T.; Cummins, E.; Oriani, L. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    Station Blackout (SBO) is defined as 'a condition wherein a nuclear power plant sustains a loss of all offsite electric power system concurrent with turbine trip and unavailability of all onsite emergency alternating current (AC) power system. Station blackout does not include the loss of available AC power to buses fed by station batteries through inverters or by alternate AC sources as defined in this section, nor does it assume a concurrent single failure or design basis accident...' in accordance with Reference 1. In this paper, the innovative features of the AP1000 plant design are described with their operation in the scenario of an extended station blackout event. General operation of the passive safety systems are described as well as the unique features which allow the AP1000 plant to cope for at least 7 days during station blackout. Points of emphasis will include: - Passive safety system operation during SBO - 'Fail-safe' nature of key passive safety system valves; automatically places the valve in a conservatively safe alignment even in case of multiple failures in all power supply systems, including normal AC and battery backup - Passive Spent Fuel Pool cooling and makeup water supply during SBO - Robustness of AP1000 plant due to the location of key systems, structures and components required for Safe Shutdown - Diverse means of supplying makeup water to the Passive Containment Cooling System (PCS) and the Spent Fuel Pool (SFP) through use of an engineered, safety-related piping interface and portable equipment, as well as with permanently installed onsite ancillary equipment. (authors)

  15. Nuclear excited power generation system

    International Nuclear Information System (INIS)

    Parker, R.Z.; Cox, J.D.

    1989-01-01

    A power generation system is described, comprising: a gaseous core nuclear reactor; means for passing helium through the reactor, the helium being excited and forming alpha particles by high frequency radiation from the core of the gaseous core nuclear reactor; a reaction chamber; means for coupling chlorine and hydrogen to the reaction chamber, the helium and alpha particles energizing the chlorine and hydrogen to form a high temperature, high pressure hydrogen chloride plasma; means for converting the plasma to electromechanical energy; means for coupling the helium back to the gaseous core nuclear reactor; and means for disassociating the hydrogen chloride to form molecular hydrogen and chlorine, to be coupled back to the reaction chamber in a closed loop. The patent also describes a power generation system comprising: a gaseous core nuclear reactor; means for passing hydrogen through the reactor, the hydrogen being excited by high frequency radiation from the core; means for coupling chlorine to a reaction chamber, the hydrogen energizing the chlorine in the chamber to form a high temperature, high pressure hydrogen chloride plasma; means for converting the plasma to electromechanical energy; means for disassociating the hydrogen chloride to form molecular hydrogen and chlorine, and means for coupling the hydrogen back to the gaseous core nuclear reactor in a closed loop

  16. Innovative nuclear reactor - Indian approach to meet user requirements for safety

    International Nuclear Information System (INIS)

    Saha, D.; Sinha, R.K.

    2002-01-01

    Full text: For sustainable development of nuclear energy, a number of key issues are to be addressed. It should be economically competitive; it must address the issues related to nuclear safety, proliferation resistance, environmental impact, waste disposal and cross cutting issues like social and infra-structural aspects. To compete successfully in the long term, in the highly competitive energy market and to overcome other challenges, it is necessary to introduce innovative reactor and fuel cycle concepts. Indian Advanced Heavy Water Reactor (AHWR) is one such innovative reactor. To guide the research and development activities related to innovative concepts, user requirements are to be formulated. User requirements covering various aspects of sustainable development are being formulated at both national and international levels. One such international project involved in the formulation of user requirements is the IAEA International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). This paper deals with INPRO user requirements for safety and Indian approach to meet these requirements through AHWR

  17. INIS - International Nuclear Information System

    International Nuclear Information System (INIS)

    1995-01-01

    The paper presents International Nuclear Information System (INIS): history of its development; INIS support products (INIS Reference Series, Friendly Inputting of Bibliographic Records software); INIS output products (INIS Atomindex, magnetic tapes, online service, database on CD-ROM, microfiche service); INIS philosophy; input of INIS database by subject areas; and examples of INIS input

  18. Recent space nuclear power systems

    International Nuclear Information System (INIS)

    Takizuka, Takakazu; Yasuda, Hideshi; Hishida, Makoto

    1991-01-01

    For the advance of mankind into the space, the power sources of large output are indispensable, and it has been considered that atomic energy is promising as compared with solar energy and others. Accordingly in USA and USSR, the development of the nuclear power generation systems for space use has been carried out since considerable years ago. In this report, the general features of space nuclear reactors are shown, and by taking the system for the SP-100 project being carried out in USA as the example, the contents of the recent design regarding the safety as an important factor are discussed. Moreover, as the examples of utilizing space nuclear reactors, the concepts of the power source for the base on the moon, the sources of propulsive power for the rockets used for Mars exploration and others, the remote power transmission system by laser in the space and so on are explained. In September, 1988, the launching of a space shuttle of USA was resumed, and the Jupiter explorer 'Galileo' and the space telescope 'Hubble' were successfully launched. The space station 'Mir' of USSR has been used since February, 1986. The history of the development of the nuclear power generation systems for space use is described. (K.I.)

  19. Development and innovation of system resources to optimize patient care.

    Science.gov (United States)

    Johnson, Thomas J; Brownlee, Michael J

    2018-04-01

    Various incremental and disruptive healthcare innovations that are occurring or may occur are discussed, with insights on how multihospital health systems can prepare for the future and optimize the continuity of patient care provided. Innovation in patient care is occurring at an ever-increasing rate, and this is especially true relative to the transition of patients through the care continuum. Health systems must leverage their ability to standardize and develop electronic health record (EHR) systems and other infrastructure necessary to support patient care and optimize outcomes; examples include 3D printing of patient-specific medication dosage forms to enhance precision medicine, the use of drones for medication delivery, and the expansion of telehealth capabilities to improve patient access to the services of pharmacists and other healthcare team members. Disruptive innovations in pharmacy services and delivery will alter how medications are prescribed and delivered to patients now and in the future. Further, technology may also fundamentally alter how and where pharmacists and pharmacy technicians care for patients. This article explores the various innovations that are occurring and that will likely occur in the future, particularly as they apply to multihospital health systems and patient continuity of care. Pharmacy departments that anticipate and are prepared to adapt to incremental and disruptive innovations can demonstrate value in the multihospital health system through strategies such as optimizing the EHR, identifying telehealth opportunities, supporting infrastructure, and integrating services. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  20. Performance study of an innovative natural gas CHP system

    International Nuclear Information System (INIS)

    Fu, Lin; Zhao, Xiling; Zhang, Shigang; Li, Yan; Jiang, Yi; Li, Hui; Sun, Zuoliang

    2011-01-01

    In the last decade, technological innovation and changes in the economic and regulatory environment have resulted in increased attention to distributed energy systems (DES). Combined cooling heating and power (CHP) systems based on the gas-powered internal combustion engine (ICE) are increasingly used as small-scale distribution co-generators. This paper describes an innovative ICE-CHP system with an exhaust-gas-driven absorption heat pump (AHP) that has been set up at the energy-saving building in Beijing, China. The system is composed of an ICE, an exhaust-gas-driven AHP, and a flue gas condensation heat exchanger (CHE), which could recover both the sensible and latent heat of the flue gas. The steady performance and dynamic response of the innovative CHP system with different operation modes were tested. The results show that the system's energy utilization efficiency could reach above 90% based on lower heating value (LHV) of natural gas; that is, the innovative CHP system could increase the heat utilization efficiency 10% compared to conventional CHP systems, and the thermally activated components of the system have much more thermal inertia than the electricity generation component. The detailed test results provide important insight into CHP performance characteristics and could be valuable references for the control of CHP systems. The novel CHP system could take on a very important role in the CHP market. (author)

  1. Impacts of Hospitals' Innovativeness on Information System Outsourcing Decisions

    Science.gov (United States)

    2014-01-01

    Objectives The purpose of this study was to identify the effects of hospitals' innovativeness on outsourcing decision-making regarding four information system (IS) functions, namely, software programs, network maintenance, hardware systems, and PC/printer maintenance. Methods Using the 2011 roster of the Korean Hospital Association, this study selected 311 general hospitals as a study population. After identifying the managers who were in charge of outsourcing, this study administered questionnaires. A total of 103 hospitals responded. Results Of the responding hospitals, 55.34% outsourced at least one IS function, whereas 88.35% outsourced at least one managerial function. IS outsourcing was motivated by the need for outside experts, but other managerial functions were outsourced for cost savings. Innovative and early adopter hospitals were 4.52 and 4.91 times more likely to outsource IS functions related with work processes (i.e., software and network maintenance) than early and late majority hospitals, respectively. IT outsourcing effectiveness significantly influenced the outsourcing decisions regarding four IS functions. Hospitals that had perceived more risks of outsourcing significantly preferred non-outsourcing on their hardware systems, but the risks of outsourcing were not significant for outsourcing decisions regarding the other IS functions. Hospitals' innovativeness also significantly explained the quantity of innovation adoptions. Innovative and early adopter hospitals did more outsourcing than early and late majority hospitals. Conclusions Hospitals' innovativeness influences decision-making regarding outsourcing. Innovative hospitals are more likely to outsource their work-process-related IS functions. Thus, organizational traits, especially hospitals' innovativeness, should be considered as a key success factor for IS management. PMID:24872912

  2. Impacts of hospitals' innovativeness on information system outsourcing decisions.

    Science.gov (United States)

    Park, Jae Sung

    2014-04-01

    The purpose of this study was to identify the effects of hospitals' innovativeness on outsourcing decision-making regarding four information system (IS) functions, namely, software programs, network maintenance, hardware systems, and PC/printer maintenance. Using the 2011 roster of the Korean Hospital Association, this study selected 311 general hospitals as a study population. After identifying the managers who were in charge of outsourcing, this study administered questionnaires. A total of 103 hospitals responded. Of the responding hospitals, 55.34% outsourced at least one IS function, whereas 88.35% outsourced at least one managerial function. IS outsourcing was motivated by the need for outside experts, but other managerial functions were outsourced for cost savings. Innovative and early adopter hospitals were 4.52 and 4.91 times more likely to outsource IS functions related with work processes (i.e., software and network maintenance) than early and late majority hospitals, respectively. IT outsourcing effectiveness significantly influenced the outsourcing decisions regarding four IS functions. Hospitals that had perceived more risks of outsourcing significantly preferred non-outsourcing on their hardware systems, but the risks of outsourcing were not significant for outsourcing decisions regarding the other IS functions. Hospitals' innovativeness also significantly explained the quantity of innovation adoptions. Innovative and early adopter hospitals did more outsourcing than early and late majority hospitals. Hospitals' innovativeness influences decision-making regarding outsourcing. Innovative hospitals are more likely to outsource their work-process-related IS functions. Thus, organizational traits, especially hospitals' innovativeness, should be considered as a key success factor for IS management.

  3. Nuclear reactor safety system

    International Nuclear Information System (INIS)

    Sato, Takashi.

    1979-01-01

    Purpose: To allow sufficient removal of radioactive substance released in the reactor containment shell upon loss of coolants accidents thus to sufficiently decrease the exposure dose to human body. Constitution: A clean-up system is provided downstream of a heat exchanger and it is branched into a pipeway to be connected to a spray nozzle and further connected by way of a valve to a reactor container. After the end of sudden transient changes upon loss of coolants accidents, the pool water stored in the pressure suppression chamber is purified in the clean-up system and then sprayed in the dry-well by way of a spray nozzle. The sprayed water dissolves to remove water soluble radioactive substances floating in the dry-well and then returns to the pressure suppression chamber. Since radioactive substances in the dry-well can thus removed rapidly and effectively and the pool water can be reused, public hazard can also be decreased. (Horiuchi, T.)

  4. Methodology for the assessment of innovative nuclear reactors and fuel cycles. Report of Phase 1B (first part) of the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)

    International Nuclear Information System (INIS)

    2004-12-01

    an innovative nuclear energy system (INS) to meet the overall target of sustainable energy supply. As well, the initial development of the INPRO method for the assessment of nuclear energy systems was carried out. The Basic Principles, User Requirements, and Criteria and the INPRO method of assessment, taken together, comprise the INPRO methodology. The INPRO methodology provides the possibility to take into account local, regional and global boundary conditions of IAEA Member States, including those of both developing and developed countries. Phase 1A was completed in June of 2003 with the publication of IAEA-TECDOC-1362, Guidance for the Evaluation of Innovative Nuclear Reactors and Fuel Cycles, which documented the results of the Phase 1A work. The next step of INPRO was immediately launched. In this step, referred to as Phase 1B (first part), INPRO arranged for some 14 case studies to be performed, by national teams or by individual experts from seven countries, to test and provide feedback on the applicability, consistency and completeness of the INPRO methodology. This report documents changes to the basic principles, user requirements, criteria and the method of assessment that resulted from the second step of INPRO (referred to as Phase 1B (first part)), which started in June 2003 and ended in December 2004. During this step, Member States and individual experts performed 14 case studies with the objective of testing and validating the INPRO methodology. Based on the feedback from these case studies and numerous consultancies mostly held at the IAEA, the INPRO methodology has been significantly updated and revised, as documented in this report. The ongoing and future activities of INPRO will lead to further modifications to the INPRO methodology, based on the feedback received from Member States in light of their experience in applying the methodology. Thus, additional reports will be issued, as appropriate, to update the INPRO methodology

  5. Expert systems and nuclear safety

    International Nuclear Information System (INIS)

    Beltracchi, L.

    1990-01-01

    The US Nuclear Regulatory Commission (NRC) and the Electric Power Research Institute have initiated a broad-based exploration of means to evaluate the potential applications of expert systems in the nuclear industry. This exploratory effort will assess the use of expert systems to augment the diagnostic and decision-making capabilities of personnel with the goal of enhancing productivity, reliability, and performance. The initial research effort is the development and documentation of guidelines for verifying and validating (V and V) expert systems. An initial application of expert systems in the nuclear industry is to aid operations and maintenance personnel in decision-making tasks. The scope of the decision aiding covers all types of cognitive behavior consisting of skill, rule, and knowledge-based behavior. For example, procedure trackers were designed and tested to support rule-based behavior. Further, these systems automate many of the tedious, error-prone human monitoring tasks, thereby reducing the potential for human error. The paper version of the procedure contains the knowledge base and the rules and thus serves as the basis of the design verification of the procedure tracker. Person-in-the-loop tests serve as the basis for the validation of a procedure tracker. When conducting validation tests, it is important to ascertain that the human retains the locus of control in the use of the expert system

  6. Nuclear systems of level measurement

    International Nuclear Information System (INIS)

    Lara, A.J.; Cabrera, M.J.

    1992-01-01

    In the industry there are processes in which is necessary to maintain the products level controlled which are handled for their transformation. The majority of such processes and by the operation conditions, they do not admit measure systems of level of invasive type then the application of nuclear techniques for level measurement results a big aid in these cases, since all the system installation is situated beyond frontiers of vessels that contain the product for measuring. In the Department of Nuclear Technology Applications of Mexican Petroleum Institute was developed a level measurement system by gamma rays transmission which operates in the Low Density Polyethylene plant of Petrochemical Complex Escolin at Poza Rica, Veracruz, Mexico. (Author)

  7. Nuclear power plant annunciator systems

    International Nuclear Information System (INIS)

    Rankin, W.L.

    1983-08-01

    Analyses of nuclear power plant annunciator systems have uncovered a variety of problems. Many of these problems stem from the fact that the underlying philosophy of annunciator systems have never been elucidated so as to impact the initial annunciator system design. This research determined that the basic philosophy of an annunciator system should be to minimize the potential for system and process deviations to develop into significant hazards. In order to do this the annunciator system should alert the operators to the fact that a system or process deviation exists, inform the operators as to the priority and nature of the deviation, guide the operators' initial responses to the deviation, and confirm whether operators responses corrected the deviation. Annunciator design features were analyzed to determine to what degree they helped the system meet the functional criteria, the priority for implementing specific design features, and the cost and ease of implementing specific design features

  8. Light a CANDLE. An innovative burnup strategy of nuclear reactors

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi

    2005-11-01

    CANDLE is a new burnup strategy for nuclear reactors, which stands for Constant Axial Shape of Neutron Flux, Nuclide Densities and Power Shape During Life of Energy Production. When this candle-like burnup strategy is adopted, although the fuel is fixed in a reactor core, the burning region moves, at a speed proportionate to the power output, along the direction of the core axis without changing the spatial distribution of the number density of the nuclides, neutron flux, and power density. Excess reactivity is not necessary for burnup and the shape of the power distribution and core characteristics do not change with the progress of burnup. It is not necessary to use control rods for the control of the burnup. This booklet described the concept of the CANDLE burnup strategy with basic explanations of excess neutrons and its specific application to a high-temperature gas-cooled reactor and a fast reactor with excellent neutron economy. Supplementary issues concerning the initial core and high burnup were also referred. (T. Tanaka)

  9. Nuclear energy technology innovation and restructuring electric power industry for sustainable development in Korea in 21st century - issues and strategies

    International Nuclear Information System (INIS)

    Lee, B.W.; Chae, K.N.

    2001-01-01

    After TMI and Chernobyl accidents, concerns on nuclear safety and radiation health risk from radioactive wastes become the target issues for anti-nuclear. Nevertheless, nuclear power is a substantial contributor to the world electricity production, supplying more than 16 % of global electricity. The objectives of Korean nuclear energy technology innovation are to improve safety, economic competitiveness, energy security and the effectiveness of radioactive waste management in harmony with environment. Meeting such objectives, public concerns on safety and health risks would be cleared. Innovative nuclear energy system will certainly enhance socio-political acceptance and enable wider application of nuclear energy for sustainable development in Korea in the 21st Century. In parallel to such technology innovations, the effective first phase restructuring of electric power industry is in progress to enhance management efficiency and customer services. The power generation division of the former state-run utility, Korea Electric Power Corporation (KEPCO) was separated and divided into six companies - five thermal power and one hydro and nuclear power generation companies - in last April. After the reorganization of KEPCO and the break-up of monopoly, the new electric power industry will be driven by market force. (author)

  10. Implementing Innovation: An Exploration of a Learning Management System Transition

    Science.gov (United States)

    Strawser, Michael G.; Apostel, Shawn; O' Keefe, Moira; Simons, Crystal

    2018-01-01

    Learning management systems (LMS) are fixtures on higher education campuses. As LMS use continues to increase, faculty development professionals should consider how system use is encouraged and implemented on campus, especially amongst faculty. Using Ely's (1990) technology-specific conditions that facilitate the implementation of an innovation,…

  11. Governance Modes For Systemic Innovation. Service Development In Mobile Telecommunications

    NARCIS (Netherlands)

    J.C.M. van den Ende (Jan); F.P.H. Jaspers (Ferdinand)

    2004-01-01

    textabstractThis paper focuses on governance modes for systemic innovation projects. The central question is: to what extent does the newness of a system and its components affect the most appropriate governance mode for component development projects? Component development projects can be performed

  12. Linkage Mechanisms among key Actors in Rice Innovation System ...

    African Journals Online (AJOL)

    In assessment of linkage mechanisms among key actors in rice innovation system in southeast Nigeria, actors were classified into six major groups according to their main activity in the system namely research agency, policy personnel, technology transfer agencies, farmers, marketers and consumers. These constituted the ...

  13. Research in Modeling and Simulation for Airspace Systems Innovation

    Science.gov (United States)

    Ballin, Mark G.; Kimmel, William M.; Welch, Sharon S.

    2007-01-01

    This viewgraph presentation provides an overview of some of the applied research and simulation methodologies at the NASA Langley Research Center that support aerospace systems innovation. Risk assessment methodologies, complex systems design and analysis methodologies, and aer ospace operations simulations are described. Potential areas for future research and collaboration using interactive and distributed simula tions are also proposed.

  14. Regional Innovation System And Local Economic Development In Indonesia

    Directory of Open Access Journals (Sweden)

    Adiwan F Aritenang

    2013-08-01

    Full Text Available In Indonesia, decentralization and globalization has introduced a new spirit for localism. Since decentralisation, regions have been motivated to accelerate economic development through local endowment and resources. The democratic Indonesia government has been interested to follow economy theories and case studies develop in the advance countries. Over the years, government policies have supported and strengthen technology development through industrial clusters and national and regional innovation systems. This research aims to explore current progress of Indonesia innovation system through industrial clusters. The research found the presence of industry clustering and very limited innovation system in Indonesia. The research argues that these activities has significant impact on employment growth, but does not increase the industry's value added.

  15. Report. First international symposium on innovating mining systems

    Energy Technology Data Exchange (ETDEWEB)

    Blackwood, R L

    1985-01-01

    The author presents a summary of proceedings of the First International Symposium on Innovative Mining Systems held at Massachusetts Institute of Technology, USA 4-5 November 1985, together with some comments on the conclusions and discussion throughout. The Symposium agenda included the following (i) Symposium intentions and expectations; (ii) International; (iii) Developments in safety; (iv) Overview of current major research and trends; (v) Panel discussion: Mechanisms for industrial and international collaboration; (vi) Closing remarks; (vii) Review of innovations: university programs; (viii) Review of selected mine operator programs and needs; Review of equipment innovations; capabilities and trends in areas of mining equipment and robotics; Concurrent sessions: operations and manufacturing. A series of workshops was also held, the titles of which were as follows: (i) Establishment of research network; (ii) Entry development-machine excavation; (iii) Sensing, monitoring, diagnostics, artificial intelligence; (iv) Remote control, automation, mining systems; (v) Computer aided design, simulation, system development; (vi) Surface mining; (vii) Rock breakage.

  16. System-functional approach in enterprise''s innovation activity management

    OpenAIRE

    Olikh, L.; Maslyukivska, А.

    2012-01-01

    The article is devoted to the problems of forming management system of enterprise innovation activity. The authors pick out the enterprise's innovation subsystem main parts and generalize management functions' realization in the context of its innovation activity management.

  17. 75 FR 7464 - Energy Efficient Building Systems Regional Innovation Cluster Initiative-Joint Federal Funding...

    Science.gov (United States)

    2010-02-19

    ... a regional innovation cluster focused on innovation in energy efficient building technologies and... technology challenges through approaches that span basic research to engineering development to... DEPARTMENT OF ENERGY Energy Efficient Building Systems Regional Innovation Cluster Initiative...

  18. 75 FR 16739 - EDA Participation in the Energy Efficient Building Systems Regional Innovation Cluster Initiative

    Science.gov (United States)

    2010-04-02

    ...: Promote regional development; Accelerate innovation, technology transfer, and entrepreneurship to create... priorities, which are: Collaborative Regional Innovation. Initiatives that support the development and growth... Participation in the Energy Efficient Building Systems Regional Innovation Cluster Initiative AGENCY: Economic...

  19. Innovative SiC/SiC composite for nuclear applications

    International Nuclear Information System (INIS)

    Chaffron, L.; Sauder, C.; Lorrette, C.; Briottet, L.; Michaux, A.; Gelebart, L.; Coupe, A.; Zabiego, M.; Le Flem, M.; Seran, J. L.

    2013-01-01

    Among various refractory materials, SiC/SiC ceramic matrix composites (CMC) are of prime interest for fusion and advanced fission energy applications, due to their excellent irradiation tolerance and safety features (low activation, low tritium permeability,K). Initially developed as fuel cladding materials for the Fourth generation Gas cooled Fast Reactor (GFR), this material has been recently envisaged by CEA for different core structures of Sodium Fast Reactor (SFR) which combines fast neutrons and high temperature (500 deg.C). Regarding fuel cladding generic application, in the case of GFR, the first challenge facing this project is to demonstrate the feasibility of a fuel operating under very harsh conditions that are (i) temperatures of structures up to 700 deg.C in nominal and over 1600 deg.C in accidental conditions, (ii) irradiation damage higher than 60 dpa SiC , (iii) neutronic transparency, which disqualifies conventional refractory metals as structural core materials, (iv) mechanical behavior that guarantees in most circumstances the integrity of the first barrier (e.g.: ε> 0.5%), which excludes monolithic ceramics and therefore encourages the development of new types of fibrous composites SiC/SiC adapted to the fast reactor conditions. No existing material being capable to match all these requirements, CEA has launched an ambitious program of development of an advanced material satisfying the specifications [1]. This project, that implies many laboratories, inside and outside CEA, has permitted to obtain a very high quality compound that meets most of the challenging requirements. We present hereinafter few recent results obtained regarding the development of the composite. One of the most relevant challenges was to make a gas-tight composite up to the ultimate rupture. Indeed, multi-cracking of the matrix is the counterpart of the damageable behavior observed in these amazing compounds. Among different solutions envisaged, an innovative one has been

  20. Nuclear technology databases and information network systems

    International Nuclear Information System (INIS)

    Iwata, Shuichi; Kikuchi, Yasuyuki; Minakuchi, Satoshi

    1993-01-01

    This paper describes the databases related to nuclear (science) technology, and information network. Following contents are collected in this paper: the database developed by JAERI, ENERGY NET, ATOM NET, NUCLEN nuclear information database, INIS, NUclear Code Information Service (NUCLIS), Social Application of Nuclear Technology Accumulation project (SANTA), Nuclear Information Database/Communication System (NICS), reactor materials database, radiation effects database, NucNet European nuclear information database, reactor dismantling database. (J.P.N.)

  1. Innovation

    African Journals Online (AJOL)

    The purpose of Innovation journal of appropriate librarianship and information work in Southern Africa is to publish material on libraries, information supply and other related matters in South and Southern Africa. Vol 45 (2012). DOWNLOAD FULL TEXT Open Access DOWNLOAD FULL TEXT Subscription or Fee Access ...

  2. Innovation

    DEFF Research Database (Denmark)

    Torfing, Jacob; Ricard, Lykke Margot

    2017-01-01

    Innovation i krydsfeltet mellem forskellige styringsparadigmer i offentlige organisationer. New Public Governance gør det muligt at skabe offentlig værdi på nye måder. Men NPG er ingen trylledrik, der fra den ene dag til den anden skaber balance mellem borgernes store forventninger og en trængt ø...

  3. Sustainability indicators for innovation and research institutes of nuclear area in Brazil

    International Nuclear Information System (INIS)

    Alves, S.F.; Barreto, A.A.; Rodrigues, P.C.H.; Feliciano, V.M.D.

    2016-01-01

    Indicators are relevant tools for measuring sustainability process. In this study, the relevance of sustainability indicators appropriate for research and innovation institutes in Brazil is discussed. As reference for case study, nuclear research and innovation institutes were chosen. Sixty-nine sustainability indicators were considered. Some of these indicators were obtained from lists in the literature review, distributed between the dimensions environmental, economic, social, cultural and institutional. The other indicators were developed through discussions between professionals from nuclear, environmental, economic, social and cultural areas. Among the investigated indicators, 32 were selected as being the most relevant. Discrepancies were found during the analysis the opinions of the experts in relation to sustainability dimensions proposed. (author)

  4. Innovative nuclear technologies based on radiation induced surface activation (RISA). 1. The project overview

    International Nuclear Information System (INIS)

    Fujisawa, Kyosuke; Morooka, Shinichi; Hishida, Mamoru

    2004-01-01

    This research of the Innovative nuclear technologies based on Radiation Induced Surface Activation (RISA) is due to start from 2003 and to be ended to 2006, and performed fund by Ministry of Economy, Trade and Industry (METI) Japan. One of the innovative technologies is to develop a high performance corrosion-proof film to prevent the surface of reactor internals from stress corrosion cracking (SCC), the other one is to develop the film for improving the heat transfer performance a high performance of the nuclear fuel rod. Both of these properties are derived under gamma ray irradiation by the RISA effect. This paper reports about the summary of this subsidy enterprise by METI. (author)

  5. The challenge of venture capital financing of nuclear innovations: an American example?

    International Nuclear Information System (INIS)

    Hurel, T.

    2017-01-01

    The financing of innovations in nuclear industry has been a public sector concern till recently, now in the last years about 50 start-ups operating in nuclear activities have been created in the US. A broad part of these new enterprises are financed by business angels or venture capitalists and generally they propose new kinds of reactors which is not surprising as public funding has the tendency to go to projects based on technologies already approved by the NRC. Breakthrough Energy Ventures (BEV) was launched in 2016 by Bill Gates with the purpose of financing clean energy projects. TerraPower promotes a new kind of reactor while Mission Innovation aims at doubling investment in clean technologies. Other start-ups like ALPHA (Accelerating Low-cost Plasma Heating and Assembly) or LPP Fusion or General Fusion are working on thermonuclear fusion. (A.C.)

  6. Emerging nuclear energy systems and nuclear weapon proliferation

    International Nuclear Information System (INIS)

    Gsponer, A.; Sahin, S.; Jasani, B.

    1983-01-01

    Generally when considering problems of proliferation of nuclear weapons, discussions are focused on horizontal proliferation. However, the emerging nuclear energy systems currently have an impact mainly on vertical proliferation. The paper indicates that technologies connected with emerging nuclear energy systems, such as fusion reactors and accelerators, enhance the knowledge of thermonuclear weapon physics and will enable production of military useful nuclear materials (including some rare elements). At present such technologies are enhancing the arsenal of the nuclear weapon states. But one should not forget the future implications for horizontal proliferation of nuclear weapons as some of the techniques will in the near future be within the technological and economic capabilities of non-nuclear weapon states. Some of these systems are not under any international control. (orig.) [de

  7. Self-reliance and innovation to improve the localization ability of nuclear power construction

    International Nuclear Information System (INIS)

    Wu Chongming

    2008-01-01

    Construction is a crucial link in the course of design, site selection, construction and operation for a nuclear power plant. The quality during construction directly affects the nuclear safety. And the construction quality involves various aspects including quality culture, feasibility of construction technique, quality assurance, and quality control. Through technical management innovation, great achievements have been made in the civil construction of Unit 3 of Qinshan II Extension Project. As a result, the construction period was shortened and the concrete quality reached the fairfaced concrete standard. (authors)

  8. NEA International Workshop on the Nuclear Innovation Road-map - NI2050. Workshop proceedings

    International Nuclear Information System (INIS)

    Ait Abderrahim, Hamid; Fernandez Fernandez, Alberto; Van Walle, Eric; Speranzini, Robert; Zezula, Lubor; Puska, Eija Karita; Tuomisto, Harri; Al Mazouzi, Abderrahim; Bazile, Fanny; Cordier, Pierre-Yves; Wahide, Carole; Tromm, Th. Walter; Horvath, Akos; Agostini, Pietro; Ambrosini, Walter; Kamide, Hideki; Nakatsuka, Toru; Sagayama, Yutaka; Tsujimoto, Kazufumi; Jeong, Ik; LEE, Gye Seok; Roelofs, Ferry; Van Der Lugt, Hermen; Wrochna, Grzegorz; Alekseev, Pavel; Andreeva-Andrievskaya, Lyudmila N.; Liska, Peter; Cizelj, Leon; Castelao Lopez, Carlos; Zimmermann, Martin; Rayment, Fiona; Pasamehmetoglu, Kemal; Martin Ramos, Manuel; Schmitz, Bruno; Monti, Stefano; Bignan, Gilles; Mcgrath, Margaret; Caron-Charles, Marylise; Magwood, William IV; Ha, Jaejoo; Deffrennes, Marc; Paillere, Henri; Noh, Jae Man; Gulliford, Jim; Breest, Axel; Matsumoto, Kiyoshi; Lebedev, Vladimir

    2015-07-01

    The two-day workshop held at the OECD Headquarters in Paris on 7-8 July 2015, brought together some of the leading experts in the field of nuclear fission research, development and demonstration. The purpose was to launch the NEA Nuclear Innovation 2050 Initiative, aiming, after a first survey phase, at producing a road-map of main priority research programs and infrastructures necessary to support the role nuclear energy may play in the low carbon power sector of the future. This might then further lead to some ad-hoc co-operation frameworks that help to effectively implement key priorities coming out of the road-mapping. The workshop was organised into the following five sessions: 1 - Opening session on NI2050: vision and main objectives; 2 - National presentations on nuclear fission research and innovation activities (programs, infrastructures, budgets); 3 - Presentations on some existing international nuclear fission road-maps and co-operation frameworks; 4 - Defining the way forward for NI2050: survey, road-mapping and priorities and co-operation; 5 - Open discussion. This document gathers the available presentations given at this workshop

  9. An Evolutionary Approach to Regional Systems of Innovation

    DEFF Research Database (Denmark)

    Gunnarsson, Jan Sture Gunnar; Wallin, Torsten

    This article examines how the birth and the development of regional systems of innovation are connected with economic selection and points to implications for regional-level policies. The research questions are explored using an evolutionary model, which emphasises geographical spaces and product......This article examines how the birth and the development of regional systems of innovation are connected with economic selection and points to implications for regional-level policies. The research questions are explored using an evolutionary model, which emphasises geographical spaces...

  10. An evolutionary approach to regional systems of innovation

    DEFF Research Database (Denmark)

    Gunnarsson, Jan Sture Gunnar; Wallin, Torsten

    2011-01-01

    This article examines how the birth and the development of regional systems of innovation are connected with economic selection and points to implications for regional-level policies. The research questions are explored using an evolutionary model, which emphasises geographical spaces and product......This article examines how the birth and the development of regional systems of innovation are connected with economic selection and points to implications for regional-level policies. The research questions are explored using an evolutionary model, which emphasises geographical spaces...

  11. Scenarios for waste management involving innovative systems (ADS)

    International Nuclear Information System (INIS)

    Tommasi, J.; Bottollier-Curtet, H.; Massara, S.; Varaine, F.; Delpech, M.

    2001-01-01

    The global performance of reactor park scenarios based on innovative systems (Accelerator-Driven Systems, ADS) for transmutation is studied, based either on equilibrium recycling states or on high burn-up systems. The results of these first studies are preliminary but allow to assess the main parameters of the fuel cycle (inventories, mass balances, mass flows...), to evaluate the specific contributions of ADS on the main scenario parameters, and to compare subcritical systems to critical ones. (author)

  12. Innovation Benefits from Nuclear Phase-out: Can they Compensate the Costs?

    OpenAIRE

    Enrica De Cian; Samuel Carrara; Massimo Tavoni

    2012-01-01

    This paper investigates whether an inefficient allocation of abatement, due to constraints on the use of currently available low carbon mitigation options, can promote innovation in new technologies and eventually generate welfare gains. We focus on the case of nuclear power phase out, when accounting for endogenous technical change in energy efficiency and in low carbon technologies. The analysis uses the Integrated Assessment Model WITCH, which features multiple externalities due to both cl...

  13. Risk and safety analysis of nuclear systems

    National Research Council Canada - National Science Library

    Lee, John C; McCormick, Norman J

    2011-01-01

    ...), and failure modes of systems. All of this material is general enough that it could be used in non-nuclear applications, although there is an emphasis placed on the analysis of nuclear systems...

  14. US Army Nuclear Burst Detection System (NBDS)

    International Nuclear Information System (INIS)

    Glaser, R.F.

    1980-07-01

    The Nuclear Burst Detection System (NBDS) was developed to meet the Army requirements of an unattended, automatic nuclear burst reporting system. It provides pertinent data for battlefield commanders on a timely basis with high reliability

  15. Steam water cycle chemistry of liquid metal cooled innovative nuclear power reactors

    International Nuclear Information System (INIS)

    Yurmanov, Victor; Lemekhov, Vadim; Smykov, Vladimir

    2012-09-01

    The Federal Target Program (FTP) of Russian Federation 'Nuclear Energy Technologies of the New Generation for 2010-2015 and for Perspective up to 2020' is aimed at development of advanced nuclear energy technologies on the basis of closed fuel cycle with fast reactors. There are advanced fast reactor technologies of the 4. generation with liquid metal cooled reactors. Development stages of maturity of fast sodium cooled reactor technology in Russia includes experimental reactors BR-5/10 (1958-2002) and BOR-60 (since 1969), nuclear power plants (NPPs) with BN-350 (1972-1999), BN-600 (since 1980), BN-800 (under construction), BN-1200 (under development). Further stage of development of fast sodium cooled reactor technology in Russia is commercialization. Lead-bismuth eutectic fast reactor technology has been proven at industrial scale for nuclear submarines in former Soviet Union. Lead based technology is currently under development and need for experimental justification. Current status and prospects of State Corporation 'Rosatom' participation in GIF activities was clarified at the 31. Meeting of Policy Group of the International Forum 'Generation-IV', Moscow, May 12-13, 2011. In June, 2010, 'Rosatom' joined the Sodium Fast Reactor Arrangement as an authorized representative of the Russian Government. It was also announced the intention of 'Rosatom' to sign the Memorandum on Lead Fast Reactor based on Russia's experience with lead-bismuth and lead cooled fast reactors. In accordance with the above FTP some innovative liquid metal cooled reactors of different design are under development in Russia. Gidropress, well known as WER designer, develops innovative lead-bismuth eutectic cooled reactor SVBR-100. NIKIET develops innovative lead cooled reactor BRESTOD-300. Some other nuclear scientific centres are also involved in this activity, e.g. Research and Development Institute for Power Engineering (RDIPE). Optimum

  16. Boot-camps, facilitators for innovation in the American nuclear sector

    International Nuclear Information System (INIS)

    Martinez Sancho, L.; Avrin, A.P.

    2017-01-01

    One of the first Nuclear Innovation Boot-camps was organized by the Berkeley University in august 2016, its aim was to develop innovation in nuclear technology through a collective approach in which people from different sectors share information and knowledge. The rules to follow come from the EFICA method: first, no censorship during the 'construction' phase, any idea is welcome; secondly, the more ideas, the more likely to get a relevant one; thirdly, unrealistic ideas can be turned into realistic ideas more often than expected so participants have to be imaginative; and fourthly, favor discussions in which ideas from different participants combine and generate new ideas. The Breakthrough Institute has made 5 propositions to favour innovation in the American nuclear sector: 1) to reform the certification process so that small companies can take part into it; 2) to make public laboratory equipment available to private enterprises; 3) to increase the public financing of research; 4) to let the private sector select the most appropriate technology even if there are public funds in the process. (A.C.)

  17. Innovative High Temperature Fuel Cell systems

    NARCIS (Netherlands)

    Au, Siu Fai

    2003-01-01

    The world's energy consumption is growing extremely rapidly. Fuel cell systems are of interest by researchers and industry as the more efficient alternative to conventional thermal systems for power generation. The principle of fuel cell conversion does not involve thermal combustion and hence in

  18. Innovations in Educational System: Mobile Learning Applications

    Science.gov (United States)

    Rokhvadze, Roza F.; Yelashkina, Natalya V.

    2013-01-01

    This article presents the analysis of the current changes in the higher educational system of the Russian Federation. The stated issues are accompanied with the advice and possible solutions. Authors offer their own approaches and techniques for the academic staff of higher educational institutions in order to adapt to the new system.

  19. Innovating for a competitive and resource-efficient transport system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-05-15

    Transport is vital to the economic prosperity and social integration of Europe. EU-transport policy is directed to developing a smart, efficient transport system with reduced dependency on fossil fuels and less environmental impacts that will enhance mobility in Europe and will underpin Europe's competitiveness in global markets. This includes the transport sector itself, which is an important part of the EU economy. In contributing to achieving these ambitious goals, extensive investments are made in research and development for sustainable and innovative solutions. This Policy Brochure, which is produced by the Transport Research and Innovation Portal (TRIP), highlights the contribution of research, development, and innovation in securing a competitive and resource-efficient transport system in Europe.

  20. For establishment on nuclear disaster prevention system

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    For increasing requirement of peoples for review of nuclear disaster countermeasure at a chance of the JCO critical accident, the Japanese Government newly established the 'Special Measure Act on Nuclear Disaster Countermeasure', which was enacted on July 16, 2000. The nuclear business relatives such as electric power company and so forth established the Business program on nuclear disaster prevention in nuclear business relatives' after their consultation with local communities at their construction, under their co-operation. Simultaneously, the electric power industry field decided to intend to provide some sufficient countermeasures to incidental formation of nuclear accident such as start of the Co-operative agreement on nuclear disaster prevention among the nuclear business relatives' and so forth. Here were described on nuclear safety and disaster prevention, nuclear disaster prevention systems at the electric power industry field, abstract on 'Business program on nuclear disaster prevention in nuclear business relatives', preparation of technical assistance system for nuclear disaster prevention, executive methods and subjects on nuclear disaster prevention at construction areas, recent business on nuclear disaster prevention at the Nuclear Technical Center, and subjects on establishment of nuclear disaster prevention system. (G.K.)

  1. Innovation

    OpenAIRE

    2012-01-01

    Présenté par FutuRIS, plate-forme prospective sur la recherche, l’innovation et la société animée par l’Association Nationale de la Recherche et de la Technologie, ce volume livre un panorama du système français de recherche et d’innovation dans son environnement européen. Sont abordés dans une première partie les champs décisionnels concernés, les politiques nationales menées en matière de R&D, les relations entre enseignement supérieur et recherche et l’Espace européen de la recherche à l’h...

  2. INNOVATION

    DEFF Research Database (Denmark)

    Helms, Niels Henrik

    2012-01-01

    Kravet om innovation og kreativitet er på flere måder en stor og en ny udfordring for voksenuddannelserne. Det udfordrer det didaktiske dilemma, det at vi skal gøres til kompetente og frie mennesker gennem pædagogiske handlinger, som netop pålægger os en ufrihed. – Men hvor denne ufrihed tidligere...... kunne begrundes med, at skolen eller uddannelsen vidste bedre, så er det ikke længere tilfældet. Skolen skal sørge for, at vi lærer noget – og ikke noget andet. Men det kan ikke længere med bestemthed afgøres, hvad det er vi skal lære i skolen, fordi det nye, det kreative og ikke mindst innovative...

  3. Nuclear maintenance and management system

    International Nuclear Information System (INIS)

    Yamaji, Yoshihiro; Abe, Norihiko

    2000-01-01

    The Mitsubishi Electric Co., Ltd. has developed to introduce various computer systems for desk-top business assistance in a power plant such as system isolation assisting system, operation parameter management system, and so on under aiming at business effectiveness since these ten and some years. Recently, by further elapsed years of the plants when required for further cost reduction and together with change of business environment represented by preparation of individual personal computer, further effectiveness, preparation of the business environment, and upgrading of maintenance in power plant business have been required. Among such background, she has carried out various proposals and developments on construction of a maintenance and management system integrated the business assistant know-hows and the plant know-hows both accumulated previously. They are composed of three main points on rationalization of business management and document management in the further effectiveness, preparation of business environment, TBM maintenance, introduction of CBM maintenance and introduction of maintenance assistance in upgrading of maintenance. Here was introduced on system concepts aiming at the further effectiveness of the nuclear power plant business, preparation of business environment, upgrading of maintenance and maintenance, and so on, at a background of environment around maintenance business in the nuclear power plants (cost-down, highly elapsed year of the plant, change of business environment). (G.K)

  4. Creating and shaping innovation systems: Formal networks in the innovation system for stationary fuel cells in Germany

    International Nuclear Information System (INIS)

    Musiolik, Joerg; Markard, Jochen

    2011-01-01

    The development and diffusion of novel technologies, e.g. for decentralized energy generation, crucially depends on supportive institutional structures such as R and D programs, specific regulations, technical standards, or positive expectations. Such structures are not given but emerge through the interplay of different kinds of actors. In this paper, we study the role of formal networks in creating supportive structures in the technological innovation system for stationary fuel cells in Germany. Our findings are based on an in-depth study of five selected innovation networks. The analysis shows that the networks were strategically set up to support the creation of a variety of elements including public R and D programs, modules for vocational training, technical guidelines, standardized components, or a positive image of the technology. These elements have been reported to generate positive externalities in the field, e.g. as they help to establish user-supplier linkages in the emerging value chain. We conclude that, from a firm perspective such elements may represent strategically relevant resources made available at the innovation system level. This view opens up a link to the literature of strategic management, thus highlighting the importance of strategic action and cooperation in emerging technological fields. - Research Highlights: → We combine technological innovation systems with resource-based reasoning. → Formal networks are strategically set up to create and shape technological innovation systems. → Formal networks create system resources which provide positive externalities in emerging fields. → Collective action is essential for the build-up of energy innovation systems.

  5. Creating and shaping innovation systems: Formal networks in the innovation system for stationary fuel cells in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Musiolik, Joerg, E-mail: joerg.musiolik@eawag.c [Cirus - Innovation Research in Utility Sectors, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Uberlandstrasse 133, 8600 Duebendorf (Switzerland); Markard, Jochen [Cirus - Innovation Research in Utility Sectors, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Uberlandstrasse 133, 8600 Duebendorf (Switzerland)

    2011-04-15

    The development and diffusion of novel technologies, e.g. for decentralized energy generation, crucially depends on supportive institutional structures such as R and D programs, specific regulations, technical standards, or positive expectations. Such structures are not given but emerge through the interplay of different kinds of actors. In this paper, we study the role of formal networks in creating supportive structures in the technological innovation system for stationary fuel cells in Germany. Our findings are based on an in-depth study of five selected innovation networks. The analysis shows that the networks were strategically set up to support the creation of a variety of elements including public R and D programs, modules for vocational training, technical guidelines, standardized components, or a positive image of the technology. These elements have been reported to generate positive externalities in the field, e.g. as they help to establish user-supplier linkages in the emerging value chain. We conclude that, from a firm perspective such elements may represent strategically relevant resources made available at the innovation system level. This view opens up a link to the literature of strategic management, thus highlighting the importance of strategic action and cooperation in emerging technological fields. - Research Highlights: {yields} We combine technological innovation systems with resource-based reasoning. {yields} Formal networks are strategically set up to create and shape technological innovation systems. {yields} Formal networks create system resources which provide positive externalities in emerging fields. {yields} Collective action is essential for the build-up of energy innovation systems.

  6. NCIS - a Nuclear Criticality Information System (overview)

    International Nuclear Information System (INIS)

    Koponen, B.L.; Hampel, V.E.

    1983-07-01

    A Nuclear Criticality Information System (NCIS) is being established at the Lawrence Livermore National Laboratory (LLNL) in order to serve personnel responsible for safe storage, transport, and handling of fissile materials and those concerned with the evaluation and analysis of nuclear, critical experiments. Public concern for nuclear safety provides the incentive for improved access to nuclear safety information

  7. Universities, regional innovation systems and the Bangalore experience

    DEFF Research Database (Denmark)

    Vang, Jan; Coenen, Lars; Chaminade, Christina

    2007-01-01

    This paper takes stock with one-size-fits-all models on the role of universities in regional innovation systems in Asia. It proposes a contextual and evolutionary perspective which focuses on the match between the specific competences and capabilities of the universities and the firms' particular...

  8. National Innovation Systems in Brazil, Russia, India, China and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    They will characterize and compare the five national innovation systems, pointing out convergences, divergences and synergies, as well as current and potential connections. They will endeavor to identify possible paths to achieving their socioeconomic development potential. And, they will generate policy implications of ...

  9. Securing innovation through a differentiated supply system : The fashion industry

    NARCIS (Netherlands)

    Kamann, Dirk-Jan F.; Steller, Daan; Kaminishi, K; Duysters, G

    2007-01-01

    This paper describes a Situation where next to very innovative goods with short life cycles and volatile demand, rather commodity type goods are carried with more stable demand. A 'Two Lane Strategy' is described, with two different configurations of actors in the company's supply system. In each of

  10. Developing National Systems of Innovation: University-Industry ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2015-01-30

    Jan 30, 2015 ... Interactions between firms and universities are key building blocks of innovation systems. With a focus on developing countries, this book presents novel comparative research spanning three continents. The result is a more universal and dynamic view of the shaping and reshaping of interactions between ...

  11. Innovation systems, saving, trust, and economic development in Africa

    NARCIS (Netherlands)

    Pamuk, H.

    2014-01-01

    The five essays in the dissertation explore the interaction between economic development in Africa and three economic concepts from different fields: decentralized agricultural innovation systems, trust and saving practices. A relatively new view to boost agricultural growth is the implementation of

  12. Innovation system approach to agricultural development: Policy ...

    African Journals Online (AJOL)

    Several other relevant macro economic and meso level factors such as policy and legislative framework and nature of human capital, physical infrastructure, finance and investment climate and system for facilitating information and knowledge flows were not considered as important. The emerging reforms and changes in

  13. Defect and Innovation of Water Rights System

    Institute of Scientific and Technical Information of China (English)

    Zhou Bin

    2008-01-01

    The rare deposition of water resources conflicts with its limitless demand. This determined the existence of the water rights transaction system. The implementation of the water rights transaction system requires clarifying the definition of water re-source fight above all distinctly. At present, it is a kind of common right system arrangement which needs the Chinese government to dispose of water resources. Though a series of management sys-tems guaranteed the government's supply of water resource, it hindered the development of the water market seriously and caused the utilization of water resources to stay in the inefficient or low efficient state for a long time. Thus, we should change the government's leading role in the resource distribution and really rely on the market to carry on the water rights trade and transac-tion. In this way, the water rights could become a kind of private property right relatively, and circulate freely in the market. As a result of this, we should overcome the defects of common right, make its external performance internalized maximally and achieve the optimized water resource disposition and use it more effec-tively.

  14. Review of Innovative Sediment Delivery Systems

    Science.gov (United States)

    2013-04-01

    Alternative conveyor belt systems appear to be available from the growing hydraulic fracturing ( fracking , shale gas recovery) industry, which use...tons of aggregate material (with diameters up to 2 in.) per hour. This equates to roughly 150 cu yd per hr, de- pending on sand density. As fracking

  15. A Systemic Perspective on Innovation from Energy Efficiency Policy efforts

    DEFF Research Database (Denmark)

    Ruby, Tobias Møller

    In order to reduce climate change, resource scarcity and other global environmental issues major increases in energy efficiency are necessary throughout our energy system. Despite this daunting outlook and the fact that energy efficiency in most instances makes economic and environmental sense...... efficiency innovation activities where market demand and policy efforts appear to have the most impact. The thesis also goes in depth with a single sector to describe the complexities of innovation processes in energy efficiency and the noticeable role of policy. Overall the doctoral thesis provides...

  16. UK innovation systems for new and renewable energy technologies: drivers, barriers and systems failures

    International Nuclear Information System (INIS)

    Foxon, T.J.; Gross, R.; Chase, A.; Howes, J.; Arnall, A.; Anderson, D.

    2005-01-01

    A better understanding of the systemic processes by which innovation occurs is useful, both conceptually and to inform policy-making in support of innovation in more sustainable technologies. This paper analyses current innovation systems in the UK for a range of new and renewable energy technologies, and generates policy recommendations for improving the effectiveness of these innovation systems. Although incentives are in place in the UK to encourage innovation in these technologies, system failures - or 'gaps' - are identified in moving technologies along the innovation chain, preventing their successful commercialisation. Sustained investment will be needed for these technologies to achieve their potential. It is argued that a stable and consistent policy framework is required to help create the conditions for this. In particular, such a framework should be aimed at improving risk/reward ratios for demonstration and pre-commercial stage technologies. This would enhance positive expectations, stimulate learning effects leading to cost reductions, and increase the likelihood of successful commercialisation

  17. Healthcare systems, the State, and innovation in the pharmaceutical industry

    Directory of Open Access Journals (Sweden)

    Ignacio José Godinho Delgado

    Full Text Available Abstract: This article discusses the relations between healthcare systems and the pharmaceutical industry, focusing on state support for pharmaceutical innovation. The study highlights the experiences of the United States, United Kingdom, and Germany, developed countries and paradigms of modern health systems (liberal, universal, and corporatist, in addition to Japan, a case of successful catching up. The study also emphasizes the experiences of China, India, and Brazil, large developing countries that have tried different catching up strategies, with diverse histories and profiles in their healthcare systems and pharmaceutical industries. Finally, with a focus on state forms of support for health research, the article addresses the mechanisms for linkage between health systems and the pharmaceutical industry, evaluating the possibilities of Brazil strengthening a virtuous interaction, favoring the expansion and consolidation of the Brazilian health system - universal but segmented ‒ and the affirmation of the innovative national pharmaceutical industry.

  18. Innovated feed water distributing system of VVER steam generators

    International Nuclear Information System (INIS)

    Matal, O.; Sousek, P.; Simo, T.; Lehota, M.; Lipka, J.; Slugen, V.

    2000-01-01

    Defects in feed water distributing system due to corrosion-erosion effects have been observed at many VVER 440 steam generators (SG). Therefore analysis of defects origin and consequently design development and testing of a new feed water distributing system were performed. System tests in-situ supported by calculations and comparison of measured and calculated data were focused on demonstration of long term reliable operation, definition of water flow and water chemical characteristics at the SG secondary side and their measurements and study of dynamic characteristics needed for the innovated feed water distributing system seismic features approval. The innovated feed water distributing system was installed in the SGs of two VVER units already. (author)

  19. A nuclear source term analysis for spacecraft power systems

    International Nuclear Information System (INIS)

    McCulloch, W.H.

    1998-01-01

    All US space missions involving on board nuclear material must be approved by the Office of the President. To be approved the mission and the hardware systems must undergo evaluations of the associated nuclear health and safety risk. One part of these evaluations is the characterization of the source terms, i.e., the estimate of the amount, physical form, and location of nuclear material, which might be released into the environment in the event of credible accidents. This paper presents a brief overview of the source term analysis by the Interagency Nuclear Safety Review Panel for the NASA Cassini Space Mission launched in October 1997. Included is a description of the Energy Interaction Model, an innovative approach to the analysis of potential releases from high velocity impacts resulting from launch aborts and reentries

  20. Mechanisms and Functions within a National Innovation System

    Directory of Open Access Journals (Sweden)

    Joseph Gogodze

    2016-12-01

    Full Text Available In modern society, the competitive success of countries is increasingly dependent on the effective management of their national innovation system (NIS. Therefore, understanding the mechanisms behind NISs has become essential. After reviewing the current understanding of the NIS concept and the existing measurement models, this study proposes to consider the NIS as an intangible (underlying asset of a specific kind and identifies its seven fundamental components, which are extracted with a new measurement model, the Global Innovation Index (GII. This study employs the Structural Equation Modeling (SEM techniques to analyze the relationships among the components of an NIS. Our results support the existence of a causal link between the constituents of an NIS and provide several perspectives regarding NIS management opportunities. In particular, we find that the efficient management of institutional capital is a key determinant of innovation success for non-high-income countries.