WorldWideScience

Sample records for injury tbi patients

  1. Traumatic Brain Injury Registry (TBI)

    Data.gov (United States)

    Department of Veterans Affairs — As the number of Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) Traumatic Brain Injury (TBI) patients has grown, so has the need to track and monitor...

  2. Metabolic alterations in patients who develop traumatic brain injury (TBI)-induced hypopituitarism.

    Science.gov (United States)

    Prodam, F; Gasco, V; Caputo, M; Zavattaro, M; Pagano, L; Marzullo, P; Belcastro, S; Busti, A; Perino, C; Grottoli, S; Ghigo, E; Aimaretti, G

    2013-08-01

    Hypopituitarism is associated with metabolic alterations but in TBI-induced hypopituitarism data are scanty. The aim of our study was to evaluate the prevalence of naïve hypertension, dyslipidemia, and altered glucose metabolism in TBI-induced hypopituitarism patients. Cross-sectional retrospective study in a tertiary care endocrinology center. 54 adult patients encountering a moderate or severe TBI were evaluated in the chronic phase (at least 12 months after injury) after-trauma. Presence of hypopituitarism, BMI, hypertension, fasting blood glucose and insulin levels, oral glucose tolerance test (if available) and a lipid profile were evaluated. The 27.8% of patients showed various degrees of hypopituitarism. In particular, 9.3% had total, 7.4% multiple and 11.1% isolated hypopituitarism. GHD was present in 22.2% of patients. BMI was similar between the two groups. Hypopituitaric patients presented a higher prevalence of dyslipidemia (phypopituitaric patients. In particular, triglycerides (phypopituitaric TBI patients. We showed that long-lasting TBI patients who develop hypopituitarism frequently present metabolic alterations, in particular altered glucose levels, insulin resistance and hypertriglyceridemia. In view of the risk of premature cardiovascular death in hypopituitaric patients, major attention has to been paid in those who encountered a TBI, because they suffer from the same comorbidities and may present other deterioration factors due to complex pharmacological treatments and restriction in participation in life activities and healthy lifestyle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Predictive factors for 1-year outcome of a cohort of patients with severe traumatic brain injury (TBI): results from the PariS-TBI study.

    Science.gov (United States)

    Jourdan, C; Bosserelle, V; Azerad, S; Ghout, I; Bayen, E; Aegerter, P; Weiss, J J; Mateo, J; Lescot, T; Vigué, B; Tazarourte, K; Pradat-Diehl, P; Azouvi, P

    2013-01-01

    To assess outcome and predicting factors 1 year after a severe traumatic brain injury (TBI). Multi-centre prospective inception cohort study of patients aged 15 or older with a severe TBI in the Parisian area, France. Data were collected prospectively starting the day of injury. One-year evaluation included the relatives-rating of the Dysexecutive Questionnaire (DEX-R), the Glasgow Outcome Scale-Extended (GOSE) and employment. Univariate and multivariate tests were computed. Among 257 survivors, 134 were included (mean age 36 years, 84% men). Good recovery concerned 19%, moderate disability 43% and severe disability 38%. Among patients employed pre-injury, 42% were working, 28% with no job change. DEX-R score was significantly associated with length of education only. Among initial severity measures, only the IMPACT prognostic score was significantly related to GOSE in univariate analyses, while measures relating to early evolution were more significant predictors. In multivariate analyses, independent predictors of GOSE were length of stay in intensive care (LOS), age and education. Independent predictors of employment were LOS and age. Age, education and injury severity are independent predictors of global disability and return to work 1 year after a severe TBI.

  4. Traumatic Brain Injury (TBI) in Kids

    Science.gov (United States)

    ... Information Share Facebook Twitter Pinterest Email Print Traumatic Brain Injury (TBI): Condition Information What is TBI? TBI ... external force that affects the functioning of the brain. It can be caused by a bump or ...

  5. Combined SCI and TBI: recovery of forelimb function after unilateral cervical spinal cord injury (SCI) is retarded by contralateral traumatic brain injury (TBI), and ipsilateral TBI balances the effects of SCI on paw placement.

    Science.gov (United States)

    Inoue, Tomoo; Lin, Amity; Ma, Xiaokui; McKenna, Stephen L; Creasey, Graham H; Manley, Geoffrey T; Ferguson, Adam R; Bresnahan, Jacqueline C; Beattie, Michael S

    2013-10-01

    A significant proportion (estimates range from 16 to 74%) of patients with spinal cord injury (SCI) have concomitant traumatic brain injury (TBI), and the combination often produces difficulties in planning and implementing rehabilitation strategies and drug therapies. For example, many of the drugs used to treat SCI may interfere with cognitive rehabilitation, and conversely drugs that are used to control seizures in TBI patients may undermine locomotor recovery after SCI. The current paper presents an experimental animal model for combined SCI and TBI to help drive mechanistic studies of dual diagnosis. Rats received a unilateral SCI (75 kdyn) at C5 vertebral level, a unilateral TBI (2.0 mm depth, 4.0 m/s velocity impact on the forelimb sensori-motor cortex), or both SCI+TBI. TBI was placed either contralateral or ipsilateral to the SCI. Behavioral recovery was examined using paw placement in a cylinder, grooming, open field locomotion, and the IBB cereal eating test. Over 6weeks, in the paw placement test, SCI+contralateral TBI produced a profound deficit that failed to recover, but SCI+ipsilateral TBI increased the relative use of the paw on the SCI side. In the grooming test, SCI+contralateral TBI produced worse recovery than either lesion alone even though contralateral TBI alone produced no observable deficit. In the IBB forelimb test, SCI+contralateral TBI revealed a severe deficit that recovered in 3 weeks. For open field locomotion, SCI alone or in combination with TBI resulted in an initial deficit that recovered in 2 weeks. Thus, TBI and SCI affected forelimb function differently depending upon the test, reflecting different neural substrates underlying, for example, exploratory paw placement and stereotyped grooming. Concurrent SCI and TBI had significantly different effects on outcomes and recovery, depending upon laterality of the two lesions. Recovery of function after cervical SCI was retarded by the addition of a moderate TBI in the contralateral

  6. Traumatic Brain Injury (TBI) Data and Statistics

    Science.gov (United States)

    ... TBI Online Concussion Training Press Room Guide to Writing about TBI in News and Social Media Living with TBI HEADS UP to Brain Injury Awareness Get Email Updates To receive email updates about this topic, ...

  7. Alpha desynchronization/synchronization during working memory testing is compromised in acute mild traumatic brain injury (mTBI).

    Science.gov (United States)

    Arakaki, Xianghong; Shoga, Michael; Li, Lianyang; Zouridakis, George; Tran, Thao; Fonteh, Alfred N; Dawlaty, Jessica; Goldweber, Robert; Pogoda, Janice M; Harrington, Michael G

    2018-01-01

    Diagnosing and monitoring recovery of patients with mild traumatic brain injury (mTBI) is challenging because of the lack of objective, quantitative measures. Diagnosis is based on description of injuries often not witnessed, subtle neurocognitive symptoms, and neuropsychological testing. Since working memory (WM) is at the center of cognitive functions impaired in mTBI, this study was designed to define objective quantitative electroencephalographic (qEEG) measures of WM processing that may correlate with cognitive changes associated with acute mTBI. First-time mTBI patients and mild peripheral (limb) trauma controls without head injury were recruited from the emergency department. WM was assessed by a continuous performance task (N-back). EEG recordings were obtained during N-back testing on three occasions: within five days, two weeks, and one month after injury. Compared with controls, mTBI patients showed abnormal induced and evoked alpha activity including event-related desynchronization (ERD) and synchronization (ERS). For induced alpha power, TBI patients had excessive frontal ERD on their first and third visit. For evoked alpha, mTBI patients had lower parietal ERD/ERS at the second and third visits. These exploratory qEEG findings offer new and non-invasive candidate measures to characterize the evolution of injury over the first month, with potential to provide much-needed objective measures of brain dysfunction to diagnose and monitor the consequences of mTBI.

  8. Neutrophils in traumatic brain injury (TBI): friend or foe?

    Science.gov (United States)

    Liu, Yang-Wuyue; Li, Song; Dai, Shuang-Shuang

    2018-05-17

    Our knowledge of the pathophysiology about traumatic brain injury (TBI) is still limited. Neutrophils, as the most abundant leukocytes in circulation and the first-line transmigrated immune cells at the sites of injury, are highly involved in the initiation, development, and recovery of TBI. Nonetheless, our understanding about neutrophils in TBI is obsolete, and mounting evidences from recent studies have challenged the conventional views. This review summarizes what is known about the relationships between neutrophils and pathophysiology of TBI. In addition, discussions are made on the complex roles as well as the controversial views of neutrophils in TBI.

  9. Head injuries (TBI) to adults and children in motor vehicle crashes.

    Science.gov (United States)

    Viano, David C; Parenteau, Chantal S; Xu, Likang; Faul, Mark

    2017-08-18

    This is a descriptive study. It determined the annual, national incidence of head injuries (traumatic brain injury, TBI) to adults and children in motor vehicle crashes. It evaluated NASS-CDS for exposure and incidence of various head injuries in towaway crashes. It evaluated 3 health databases for emergency department (ED) visits, hospitalizations, and deaths due to TBI in motor vehicle occupants. Four databases were evaluated using 1997-2010 data on adult (15+ years old) and child (0-14 years old) occupants in motor vehicle crashes: (1) NASS-CDS estimated the annual incidence of various head injuries and outcomes in towaway crashes, (2) National Hospital Ambulatory Medical Care Survey (NHAMCS)-estimated ED visits for TBI, (3) National Hospital Discharge Survey (NHDS) estimated hospitalizations for TBI, and (4) National Vital Statistics System (NVSS) estimated TBI deaths. The 4 databases provide annual national totals for TBI related injury and death in motor vehicle crashes based on differing definitions with TBI coded by the Abbreviated Injury Scale (AIS) in NASS-CDS and by International Classification of Diseases (ICD) in the health data. Adults: NASS-CDS had 16,980 ± 2,411 (risk = 0.43 ± 0.06%) with severe head injury (AIS 4+) out of 3,930,543 exposed adults in towaway crashes annually. There were 49,881 ± 9,729 (risk = 1.27 ± 0.25%) hospitalized with AIS 2+ head injury, without death. There were 6,753 ± 882 (risk = 0.17 ± 0.02%) fatalities with a head injury cause. The public health data had 89,331 ± 6,870 ED visits, 33,598 ± 1,052 hospitalizations, and 6,682 ± 22 deaths with TBI. NASS-CDS estimated 48% more hospitalized with AIS 2+ head injury without death than NHDS occupants hospitalized with TBI. NASS-CDS estimated 29% more deaths with AIS 3+ head injury than NVSS occupant TBI deaths but only 1% more deaths with a head injury cause. Children: NASS-CDS had 1,453 ± 318 (risk = 0.32 ± 0.07%) with severe head injury (AIS 4+) out of 454,973 exposed

  10. Role of Sertraline in insomnia associated with post traumatic brain injury (TBI depression

    Directory of Open Access Journals (Sweden)

    Ansari Ahmed

    2016-09-01

    Full Text Available Traumatic brain injury (TBI is a major cause of disability (1, 2. Sleep disturbances, such as insomnia, are very common following traumatic brain injury and have been reported in frequencies from 40% (3 to as high as 84% (4. Sleep disruption can be related to the TBI itself but may also be secondary to neuropsychiatric (e.g., depression or neuromuscular (e.g., pain conditions associated with TBI or to the pharmacological management of the injury and its consequences. Post-TBI insomnia has been associated with numerous negative outcomes including daytime fatigue, tiredness, difficulty functioning: impaired performance at work, memory problems, mood problems, greater functional disability, reduced participation in activities of daily living, less social and recreational activity, less employment potential, increased caregiver burden, greater sexual dysfunction, and also lower ratings of health, poor subjective wellbeing. These negative consequences can hamper the person’s reintegration into the community, adjustment after injury, and overall QOL. (5 The connection between depression and insomnia has not been investigated within the post TBI population to a great extent. For the general population, clinically significant insomnia is often associated with the presence of an emotional disorder (6. Fichtenberg et al. (2002 (7, in his study established that the strongest relationship with the diagnosis of insomnia belonged to depression. Given the high prevalence of depression during the first 2 years following TBI (8, a link between depression and insomnia among TBI patients makes innate sense. The present study aims at assessing role of sertralline in post TBI insomnia associated with depression.

  11. Traumatic brain injury (TBI) outcomes in an LMIC tertiary care centre and performance of trauma scores.

    Science.gov (United States)

    Samanamalee, Samitha; Sigera, Ponsuge Chathurani; De Silva, Ambepitiyawaduge Pubudu; Thilakasiri, Kaushila; Rashan, Aasiyah; Wadanambi, Saman; Jayasinghe, Kosala Saroj Amarasiri; Dondorp, Arjen M; Haniffa, Rashan

    2018-01-08

    This study evaluates post-ICU outcomes of patients admitted with moderate and severe Traumatic Brain Injury (TBI) in a tertiary neurocritical care unit in an low middle income country and the performance of trauma scores: A Severity Characterization of Trauma, Trauma and Injury Severity Score, Injury Severity Score and Revised Trauma Score in this setting. Adult patients directly admitted to the neurosurgical intensive care units of the National Hospital of Sri Lanka between 21st July 2014 and 1st October 2014 with moderate or severe TBI were recruited. A telephone administered questionnaire based on the Glasgow Outcome Scale Extended (GOSE) was used to assess functional outcome of patients at 3 and 6 months after injury. The economic impact of the injury was assessed before injury, and at 3 and 6 months after injury. One hundred and one patients were included in the study. Survival at ICU discharge, 3 and 6 months after injury was 68.3%, 49.5% and 45.5% respectively. Of the survivors at 3 months after injury, 43 (86%) were living at home. Only 19 (38%) patients had a good recovery (as defined by GOSE 7 and 8). Three months and six months after injury, respectively 25 (50%) and 14 (30.4%) patients had become "economically dependent". Selected trauma scores had poor discriminatory ability in predicting mortality. This observational study of patients sustaining moderate or severe TBI in Sri Lanka (a LMIC) reveals only 46% of patients were alive at 6 months after ICU discharge and only 20% overall attained a good (GOSE 7 or 8) recovery. The social and economic consequences of TBI were long lasting in this setting. Injury Severity Score, Revised Trauma Score, A Severity Characterization of Trauma and Trauma and Injury Severity Score, all performed poorly in predicting mortality in this setting and illustrate the need for setting adapted tools.

  12. TBI Patient, Injury, Therapy, and Ancillary Treatments Associated with Outcomes at Discharge and 9 Months Post-discharge

    Science.gov (United States)

    Horn, Susan D.; Corrigan, John D.; Beaulieu, Cynthia L.; Bogner, Jennifer; Barrett, Ryan S.; Giuffrida, Clare G.; Ryser, David K.; Cooper, Kelli; Carroll, Deborah M.; Deutscher, Daniel

    2015-01-01

    Objective To examine associations of patient and injury characteristics, inpatient rehabilitation therapy activities, and neurotropic medications with outcomes at discharge and 9 months post-discharge for patients with traumatic brain injury (TBI) Design Prospective, longitudinal observational study Setting 10 inpatient rehabilitation centers (9 US, 1 Canada) Participants Consecutive patients (n=2130) enrolled between 2008 and 2011, admitted for inpatient rehabilitation after an index TBI injury Interventions Not applicable Main Outcome Measures Rehabilitation length of stay, discharge to home, and Functional Independence Measure (FIM) at discharge and 9 months post-discharge Results The admission FIM Cognitive score was used to create 5 relatively homogeneous subgroups for subsequent analysis of treatment outcomes. Within each subgroup, significant associations were found between outcomes and patient and injury characteristics, time spent in therapy activities, and medications used. Patient and injury characteristics explained on average 35.7% of the variation in discharge outcomes and 22.3% in 9-month outcomes. Adding time spent and level of effort in therapy activities, as well as percent of stay using specific medications, explained approximately 20.0% more variation for discharge outcomes and 12.9% for 9-month outcomes. After patient, injury, and treatment characteristics were used to predict outcomes, center differences added only approximately 1.9% additional variance explained. Conclusions At discharge, greater effort during therapy sessions, time spent in more complex therapy activities, and use of specific medications were associated with better outcomes for patients in all admission FIM Cognitive subgroups. At 9 months post-discharge, similar but less pervasive associations were observed for therapy activities, but not classes of medications. Further research is warranted to examine more specific combinations of therapy activities and medications that

  13. When Injury Clouds Understanding of Others: Theory of Mind after Mild TBI in Preschool Children.

    Science.gov (United States)

    Bellerose, Jenny; Bernier, Annie; Beaudoin, Cindy; Gravel, Jocelyn; Beauchamp, Miriam H

    2015-08-01

    There is evidence to suggest that social skills, such as the ability to understand the perspective of others (theory of mind), may be affected by childhood traumatic brain injuries; however, studies to date have only considered moderate and severe traumatic brain injury (TBI). This study aimed to assess theory of mind after early, mild TBI (mTBI). Fifty-one children who sustained mTBI between 18 and 60 months were evaluated 6 months post-injury on emotion and desires reasoning and false-belief understanding tasks. Their results were compared to that of 50 typically developing children. The two groups did not differ on baseline characteristics, except for pre- and post-injury externalizing behavior. The mTBI group obtained poorer scores relative to controls on both the emotion and desires task and the false-belief understanding task, even after controlling for pre-injury externalizing behavior. No correlations were found between TBI injury characteristics and theory of mind. This is the first evidence that mTBI in preschool children is associated with theory of mind difficulties. Reduced perspective taking abilities could be linked with the social impairments that have been shown to arise following TBI.

  14. The impact of pediatric traumatic brain injury (TBI) on family functioning: a systematic review.

    Science.gov (United States)

    Rashid, Marghalara; Goez, Helly R; Mabood, Neelam; Damanhoury, Samah; Yager, Jerome Y; Joyce, Anthony S; Newton, Amanda S

    2014-01-01

    To explore the impact moderate to severe traumatic brain injury (TBI) in a child has on family functioning. The search was conducted using 9 bibliographic databases for articles published between 1980 and 2013. Two reviewers independently screened for inclusion and assessed study quality. Two reviewers extracted study data and a third checked for completeness and accuracy. Findings are presented by three domains: injury-related burden and stress, family adaptability, and family cohesion. Nine observational studies were included. Across the studies, differences between study groups for family functioning varied, but there was a trend for more dysfunction in families whose child had a severe TBI as compared to families whose child had a moderate TBI or orthopedic injury. In three studies, injury-associated burden was persistent post-injury and was highest in families whose child had a severe TBI followed by families with a child who had a moderate TBI. One study found fathers reported more family dysfunction caused by their child's injury compared to mothers. Two studies found that mothers' adaptability depended on social support and stress levels while fathers' adaptability was independent of these factors and injury severity. Moderate to severe TBI has a significant, long-standing impact on family functioning. Factors associated with family adaptability vary by parental role.

  15. Reliability of the NINDS common data elements cranial tomography (CT) rating variables for traumatic brain injury (TBI)

    NARCIS (Netherlands)

    Harburg, Leah; McCormack, Erin; Kenney, Kimbra; Moore, Carol; Yang, Kelly; Vos, Pieter; Jacobs, Bram; Madden, Christopher J; Diaz-Arrastia, Ramon R; Bogoslovsky, Tanya

    2017-01-01

    Background: Non-contrast head computer tomography (CT) is widely used to evaluate eligibility of patients after acute traumatic brain injury (TBI) for clinical trials. The NINDS Common Data Elements (CDEs) TBI were developed to standardize collection of CT variables. The objectives of this study

  16. Ubiquinol treatment for TBI in male rats: Effects on mitochondrial integrity, injury severity, and neurometabolism.

    Science.gov (United States)

    Pierce, Janet D; Gupte, Raeesa; Thimmesch, Amanda; Shen, Qiuhua; Hiebert, John B; Brooks, William M; Clancy, Richard L; Diaz, Francisco J; Harris, Janna L

    2018-06-01

    Following traumatic brain injury (TBI), there is significant secondary damage to cerebral tissue from increased free radicals and impaired mitochondrial function. This imbalance between reactive oxygen species (ROS) production and the effectiveness of cellular antioxidant defenses is termed oxidative stress. Often there are insufficient antioxidants to scavenge ROS, leading to alterations in cerebral structure and function. Attenuating oxidative stress following a TBI by administering an antioxidant may decrease secondary brain injury, and currently many drugs and supplements are being investigated. We explored an over-the-counter supplement called ubiquinol (reduced form of coenzyme Q10), a potent antioxidant naturally produced in brain mitochondria. We administered intra-arterial ubiquinol to rats to determine if it would reduce mitochondrial damage, apoptosis, and severity of a contusive TBI. Adult male F344 rats were randomly assigned to one of three groups: (1) Saline-TBI, (2) ubiquinol 30 minutes before TBI (UB-PreTBI), or (3) ubiquinol 30 minutes after TBI (UB-PostTBI). We found when ubiquinol was administered before or after TBI, rats had an acute reduction in brain mitochondrial damage, apoptosis, and two serum biomarkers of TBI severity, glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1). However, in vivo neurometabolic assessment with proton magnetic resonance spectroscopy did not show attenuated injury-induced changes. These findings are the first to show that ubiquinol preserves mitochondria and reduces cellular injury severity after TBI, and support further study of ubiquinol as a promising adjunct therapy for TBI. © 2018 Wiley Periodicals, Inc.

  17. Patient Characterization Protocols for Psychophysiological Studies of Traumatic Brain Injury and Post-TBI Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Paul E. Rapp

    2013-07-01

    Full Text Available Psychophysiological investigations of traumatic brain injury (TBI are being conducted for several reasons, including the objective of learning more about the underlying physiological mechanisms of the pathological processes that can be initiated by a head injury. Additional goals include the development of objective physiologically based measures that can be used to monitor the response to treatment and to identify minimally symptomatic individuals who are at risk of delayed onset neuropsychiatric disorders following injury. Research programs studying TBI search for relationships between psychophysiological measures, particularly ERP component properties (e.g. timing, amplitude, scalp distribution, and a participant’s clinical condition. Moreover, the complex relationships between brain injury and psychiatric disorders are receiving increased research attention, and ERP technologies are making contributions to this effort. This review has two objectives supporting such research efforts. The first is to review evidence indicating that traumatic brain injury is a significant risk factor for post-injury neuropsychiatric disorders. The second objective is to introduce ERP researchers who are not familiar with neuropsychiatric assessment to the instruments that are available for characterizing traumatic brain injury, post-concussion syndrome, and psychiatric disorders. Specific recommendations within this very large literature are made. We have proceeded on the assumption that, as is typically the case in an ERP laboratory, the investigators are not clinically qualified and that they will not have access to participant medical records.

  18. TBI-ROC Part Nine: Diagnosing TBI and Psychiatric Disorders

    Science.gov (United States)

    Elias, Eileen; Weider, Katie; Mustafa, Ruman

    2011-01-01

    This article is the ninth of a multi-part series on traumatic brain injury (TBI). It focuses on the process of diagnosing TBI and psychiatric disorders. Diagnosing traumatic brain injury can be challenging. It can be difficult differentiating TBI and psychiatric symptoms, as both have similar symptoms (e.g., memory problems, emotional outbursts,…

  19. What Are Common Traumatic Brain Injury (TBI) Symptoms?

    Science.gov (United States)

    ... sleep habits Behavior or mood changes Trouble with memory, concentration, attention, or thinking Loss of consciousness lasting a few ... may have caused a TBI should seek medical attention. 4 ... Traumatic brain injury information page . Retrieved May 4, 2018, from https://www. ...

  20. An audit of traumatic brain injury (TBI) in a busy developing-world ...

    African Journals Online (AJOL)

    Committee in Neurotraumatology.[7] Four years later, at the ... the resources necessary to manage severe TBI according to interna- ... An audit of traumatic brain injury (TBI) in a busy .... The danger with this approach is that it risks becoming a.

  1. Patterns of post-acute health care utilization after a severe traumatic brain injury: Results from the PariS-TBI cohort.

    Science.gov (United States)

    Jourdan, Claire; Bayen, Eleonore; Darnoux, Emmanuelle; Ghout, Idir; Azerad, Sylvie; Ruet, Alexis; Vallat-Azouvi, Claire; Pradat-Diehl, Pascale; Aegerter, Philippe; Weiss, Jean-Jacques; Azouvi, Philippe

    2015-01-01

    To assess brain injury services utilization and their determinants using Andersen's model. Prospective follow-up of the PariS-TBI inception cohort. Out of 504 adults with severe traumatic brain injury (TBI), 245 survived and 147 received a 4-year outcome assessment (mean age 33 years, 80% men). Provision rates of medical, rehabilitation, social and re-entry services and their relations to patients' characteristics were assessed. Following acute care discharge, 78% of patients received physiotherapy, 61% speech/cognitive therapy, 50% occupational therapy, 41% psychological assistance, 63% specialized medical follow-up, 21% community re-entry assistance. Health-related need factors, in terms of TBI severity, were the main predictors of services. Provision of each therapy was significantly associated with corresponding speech, motor and psychological impairments. However, care provision did not depend on cognitive impairments and cognitive therapy was related to pre-disposing and geographical factors. Community re-entry assistance was provided to younger and more independent patients. These quantitative findings illustrate strengths and weaknesses of late brain injury care provision in urban France and highlight the need to improve treatment of cognitive impairments.

  2. Survival and Injury Outcome After TBI: Influence of Pre- and Post-Exposure to Caffeine

    Science.gov (United States)

    2012-10-01

    10-1-0757 TITLE: Survival and Injury Outcome After TBI: Influence of Pre- and Post- Exposure to Caffeine PRINCIPAL INVESTIGATOR...Lusardi, Ph.D. Survival and Injury Outcome After TBI: Influence of Pre- and Post- Exposure to Caffeine 33 Legacy Emanual Hospital & Health Center...Phase 1: Study the prophylactic effects of caffeine exposure prior to FPI

  3. Validating Multidimensional Outcome Assessment Using the TBI Common Data Elements: An Analysis of the TRACK-TBI Pilot Sample.

    Science.gov (United States)

    Nelson, Lindsay D; Ranson, Jana; Ferguson, Adam R; Giacino, Joseph; Okonkwo, David O; Valadka, Alex; Manley, Geoffrey; McCrea, Michael

    2017-06-08

    The Glasgow Outcome Scale-Extended (GOSE) is often the primary outcome measure in clinical trials for traumatic brain injury (TBI). Although the GOSE's capture of global function outcome has several strengths, concerns have been raised about its limited ability to identify mild disability and failure to capture the full scope of problems patients exhibit after TBI. This analysis examined the convergence of disability ratings across a multidimensional set of outcome domains in the Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Pilot study. The study collected measures recommended by the TBI Common Data Elements (CDE) Workgroup. Patients presenting to 3 emergency departments with a TBI of any severity enrolled in TRACK-TBI prospectively after injury; outcome measures were collected at 3 and six months postinjury. Analyses examined frequency of impairment and overlap between impairment status across the CDE outcome domains of Global Level of Functioning (GOSE), Neuropsychological (cognitive) Impairment, Psychological Status, TBI Symptoms, and Quality of Life. GOSE score correlated in the expected direction with other outcomes (M Spearman's rho = .21 and .49 with neurocognitive and self-report outcomes, respectively). The subsample in the Upper Good Recovery (GOSE 8) category appeared quite healthy across most other outcomes, although 19.0% had impaired executive functioning (Trail Making Test Part B). A significant minority of participants in the Lower Good Recovery subgroup (GOSE 7) met criteria for impairment across numerous other outcome measures. The findings highlight the multidimensional nature of TBI recovery and the limitations of applying only a single outcome measure.

  4. Correspondence of the Boston Assessment of Traumatic Brain Injury-Lifetime (BAT-L) clinical interview and the VA TBI screen.

    Science.gov (United States)

    Fortier, Catherine Brawn; Amick, Melissa M; Kenna, Alexandra; Milberg, William P; McGlinchey, Regina E

    2015-01-01

    Mild traumatic brain injury is the signature injury of Operation Enduring Freedom (OEF), Operation Iraqi Freedom (OIF), and Operation New Dawn (OND), yet its identification and diagnosis is controversial and fraught with challenges. In 2007, the Department of Veterans Affairs (VA) implemented a policy requiring traumatic brain injury (TBI) screening on all individuals returning from deployment in the OEF/OIF/OND theaters of operation that lead to the rapid and widespread use of the VA TBI screen. The Boston Assessment of TBI-Lifetime (BAT-L) is the first validated, postcombat semistructured clinical interview to characterize head injuries and diagnose TBIs throughout the life span, including prior to, during, and post-military service. Community-dwelling convenience sample of 179 OEF/OIF/OND veterans. BAT-L, VA TBI screen. Based on BAT-L diagnosis of military TBI, the VA TBI screen demonstrated similar sensitivity (0.85) and specificity (0.82) when administered by research staff. When BAT-L diagnosis was compared with historical clinician-administered VA TBI screen in a subset of participants, sensitivity was reduced. The specificity of the research-administered VA TBI screen was more than adequate. The sensitivity of the VA TBI screen, although relatively high, suggests that it does not oversample or "catch all" possible military TBIs. Traumatic brain injuries identified by the BAT-L, but not identified by the VA TBI screen, were predominantly noncombat military injuries. There is potential concern regarding the validity and reliability of the clinician administered VA TBI screen, as we found poor correspondence between it and the BAT-L, as well as low interrater reliability between the clinician-administered and research-administered screen.

  5. Clinical and diagnostic approach to patients with hypopituitarism due to traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), and ischemic stroke (IS).

    Science.gov (United States)

    Karamouzis, Ioannis; Pagano, Loredana; Prodam, Flavia; Mele, Chiara; Zavattaro, Marco; Busti, Arianna; Marzullo, Paolo; Aimaretti, Gianluca

    2016-06-01

    The hypothalamic-pituitary dysfunction attributable to traumatic brain injury (TBI), aneurysmal subarachnoid hemorrhage (SAH), and ischemic stroke (IS) has been lately highlighted. The diagnosis of TBI-induced-hypopituitarism, defined as a deficient secretion of one or more pituitary hormones, is made similarly to the diagnosis of classical hypopituitarism because of hypothalamic/pituitary diseases. Hypopituitarism is believed to contribute to TBI-associated morbidity and to functional and cognitive final outcome, and quality-of-life impairment. Each pituitary hormone must be tested separately, since there is a variable pattern of hormone deficiency among patients with TBI-induced-hypopituitarism. Similarly, the SAH and IS may lead to pituitary dysfunction although the literature in this field is limited. The drive to diagnose hypopituitarism is the suspect that the secretion of one/more pituitary hormone may be subnormal. This suspicion can be based upon the knowledge that the patient has an appropriate clinical context in which hypopituitarism can be present, or a symptom known as caused by hypopituitarism. Hypopituitarism should be diagnosed as a combination of low peripheral and inappropriately normal/low pituitary hormones although their basal evaluation may be not distinctive due to pulsatile, circadian, or situational secretion of some hormones. Evaluation of the somatotroph and corticotroph axes require dynamic stimulation test (ITT for both axes, GHRH + arginine test for somatotroph axis) in order to clearly separate normal from deficient responses.

  6. Variation in structure and process of care in traumatic brain injury: Provider profiles of European Neurotrauma Centers participating in the CENTER-TBI study

    NARCIS (Netherlands)

    M.C. Cnossen (Maryse); S. Polinder (Suzanne); Lingsma, H.F. (Hester F.); A.I.R. Maas (Andrew); D.K. Menon (David ); E.W. Steyerberg (Ewout); Adams, H. (Hadie); Alessandro, M. (Masala); J.E. Allanson (Judith); Amrein, K. (Krisztina); Andaluz, N. (Norberto); N. Andelic (Nada); Andrea, N. (Nanni); L. Andreassen (Lasse); Anke, A. (Audny); Antoni, A. (Anna); Ardon, H. (Hilko); G. Audibert (Gérard); Auslands, K. (Kaspars); Azouvi, P. (Philippe); Baciu, C. (Camelia); Bacon, A. (Andrew); Badenes, R. (Rafael); Baglin, T. (Trevor); Bartels, R. (Ronald); Barzó, P. (Pál); Bauerfeind, U. (Ursula); R. Beer (Ronny); Belda, F.J. (Francisco Javier); B.-M. Bellander (Bo-Michael); A. Belli (Antonio); Bellier, R. (Rémy); H. Benali (Habib); Benard, T. (Thierry); M. Berardino (Maurizio); Beretta, L. (Luigi); Beynon, C. (Christopher); Bilotta, F. (Federico); H. Binder (Harald); Biqiri, E. (Erta); Blaabjerg, M. (Morten); Borgen, L.S. (Lund Stine); Bouzat, P. (Pierre); Bragge, P. (Peter); A. Brazinova (Alexandra); F. Brehar (Felix); Brorsson, C. (Camilla); Buki, A. (Andras); M. Bullinger (Monika); Bučková, V. (Veronika); Calappi, E. (Emiliana); P. Cameron (Peter); Carbayo, L.G. (Lozano Guillermo); Carise, E. (Elsa); Carpenter, C.; Castaño-León, A.M. (Ana M.); Causin, F. (Francesco); Chevallard, G. (Giorgio); A. Chieregato (Arturo); G. Citerio (Giuseppe); M. Coburn (Mark); J.P. Coles (Jonathan P.); Cooper, J.D. (Jamie D.); Correia, M. (Marta); A. Covic (Amra); N. Curry (Nicola); E. Czeiter (Endre); M. Czosnyka (Marek); Dahyot-Fizelier, C. (Claire); F. Damas (François); P. Damas (Pierre); H. Dawes (Helen); De Keyser, V. (Véronique); F. Della Corte (Francesco); B. Depreitere (Bart); Ding, S. (Shenghao); D.W.J. Dippel (Diederik); K. Dizdarevic (Kemal); Dulière, G.-L. (Guy-Loup); Dzeko, A. (Adelaida); G. Eapen (George); Engemann, H. (Heiko); A. Ercole (Ari); P. Esser (Patrick); Ezer, E. (Erzsébet); M. Fabricius (Martin); V.L. Feigin (V.); Feng, J. (Junfeng); Foks, K. (Kelly); F. Fossi (Francesca); Francony, G. (Gilles); J. Frantzén (Janek); Freo, U. (Ulderico); S.K. Frisvold (Shirin Kordasti); Furmanov, A. (Alex); P. Gagliardo (Pablo); D. Galanaud (Damien); G. Gao (Guoyi); K. Geleijns (Karin); A. Ghuysen (Alexandre); Giraud, B. (Benoit); Glocker, B. (Ben); Gomez, P.A. (Pedro A.); Grossi, F. (Francesca); R.L. Gruen (Russell); Gupta, D. (Deepak); J.A. Haagsma (Juanita); E. Hadzic (Ermin); I. Haitsma (Iain); J.A. Hartings (Jed); R. Helbok (Raimund); E. Helseth (Eirik); Hertle, D. (Daniel); S. Hill (Sean); Hoedemaekers, A. (Astrid); S. Hoefer (Stefan); P.J. Hutchinson (Peter J.); Håberg, A.K. (Asta Kristine); B.C. Jacobs (Bart); Janciak, I. (Ivan); K. Janssens (Koen); J.-Y. Jiang (Ji-Yao); Jones, K. (Kelly); Kalala, J.-P. (Jean-Pierre); Kamnitsas, K. (Konstantinos); Karan, M. (Mladen); Karau, J. (Jana); A. Katila (Ari); M. Kaukonen (Maija); Keeling, D. (David); Kerforne, T. (Thomas); N. Ketharanathan (Naomi); J. Kettunen (Johannes); Kivisaari, R. (Riku); A.G. Kolias (Angelos G.); Kolumbán, B. (Bálint); E.J.O. Kompanje (Erwin); D. Kondziella (Daniel); L.-O. Koskinen (Lars-Owe); Kovács, N. (Noémi); F. Kalovits (Ferenc); A. Lagares (Alfonso); L. Lanyon (Linda); S. Laureys (Steven); Lauritzen, M. (Martin); F.E. Lecky (Fiona); C. Ledig (Christian); R. Lefering; V. Legrand (Valerie); Lei, J. (Jin); L. Levi (Leon); R. Lightfoot (Roger); H.F. Lingsma (Hester); D. Loeckx (Dirk); Lozano, A. (Angels); Luddington, R. (Roger); Luijten-Arts, C. (Chantal); A.I.R. Maas (Andrew I.R.); MacDonald, S. (Stephen); MacFayden, C. (Charles); M. Maegele (Marc); M. Majdan (Marek); Major, S. (Sebastian); A. Manara (Alex); Manhes, P. (Pauline); G. Manley (Geoffrey); Martin, D. (Didier); C. Martino (Costanza); Maruenda, A. (Armando); H. Maréchal (Hugues); Mastelova, D. (Dagmara); Mattern, J. (Julia); C. McMahon (Catherine); Melegh, B. (Béla); T. Menovsky (Tomas); C. Morganti-Kossmann (Cristina); Mulazzi, D. (Davide); Mutschler, M. (Manuel); H. Mühlan (Holger); Negru, A. (Ancuta); D. Nelson (David); E. Neugebauer (Eddy); V.F. Newcombe (Virginia F.); Noirhomme, Q. (Quentin); Nyirádi, J. (József); M. Oddo (Mauro); Oldenbeuving, A. (Annemarie); M. Oresic (Matej); Ortolano, F. (Fabrizio); A. Palotie (Aarno); P.M. Parizel; Patruno, A. (Adriana); J.-F. Payen (Jean-François); Perera, N. (Natascha); V. Perlbarg (Vincent); Persona, P. (Paolo); W.C. Peul (Wilco); N. Pichon (Nicolas); Piilgaard, H. (Henning); A. Piippo (Anna); Pili, F.S. (Floury Sébastien); M. Pirinen (Matti); H. Ples (Horia); Pomposo, I. (Inigo); M. Psota (Marek); P. Pullens (Pim); L. Puybasset (Louis); A. Ragauskas (Arminas); Raj, R. (Rahul); Rambadagalla, M. (Malinka); Rehorčíková, V. (Veronika); J.K.J. Rhodes (Jonathan K.J.); S. Richardson (Sylvia); S. Ripatti (Samuli); S. Rocka (Saulius); Rodier, N. (Nicolas); Roe, C. (Cecilie); Roise, O. (Olav); Roks, G. (Gerwin); Romegoux, P. (Pauline); J. Rosand (Jonathan); Rosenfeld, J. (Jeffrey); C. Rosenlund (Christina); G. Rosenthal (Guy); R. Rossaint (Rolf); S. Rossi (Sandra); Rostalski, T. (Tim); Rueckert, D.L. (Danie L.); Ruiz De Arcaute, F. (Felix); M. Rusnák (Martin); Sacchi, M. (Marco); Sahakian, B. (Barbara); J. Sahuquillo (Juan); O. Sakowitz (Oliver); Sala, F. (Francesca); Sanchez-Pena, P. (Paola); Sanchez-Porras, R. (Renan); Sandor, J. (Janos); Santos, E. (Edgar); N. Sasse (Nadine); Sasu, L. (Luminita); Savo, D. (Davide); I.B. Schipper (Inger); Schlößer, B. (Barbara); S. Schmidt (Silke); Schneider, A. (Annette); H. Schoechl (Herbert); G.G. Schoonman; R. Schou (Rico); E. Schwendenwein (Elisabeth); Schöll, M. (Michael); Sir, O. (Özcan); T. Skandsen (Toril); Smakman, L. (Lidwien); D. Smeets (Dirk); Smielewski, P. (Peter); Sorinola, A. (Abayomi); Stamatakis, E.L. (Emmanue L.); S. Stanworth (Simon); Stegemann, K. (Katrin); Steinbüchel, N. (Nicole); R. Stevens (Robert); W. Stewart (William); N. Stocchetti (Nino); Sundström, N. (Nina); Synnot, A. (Anneliese); J. Szabó (József); J. Söderberg (Jeannette); F.S. Taccone (Fabio); Tamás, V. (Viktória); Tanskanen, P. (Päivi); A. Tascu (Alexandru); Taylor, M.S. (Mark Steven); Te Ao, B. (Braden); O. Tenovuo (Olli); Teodorani, G. (Guido); A. Theadom (Alice); Thomas, M. (Matt); D. Tibboel (Dick); C.M. Tolias (Christos M.); Tshibanda, J.-F.L. (Jean-Flory Luaba); Tudora, C.M. (Cristina Maria); P. Vajkoczy (Peter); Valeinis, E. (Egils); W. van Hecke (Wim); D. Van Praag (Dominique); D. Van Roost (Dirk); Van Vlierberghe, E. (Eline); Vande Vyvere, T. (Thijs); Vanhaudenhuyse, A. (Audrey); A. Vargiolu (Alessia); E. Vega (Emmanuel); J. Verheyden (Jan); P.M. Vespa (Paul M.); A. Vik (Anne); R. Vilcinis (Rimantas); Vizzino, G. (Giacinta); C.L.A.M. Vleggeert-Lankamp (Carmen); V. Volovici (Victor); P. Vulekovic (Peter); Vámos, Z. (Zoltán); Wade, D. (Derick); Wang, K.K.W. (Kevin K.W.); Wang, L. (Lei); Wildschut, E. (Eno); G. Williams (Guy); Willumsen, L. (Lisette); Wilson, A. (Adam); L. Wilson (Lindsay); Winkler, M.K.L. (Maren K. L.); P. Ylén (Peter); Younsi, A. (Alexander); M. Zaaroor (Menashe); Zhang, Z. (Zhiqun); Zheng, Z. (Zelong); Zumbo, F. (Fabrizio); De Lange, S. (Stefanie); G.C.W. De Ruiter (Godard C.W.); Den Boogert, H. (Hugo); Van Dijck, J. (Jeroen); T.A. van Essen (T.); C.M. van Heugten (Caroline M.); M. van der Jagt (Mathieu); J. van der Naalt (Joukje)

    2016-01-01

    textabstractIntroduction: The strength of evidence underpinning care and treatment recommendations in traumatic brain injury (TBI) is low. Comparative effectiveness research (CER) has been proposed as a framework to provide evidence for optimal care for TBI patients. The first step in CER is to map

  7. TBI-ROC Part Seven: Traumatic Brain Injury--Technologies to Support Memory and Cognition

    Science.gov (United States)

    Scherer, Marcia; Elias, Eileen; Weider, Katie

    2010-01-01

    This article is the seventh of a multi-part series on traumatic brain injury (TBI). The six earlier articles in this series have discussed the individualized nature of TBI and its consequences, the rehabilitation continuum, and interventions at various points along the continuum. As noted throughout the articles, many individuals with TBI…

  8. Cognitive ability predicts motor learning on a virtual reality game in patients with TBI.

    Science.gov (United States)

    O'Neil, Rochelle L; Skeel, Reid L; Ustinova, Ksenia I

    2013-01-01

    Virtual reality games and simulations have been utilized successfully for motor rehabilitation of individuals with traumatic brain injury (TBI). Little is known, however, how TBI-related cognitive decline affects learning of motor tasks in virtual environments. To fill this gap, we examined learning within a virtual reality game involving various reaching motions in 14 patients with TBI and 15 healthy individuals with different cognitive abilities. All participants practiced ten 90-second gaming trials to assess various aspects of motor learning. Cognitive abilities were assessed with a battery of tests including measures of memory, executive functioning, and visuospatial ability. Overall, participants with TBI showed both reduced performance and a slower learning rate in the virtual reality game compared to healthy individuals. Numerous correlations between overall performance and several of the cognitive ability domains were revealed for both the patient and control groups, with the best predictor being overall cognitive ability. The results may provide a starting point for rehabilitation programs regarding which cognitive domains interact with motor learning.

  9. Patients with the most severe traumatic brain injury benefit from rehabilitation

    DEFF Research Database (Denmark)

    Poulsen, Ingrid; Norup, Anne; Liebach, Annette

    2014-01-01

    Patients with the most severe traumatic brain injury benefit from rehabilitation Ingrid Poulsen, Anne Norup, Annette Liebach, Lars Westergaard, Karin Spangsberg Kristensen, Tina Haren, & Lars Peter Kammersgaard Department for Neurorehabilitation, TBI Unit, Copenhagen University, Glostrup Hospital......., Hvidovre, Denmark Objectives: During the last couple of years, studies have indicated that even patients with the most severe traumatic brain injuries (TBI) benefit from rehabilitation despite what initially appears to be dismal prognosis. In Denmark, all patients with severe TBI have had an opportunity......-acute inpatient rehabilitation during a 12-year period followed an intensive interdisciplinary rehabilitation programme. Severity of injury was defined by Glasgow Coma Scale (GCS) score on rehabilitation admission and duration of post-traumatic amnesia (PTA). Patients were routinely measured...

  10. Medical Management of the Severe Traumatic Brain Injury Patient.

    Science.gov (United States)

    Marehbian, Jonathan; Muehlschlegel, Susanne; Edlow, Brian L; Hinson, Holly E; Hwang, David Y

    2017-12-01

    Severe traumatic brain injury (sTBI) is a major contributor to long-term disability and a leading cause of death worldwide. Medical management of the sTBI patient, beginning with prehospital triage, is aimed at preventing secondary brain injury. This review discusses prehospital and emergency department management of sTBI, as well as aspects of TBI management in the intensive care unit where advances have been made in the past decade. Areas of emphasis include intracranial pressure management, neuromonitoring, management of paroxysmal sympathetic hyperactivity, neuroprotective strategies, prognostication, and communication with families about goals of care. Where appropriate, differences between the third and fourth editions of the Brain Trauma Foundation guidelines for the management of severe traumatic brain injury are highlighted.

  11. Injury of the inferior cerebellar peduncle in patients with mild traumatic brain injury: A diffusion tensor tractography study.

    Science.gov (United States)

    Jang, Sung Ho; Yi, Ji Hyun; Kwon, Hyeok Gyu

    2016-01-01

    No study on injury of the inferior cerebellar peduncle (ICP) in patients with mild traumatic brain injury (mTBI) has been reported. This study, using diffusion tensor tractography (DTT), attempted to demonstrate injury of the ICP in patients with mTBI. Three patients with mTBI resulting from a car accident and 18 normal healthy control subjects were enrolled in this study. Diffusion tensor imaging data were acquired at 2 months (patient 1) and 3 months (patients 2 and 3) after onset and the ICP was reconstructed. The Balance Error Scoring System was used for evaluation of balance at the same time diffusion tensor imaging scanning was performed. The ICPs were discontinued at the upper portion of the vertical cerebellar branch and the transverse cerebellar branch (patient 1) and the proximal portion of the transverse cerebellar branch (patients 2 and 3) compared to the normal control subjects. Regarding DTT parameters, in the three patients, the fibre number of the ICPs was decreased by more than 2 SD compared with those of subjects in the control group. Evaluation of the ICP using DTT would be useful in patients with a balance problem after mTBI.

  12. Role of Intravenous Levetiracetam in Seizure Prophylaxis of Severe Traumatic Brain Injury Patients

    Directory of Open Access Journals (Sweden)

    BATOOL F. KIRMANI

    2013-11-01

    Full Text Available Traumatic brain injury (TBI can cause seizures and the development of epilepsy. The incidence of seizures varies from 21% in patients with severe brain injuries to 50% in patients with war-related penetrating TBI. In the acute and sub-acute periods following injury, seizures can lead to increased intracranial pressure and cerebral edema, further complicating TBI management. Anticonvulsants should be used for seizure prophylaxis and treatment. Phenytoin is the most widely prescribed anticonvulsant in these patients. Intravenous levetiracetam, made available in 2006, is now being considered as an alternative to phenytoin in acute care settings. When compared with phenytoin, levetiracetam has fewer side-effects and drug-drug interactions. In the following, the role of levetiracetam in TBI care and the supporting evidence is discussed.

  13. Indicators of complicated mild TBI predict MMPI-2 scores after 23 years.

    Science.gov (United States)

    Hessen, Erik; Nestvold, Knut

    2009-03-01

    Research suggests that post-concussive syndrome may become persistent after mild traumatic brain injury (mTBI). The aim of this study was to investigate determinants of subjective complaints, characteristic for post-concussive syndrome, 23 years after mTBI. The study was a follow-up after a prospective head injury study at a general hospital in Norway. Ninety-seven patients were assessed with the Minnesota Multiphasic Personality Inventory-2 (MMPI-2) 23 years after sustaining primarily mTBI. A good overall outcome was found with scores close to the normative mean, average length of education and normal employment rate. However, the patients that sustained complicated mTBI showed somewhat more pathological scores, well-matched with mild post-concussive syndrome. The most important predictors of poor outcome were a combination of post-traumatic amnesia >30 minutes and EEG pathology within 24 hours after TBI. No influence of pre- and post-injury risk factors on current MMPI-2 profiles was found. The results are in line with previous research findings and support the notion of potentially differential impact of uncomplicated vs. complicated mTBI. The findings suggest that complicated mTBI may cause subtle chronic symptoms typical of post-concussive syndrome.

  14. Acute Management of Hemostasis in Patients With Neurological Injury.

    Science.gov (United States)

    Baharoglu, M Irem; Brand, Anneke; Koopman, Maria M; Vermeulen, Marinus; Roos, Yvo B W E M

    2017-10-01

    Neurological injuries can be divided into those with traumatic and nontraumatic causes. The largest groups are traumatic brain injury (TBI) and nontraumatic stroke. TBI patients may present with intracranial hemorrhages (contusions, or subdural or epidural hematomas). Strokes are ischemic or hemorrhagic. In all these disorders, thrombosis and hemostasis play a major role. Treatment aims to either cease bleeding and/or restore perfusion. We reviewed hemostatic and thrombolytic therapies in patients with neurological injuries by MEDLINE and EMBASE search using various key words for neurological disorders and hemostatic therapies restricted to English language and human adults. Review of articles fulfilling inclusion criteria and relevant references revealed that, in patients with ischemic stroke, intravenous thrombolytic therapy with recombinant tissue plasminogen activator within 4.5-5 hours after onset of symptoms improves clinical outcome. In contrast, there are no hemostatic therapies that are proven to improve clinical outcome of patients with hemorrhagic stroke or TBI. In patients with hemorrhagic stroke who use vitamin K antagonist or direct oral anticoagulants, there is evidence that specific reversal therapies improve hemostatic laboratory parameters but without an effect on clinical recovery. In patients with hemorrhagic stroke or TBI who use concomitant antiplatelet therapy, there is evidence for harm of platelet transfusion. In patients with aneurysmal subarachnoid hemorrhage, tranexamic acid was shown to reduce rebleeding rate without improving clinical outcome. The effects of tranexamic acid in patients with TBI are still under investigation. We conclude that, in patients with ischemic stroke, thrombolytic therapy improves outcome when given within 4.5-5 hours. In hemorrhagic stroke and TBI, most hemostatic therapies improved or corrected laboratory parameters but not clinical outcome. Currently, in several trials, the effects of tranexamic acid are

  15. Similar Survival for Patients Undergoing Reduced-Intensity Total Body Irradiation (TBI) Versus Myeloablative TBI as Conditioning for Allogeneic Transplant in Acute Leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Mikell, John L., E-mail: jmikell@emory.edu [Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Waller, Edmund K. [Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Switchenko, Jeffrey M. [Department of Biostatistics and Bioinformatics, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Rangaraju, Sravanti; Ali, Zahir; Graiser, Michael [Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Hall, William A. [Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Langston, Amelia A. [Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Esiashvili, Natia [Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Khoury, H. Jean [Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States); Khan, Mohammad K. [Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia (United States)

    2014-06-01

    Purpose: Hematopoietic stem cell transplantation (HSCT) is the mainstay of treatment for adults with acute leukemia. Total body irradiation (TBI) remains an important part of the conditioning regimen for HCST. For those patients unable to tolerate myeloablative TBI (mTBI), reduced intensity TBI (riTBI) is commonly used. In this study we compared outcomes of patients undergoing mTBI with those of patients undergoing riTBI in our institution. Methods and Materials: We performed a retrospective review of all patients with acute leukemia who underwent TBI-based conditioning, using a prospectively acquired database of HSCT patients treated at our institution. Patient data including details of the transplantation procedure, disease status, Karnofsky performance status (KPS), response rates, toxicity, survival time, and time to progression were extracted. Patient outcomes for various radiation therapy regimens were examined. Descriptive statistical analysis was performed. Results: Between June 1985 and July 2012, 226 patients with acute leukemia underwent TBI as conditioning for HSCT. Of those patients, 180 had full radiation therapy data available; 83 had acute lymphoblastic leukemia and 94 had acute myelogenous leukemia; 45 patients received riTBI, and 135 received mTBI. Median overall survival (OS) was 13.7 months. Median relapse-free survival (RFS) for all patients was 10.2 months. Controlling for age, sex, KPS, disease status, and diagnosis, there were no significant differences in OS or RFS between patients who underwent riTBI and those who underwent mTBI (P=.402, P=.499, respectively). Median length of hospital stay was shorter for patients who received riTBI than for those who received mTBI (16 days vs 23 days, respectively; P<.001), and intensive care unit admissions were less frequent following riTBI than mTBI (2.22% vs 12.69%, respectively, P=.043). Nonrelapse survival rates were also similar (P=.186). Conclusions: No differences in OS or RFS were seen between

  16. [Intensive care treatment of traumatic brain injury in multiple trauma patients : Decision making for complex pathophysiology].

    Science.gov (United States)

    Trimmel, H; Herzer, G; Schöchl, H; Voelckel, W G

    2017-09-01

    Traumatic brain injury (TBI) and hemorrhagic shock due to uncontrolled bleeding are the major causes of death after severe trauma. Mortality rates are threefold higher in patients suffering from multiple injuries and additionally TBI. Factors known to impair outcome after TBI, namely hypotension, hypoxia, hypercapnia, acidosis, coagulopathy and hypothermia are aggravated by the extent and severity of extracerebral injuries. The mainstays of TBI intensive care may be, at least temporarily, contradictory to the trauma care concept for multiple trauma patients. In particular, achieving normotension in uncontrolled bleeding situations, maintenance of normocapnia in traumatic lung injury and thromboembolic prophylaxis are prone to discussion. Due to an ongoing uncertainty about the definition of normotensive blood pressure values, a cerebral perfusion pressure-guided cardiovascular management is of key importance. In contrast, there is no doubt that early goal directed coagulation management improves outcome in patients with TBI and multiple trauma. The timing of subsequent surgical interventions must be based on the development of TBI pathology; therefore, intensive care of multiple trauma patients with TBI requires an ongoing and close cooperation between intensivists and trauma surgeons in order to individualize patient care.

  17. Leveraging Game Consoles for the Delivery of TBI Rehabilitation

    Science.gov (United States)

    Super, Taryn; Mastaglio, Thomas; Shen, Yuzhong; Walker, Robert

    2011-01-01

    Military personnel are at a greater risk for traumatic brain injury (TBI) than the civilian population. In addition, the increase in exposure to explosives, i.e. , improvised explosive devices, in the Afghanistan and Iraq wars, along with more effective body armor, has resulted in far more surviving casualties suffering from TBI than in previous wars. This effort presents the results of a feasibility study and early prototype of a brain injury rehabilitation delivery system (BIRDS). BIRDS is designed to provide medical personnel treating TBI with a capability to prescribe game activities for patients to execute using a commercially available game console, either in a clinical setting or in their homes. These therapeutic activities will contribute to recovery or remediation of the patients' cognitive dysfunctions. Solutions such as this that provide new applications for existing platforms have significant potential to address the growing incidence of TBI today.

  18. The correlation of insulin resistance with the cerebral injury and stress reaction in patients with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Zhan Lan

    2017-04-01

    Full Text Available Objective: To study the correlation of insulin resistance with the cerebral injury and stress reaction in patients with traumatic brain injury (TBI. Methods: 78 patients who were diagnosed with acute traumatic brain injury in our hospital between May 2014 and August 2016 were selected as the TBI group, and 90 healthy volunteers who received physical examination during the same period were selected as the control group. The peripheral blood was collected to detect glucose, insulin and nerve injury marker molecules, stress hormones as well as oxidative stress reaction products, and the insulin resistance index (HOMA-IR was calculated. Results: The HOMA-IR index of TBI group was significantly higher than that of control group (P<0.05; serum neuron-specific enolase (NSE, ubiquitin carboxy-terminal hydrolase L1 (UCH-L1, S100β, myelin basic protein (MBP, glucagon, growth hormone, cortisol, malondialdehyde (MDA and 8-hydroxy-deoxyguanosine (8-OHdGlevels of TBI group were significantly higher than those of control group (P<0.05; serum NSE, UCH-L1, S100β, MBP, glucagon, growth hormone, cortisol, MDA and 8-OHdG levels of patients with high HOMA-IR were significantly higher than those of patients with low HOMA-IR (P<0.05. Conclusion: The insulin resistance increases significantly in patients with traumatic brain injury, and is closely related to the degree of cerebral injury and stress reaction.

  19. Serial lactate and admission SOFA scores in trauma: an analysis of predictive value in 724 patients with and without traumatic brain injury.

    Science.gov (United States)

    Dübendorfer, C; Billeter, A T; Seifert, B; Keel, M; Turina, M

    2013-02-01

    Arterial lactate, base excess (BE), lactate clearance, and Sequential Organ Failure Assessment (SOFA) score have been shown to correlate with outcome in severely injured patients. The goal of the present study was to separately assess their predictive value in patients suffering from traumatic brain injury (TBI) as opposed to patients suffering from injuries not related to the brain. A total of 724 adult trauma patients with an Injury Severity Score (ISS) ≥ 16 were grouped into patients without TBI (non-TBI), patients with isolated TBI (isolated TBI), and patients with a combination of TBI and non-TBI injuries (combined injuries). The predictive value of the above parameters was then analyzed using both uni- and multivariate analyses. The mean age of the patients was 39 years (77 % males), with a mean ISS of 32 (range 16-75). Mortality ranged from 14 % (non-TBI) to 24 % (combined injuries). Admission and serial lactate/BE values were higher in non-survivors of all groups (all p analysis revealed lactate to be the best overall predictor for increased mortality and further septic complications, irrespective of the leading injury. Lactate showed the best performance in predicting sepsis or death in all trauma patients except those with isolated TBI, and the differences were greatest in patients with substantial bleeding. Following isolated TBI, SOFA score was the only parameter which could differentiate survivors from non-survivors on admission, although the SOFA score, too, was not an independent predictor of death following multivariate analysis.

  20. Investigating nystagmus in patients with traumatic brain injury: A ...

    African Journals Online (AJOL)

    Background. Traumatic brain injury (TBI) is a health and socioeconomic concern worldwide. In patients with TBI, post-traumatic balance problems are often the result of damage to the vestibular system. Nystagmus is common in these patients, and can provide insight into the damage that has resulted from the trauma.

  1. Interactive eBooks in educating patients and their families about head injury regardless of age.

    Science.gov (United States)

    Sahyouni, Ronald; Mahmoodi, Amin; Mahmoodi, Amir; Huang, Melissa; Tran, Diem Kieu; Chen, Jefferson W

    2017-05-01

    Traumatic Brain Injury (TBI) is a common and debilitating injury that is particularly prevalent in patients over 60. Given the influence of head injury on dementia (and vice versa), and the increased likelihood of ground-level falls, elderly patients are vulnerable to TBI. Educational interventions can increase knowledge and influence preventative activity to decrease the likelihood of further TBI. We sought to determine the efficacy of interactive tablet-based educational interventions in elderly patients on self-reported knowledge. Patients and family members, ages 20-90, presenting to a NeuroTrauma clinic completed a pre-survey to assess baseline TBI or concussion knowledge, depending on their diagnosis. Participants then received an interactive electronic book (eBook), or a text-based pamphlet with identical information, and completed a post-survey to test interim knowledge improvement. All participants (n=180), regardless of age, had significantly higher post-survey scores (peBook (n=39) scored lower than their younger counterparts despite higher pre-survey scores (peBook (n=20, 90) significantly improved on the post-survey (peBook (p<0.01, 95% CI). We demonstrated that interactive educational interventions are effective in the elderly TBI population. Enhanced educational awareness in the elderly population, especially patients at risk or with prior TBI, may prevent further head injury by educating patients on the importance of avoiding further head injury and taking precautionary measures to decrease the likelihood of further injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Chest Injuries Associated with Head Injury

    African Journals Online (AJOL)

    Traumatic brain injury (TBI) is a common cause of mortality and severe morbidity. Although there have been significant advances in management, associated severe injuries, in particular chest injuries, remain a major challenge. Extracranial injuries, especially chest injuries increase mortality in patients with TBI in both short.

  3. A study on the mechanism by which MDMA protects against dopaminergic dysfunction after minimal traumatic brain injury (mTBI) in mice.

    Science.gov (United States)

    Edut, S; Rubovitch, V; Rehavi, M; Schreiber, S; Pick, C G

    2014-12-01

    Driving under methylenedioxymethamphetamine (MDMA) influence increases the risk of being involved in a car accident, which in turn can lead to traumatic brain injury. The behavioral deficits after traumatic brain injury (TBI) are closely connected to dopamine pathway dysregulation. We have previously demonstrated in mice that low MDMA doses prior to mTBI can lead to better performances in cognitive tests. The purpose of this study was to assess in mice the changes in the dopamine system that occurs after both MDMA and minimal traumatic brain injury (mTBI). Experimental mTBI was induced using a concussive head trauma device. One hour before injury, animals were subjected to MDMA. Administration of MDMA before injury normalized the alterations in tyrosine hydroxylase (TH) levels that were observed in mTBI mice. This normalization was also able to lower the elevated dopamine receptor type 2 (D2) levels observed after mTBI. Brain-derived neurotrophic factor (BDNF) levels did not change following injury alone, but in mice subjected to MDMA and mTBI, significant elevations were observed. In the behavioral tests, haloperidol reversed the neuroprotection seen when MDMA was administered prior to injury. Altered catecholamine synthesis and high D2 receptor levels contribute to cognitive dysfunction, and strategies to normalize TH signaling and D2 levels may provide relief for the deficits observed after injury. Pretreatment with MDMA kept TH and D2 receptor at normal levels, allowing regular dopamine system activity. While the beneficial effect we observe was due to a dangerous recreational drug, understanding the alterations in dopamine and the mechanism of dysfunction at a cellular level can lead to legal therapies and potential candidates for clinical use.

  4. The consequence of spatial visual processing dysfunction caused by traumatic brain injury (TBI).

    Science.gov (United States)

    Padula, William V; Capo-Aponte, Jose E; Padula, William V; Singman, Eric L; Jenness, Jonathan

    2017-01-01

    A bi-modal visual processing model is supported by research to affect dysfunction following a traumatic brain injury (TBI). TBI causes dysfunction of visual processing affecting binocularity, spatial orientation, posture and balance. Research demonstrates that prescription of prisms influence the plasticity between spatial visual processing and motor-sensory systems improving visual processing and reducing symptoms following a TBI. The rationale demonstrates that visual processing underlies the functional aspects of binocularity, balance and posture. The bi-modal visual process maintains plasticity for efficiency. Compromise causes Post Trauma Vision Syndrome (PTVS) and Visual Midline Shift Syndrome (VMSS). Rehabilitation through use of lenses, prisms and sectoral occlusion has inter-professional implications in rehabilitation affecting the plasticity of the bi-modal visual process, thereby improving binocularity, spatial orientation, posture and balance Main outcomes: This review provides an opportunity to create a new perspective of the consequences of TBI on visual processing and the symptoms that are often caused by trauma. It also serves to provide a perspective of visual processing dysfunction that has potential for developing new approaches of rehabilitation. Understanding vision as a bi-modal process facilitates a new perspective of visual processing and the potentials for rehabilitation following a concussion, brain injury or other neurological events.

  5. Effect of chromatic filters on visual performance in individuals with mild traumatic brain injury (mTBI): A pilot study.

    Science.gov (United States)

    Fimreite, Vanessa; Willeford, Kevin T; Ciuffreda, Kenneth J

    2016-01-01

    Spectral filters have been used clinically in patients with mild traumatic brain injury (mTBI). However, they have not been formally assessed using objective techniques in this population. Thus, the aim of the present pilot study was to determine the effect of spectral filters on reading performance and visuo-cortical responsivity in adults with mTBI. 12 adults with mTBI/concussion were tested. All reported photosensitivity and reading problems. They were compared to 12 visually-normal, asymptomatic adults. There were several test conditions: three luminance-matched control filters (gray neutral density, blue, and red), the patient-selected 'precision tint lens' that provided the most comfort and clarity of text using the Intuitive Colorimeter System, and baseline without any filters. The Visagraph was used to assess reading eye movements and reading speed objectively with each filter. In addition, both the amplitude and latency of the visual-evoked potential (VEP) were assessed with the same filters. There were few significant group differences in either the reading-related parameters or VEP latency for any of the test filter conditions. Subjective improvements were noted in most with mTBI (11/12). The majority of patients with mTBI chose a tinted filter that resulted in increased visual comfort. While significant findings based on the objective testing were found for some conditions, the subjective results suggest that precision tints should be considered as an adjunctive treatment in patients with mTBI and photosensitivity. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  6. Autobiographical memory and structural brain changes in chronic phase TBI.

    Science.gov (United States)

    Esopenko, Carrie; Levine, Brian

    2017-04-01

    Traumatic brain injury (TBI) is associated with a range of neuropsychological deficits, including attention, memory, and executive functioning attributable to diffuse axonal injury (DAI) with accompanying focal frontal and temporal damage. Although the memory deficit of TBI has been well characterized with laboratory tests, comparatively little research has examined retrograde autobiographical memory (AM) at the chronic phase of TBI, with no prior studies of unselected patients drawn directly from hospital admissions for trauma. Moreover, little is known about the effects of TBI on canonical episodic and non-episodic (e.g., semantic) AM processes. In the present study, we assessed the effects of chronic-phase TBI on AM in patients with focal and DAI spanning the range of TBI severity. Patients and socioeconomic- and age-matched controls were administered the Autobiographical Interview (AI) (Levine, Svoboda, Hay, Winocur, & Moscovitch, 2002) a widely used method for dissociating episodic and semantic elements of AM, along with tests of neuropsychological and functional outcome. Measures of episodic and non-episodic AM were compared with regional brain volumes derived from high-resolution structural magnetic resonance imaging (MRI). Severe TBI (but not mild or moderate TBI) was associated with reduced recall of episodic autobiographical details and increased recall of non-episodic details relative to healthy comparison participants. There were no significant associations between AM performance and neuropsychological or functional outcome measures. Within the full TBI sample, autobiographical episodic memory was associated with reduced volume distributed across temporal, parietal, and prefrontal regions considered to be part of the brain's AM network. These results suggest that TBI-related distributed volume loss affects episodic autobiographical recollection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Parallel Human and Animal Models of Blast- and Concussion-Induced Tinnitus and Related Traumatic Brain Injury (TBI)

    Science.gov (United States)

    2014-01-01

    Andersson G (2009) The role of anxiety sensitivity and behavioral avoidance in tinnitus disability. IntJAudiol 48:295-299. Hiller W, Goebel G (1999...Parallel Human and Animal Models of Blast- and Concussion-Induced Tinnitus and Related Traumatic Brain Injury (TBI) PRINCIPAL INVESTIGATOR...Induced Tinnitus and Related Traumatic Brain Injury (TBI) 5b. GRANT NUMBER W81XWH-11-2-0031 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  8. The Relatives' Big Five Personality Influences the Trajectories of Recovery of Patients After Severe TBI: A Multilevel Analysis.

    Science.gov (United States)

    Haller, Chiara S

    2017-08-01

    This study examines the influence of the personality of relatives on the trajectories of recovery of patients with severe traumatic brain injury (TBI). The present subsample (N = 376) of a larger population-based, prospective, 12-month multicenter cohort study in Switzerland (2007-2011) consists of patients with severe TBI (age ≥ 16) and their relatives. The predictors are the NEO Five-Factor Inventory and time (trajectory of functioning of the patient over time). The outcomes are the patients' (a) neurological functioning; (b) reported emotional, interpersonal, cognitive, and total functioning post-injury; and (c) health-related quality of life (HRQoL). The covariates included Abbreviated Injury Scale score of the head region and age. Results for patients > 50 are (a) relatives' Extraversion influenced patients' total, interpersonal, and cognitive functioning; (b) relatives' Agreeableness influenced patients' interpersonal functioning; and (c) relatives' Conscientiousness influenced patients' physical HRQoL (ps personality traits of the relative covary with the functioning of the patient, and psychological adaptation to the loss of function may progress at a later stage after physical health improvements have been achieved. Thus, a biopsychosocial perspective on the rehabilitation process is needed. © 2016 Wiley Periodicals, Inc.

  9. Suboptimal compliance with evidence-based guidelines in patients with traumatic brain injuries.

    Science.gov (United States)

    Shafi, Shahid; Barnes, Sunni A; Millar, D; Sobrino, Justin; Kudyakov, Rustam; Berryman, Candice; Rayan, Nadine; Dubiel, Rosemary; Coimbra, Raul; Magnotti, Louis J; Vercruysse, Gary; Scherer, Lynette A; Jurkovich, Gregory J; Nirula, Raminder

    2014-03-01

    Evidence-based management (EBM) guidelines for severe traumatic brain injuries (TBIs) were promulgated decades ago. However, the extent of their adoption into bedside clinical practices is not known. The purpose of this study was to measure compliance with EBM guidelines for management of severe TBI and its impact on patient outcome. This was a retrospective study of blunt TBI (11 Level I trauma centers, study period 2008-2009, n = 2056 patients). Inclusion criteria were an admission Glasgow Coma Scale score ≤ 8 and a CT scan showing TBI, excluding patients with nonsurvivable injuries-that is, head Abbreviated Injury Scale score of 6. The authors measured compliance with 6 nonoperative EBM processes (endotracheal intubation, resuscitation, correction of coagulopathy, intracranial pressure monitoring, maintaining cerebral perfusion pressure ≥ 50 cm H2O, and discharge to rehabilitation). Compliance rates were calculated for each center using multivariate regression to adjust for patient demographics, physiology, injury severity, and TBI severity. The overall compliance rate was 73%, and there was wide variation among centers. Only 3 centers achieved a compliance rate exceeding 80%. Risk-adjusted compliance was worse than average at 2 centers, better than average at 1, and the remainder were average. Multivariate analysis showed that increased adoption of EBM was associated with a reduced mortality rate (OR 0.88; 95% CI 0.81-0.96, p < 0.005). Despite widespread dissemination of EBM guidelines, patients with severe TBI continue to receive inconsistent care. Barriers to adoption of EBM need to be identified and mitigated to improve patient outcomes.

  10. Surviving severe traumatic brain injury in Denmark

    DEFF Research Database (Denmark)

    Odgaard, Lene; Poulsen, Ingrid; Kammersgaard, Lars Peter

    2015-01-01

    PURPOSE: To identify all hospitalized patients surviving severe traumatic brain injury (TBI) in Denmark and to compare these patients to TBI patients admitted to highly specialized rehabilitation (HS-rehabilitation). PATIENTS AND METHODS: Patients surviving severe TBI were identified from...... severe TBI were admitted to HS-rehabilitation. Female sex, older age, and non-working status pre-injury were independent predictors of no HS-rehabilitation among patients surviving severe TBI. CONCLUSION: The incidence rate of hospitalized patients surviving severe TBI was stable in Denmark...

  11. Behavioral and pathophysiological outcomes associated with caffeine consumption and repetitive mild traumatic brain injury (RmTBI) in adolescent rats

    OpenAIRE

    Yamakawa, Glenn R.; Lengkeek, Connor; Salberg, Sabrina; Spanswick, Simon C.; Mychasiuk, Richelle

    2017-01-01

    Given that caffeine consumption is exponentially rising in adolescents and they are at increased risk for repetitive mild traumatic brain injury (RmTBI), we sought to examine the pathophysiological outcomes associated with early life caffeine consumption and RmTBI. Adolescent male and female Sprague Dawley rats received either caffeine in the drinking water or normal water and were then randomly assigned to 3 mild injuries using our lateral impact device or 3 sham procedures. Following injury...

  12. The incidence of ARDS and associated mortality in severe TBI using the Berlin definition.

    Science.gov (United States)

    Aisiku, Imoigele P; Yamal, Jose-Miguel; Doshi, Pratik; Rubin, Maria Laura; Benoit, Julia S; Hannay, Julia; Tilley, Barbara C; Gopinath, Shankar; Robertson, Claudia S

    2016-02-01

    The incidence of adult respiratory distress syndrome (ARDS) in severe traumatic brain injury (TBI) is poorly reported. Recently, a new definition for ARDS was proposed, the Berlin definition. The percentage of patients represented by TBI in the Berlin criteria study is limited. This study describes the incidence and associated mortality of ARDS in TBI patients. The study was an analysis of the safety of erythropoietin administration and transfusion threshold on the incidence of ARDS in severe TBI patients. Three reviewers independently assessed all patients enrolled in the study for acute lung injury/ARDS using the Berlin and the American-European Consensus Conference (AECC) definitions. A Cox proportional hazards model was used to assess the relationship between ARDS and mortality and 6-month Glasgow Outcome Scale (GOS) score. Two hundred patients were enrolled in the study. Of the patients, 21% (41 of 200) and 26% (52 of 200) developed ARDS using the AECC and Berlin definitions, respectively, with a median time of 3 days (interquartile range, 3) after injury. ARDS by either definition was associated with increased mortality (p = 0.04) but not with differences in functional outcome as measured by the GOS score at 6 months. Adjusted analysis using the Berlin criteria showed an increased mortality associated with ADS (p = 0.01). Severe TBI is associated with an incidence of ARDS ranging from 20% to 25%. The incidence is comparable between the Berlin and AECC definitions. ARDS is associated with increased mortality in severe TBI patients, but further studies are needed to validate these findings. Epidemiologic study, level II.

  13. Decreased apparent diffusion coefficient in the pituitary and correlation with hypopituitarism in patients with traumatic brain injury.

    Science.gov (United States)

    Zheng, Ping; He, Bin; Guo, Yijun; Zeng, Jingsong; Tong, Wusong

    2015-07-01

    The relationship between microstructural abnormality in patients with traumatic brain injury (TBI) and hormone-secreting status remains unknown. In this study, the authors aimed to identify the role of the apparent diffusion coefficient (ADC) using a diffusion-weighted imaging (DWI) technique and to evaluate the association of such changes with hypopituitarism in patients with TBI. Diffusion-weighted images were obtained in 164 consecutive patients with TBI within 2 weeks after injury to generate the pituitary ADC as a measure of microstructural change. Patients with TBI were further grouped into those with and those without hypopituitarism based on the secretion status of pituitary hormones at 6 months postinjury. Thirty healthy individuals were enrolled in the study and underwent MRI examinations for comparison. Mean ADC values were compared between this control group, the patients with TBI and hypopituitarism, and the patients with TBI without hypopituitarism; correlational studies were also performed. Neurological outcome was assessed with the Glasgow Outcome Scale (GOS) for all TBI patients 6 months postinjury. In the TBI group, 84 patients had hypopituitarism and 80 had normal pituitary function. The pituitary ADC in TBI patients was significantly less than that in controls (1.83 ± 0.16 vs 4.13 ± 0.33, p correlated with neurological outcome at 6 months following TBI (r = 0.602, p correlated with hormone-secreting status in TBI patients. The authors suggest that pituitary ADC may be a useful biomarker to predict pituitary function in patients with TBI.

  14. Development of a 3D immersive videogame to improve arm-postural coordination in patients with TBI

    OpenAIRE

    Ustinova, Ksenia I; Leonard, Wesley A; Cassavaugh, Nicholas D; Ingersoll, Christopher D

    2011-01-01

    Abstract Background Traumatic brain injury (TBI) disrupts the central and executive mechanisms of arm(s) and postural (trunk and legs) coordination. To address these issues, we developed a 3D immersive videogame-- Octopus. The game was developed using the basic principles of videogame design and previous experience of using videogames for rehabilitation of patients with acquired brain injuries. Unlike many other custom-designed virtual environments, Octopus included an actual gaming component...

  15. Clinical Utility and Psychometric Properties of the Traumatic Brain Injury Quality of Life Scale (TBI-QOL) in US Military Service Members.

    Science.gov (United States)

    Lange, Rael T; Brickell, Tracey A; Bailie, Jason M; Tulsky, David S; French, Louis M

    2016-01-01

    To examine the clinical utility and psychometric properties of the Traumatic Brain Injury Quality of Life (TBI-QOL) scale in a US military population. One hundred fifty-two US military service members (age: M = 34.3, SD = 9.4; 89.5% men) prospectively enrolled from the Walter Reed National Military Medical Center and other nationwide community outreach initiatives. Participants included 99 service members who had sustained a mild traumatic brain injury (TBI) and 53 injured or noninjured controls without TBI (n = 29 and n = 24, respectively). Participants completed the TBI-QOL scale and 5 other behavioral measures, on average, 33.8 months postinjury (SD = 37.9). Fourteen TBI-QOL subscales; Neurobehavioral Symptom Inventory; Posttraumatic Stress Disorder Checklist-Civilian version; Alcohol Use Disorders Identification Test; Combat Exposure Scale. The internal consistency reliability of the TBI-QOL scales ranged from α = .91 to α = .98. The convergent and discriminant validity of the 14 TBI-QOL subscales was high. The mild TBI group had significantly worse scores on 10 of the 14 TBI-QOL subscales than the control group (range, P quality of life in a mild TBI military sample. Additional research is recommended to further evaluate the clinical utility of the TBI-QOL scale in both military and civilian settings.

  16. Patient perspectives on navigating the field of traumatic brain injury rehabilitation: a qualitative thematic analysis.

    Science.gov (United States)

    Graff, Heidi J; Christensen, Ulla; Poulsen, Ingrid; Egerod, Ingrid

    2018-04-01

    This study aimed to provide an understanding of the lived experience of rehabilitation in adults with traumatic brain injury (TBI) from hospital discharge up to four years post-injury. We used a qualitative explorative design with semi-structured in-depth interviews. Twenty participants with TBI were included from a level I Trauma Center in Denmark at 1-4 years post-injury. Qualitative thematic analysis was applied for data analysis. Three main themes emerged during analysis: A new life, Family involvement, and Rehabilitation impediments. These themes and their sub-themes described the patient perspective of TBI and rehabilitation post hospitalization. Participants reassessed their values and found a new life after TBI. Family caregivers negotiated rehabilitation services and helped the participant to overcome barriers to rehabilitation. Although participants were entitled to TBI rehabilitation, they had to fight for the services they were entitled to. Individuals with TBI found ways of coping after injury and created a meaningful life. Barriers to TBI rehabilitation were overcome with help from family caregivers rather than health care professionals. Future studies need to find ways to ease the burden on family caregivers and pave the way for more accessible rehabilitation in this vulnerable group of patients. Implications for rehabilitation TBI rehabilitation might benefit from:    • Increased transparency in rehabilitation options    • More systematic follow-up programs    • Age-appropriate rehabilitation facilities    • Inclusion of patient and family in the planning of long-term rehabilitation.

  17. Secondary injury in traumatic brain injury patients - A prospective ...

    African Journals Online (AJOL)

    Objective. Secondary insults of hypotension and hypoxia significantly impact on outcome in patients with traumatic brain injury (TBI). More than 4 hours' delay in evacuation of intracranial haematomas has been demonstrated to have an additional impact on outcome. The objective of this study was to document the ...

  18. Neuro-, Trauma -, or Med/Surg-ICU: Does it matter where polytrauma patients with TBI are admitted? Secondary analysis of AAST-MITC decompressive craniectomy study

    Science.gov (United States)

    Scalea, Tom; Sperry, Jason; Coimbra, Raul; Vercruysse, Gary; Jurkovich, Gregory J; Nirula, Ram

    2016-01-01

    Introduction Patients with non-traumatic acute intracranial pathology benefit from neurointensivist care. Similarly, trauma patients with and without TBI fare better when treated by a dedicated trauma team. No study has yet evaluated the role of specialized neurocritical (NICU) and trauma intensive care units (TICU) in the management of TBI patients, and it remains unclear which TBI patients are best served in NICU, TICU, or general (Med/Surg) ICU. Methods This study is a secondary analysis of The American Association for the Surgery of Trauma Multi-Institutional Trials Committee (AAST-MITC) decompressive craniectomy study. Twelve Level 1 trauma centers provided clinical data and head CT scans of patients with Glasgow Coma Scale (GCS) ≤13 and CT evidence of TBI. Non-ICU admissions were excluded. Multivariate logistic regression was performed to measure the association between ICU-type and survival and calculate the probability of death for increasing ISS. Polytrauma patients (ISS > 15) with TBI and isolated TBI patients (other AIS polytrauma patients admitted to a TICU had improved survival across increasing ISS (Fig1). Survival for isolated TBI patients was similar between TICU and NICU. Med/Surg ICU carried the greatest probability of death. Conclusion Polytrauma patients with TBI have lower mortality risk when admitted to a Trauma ICU. This survival benefit increases with increasing injury severity. Isolated TBI patients have similar mortality risk when admitted to a Neuro ICU compared to a Trauma ICU. Med/Surg ICU admission carries the highest mortality risk. PMID:28225527

  19. Enhanced Cognitive Rehabilitation to Treat Comorbid TBI and PTSD

    Science.gov (United States)

    2015-10-01

    injury (TBI) and posttraumatic stress disorder ( PTSD ) benefit fully from interventions for both conditions. PTSD and TBI occur together frequently in...veterans with comorbid traumatic brain injury and posttraumatic stress disorder : study protocol for a randomized controlled trial. CONCLUSION: In...moderate TBI (mTBI) and PTSD . Emotional symptoms are likely a main cause of the persistence of post -concussive symptoms while thinking problems

  20. Reintegrating Troops with Mild Traumatic Brain Injury (mTBI) into their Communities: Understanding the Scope and Timeline of Post-Deployment Driving Problems

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-08-2-0196 TITLE: Reintegrating Troops with Mild Traumatic Brain Injury (mTBI) into Their Communities: Understanding the...REPORT TYPE Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Reintegrating troops with mild traumatic brain injury...n=6), TBI (n=12), PTSD (n=7), and dual diagnosis (TBI/PTSD) n=19. Additional comparisons were made between 28 Family /Friends matched to their SMs

  1. Serial Mini-Mental Status Examination to Evaluate Cognitive Outcome in Patients with Traumatic Brain Injury.

    Science.gov (United States)

    Lee, Chung Nam; Koh, Young-Cho; Moon, Chang Taek; Park, Dong Sun; Song, Sang Woo

    2015-04-01

    This study was aimed at finding out the changes in cognitive dysfunction in patients with traumatic brain injury (TBI) and investigating the factors limiting their cognitive improvement. Between January 2010 and March 2014, 33 patients with TBI participated in serial mini-mental status examination (MMSE). Their cognitive functions were statistically analyzed to clarify their relationship with different TBI status. Patients who developed hydrocephalus were separately analyzed in regards to their cognitive function depending on the placement of ventriculoperitoneal shunt (VPS). Bi-frontal lobe injury (β=-10.441, p<0.001), contre-coup injury (β=-6.592, p=0.007), severe parenchymal injury (β=-7.210, p=0.012), temporal lobe injury (β=-5.524, p=0.027), and dominant hemisphere injury (β=-5.388, p=0.037) significantly lowered the final MMSE scores. The risk of down-grade in the prognosis was higher in severe parenchymal injury [odds ratio (OR)=13.41, 95% confidence interval (CI)=1.31-136.78], temporal lobe injury (OR=12.3, 95% CI=2.07-73.08), dominant hemisphere injury (OR=8.19, 95% CI=1.43-46.78), and bi-frontal lobe injury (OR=7.52, 95% CI=1.31-43.11). In the 11 post-traumatic hydrocephalus patients who underwent VPS, the final MMSE scores (17.7±6.8) substantially increased from the initial MMSE scores (11.2±8.6). Presence of bi-frontal lobe injury, temporal lobe injury, dominant hemisphere injury, and contre-coup injury and severe parenchymal injury adversely influenced the final MMSE scores. They can be concluded to be poor prognostic factors in terms of cognitive function in TBI patients. Development of hydrocephalus aggravates cognitive impairment with unpredictable time of onset. Thus, close observation and routine image follow-up are mandatory for early detection and surgical intervention for hydrocephalus.

  2. Influence of Mild Traumatic Brain Injury (TBI) and Posttraumatic Stress Disorder (PTSD) on Pain Intensity Levels in OEF/OIF/OND Veterans.

    Science.gov (United States)

    Stojanovic, Milan P; Fonda, Jennifer; Fortier, Catherine Brawn; Higgins, Diana M; Rudolph, James L; Milberg, William P; McGlinchey, Regina E

    2016-11-01

    Mild traumatic brain injury (mTBI) and posttraumatic stress disorder (PTSD) are common among US veterans of Operation Enduring Freedom/Operation Iraqi Freedom/Operation New Dawn (OEF/OIF/OND). We postulated that these injuries may modulate pain processing in these individuals and affect their subjective pain levels. Cross-sectional. 310 deployed service members of OEF/OIF/OND without a lifetime history of moderate or severe TBI were included in this study. All participants completed a comprehensive evaluation for Blast Exposure, mTBI, PTSD, and Pain Levels. The Boston Assessment of TBI-Lifetime Version (BAT-L) was used to assess blast exposure and potential brain injury during military service. The Clinician-Administered PTSD Scale (CAPS) characterized presence and severity of PTSD. The Visual Analog Scale (VAS) was used to assess pain intensity over the previous month before the interview, with higher scores indicative of worse pain. Statistical analysis was performed by ANOVA and results were adjusted for co-morbidities, clinical characteristics and demographic data. In comparison to control participants (veterans without mTBI or current PTSD), veterans with both current PTSD and mTBI reported the highest pain intensity levels, followed by veterans with PTSD only (P Pain levels in veterans with mTBI only were comparable to control participants. Comorbid PTSD and mTBI is associated with increased self-reported pain intensity. mTBI alone was not associated with increased pain. Published by Oxford University Press on behalf of the American Academy of Pain Medicine 2016. This work is written by US Government employees and is in the public domain in the US.

  3. Patient Effort in Traumatic Brain Injury Inpatient Rehabilitation: Course and Associations With Age, Brain Injury Severity, and Time Postinjury

    Science.gov (United States)

    Seel, Ronald T.; Corrigan, John D.; Dijkers, Marcel P.; Barrett, Ryan S.; Bogner, Jennifer; Smout, Randall J.; Garmoe, William; Horn, Susan D.

    2016-01-01

    Objective To describe patients' level of effort in occupational, physical, and speech therapy sessions during traumatic brain injury (TBI) inpatient rehabilitation and to evaluate how age, injury severity, cognitive impairment, and time are associated with effort. Design Prospective, multicenter, longitudinal cohort study. Setting Acute TBI rehabilitation programs. Participants Patients (N=1946) receiving 138,555 therapy sessions. Interventions Not applicable. Main Outcome Measures Effort in rehabilitation sessions rated on the Rehabilitation Intensity of Therapy Scale, FIM, Comprehensive Severity Index brain injury severity score, posttraumatic amnesia (PTA), and Agitated Behavior Scale (ABS). Results The Rehabilitation Intensity of Therapy Scale effort ratings in individual therapy sessions closely conformed to a normative distribution for all 3 disciplines. Mean Rehabilitation Intensity of Therapy Scale ratings for patients' therapy sessions were higher in the discharge week than in the admission week (Prehabilitation, differences in effort ratings (Pcognitive scores and over time. In linear mixed-effects modeling, age and Comprehensive Severity Index brain injury severity score at admission, days from injury to rehabilitation admission, days from admission, and daily ratings of PTA and ABS score were predictors of level of effort (Prehabilitation setting using the Rehabilitation Intensity of Therapy Scale. Patients who sustain TBI show varying levels of effort in rehabilitation therapy sessions, with effort tending to increase over the stay. PTA and agitated behavior are primary risk factors that substantially reduce patient effort in therapies. PMID:26212400

  4. Acute alcohol intoxication in patients with mild traumatic brain injury : Characteristics, recovery, and outcome

    NARCIS (Netherlands)

    Scheenen, Myrthe E.; de Koning, Myrthe E.; van der Horn, Harm J.; Roks, C.M.A.A.; Yilmaz, Tansel; van der Naalt, Joukje; Spikman, Jacoba M.

    2016-01-01

    A substantial number of patients (30% to 50%) sustains a mild traumatic brain injury (mTBI) while they are under the influence of alcohol. An acute alcohol intoxication (AAI) at the time of injury has been subject of research in severe TBI, but little is known about the relation between AAI and

  5. Acute Alcohol Intoxication in Patients with Mild Traumatic Brain Injury : Characteristics, Recovery, and Outcome

    NARCIS (Netherlands)

    Scheenen, Myrthe E.; de Koning, Myrthe E.; van der Horn, Harm; Roks, Gerwin; Yilmaz, Tansel; van der Naalt, Joukje; Spikman, Jacoba M.

    2016-01-01

    A substantial number of patients (30% to 50%) sustains a mild traumatic brain injury (mTBI) while they are under the influence of alcohol. An acute alcohol intoxication (AAI) at the time of injury has been subject of research in severe TBI, but little is known about the relation between AAI and

  6. Symptomatic heterotopic ossification after very severe traumatic brain injury in 114 patients: incidence and risk factors

    DEFF Research Database (Denmark)

    Simonsen, Louise Lau; Sonne-Holm, Stig; Krasheninnikoff, Michael

    2007-01-01

    The incidence of heterotopic ossification (HO) among patients with traumatic brain injury (TBI) varies in the literature from 11 to 73.3%. The aim of this study was to determine the incidence of HO among patients with very severe TBI treated in a new established intensive rehabilitation Brain...... Injury Unit and to list some of the risk-predicting features. The study comprised an approximately complete, consecutive series of 114 adult patients from a well-defined geographical area, and with a posttraumatic amnesia period of at least 28 days, i.e. very severe TBI. Demographic and functional data...... as well as data about trauma severity and hospital stay of these patients have been registered prospectively in a database (Danish National Head Injury database) at the Brain Injury Unit where the sub acute rehabilitation took place. The present study was based retrospectively on this database, combined...

  7. Caregiver functioning following early childhood TBI: do moms and dads respond differently?

    Science.gov (United States)

    Wade, Shari L; Walz, Nicolay C; Cassedy, Amy; Taylor, H Gerry; Stancin, Terry; Yeates, Keith Owen

    2010-01-01

    Research suggests that pediatric TBI results in injury-related stress and burden and psychological distress for parents. However, existing studies have focused almost exclusively on mothers, so that we know relatively little about the impact of childhood TBI on fathers. The aims were to prospectively examine differences in maternal and paternal response to early childhood TBI over time relative to a comparison cohort of mothers and fathers of children with orthopedic injuries (OI). The concurrent cohort/prospective research design involved repeated assessments of children aged 3-6 years with TBI or OI requiring hospitalization and their families. Shortly after injury and at 6, 12, and 18 months post injury, parents of 48 children with TBI (11 severe and 37 moderate) and 89 with OI completed standardized assessments of injury-related stress and burden, parental distress, and coping strategies. Mixed models analyses and Generalized Estimating Equations examined differences in maternal versus paternal burden, distress, and coping over time. The analyses included interactions of parent sex with group (severe TBI, moderate TBI, OI) and time since injury, to examine the moderating effects of injury severity on parental response to injury over time. Fathers were more likely than mothers to use denial to cope following moderate and severe TBI, but not OI. Conversely, mothers were more likely to prefer acceptance and emotion-focused strategies than fathers regardless of the type of injury. The use of active coping strategies varied as a function of injury type, parent sex, and time since injury. Fathers reported greater injury-related stress and distress than mothers over time, with pronounced differences in the severe TBI and OI groups. Mothers and fathers appear to respond differently following TBI. The different types of responses may serve to exacerbate emerging family dysfunction.

  8. secondary injury in traumatic brain injury patients - a prospective study

    African Journals Online (AJOL)

    Objective. Secondary insults of hypotension and hypoxia significantly impact on outcome in patients with traumatic brain injury (TBI). More than 4 hours' delay in evacuation of intracranial haematomas has been demonstrated to have an additional impact on outcome. The objective of this study was to document the ...

  9. Time Perception in Severe Traumatic Brain Injury Patients: A Study Comparing Different Methodologies

    Science.gov (United States)

    Mioni, G.; Mattalia, G.; Stablum, F.

    2013-01-01

    In this study, we investigated time perception in patients with traumatic brain injury (TBI). Fifteen TBI patients and 15 matched healthy controls participated in the study. Participants were tested with durations above and below 1s on three different temporal tasks that involved time reproduction, production, and discrimination tasks. Data…

  10. Mild TBI Diagnosis and Management Strategies

    Data.gov (United States)

    Department of Veterans Affairs — The Mild Traumatic Brain Injury (TBI) Diagnosis and Management Strategies will assist in the study of TBI issues, such as the Influence of Concussion on Persistent...

  11. Parents and teachers reporting on a child's emotional and behavioural problems following severe traumatic brain injury (TBI): the moderating effect of time.

    Science.gov (United States)

    Silberg, Tamar; Tal-Jacobi, Dana; Levav, Miriam; Brezner, Amichai; Rassovsky, Yuri

    2015-01-01

    Gathering information from parents and teachers following paediatric traumatic brain injury (TBI) has substantial clinical value for diagnostic decisions. Yet, a multi-informant approach has rarely been addressed when evaluating children at the chronic stage post-injury. In the current study, the goals were to examine (1) differences between parents' and teachers' reports on a child's emotional and behavioural problems and (2) the effect of time elapsed since injury on each rater's report. A sample of 42 parents and 42 teachers of children following severe TBI completed two standard rating scales. Receiver Operating Characteristic (ROC) curves were used to determine whether time elapsed since injury reliably distinguished children falling above and below clinical levels. Emotional-behavioural scores of children following severe TBI fell within normal range, according to both teachers and parents. Significant differences were found between parents' reports relatively close to the time of injury and 2 years post-injury. However, no such differences were observed in teachers' ratings. Parents and teachers of children following severe TBI differ in their reports on a child's emotional and behavioural problems. The present study not only underscores the importance of multiple informants, but also highlights, for the first time, the possibility that informants' perceptions may vary across time.

  12. Mirror Asymmetry of Category and Letter Fluency in Traumatic Brain Injury and Alzheimer's Patients

    Science.gov (United States)

    Capitani, Erminio; Rosci, Chiara; Saetti, Maria Cristina; Laiacona, Marcella

    2009-01-01

    In this study we contrasted the Category fluency and Letter fluency performance of 198 normal subjects, 57 Alzheimer's patients and 57 patients affected by traumatic brain injury (TBI). The aim was to check whether, besides the prevalence of Category fluency deficit often reported among Alzheimer's patients, the TBI group presented the opposite…

  13. Psychological and marital adjustment in couples following a traumatic brain injury (TBI): a critical review.

    Science.gov (United States)

    Blais, Marie Claude; Boisvert, Jean-Marie

    2005-12-20

    The first part of this paper examines current data describing the psychological and marital adjustment of couples following a traumatic brain injury (TBI). Although these findings reveal some discrepancies, they highlight that adjustment following a TBI represents a genuine challenge for those involved in the process. The second part moves toward the examination of factors associated with psychological and marital adjustment in both couple partners. Here again, there exists a large diversity in empirical data and theoretical models informing this emerging area of interest. Nevertheless, cognitive variables such as coping skills are commonly seen as critical variables to explain the adjustment level in people with TBI and their spouse/caregivers. Concurrently with the discussion of the methodological issues and pitfalls encountered in this area of research, the conclusion provides suggestions of further steps to undertake in this endeavour toward a better understanding of the adjustment process following TBI.

  14. Contemporary imaging of mild TBI: the journey toward diffusion tensor imaging to assess neuronal damage.

    Science.gov (United States)

    Fox, W Christopher; Park, Min S; Belverud, Shawn; Klugh, Arnett; Rivet, Dennis; Tomlin, Jeffrey M

    2013-04-01

    To follow the progression of neuroimaging as a means of non-invasive evaluation of mild traumatic brain injury (mTBI) in order to provide recommendations based on reproducible, defined imaging findings. A comprehensive literature review and analysis of contemporary published articles was performed to study the progression of neuroimaging findings as a non-invasive 'biomarker' for mTBI. Multiple imaging modalities exist to support the evaluation of patients with mTBI, including ultrasound (US), computed tomography (CT), single photon emission computed tomography (SPECT), positron emission tomography (PET), and magnetic resonance imaging (MRI). These techniques continue to evolve with the development of fractional anisotropy (FA), fiber tractography (FT), and diffusion tensor imaging (DTI). Modern imaging techniques, when applied in the appropriate clinical setting, may serve as a valuable tool for diagnosis and management of patients with mTBI. An understanding of modern neuroanatomical imaging will enhance our ability to analyse injury and recognize the manifestations of mTBI.

  15. Effect of methylphenidate on ICU and hospital length of stay in patients with severe and moderate traumatic brain injury.

    Science.gov (United States)

    Moein, Houshang; Khalili, Hossein A; Keramatian, Kamyar

    2006-09-01

    Traumatic brain injury is one of the major causes of death and disability among young people. Methylphenidate, a neural stimulant and protective drug, which has been mainly used for childhood attention deficit/hyperactivity disorder, has shown some benefits in late psychosocial problems in patients with traumatic brain injury. Its effect on arousal and consciousness has been also revealed in the sub-acute phase of traumatic brain injury. We studied its effect on the acute phase of moderate and severe traumatic brain injury (TBI) in relation to the length of ICU and hospital admission. Severely and moderately TBI patients (according to inclusion and exclusion criteria) were randomized to treatment and control groups. The treatment group received methylphenidate 0.3mg/kg per dose PO BID by the second day of admission until the time of discharge, and the control group received a placebo. Admission information and daily Glasgow Coma Scale (GCS) were recorded. Medical, surgical, and discharge plans for patients were determined by the attending physician, blinded to the study. Forty patients with severe TBI (GCS = 5-8) and 40 moderately TBI patients (GCS = 9-12) were randomly divided into treatment and control groups on the day of admission. In the severely TBI patients, both hospital and ICU length of stay, on average, were shorter in the treatment group compared with the control group. In the moderately TBI patients while ICU stay was shorter in the treatment group, there was no significant reduction of the period of hospitalization. There were no significant differences between the treatment and control groups in terms of age, sex, post resuscitation GCS, or brain CT scan findings, in either severely or moderately TBI patients. Methylphenidate was associated with reductions in ICU and hospital length of stay by 23% in severely TBI patients (P = 0.06 for ICU and P = 0.029 for hospital stay time). However, in the moderately TBI patients who received methylphenidate

  16. Isolated traumatic brain injury and venous thromboembolism.

    Science.gov (United States)

    Van Gent, Jan-Michael; Bandle, Jesse; Calvo, Richard Y; Zander, Ashley L; Olson, Erik J; Shackford, Steven R; Peck, Kimberly A; Sise, C Beth; Sise, Michael J

    2014-08-01

    Traumatic brain injury (TBI) is considered an independent risk factor of venous thromboembolism (VTE). However, the role of TBI severity in VTE risk has not been determined. We hypothesized that increased severity of brain injury in patients with isolated TBI (iTBI) is associated with an increased incidence of VTE. The records of patients admitted from June 2006 to December 2011 were reviewed for injury data, VTE risk factors, results of lower extremity surveillance ultrasound, and severity of TBI. Patients were identified by DRG International Classification of Diseases-9th Rev. codes for TBI, and only those with a nonhead Abbreviated Injury Scale (AIS) score of 1 or lower, indicating minimal associated injury, were included. The association of iTBI and VTE was determined using a case-control design. Among iTBI patients, those diagnosed with VTE (cases) were matched for age, sex, and admission year to those without VTE (controls). Data were analyzed using conditional logistic regression. There were 345 iTBI patients: 41 cases (12%) and 304 controls (88%). A total of 151 controls could not be matched to an appropriate case and were excluded. Of the remaining 153 controls, 1 to 16 controls were matched to each of the 41 VTE cases. Compared with the controls, the cases had a higher mean head-AIS score (4.4 vs. 3.9, p = 0.001) and overall Injury Severity Score (20.4 vs. 16.8, p = 0.001). Following adjustment for all factors found to be associated with VTE (ventilator days, central line placement, operative time > 2 hours, chemoprophylaxis, history of VTE, and history of cancer), the cases were significantly more likely to have a greater head injury severity (head-AIS score ≥ 5; odds ratio, 5.25; 95% confidence interval, 1.59-17.30; p = 0.006). The incidence of VTE in iTBI patients was significantly associated with the severity of TBI. VTE surveillance protocols may be warranted in these high-risk patients, as early detection of VTE could guide subsequent therapy

  17. Behavioral and pathophysiological outcomes associated with caffeine consumption and repetitive mild traumatic brain injury (RmTBI) in adolescent rats.

    Science.gov (United States)

    Yamakawa, Glenn R; Lengkeek, Connor; Salberg, Sabrina; Spanswick, Simon C; Mychasiuk, Richelle

    2017-01-01

    Given that caffeine consumption is exponentially rising in adolescents and they are at increased risk for repetitive mild traumatic brain injury (RmTBI), we sought to examine the pathophysiological outcomes associated with early life caffeine consumption and RmTBI. Adolescent male and female Sprague Dawley rats received either caffeine in the drinking water or normal water and were then randomly assigned to 3 mild injuries using our lateral impact device or 3 sham procedures. Following injury induction, behavioral outcomes were measured with a test battery designed to examine symptoms consistent with clinical manifestation of PCS (balance and motor coordination, anxiety, short-term working memory, and depressive-like behaviours). In addition, pathophysiological outcomes were examined with histological measures of volume and cellular proliferation in the dentate gyrus, as well as microglia activation in the ventromedial hypothalamus. Finally, modifications to expression of 12 genes (Adora2a, App, Aqp4, Bdnf, Bmal1, Clock, Cry, Gfap, Orx1, Orx2, Per, Tau), in the prefrontal cortex, hippocampus, and/or the hypothalamus were assessed. We found that chronic caffeine consumption in adolescence altered normal developmental trajectories, as well as recovery from RmTBI. Of particular importance, many of the outcomes exhibited sex-dependent responses whereby the sex of the animal modified response to caffeine, RmTBI, and the combination of the two. These results suggest that caffeine consumption in adolescents at high risk for RmTBI should be monitored.

  18. Behavioral and pathophysiological outcomes associated with caffeine consumption and repetitive mild traumatic brain injury (RmTBI in adolescent rats.

    Directory of Open Access Journals (Sweden)

    Glenn R Yamakawa

    Full Text Available Given that caffeine consumption is exponentially rising in adolescents and they are at increased risk for repetitive mild traumatic brain injury (RmTBI, we sought to examine the pathophysiological outcomes associated with early life caffeine consumption and RmTBI. Adolescent male and female Sprague Dawley rats received either caffeine in the drinking water or normal water and were then randomly assigned to 3 mild injuries using our lateral impact device or 3 sham procedures. Following injury induction, behavioral outcomes were measured with a test battery designed to examine symptoms consistent with clinical manifestation of PCS (balance and motor coordination, anxiety, short-term working memory, and depressive-like behaviours. In addition, pathophysiological outcomes were examined with histological measures of volume and cellular proliferation in the dentate gyrus, as well as microglia activation in the ventromedial hypothalamus. Finally, modifications to expression of 12 genes (Adora2a, App, Aqp4, Bdnf, Bmal1, Clock, Cry, Gfap, Orx1, Orx2, Per, Tau, in the prefrontal cortex, hippocampus, and/or the hypothalamus were assessed. We found that chronic caffeine consumption in adolescence altered normal developmental trajectories, as well as recovery from RmTBI. Of particular importance, many of the outcomes exhibited sex-dependent responses whereby the sex of the animal modified response to caffeine, RmTBI, and the combination of the two. These results suggest that caffeine consumption in adolescents at high risk for RmTBI should be monitored.

  19. Prospective memory rehabilitation using smartphones in patients with TBI

    DEFF Research Database (Denmark)

    Evald, Lars

    2015-01-01

    with the use of low-cost, off-the-shelf, unmodified smartphones combined with Internet calendars as a compensatory memory strategy. Thirteen community-dwelling patients with traumatic brain injury (TBI) received a 6-week group-based instruction in the systematic use of a smartphone as a memory compensatory aid...... followed by a brief structured open-ended interview regarding satisfaction with and advantages and disadvantages of the compensatory strategy. Ten of 13 participants continued to use a smartphone as their primary compensatory strategy. Audible and visual reminders were the most frequently mentioned...... advantages of the smartphone, and, second, the capability as an all-in-one memory device. In contrast, battery life was the most often mentioned disadvantage, followed by concerns about loss or failure of the device. Use of a smartphone seems to be a satisfactory compensatory memory strategy to many patients...

  20. Patient Effort in Traumatic Brain Injury Inpatient Rehabilitation: Course and Associations With Age, Brain Injury Severity, and Time Postinjury.

    Science.gov (United States)

    Seel, Ronald T; Corrigan, John D; Dijkers, Marcel P; Barrett, Ryan S; Bogner, Jennifer; Smout, Randall J; Garmoe, William; Horn, Susan D

    2015-08-01

    To describe patients' level of effort in occupational, physical, and speech therapy sessions during traumatic brain injury (TBI) inpatient rehabilitation and to evaluate how age, injury severity, cognitive impairment, and time are associated with effort. Prospective, multicenter, longitudinal cohort study. Acute TBI rehabilitation programs. Patients (N=1946) receiving 138,555 therapy sessions. Not applicable. Effort in rehabilitation sessions rated on the Rehabilitation Intensity of Therapy Scale, FIM, Comprehensive Severity Index brain injury severity score, posttraumatic amnesia (PTA), and Agitated Behavior Scale (ABS). The Rehabilitation Intensity of Therapy Scale effort ratings in individual therapy sessions closely conformed to a normative distribution for all 3 disciplines. Mean Rehabilitation Intensity of Therapy Scale ratings for patients' therapy sessions were higher in the discharge week than in the admission week (Prehabilitation, differences in effort ratings (Prehabilitation admission, days from admission, and daily ratings of PTA and ABS score were predictors of level of effort (Prehabilitation setting using the Rehabilitation Intensity of Therapy Scale. Patients who sustain TBI show varying levels of effort in rehabilitation therapy sessions, with effort tending to increase over the stay. PTA and agitated behavior are primary risk factors that substantially reduce patient effort in therapies. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  1. Variation in monitoring and treatment policies for intracranial hypertension in traumatic brain injury: A survey in 66 neurotrauma centers participating in the CENTER-TBI study

    NARCIS (Netherlands)

    M.C. Cnossen (Maryse); Huijben, J.A. (Jilske A.); van der Jagt, M. (Mathieu); Volovici, V. (Victor); van Essen, T. (Thomas); S. Polinder (Suzanne); D. Nelson (David); Ercole, A. (Ari); Stocchetti, N. (Nino); Citerio, G. (Giuseppe); W.C. Peul (Wilco); A.I.R. Maas (Andrew I.R.); D.K. Menon (David ); E.W. Steyerberg (Ewout W.); Lingsma, H.F. (Hester F.); Adams, H. (Hadie); Alessandro, M. (Masala); J.E. Allanson (Judith); Amrein, K. (Krisztina); Andaluz, N. (Norberto); N. Andelic (Nada); Andrea, N. (Nanni); L. Andreassen (Lasse); Anke, A. (Audny); Antoni, A. (Anna); Ardon, H. (Hilko); Audibert, G. (Gérard); Auslands, K. (Kaspars); Azouvi, P. (Philippe); Baciu, C. (Camelia); Bacon, A. (Andrew); Badenes, R. (Rafael); Baglin, T. (Trevor); R.H.M.A. Bartels (Ronald); P. Barzo (P.); Bauerfeind, U. (Ursula); R. Beer (Ronny); Belda, F.J. (Francisco Javier); B.-M. Bellander (Bo-Michael); A. Belli (Antonio); Bellier, R. (Rémy); H. Benali (Habib); Benard, T. (Thierry); M. Berardino (Maurizio); L. Beretta (Luigi); Beynon, C. (Christopher); Bilotta, F. (Federico); H. Binder (Harald); Biqiri, E. (Erta); Blaabjerg, M. (Morten); Lund, S.B. (Stine Borgen); Bouzat, P. (Pierre); Bragge, P. (Peter); Brazinova, A. (Alexandra); F. Brehar (Felix); Brorsson, C. (Camilla); Buki, A. (Andras); M. Bullinger (Monika); Bucková, V. (Veronika); Calappi, E. (Emiliana); P. Cameron (Peter); Carbayo, L.G. (Lozano Guillermo); Carise, E. (Elsa); K.L.H. Carpenter (Keri L.H.); Castaño-León, A.M. (Ana M.); Causin, F. (Francesco); Chevallard, G. (Giorgio); A. Chieregato (Arturo); G. Citerio (Giuseppe); Cnossen, M. (Maryse); M. Coburn (Mark); J.P. Coles (Jonathan P.); Cooper, J.D. (Jamie D.); Correia, M. (Marta); A. Covic (Amra); N. Curry (Nicola); E. Czeiter (Endre); M. Czosnyka (Marek); Dahyot-Fizelier, C. (Claire); F. Damas (François); P. Damas (Pierre); H. Dawes (Helen); De Keyser, V. (Véronique); F.D. Corte (Francesco); B. Depreitere (Bart); Ding, S. (Shenghao); D.W.J. Dippel (Diederik); K. Dizdarevic (Kemal); Dulière, G.-L. (Guy-Loup); Dzeko, A. (Adelaida); G. Eapen (George); Engemann, H. (Heiko); A. Ercole (Ari); P. Esser (Patrick); Ezer, E. (Erzsébet); M. Fabricius (Martin); V.L. Feigin (V.); Feng, J. (Junfeng); Foks, K. (Kelly); F. Fossi (Francesca); Francony, G. (Gilles); J. Frantzén (Janek); Freo, U. (Ulderico); S.K. Frisvold (Shirin Kordasti); Furmanov, A. (Alex); Gagliardo, P. (Pablo); D. Galanaud (Damien); G. Gao (Guoyi); K. Geleijns (Karin); A. Ghuysen (Alexandre); Giraud, B. (Benoit); Glocker, B. (Ben); Gomez, P.A. (Pedro A.); Grossi, F. (Francesca); R.L. Gruen (Russell); Gupta, D. (Deepak); J.A. Haagsma (Juanita); E. Hadzic (Ermin); I. Haitsma (Iain); J.A. Hartings (Jed); R. Helbok (Raimund); E. Helseth (Eirik); Hertle, D. (Daniel); S. Hill (Sean); Hoedemaekers, A. (Astrid); S. Hoefer (Stefan); P.J. Hutchinson (Peter J.); Håberg, K.A. (Kristine Asta); B.C. Jacobs (Bart); Janciak, I. (Ivan); K. Janssens (Koen); Jiang, J.-Y. (Ji-Yao); Jones, K. (Kelly); Kalala, J.-P. (Jean-Pierre); Kamnitsas, K. (Konstantinos); Karan, M. (Mladen); Karau, J. (Jana); A. Katila (Ari); M. Kaukonen (Maija); Keeling, D. (David); Kerforne, T. (Thomas); N. Ketharanathan (Naomi); Kettunen, J. (Johannes); Kivisaari, R. (Riku); A.G. Kolias (Angelos G.); Kolumbán, B. (Bálint); E.J.O. Kompanje (Erwin); D. Kondziella (Daniel); L.-O. Koskinen (Lars-Owe); Kovács, N. (Noémi); F. Kalovits (Ferenc); A. Lagares (Alfonso); L. Lanyon (Linda); S. Laureys (Steven); Lauritzen, M. (Martin); F.E. Lecky (Fiona); C. Ledig (Christian); R. Lefering; V. Legrand (Valerie); Lei, J. (Jin); L. Levi (Leon); R. Lightfoot (Roger); H.F. Lingsma (Hester); D. Loeckx (Dirk); Lozano, A. (Angels); Luddington, R. (Roger); Luijten-Arts, C. (Chantal); Maas, A.I.R. (Andrew I.R.); MacDonald, S. (Stephen); MacFayden, C. (Charles); M. Maegele (Marc); M. Majdan (Marek); Major, S. (Sebastian); A. Manara (Alex); Manhes, P. (Pauline); G. Manley (Geoffrey); Martin, D. (Didier); C. Martino (Costanza); Maruenda, A. (Armando); H. Maréchal (Hugues); Mastelova, D. (Dagmara); Mattern, J. (Julia); McMahon, C. (Catherine); Melegh, B. (Béla); Menon, D. (David); T. Menovsky (Tomas); Morganti-Kossmann, C. (Cristina); Mulazzi, D. (Davide); Mutschler, M. (Manuel); H. Mühlan (Holger); Negru, A. (Ancuta); Nelson, D. (David); E. Neugebauer (Eddy); V.F. Newcombe (Virginia F.); Noirhomme, Q. (Quentin); Nyirádi, J. (József); M. Oddo (Mauro); A.W. Oldenbeuving; M. Oresic (Matej); Ortolano, F. (Fabrizio); A. Palotie (Aarno); P.M. Parizel; Patruno, A. (Adriana); J.-F. Payen (Jean-François); Perera, N. (Natascha); V. Perlbarg (Vincent); Persona, P. (Paolo); Peul, W. (Wilco); N. Pichon (Nicolas); Piilgaard, H. (Henning); A. Piippo (Anna); S.P. Floury (Sébastien Pili); M. Pirinen (Matti); H. Ples (Horia); Polinder, S. (Suzanne); Pomposo, I. (Inigo); M. Psota (Marek); P. Pullens (Pim); L. Puybasset (Louis); A. Ragauskas (Arminas); R. Raj (Rahul); Rambadagalla, M. (Malinka); Rehorcíková, V. (Veronika); J.K.J. Rhodes (Jonathan K.J.); S. Richardson (Sylvia); S. Ripatti (Samuli); S. Rocka (Saulius); Rodier, N. (Nicolas); Roe, C. (Cecilie); Roise, O. (Olav); C.M.A.A. Roks (Gerwin); Romegoux, P. (Pauline); J. Rosand (Jonathan); Rosenfeld, J. (Jeffrey); C. Rosenlund (Christina); G. Rosenthal (Guy); R. Rossaint (Rolf); S. Rossi (Sandra); Rostalski, T. (Tim); D. Rueckert (Daniel); de Ruiz, A.F. (Arcaute Felix); M. Rusnák (Martin); Sacchi, M. (Marco); Sahakian, B. (Barbara); J. Sahuquillo (Juan); O. Sakowitz (Oliver); Sala, F. (Francesca); Sanchez-Pena, P. (Paola); Sanchez-Porras, R. (Renan); Sandor, J. (Janos); Santos, E. (Edgar); N. Sasse (Nadine); Sasu, L. (Luminita); Savo, D. (Davide); I.B. Schipper (Inger); Schlößer, B. (Barbara); S. Schmidt (Silke); Schneider, A. (Annette); H. Schoechl (Herbert); G.G. Schoonman; Rico, F.S. (Frederik Schou); E. Schwendenwein (Elisabeth); Schöll, M. (Michael); Sir, O. (özcan); T. Skandsen (Toril); Smakman, L. (Lidwien); D. Smeets (Dominique); Smielewski, P. (Peter); Sorinola, A. (Abayomi); E. Stamatakis (Emmanuel); S. Stanworth (Simon); Stegemann, K. (Katrin); Steinbüchel, N. (Nicole); R. Stevens (Robert); W. Stewart (William); E.W. Steyerberg (Ewout); N. Stocchetti (Nino); Sundström, N. (Nina); Synnot, A. (Anneliese); J. Szabó (József); J. Söderberg (Jeannette); F.S. Taccone (Fabio); Tamás, V. (Viktória); Tanskanen, P. (Päivi); A. Tascu (Alexandru); Taylor, M.S. (Mark Steven); Te, A.B. (Ao Braden); O. Tenovuo (Olli); Teodorani, G. (Guido); A. Theadom (Alice); Thomas, M. (Matt); D. Tibboel (Dick); C.M. Tolias (Christos M.); Tshibanda, J.-F.L. (Jean-Flory Luaba); Tudora, C.M. (Cristina Maria); P. Vajkoczy (Peter); Valeinis, E. (Egils); Hecke, W.V. (Wim Van); Praag, D.V. (Dominique Van); Dirk, V.R. (Van Roost); Vlierberghe, E.V. (Eline Van); Vyvere, T.V. (Thijs vande); Vanhaudenhuyse, A. (Audrey); A. Vargiolu (Alessia); E. Vega (Emmanuel); J. Verheyden (Jan); Vespa, P.M. (Paul M.); A. Vik (Anne); R. Vilcinis (Rimantas); Vizzino, G. (Giacinta); C.L.A.M. Vleggeert-Lankamp (Carmen); V. Volovici (Victor); P. Vulekovic (Peter); Vámos, Z. (Zoltán); Wade, D. (Derick); Wang, K.K.W. (Kevin K.W.); Wang, L. (Lei); E.D. Wildschut (Enno); G. Williams (Guy); Willumsen, L. (Lisette); Wilson, A. (Adam); Wilson, L. (Lindsay); Winkler, M.K.L. (Maren K.L.); P. Ylén (Peter); Younsi, A. (Alexander); M. Zaaroor (Menashe); Zhang, Z. (Zhiqun); Zheng, Z. (Zelong); Zumbo, F. (Fabrizio); de Lange, S. (Stefanie); G.C.W. De Ruiter (Godard C.W.); den Boogert, H. (Hugo); van Dijck, J. (Jeroen); T.A. van Essen (T.); C.M. van Heugten (Caroline M.); M. van der Jagt (Mathieu); J. van der Naalt (Joukje)

    2017-01-01

    textabstractBackground: No definitive evidence exists on how intracranial hypertension should be treated in patients with traumatic brain injury (TBI). It is therefore likely that centers and practitioners individually balance potential benefits and risks of different intracranial pressure (ICP)

  2. Prospective memory rehabilitation using smartphones in patients with TBI: What do participants report?

    Science.gov (United States)

    Evald, Lars

    2015-01-01

    Use of assistive devices has been shown to be beneficial as a compensatory memory strategy among brain injury survivors, but little is known about possible advantages and disadvantages of the technology. As part of an intervention study participants were interviewed about their experiences with the use of low-cost, off-the-shelf, unmodified smartphones combined with Internet calendars as a compensatory memory strategy. Thirteen community-dwelling patients with traumatic brain injury (TBI) received a 6-week group-based instruction in the systematic use of a smartphone as a memory compensatory aid followed by a brief structured open-ended interview regarding satisfaction with and advantages and disadvantages of the compensatory strategy. Ten of 13 participants continued to use a smartphone as their primary compensatory strategy. Audible and visual reminders were the most frequently mentioned advantages of the smartphone, and, second, the capability as an all-in-one memory device. In contrast, battery life was the most often mentioned disadvantage, followed by concerns about loss or failure of the device. Use of a smartphone seems to be a satisfactory compensatory memory strategy to many patients with TBI and smartphones come with features that are advantageous to other compensatory strategies. However, some benefits come hand-in-hand with drawbacks, such as the feeling of dependency. These aspects should be taken into account when choosing assistive technology as a memory compensatory strategy.

  3. Variation in Structure and Process of Care in Traumatic Brain Injury: Provider Profiles of European Neurotrauma Centers Participating in the CENTER-TBI Study.

    Directory of Open Access Journals (Sweden)

    Maryse C Cnossen

    Full Text Available The strength of evidence underpinning care and treatment recommendations in traumatic brain injury (TBI is low. Comparative effectiveness research (CER has been proposed as a framework to provide evidence for optimal care for TBI patients. The first step in CER is to map the existing variation. The aim of current study is to quantify variation in general structural and process characteristics among centers participating in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI study.We designed a set of 11 provider profiling questionnaires with 321 questions about various aspects of TBI care, chosen based on literature and expert opinion. After pilot testing, questionnaires were disseminated to 71 centers from 20 countries participating in the CENTER-TBI study. Reliability of questionnaires was estimated by calculating a concordance rate among 5% duplicate questions.All 71 centers completed the questionnaires. Median concordance rate among duplicate questions was 0.85. The majority of centers were academic hospitals (n = 65, 92%, designated as a level I trauma center (n = 48, 68% and situated in an urban location (n = 70, 99%. The availability of facilities for neuro-trauma care varied across centers; e.g. 40 (57% had a dedicated neuro-intensive care unit (ICU, 36 (51% had an in-hospital rehabilitation unit and the organization of the ICU was closed in 64% (n = 45 of the centers. In addition, we found wide variation in processes of care, such as the ICU admission policy and intracranial pressure monitoring policy among centers.Even among high-volume, specialized neurotrauma centers there is substantial variation in structures and processes of TBI care. This variation provides an opportunity to study effectiveness of specific aspects of TBI care and to identify best practices with CER approaches.

  4. Diagnostic and treatment challenges in traumatic brain injury patients with severe neuropsychiatric symptoms: insights into psychiatric practice.

    Science.gov (United States)

    Lauterbach, Margo D; Notarangelo, Paula L; Nichols, Stephen J; Lane, Kristy S; Koliatsos, Vassilis E

    2015-01-01

    Traumatic brain injury (TBI) causes a variety of neuropsychiatric problems that pose diagnostic and treatment challenges for providers. In this report, we share our experience as a referral neuropsychiatry program to assist the general psychiatrist when adult TBI patients with psychiatric symptoms present for evaluation and treatment. We completed a retrospective study of patients with moderate-to-severe TBI and severe neuropsychiatric impairments. We collected information on demographics, nature of injury, symptomatology, diagnoses, and treatments. Data analysis indicates that mood stabilization was a key concern, often requiring aggressive pharmacological management. Cognitive dysfunction was a problem for the majority of patients, but was only medicated in a third, due to poor efficacy or behavioral side effects. The co-occurrence of multiple TBI-related symptoms and diagnoses in this patient cohort emphasizes the need for individualized psychopharmacological approaches and interventions.

  5. The impact of pre-injury anticoagulation therapy in the older adult patient experiencing a traumatic brain injury: A systematic review.

    Science.gov (United States)

    Smith, Karen; Weeks, Susan

    2012-01-01

    The objective of this systematic review is to synthesize the best available evidence on the impact of pre-injury anticoagulation therapy in the older adult patient who experiences a traumatic brain injury. Trauma in the elderly remains one of the most challenging problems for healthcare providers in the 21 century. The most recent United States (U.S.) census estimates that by the year 2020 more than 52 million Americans will be age 65 years or older, and one million of those will live to be over 100 years of age. In the older adult population, classified as age 65 years or greater, the two leading causes of injury were reported as motor vehicle crashes (MVC) and falls. We have become increasingly aware of the unique physiologic changes in this population that make them more susceptible to succumb to traumatic injuries than their younger counterparts. This is especially true in the anticoagulated patient with a traumatic brain injury.Traumatic brain injury (TBI) is defined as an injury occurring when an external force traumatizes the brain. It may also be known as an intracranial or head injury. TBI is classified depending on the mechanism of injury (blunt or penetrating), severity, and location of the assault. Damage to the brain, skull, and/or scalp transpires. TBI is the leading cause of death and disability in the U.S, and persons of all ages, races, ethnicities, and incomes are affected. In the past five to ten years, trauma services have recorded an increase in major trauma admissions of patients age 65 years and older. In review of the literature to date, it is recognized that outcomes following moderate to severe TBI in older adults are poor, with high rates of significant disability and mortality reported. A recent Australian study reported that 28% of older adults died in the hospital following a TBI and in Finland adults aged 75 years and older had the highest rates of TBI related hospitalizations and death. According to a systematic review of European

  6. Risk and mortality of traumatic brain injury in stroke patients: two nationwide cohort studies.

    Science.gov (United States)

    Chou, Yi-Chun; Yeh, Chun-Chieh; Hu, Chaur-Jong; Meng, Nai-Hsin; Chiu, Wen-Ta; Chou, Wan-Hsin; Chen, Ta-Liang; Liao, Chien-Chang

    2014-01-01

    Patients with stroke had higher incidence of falls and hip fractures. However, the risk of traumatic brain injury (TBI) and post-TBI mortality in patients with stroke was not well defined. Our study is to investigate the risk of TBI and post-TBI mortality in patients with stroke. Using reimbursement claims from Taiwan's National Health Insurance Research Database, we conducted a retrospective cohort study of 7622 patients with stroke and 30 488 participants without stroke aged 20 years and older as reference group. Data were collected on newly developed TBI after stroke with 5 to 8 years' follow-up during 2000 to 2008. Another nested cohort study including 7034 hospitalized patients with TBI was also conducted to analyze the contribution of stroke to post-TBI in-hospital mortality. Compared with the nonstroke cohort, the adjusted hazard ratio of TBI risk among patients with stroke was 2.80 (95% confidence interval = 2.58-3.04) during the follow-up period. Patients with stroke had higher mortality after TBI than those without stroke (10.2% vs 3.2%, P stroke (RR = 1.60), hemorrhagic stroke (RR = 1.68), high medical expenditure for stroke (RR = 1.80), epilepsy (RR = 1.79), neurosurgery (RR = 1.94), and hip fracture (RR = 2.11) were all associated with significantly higher post-TBI mortality among patients with stroke. Patients with stroke have an increased risk of TBI and in-hospital mortality after TBI. Various characteristics of stroke severity were all associated with higher post-TBI mortality. Special attention is needed to prevent TBI among these populations.

  7. Development and psychometric properties of the Patient-Head Injury Participation Scale (P-HIPS) and the Patient-Head Injury Neurobehavioral Assessment Scale (P-HINAS): patient and family determined outcomes scales.

    Science.gov (United States)

    Deb, Shoumitro; Bryant, Eleanor; Morris, Paul G; Prior, Lindsay; Lewis, Glyn; Haque, Sayeed

    2007-06-01

    To develop a measure to assess post-acute outcome following from traumatic brain injury (TBI) with particular emphasis on the emotional and the behavioral outcome. The second objective was to assess the test-retest reliability, internal consistency, and factor structure of the newly developed patient version of the Head Injury Participation Scale (P-HIPS) and Patient-Head Injury Neurobehavioral Scale (P-HINAS). Thirty-two TBI individuals and 27 carers took part in in-depth qualitative interviews exploring the consequences of the TBI. Interview transcripts were analyzed and key themes and concepts were used to construct the 49-item P-HIPS. A postal survey was then conducted on a cohort of 113 TBI patients to 'field test' the P-HIPS and the P-HINAS. All individual 49 items of the P-HIPS and their total score showed good test-retest reliability (0.93) and internal consistency (0.95). The P-HIPS showed a very good correlations with the Mayo Portland Adaptability Inventory-3 (MPAI-3) (0.87) and a moderate negative correlation with the Glasgow Outcome Scale-Extended (GOSE) (-0.51). Factor analysis extracted the following domains: 'Emotion/Behavior,' 'Independence/Community Living,' 'Cognition' and 'Physical'. The 'Emotion/Behavior' factor constituted the P-HINAS, which showed good internal consistency (0.93), test-retest reliability (0.91) and concurrent validity with MPAI subscale (0.82). Both the P-HIPS and the P-HINAS show strong psychometric properties. The qualitative methodology employed in the construction stage of the questionnaires provided good evidence of face and content validity.

  8. The relationship between neuron-specific enolase and prognosis of patients with acute traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Yun-yang LIU

    2015-03-01

    Full Text Available Objective To investigate the relationship between neuron-specific enolase (NSE levels in serum and cerebrospinal fluid (CSF of patients with acute traumatic brain injury (TBI and the prognosis of TBI patients.  Methods A total of 89 patients with acute TBI were divided into light, medium, heavy and severe TBI groups based on admission Glasgow Coma Scale (GCS score. Serum NSE expression levels were detected in all cases and NSE levels in CSF were detected in 18 cases within 12 h after TBI. The expression levels of serum NSE in 20 normal people, except cases of lung disease and nervous system damage, were detected as a control group. Results Compared with the control group, serum NSE expression levels of patients in each TBI group were elevated (P < 0.05, for all, and the NSE levels in severe and heavy TBI groups were higher than that in medium and light groups (P < 0.05, for all. The serum NSE expression levels of patients with cerebral contusion were higher than that of patients with diffuse axonal injury (DAI, P = 0.025, subdural hematoma (P = 0.031 and epidural hematoma (P = 0.021. Serum NSE expression levels were negatively correlated with GCS score (rs = - 0.327, P = 0.024 and Glasgow Outcome Scale (GOS score (rs = - 0.252, P = 0.049. The NSE expression levels of CSF in severe and heavy TBI patients were higher than that of serum (P = 0.039, 0.031.  Conclusions NSE expression changes can be evaluated as an auxiliary indicator in reflecting the degree of acute TBI, typing diagnosis and prognostic evaluation, and NSE levels of CSF is more sensitive than that of serum. DOI: 10.3969/j.issn.1672-6731.2015.03.013

  9. Intelligence after traumatic brain injury: meta-analysis of outcomes and prognosis.

    Science.gov (United States)

    Königs, M; Engenhorst, P J; Oosterlaan, J

    2016-01-01

    Worldwide, 54-60 million individuals sustain traumatic brain injury (TBI) each year. This meta-analysis aimed to quantify intelligence impairments after TBI and to determine the value of age and injury severity in the prognosis of TBI. An electronic database search identified 81 relevant peer-reviewed articles encompassing 3890 patients. Full-scale IQ (FSIQ), performance IQ (PIQ) and verbal IQ (VIQ) impairments were quantified (Cohen's d) for patients with mild, moderate and severe TBI in the subacute phase of recovery and the chronic phase. Meta-regressions explored prognostic values of age and injury severity measures for intelligence impairments. The results showed that, in the subacute phase, FSIQ impairments were absent for patients with mild TBI, medium-sized for patients with moderate TBI (d = -0.61, P intelligence impairments, where children may have better recovery from mild TBI and poorer recovery from severe TBI than adults. Injury severity measures predict intelligence impairments and do not outperform one another. © 2015 EAN.

  10. Acute Alcohol Intoxication in Patients with Mild Traumatic Brain Injury: Characteristics, Recovery and Outcome

    NARCIS (Netherlands)

    Scheenen, Myrthe; de Koning, Myrthe; van der Horn, Harm; van der Naalt, Joukje; Spikman, Jacoba

    2015-01-01

    Objectives. To investigate the incidence of acute alcohol intoxication (AAI) at the time of sustaining mild traumatic brain injury (mTBI), describe the characteristics of this intoxicated subgroup, and evaluate recovery and outcome in comparison to sober mTBI patients. Methods. Multicenter cohort

  11. Group therapy use and its impact on the outcomes of inpatient rehabilitation following traumatic brain injury: Data from TBI-PBE project

    Science.gov (United States)

    Hammond, Flora M.; Barrett, Ryan; Dijkers, Marcel P.; Zanca, Jeanne M.; Horn, Susan D.; Smout, Randall J.; Guerrier, Tami; Hauser, Elizabeth; Dunning, Megan R.

    2015-01-01

    Objective To describe the amount and content of group therapies provided during inpatient rehabilitation for traumatic brain injury (TBI), and assess the relationships of group therapy with patient, injury, and treatment factors as well as outcomes. Design Prospective observational cohort. Setting Inpatient rehabilitation. Participants 2,130 consecutive admissions for initial TBI rehabilitation at 10 inpatient rehabilitation facilities (9 in US and 1 Canada) from October 2008 to September 2011. Interventions n/a Main Outcome Measure(s) proportion of sessions that were group therapy (two or more patients were treated simultaneously by one or more clinicians); proportion of patients receiving group therapy; type of activity performed and amount of time spent in group therapy, by discipline; rehabilitation length of stay (RLOS); discharge location; FIM Cognitive and Motor scores at discharge. Results 79% of patients received at least 1 session of group therapy, with group therapy accounting for 13.7% of all therapy sessions and 15.8% of therapy hours. On average, patients spent 2.9 hours per week in group therapy. The greatest proportion of treatment time in group format was in Therapeutic Recreation (25.6%), followed by Speech Therapy (16.2%), Occupational Therapy (10.4%), Psychology (8.1%), and Physical Therapy (7.9%). Group therapy time and type of treatment activities varied among admission FIM cognitive subgroups and treatment sites. Several factors appear to be predictive of receiving group therapy, with treatment site being a major influence. However, group therapy as a whole offered little explanation of differences in the outcomes studied. Conclusion(s) Group therapy is commonly used in TBI rehabilitation, to varying degrees among disciplines, sites, and cognitive impairment subgroups. Various therapeutic activities take place in group therapy, indicating its perceived value in addressing many domains of functioning. Variation in outcomes is not explained

  12. Increased risk of pneumonia among ventilated patients with traumatic brain injury: every day counts!

    Science.gov (United States)

    Hui, Xuan; Haider, Adil H; Hashmi, Zain G; Rushing, Amy P; Dhiman, Nitasha; Scott, Valerie K; Selvarajah, Shalini; Haut, Elliott R; Efron, David T; Schneider, Eric B

    2013-09-01

    Patients with traumatic brain injury (TBI) frequently require mechanical ventilation (MV). The objective of this study was to examine the association between time spent on MV and the development of pneumonia among patients with TBI. Patients older than 18 y with head abbreviated injury scale (AIS) scores coded 1-6 requiring MV in the National Trauma Data Bank 2007-2010 data set were included. The study was limited to hospitals reporting pneumonia cases. AIS scores were calculated using ICDMAP-90 software. Patients with injuries in any other region with AIS score >3, significant burns, or a hospital length of stay >30 d were excluded. A generalized linear model was used to determine the approximate relative risk of developing all-cause pneumonia (aspiration pneumonia, ventilator-associated pneumonia [VAP], and infectious pneumonia identified by the International Classification of Disease, Ninth Revision, diagnosis code) for each day of MV, controlling for age, gender, Glasgow coma scale motor score, comorbidity (Charlson comorbidity index) score, insurance status, and injury type and severity. Among the 24,525 patients with TBI who required MV included in this study, 1593 (6.5%) developed all-cause pneumonia. After controlling for demographic and injury factors, each additional day on the ventilator was associated with a 7% increase in the risk of pneumonia (risk ratio 1.07, 95% confidence interval 1.07-1.08). Patients who have sustained TBIs and require MV are at higher risk for VAP than individuals extubated earlier; therefore, shortening MV exposure will likely reduce the risk of VAP. As patients with TBI frequently require MV because of neurologic impairment, it is key to develop aggressive strategies to expedite ventilator independence. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Prognostic value of FOUR and GCS scores in determining mortality in patients with traumatic brain injury.

    Science.gov (United States)

    Saika, Amrit; Bansal, Sonia; Philip, Mariamma; Devi, Bhagavatula Indira; Shukla, Dhaval P

    2015-09-01

    The Glasgow Coma Scale (GCS) is considered the gold standard for assessment of unconsciousness in patients with traumatic brain injury (TBI) against which other scales are compared. To overcome the disadvantages of GCS, the Full Outline Of Unresponsiveness (FOUR) score was proposed. We aimed to compare the predictability of FOUR score and GCS for early mortality, after moderate and severe TBI. This is a prospective observational study of patients with moderate and severe TBI. Both FOUR and GCS scores were determined at admission. The primary outcome was mortality at the end of 2 weeks of injury. A total of 138 (117 males) patients were included in the study. Out of these, 17 (12.3 %) patients died within 2 weeks of injury. The mean GCS and FOUR scores were 9.5 (range, 3-13) and 11 (0-16), respectively. The total GCS and FOUR scores were significantly lower in patients who did not survive. At a cut-off score of 7 for FOUR score, the AUC was 0.97, with sensitivity of 97.5 and specificity of 88.2 % (p FOUR scores. The predictive value of the FOUR score on admission of patients with TBI is no better than the GCS score.

  14. Incidence and injury characteristics of traumatic brain injury: Comparison between children, adults and seniors in Israel.

    Science.gov (United States)

    Siman-Tov, Maya; Radomislensky, Irina; Knoller, Nachshon; Bahouth, Hany; Kessel, Boris; Klein, Yoram; Michaelson, Moshe; Avraham Rivkind, Bala Miklosh; Shaked, Gad; Simon, Daniel; Soffer, Dror; Stein, Michael; Jeroukhimov, Igor; Peleg, Kobi

    2016-01-01

    To assess the incidence and injury characteristics of hospitalized trauma patients diagnosed with TBI. A retrospective study of all injured hospitalized patients recorded in the National Trauma Registry at 19 trauma centres in Israel between 2002-2011. Incidence and injury characteristics were examined among children, adults and seniors. The annual incidence rate of hospitalized TBI for the Israeli population in 2011 was 31.8/100,000. Age-specific incidence was highest among seniors with a dramatic decrease in TBI-related mortality rate among them. Adults, in comparison to children and seniors, had higher rates of severe TBI, severe and critical injuries, more admission to the intensive care unit, underwent surgery, were hospitalization for more than 2 weeks and were discharged to rehabilitation. After adjusting for age, gender, ethnicity, mechanism of injury and injury severity score, TBI-related in-hospital mortality was higher among seniors and adults compared to children. Seniors are at high risk for TBI-related in-hospital mortality, although adults had more severe and critical injuries and utilized more hospital resources. However, seniors showed the most significant reduction in mortality rate during the study period. Appropriate intervention programmes should be designed and implemented, targeted to reduce TBI among high risk groups.

  15. Clinical treatment of traumatic brain injury complicated by cranial nerve injury.

    Science.gov (United States)

    Jin, Hai; Wang, Sumin; Hou, Lijun; Pan, Chengguang; Li, Bo; Wang, Hui; Yu, Mingkun; Lu, Yicheng

    2010-09-01

    To discuss the epidemiology, diagnosis and surgical treatment of cranial nerve injury following traumatic brain injury (TBI) for the sake of raising the clinical treatment of this special category of TBI. A retrospective analysis was made of 312 patients with cranial nerve injury among 3417 TBI patients, who were admitted for treatment in this hospital. A total of 312 patients (9.1%) involving either a single nerve or multiple nerves among the 12 pairs of cranial nerves were observed. The extent of nerve injury varied and involved the olfactory nerve (66 cases), optic nerve (78 cases), oculomotor nerve (56 cases), trochlear nerve (8 cases), trigeminal nerve (4 cases), abducent nerve (12 cases), facial nerve (48 cases), acoustic nerve (10 cases), glossopharyngeal nerve (8 cases), vagus nerve (6 cases), accessory nerve (10 cases) and hypoglossal nerve (6 cases). Imaging examination revealed skull fracture in 217 cases, complicated brain contusion in 232 cases, epidural haematoma in 194 cases, subarachnoid haemorrhage in 32 cases, nasal cerebrospinal fluid (CSF) leakage in 76 cases and ear CSF leakage in 8 cases. Of the 312 patients, 46 patients died; the mortality rate associated with low cranial nerve injury was as high as 73.3%. Among the 266 surviving patients, 199 patients received conservative therapy and 67 patients received surgical therapy; the curative rates among these two groups were 61.3% (122 patients) and 86.6% (58 patients), respectively. TBI-complicated cranial nerve injury is subject to a high incidence rate, a high mortality rate and a high disability rate. Our findings suggest that the chance of recovery may be increased in cases where injuries are amenable to surgical decompression. It is necessary to study all 12 pairs of cranial nerves systematically. Clinically, it is necessary to standardise surgical indications, operation timing, surgical approaches and methods for the treatment of TBI-complicated cranial nerve injury. 2010 Elsevier Ltd. All

  16. Novel Treatment for Patients with Traumatic Brain Injury (TBI)

    Science.gov (United States)

    2016-06-01

    equieffectiv e dose of phenylephri ne (PE)? 18 Does AVP maintain brain and muscle tissue 02 during CPP managemen t after TBI relative to an... Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any...discuss the meeting dates. I can be reached by telephone or email as listed below. K nnet 1·0 t ,. ti .. P ofessor of Surgery Leonard M. Miller

  17. Diffusion tensor imaging (DTI) findings in adult civilian, military, and sport-related mild traumatic brain injury (mTBI): a systematic critical review.

    Science.gov (United States)

    Asken, Breton Michael; DeKosky, Steven T; Clugston, James R; Jaffee, Michael S; Bauer, Russell M

    2018-04-01

    This review seeks to summarize diffusion tensor imaging (DTI) studies that have evaluated structural changes attributed to the mechanisms of mild traumatic brain injury (mTBI) in adult civilian, military, and athlete populations. Articles from 2002 to 2016 were retrieved from PubMed/MEDLINE, EBSCOhost, and Google Scholar, using a Boolean search string containing the following terms: "diffusion tensor imaging", "diffusion imaging", "DTI", "white matter", "concussion", "mild traumatic brain injury", "mTBI", "traumatic brain injury", and "TBI". We added studies not identified by this method that were found via manually-searched reference lists. We identified 86 eligible studies from English-language journals using, adult, human samples. Studies were evaluated based on duration between injury and DTI assessment, categorized as acute, subacute/chronic, remote mTBI, and repetitive brain trauma considerations. Since changes in brain structure after mTBI can also be affected by other co-occurring medical and demographic factors, we also briefly review DTI studies that have addressed socioeconomic status factors (SES), major depressive disorder (MDD), and attention-deficit hyperactivity disorder (ADHD). The review describes population-specific risks and the complications of clinical versus pathophysiological outcomes of mTBI. We had anticipated that the distinct population groups (civilian, military, and athlete) would require separate consideration, and various aspects of the study characteristics supported this. In general, study results suggested widespread but inconsistent differences in white matter diffusion metrics (primarily fractional anisotropy [FA], mean diffusivity [MD], radial diffusivity [RD], and axial diffusivity [AD]) following mTBI/concussion. Inspection of study designs and results revealed potential explanations for discrepant DTI findings, such as control group variability, analytic techniques, the manner in which regional differences were reported, and

  18. Hypopituitarism after acute brain injury.

    Science.gov (United States)

    Urban, Randall J

    2006-07-01

    Acute brain injury has many causes, but the most common is trauma. There are 1.5-2.0 million traumatic brain injuries (TBI) in the United States yearly, with an associated cost exceeding 10 billion dollars. TBI is the most common cause of death and disability in young adults less than 35 years of age. The consequences of TBI can be severe, including disability in motor function, speech, cognition, and psychosocial and emotional skills. Recently, clinical studies have documented the occurrence of pituitary dysfunction after TBI and another cause of acute brain injury, subarachnoid hemorrhage (SAH). These studies have consistently demonstrated a 30-40% occurrence of pituitary dysfunction involving at least one anterior pituitary hormone following a moderate to severe TBI or SAH. Growth hormone (GH) deficiency is the most common pituitary hormone disorder, occurring in approximately 20% of patients when multiple tests of GH deficiency are used. Within 7-21 days of acute brain injury, adrenal insufficiency is the primary concern. Pituitary function can fluctuate over the first year after TBI, but it is well established by 1 year. Studies are ongoing to assess the effects of hormone replacement on motor function and cognition in TBI patients. Any subject with a moderate to severe acute brain injury should be screened for pituitary dysfunction.

  19. Incidence rate of mild traumatic brain injury among patients who have suffered from an isolated limb fracture: Upper limb fracture patients are more at risk.

    Science.gov (United States)

    Jodoin, Marianne; Rouleau, Dominique M; Charlebois-Plante, Camille; Benoit, Benoit; Leduc, Stéphane; Laflamme, G-Yves; Gosselin, Nadia; Larson-Dupuis, Camille; De Beaumont, Louis

    2016-08-01

    This study compares the incidence rate of mild traumatic brain injury (mild TBI) detected at follow-up visits (retrospective diagnosis) in patients suffering from an isolated limb trauma, with the incidence rate held by the hospital records (prospective diagnosis) of the sampled cohort. This study also seeks to determine which types of fractures present with the highest incidence of mild TBI. Retrospective assessment of mild TBI among orthopaedic monotrauma patients, randomly selected for participation in an Orthopaedic clinic of a Level I Trauma Hospital. Patients in the remission phase of a limb fracture were recruited between August 2014 and May 2015. No intervention was done (observational study). Standardized semi-structured interviews were conducted with all patients to retrospectively assess for mild TBI at the time of the fracture. Emergency room related medical records of all patients were carefully analyzed to determine whether a prospective mild TBI diagnosis was made following the accident. A total of 251 patients were recruited (54% females, Mean age=49). Study interview revealed a 23.5% incidence rate of mild TBI compared to an incidence rate of 8.8% for prospective diagnosis (χ(2)=78.47; plimb monotrauma (29.6%; n=42/142) are significantly more at risk of sustaining a mild TBI compared to lower limb fractures (15.6%; n=17/109) (χ(2)=6.70; p=0.010). More specifically, patients with a proximal upper limb injury were significantly more at risk of sustaining concomitant mild TBI (40.6%; 26/64) compared to distal upper limb fractures (20.25%; 16/79) (χ(2)=7.07; p=0.008). Results suggest an important concomitance of mild TBI among orthopaedic trauma patients, the majority of which go undetected during acute care. Patients treated for an upper limb fracture are particularly at risk of sustaining concomitant mild TBI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Individual neuropsychological support and group sessions for relatives to TBI patients

    DEFF Research Database (Denmark)

    Siert, Lars

    TITLE: Individual neuropsychological support and group sessions for relatives to TBI patients. OBJECTIVE: To describe how the neuropsychologist work with early and ongoing individual support and group sessions for relatives to adult TBI patients in the acute and sub acute phase and after discharge...

  1. Review of the literature on the use of social media by people with traumatic brain injury (TBI).

    Science.gov (United States)

    Brunner, Melissa; Hemsley, Bronwyn; Palmer, Stuart; Dann, Stephen; Togher, Leanne

    2015-01-01

    To review the literature relating to use of social media by people with a traumatic brain injury (TBI), specifically its use for social engagement, information exchange or rehabilitation. A systematic review with a qualitative meta-synthesis of content themes was conducted. In June 2014, 10 databases were searched for relevant, peer-reviewed research studies in English that related to both TBI and social media. Sixteen studies met the inclusion criteria, with Facebook™ and Twitter™ being the most common social media represented in the included studies. Content analysis identified three major categories of meaning in relation to social media and TBI: (1) risks and benefits; (2) barriers and facilitators; and (3) purposes of use of social media. A greater emphasis was evident regarding potential risks and apparent barriers to social media use, with little focus on facilitators of successful use by people with TBI. Research to date reveals a range of benefits to the use of social media by people with TBI however there is little empirical research investigating its use. Further research focusing on ways to remove the barriers and increase facilitators for the use of social media by people with TBI is needed.

  2. Recovery of injured Broca's portion of arcuate fasciculus in the dominant hemisphere in a patient with traumatic brain injury

    OpenAIRE

    Jang, Sung Ho; Ha, Ji Wan; Kim, Hyun Young; Seo, You Sung

    2017-01-01

    Abstract Rationale: Recovery of injured AF in patients with traumatic brain injury (TBI) has not been reported. In this study, we report on a patient with TBI who recovered from an injury to Broca's portion of AF in the dominant hemisphere, diagnosed by diffusion tensor tractography (DTT). Patient concerns: A 28-year-old right-handed male patient suffered head trauma resulting from sliding while riding a motorcycle. Diagnoses: He was diagnosed with a traumatic contusional hemorrhage in the le...

  3. Patient Characterization Protocols for Psychophysiological Studies of Traumatic Brain Injury and Post-TBI Psychiatric Disorders

    Science.gov (United States)

    2013-07-22

    and Post-TBI Psychiatric Disorders 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK...in (282–285)]. Based on a review of the literature, Graham and Cardon reported that substance abuse rates decline following TBI, including mild TBI...preva- lence and outcomes research (1994-2004). Neuropsychol Rehabil (2006) 16(5):537–60. doi:10.1080/09602010500231875 285. Graham DP, Cardon AL. An

  4. Diagnostic and treatment challenges in traumatic brain injury patients with severe neuropsychiatric symptoms: insights into psychiatric practice

    Directory of Open Access Journals (Sweden)

    Lauterbach MD

    2015-07-01

    Full Text Available Margo D Lauterbach,1 Paula L Notarangelo,1 Stephen J Nichols,2 Kristy S Lane,1 Vassilis E Koliatsos11The Neuropsychiatry Program at Sheppard Pratt, Sheppard Pratt Health System, Baltimore, MD, 2Department of Emergency Medicine, The University of Tennessee College of Medicine Chattanooga, Chattanooga, TN, USAAbstract: Traumatic brain injury (TBI causes a variety of neuropsychiatric problems that pose diagnostic and treatment challenges for providers. In this report, we share our experience as a referral neuropsychiatry program to assist the general psychiatrist when adult TBI patients with psychiatric symptoms present for evaluation and treatment. We completed a retrospective study of patients with moderate-to-severe TBI and severe neuropsychiatric impairments. We collected information on demographics, nature of injury, symptomatology, diagnoses, and treatments. Data analysis indicates that mood stabilization was a key concern, often requiring aggressive pharmacological management. Cognitive dysfunction was a problem for the majority of patients, but was only medicated in a third, due to poor efficacy or behavioral side effects. The co-occurrence of multiple TBI-related symptoms and diagnoses in this patient cohort emphasizes the need for individualized psychopharmacological approaches and interventions.Keywords: traumatic brain injury, neurobehavioral, treatment

  5. Self-reported competency--validation of the Norwegian version of the patient competency rating scale for traumatic brain injury.

    Science.gov (United States)

    Sveen, Unni; Andelic, Nada; Bautz-Holter, Erik; Røe, Cecilie

    2015-01-01

    To evaluate the psychometric properties of the Norwegian version of the Patient Competency Rating Scale (PCRS) in patients with traumatic brain injury (TBI) at 12 months post-injury. Demographic and injury-related data were registered upon admission to the hospital in 148 TBI patients with mild, moderate, or severe TBI. At 12 months post-injury, competency in activities and global functioning were measured using the PCRS patient version and the Glasgow Outcome Scale-Extended (GOSE). Descriptive reliability statistics, factor analysis and Rasch modeling were applied to explore the psychometric properties of the PCRS. External validity was evaluated using the GOSE. The PCRS can be divided into three subscales that reflect interpersonal/emotional, cognitive, and activities of daily living competency. The three-factor solution explained 56.6% of the variance in functioning. The internal consistency was very good, with a Cronbach's α of 0.95. Item 30, "controlling my laughter", did not load above 0.40 on any factors and did not fit the Rasch model. The external validity of the subscales was acceptable, with correlations between 0.50 and 0.52 with the GOSE. The Norwegian version of the PCRS is reliable, has an acceptable construct and external validity, and can be recommended for use during the later phases of TBI.

  6. Diverging volumetric trajectories following pediatric traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Emily L. Dennis

    2017-01-01

    Full Text Available Traumatic brain injury (TBI is a significant public health concern, and can be especially disruptive in children, derailing on-going neuronal maturation in periods critical for cognitive development. There is considerable heterogeneity in post-injury outcomes, only partially explained by injury severity. Understanding the time course of recovery, and what factors may delay or promote recovery, will aid clinicians in decision-making and provide avenues for future mechanism-based therapeutics. We examined regional changes in brain volume in a pediatric/adolescent moderate-severe TBI (msTBI cohort, assessed at two time points. Children were first assessed 2–5 months post-injury, and again 12 months later. We used tensor-based morphometry (TBM to localize longitudinal volume expansion and reduction. We studied 21 msTBI patients (5 F, 8–18 years old and 26 well-matched healthy control children, also assessed twice over the same interval. In a prior paper, we identified a subgroup of msTBI patients, based on interhemispheric transfer time (IHTT, with significant structural disruption of the white matter (WM at 2–5 months post injury. We investigated how this subgroup (TBI-slow, N = 11 differed in longitudinal regional volume changes from msTBI patients (TBI-normal, N = 10 with normal WM structure and function. The TBI-slow group had longitudinal decreases in brain volume in several WM clusters, including the corpus callosum and hypothalamus, while the TBI-normal group showed increased volume in WM areas. Our results show prolonged atrophy of the WM over the first 18 months post-injury in the TBI-slow group. The TBI-normal group shows a different pattern that could indicate a return to a healthy trajectory.

  7. Antithrombotic agents intake prior to injury does not affect outcome after a traumatic brain injury in hospitalized elderly patients.

    Science.gov (United States)

    Julien, Jessica; Alsideiri, Ghusn; Marcoux, Judith; Hasen, Mohammed; Correa, José A; Feyz, Mitra; Maleki, Mohammed; de Guise, Elaine

    2017-04-01

    The purpose of this study is to investigate the effect of risk factors including International Normalized Ratio (INR) as well as the Partial Thromboplastin Time (PTT) scores on several outcomes, including hospital length of stay (LOS) and The Extended Glasgow Outcome Scale (GOSE) following TBI in the elderly population. Data were retrospectively collected on patients (n=982) aged 65 and above who were admitted post TBI to the McGill University Health Centre-Montreal General Hospital from 2000 to 2011. Age, Injury Severity Score (ISS), Glasgow Coma Scale score (GCS), type of trauma (isolated TBI vs polytrauma including TBI), initial CT scan results according to the Marshall Classification and the INR and PTT scores and prescriptions of antiplatelet or anticoagulant agents (AP/AC) were collected. Results also indicated that age, ISS and GSC score have an effect on the GOSE score. We also found that taking AC/AP has an effect on GOSE outcome, but that this effects depends on PTT, with lower odds of a worse outcome for those taking AC/AP agents as the PTT value goes up. However, this effect only becomes significant as the PTT value reaches 60 and above. Age and injury severity rather than antithrombotic agent intake are associated with adverse acute outcome such as GOSE in hospitalized elderly TBI patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Preventing Older Adult Falls and TBI

    Centers for Disease Control (CDC) Podcasts

    2008-03-05

    This podcast provides tips on how older adults can prevent falls and related injuries, such as traumatic brain injuries (TBI).  Created: 3/5/2008 by National Center for Injury Prevention and Control (NCIPC).   Date Released: 3/7/2008.

  9. Imaging of cerebral blood flow in patients with severe traumatic brain injury in the neurointensive care.

    Directory of Open Access Journals (Sweden)

    Elham eRostami

    2014-07-01

    Full Text Available Ischemia is a common and deleterious secondary injury following traumatic brain injury (TBI. A great challenge for the treatment of TBI patients in the neurointensive care unit (NICU is to detect early signs of ischemia in order to prevent further advancement and deterioration of the brain tissue. Today, several imaging techniques are available to monitor cerebral blood flow (CBF in the injured brain such as Positron emission tomography (PET, Single-photon emission computed tomography (SPECT, Xenon-CT, perfusion weighted magnetic resonance imaging (MRI and CT perfusion scan. An ideal imaging technique would enable continuous noninvasive measurement of blood flow and metabolism across the whole brain. Unfortunately, no current imaging method meets all these criteria. These techniques offer snapshots of the CBF. MRI may also provide some information about the metabolic state of the brain. PET provides images with high resolution and quantitative measurements of CBF and metabolism however it is a complex and costly method limited to few TBI centres. All of these methods except mobile Xenon-CT require transfer of TBI patients to the radiological department. Mobile Xenon-CT emerges as a feasible technique to monitor CBF in the NICU, with lower risk of adverse effects. Promising results have been demonstrated with Xenon-CT in predicting outcome in TBI patients. This review covers available imaging methods used to monitor CBF in patients with severe TBI.

  10. Triple Peripheral Nerve Injury Accompanying to Traumatic Brain Injury: A Case Report

    Directory of Open Access Journals (Sweden)

    Ižlknur Can

    2014-02-01

    Full Text Available Secondary injuries especially extremity fractures may be seen concurrently with traumatic brain injury (TBI. Peripheral nerve damages may accompany to these fractures and may be missed out, especially in acute stage. In this case report; damage of radial, ulnar and median nerves which was developed secondarily to distal humerus fracture that could not be detected in acute stage, in a patient who had motor vehicle accident (MVA. 29-year-old male patient was admitted with weakness in the right upper extremity. 9 months ago, he had traumatic brain injury because of MVA, and fracture of distal humerus was detected in follow-ups. Upon the suspect of the peripheral nerve injury, the diagnosis was confirmed with ENMG. The patient responded well to the rehabilitation program treatment. In a TBI patient, it must be kept in mind that there might be a secondary trauma and therefore peripheral nerve lesions may accompany to TBI.

  11. Development of a 3D immersive videogame to improve arm-postural coordination in patients with TBI

    Directory of Open Access Journals (Sweden)

    Cassavaugh Nicholas D

    2011-10-01

    Full Text Available Abstract Background Traumatic brain injury (TBI disrupts the central and executive mechanisms of arm(s and postural (trunk and legs coordination. To address these issues, we developed a 3D immersive videogame-- Octopus. The game was developed using the basic principles of videogame design and previous experience of using videogames for rehabilitation of patients with acquired brain injuries. Unlike many other custom-designed virtual environments, Octopus included an actual gaming component with a system of multiple rewards, making the game challenging, competitive, motivating and fun. Effect of a short-term practice with the Octopus game on arm-postural coordination in patients with TBI was tested. Methods The game was developed using WorldViz Vizard software, integrated with the Qualysis system for motion analysis. Avatars of the participant's hands precisely reproducing the real-time kinematic patterns were synchronized with the simulated environment, presented in the first person 3D view on an 82-inch DLP screen. 13 individuals with mild-to-moderate manifestations of TBI participated in the study. While standing in front of the screen, the participants interacted with a computer-generated environment by popping bubbles blown by the Octopus. The bubbles followed a specific trajectory. Interception of the bubbles with the left or right hand avatar allowed flexible use of the postural segments for balance maintenance and arm transport. All participants practiced ten 90-s gaming trials during a single session, followed by a retention test. Arm-postural coordination was analysed using principal component analysis. Results As a result of the short-term practice, the participants improved in game performance, arm movement time, and precision. Improvements were achieved mostly by adapting efficient arm-postural coordination strategies. Of the 13 participants, 10 showed an immediate increase in arm forward reach and single-leg stance time. Conclusion

  12. Development of a 3D immersive videogame to improve arm-postural coordination in patients with TBI.

    Science.gov (United States)

    Ustinova, Ksenia I; Leonard, Wesley A; Cassavaugh, Nicholas D; Ingersoll, Christopher D

    2011-10-31

    Traumatic brain injury (TBI) disrupts the central and executive mechanisms of arm(s) and postural (trunk and legs) coordination. To address these issues, we developed a 3D immersive videogame--Octopus. The game was developed using the basic principles of videogame design and previous experience of using videogames for rehabilitation of patients with acquired brain injuries. Unlike many other custom-designed virtual environments, Octopus included an actual gaming component with a system of multiple rewards, making the game challenging, competitive, motivating and fun. Effect of a short-term practice with the Octopus game on arm-postural coordination in patients with TBI was tested. The game was developed using WorldViz Vizard software, integrated with the Qualysis system for motion analysis. Avatars of the participant's hands precisely reproducing the real-time kinematic patterns were synchronized with the simulated environment, presented in the first person 3D view on an 82-inch DLP screen. 13 individuals with mild-to-moderate manifestations of TBI participated in the study. While standing in front of the screen, the participants interacted with a computer-generated environment by popping bubbles blown by the Octopus. The bubbles followed a specific trajectory. Interception of the bubbles with the left or right hand avatar allowed flexible use of the postural segments for balance maintenance and arm transport. All participants practiced ten 90-s gaming trials during a single session, followed by a retention test. Arm-postural coordination was analysed using principal component analysis. As a result of the short-term practice, the participants improved in game performance, arm movement time, and precision. Improvements were achieved mostly by adapting efficient arm-postural coordination strategies. Of the 13 participants, 10 showed an immediate increase in arm forward reach and single-leg stance time. These results support the feasibility of using the custom-made 3D

  13. Technology and its role in rehabilitation for people with cognitive-communication disability following a traumatic brain injury (TBI).

    Science.gov (United States)

    Brunner, Melissa; Hemsley, Bronwyn; Togher, Leanne; Palmer, Stuart

    2017-01-01

    To review the literature on communication technologies in rehabilitation for people with a traumatic brain injury (TBI), and: (a) determine its application to cognitive-communicative rehabilitation, and b) develop a model to guide communication technology use with people after TBI. This integrative literature review of communication technology in TBI rehabilitation and cognitive-communication involved searching nine scientific databases and included 95 studies. Three major types of communication technologies (assistive technology, augmentative and alternative communication technology, and information communication technology) and multiple factors relating to use of technology by or with people after TBI were categorized according to: (i) individual needs, motivations and goals; (ii) individual impairments, activities, participation and environmental factors; and (iii) technologies. While there is substantial research relating to communication technologies and cognitive rehabilitation after TBI, little relates specifically to cognitive-communication rehabilitation. Further investigation is needed into the experiences and views of people with TBI who use communication technologies, to provide the 'user' perspective and influence user-centred design. Research is necessary to investigate the training interventions that address factors fundamental for success, and any impact on communication. The proposed model provides an evidence-based framework for incorporating technology into speech pathology clinical practice and research.

  14. A subgroup analysis of penetrating injuries to the pancreas: 777 patients from the National Trauma Data Bank, 2010-2014.

    Science.gov (United States)

    Phillips, Bradley; Turco, Lauren; McDonald, Dan; Mause, Elizabeth; Walters, Ryan W

    2018-05-01

    This study is the first to analyze penetrating injuries to the pancreas within subgroups of severe traumatic brain injury (TBI), early deaths, and potential survivors. Our objectives were to identify national patterns of injury, predictors of mortality, and to validate the American Association for Surgery of Trauma Organ Injury Scale (AAST-OIS) pancreas injury grades by mortality. Secondary outcomes included hospital and intensive care unit length of stay and days on mechanical ventilation. Using the Abbreviated Injury Scale 2005 and ICD-9-CM E-codes, we identified 777 penetrating pancreatic trauma patients from the National Trauma Data Bank that occurred between 2010 and 2014. Severe TBI was identified by ICD-9-CM diagnosis codes and Glasgow Coma Score (GCS; n = 7), early deaths were those that occurred within 24 h of admission (n = 82), and potential survivors included patients without severe TBI who survived longer than 24 h following admission (n = 690). We estimated multivariable generalized linear mixed models to predict mortality to account for the nesting of potential survivors within trauma centers. Our results indicated that overall mortality decreased from 16.9% to 6.8% after excluding severe TBI and early deaths. Approximately, 11% of patients died within 24 h of admission, of whom 78% died in the first 6 h. Associated injuries to the stomach, liver, and major vasculature occurred in approximately 50% of patients; rates of associated injuries were highest in patients who died within 6 h of admission. In potential survivors, mortality increased by AAST-OIS grade: 3.5% I/II; 8.3% III; 9.6% IV; and 13.8% V. Predictors of mortality with significantly increased odds of death were patients with increasing age, lower admission GCS, higher admission pulse rate, and more severe injuries as indicated by Organ Injury Scale grade. From 777 patients, we identified national patterns of injury, predictors of outcome, and mortality by AAST-OIS grade within

  15. Prevalence and Risk Factors for Early Seizure in Patients with Traumatic Brain Injury: Analysis from National Trauma Data Bank.

    Science.gov (United States)

    Majidi, Shahram; Makke, Yamane; Ewida, Amr; Sianati, Bahareh; Qureshi, Adnan I; Koubeissi, Mohamad Z

    2017-08-01

    Traumatic brain injury (TBI) is a well-known risk factor for seizures. We aimed to identify the frequency and risk factors for seizure occurrence during hospitalization for TBI. We used ICD-9-CM codes to identify patients 18 years of age or older from the National Trauma Data Bank who were admitted with TBI. We also used ICD-9-CM codes to identify the subset who had seizures during hospitalization. Patient demographics, comorbidities, Glasgow Coma Scale (GCS) score, Injury Severity Score Abbreviated Injury Scale (ISSAIS), in-hospital complications, and discharge disposition were compared in the seizure group (SG) and no-seizure group (NSG). A total of 1559 patients had in-hospital seizures, comprising 0.4% of all patients admitted with TBI. The mean age of SG was 3 years older than NSG [51 vs. 48; p < 0.0001]. African-American ethnicity (20 vs. 12%, p < 0.0001) and moderate TBI (8 vs. 4%, p < 0.0001) were more common in SG. History of alcohol dependence was more common in the SG (25 vs. 11%, p < 0.0001). Fall was the most common mechanism of injury in SG (56 vs. 36% in NSG; p < 0.0001). Subdural hematoma was more common in SG (31 vs. 21%, p < 0.0001). SG had higher rates of pneumonia, ARDS, acute kidney injury, and increased ICP. The average length of hospital stay was significantly higher in SG (10 vs. 6 days, p < 0.0001), and these patients had higher rate of discharge to nursing facility (32 vs. 25%, p < 0.0001). In-hospital seizures occur in 0.4% of all TBI patients. Although infrequent, seizure occurrence is associated with higher rates of hospital complications such as pneumonia and ARDS and is an independent predictor of longer hospital stay and worse hospital outcome.

  16. To Fear Is to Gain? The Role of Fear Recognition in Risky Decision Making in TBI Patients and Healthy Controls.

    Science.gov (United States)

    Visser-Keizer, Annemarie C; Westerhof-Evers, Herma J; Gerritsen, Marleen J J; van der Naalt, Joukje; Spikman, Jacoba M

    2016-01-01

    Fear is an important emotional reaction that guides decision making in situations of ambiguity or uncertainty. Both recognition of facial expressions of fear and decision making ability can be impaired after traumatic brain injury (TBI), in particular when the frontal lobe is damaged. So far, it has not been investigated how recognition of fear influences risk behavior in healthy subjects and TBI patients. The ability to recognize fear is thought to be related to the ability to experience fear and to use it as a warning signal to guide decision making. We hypothesized that a better ability to recognize fear would be related to a better regulation of risk behavior, with healthy controls outperforming TBI patients. To investigate this, 59 healthy subjects and 49 TBI patients were assessed with a test for emotion recognition (Facial Expression of Emotion: Stimuli and Tests) and a gambling task (Iowa Gambling Task (IGT)). The results showed that, regardless of post traumatic amnesia duration or the presence of frontal lesions, patients were more impaired than healthy controls on both fear recognition and decision making. In both groups, a significant relationship was found between better fear recognition, the development of an advantageous strategy across the IGT and less risk behavior in the last blocks of the IGT. Educational level moderated this relationship in the final block of the IGT. This study has important clinical implications, indicating that impaired decision making and risk behavior after TBI can be preceded by deficits in the processing of fear.

  17. To Fear Is to Gain? The Role of Fear Recognition in Risky Decision Making in TBI Patients and Healthy Controls.

    Directory of Open Access Journals (Sweden)

    Annemarie C Visser-Keizer

    Full Text Available Fear is an important emotional reaction that guides decision making in situations of ambiguity or uncertainty. Both recognition of facial expressions of fear and decision making ability can be impaired after traumatic brain injury (TBI, in particular when the frontal lobe is damaged. So far, it has not been investigated how recognition of fear influences risk behavior in healthy subjects and TBI patients. The ability to recognize fear is thought to be related to the ability to experience fear and to use it as a warning signal to guide decision making. We hypothesized that a better ability to recognize fear would be related to a better regulation of risk behavior, with healthy controls outperforming TBI patients. To investigate this, 59 healthy subjects and 49 TBI patients were assessed with a test for emotion recognition (Facial Expression of Emotion: Stimuli and Tests and a gambling task (Iowa Gambling Task (IGT. The results showed that, regardless of post traumatic amnesia duration or the presence of frontal lesions, patients were more impaired than healthy controls on both fear recognition and decision making. In both groups, a significant relationship was found between better fear recognition, the development of an advantageous strategy across the IGT and less risk behavior in the last blocks of the IGT. Educational level moderated this relationship in the final block of the IGT. This study has important clinical implications, indicating that impaired decision making and risk behavior after TBI can be preceded by deficits in the processing of fear.

  18. Targeting Epigenetic Mechanisms in Pain due to Trauma and Traumatic Brain Injury(TBI)

    Science.gov (United States)

    2016-10-01

    after incision and TBI, and the relationship of those changes to CXCR2 expression ST4.1 Establish spinal cord sites and cell types displaying...we plan to use oral preparations of these drugs and establish dose-response relationships as these will be pharmacologically useful and make the...Anesthesiology Annual Awards Dinner . Palo Alto, CA, June, 2016. 4. Epigenetic Regulation of Chronic Pain after Traumatic Brain Injury. De-Yong

  19. Assessment of performance validity in the Stroop Color and Word Test in mild traumatic brain injury patients: a criterion-groups validation design.

    Science.gov (United States)

    Guise, Brian J; Thompson, Matthew D; Greve, Kevin W; Bianchini, Kevin J; West, Laura

    2014-03-01

    The current study assessed performance validity on the Stroop Color and Word Test (Stroop) in mild traumatic brain injury (TBI) using criterion-groups validation. The sample consisted of 77 patients with a reported history of mild TBI. Data from 42 moderate-severe TBI and 75 non-head-injured patients with other clinical diagnoses were also examined. TBI patients were categorized on the basis of Slick, Sherman, and Iverson (1999) criteria for malingered neurocognitive dysfunction (MND). Classification accuracy is reported for three indicators (Word, Color, and Color-Word residual raw scores) from the Stroop across a range of injury severities. With false-positive rates set at approximately 5%, sensitivity was as high as 29%. The clinical implications of these findings are discussed. © 2012 The British Psychological Society.

  20. Computed tomography and clinical outcome in patients with severe traumatic brain injury.

    Science.gov (United States)

    Stenberg, Maud; Koskinen, Lars-Owe D; Jonasson, Per; Levi, Richard; Stålnacke, Britt-Marie

    2017-01-01

    To study: (i) acute computed tomography (CT) characteristics and clinical outcome; (ii) clinical course and (iii) Corticosteroid Randomisation after Significant Head Injury acute calculator protocol (CRASH) model and clinical outcome in patients with severe traumatic brain injury (sTBI). Initial CT (CT i ) and CT 24 hours post-trauma (CT 24 ) were evaluated according to Marshall and Rotterdam classifications. Rancho Los Amigos Cognitive Scale-Revised (RLAS-R) and Glasgow Outcome Scale Extended (GOSE) were assessed at three months and one year post-trauma. The prognostic value of the CRASH model was evaluated. Thirty-seven patients were included. Marshall CT i and CT 24 were significantly correlated with RLAS-R at three months. Rotterdam CT 24 was significantly correlated with GOSE at three months. RLAS-R and the GOSE improved significantly from three months to one year. CRASH predicted unfavourable outcome at six months for 81% of patients with bad outcome and for 85% of patients with favourable outcome according to GOSE at one year. Neither CT nor CRASH yielded clinically useful predictions of outcome at one year post-injury. The study showed encouragingly many instances of significant recovery in this population of sTBI. The combination of lack of reliable prognostic indicators and favourable outcomes supports the case for intensive acute management and rehabilitation as the default protocol in the cases of sTBI.

  1. Volumetric analysis of day of injury computed tomography is associated with rehabilitation outcomes after traumatic brain injury

    Science.gov (United States)

    Majercik, Sarah; Bledsoe, Joseph; Ryser, David; Hopkins, Ramona O.; Fair, Joseph E.; Frost, R. Brock; MacDonald, Joel; Barrett, Ryan; Horn, Susan; Pisani, David; Bigler, Erin D.; Gardner, Scott; Stevens, Mark; Larson, Michael J.

    2016-01-01

    Introduction Day-of-injury (DOI) brain lesion volumes in traumatic brain injury (TBI) patients are rarely used to predict long-term outcomes in the acute setting. The purpose of this study was to investigate the relationship between acute brain injury lesion volume and rehabilitation outcomes in patients with TBI at a Level One Trauma Center. Methods Patients with TBI who were admitted to our rehabilitation unit after the acute care trauma service from February 2009-July 2011 were eligible for the study. Demographic data and outcome variables including cognitive and motor FIM scores, length of stay (LOS) in the rehabilitation unit, and ability to return to home were obtained. DOI quantitative injury lesion volumes and degree of midline shift were obtained from day-of-injury (DOI) brain computed tomography (CT) scans. A multiple step-wise regression model including 13 independent variables was created. This model was used to predict post-rehabilitation outcomes, including FIM scores and ability to return to home. PInjury Severity Score 24.7±9.9, and head Abbreviated Injury Scale score 3.73±0.97. Acute hospital length of stay (LOS) was 12.3±8.9 days and rehabilitation LOS was 15.9±9.3 days. Day-of-injury TBI lesion volumes were inversely associated with cognitive FIM scores at rehabilitation admission (p=0.004) and discharge (p=0.004) and inversely associated with ability to be discharged to home after rehabilitation (p=0.006). Conclusion In a cohort of patients with moderate to severe TBI requiring a rehabilitation unit stay after the acute care hospital stay, DOI brain injury lesion volumes are associated with worse cognitive FIM scores at the time of rehabilitation admission and discharge. Smaller injury volumes were associated with eventual discharge to home. Volumetric neuroimaging in the acute injury phase may improve surgeons’ ultimate outcome predictions in TBI patients. Level of Evidence/Study Type Level V, case series, Prognostic/Epidemiological PMID

  2. Oxidative Stress and Antioxidant Therapy in Critically Ill Polytrauma Patients with Severe Head Injury

    Directory of Open Access Journals (Sweden)

    Luca Loredana

    2015-05-01

    Full Text Available Traumatic Brain Injury (TBI is one of the leading causes of death among critically ill patients from the Intensive Care Units (ICU. After primary traumatic injuries, secondary complications occur, which are responsible for the progressive degradation of the clinical status in this type of patients. These include severe inflammation, biochemical and physiological imbalances and disruption of the cellular functionality. The redox cellular potential is determined by the oxidant/antioxidant ratio. Redox potential is disturbed in case of TBI leading to oxidative stress (OS. A series of agression factors that accumulate after primary traumatic injuries lead to secondary lesions represented by brain ischemia and hypoxia, inflammatory and metabolic factors, coagulopathy, microvascular damage, neurotransmitter accumulation, blood-brain barrier disruption, excitotoxic damage, blood-spinal cord barrier damage, and mitochondrial dysfunctions. A cascade of pathophysiological events lead to accelerated production of free radicals (FR that further sustain the OS. To minimize the OS and restore normal oxidant/antioxidant ratio, a series of antioxidant substances is recommended to be administrated (vitamin C, vitamin E, resveratrol, N-acetylcysteine. In this paper we present the biochemical and pathophysiological mechanism of action of FR in patients with TBI and the antioxidant therapy available.

  3. Hypertonic saline solution reduces the oxidative stress responses in traumatic brain injury patients

    Directory of Open Access Journals (Sweden)

    Mojtaba Mojtahedzadeh

    2014-01-01

    Full Text Available Background: Oxidative stress processes play an important role in the pathogenesis of secondary brain injury after traumatic brain injury (TBI. Hypertonic saline (HTS has advantages as being preferred osmotic agent, but few studies investigated oxidant and antioxidant effects of HTS in TBI. This study was designed to compare two different regimens of HTS 5% with mannitol on TBI-induced oxidative stress. Materials and Methods: Thirty-three adult patients with TBI were recruited and have randomly received one of the three protocols: 125 cc of HTS 5% every 6 h as bolus, 500 cc of HTS 5%as infusion for 24 h or 1 g/kg mannitol of 20% as a bolus, repeated with a dose of 0.25-0.5 g/kg every 6 h based on patient′s response for 3 days. Serum total antioxidant power (TAP, reactive oxygen species (ROS and nitric oxide (NO were measured at baseline and daily for 3 days. Results: Initial serum ROS and NO levels in patients were higher than control(6.86± [3.2] vs. 1.57± [0.5] picoM, P = 0.001, 14.6± [1.6] vs. 7.8± [3.9] mM, P = 0.001, respectively. Levels of ROS have decreased for all patients, but reduction was significantly after HTS infusion and mannitol (3. 08 [±3.1] to 1.07 [±1.6], P = 0.001, 5.6 [±3.4] to 2.5 [±1.8], P = 0.003 respectively. During study, NO levels significantly decreased in HTS infusion but significantly increased in mannitol. TAP Levels had decreased in all patients during study especially in mannitol (P = 0.004. Conclusion: Hypertonic saline 5% has significant effects on the oxidant responses compared to mannitol following TBI that makes HTS as a perfect therapeutic intervention for reducing unfavorable outcomes in TBI patients.

  4. Neurologic Functional and Quality of Life Outcomes after TBI: Clinic Attendees versus Non-Attendees.

    Science.gov (United States)

    Patel, Mayur B; Wilson, Laura D; Bregman, Jana A; Leath, Taylor C; Humble, Stephen S; Davidson, Mario A; de Riesthal, Michael R; Guillamondegui, Oscar D

    2015-07-01

    This investigation describes the relationship between TBI patient demographics, quality of life outcome, and functional status outcome among clinic attendees and non-attendees. Of adult TBI survivors with intracranial hemorrhage, 63 attended our TBI clinic and 167 did not attend. All were telephone surveyed using the Extended-Glasgow Outcome Scale (GOSE), the Quality of Life after Brain Injury (QOLIBRI) scale, and a post-discharge therapy questionnaire. To determine risk factors for GOSE and QOLIBRI outcomes, we created multivariable regression models employing covariates of age, injury characteristics, clinic attendance, insurance status, post-discharge rehabilitation, and time from injury. Compared with those with severe TBI, higher GOSE scores were identified in individuals with both mild (odds ratio [OR]=2.0; 95% confidence interval [CI]: 1.1-3.6) and moderate (OR=4.7; 95% CI: 1.6-14.1) TBIs. In addition, survivors with private insurance had higher GOSE scores, compared with those with public insurance (OR=2.0; 95% CI: 1.1-3.6), workers' compensation (OR=8.4; 95% CI: 2.6-26.9), and no insurance (OR=3.1; 95% CI: 1.6-6.2). Compared with those with severe TBI, QOLIBRI scores were 11.7 points (95% CI: 3.7-19.7) higher in survivors with mild TBI and 17.3 points (95% CI: 3.2-31.5) higher in survivors with moderate TBI. In addition, survivors who received post-discharge rehabilitation had higher QOLIBRI scores by 11.4 points (95% CI: 3.7-19.1) than those who did not. Survivors with private insurance had QOLIBRI scores that were 25.5 points higher (95% CI: 11.3-39.7) than those with workers' compensation and 16.8 points higher (95% CI: 7.4-26.2) than those without insurance. Because neurologic injury severity, insurance status, and receipt of rehabilitation or therapy are independent risk factors for functional and quality of life outcomes, future directions will include improving earlier access to post-TBI rehabilitation, social work services, affordable insurance

  5. Effects of categorization training in patients with TBI during postacute rehabilitation: preliminary findings.

    Science.gov (United States)

    Constantinidou, Fofi; Thomas, Robin D; Scharp, Victoria L; Laske, Kate M; Hammerly, Mark D; Guitonde, Suchita

    2005-01-01

    Previous research suggests that traumatic brain injury (TBI) interferes with the ability to extract and use attributes to describe objects. This study explored the effects of a systematic Categorization Program (CP) in participants with TBI and noninjured controls. Ten persons with moderate to severe TBI who received comprehensive postacute rehabilitation services and 13 matched noninjured controls participated in the study. All participants received CP training for 3 to 5 hours per week for 10 to 12 weeks that consisted of 8 levels and targeted concept formation, object categorization, and decision-making abilities. The Mayo-Portland Adaptability Inventory-3 (MPAI-3) and the Community Integration Questionnaire (CIQ). Two Categorization Tests (administered pretraining and posttraining) and 3 Probe Tasks (administered at specified intervals during training) assessed skills relating to categorization. Both groups showed significant improvement in categorization performance after the CP training on the 2 Categorization Tests related to the CP. They also were able to generalize and apply categorization and sorting skills in new situations (as measured by the Probe Tasks). Participants with TBI had improved functional outcome performance measured by the MPAI-3 and the CIQ. The systematic and hierarchical structure of the CP is beneficial to participants with TBI during postacute rehabilitation. This study contributes to the growing body of evidence supporting cognitive rehabilitation after moderate to severe TBI.

  6. Project Career: Perceived benefits of iPad apps among college students with Traumatic Brain Injury (TBI).

    Science.gov (United States)

    Jacobs, K; Leopold, A; Hendricks, D J; Sampson, E; Nardone, A; Lopez, K B; Rumrill, P; Stauffer, C; Elias, E; Scherer, M; Dembe, J

    2017-09-14

    Project Career is an interprofessional five-year development project designed to improve academic and employment success of undergraduate students with a traumatic brain injury (TBI) at two- and four-year colleges and universities. Students receive technology in the form of iPad applications ("apps") to support them in and out of the classroom. To assess participants' perspectives on technology at baseline and perceived benefit of apps after 6 and 12 months of use. This article address a component of a larger study. Participants included 50 college-aged students with traumatic brain injuries. Statistical analysis included data from two Matching Person and Technology (MPT) assessment forms, including the Survey of Technology Use at baseline and the Assistive Technology Use Follow-Up Survey: Apps Currently Using, administered at 6- and 12-months re-evaluation. Analyses included frequencies and descriptives. Average scores at baseline indicated positive perspectives on technology. At 6 months, quality of life (67%) and academics (76%) improved moderately or more from the use of iPad apps. At 12 months, quality of life (65%) and academics (82%) improved moderately or more from the use of iPad apps. Students with a TBI have positive perspectives on technology use. The results on perceived benefit of apps indicated that students with a TBI (including civilians and veterans) report that the apps help them perform in daily life and academic settings.

  7. Primary Blast Injury Criteria for Animal/Human TBI Models using Field Validated Shock Tubes

    Science.gov (United States)

    2017-09-01

    acute hemorrhage characterized by partial filling of small groups of alveoli by blood . 240 kPa: Mild multifocal pools of acute hemorrhage which...Neurotrauma, Blast TBI, Primary blast brain injury, Blast overpressure, Blood -brain barrier, Neuroinflammation, Oxidative stress, Neuroproteomics 16...stress, neuroinflammation and BBB damage as a result of blast overpressure in the acute phase (0, 4 and 24 hours post-exposure). Our group

  8. Multi-signal Visualization of Physiology (MVP): a novel visualization dashboard for physiological monitoring of Traumatic Brain Injury patients.

    Science.gov (United States)

    Sebastian, Kevin; Sari, Vivian; Loy, Liang Yu; Zhang, Feng; Zhang, Zhuo; Feng, Mengling

    2012-01-01

    To prevent Traumatic Brain Injury (TBI) patients from secondary brain injuries, patients' physiological readings are continuously monitored. However, the visualization dashboards of most existing monitoring devices cannot effectively present all physiological information of TBI patients and are also ineffective in facilitating neuro-clinicians for fast and accurate diagnosis. To address these shortcomings, we proposed a new visualization dashboard, namely the Multi-signal Visualization of Physiology (MVP). MVP makes use of multi-signal polygram to collate various physiological signals, and it also utilizes colors and the concept of "safe/danger zones" to assist neuro-clinicians to achieve fast and accurate diagnosis. Moreover, MVP allows neuro-clinicians to review historical physiological statuses of TBI patients, which can guide and optimize clinicians' diagnosis and prognosis decisions. The performance of MVP is tested and justified with an actual Philips monitoring device.

  9. Clinical Predictors of Progressive Hemorrhagic Injury in Children with Mild Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Guangfu Di

    2017-11-01

    Full Text Available ObjectiveTraumatic brain injury (TBI occurs commonly in children. Repeat computed tomography (CT follow up of TBI patients is often scheduled to identify progressive hemorrhagic injury (PHI. However, the utility of repeated CT scans, especially in children with mild TBI [Glasgow Coma Scale (GCS scores of 13–15], has been debated. The purposes of the present study were to identify clinical predictors of PHI in children with mild TBI and to clarify relevant clinical factors via radiological examination.MethodsFrom 2014 to 2016, we retrospectively enrolled children <15 years of age with mild TBI. We recorded age, sex, GCS scores on admission, causes of head injury, timing of initial CT, any loss of consciousness, vomiting and seizure data, and type of TBI. Based on repeat CT findings, patients were dichotomized into either a PHI group or a non-PHI group. Also, clinical data were comparatively reviewed. Multivariate logistic regression analysis was used to identify clinical predictors of PHI.ResultsOf the 175 enrolled children, 15 (8.6% experienced PHI. Univariate analysis revealed that GCS score on admission, cause of head injury, vomiting, seizure, and TBI type were associated with PHI. Multivariate logistic regression analysis showed that a GCS score of 13 and epidural hemorrhage (EDH were independently associated with PHI (hazard ratio = 0.131, P = 0.018; hazard ratio = 6.612, P = 0.027, respectively.ConclusionA GCS score of 13 and EDH were associated with PHI. These factors should be considered when deciding whether to repeat CT on children with mild TBI.

  10. Perioperative Care for Pediatric Patients With Penetrating Brain Injury: A Review.

    Science.gov (United States)

    Mikhael, Marco; Frost, Elizabeth; Cristancho, Maria

    2017-05-19

    Traumatic brain injury (TBI) continues to be the leading cause of death and acquired disability in young children and adolescents, due to blunt or penetrating trauma, the latter being less common but more lethal. Penetrating brain injury (PBI) has not been studied extensively, mainly reported as case reports or case series, due to the assumption that both types of brain injury have common pathophysiology and consequently common management. However, recommendations and guidelines for the management of PBI differ from those of blunt TBI in regards to neuroimaging, intracranial pressure (ICP) monitoring, and surgical management including those pertaining to vascular injury. PBI was one of the exclusion criteria in the second edition of guidelines for the acute medical management of severe TBI in infants, children, and adolescents that was published in 2012 (it is referred to as "pediatric guidelines" in this review). Many reviews of TBI do not differentiate between the mechanisms of injury. We present an overview of PBI, its presenting features, epidemiology, and causes as well as an analysis of case series and the conclusions that may be drawn from those and other studies. More clinical trials specific to penetrating head injuries in children, focusing mainly on pathophysiology and management, are needed. The term PBI is specific to penetrating injury only, whereas TBI, a more inclusive term, describes mainly, but not only, blunt injury.

  11. Measurement of serum melatonin in intensive care unit patients: changes in traumatic brain injury, trauma and medical conditions

    Directory of Open Access Journals (Sweden)

    Marc A Seifman

    2014-11-01

    Full Text Available Melatonin is an endogenous hormone mainly produced by the pineal gland whose dysfunction leads to abnormal sleeping patterns. Changes in melatonin have been reported in acute traumatic brain injury (TBI, however the impact of environmental conditions typical of the intensive care unit (ICU has not been assessed. The aim of this study was to compare daily melatonin production in three patient populations treated at the ICU to differentiate the role of TBI versus ICU conditions. Forty-five patients were recruited and divided into severe TBI, trauma without TBI, medical conditions without trauma and compared to healthy volunteers. Serum melatonin levels were measured at four daily intervals at 0400h, 1000h, 1600h and 2200h for 7 days post-ICU admission by commercial ELISA. The geometric mean concentrations (95% confidence intervals of melatonin in these groups showed no difference being 8.3 (6.3-11.0, 9.3 (7.0-12.3 and 8.9 (6.6-11.9 pg/mL, respectively in TBI, trauma and intensive care cohorts. All of these patient groups demonstrated decreased melatonin concentrations when compared to control patients.This study suggests that TBI as well as ICU conditions, may have a role in the dysfunction of melatonin. Monitoring and possibly substituting melatonin acutely in these settings may assist in ameliorating longterm sleep dysfunction in all of these groups, and possibly contribute to reducing secondary brain injury in severe TBI.

  12. Volumetric analysis of day of injury computed tomography is associated with rehabilitation outcomes after traumatic brain injury.

    Science.gov (United States)

    Majercik, Sarah; Bledsoe, Joseph; Ryser, David; Hopkins, Ramona O; Fair, Joseph E; Brock Frost, R; MacDonald, Joel; Barrett, Ryan; Horn, Susan; Pisani, David; Bigler, Erin D; Gardner, Scott; Stevens, Mark; Larson, Michael J

    2017-01-01

    Day-of-injury (DOI) brain lesion volumes in traumatic brain injury (TBI) patients are rarely used to predict long-term outcomes in the acute setting. The purpose of this study was to investigate the relationship between acute brain injury lesion volume and rehabilitation outcomes in patients with TBI at a level one trauma center. Patients with TBI who were admitted to our rehabilitation unit after the acute care trauma service from February 2009-July 2011 were eligible for the study. Demographic data and outcome variables including cognitive and motor Functional Independence Measure (FIM) scores, length of stay (LOS) in the rehabilitation unit, and ability to return to home were obtained. The DOI quantitative injury lesion volumes and degree of midline shift were obtained from DOI brain computed tomography scans. A multiple stepwise regression model including 13 independent variables was created. This model was used to predict postrehabilitation outcomes, including FIM scores and ability to return to home. A p value less than 0.05 was considered significant. Ninety-six patients were enrolled in the study. Mean age was 43 ± 21 years, admission Glasgow Coma Score was 8.4 ± 4.8, Injury Severity Score was 24.7 ± 9.9, and head Abbreviated Injury Scale score was 3.73 ± 0.97. Acute hospital LOS was 12.3 ± 8.9 days, and rehabilitation LOS was 15.9 ± 9.3 days. Day-of-injury TBI lesion volumes were inversely associated with cognitive FIM scores at rehabilitation admission (p = 0.004) and discharge (p = 0.004) and inversely associated with ability to be discharged to home after rehabilitation (p = 0.006). In a cohort of patients with moderate to severe TBI requiring a rehabilitation unit stay after the acute care hospital stay, DOI brain injury lesion volumes are associated with worse cognitive FIM scores at the time of rehabilitation admission and discharge. Smaller-injury volumes were associated with eventual discharge to home. Volumetric neuroimaging in the acute

  13. Serum melatonin levels in survivor and non-survivor patients with traumatic brain injury.

    Science.gov (United States)

    Lorente, Leonardo; Martín, María M; Abreu-González, Pedro; Pérez-Cejas, Antonia; Ramos, Luis; Argueso, Mónica; Solé-Violán, Jordi; Cáceres, Juan J; Jiménez, Alejandro; García-Marín, Victor

    2017-07-19

    Circulating levels of melatonin in patients with traumatic brain injury (TBI) have been determined in a little number of studies with small sample size (highest sample size of 37 patients) and only were reported the comparison of serum melatonin levels between TBI patients and healthy controls. As to we know, the possible association between circulating levels of melatonin levels and mortality of patients with TBI have not been explored; thus, the objective of our current study was to determine whether this association actually exists. This multicenter study included 118 severe TBI (Glasgow Coma Scale melatonin, malondialdehyde (to assess lipid peroxidation) and total antioxidant capacity (TAC) at day 1 of severe TBI. We used mortality at 30 days as endpoint. We found that non-survivor (n = 33) compared to survivor (n = 85) TBI patients showed higher circulating levels of melatonin (p melatonin levels predicted 30-day mortality (Odds ratio = 1.334; 95% confidence interval = 1.094-1.627; p = 0.004), after to control for GCS, CT findings and age. We found a correlation between serum levels of melatonin levels and serum levels of TAC (rho = 0.37; p melatonin levels in patients with severe TBI. The main findings were that non-survivors had higher serum melatonin levels than survivors, and the association between serum levels of melatonin levels and mortality, peroxidation state and antioxidant state.

  14. A Prospective Randomized Study of Brain Tissue Oxygen Pressure-Guided Management in Moderate and Severe Traumatic Brain Injury Patients

    Directory of Open Access Journals (Sweden)

    Chien-Min Lin

    2015-01-01

    Full Text Available The purpose of this study was to compare the effect of PbtO2-guided therapy with traditional intracranial pressure- (ICP- guided treatment on the management of cerebral variables, therapeutic interventions, survival rates, and neurological outcomes of moderate and severe traumatic brain injury (TBI patients. From 2009 to 2010, TBI patients with a Glasgow coma scale 20 mmHg, and 27 patients were treated with ICP-guided therapy (ICP 60 mmHg in the neurosurgical intensive care unit (NICU; demographic characteristics were similar across groups. The survival rate in the PbtO2-guided group was also significantly increased at 3 and 6 months after injury. Moreover, there was a significant correlation between the PbtO2 signal and Glasgow outcome scale-extended in patients from 1 to 6 months after injury. This finding demonstrates that therapy directed by PbtO2 monitoring is valuable for the treatment of patients with moderate and severe TBI and that increasing PaO2 to 150 mmHg may be efficacious for preventing cerebral hypoxic events after brain trauma.

  15. AFFECTIVE RESPONSES AFTER DIFFERENT INTENSITIES OF EXERCISE IN PATIENTS WITH TRAUMATIC BRAIN INJURY

    Directory of Open Access Journals (Sweden)

    Patricia eRzezak

    2015-06-01

    Full Text Available BACKGROUND: Patients with traumatic brain injury (TBI usually have mood and anxiety symptoms secondary to their brain injury. Exercise may be a cost-effective intervention for the regulation of the affective responses of this population. However, there are no studies evaluating the effects of exercise or the optimal intensity of exercise for this clinical group. METHODS: Twelve male patients with moderate or severe TBI [mean age of 31.83 and SD of 9.53] and 12 age- and gender-matched healthy volunteers [mean age of 30.58 and SD of 9.53] participated in two sessions of exercise of high and moderate intensity. Anxiety and mood was evaluated, and subjective assessment of experience pre- and post-exercise was assessed. A mixed between and within-subjects GLM analysis was conducted to compare groups [TBI, control] over condition [baseline, session 1, session 2] allowing for group by condition interaction to be determined. Planned comparisons were also conducted to test study hypotheses.RESULTS: Although no group by condition interaction was observed, planned comparisons indicated that baseline differences between patients and controls in anxiety (Cohens’ d=1.80, tension (d=1.31, depression (d=1.18, anger (d=1.08, confusion (d=1.70, psychological distress (d=1.28 and physical symptoms (d=1.42 disappear after one session of exercise, independently of the intensity of exercise. CONCLUSIONS: A single-section of exercise, regardless of exercise intensity, had a positive effect on the affective responses of patients with TBI both by increasing positive valence feelings and decreasing negative ones. Exercise can be an easily accessible intervention that may alleviate depressive symptoms related to brain injury.

  16. Save the patient a trip. Outcome difference between conservatively treated patients with traumatic brain injury in a nonspecialized intensive care unit vs a specialized neurosurgical intensive care unit in the Sultanate of Oman.

    Science.gov (United States)

    Al-Kashmiri, Ammar M; Al-Shaqsi, Sultan Z; Al-Kharusi, Adil S; Al-Tamimi, Laila A

    2015-06-01

    Traumatic brain injury (TBI) continues to be the main cause of death among trauma patients. Accurate diagnosis and timely surgical interventions are critical steps in reducing the mortality from this disease. For patients who have no surgically reversible head injury pathology, the decision to transfer to a dedicated neurosurgical unit is usually controversial. To compare the outcome of patients with severe TBI treated conservatively in a specialized neurosurgical intensive care unit (ICU) and those treated conservatively at a general ICU in the Sultanate of Oman. Retrospective cohort study. This is a retrospective study of patients with severe TBI admitted to Khoula Hospital ICU (specialized neurosurgical ICU) and Nizwa Hospital ICU (general ICU) in Oman in 2013. Surgically treated patients were excluded. Data extracted included demographics, injury details, interventions, and outcomes. The outcome variables included mortality, length of stay, length of ICU days, and ventilated days. There were 100 patients with severe TBI treated conservatively at Khoula Hospital compared with 74 patients at Nizwa Hospital. Basic demographics were similar between the 2 groups. No significant difference was found in mortality, length of stay, ICU days, and ventilation days. There is no difference in outcome between patients with TBI treated conservatively in a specialized neurosurgical ICU and those treated in a general nonspecialized ICU in Oman in 2013. Therefore, unless neurosurgical intervention is warranted or expected, patients with TBI may be managed in a general ICU, saving the risk and expense of a transfer to a specialized neurosurgical ICU. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Technetium-99m-HMPAO SPECT in the evaluation of patients with a remote history of traumatic brain injury: a comparison with x-ray computed tomography.

    Science.gov (United States)

    Gray, B G; Ichise, M; Chung, D G; Kirsh, J C; Franks, W

    1992-01-01

    The functional imaging modality has potential for demonstrating parenchymal abnormalities not detectable by traditional morphological imaging. Fifty-three patients with a remote history of traumatic brain injury (TBI) were studied with SPECT using 99mTc-hexamethylpropyleneamineoxime (HMPAO) and x-ray computed tomography (CT). Overall, 42 patients (80%) showed regional cerebral blood flow (rCBF) deficits by HMPAO SPECT, whereas 29 patients (55%) showed morphological abnormalities by CT. Out of 20 patients with minor head injury, 12 patients (60%) showed rCBF deficits and 5 patients (25%) showed CT abnormalities. Of 33 patients with major head injury, 30 patients (90%) showed rCBF deficits and 24 patients (72%) showed CT abnormalities. Thus, HMPAO SPECT was more sensitive than CT in detecting abnormalities in patients with a history of TBI, particularly in the minor head injury group. In the major head injury group, three patients showed localized cortical atrophy by CT and normal rCBF by HMPAO SPECT. In the evaluation of TBI patients, HMPAO SPECT is a useful technique to demonstrate regional brain dysfunction in the presence of morphological integrity as assessed by CT.

  18. Altered Mitochondrial Dynamics and TBI Pathophysiology

    Directory of Open Access Journals (Sweden)

    Tara Diane Fischer

    2016-03-01

    Full Text Available Mitochondrial function is intimately linked to cellular survival, growth, and death. Mitochondria not only generate ATP from oxidative phosphorylation, but also mediate intracellular calcium buffering, generation of reactive oxygen species (ROS, and apoptosis. Electron leakage from the electron transport chain, especially from damaged or depolarized mitochondria, can generate excess free radicals that damage cellular proteins, DNA, and lipids. Furthermore, mitochondrial damage releases pro-apoptotic factors to initiate cell death. Previous studies have reported that traumatic brain injury (TBI reduces mitochondrial respiration, enhances production of ROS, and triggers apoptotic cell death, suggesting a prominent role of mitochondria in TBI pathophysiology. Mitochondria maintain cellular energy homeostasis and health via balanced processes of fusion and fission, continuously dividing and fusing to form an interconnected network throughout the cell. An imbalance of these processes, particularly an excess of fission, can be detrimental to mitochondrial function, causing decreased respiration, ROS production, and apoptosis. Mitochondrial fission is regulated by the cytosolic GTPase, dynamin-related protein 1 (Drp1, which translocates to the mitochondrial outer membrane to initiate fission. Aberrant Drp1 activity has been linked to excessive mitochondrial fission and neurodegeneration. Measurement of Drp1 levels in purified hippocampal mitochondria showed an increase in TBI animals as compared to sham controls. Analysis of cryo-electron micrographs of these mitochondria also showed that TBI caused an initial increase in the length of hippocampal mitochondria at 24 hours post-injury, followed by a significant decrease in length at 72 hours. Post-TBI administration of Mdivi-1, a pharmacological inhibitor of Drp1, prevented this decrease in mitochondria length. Mdivi-1 treatment also reduced the loss of newborn neurons in the hippocampus and improved

  19. Social reintegration of TBI patients: a solution to provide long-term support.

    Science.gov (United States)

    Bulinski, Leszek

    2010-01-01

    This article evaluates the effectiveness of a workable long-term program to provide social support for TBI patients, based on the "Academy of Life" concept. Disability after TBI causes numerous disruptions of normal life, which affect the patient, the family, and society. The patient needs the particular kind of support the program was designed to provide. The study involved 200 married couples with a TBI spouse previously enrolled in the "Academy of Life." The methods included documentation analysis, clinical interviews, the Family Bonds Scale, the Social Isolation Scale, and the Social Functions subscale from a battery used to evaluate QOL after TBI. The subjects were examined before and after completing the program. In the first examination all types of family bonds were found to be severely weakened; there was deep social isolation, loneliness, sadness, a feeling of being surrounded by hostility, and no purposeful social activity. The most common form of support from significant others was pity and unwanted interference, accompanied by lack of understanding and social ostracism. In the second examination there was selective improvement of all parameters, significantly greater in patients without PTSD symptoms. The best effects were achieved in the reduction of social dysfunctions, the growth of purposeful social activity, and improvement in the type of support received, and a reduction of selected parameters of social isolation. The program here described is selectively effective for the social reintegration of TBI-patients, especially those without PTSD symptoms.

  20. The association of functional oral intake and pneumonia in patients with severe Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Schow, Trine; Larsen, Klaus; Engberg, Aase Worså

    Abstract Objective(s): This study investigates the incidence and onset time of pneumonia for patients with severe Traumatic Brain Injury (TBI) in the early phase of rehabilitation, and identifies parameters associated with the risk of pneumonia. Design: Observational retrospective cohort study....... Setting: A subacute rehabilitation department, university hospital, Denmark. Participants: One-hundred and seventy-three patients aged 16-65 years with severe TBI admitted over a 5-year period. Patients are transferred to the Brain Injury Unit (BIU) as soon as they ventilate spontaneously. Intervention......: None Main Outcome Measure(s): Pneumonia. Results: Twenty-seven percent (27%) of the patients admitted to the BIU were in treatment for pneumonia and 12% developed pneumonia during rehabilitation, all but one within 19 days of admission. Of these patients, 81% received nothing by mouth. Three factors...

  1. Neuropsychology of traumatic brain injury: An expert overview.

    Science.gov (United States)

    Azouvi, P; Arnould, A; Dromer, E; Vallat-Azouvi, C

    Traumatic brain injury (TBI) is a serious healthcare problem, and this report is a selective review of recent findings on the epidemiology, pathophysiology and neuropsychological impairments following TBI. Patients who survive moderate-to-severe TBI frequently suffer from a wide range of cognitive deficits and behavioral changes due to diffuse axonal injury. These deficits include slowed information-processing and impaired long-term memory, attention, working memory, executive function, social cognition and self-awareness. Mental fatigue is frequently also associated and can exacerbate the consequences of neuropsychological deficits. Personality and behavioral changes can include combinations of impulsivity and apathy. Even mild TBI raises specific problems: while most patients recover within a few weeks or months, a minority of patients may suffer from long-lasting symptoms (post-concussion syndrome). The pathophysiology of such persistent problems remains a subject of debate, but seems to be due to both injury-related and non-injury-related factors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Predictors of Hypopituitarism in Patients with Traumatic Brain Injury.

    Science.gov (United States)

    Silva, Paula P B; Bhatnagar, Saurabha; Herman, Seth D; Zafonte, Ross; Klibanski, Anne; Miller, Karen K; Tritos, Nicholas A

    2015-11-15

    Hypopituitarism may often occur in association with traumatic brain injury (TBI). Identification of reliable predictors of pituitary dysfunction is of importance in order to establish a rational testing approach. We searched the records of patients with TBI, who underwent neuroendocrine evaluation in our institution between 2007 and 2013. One hundred sixty-six adults (70% men) with TBI (median age: 41.6 years; range: 18-76) were evaluated at a median interval of 40.4 months (0.2-430.4).Of these, 31% had ≥1 pituitary deficiency, including 29% of patients with mild TBI and 35% with moderate/severe TBI. Growth hormone deficiency was the most common deficiency (21%); when body mass index (BMI)-dependent cutpoints were used, this was reduced to 15%. Central hypoadrenalism occurred in10%, who were more likely to have suffered a motor vehicle accident (MVA, p = 0.04), experienced post-traumatic seizures (p = 0.04), demonstrated any intracranial hemorrhage (p = 0.05), petechial brain hemorrhages (p = 0.017), or focal cortical parenchymal contusions (p = 0.02). Central hypothyroidism occurred in 8% and central hypogonadism in 12%; the latter subgroup had higher BMI (p = 0.03), were less likely to be working after TBI (p = 0.002), and had lower Global Assessment of Functioning (GAF) scores (p = 0.03). Central diabetes insipidus (DI) occurred in 6%, who were more likely to have experienced MVA (p hypopituitarism.

  3. Demographic profile and extent of healthcare resource utilisation of patients with severe traumatic brain injury: still a major public health problem.

    Science.gov (United States)

    Wee, Jing Zhong; Yang, Yun Rui Jasmine; Lee, Qian Yi Ruth; Cao, Kelly; Chong, Chin Ted

    2016-09-01

    Trauma is the fifth principal cause of death in Singapore, with traumatic brain injury (TBI) being the leading specific subordinate cause. This study was an eight-year retrospective review of the demographic profiles of patients with severe TBI who were admitted to the neurointensive care unit (NICU) of the National Neuroscience Institute at Tan Tock Seng Hospital, Singapore, between 2004 and 2011. A total of 780 TBI patients were admitted during the study period; 365 (46.8%) patients sustained severe TBI (i.e. Glasgow Coma Scale score ≤ 8), with the majority (75.3%) being male. The ages of patients with severe TBI ranged from 14-93 years, with a bimodal preponderance in young adults (i.e. 21-40 years) and elderly persons (i.e. > 60 years). Motor vehicle accidents (48.8%) and falls (42.5%) were the main mechanisms of injury. Invasive line monitoring was frequently employed; invasive arterial blood pressure monitoring and central venous pressure monitoring were used in 81.6% and 60.0% of the patients, respectively, while intracranial pressure (ICP) measurement was required in 47.4% of the patients. The use of tiered therapy to control ICP (e.g. sedation, osmotherapy, cerebrospinal fluid drainage, moderate hyperventilation and barbiturate-induced coma) converged with international practices. The high-risk groups for severe TBI were young adults and elderly persons involved in motor vehicle accidents and falls, respectively. In the NICU, the care of patients with severe TBI requires heavy utilisation of resources. The healthcare burden of these patients extends beyond the acute critical care phase.

  4. Investigating social functioning after early mild TBI: the quality of parent-child interactions.

    Science.gov (United States)

    Lalonde, Gabrielle; Bernier, Annie; Beaudoin, Cindy; Gravel, Jocelyn; Beauchamp, Miriam H

    2018-03-01

    The young brain is particularly vulnerable to injury due to inherent physiological and developmental factors, and even mild forms of traumatic brain injury (mTBI) can sometimes result in cognitive and behavioural difficulties. Despite the high prevalence of paediatric mTBI, little is known of its impact on children's social functioning. Parent-child relationships represent the centre of young children's social environments and are therefore ideal contexts for studying the potential effects of mTBI on children's social functioning. The aim of this study was to assess the quality of parent-child interactions after mTBI using observational assessment methods and parental report. The sample included 130 children (18-60 months at recruitment) divided into three groups: children with uncomplicated mTBI (n = 47), children with orthopaedic injury (OI, n = 27), and non-injured children (NI, n = 56). The quality of parent-child interactions was assessed 6 months post-injury using the Mutually Responsive Orientation (MRO) scale, an observational measure which focuses on the dyadic nature of parent-child exchanges, and the Parental Stress Index questionnaire (Parent-Child Dysfunctional Interaction (PCDI) domain). Significant differences with medium effect sizes were found between the mTBI group and the NI group on the MRO, but not between the OI group and the other two groups. PCDI scores did not differ across groups, suggesting that observational measures may be more sensitive to changes in parent-child interactions after TBI. The current findings have implications for children's post-injury social development and highlight the importance of monitoring social outcomes even after minor head injuries. © 2016 The British Psychological Society.

  5. DTI measures identify mild and moderate TBI cases among patients with complex health problems: A receiver operating characteristic analysis of U.S. veterans.

    Science.gov (United States)

    Main, Keith L; Soman, Salil; Pestilli, Franco; Furst, Ansgar; Noda, Art; Hernandez, Beatriz; Kong, Jennifer; Cheng, Jauhtai; Fairchild, Jennifer K; Taylor, Joy; Yesavage, Jerome; Wesson Ashford, J; Kraemer, Helena; Adamson, Maheen M

    2017-01-01

    Standard MRI methods are often inadequate for identifying mild traumatic brain injury (TBI). Advances in diffusion tensor imaging now provide potential biomarkers of TBI among white matter fascicles (tracts). However, it is still unclear which tracts are most pertinent to TBI diagnosis. This study ranked fiber tracts on their ability to discriminate patients with and without TBI. We acquired diffusion tensor imaging data from military veterans admitted to a polytrauma clinic (Overall n  = 109; Age: M  = 47.2, SD  = 11.3; Male: 88%; TBI: 67%). TBI diagnosis was based on self-report and neurological examination. Fiber tractography analysis produced 20 fiber tracts per patient. Each tract yielded four clinically relevant measures (fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity). We applied receiver operating characteristic (ROC) analyses to identify the most diagnostic tract for each measure. The analyses produced an optimal cutpoint for each tract. We then used kappa coefficients to rate the agreement of each cutpoint with the neurologist's diagnosis. The tract with the highest kappa was most diagnostic. As a check on the ROC results, we performed a stepwise logistic regression on each measure using all 20 tracts as predictors. We also bootstrapped the ROC analyses to compute the 95% confidence intervals for sensitivity, specificity, and the highest kappa coefficients. The ROC analyses identified two fiber tracts as most diagnostic of TBI: the left cingulum (LCG) and the left inferior fronto-occipital fasciculus (LIF). Like ROC, logistic regression identified LCG as most predictive for the FA measure but identified the right anterior thalamic tract (RAT) for the MD, RD, and AD measures. These findings are potentially relevant to the development of TBI biomarkers. Our methods also demonstrate how ROC analysis may be used to identify clinically relevant variables in the TBI population.

  6. Effect of binasal occlusion (BNO) on the visual-evoked potential (VEP) in mild traumatic brain injury (mTBI).

    Science.gov (United States)

    Ciuffreda, Kenneth J; Yadav, Naveen K; Ludlam, Diana P

    2013-01-01

    The purpose of the experiment was to assess the effect of binasal occlusion (BNO) on the visually-evoked potential (VEP) in visually-normal (VN) individuals and in those with mild traumatic brain injury (mTBI) for whom BNO frequently reduces their primary symptoms related to abnormally-increased visual motion sensitivity (VMS). Subjects were comprised of asymptomatic VN adults (n = 10) and individuals with mTBI (n = 10) having the symptom of VMS. Conventional full-field VEP testing was employed under two conditions: without BNO and with opaque BNO which blocked regions on either side of the VEP test stimulus. Subjective impressions were also assessed. In VN, the mean VEP amplitude decreased significantly with BNO in all subjects. In contrast, in mTBI, the mean VEP amplitude increased significantly with BNO in all subjects. Latency was normal and unaffected in all cases. Repeat VEP testing in three subjects from each group revealed similar test-re-test findings. Visuomotor activities improved, with reduced symptoms, with BNO in the mTBI group. It is speculated that individuals with mTBI habitually attempt to suppress visual information in the near retinal periphery to reduce their abnormal VMS, with addition of the BNO negating the suppressive influence and thus producing a widespread disinhibition effect and resultant increase in VEP amplitude.

  7. Social Cognition Impairments in Relation to General Cognitive Deficits, Injury Severity, and Prefrontal Lesions in Traumatic Brain Injury Patients

    NARCIS (Netherlands)

    Spikman, Jacoba M.; Timmerman, Marieke E.; Milders, Maarten V.; Veenstra, Wencke S.; van der Naalt, Joukje

    2012-01-01

    Impairments in social behavior are frequently found in moderate to severe traumatic brain injury (TBI) patients and are associated with an unfavorable outcome with regard to return to work and social reintegration. Neuropsychological tests measuring aspects of social cognition are thought to be

  8. Towards systemic sustainable performance of TBI care systems: emergency leadership frontiers.

    Science.gov (United States)

    Caro, Denis H J

    2010-11-10

    Traumatic brain injuries (TBIs) continue as a twenty-first century subterranean and almost invisible scourge internationally. TBI care systems provide a safety net for survival, recovery, and reintegration into social communities from this scourge, particularly in Canada, the European Union, and the USA. This paper examines the underlying issues of systemic performance and sustainability of TBI care systems, in the light of decreasing care resources and increasing demands for services. This paper reviews the extant literature on TBI care systems, systems reengineering, and emergency leadership literature. This paper presents a seven care layer paradigm, which forms the essence of systemic performance in the care of patients with TBIs. It also identifies five key strategic drivers that hold promise for the future systemic sustainability of TBI care systems. Transformational leadership and engagement from the international emergency medical community is the key to generating positive change. The sustainability/performance care framework is relevant and pertinent for consideration internationally and in the context of other emergency medical populations.

  9. Prehospital helicopter transport and survival of patients with traumatic brain injury.

    Science.gov (United States)

    Bekelis, Kimon; Missios, Symeon; Mackenzie, Todd A

    2015-03-01

    To investigate the association of helicopter transport with survival of patients with traumatic brain injury (TBI), in comparison with ground emergency medical services (EMS). Helicopter utilization and its effect on the outcomes of TBI remain controversial. We performed a retrospective cohort study involving patients with TBI who were registered in the National Trauma Data Bank between 2009 and 2011. Regression techniques with propensity score matching were used to investigate the association of helicopter transport with survival of patients with TBI, in comparison with ground EMS. During the study period, there were 209,529 patients with TBI who were registered in the National Trauma Data Bank and met the inclusion criteria. Of these patients, 35,334 were transported via helicopters and 174,195 via ground EMS. For patients transported to level I trauma centers, 2797 deaths (12%) were recorded after helicopter transport and 8161 (7.8%) after ground EMS. Multivariable logistic regression analysis demonstrated an association of helicopter transport with increased survival [OR (odds ratio), 1.95; 95% confidence interval (CI), 1.81-2.10; absolute risk reduction (ARR), 6.37%]. This persisted after propensity score matching (OR, 1.88; 95% CI, 1.74-2.03; ARR, 5.93%). For patients transported to level II trauma centers, 1282 deaths (10.6%) were recorded after helicopter transport and 5097 (7.3%) after ground EMS. Multivariable logistic regression analysis demonstrated an association of helicopter transport with increased survival (OR, 1.81; 95% CI, 1.64-2.00; ARR 5.17%). This again persisted after propensity score matching (OR, 1.73; 95% CI, 1.55-1.94; ARR, 4.69). Helicopter transport of patients with TBI to level I and II trauma centers was associated with improved survival, in comparison with ground EMS.

  10. The Change in Nutritional Status in Traumatic Brain Injury Patients: A Retrospective Descriptive Study

    Science.gov (United States)

    Masha'al, Dina A.

    There is a high prevalence in malnutrition among traumatic brain injury (TBI) due to the hypermetabolism and hypercatabolism which develop post injury. Traumatic brain injury patients are different, even among themselves, in their energy requirements and response to nutritional therapy. This implies that there are other factors that affect the energy intake of these patients and enhance the incidence of malnutrition. This dissertation study examines the nutritional status of TBI patients upon admission to the intensive care unit (ICU) and during their hospital stay to describe baseline status, detect changes in nutritional status over 7 days, and identify the factors affecting the adequacy of energy intake and the change in nutritional status as a consequence. Anthropometric measurements, biomedical measurements, measures of severity of illness, daily health status, level of brain injury severity, and other data were collected from the medical records of 50 patients, who were ≥ 18 years old, mechanically ventilated in the first 24 hours of ICU admission, and had a Glasgow Coma Scale score between 3-12. These data were used to examine the previous relationships. Although there was no statistically significant change found in body mass index and weight, there was a significant change detected in other nutritional markers, including hemoglobin, albumin, and total lymphocyte levels over the 7 days of ICU and hospital stay. No significant relationship was found between the adequacy of energy intake and total prescribed energy, severity of illness, level of brain injury severity, daily health status, patient age, intracranial pressure, or time of feeding initiation. Findings may be used to develop and test interventions to improve nutritional status during the acute phase of TBI. This will lay a foundation for health care providers, including nurses, to establish standards for practice and nutrition protocols to assure optimal nutrition assessment and intervention in a

  11. Children and youth with 'unspecified injury to the head': implications for traumatic brain injury research and surveillance.

    Science.gov (United States)

    Chan, Vincy; Mann, Robert E; Pole, Jason D; Colantonio, Angela

    2015-01-01

    The case definition for traumatic brain injury (TBI) often includes 'unspecified injury to the head' diagnostic codes. However, research has shown that the inclusion of these codes leads to false positives. As such, it is important to determine the degree to which inclusion of these codes affect the overall numbers and profiles of the TBI population. The objective of this paper was to profile and compare the demographic and clinical characteristics, intention and mechanism of injury, and discharge disposition of hospitalized children and youth aged 19 years and under using (1) an inclusive TBI case definition that included 'unspecified injury to the head' diagnostic codes, (2) a restricted TBI case definition that excluded 'unspecified injury to the head 'diagnostic codes, and (3) the 'unspecified injury to the head' only case definition. The National Ambulatory Care Reporting System and the Discharge Abstract Database from Ontario, Canada, were used to identify cases between fiscal years 2003/04 and 2009/10. The rate of TBI episodes of care using the inclusive case definition for TBI (2,667.2 per 100,000) was 1.65 times higher than that of the restricted case definition (1,613.3 per 100,000). 'Unspecified injury to the head' diagnostic codes made up of 39.5 % of all cases identified with the inclusive case definition. Exclusion of 'unspecified injury to the head' diagnostic code in the TBI case definition resulted in a significantly higher proportion of patients in the intensive care units (p definition of TBI for the children and youth population is important, as it has implications for the numbers used for policy, resource allocation, prevention, and planning of healthcare services. This paper can inform future work on reaching consensus on the diagnostic codes for defining TBI in children and youth.

  12. The use of complementary and alternative medicine for patients with traumatic brain injury in Taiwan

    Directory of Open Access Journals (Sweden)

    Gau Bih-Shya

    2012-11-01

    Full Text Available Abstract Background The use of complementary and alternative medicine (CAM continues to increase in Taiwan. This study examined the use of CAM and beliefs about CAM as expressed by patients with traumatic brain injury (TBI in Taiwan. Methods TBI patients and their accompanying relatives were interviewed by using a structured questionnaire at an outpatient clinic in a medical center in northern Taiwan. Results A total of 101 patients with TBI participated in the study. Sixty-four (63% patients had used at least one form of CAM after sustaining TBI. CAM users had used an average of 2.72 forms of CAM after sustaining TBI. The most frequently used CAM category was traditional Chinese medicine (37; 57.8%, followed by folk and religious therapies (30; 46.9%, and dietary supplements (30; 46.9%. The majority of the patients (45; 70.3% did not report CAM use because they felt it was unnecessary to do so. Patients who used CAM had a significantly stronger positive belief in CAM than those who did not (t = −2.72; P = .008. After using CAM, most of the patients (54; 85% perceived moderate satisfaction (2.89 ± 0.44, according to a 4-point Likert scale. Conclusion Although the use of CAM is common for TBI patients receiving conventional medical health care in Taiwan, most patients did not inform health care personnel about their CAM use. TBI patients perceive combined use of CAM and conventional medicine as beneficial for their overall health.

  13. Neural Markers and Rehabilitation of Executive Functioning in Veterans with TBI and PTSD

    Science.gov (United States)

    2016-10-01

    1 Award Number: W81XWH-11-1-0796 TITLE: Neural Markers and Rehabilitation of Executive Functioning in Veterans with TBI and PTSD PRINCIPAL...30Sept2015 - 29Sept2016 4. TITLE AND SUBTITLE: Neural Markers and Rehabilitation of Executive Functioning in Veterans with TBI and PTSD 5a. CONTRACT... met criteria for TBI during military service, 48.8% of whom reported multiple head injuries. The most common mechanisms of injury included blast

  14. A preliminary model for posttraumatic brain injury depression.

    Science.gov (United States)

    Malec, James F; Brown, Allen W; Moessner, Anne M; Stump, Timothy E; Monahan, Patrick

    2010-07-01

    To develop, based on previous research, and evaluate a model for depression after traumatic brain injury (TBI). Cross-sectional structural equation modeling (SEM) of data from consecutively recruited patients. Acute hospital and inpatient rehabilitation units. Adult patients (N=158) after hospital admission for moderate to severe TBI. Not applicable. External appraisal of ability in participants was measured by the Mayo-Portland Adaptability Inventory (MPAI-4) Ability Index completed by a TBI clinical nurse specialist. Patient self-appraisal of post-TBI ability and depression were measured by the Awareness Questionnaire and Beck Depression Inventory-II. Functional outcome 1 year after injury was assessed with the MPAI-4 Participation Index. Successive SEM resulted in a parsimonious model with excellent fit. Consistent with prior research, a moderately strong association between self-appraisal of post-TBI ability and depression was found. Injury severity, as measured by the duration of posttraumatic amnesia (PTA), was not significantly associated with post-TBI depression. The 1-year functional outcome was associated with depression and TBI severity. The strong association between self-appraisal of post-TBI ability and depression is consistent with the cognitive-behavioral model of depression and recommends consideration and further study of cognitive-behavioral therapy for post-TBI depression. The lack of association between TBI severity and depression may represent the indirect and proxy nature of current measures of TBI severity such as PTA. Emerging neuroimaging techniques (eg, diffusion tensor imaging, magnetic resonance imaging spectroscopy) may provide the more direct measures of disruption of brain function after TBI that are needed to advance this line of research. Copyright 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  15. TBI Assessment of Readiness Using a Gait Evaluation Test (TARGET): Development of a Portable mTBI Screening Device

    Science.gov (United States)

    2016-05-01

    determine the validity and reliability of an Android device-based mTBI (mild traumatic brain injury) screening test app for assessing motor function. The...individuals and those with clinically confirmed mTBI in both a civilian and military population. 15. SUBJECT TERMS- 16. SECURITY CLASSIFICATION OF: 17...8 5. Changes/ Problems 9 6. Products 11 7. Participants & Other Collaborating Organizations 14 8. Special Reporting Requirements 16 9. Appendices

  16. Graded Aerobic Treadmill Testing in Adolescent Traumatic Brain Injury Patients.

    Science.gov (United States)

    Cordingley, Dean M; Girardin, Richard; Morissette, Marc P; Reimer, Karen; Leiter, Jeff; Russell, Kelly; Ellis, Michael J

    2017-11-01

    To examine the safety and tolerability of clinical graded aerobic treadmill testing in recovering adolescent moderate and severe traumatic brain injury (TBI) patients referred to a multidisciplinary pediatric concussion program. We completed a retrospective case series of two moderate and five severe TBI patients (mean age, 17.3 years) who underwent initial Buffalo Concussion Treadmill Testing at a mean time of 71.6 days (range, 55-87) postinjury. Six patients completed one graded aerobic treadmill test each and one patient underwent initial and repeat testing. There were no complications. Five initial treadmill tests were completely tolerated and allowed an accurate assessment of exercise tolerance. Two initial tests were terminated early by the treatment team because of neurological and cardiorespiratory limitations. As a result of testing, two patients were cleared for aerobic exercise as tolerated and four patients were treated with individually tailored submaximal aerobic exercise programs resulting in subjective improvement in residual symptoms and/or exercise tolerance. Repeat treadmill testing in one patient performed after 1 month of treatment with submaximal aerobic exercise prescription was suggestive of improved exercise tolerance. One patient was able to tolerate aerobic exercise following surgery for posterior glottic stenosis. Preliminary results suggest that graded aerobic treadmill testing is a safe, well tolerated, and clinically useful tool to assess exercise tolerance in appropriately selected adolescent patients with TBI. Future prospective studies are needed to evaluate the effect of tailored submaximal aerobic exercise prescription on exercise tolerance and patient outcomes in recovering adolescent moderate and severe TBI patients.

  17. Association between the outcome of traumatic brain injury patients and cerebrovascular autoregulation, cerebral perfusion pressure, age, and injury grades

    Directory of Open Access Journals (Sweden)

    Vytautas Petkus

    2016-01-01

    Conclusions: The association of the GOS score with CPP, CA impairment conditions, age and diffuse axonal injury (DAI grade showed that the outcomes of TBI patients were associated with patient-specific CPP management and better outcomes were obtained for younger patients, for patients having lower DAI grade and for patients whose CPP was kept within the range from the optimal CPP to the optimal CPP + 10 mmHg.

  18. Successful outcomes following neurorehabilitation in military traumatic brain injury patients in the United Kingdom.

    Science.gov (United States)

    Dharm-Datta, Shreshth; Gough, Michael R C; Porter, Patrick J; Duncan-Anderson, Jennifer; Olivier, Elizabeth; McGilloway, Emer; Etherington, John

    2015-10-01

    The Defence Medical Rehabilitation Centre Headley Court is the UK military rehabilitation unit. A pilot study identified the Mayo-Portland Adaptability Inventory-4 (MPAI-4) as the most appropriate rehabilitation outcome measure in young military patients with acquired brain injury. MPAI-4 scores were prospectively recorded for patients on admission and discharge. At 4 months, independent living and employment status were recorded. Inclusion criteria were all new admissions with traumatic brain injury (TBI). Before injury, all patients were fully employed and lived independently. In a 3-year period from April 2011, there were 91 TBI patients with complete admission-discharge episodes: by US Department of Defense criteria, 21 were mild, 35 were moderate, and 35 were severe. There was a significant positive relationship between TBI severity and MPAI-4 score on admission (χ = 12.77, df = 2, p = 0.0017).Median age was 27 years, and median duration of admission was 63 days. Employment and independent living status were available for 79 patients at 4 months. Seventy-three patients (92%) were in community-based employment, with 64 (81%) employed in a competitive or transitional work; 6 (8%) were unemployed or in sheltered work. Sixty-nine (87%) were living independently, and 10 (13%) were living with support in their own home, with no one requiring institutional care.Complete MPAI-4 scores were available for 79 patients. There were statistically and clinically significant improvements in MPAI-4 scores between admission and discharge for the overall group: median admission T score was 40.0 (95% confidence interval, 36.0-42.0) and on discharge was 31.0 (95% confidence interval, 27.0-36.0), a nine-point change (Z = 6.53, p MPAI-4 limitations. This study demonstrates significant functional improvements in military TBI patients following intensive inpatient multidisciplinary rehabilitation, which includes substantial vocational rehabilitation. At 4 months, 92% were employed

  19. Deficits in Visual System Functional Connectivity after Blast-Related Mild TBI are Associated with Injury Severity and Executive Dysfunction

    Science.gov (United States)

    2016-08-24

    W. Jung. 2003. Long-term potentiation in visual cortical projections to the medial prefrontal cortex of the rat . Neuroscience 120:283–289. Kim, J., J...functional connec- tivity (FC) of four key nodes within the visual system: lateral geniculate nucleus (LGN), primary visual cortex (V1), lateral...related TBI may be accompanied by involvement of the visual system through optic nerve injury, diffuse or focal cerebral injury, or ocular motor

  20. Post-Traumatic Hypoxia Is Associated with Prolonged Cerebral Cytokine Production, Higher Serum Biomarker Levels, and Poor Outcome in Patients with Severe Traumatic Brain Injury

    Science.gov (United States)

    Yan, Edwin B.; Satgunaseelan, Laveniya; Paul, Eldho; Bye, Nicole; Nguyen, Phuong; Agyapomaa, Doreen; Kossmann, Thomas; Rosenfeld, Jeffrey V.

    2014-01-01

    Abstract Secondary hypoxia is a known contributor to adverse outcomes in patients with traumatic brain injury (TBI). Based on the evidence that hypoxia and TBI in isolation induce neuroinflammation, we investigated whether TBI combined with hypoxia enhances cerebral cytokine production. We also explored whether increased concentrations of injury biomarkers discriminate between hypoxic (Hx) and normoxic (Nx) patients, correlate to worse outcome, and depend on blood–brain barrier (BBB) dysfunction. Forty-two TBI patients with Glasgow Coma Scale ≤8 were recruited. Cerebrospinal fluid (CSF) and serum were collected over 6 days. Patients were divided into Hx (n=22) and Nx (n=20) groups. Eight cytokines were measured in the CSF; albumin, S100, myelin basic protein (MBP) and neuronal specific enolase (NSE) were quantified in serum. CSF/serum albumin quotient was calculated for BBB function. Glasgow Outcome Scale Extended (GOSE) was assessed at 6 months post-TBI. Production of granulocye macrophage-colony stimulating factor (GM-CSF) was higher, and profiles of GM-CSF, interferon (IFN)-γ and, to a lesser extent, tumor necrosis factor (TNF), were prolonged in the CSF of Hx but not Nx patients at 4–5 days post-TBI. Interleukin (IL)-2, IL-4, IL-6, and IL-10 increased similarly in both Hx and Nx groups. S100, MBP, and NSE were significantly higher in Hx patients with unfavorable outcome. Among these three biomarkers, S100 showed the strongest correlations to GOSE after TBI-Hx. Elevated CSF/serum albumin quotients lasted for 5 days post-TBI and displayed similar profiles in Hx and Nx patients. We demonstrate for the first time that post-TBI hypoxia is associated with prolonged neuroinflammation, amplified extravasation of biomarkers, and poor outcome. S100 and MBP could be implemented to track the occurrence of post-TBI hypoxia, and prompt adequate treatment. PMID:24279428

  1. Scoring correction for MMPI-2 Hs scale with patients experiencing a traumatic brain injury: a test of measurement invariance.

    Science.gov (United States)

    Alkemade, Nathan; Bowden, Stephen C; Salzman, Louis

    2015-02-01

    It has been suggested that MMPI-2 scoring requires removal of some items when assessing patients after a traumatic brain injury (TBI). Gass (1991. MMPI-2 interpretation and closed head injury: A correction factor. Psychological assessment, 3, 27-31) proposed a correction procedure in line with the hypothesis that MMPI-2 endorsement may be affected by symptoms of TBI. This study assessed the validity of the Gass correction procedure. A sample of patients with a TBI (n = 242), and a random subset of the MMPI-2 normative sample (n = 1,786). The correction procedure implies a failure of measurement invariance across populations. This study examined measurement invariance of one of the MMPI-2 scales (Hs) that includes TBI correction items. A four-factor model of the MMPI-2 Hs items was defined. The factor model was found to meet the criteria for partial measurement invariance. Analysis of the change in sensitivity and specificity values implied by partial measurement invariance failed to indicate significant practical impact of partial invariance. Overall, the results support continued use of all Hs items to assess psychological well-being in patients with TBI. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Direct cost associated with acquired brain injury in Ontario

    Directory of Open Access Journals (Sweden)

    Chen Amy

    2012-08-01

    Full Text Available Abstract Background Acquired Brain Injury (ABI from traumatic and non traumatic causes is a leading cause of disability worldwide yet there is limited research summarizing the health system economic burden associated with ABI. The objective of this study was to determine the direct cost of publicly funded health care services from the initial hospitalization to three years post-injury for individuals with traumatic (TBI and non-traumatic brain injury (nTBI in Ontario Canada. Methods A population-based cohort of patients discharged from acute hospital with an ABI code in any diagnosis position in 2004 through 2007 in Ontario was identified from administrative data. Publicly funded health care utilization was obtained from several Ontario administrative healthcare databases. Patients were stratified according to traumatic and non-traumatic causes of brain injury and whether or not they were discharged to an inpatient rehabilitation center. Health system costs were calculated across a continuum of institutional and community settings for up to three years after initial discharge. The continuum of settings included acute care emergency departments inpatient rehabilitation (IR complex continuing care home care services and physician visits. All costs were calculated retrospectively assuming the government payer’s perspective. Results Direct medical costs in an ABI population are substantial with mean cost in the first year post-injury per TBI and nTBI patient being $32132 and $38018 respectively. Among both TBI and nTBI patients those discharged to IR had significantly higher treatment costs than those not discharged to IR across all institutional and community settings. This tendency remained during the entire three-year follow-up period. Annual medical costs of patients hospitalized with a brain injury in Ontario in the first follow-up year were approximately $120.7 million for TBI and $368.7 million for nTBI. Acute care cost accounted for 46

  3. Cerebral Vascular Injury in Traumatic Brain Injury.

    Science.gov (United States)

    Kenney, Kimbra; Amyot, Franck; Haber, Margalit; Pronger, Angela; Bogoslovsky, Tanya; Moore, Carol; Diaz-Arrastia, Ramon

    2016-01-01

    Traumatic cerebral vascular injury (TCVI) is a very frequent, if not universal, feature after traumatic brain injury (TBI). It is likely responsible, at least in part, for functional deficits and TBI-related chronic disability. Because there are multiple pharmacologic and non-pharmacologic therapies that promote vascular health, TCVI is an attractive target for therapeutic intervention after TBI. The cerebral microvasculature is a component of the neurovascular unit (NVU) coupling neuronal metabolism with local cerebral blood flow. The NVU participates in the pathogenesis of TBI, either directly from physical trauma or as part of the cascade of secondary injury that occurs after TBI. Pathologically, there is extensive cerebral microvascular injury in humans and experimental animal, identified with either conventional light microscopy or ultrastructural examination. It is seen in acute and chronic TBI, and even described in chronic traumatic encephalopathy (CTE). Non-invasive, physiologic measures of cerebral microvascular function show dysfunction after TBI in humans and experimental animal models of TBI. These include imaging sequences (MRI-ASL), Transcranial Doppler (TCD), and Near InfraRed Spectroscopy (NIRS). Understanding the pathophysiology of TCVI, a relatively under-studied component of TBI, has promise for the development of novel therapies for TBI. Published by Elsevier Inc.

  4. Glucose variability negatively impacts long-term functional outcome in patients with traumatic brain injury.

    Science.gov (United States)

    Matsushima, Kazuhide; Peng, Monica; Velasco, Carlos; Schaefer, Eric; Diaz-Arrastia, Ramon; Frankel, Heidi

    2012-04-01

    Significant glycemic excursions (so-called glucose variability) affect the outcome of generic critically ill patients but has not been well studied in patients with traumatic brain injury (TBI). The purpose of this study was to evaluate the impact of glucose variability on long-term functional outcome of patients with TBI. A noncomputerized tight glucose control protocol was used in our intensivist model surgical intensive care unit. The relationship between the glucose variability and long-term (a median of 6 months after injury) functional outcome defined by extended Glasgow Outcome Scale (GOSE) was analyzed using ordinal logistic regression models. Glucose variability was defined by SD and percentage of excursion (POE) from the preset range glucose level. A total of 109 patients with TBI under tight glucose control had long-term GOSE evaluated. In univariable analysis, there was a significant association between lower GOSE score and higher mean glucose, higher SD, POE more than 60, POE 80 to 150, and single episode of glucose less than 60 mg/dL but not POE 80 to 110. After adjusting for possible confounding variables in multivariable ordinal logistic regression models, higher SD, POE more than 60, POE 80 to 150, and single episode of glucose less than 60 mg/dL were significantly associated with lower GOSE score. Glucose variability was significantly associated with poorer long-term functional outcome in patients with TBI as measured by the GOSE score. Well-designed protocols to minimize glucose variability may be key in improving long-term functional outcome. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Mathematical models of blast induced TBI: current status, challenges and prospects

    Directory of Open Access Journals (Sweden)

    Raj K Gupta

    2013-05-01

    Full Text Available Blast induced traumatic brain injury (TBI has become a signature wound of recent military activities and is the leading cause of death and long-term disability among U.S. soldiers. The current limited understanding of brain injury mechanisms impedes the development of protection, diagnostic and treatment strategies. We believe mathematical models of blast wave brain injury biomechanics and neurobiology, complemented with in vitro and in vivo experimental studies, will enable a better understanding of injury mechanisms and accelerate the development of both protective and treatment strategies. The goal of this paper is to review the current state of the art in mathematical and computational modeling of blast induced TBI, identify research gaps and recommend future developments. A brief overview of blast wave physics, injury biomechanics and the neurobiology of brain injury is used as a foundation for a more detailed discussion of multiscale mathematical models of primary biomechanics and secondary injury and repair mechanisms. The paper also presents a discussion of model development strategies, experimental approaches to generate benchmark data for model validation and potential applications of the model for prevention and protection against blast wave TBI.

  6. Problems in functioning after a mild traumatic brain injury within the ICF framework: the patient perspective using focus groups.

    Science.gov (United States)

    Sveen, Unni; Ostensjo, Sigrid; Laxe, Sara; Soberg, Helene L

    2013-05-01

    To describe problems in body functions, activities, and participation and the influence of environmental factors as experienced after mild traumatic brain injury (TBI), using the ICF framework. To compare our findings with the Brief and Comprehensive ICF Core Sets for TBI. Six focus-group interviews were performed with 17 participants (nine women, eight men, age ranged from 22 to 55 years) within the context of an outpatient rehabilitation programme for patients with mild TBI. The interviews were transcribed verbatim and analysed using the ICF. One-hundred and eight second-level categories derived from the interview text, showing a large diversity of TBI-related problems in functioning. Problems in cognitive and emotional functions, energy and drive, and in carrying out daily routine and work, were frequently reported. All ICF categories reported with high-to-moderate frequencies were present in the Brief ICF Core Set and 84% in the Comprehensive ICF Core Set. The reported environmental factors mainly concerned aspects of health and social security systems, social network and attitudes towards the injured person. This study confirms the diversity of problems and the environmental factors that have an impact on post-injury functioning of patients with mild TBI.

  7. Neurobehavioral Effects of Levetiracetam in Patients with Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Jared F Benge

    2013-12-01

    Full Text Available Moderate to severe traumatic brain injury (TBI is one of the leading causes of acquired epilepsy. Prophylaxis for seizures is the standard of care for individuals with moderate to severe injuries at risk for developing seizures, though relatively limited comparative data is available to guide clinicians in their choice of agents. There have however been experimental studies which demonstrate potential neuroprotective qualities of levetiracetam after TBI, and in turn there is hope that eventually such agents may improve neurobehavioral outcomes post-TBI. This mini-review summarizes the available studies and suggests areas for future studies.

  8. Mild traumatic brain injury increases risk for the development of posttraumatic stress disorder.

    Science.gov (United States)

    Warren, Ann Marie; Boals, Adriel; Elliott, Timothy R; Reynolds, Megan; Weddle, Rebecca Jo; Holtz, Pamela; Trost, Zina; Foreman, Michael L

    2015-12-01

    Traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) occur in individuals who sustain physical injury and share a significant overlap in symptoms. PTSD rates in the civilian injury population range from 20% to 40%. The current study examined the presence of PTSD symptoms at multiple time points (3 months and 6 months after injury) among individuals with and without TBI after admission to a Level I trauma center. This prospective cohort study included patients 18 years and older admitted to a Level I trauma center for 24 hours or greater. Demographic and injury-related data were gathered in addition to assessments of PTSD during initial hospitalization after injury, as well as 3 months and 6 months later. The Primary Care PTSD Screen and PTSD Checklist-Civilian version were used to determine probable PTSD. International Classification of Diseases, 9th Rev. codes were used to determine mild TBI (MTBI). A total of 494 patients were enrolled at baseline, 311 (63%) completed 3-month follow-up, and 231 (47%) completed 6-month follow-up at the time of analysis. Preinjury PTSD was reported by 7% of the participants. At 3 months, patients with MTBI evidenced a probable PTSD rate of 18%, compared with a rate of 9% for patients with no MTBI (p = 0.04), although this relationship became a nonsignificant trend (p = 0.06) when demographics were included. At 6 months, patients with MTBI evidenced a probable PTSD rate of 26%, compared with a rate of 15% for patients with no MTBI (p = 0.04), and this relationship remained significant when demographics were included. Preinjury history of TBI did not predict PTSD, but incidence of TBI for the injury in which they were hospitalized did predict PTSD. TBI at time of injury demonstrated a nonsignificant trend toward higher rates of PTSD at 3 months and significantly predicted PTSD at 6 months after injury. This important finding may help clinicians identify patients at high risk for PTSD after injury and target these

  9. Patient perspectives on navigating the field of traumatic brain injury rehabilitation

    DEFF Research Database (Denmark)

    Graff, Heidi J; Christensen, Ulla; Poulsen, Ingrid

    2018-01-01

    PURPOSE: This study aimed to provide an understanding of the lived experience of rehabilitation in adults with traumatic brain injury (TBI) from hospital discharge up to four years post-injury. MATERIALS AND METHODS: We used a qualitative explorative design with semi-structured in-depth interview...... systematic follow-up programs    • Age-appropriate rehabilitation facilities    • Inclusion of patient and family in the planning of long-term rehabilitation....

  10. Traumatic brain injury is associated with the development of deep vein thrombosis independent of pharmacological prophylaxis.

    Science.gov (United States)

    Reiff, Donald A; Haricharan, Ramanath N; Bullington, Nathan M; Griffin, Russell L; McGwin, Gerald; Rue, Loring W

    2009-05-01

    Deep venous thrombosis (DVT) is common among trauma patients. If left untreated it may result in lethal pulmonary thromboembolism. Previous studies have suggested that intracranial hemorrhage serves as an independent risk factor for the development of DVT. These studies were not able to exclude anticoagulation therapy as a confounding variable in their analysis. Our objective was to determine the association of traumatic brain injury (TBI) to the formation of DVT irrespective of the use of anticoagulation therapy. All patients admitted to an academic level I Trauma Center between 2000 and 2007 with blunt or penetrating injuries were selected for inclusion in this study. Patients who died or who were discharged within 24 hours of admission were excluded in the analysis. TBI was defined as any intraparenchymal hemorrhage or extra-axial intracranial bleeding identified on radiographic imaging or both. Anticoagulation therapy was defined as the uninterrupted use of either subcutaneous lovenox or heparin. Risk ratios and 95% confidence intervals compared the risk of DVT among patients with and without TBI according to the initiation of anticoagulation therapy (no therapy, 48 hours) adjusted for age, gender, race, injury severity, mechanism of injury, spinal injury, and lower extremity fracture. Irrespective of the time of initiation of pharmacologic prophylaxis, TBI is independently associated with the formation of DVT. A threefold to fourfold increased risk of DVT formation is consistent across all prophylaxis groups among patients with TBI. The incidence of DVT among injured patients with TBI is significantly higher than those patients without head injury independent of anticoagulation therapy. Rigorous surveillance to detect DVT among trauma patients with TBI should be undertaken and where appropriate alternate means for pulmonary thromboembolism prevention used.

  11. An update on substance use and treatment following traumatic brain injury.

    Science.gov (United States)

    Graham, David P; Cardon, Aaron L

    2008-10-01

    Traumatic brain injury (TBI) is a leading cause of mortality and morbidity among young adults. Substance abusers constitute a disproportionate percentage of these patients. A history of substance abuse predicts increased disability, poorer prognosis, and delayed recovery. While consensus in the literature indicates that substance-abuse rates decline following injury, conflicting literature shows a significant history of brain injury in addicts. We reviewed the literature on substance abuse after TBI to explore the state of knowledge on TBI as a risk factor for substance abuse. While recent reviews regarding substance abuse in TBI patients concur that substance-abuse rates decline even after mild TBI, an emerging literature suggests mild TBI may cause subtle impairments in cognitive, executive, and decision-making functions that are often poorly recognized in early diagnosis and treatment. When combined with difficulties in psychosocial adjustment and coping skills, these impairments may increase the risk for chronic substance abuse in a subset of TBI patients. Preliminary results from veterans indicate these patterns hold in a combat-related post-traumatic stress disorder population with TBI. This increasingly prevalent combination presents a specific challenge in rehabilitation. While this comorbidity presents a challenge for the successful treatment and rehabilitation of both disorders, there is sparse evidence to recommend any specific treatment strategy for these individuals. Mild TBI and substance abuse are bidirectionally related both for risks and treatment. Further understanding the neuropsychiatric pathology and different effects of different types of injuries will likely improve the implementation of effective treatments for each of these two conditions.

  12. Community integration 2 years after moderate and severe traumatic brain injury.

    Science.gov (United States)

    Sandhaug, Maria; Andelic, Nada; Langhammer, Birgitta; Mygland, Aase

    2015-01-01

    The aim of this study was to examine community integration by the Community Integration Questionnaire (CIQ) 2 years after injury in a divided TBI sample of moderately and severely injured patients. The second aim was to identify social-demographic, injury-related and rehabilitation associated predictors of CIQ. A cohort study. Outpatient follow-up. Fifty-seven patients with moderate (n = 21) or severe (n = 36) TBI were examined with the Community Integration Questionnaire (CIQ) at 2 years after injury. Possible predictors were analysed in a regression model using CIQ total score at 2 years as the outcome measure. The Community Integration Questionnaire. At 2 years follow-up, there was significant difference between the moderately and severely injured patients in the productivity scores (p productivity level than the severely injured patients. Marital status, injury severity and rehabilitation after injury were associated with community integration 2 years after TBI.

  13. Loss of neuronal integrity: a cause of hypometabolism in patients with traumatic brain injury without MRI abnormality in the chronic stage

    International Nuclear Information System (INIS)

    Shiga, Tohru; Matsuyama, Tetsuaki; Kageyama, Hiroyuki; Kohno, Tomoya; Tamaki, Nagara; Ikoma, Katsunori; Isoyama, Hirotaka; Katoh, Chietsugu; Kuge, Yuji; Terae, Satoshi

    2006-01-01

    Traumatic brain injury (TBI) causes brain dysfunction in many patients. However, some patients have severe brain dysfunction but display no abnormalities on magnetic resonance imaging (MRI). There have been some reports of hypometabolism even in such patients. The purpose of this study was to investigate the relationship between metabolic abnormality and loss of neuronal integrity in TBI patients with some symptoms but without MRI abnormalities. The study population comprised ten patients with TBI and ten normal volunteers. All of the patients were examined at least 1 year after the injury. 15 O-labelled gas PET and [ 11 C]flumazenil (FMZ) positron emission tomography (PET) were carried out. The cerebral metabolic rate of oxygen (CMRO 2 ) and binding potential (BP) images of FMZ were calculated. Axial T2WI, T2*WI and FLAIR images were obtained. Coronal images were added in some cases. All of the patients had normal MRI findings, and all showed areas with abnormally low CMRO 2 . Low uptake on BP images was observed in six patients (60%). No lesions that showed low uptake on BP images were without low CMRO 2 . On the other hand, there were 14 lesions with low CMRO 2 but without BP abnormalities. These results indicate that there are metabolic abnormalities in TBI patients with some symptoms after brain injury but without abnormalities on MRI. Some of the hypometabolic lesions showed low BP, indicating a loss of neuronal integrity. Thus, FMZ PET may have potential to distinguish hypometabolism caused by neuronal loss from that caused by other factors. (orig.)

  14. Neurosurgical intervention in patients with mild traumatic brain injury and its effect on neurological outcomes.

    Science.gov (United States)

    Tierney, Kevin James; Nayak, Natasha V; Prestigiacomo, Charles J; Sifri, Ziad C

    2016-02-01

    The object of this study was to determine the mortality and neurological outcome of patients with mild traumatic brain injury (mTBI) who require neurosurgical intervention (NSI), identify clinical predictors of a poor outcome, and investigate the effect of failed nonoperative management and delayed NSI on outcome. A cross-sectional study of 10 years was performed, capturing all adults with mTBI and NSI. Primary outcome variables were mortality and Glasgow Outcome Scale (GOS) score. Patients were divided into an immediate intervention group, which received an NSI after the initial cranial CT scan, and a delayed intervention group, which had failed nonoperative management and received an NSI after 2 or more cranial CT scans. The mortality rate in mTBI patients requiring NSI was 13%, and the mean GOS score was 3.6 ± 1.2. An age > 60 years was independently predictive of a worse outcome, and epidural hematoma was independently predictive of a good outcome. Logistic regression analysis using independent variables was calculated to create a model for predicting poor neurological outcomes in patients with mTBI undergoing NSI and had 74.1% accuracy. Patients in the delayed intervention group had worse mortality (25% vs 9%) and worse mean GOS scores (2.9 ± 1.3 vs 3.7 ± 1.2) than those in the immediate intervention group. Data in this study demonstrate that patients with mTBI requiring NSI have higher mortality rates and worse neurological outcomes and should therefore be classified separately from mTBI patients not requiring NSI. Additionally, mTBI patients requiring NSI after the failure of nonoperative management have worse outcomes than those receiving immediate intervention and should be considered separately.

  15. Current Opportunities for Clinical Monitoring of Axonal Pathology in Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Parmenion P. Tsitsopoulos

    2017-11-01

    Full Text Available Traumatic brain injury (TBI is a multidimensional and highly complex disease commonly resulting in widespread injury to axons, due to rapid inertial acceleration/deceleration forces transmitted to the brain during impact. Axonal injury leads to brain network dysfunction, significantly contributing to cognitive and functional impairments frequently observed in TBI survivors. Diffuse axonal injury (DAI is a clinical entity suggested by impaired level of consciousness and coma on clinical examination and characterized by widespread injury to the hemispheric white matter tracts, the corpus callosum and the brain stem. The clinical course of DAI is commonly unpredictable and it remains a challenging entity with limited therapeutic options, to date. Although axonal integrity may be disrupted at impact, the majority of axonal pathology evolves over time, resulting from delayed activation of complex intracellular biochemical cascades. Activation of these secondary biochemical pathways may lead to axonal transection, named secondary axotomy, and be responsible for the clinical decline of DAI patients. Advances in the neurocritical care of TBI patients have been achieved by refinements in multimodality monitoring for prevention and early detection of secondary injury factors, which can be applied also to DAI. There is an emerging role for biomarkers in blood, cerebrospinal fluid, and interstitial fluid using microdialysis in the evaluation of axonal injury in TBI. These biomarker studies have assessed various axonal and neuroglial markers as well as inflammatory mediators, such as cytokines and chemokines. Moreover, modern neuroimaging can detect subtle or overt DAI/white matter changes in diffuse TBI patients across all injury severities using magnetic resonance spectroscopy, diffusion tensor imaging, and positron emission tomography. Importantly, serial neuroimaging studies provide evidence for evolving axonal injury. Since axonal injury may be a key

  16. Whole brain approaches for identification of microstructural abnormalities in individual patients: comparison of techniques applied to mild traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Namhee Kim

    Full Text Available Group-wise analyses of DTI in mTBI have demonstrated evidence of traumatic axonal injury (TAI, associated with adverse clinical outcomes. Although mTBI is likely to have a unique spatial pattern in each patient, group analyses implicitly assume that location of injury will be the same across patients. The purpose of this study was to optimize and validate a procedure for analysis of DTI images acquired in individual patients, which could detect inter-individual differences and be applied in the clinical setting, where patients must be assessed as individuals.After informed consent and in compliance with HIPAA, 34 mTBI patients and 42 normal subjects underwent 3.0 Tesla DTI. Four voxelwise assessment methods (standard Z-score, "one vs. many" t-test, Family-Wise Error Rate control using pseudo t-distribution, EZ-MAP for use in individual patients, were applied to each patient's fractional anisotropy (FA maps and tested for its ability to discriminate patients from controls. Receiver Operating Characteristic (ROC analyses were used to define optimal thresholds (voxel-level significance and spatial extent for reliable and robust detection of mTBI pathology.ROC analyses showed EZ-MAP (specificity 71%, sensitivity 71%, "one vs. many" t-test and standard Z-score (sensitivity 65%, specificity 76% for both methods resulted in a significant area under the curve (AUC score for discriminating mTBI patients from controls in terms of the total number of abnormal white matter voxels detected while the FWER test was not significant. EZ-MAP is demonstrated to be robust to assumptions of Gaussian behavior and may serve as an alternative to methods that require strict Gaussian assumptions.EZ-MAP provides a robust approach for delineation of regional abnormal anisotropy in individual mTBI patients.

  17. The role of Tc-99m HMPAO brain perfusion SPECT in the psychiatric disability evaluation of patients with chronic traumatic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    So, Young [Nuclear Medicne, Seoul National Univ., Seoul (Korea, Republic of); Lee, Kang Wook; Lee, Sun Woo; Ghi, Lek Sung; Song, Chang June [College of Medicine, Chungnam National Univ., Taejon (Korea, Republic of)

    2002-08-01

    We studied whether brain perfusion SPECT is useful in the psychiatric disability evaluation of patients with chronic traumatic brain injury (TBI). Sixty-nine patients (M:F=58:11, age 39 {+-} 14 years) who underwent Tc-99m HMPAO brain SPECT, brain MRI and neuropsychological (NP) tests during hospitalization in psychiatric wards for the psychiatric disability evaluation were included; the severity of injury was mild in 31, moderate in 17 and severe in 21. SPECT, MRI, NP tests were performed 6 {approx} 61 months (mean 23 months) post-injury. Diagnostic accuracy of SPECT and MRI to show hypoperfusion or abnormal signal intensity in patients with cognitive impairment represented by NP test results were compared. Forty-two patients were considered to have cognitive impairment on NP tests and 27 not. Brain SPECT showed 71% sensitivity and 85% specificity, while brain MRI showed 62% sensitivity and 93% specificity (p>0.05, McNemar test). SPECT found more cortical lesions and MRI was superior in detecting white matter lesions. sensitivity and specificity of 31 mild TBI patients were 45%, 90% for SPECT and 27%, 100% for MRI (p>0.05, McNemar test). Among 41 patients with normal brain MRI, SEPCT showed 63% sensitivity (50% for mild TBI) and 88% specificity (85% for malingerers). Brain SPECT has a supplementary role to neuropsychological tests in the psychiatric disability evaluation of chronic TBI patients by detecting more cortical lesions than MRI.

  18. The role of Tc-99m HMPAO brain perfusion SPECT in the psychiatric disability evaluation of patients with chronic traumatic brain injury

    International Nuclear Information System (INIS)

    So, Young; Lee, Kang Wook; Lee, Sun Woo; Ghi, Lek Sung; Song, Chang June

    2002-01-01

    We studied whether brain perfusion SPECT is useful in the psychiatric disability evaluation of patients with chronic traumatic brain injury (TBI). Sixty-nine patients (M:F=58:11, age 39 ± 14 years) who underwent Tc-99m HMPAO brain SPECT, brain MRI and neuropsychological (NP) tests during hospitalization in psychiatric wards for the psychiatric disability evaluation were included; the severity of injury was mild in 31, moderate in 17 and severe in 21. SPECT, MRI, NP tests were performed 6 ∼ 61 months (mean 23 months) post-injury. Diagnostic accuracy of SPECT and MRI to show hypoperfusion or abnormal signal intensity in patients with cognitive impairment represented by NP test results were compared. Forty-two patients were considered to have cognitive impairment on NP tests and 27 not. Brain SPECT showed 71% sensitivity and 85% specificity, while brain MRI showed 62% sensitivity and 93% specificity (p>0.05, McNemar test). SPECT found more cortical lesions and MRI was superior in detecting white matter lesions. sensitivity and specificity of 31 mild TBI patients were 45%, 90% for SPECT and 27%, 100% for MRI (p>0.05, McNemar test). Among 41 patients with normal brain MRI, SEPCT showed 63% sensitivity (50% for mild TBI) and 88% specificity (85% for malingerers). Brain SPECT has a supplementary role to neuropsychological tests in the psychiatric disability evaluation of chronic TBI patients by detecting more cortical lesions than MRI

  19. Comparing health-related quality of life of Dutch and Chinese patients with traumatic brain injury: do cultural differences play a role?

    Science.gov (United States)

    Cnossen, Maryse C; Polinder, Suzanne; Vos, Pieter E; Lingsma, Hester F; Steyerberg, Ewout W; Sun, Yanming; Ye, Pengpeng; Duan, Leilei; Haagsma, Juanita A

    2017-04-14

    There is growing interest in health related quality of life (HRQoL) as an outcome measure in international trials. However, there might be differences in the conceptualization of HRQoL across different socio-cultural groups. The objectives of current study were: (I) to compare HRQoL, measured with the short form (SF)-36 of Dutch and Chinese traumatic brain injury (TBI) patients 1 year after injury and; (II) to assess whether differences in SF-36 profiles could be explained by cultural differences in HRQoL conceptualization. TBI patients are of particular interest because this is an important cause of diverse impairments and disabilities in functional, physical, emotional, cognitive, and social domains that may drastically reduce HRQoL. A prospective cohort study on adult TBI patients in the Netherlands (RUBICS) and a retrospective cohort study in China were used to compare HRQoL 1 year post-injury. Differences on subscales were assessed with the Mann-Whitney U-test. The internal consistency, interscale correlations, item-internal consistency and item-discriminate validity of Dutch and Chinese SF-36 profiles were examined. Confirmatory factor analysis was performed to assess whether Dutch and Chinese data fitted the SF-36 two factor-model (physical and mental construct). Four hundred forty seven Dutch and 173 Chinese TBI patients were included. Dutch patients obtained significantly higher scores on role limitations due to emotional problems (p cultural differences in conceptualization, since item- and scale statistics were all sufficient. However, differences among Dutch and Chinese patients were found in the conceptualization of the domains vitality, mental health and social functioning. One year after TBI, Dutch and Chinese patients reported a different pattern of HRQoL. Further, there might be cultural differences in the conceptualization of some of the SF-36 subscales, which has implications for outcome evaluation in multi-national trials.

  20. Early predictors of outcome after mild traumatic brain injury (UPFRONT) : An observational cohort study

    NARCIS (Netherlands)

    van der Naalt, J.; Timmerman, M.E.; de Koning, M.E.; van der Horn, H.J.; Scheenen, M.E.; Jacobs, B.; Hageman, G.; Yilmaz, T.; Roks, G.; Spikman, J.M.

    Background: Mild traumatic brain injury (mTBI) accounts for most cases of TBI, and many patients show incomplete long-term functional recovery. We aimed to create a prognostic model for functional outcome by combining demographics, injury severity, and psychological factors to identify patients at

  1. Social cognition and its relationship to functional outcomes in patients with sustained acquired brain injury

    Directory of Open Access Journals (Sweden)

    Ubukata S

    2014-11-01

    Full Text Available Shiho Ubukata,1,2 Rumi Tanemura,2 Miho Yoshizumi,1 Genichi Sugihara,1 Toshiya Murai,1 Keita Ueda1 1Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, 2Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan Abstract: Deficits in social cognition are common after traumatic brain injury (TBI. However, little is known about how such deficits affect functional outcomes. The purpose of this study was to investigate the relationship between social cognition and functional outcomes in patients with TBI. We studied this relationship in 20 patients with TBI over the course of 1 year post-injury. Patients completed neurocognitive assessments and social cognition tasks. The social cognition tasks included an emotion-perception task and three theory of mind tasks: the Faux Pas test, Reading the Mind in the Eyes (Eyes test, and the Moving-Shapes paradigm. The Craig Handicap Assessment and Reporting Technique was used to assess functional outcomes. Compared with our database of normal subjects, patients showed impairments in all social cognition tasks. Multiple regression analysis revealed that theory of mind ability as measured by the Eyes test was the best predictor of the cognitive aspects of functional outcomes. The findings of this pilot study suggest that the degree to which a patient can predict what others are thinking is an important measure that can estimate functional outcomes over 1 year following TBI. Keywords: Eyes test, social emotion perception, social function, social participation, theory of mind

  2. Ethnographic analysis of traumatic brain injury patients in the national Model Systems database.

    Science.gov (United States)

    Burnett, Derek M; Kolakowsky-Hayner, Stephanie A; Slater, Dan; Stringer, Anthony; Bushnik, Tamara; Zafonte, Ross; Cifu, David X

    2003-02-01

    To compare demographics, injury characteristics, therapy service and intensity, and outcome in minority versus nonminority patients with traumatic brain injury (TBI). Retrospective analysis. Twenty medical centers. Two thousand twenty patients (men, n=1,518; women, n=502; nonminority, n=1,168; minority, n=852) with TBI enrolled in the Traumatic Brain Injury Model Systems database. Not applicable. Age, gender, marital status, education, employment status, injury severity (based on Glasgow Coma Scale [GCS] admission score, length of posttraumatic amnesia, duration of unconsciousness), intensity (hours) of therapy rendered, rehabilitation length of stay (LOS), rehabilitation charges, discharge disposition, postinjury employment status, FIM instrument change scores, and FIM efficiency scores. Independent sample t tests were used to analyze continuous variables; chi-square analyses were used to evaluate categorical data. overall, minorities were found to be mostly young men who were single, unemployed, and less well educated, with a longer work week if employed when injured. motor vehicle crashes (MVCs) predominated as the cause of injury for both groups; however, minorities were more likely to sustain injury from acts of violence and auto-versus-pedestrian crashes. Minorities also had higher GCS scores on admission and shorter LOS. Rehabilitation services: significant differences were found in the types and intensity of rehabilitation services provided; these included physical therapy, occupational therapy, and speech-language pathology, but not psychology. Minority patients who sustain TBI generally tend to be young men with less social responsibility. Although MVCs predominate as the primary etiology, acts of violence and auto-versus-pedestrian incidents are more common in the minority population. Minorities tend to have higher GCS scores at admission. Also, the type and intensity of rehabilitation services provided differed significantly for the various

  3. Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Ming-Xiong Huang

    2014-01-01

    Full Text Available Traumatic brain injury (TBI is a leading cause of sustained impairment in military and civilian populations. However, mild TBI (mTBI can be difficult to detect using conventional MRI or CT. Injured brain tissues in mTBI patients generate abnormal slow-waves (1–4 Hz that can be measured and localized by resting-state magnetoencephalography (MEG. In this study, we develop a voxel-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mTBI on a single-subject basis. A normative database of resting-state MEG source magnitude images (1–4 Hz from 79 healthy control subjects was established for all brain voxels. The high-resolution MEG source magnitude images were obtained by our recent Fast-VESTAL method. In 84 mTBI patients with persistent post-concussive symptoms (36 from blasts, and 48 from non-blast causes, our method detected abnormalities at the positive detection rates of 84.5%, 86.1%, and 83.3% for the combined (blast-induced plus with non-blast causes, blast, and non-blast mTBI groups, respectively. We found that prefrontal, posterior parietal, inferior temporal, hippocampus, and cerebella areas were particularly vulnerable to head trauma. The result also showed that MEG slow-wave generation in prefrontal areas positively correlated with personality change, trouble concentrating, affective lability, and depression symptoms. Discussion is provided regarding the neuronal mechanisms of MEG slow-wave generation due to deafferentation caused by axonal injury and/or blockages/limitations of cholinergic transmission in TBI. This study provides an effective way for using MEG slow-wave source imaging to localize affected areas and supports MEG as a tool for assisting the diagnosis of mTBI.

  4. Traumatic Brain Injury in Qatar: Age Matters—Insights from a 4-Year Observational Study

    Directory of Open Access Journals (Sweden)

    Moamena El-Matbouly

    2013-01-01

    Full Text Available Background. Overall traumatic brain injury (TBI incidence and related death rates vary across different age groups. Objectives. To evaluate the incidence, causes, and outcome of TBI in adolescents and young adult population in Qatar. Method. This was a retrospective review of all TBIs admitted to the trauma center between January 2008 and December 2011. Demographics, mechanism of injury, morbidity, and mortality were analyzed in different age groups. Results. A total of 1665 patients with TBI were admitted; the majority were males (92% with a mean age of 28 ± 16 years. The common mechanism of injury was motor vehicle crashes and falls from height (51% and 35%, resp.. TBI was incidentally higher in young adults (34% and middle age group (21%. The most frequent injuries were contusion (40%, subarachnoid (25%, subdural (24%, and epidural hemorrhage (18%. The mortality rate was 11% among TBI patients. Mortality rates were 8% and 12% among adolescents and young adults, respectively. The highest mortality rate was observed in elderly patients (35%. Head AIS, ISS, and age were independent predictors for mortality. Conclusion. Adolescents and adults sustain significant portions of TBI, whereas mortality is much higher in the older group. Public awareness and injury prevention campaigns should target young population.

  5. Psychometric evaluation of the pediatric and parent-proxy Patient-Reported Outcomes Measurement Information System and the Neurology and Traumatic Brain Injury Quality of Life measurement item banks in pediatric traumatic brain injury.

    Science.gov (United States)

    Bertisch, Hilary; Rivara, Frederick P; Kisala, Pamela A; Wang, Jin; Yeates, Keith Owen; Durbin, Dennis; Zonfrillo, Mark R; Bell, Michael J; Temkin, Nancy; Tulsky, David S

    2017-07-01

    The primary objective is to provide evidence of convergent and discriminant validity for the pediatric and parent-proxy versions of the Patient-Reported Outcomes Measurement Information System (PROMIS) Anxiety, Depression, Anger, Peer Relations, Mobility, Pain Interference, and Fatigue item banks, the Neurology Quality of Life measurement system (Neuro-QOL) Cognition-General Concerns and Stigma item banks, and the Traumatic Brain Injury Quality of Life (TBI-QOL) Executive Function and Headache item banks in a pediatric traumatic brain injury (TBI) sample. Participants were 134 parent-child (ages 8-18 years) days. Children all sustained TBI and the dyads completed outcome ratings 6 months after injury at one of six medical centers across the United States. Ratings included PROMIS, Neuro-QOL, and TBI-QOL item banks, as well as the Pediatric Quality of Life inventory (PedsQL), the Health Behavior Inventory (HBI), and the Strengths and Difficulties Questionnaire (SDQ) as legacy criterion measures against which these item banks were validated. The PROMIS, Neuro-QOL, and TBI-QOL item banks demonstrated good convergent validity, as evidenced by moderate to strong correlations with comparable scales on the legacy measures. PROMIS, Neuro-QOL, and TBI-QOL item banks showed weaker correlations with ratings of unrelated constructs on legacy measures, providing evidence of discriminant validity. Our results indicate that the constructs measured by the PROMIS, Neuro-QOL, and TBI-QOL item banks are valid in our pediatric TBI sample and that it is appropriate to use these standardized scores for our primary study analyses.

  6. Effect of chromatic filters on visual performance in individuals with mild traumatic brain injury (mTBI: A pilot study

    Directory of Open Access Journals (Sweden)

    Vanessa Fimreite

    2016-10-01

    Conclusions: The majority of patients with mTBI chose a tinted filter that resulted in increased visual comfort. While significant findings based on the objective testing were found for some conditions, the subjective results suggest that precision tints should be considered as an adjunctive treatment in patients with mTBI and photosensitivity.

  7. Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities.

    Science.gov (United States)

    Xiong, Ye; Mahmood, Asim; Chopp, Michael

    2018-04-24

    Traumatic brain injury (TBI) remains a major cause of death and disability worldwide. Increasing evidence indicates that TBI is an important risk factor for neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and chronic traumatic encephalopathy. Despite improved supportive and rehabilitative care of TBI patients, unfortunately, all late phase clinical trials in TBI have yet to yield a safe and effective neuroprotective treatment. The disappointing clinical trials may be attributed to variability in treatment approaches and heterogeneity of the population of TBI patients as well as a race against time to prevent or reduce inexorable cell death. TBI is not just an acute event but a chronic disease. Among many mechanisms involved in secondary injury after TBI, emerging preclinical studies indicate that posttraumatic prolonged and progressive neuroinflammation is associated with neurodegeneration which may be treatable long after the initiating brain injury. This review provides an overview of recent understanding of neuroinflammation in TBI and preclinical cell-based therapies that target neuroinflammation and promote functional recovery after TBI. Copyright © 2018 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  8. EYE-TRAC: monitoring attention and utility for mTBI

    Science.gov (United States)

    Maruta, Jun; Tong, Jianliang; Lee, Stephanie W.; Iqbal, Zarah; Schonberger, Alison; Ghajar, Jamshid

    2012-06-01

    Attention is a core function in cognition and also the most prevalent cognitive deficit in mild traumatic brain injury (mTBI). Predictive timing is an essential element of attention functioning because sensory processing and execution of goal-oriented behavior are facilitated by temporally accurate prediction. It is hypothesized that impaired synchronization between prediction and external events accounts for the attention deficit in mTBI. Other cognitive and somatic or affective symptoms associated with mTBI may be explained as secondary consequences of impaired predictive timing. Eye-Tracking Rapid Attention Computation (EYE-TRAC) is the quantification of predictive timing with indices of dynamic visuo-motor synchronization (DVS) between the gaze and the target during continuous predictive visual tracking. Such quantification allows for cognitive performance monitoring in comparison to the overall population as well as within individuals over time. We report preliminary results of normative data and data collected from subjects with a history of mTBI within 2 weeks of injury and post-concussive symptoms at the time of recruitment. A substantial proportion of mTBI subjects demonstrated DVS scores worse than 95% of normal subjects. In addition, longitudinal monitoring of acute mTBI subjects showed that initially abnormal DVS scores were followed by improvement toward the normal range. In summary, EYE-TRAC provides fast and objective indices of DVS that allow comparison of attention performance to a normative standard and monitoring of within-individual changes.

  9. Eyeball pressure stimulation induces subtle sympathetic activation in patients with a history of moderate or severe traumatic brain injury.

    Science.gov (United States)

    Wang, Ruihao; Hösl, Katharina M; Ammon, Fabian; Markus, Jörg; Koehn, Julia; Roy, Sankanika; Liu, Mao; de Rojas Leal, Carmen; Muresanu, Dafin; Flanagan, Steven R; Hilz, Max J

    2018-06-01

    After traumatic brain injury (TBI), there may be persistent central-autonomic-network (CAN) dysfunction causing cardiovascular-autonomic dysregulation. Eyeball-pressure-stimulation (EPS) normally induces cardiovagal activation. In patients with a history of moderate or severe TBI (post-moderate-severe-TBI), we determined whether EPS unveils cardiovascular-autonomic dysregulation. In 51 post-moderate-severe-TBI patients (32.7 ± 10.5 years old, 43.1 ± 33.4 months post-injury), and 30 controls (29.1 ± 9.8 years), we recorded respiration, RR-intervals (RRI), systolic and diastolic blood-pressure (BPsys, BPdia), before and during EPS (120 sec; 30 mmHg), using an ocular-pressure-device (Okulopressor®). We calculated spectral-powers of mainly sympathetic low (LF: 0.04-0.15 Hz) and parasympathetic high (HF: 0.15-0.5 Hz) frequency RRI-fluctuations, sympathetically mediated LF-powers of BPsys, and calculated normalized (nu) LF- and HF-powers of RRI. We compared parameters between groups before and during EPS by repeated-measurement-analysis-of-variance with post-hoc analysis (significance: p < 0.05). At rest, sympathetically mediated LF-BPsys-powers were significantly lower in the patients than the controls. During EPS, only controls significantly increased RRIs and parasympathetically mediated HFnu-RRI-powers, but decreased LF-RRI-powers, LFnu-RRI-powers, and LF-BPsys-powers; in contrast, the patients slightly though significantly increased BPsys upon EPS, without changing any other parameter. In post-moderate-severe-TBI patients, autonomic BP-modulation was already compromised at rest. During EPS, our patients failed to activate cardiovagal modulation but slightly increased BPsys, indicating persistent CAN dysregulation. Our findings unveil persistence of subtle cardiovascular-autonomic dysregulation even years after TBI. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  10. Serum concentration of ubiquitin c-terminal hydrolase-L1 in detecting severity of traumatic brain injury

    Science.gov (United States)

    Siahaan, A. M. P.; Japardi, I.; Hakim, A. A.

    2018-03-01

    One of the main problems with ahead injury is assessing the severity. While physical examination and imaging had limitations, neuronal damage markers, ubiquitin C-terminal hydrolase-L1 (UCH-L1), released in theblood may provide valuable information about diagnosis the traumatic brain injury (TBI).Analyzing the concentrations of serum ubiquitin C-terminal hydrolase-L1 (UCH-L1), there must have a neuronal injury biomarker, in theTBI patients serum and their association with clinical characteristics and outcome. There were 80 TBI subjects, and there are mild, moderate, and severe involved in this study of case- control. By using ELISA, we studied the profile of serum UCH-L1 levels for TBI patients. TheUCH-L1 serum level of moderate and severe head injury is higher than in mild head injury (pinjury patients. There is no particular correlation found between serum UCH-L1 level and outcome. Serum levels of UCH-L1 appear to have potential clinical utility in diagnosing TBI but do not correlate with outcome.

  11. Clinical Comparison of 99mTc Exametazime and 123I Ioflupane SPECT in Patients with Chronic Mild Traumatic Brain Injury

    OpenAIRE

    Newberg, Andrew B.; Serruya, Mijail; Gepty, Andrew; Intenzo, Charles; Lewis, Todd; Amen, Daniel; Russell, David S.; Wintering, Nancy

    2014-01-01

    BACKGROUND: This study evaluated the clinical interpretations of single photon emission computed tomography (SPECT) using a cerebral blood flow and a dopamine transporter tracer in patients with chronic mild traumatic brain injury (TBI). The goal was to determine how these two different scan might be used and compared to each other in this patient population. METHODS AND FINDINGS: Twenty-five patients with persistent symptoms after a mild TBI underwent SPECT with both (99m)Tc exametazime to m...

  12. Comparative Effectiveness of Family Problem-Solving Therapy (F-PST) for Adolescent TBI

    Science.gov (United States)

    2018-01-25

    Tbi; Intracranial Edema; Brain Edema; Craniocerebral Trauma; Head Injury; Brain Hemorrhage, Traumatic; Subdural Hematoma; Brain Concussion; Head Injuries, Closed; Epidural Hematoma; Cortical Contusion; Wounds and Injuries; Disorders of Environmental Origin; Trauma, Nervous System; Brain Injuries

  13. Traumatic Brain Injury service (TBI) Service

    Data.gov (United States)

    Department of Veterans Affairs — This Service provides access to Tramatic Brain injury patient data consult notes. The service also provides one write service method writeNote. The Service supports...

  14. TBI parameters and relapse of acute leukemia

    International Nuclear Information System (INIS)

    Sugawara, Tadashi; Inoue, Toshihiko; Mori, Tomoyuki.

    1994-01-01

    The purpose of this study, which involved 240 acute leukemia patients (ALL: 115, ANL: 125) who received an allogeneic bone marrow transplantation (BMT) with preconditioning by total body irradiation (TBI) and chemotherapy, was to examine retrospectively the TBI factors that may have influenced a leukemic relapse. The patients were divided into two groups: 124 patients who had received their BMT within a diagnosis-transplantation period of 9 months or less (DTP9 group), and 116 patients who had received their BMT within a diagnosis-transplantation period of 10 months or more (DTP10 group). It was concluded that: (1) the higher the TBI dose, the fewer the relapse rates in DTP9 group; (2) the longer the TBI period, the greater the increase in the relapse rate in DTP10 group. It was thus speculated that an effective TBI regimen for acute leukemia patients may vary depending on the length of time that has elapsed from the diagnosis of leukemia to the BMT. (author)

  15. Pituitary dysfunction following traumatic brain injury: clinical perspectives

    Science.gov (United States)

    Tanriverdi, Fatih; Kelestimur, Fahrettin

    2015-01-01

    Traumatic brain injury (TBI) is a well recognized public health problem worldwide. TBI has previously been considered as a rare cause of hypopituitarism, but an increased prevalence of neuroendocrine dysfunction in patients with TBI has been reported during the last 15 years in most of the retrospective and prospective studies. Based on data in the current literature, approximately 15%–20% of TBI patients develop chronic hypopituitarism, which clearly suggests that TBI-induced hypopituitarism is frequent in contrast with previous assumptions. This review summarizes the current data on TBI-induced hypopituitarism and briefly discusses some clinical perspectives on post-traumatic anterior pituitary hormone deficiency. PMID:26251600

  16. Clinically-Important Brain Injury and CT Findings in Pediatric Mild Traumatic Brain Injuries: A Prospective Study in a Chinese Reference Hospital

    Directory of Open Access Journals (Sweden)

    Huiping Zhu

    2014-03-01

    Full Text Available This study investigated injury patterns and the use of computed tomography (CT among Chinese children with mild traumatic brain injury (MTBI. We enrolled children with MTBI who were treated within 24 hours of head trauma in the emergency department of Wuhan Medical Care Center for Women and Children in Wuhan, China. Characteristics of MTBIs were analyzed by age and gender. Results of cranial CT scan and clinically-important brain injury (ciTBI for children were obtained. The definition of ciTBI was: death from TBI, intubation for more than 24 h for TBI, neurosurgery, or hospital admission of 2 nights or more. Of 455 eligible patients with MTBI, ciTBI occurred in two, and no one underwent neurosurgical intervention. CT scans were performed for 441 TBI patients (96.9%, and abnormal findings were reported for 147 patients (33.3%, 95% CI 29.0–37.8. Falls were the leading cause of MTBI (61.5%, followed by blows (18.9% and traffic collisions (14.1% for children in the 0–2 group and 10–14 group. For children aged between 3 and 9, the top three causes of TBI were falls, traffic collisions and blows. Leisure activity was the most reported activity when injuries occurred for all age groups. Sleeping/resting and walking ranked in the second and third place for children between 0 and 2 years of age, and walking and riding for the other two groups. The places where the majority injuries occurred were the home for the 0–2 and 3–9 years of age groups, and school for the 10–14 years of age group. There was no statistical difference between boys and girls with regard to the activity that caused the MTBI. This study highlights the important roles that parents and school administrators in the development of preventive measures to reduce the risk of traumatic brain injury in children. Also, identifying children who had a head trauma at very low risk of clinically important TBI for whom CT might be unnecessary is a priority area of research in China.

  17. Recovery of injured Broca's portion of arcuate fasciculus in the dominant hemisphere in a patient with traumatic brain injury.

    Science.gov (United States)

    Jang, Sung Ho; Ha, Ji Wan; Kim, Hyun Young; Seo, You Sung

    2017-12-01

    Recovery of injured AF in patients with traumatic brain injury (TBI) has not been reported. In this study, we report on a patient with TBI who recovered from an injury to Broca's portion of AF in the dominant hemisphere, diagnosed by diffusion tensor tractography (DTT). A 28-year-old right-handed male patient suffered head trauma resulting from sliding while riding a motorcycle. He was diagnosed with a traumatic contusional hemorrhage in the left frontal lobe, subarachnoid hemorrhage, and subdural hemorrhage in the left fronto-temporal lobe. He underwent craniectomy on the left fronto-temporal area, and hematoma removal for the subdural hemorrhage in the neurosurgery department of a university hospital. Two weeks after the injury, he was transferred to the rehabilitation department of another university hospital. He showed severe aphasia and brain MRI showed leukomalactic lesion in the left frontal lobe. The result WAB for the patient showed severe aphasia, with an aphasia quotient of 45.3 percentile. However, his aphasia improved rapidly by 9 months with an aphasia quotient at the 100.0 percentile. 2-week DTT detected discontinuity in the subcortical white matter at the branch to Broca's area of left AF. By contrast, on 9-month DTT, the discontinued portion of left AF was elongated to the left Broca's area. Recovery of injured Broca's portion of AF in the dominant hemisphere along with excellent improvement of aphasia was demonstrated in a patient with TBI. This study has important implications in brain rehabilitation because the mechanism of recovery from aphasia following TBI has not been elucidated. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  18. Long-Term Functional and Psychosocial Outcomes After Hypoxic-Ischemic Brain Injury: A Case-Controlled Comparison to Traumatic Brain Injury.

    Science.gov (United States)

    Harbinson, Meredith; Zarshenas, Sareh; Cullen, Nora K

    2017-12-01

    Despite the increasing rate of survival from hypoxic-ischemic brain injury (HIBI), there is a paucity of evidence on the long-term functional outcomes after inpatient rehabilitation among these nontrauma patients compared to patients with traumatic brain injury (TBI). To compare functional and psychosocial outcomes of patients with HIBI to those of case-matched patients with TBI 4-11 years after brain insult. Retrospective, matched case-controlled study. Data at the time of rehabilitation admission and discharge were collected as part of a larger acquired brain injury (ABI) database at Toronto Rehabilitation Institute (TRI) between 1999 and 2009. This study consisted of 11 patients with HIBI and 11 patients with TBI that attended the neuro-rehabilitation day program at TRI during a similar time frame and were matched on age, admission Functional Independence Measure (FIM) scores, and acute care length of stay (ALOS). At 4-11 years following brain insult, patients were reassessed using the FIM, Disability Rating Scale (DRS), Personal Health Questionnaire Depression Scale (PHQ-9), and the Mayo-Portland Adaptability Inventory 4 (MPAI-4). At follow-up, patients with HIBI had significantly lower FIM motor and cognitive scores than patients with TBI (75.3 ± 20.6 versus 88.1 ± 4.78, P MPAI-4 at follow-up (P < .05). The study results suggest that patients with HIBI achieve less long-term functional improvements compared to patients with TBI. Further research is warranted to compare the components of inpatient rehabilitation while adjusting for demographics and clinical characteristics between these 2 groups of patients. III. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  19. Excessive sleep need following traumatic brain injury: a case-control study of 36 patients.

    Science.gov (United States)

    Sommerauer, Michael; Valko, Philipp O; Werth, Esther; Baumann, Christian R

    2013-12-01

    Increased sleep need following traumatic brain injury, referred to in this study as post-traumatic pleiosomnia, is common, but so far its clinical impact and therapeutic implications have not been characterized. We present a case-control study of 36 patients with post-traumatic pleiosomnia, defined by an increased sleep need of at least 2 h per 24 h after traumatic brain injury, compared to 36 controls. We assessed detailed history, sleep-activity patterns with sleep logs and actigraphy, nocturnal sleep with polysomnography and daytime sleep propensity with multiple sleep latency tests. Actigraphy recordings revealed that traumatic brain injury (TBI) patients had longer estimated sleep durations than controls (10.8 h per 24 h, compared to 7.3 h). When using sleep logs, TBI patients underestimated their sleep need. During nocturnal sleep, patients had higher amounts of slow-wave sleep than controls (20 versus 13.8%). Multiple sleep latency tests revealed excessive daytime sleepiness in 15 patients (42%), and 10 of them had signs of chronic sleep deprivation. We conclude that post-traumatic pleiosomnia may be even more frequent than reported previously, because affected patients often underestimate their actual sleep need. Furthermore, these patients exhibit an increase in slow-wave sleep which may reflect recovery mechanisms, intrinsic consequences of diffuse brain damage or relative sleep deprivation. © 2013 European Sleep Research Society.

  20. Reversal of coagulopathy in critically ill patients with traumatic brain injury: recombinant factor VIIa is more cost-effective than plasma.

    Science.gov (United States)

    Stein, Deborah M; Dutton, Richard P; Kramer, Mary E; Scalea, Thomas M

    2009-01-01

    Traumatic brain injury (TBI) is the leading cause of death and disability after trauma. Coagulopathy is common in this patient population and requires rapid reversal to allow for safe neurosurgical intervention and prevent worsening of the primary injury. Typically reversal of coagulopathy is accomplished with the use of plasma. Recombinant factor VIIa (rFVIIa; NovoSeven, Novo Nordisk, Bagsvaerd, Denmark) has become increasingly used "off-label" in patients with neurosurgical emergencies to rapidly reverse coagulopathy. We hypothesized that the use of rFVIIa in this patient population would prove to be cost-effective as well as demonstrate clinical benefit. The trauma registry at the R Adams Cowley Shock Trauma Center was used to identify all coagulopatic trauma patients admitted between January 2002 and December 2007 with relatively isolated TBI (head Abbreviated Injury Scale score of >or=4). The medical records of patients were reviewed and demographics, injury-specific data, medications administered, laboratory values, blood product utilization, neurosurgical procedures, length of stay (LOS), discharge disposition, and outcome data were abstracted. Patients who received rFVIIa for reversal of coagulopathy were compared against those who did not receive rFVIIa. t Tests were used to compare differences between continuous variables, and chi2 analysis was used to compare categorical variables. A p value of percentage of patients with head Abbreviated Injury Scale score of 5 injuries, patients who underwent neurosurgical procedures and patients with preinjury warfarin use. There was no difference in total charges between these groups (mean US $63,403 in the conventionally treated group vs. $66,086). When patients who required admission to the intensive care unit were analyzed (n = 110, 50% received rFVIIa), total mean charges and costs were significantly lower in the group that received rFVIIa (mean US $108,900 vs. $77,907). Hospital LOS, days of mechanical

  1. Delivery of mental health treatment to combat veterans with psychiatric diagnoses and TBI histories.

    Directory of Open Access Journals (Sweden)

    Shannon R Miles

    Full Text Available Traumatic brain injury (TBI and mental health (MH disorders are prevalent in combat veterans returning from Afghanistan and/or Iraq (hereafter referred to as returning veterans. Accurate estimates of service utilization for veterans with and without TBI exposure (referred to as TBI history are imperative in order to provide high quality healthcare to returning veterans. We examined associations between TBI history and MH service utilization in a subsample of returning veterans who were newly diagnosed with posttraumatic stress disorder (PTSD, depression, and/or anxiety in the 2010 fiscal year (N = 55,458. Data were extracted from the Veterans Health Administration (VHA National Patient Care Database. Veterans with MH diagnoses and TBI histories attended significantly more psychotherapy visits, (M = 8.32 visits, SD = 17.15 and were more likely to attend at least 8 psychotherapy visits, (15.7% than veterans with MH diagnoses but no TBI history (M = 6.48 visits, SD = 12.12; 10.1% attended at least 8 sessions. PTSD and TBI history, but not depression or anxiety, were associated with a greater number of psychotherapy visits when controlling for demographic and clinical variables. PTSD, anxiety, depression, and TBI history were associated with number of psychotropic medication-management visits. TBI history was related to greater MH service utilization, independent of MH diagnoses. Future research should examine what MH services are being utilized and if these services are helping veterans recover from their disorders.

  2. Intracranial bleeding in patients with traumatic brain injury: A prognostic study

    Directory of Open Access Journals (Sweden)

    Mooney Jane

    2009-08-01

    Full Text Available Abstract Background Intracranial bleeding (IB is a common and serious consequence of traumatic brain injury (TBI. IB can be classified according to the location into: epidural haemorrhage (EDH subdural haemorrhage (SDH intraparenchymal haemorrhage (IPH and subarachnoid haemorrhage (SAH. Studies involving repeated CT scanning of TBI patients have found that IB can develop or expand in the 48 hours after injury. If IB enlarges after hospital admission and larger bleeds have a worse prognosis, this would provide a therapeutic rationale for treatments to prevent increase in the extent of bleeding. We analysed data from the Trauma Audit & Research Network (TARN, a large European trauma registry, to evaluate the association between the size of IB and mortality in patients with TBI. Methods We analysed 13,962 patients presenting to TARN participating hospitals between 2001 and 2008 with a Glasgow Coma Score (GCS less than 15 at presentation or any head injury with Abbreviated Injury Scale (AIS severity code 3 and above. The extent of intracranial bleeding was determined by the AIS code. Potential confounders were age, presenting Glasgow Coma Score, mechanism of injury, presence and nature of other brain injuries, and presence of extra-cranial injuries. The outcomes were in-hospital mortality and haematoma evacuation. We conducted a multivariable logistic regression analysis to evaluate the independent effect of large and small size of IB, in comparison with no bleeding, on patient outcomes. We also conducted a multivariable logistic regression analysis to assess the independent effect on mortality of large IB in comparison with small IB. Results Almost 46% of patients had at some type of IB. Subdural haemorrhages were present in 30% of the patients, with epidural and intraparenchymal present in approximately 22% each. After adjusting for potential confounders, we found that large IB, wherever located, was associated with increased mortality in

  3. Circadian variability of the initial Glasgow Coma Scale score in traumatic brain injury patients

    Directory of Open Access Journals (Sweden)

    John K. Yue

    2017-01-01

    Conclusions: Nighttime TBI patients present with decreased GCS scores and are admitted to ICU at higher rates, yet have fewer prior comorbidities and similar systemic injuries. The interaction between nighttime hours and decreased GCS score on ICU admissions has important implications for clinical assessment/triage.

  4. Sleep-wake disturbances after traumatic brain injury.

    Science.gov (United States)

    Ouellet, Marie-Christine; Beaulieu-Bonneau, Simon; Morin, Charles M

    2015-07-01

    Sleep-wake disturbances are extremely common after a traumatic brain injury (TBI). The most common disturbances are insomnia (difficulties falling or staying asleep), increased sleep need, and excessive daytime sleepiness that can be due to the TBI or other sleep disorders associated with TBI, such as sleep-related breathing disorder or post-traumatic hypersomnia. Sleep-wake disturbances can have a major effect on functional outcomes and on the recovery process after TBI. These negative effects can exacerbate other common sequelae of TBI-such as fatigue, pain, cognitive impairments, and psychological disorders (eg, depression and anxiety). Sleep-wake disturbances associated with TBI warrant treatment. Although evidence specific to patients with TBI is still scarce, cognitive-behavioural therapy and medication could prove helpful to alleviate sleep-wake disturbances in patients with a TBI. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The validity of the Brain Injury Cognitive Screen (BICS) as a neuropsychological screening assessment for traumatic and non-traumatic brain injury.

    Science.gov (United States)

    Vaughan, Frances L; Neal, Jo Anne; Mulla, Farzana Nizam; Edwards, Barbara; Coetzer, Rudi

    2017-04-01

    The Brain Injury Cognitive Screen (BICS) was developed as an in-service cognitive assessment battery for acquired brain injury patients entering community rehabilitation. The BICS focuses on domains that are particularly compromised following TBI, and provides a broader and more detailed assessment of executive function, attention and information processing than comparable screening assessments. The BICS also includes brief assessments of perception, naming, and construction, which were predicted to be more sensitive to impairments following non-traumatic brain injury. The studies reported here examine preliminary evidence for its validity in post-acute rehabilitation. In Study 1, TBI patients completed the BICS and were compared with matched controls. Patients with focal lesions and matched controls were compared in Study 2. Study 3 examined demographic effects in a sample of normative data. TBI and focal lesion patients obtained significantly lower composite memory, executive function and attention and information processing BICS scores than healthy controls. Injury severity effects were also obtained. Logistic regression analyses indicated that each group of BICS memory, executive function and attention measures reliably differentiated TBI and focal lesion participants from controls. Design Recall, Prospective Memory, Verbal Fluency, and Visual Search test scores showed significant independent regression effects. Other subtest measures showed evidence of sensitivity to brain injury. The study provides preliminary evidence of the BICS' sensitivity to cognitive impairment caused by acquired brain injury, and its potential clinical utility as a cognitive screen. Further validation based on a revised version of the BICS and more normative data are required.

  6. Differences in cerebral perfusion deficits in mild traumatic brain injury and depression using single photon emission computed tomography

    OpenAIRE

    Kristoffer eRomero; Sandra E Black; Sandra E Black; Anthony eFeinstein

    2014-01-01

    Background: Numerous studies have shown decreased perfusion in the prefrontal cortex following mild traumatic brain injury (mTBI). However, similar hypoperfusion can also be observed in depression. Given the high prevalence of depressive symptoms following mTBI, it is unclear to what extent depression influences hypoperfusion in TBI.Methods: Mild TBI patients without depressive symptoms (mTBI-noD, n = 39), TBI patients with depressive symptoms (mTBI-D, n = 13), and 15 patients with major depr...

  7. Differences in Cerebral Perfusion Deficits in Mild Traumatic Brain Injury and Depression Using Single-Photon Emission Computed Tomography

    OpenAIRE

    Romero, Kristoffer; Black, Sandra E.; Feinstein, Anthony

    2014-01-01

    Background: Numerous studies have shown decreased perfusion in the prefrontal cortex following mild traumatic brain injury (mTBI). However, similar hypoperfusion can also be observed in depression. Given the high prevalence of depressive symptoms following mTBI, it is unclear to what extent depression influences hypoperfusion in TBI. Methods: Mild TBI patients without depressive symptoms (mTBI-noD, n = 39), TBI patients with depressive symptoms (mTBI-D, n = 13), and 15 patients with major ...

  8. Deafferentation in thalamic and pontine areas in severe traumatic brain injury.

    Science.gov (United States)

    Laouchedi, M; Galanaud, D; Delmaire, C; Fernandez-Vidal, S; Messé, A; Mesmoudi, S; Oulebsir Boumghar, F; Pélégrini-Issac, M; Puybasset, L; Benali, H; Perlbarg, V

    2015-07-01

    Severe traumatic brain injury (TBI) is characterized mainly by diffuse axonal injuries (DAI). The cortico-subcortical disconnections induced by such fiber disruption play a central role in consciousness recovery. We hypothesized that these cortico-subcortical deafferentations inferred from diffusion MRI data could differentiate between TBI patients with favorable or unfavorable (death, vegetative state, or minimally conscious state) outcome one year after injury. Cortico-subcortical fiber density maps were derived by using probabilistic tractography from diffusion tensor imaging data acquired in 24 severe TBI patients and 9 healthy controls. These maps were compared between patients and controls as well as between patients with favorable (FO) and unfavorable (UFO) 1-year outcome to identify the thalamo-cortical and ponto-thalamo-cortical pathways involved in the maintenance of consciousness. Thalamo-cortical and ponto-thalamo-cortical fiber density was significantly lower in TBI patients than in healthy controls. Comparing FO and UFO TBI patients showed thalamo-cortical deafferentation associated with unfavorable outcome for projections from ventral posterior and intermediate thalamic nuclei to the associative frontal, sensorimotor and associative temporal cortices. Specific ponto-thalamic deafferentation in projections from the upper dorsal pons (including the reticular formation) was also associated with unfavorable outcome. Fiber density of cortico-subcortical pathways as measured from diffusion MRI tractography is a relevant candidate biomarker for early prediction of one-year favorable outcome in severe TBI. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  9. Research in rehabilitation treatment for patients with severe traumatic Brain Injury

    DEFF Research Database (Denmark)

    Schow, Trine

    2010-01-01

    it difficult if not impossible to investigate treatment outcome. This thesis has dealt with one of the widely used rehabilitation approaches used for, among others, swallowing difficulties: Facial Oral Tract Therapy (FOTT) ©. The studies in this thesis show that swallowing difficulties often occur in patients......  The therapeutic rehabilitation of patients with traumatic brain injury (TBI) has a limited evidence-based foundation. The current rehabilitation approaches have been developed mainly through clinical practice. They often consist of many components that are defined in incomplete ways, making...... with severe TBI admitted for subacute rehabilitation (93%), pneumonia was found in 12%. The many components of FOTT are defined in a treatment manual; we developed and tested a method that can measure whether therapist uses FOTT appropriately. In addition, we developed and validated a FOTT clinical evaluation...

  10. I-123 iomazenil single photon emission computed tomography for detecting loss of neuronal integrity in patients with traumatic brain injury

    OpenAIRE

    Abiko, Kagari; Ikoma, Katsunori; Shiga, Tohru; Katoh, Chietsugu; Hirata, Kenji; Kuge, Yuji; Kobayashi, Kentaro; Tamaki, Nagara

    2017-01-01

    Background Traumatic brain injury (TBI) causes brain dysfunction in many patients. Using C-11 flumazenil (FMZ) positron emission tomography (PET), we have detected and reported the loss of neuronal integrity, leading to brain dysfunction in TBI patients. Similarly to FMZ PET, I-123 iomazenil (IMZ) single photon emission computed tomography (SPECT) is widely used to determine the distribution of the benzodiazepine receptor (BZR) in the brain cortex. The purpose of this study is to examine whet...

  11. Does an early onset and continuous chain of rehabilitation improve the long-term functional outcome of patients with severe traumatic brain injury?

    Science.gov (United States)

    Andelic, Nada; Bautz-Holter, Erik; Ronning, Pal; Olafsen, Kjell; Sigurdardottir, Solrun; Schanke, Anne-Kristine; Sveen, Unni; Tornas, Sveinung; Sandhaug, Maria; Roe, Cecilie

    2012-01-01

    There are currently no international guidelines regarding treatment in the early rehabilitation phase for persons with severe traumatic brain injury (TBI), and only a few studies have investigated the effect of integrating rehabilitation into acute TBI care. The aim of the study was to evaluate whether a continuous chain of rehabilitation that begins with the acute phase could improve the functional outcome of severe TBI patients, compared to a broken chain of rehabilitation that starts in the sub-acute phase of TBI. A total of 61 surviving patients with severe TBI were included in a quasi-experimental study conducted at the Level I trauma center in Eastern Norway. In the study, 31 patients were in the early rehabilitation group (Group A) and 30 patients were in the delayed rehabilitation group (Group B). The functional outcomes were assessed 12 months post-injury with the Glasgow Outcome Scale Extended (GOSE) and the Disability Rating Scale (DRS). A favorable outcome (GOSE 6-8) occurred in 71% of the patients from Group A versus 37% in Group B (p=0.007). The DRS score was significantly better in Group A (p=0.03). The ordinal logistic regression analysis was used to quantify the relationship between the type of rehabilitation chain and the GOSE. A better GOSE outcome was found in patients from Group A (unadjusted OR 3.25 and adjusted OR 2.78, respectively). These results support the hypothesis that better functional outcome occurs in patients who receive early onset and a continuous chain of rehabilitation.

  12. Brain injuries from blast.

    Science.gov (United States)

    Bass, Cameron R; Panzer, Matthew B; Rafaels, Karen A; Wood, Garrett; Shridharani, Jay; Capehart, Bruce

    2012-01-01

    Traumatic brain injury (TBI) from blast produces a number of conundrums. This review focuses on five fundamental questions including: (1) What are the physical correlates for blast TBI in humans? (2) Why is there limited evidence of traditional pulmonary injury from blast in current military field epidemiology? (3) What are the primary blast brain injury mechanisms in humans? (4) If TBI can present with clinical symptoms similar to those of Post-Traumatic Stress Disorder (PTSD), how do we clinically differentiate blast TBI from PTSD and other psychiatric conditions? (5) How do we scale experimental animal models to human response? The preponderance of the evidence from a combination of clinical practice and experimental models suggests that blast TBI from direct blast exposure occurs on the modern battlefield. Progress has been made in establishing injury risk functions in terms of blast overpressure time histories, and there is strong experimental evidence in animal models that mild brain injuries occur at blast intensities that are similar to the pulmonary injury threshold. Enhanced thoracic protection from ballistic protective body armor likely plays a role in the occurrence of blast TBI by preventing lung injuries at blast intensities that could cause TBI. Principal areas of uncertainty include the need for a more comprehensive injury assessment for mild blast injuries in humans, an improved understanding of blast TBI pathophysiology of blast TBI in animal models and humans, the relationship between clinical manifestations of PTSD and mild TBI from blunt or blast trauma including possible synergistic effects, and scaling between animals models and human exposure to blasts in wartime and terrorist attacks. Experimental methodologies, including location of the animal model relative to the shock or blast source, should be carefully designed to provide a realistic blast experiment with conditions comparable to blasts on humans. If traditional blast scaling is

  13. Structural imaging of mild traumatic brain injury may not be enough: overview of functional and metabolic imaging of mild traumatic brain injury.

    Science.gov (United States)

    Shin, Samuel S; Bales, James W; Edward Dixon, C; Hwang, Misun

    2017-04-01

    A majority of patients with traumatic brain injury (TBI) present as mild injury with no findings on conventional clinical imaging methods. Due to this difficulty of imaging assessment on mild TBI patients, there has been much emphasis on the development of diffusion imaging modalities such as diffusion tensor imaging (DTI). However, basic science research in TBI shows that many of the functional and metabolic abnormalities in TBI may be present even in the absence of structural damage. Moreover, structural damage may be present at a microscopic and molecular level that is not detectable by structural imaging modality. The use of functional and metabolic imaging modalities can provide information on pathological changes in mild TBI patients that may not be detected by structural imaging. Although there are various differences in protocols of positron emission tomography (PET), single photon emission computed tomography (SPECT), functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and magnetoencephalography (MEG) methods, these may be important modalities to be used in conjunction with structural imaging in the future in order to detect and understand the pathophysiology of mild TBI. In this review, studies of mild TBI patients using these modalities that detect functional and metabolic state of the brain are discussed. Each modality's advantages and disadvantages are compared, and potential future applications of using combined modalities are explored.

  14. The Association Between Ventriculo-Peritoneal Shunt and Acute Appendicitis in Patients with Traumatic Brain Injury: A 14-Year, Population-Based Study.

    Science.gov (United States)

    Lim, Sher-Wei; Ao, Kam-Hou; Ho, Chung-Han; Tseng, Chien-Jen; Wang, Jhi-Joung; Chio, Chung-Ching; Kuo, Jinn-Rung

    2017-07-01

    The association between preexisting ventriculoperitoneal (VP) shunt and the risk of new-onset acute appendicitis in patients with traumatic brain injury (TBI) is not well established. The aim of the present study was to determine the relationships between VP shunt and acute appendicitis in patients with TBI. A longitudinal cohort study matched by a propensity score in patients with TBI with (4781 patients) or without (9562 patients) VP shunt was conducted using the National Health Insurance Research Database in Taiwan between January 1993 and December 2013. The main outcome studied was diagnosis of acute appendicitis. The cumulative probability of acute appendicitis was not different between these 2 groups (P = 0.6244). A Cox model showed central nervous system (CNS) infection to be an independent predictor of acute appendicitis with an adjusted hazard ratio of 2.98. Patients with TBI with both a VP shunt and a CNS infection had a greater risk of developing new-onset acute appendicitis (hazard ratio 4.25; 95% confidence interval 1.84-9.81) compared patients with TBI without a VP shunt or CNS infection. We concluded that VP shunt is not a risk factor in the development of appendicitis in patients with TBI. Patients with TBI with a shunt and a CNS infection may have a greater risk of developing acute appendicitis. Therefore, care in avoiding CNS infection is a key for the prevention acute appendicitis in this patient population. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Differences in visual vs. verbal memory impairments as a result of focal temporal lobe damage in patients with traumatic brain injury.

    Science.gov (United States)

    Ariza, Mar; Pueyo, Roser; Junqué, Carme; Mataró, María; Poca, María Antonia; Mena, Maria Pau; Sahuquillo, Juan

    2006-09-01

    The aim of the present study was to determine whether the type of lesion in a sample of moderate and severe traumatic brain injury (TBI) was related to material-specific memory impairment. Fifty-nine patients with TBI were classified into three groups according to whether the site of the lesion was right temporal, left temporal or diffuse. Six-months post-injury, visual (Warrington's Facial Recognition Memory Test and Rey's Complex Figure Test) and verbal (Rey's Auditory Verbal Learning Test) memories were assessed. Visual memory deficits assessed by facial memory were associated with right temporal lobe lesion, whereas verbal memory performance assessed with a list of words was related to left temporal lobe lesion. The group with diffuse injury showed both verbal and visual memory impairment. These results suggest a material-specific memory impairment in moderate and severe TBI after focal temporal lesions and a non-specific memory impairment after diffuse damage.

  16. Trajectories of life satisfaction after TBI: Influence of life roles, age, cognitive disability, and depressive symptoms

    Science.gov (United States)

    Juengst, Shannon B.; Adams, Leah M.; Bogner, Jennifer A.; Arenth, Patricia M.; O’Neil-Pirozzi, Therese M.; Dreer, Laura E.; Hart, Tessa; Bergquist, Thomas F.; Bombardier, Charles H.; Dijkers, Marcel P.; Wagner, Amy K.

    2015-01-01

    Objectives 1) Identify life satisfaction trajectories after moderate to severe traumatic brain injury (TBI), 2) establish a predictive model for these trajectories across the first 5 years post-injury, and 3) describe differences in these life satisfaction trajectory groups, focusing on age, depressive symptoms, disability, and participation in specific life roles,. Research Method Analysis of the longitudinal TBI Model Systems National Database was performed on data collected prospectively at 1, 2, and 5 years post-TBI. Participants (n=3,012) had a moderate to severe TBI and were 16 years old and older. Results Four life satisfaction trajectories were identified across the first 5 years post-injury, including: Stable Satisfaction, Initial Satisfaction Declining, Initial Dissatisfaction Improving, and Stable Dissatisfaction. Age, depressive symptoms, cognitive disability, and life role participation as a worker, leisure participant, and/ or religious participant at one year post-injury significantly predicted trajectory group membership. Life role participation and depressive symptoms were strong predictors of life satisfaction trajectories across the first 5 years post TBI. Conclusions The previously documented loss of life roles and prevalence of depression after a moderate to severe TBI make this a vulnerable population for whom low or declining life satisfaction is a particularly high risk. Examining individual life role participation may help to identify relevant foci for community-based rehabilitation interventions or supports. PMID:26618215

  17. Altered network topology in pediatric traumatic brain injury

    Science.gov (United States)

    Dennis, Emily L.; Rashid, Faisal; Babikian, Talin; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C.; Asarnow, Robert F.; Thompson, Paul M.

    2017-11-01

    Outcome after a traumatic brain injury (TBI) is quite variable, and this variability is not solely accounted for by severity or demographics. Identifying sub-groups of patients who recover faster or more fully will help researchers and clinicians understand sources of this variability, and hopefully lead to new therapies for patients with a more prolonged recovery profile. We have previously identified two subgroups within the pediatric TBI patient population with different recovery profiles based on an ERP-derived (event-related potential) measure of interhemispheric transfer time (IHTT). Here we examine structural network topology across both patient groups and healthy controls, focusing on the `rich-club' - the core of the network, marked by high degree nodes. These analyses were done at two points post-injury - 2-5 months (post-acute), and 13-19 months (chronic). In the post-acute time-point, we found that the TBI-slow group, those showing longitudinal degeneration, showed hyperconnectivity within the rich-club nodes relative to the healthy controls, at the expense of local connectivity. There were minimal differences between the healthy controls and the TBI-normal group (those patients who show signs of recovery). At the chronic phase, these disruptions were no longer significant, but closer analysis showed that this was likely due to the loss of power from a smaller sample size at the chronic time-point, rather than a sign of recovery. We have previously shown disruptions to white matter (WM) integrity that persist and progress over time in the TBI-slow group, and here we again find differences in the TBI-slow group that fail to resolve over the first year post-injury.

  18. Talking to Your Patients: A Clinician’s Guide to Treating Mild Traumatic Brain Injury

    Centers for Disease Control (CDC) Podcasts

    2010-10-05

    This podcast describes how to talk to your patients and provide health information about mild traumatic brain injury (mild TBI) that may help ease their concerns and can give them tools to help speed their recovery.  Created: 10/5/2010 by National Center for Injury Prevention and Control (NCIPC).   Date Released: 10/5/2010.

  19. Total body irradiation (TBI) in pediatric patients. A single-center experience after 30 years of low-dose rate irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Linsenmeier, Claudia; Thoennessen, Daniel; Negretti, Laura; Streller, Tino; Luetolf, Urs Martin [University Hospital Zurich (Switzerland). Dept. of Radiation-Oncology; Bourquin, Jean-Pierre [University Children' s Hospital Zurich (Switzerland). Dept. of Hemato-Oncology; Oertel, Susanne [University Hospital Zurich (Switzerland). Dept. of Radiation-Oncology; Heidelberg Univ. (Germany). Dept. of Radiation Oncology

    2010-11-15

    To retrospectively analyze patient characteristics, treatment, and treatment outcome of pediatric patients with hematologic diseases treated with total body irradiation (TBI) between 1978 and 2006. 32 pediatric patients were referred to the Department of Radiation-Oncology at the University of Zurich for TBI. Records of regular follow-up of 28 patients were available for review. Patient characteristics as well as treatment outcome regarding local control and overall survival were assessed. A total of 18 patients suffered from acute lymphoblastic leukemia (ALL), 5 from acute and 2 from chronic myelogenous leukemia, 1 from non-Hodgkin lymphoma, and 2 from anaplastic anemia. The cohort consisted of 15 patients referred after first remission and 13 patients with relapsed leukemia. Mean follow-up was 34 months (2-196 months) with 15 patients alive at the time of last follow-up. Eight patients died of recurrent disease, 1 of graft vs. host reaction, 2 of sepsis, and 2 patients died of a secondary malignancy. The 5-year overall survival rate (OS) was 60%. Overall survival was significantly inferior in patients treated after relapse compared to those treated for newly diagnosed leukemia (24% versus 74%; p=0.004). At the time of last follow-up, 11 patients survived for more than 36 months following TBI. Late effects (RTOG {>=}3) were pneumonitis in 1 patient, chronic bronchitis in 1 patient, cardiomyopathy in 2 patients, severe cataractogenesis in 1 patient (48 months after TBI with 10 Gy in a single dose) and secondary malignancies in 2 patients (36 and 190 months after TBI). Growth disturbances were observed in all patients treated prepubertally. In 2 patients with identical twins treated at ages 2 and 7, a loss of 8% in final height of the treated twin was observed. As severe late sequelae after TBI, we observed 2 secondary malignancies in 11 patients who survived in excess of 36 months. However, long-term morbidity is moderate following treatment with the fractionated

  20. The Neurological Wake-up Test—A Role in Neurocritical Care Monitoring of Traumatic Brain Injury Patients?

    Directory of Open Access Journals (Sweden)

    Niklas Marklund

    2017-10-01

    Full Text Available The most fundamental clinical monitoring tool in traumatic brain injury (TBI patients is the repeated clinical examination. In the severe TBI patient treated by continuous sedation in a neurocritical care (NCC unit, sedation interruption is required to enable a clinical evaluation (named the neurological wake-up test; NWT assessing the level of consciousness, pupillary diameter and reactivity to light, and presence of focal neurological deficits. There is a basic conflict regarding the NWT in the NCC setting; can the clinical information obtained by the NWT justify the risk of inducing a stress response in a severe TBI patient? Furthermore, in the presence of advanced multimodal monitoring and neuroimaging, is the NWT necessary to identify important clinical alterations? In studies of severe TBI patients, the NWT was consistently shown to induce a stress reaction including brief increases in intracranial pressure (ICP and changes in cerebral perfusion pressure (CPP. However, it has not been established whether these short-lived ICP and CPP changes are detrimental to the injured brain. Daily interruption of sedation is associated with a reduced ventilator time, shorter hospital stay and reduced mortality in many studies of general intensive care unit patients, although such clinical benefits have not been firmly established in TBI. To date, there is no consensus on the use of the NWT among NCC units and systematic studies are scarce. Thus, additional studies evaluating the role of the NWT in clinical decision-making are needed. Multimodal NCC monitoring may be an adjunct in assessing in which TBI patients the NWT can be safely performed. At present, the NWT remains the golden standard for clinical monitoring and detection of neurological changes in NCC and could be considered in TBI patients with stable baseline ICP and CPP readings. The focus of the present review is an overview of the existing literature on the role of the NWT as a clinical

  1. Talking to Your Patients: A Clinician’s Guide to Treating Mild Traumatic Brain Injury

    Centers for Disease Control (CDC) Podcasts

    This podcast describes how to talk to your patients and provide health information about mild traumatic brain injury (mild TBI) that may help ease their concerns and can give them tools to help speed their recovery.

  2. Robust training attenuates TBI-induced deficits in reference and working memory on the radial 8-arm maze

    OpenAIRE

    Sebastian, Veronica; Diallo, Aissatou; Ling, Douglas S. F.; Serrano, Peter A.

    2013-01-01

    Globally, it is estimated that nearly 10 million people sustain severe brain injuries leading to hospitalization and/or death every year. Amongst survivors, traumatic brain injury (TBI) results in a wide variety of physical, emotional and cognitive deficits. The most common cognitive deficit associated with TBI is memory loss, involving impairments in spatial reference and working memory. However, the majority of research thus far has characterized the deficits associated with TBI on either r...

  3. Traumatic brain injury pharmacological treatment: recommendations

    Directory of Open Access Journals (Sweden)

    Renato Anghinah

    Full Text Available ABSTRACT This article presents the recommendations on the pharmacological treatment employed in traumatic brain injury (TBI at the outpatient clinic of the Cognitive Rehabilitation after TBI Service of the Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil. A systematic assessment of the consensus reached in other countries, and of articles on TBI available in the PUBMED and LILACS medical databases, was carried out. We offer recommendations of pharmacological treatments in patients after TBI with different symptoms.

  4. Effect of Age on Glasgow Coma Scale in Patients with Moderate and Severe Traumatic Brain Injury: An Approach with Propensity Score-Matched Population

    Directory of Open Access Journals (Sweden)

    Cheng-Shyuan Rau

    2017-11-01

    Full Text Available Background: The most widely used methods of describing traumatic brain injury (TBI are the Glasgow Coma Scale (GCS and the Abbreviated Injury Scale (AIS. Recent evidence suggests that presenting GCS in older patients may be higher than that in younger patients for an equivalent anatomical severity of TBI. This study aimed to assess these observations with a propensity-score matching approach using the data from Trauma Registry System in a Level I trauma center. Methods: We included all adult patients (aged ≥20 years old with moderate to severe TBI from 1 January 2009 to 31 December 2016. Patients were categorized into elderly (aged ≥65 years and young adults (aged 20–64 years. The severity of TBI was defined by an AIS score in the head (AIS 3‒4 and 5 indicate moderate and severe TBI, respectively. We examined the differences in the GCS scores by age at each head AIS score. Unpaired Student’s t- and Mann–Whitney U-tests were used to analyze normally and non-normally distributed continuous data, respectively. Categorical data were compared using either the Pearson chi-square or two-sided Fisher’s exact tests. Matched patient populations were allocated in a 1:1 ratio according to the propensity scores calculated using NCSS software with the following covariates: sex, pre-existing chronic obstructive pulmonary disease, systolic blood pressure, hemoglobin, sodium, glucose, and alcohol level. Logistic regression was used to evaluate the effects of age on the GCS score in each head AIS stratum. Results: The study population included 2081 adult patients with moderate to severe TBI. These patients were categorized into elderly (n = 847 and young adults (n = 1234: each was exclusively further divided into three groups of patients with head AIS of 3, 4, or 5. In the 162 well-balanced pairs of TBI patients with head AIS of 3, the elderly demonstrated a significantly higher GCS score than the young adults (14.1 ± 2.2 vs. 13.1 ± 3

  5. Tribes and tribulations: interdisciplinary eHealth in providing services for people with a traumatic brain injury (TBI).

    Science.gov (United States)

    Hines, M; Brunner, M; Poon, S; Lam, M; Tran, V; Yu, D; Togher, L; Shaw, T; Power, E

    2017-11-21

    eHealth has potential for supporting interdisciplinary care in contemporary traumatic brain injury (TBI) rehabilitation practice, yet little is known about whether this potential is being realised, or what needs to be done to further support its implementation. The purpose of this study was to explore health professionals' experiences of, and attitudes towards eHealth technologies to support interdisciplinary practice within rehabilitation for people after TBI. A qualitative study using narrative analysis was conducted. One individual interview and three focus groups were conducted with health professionals (n = 17) working in TBI rehabilitation in public and private healthcare settings across regional and metropolitan New South Wales, Australia. Narrative analysis revealed that participants held largely favourable views about eHealth and its potential to support interdisciplinary practice in TBI rehabilitation. However, participants encountered various issues related to (a) the design of, and access to electronic medical records, (b) technology, (c) eHealth implementation, and (d) information and communication technology processes that disconnected them from the work they needed to accomplish. In response, health professionals attempted to make the most of unsatisfactory eHealth systems and processes, but were still mostly unsuccessful in optimising the quality, efficiency, and client-centredness of their work. Attention to sources of disconnection experienced by health professionals, specifically design of, and access to electronic health records, eHealth resourcing, and policies and procedures related to eHealth and interdisciplinary practice are required if the potential of eHealth for supporting interdisciplinary practice is to be realised.

  6. Facial Emotion Recognition Deficits following Moderate-Severe Traumatic Brain Injury (TBI): Re-examining the Valence Effect and the Role of Emotion Intensity

    NARCIS (Netherlands)

    Rosenberg, H.; McDonald, S.; Dethier, M.; Kessels, R.P.C.; Westbrook, R.F.

    2014-01-01

    Many individuals who sustain moderate-severe traumatic brain injuries (TBI) are poor at recognizing emotional expressions, with a greater impairment in recognizing negative (e.g., fear, disgust, sadness, and anger) than positive emotions (e.g., happiness and surprise). It has been questioned whether

  7. A high-definition fiber tracking report for patients with traumatic brain injury and their doctors.

    Science.gov (United States)

    Chmura, Jon; Presson, Nora; Benso, Steven; Puccio, Ava M; Fissel, Katherine; Hachey, Rebecca; Braun, Emily; Okonkwo, David O; Schneider, Walter

    2015-03-01

    We have developed a tablet-based application, the High-Definition Fiber Tracking Report App, to enable clinicians and patients in research studies to see and understand damage from Traumatic Brain Injury (TBI) by viewing 2-dimensional and 3-dimensional images of their brain, with a focus on white matter tracts with quantitative metrics. The goal is to visualize white matter fiber tract injury like bone fractures; that is, to make the "invisible wounds of TBI" understandable for patients. Using mobile computing technology (iPad), imaging data for individual patients can be downloaded remotely within hours of a magnetic resonance imaging brain scan. Clinicians and patients can view the data in the form of images of each tract, rotating animations of the tracts, 3-dimensional models, and graphics. A growing number of tracts can be examined for asymmetry, gaps in streamline coverage, reduced arborization (branching), streamline volume, and standard quantitative metrics (e.g., Fractional Anisotropy (FA)). Novice users can learn to effectively navigate and interact with the application (explain the figures and graphs representing normal and injured brain tracts) within 15 minutes of simple orientation with high accuracy (96%). The architecture supports extensive graphics, configurable reports, provides an easy-to-use, attractive interface with a smooth user experience, and allows for securely serving cases from a database. Patients and clinicians have described the application as providing dramatic benefits in understanding their TBI and improving their lives. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  8. Serum IL-6: a candidate biomarker for intracranial pressure elevation following isolated traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Ward Norman H

    2010-03-01

    Full Text Available Abstract Background Increased intracranial pressure (ICP is a serious, life-threatening, secondary event following traumatic brain injury (TBI. In many cases, ICP rises in a delayed fashion, reaching a maximal level 48-96 hours after the initial insult. While pressure catheters can be implanted to monitor ICP, there is no clinically proven method for determining a patient's risk for developing this pathology. Methods In the present study, we employed antibody array and Luminex-based screening methods to interrogate the levels of inflammatory cytokines in the serum of healthy volunteers and in severe TBI patients (GCS≤8 with or without incidence of elevated intracranial pressure (ICP. De-identified samples and ELISAs were used to confirm the sensitivity and specificity of IL-6 as a prognostic marker of elevated ICP in both isolated TBI patients, and polytrauma patients with TBI. Results Consistent with previous reports, we observed sustained increases in IL-6 levels in TBI patients irrespective of their ICP status. However, the group of patients who subsequently experienced ICP ≥ 25 mm Hg had significantly higher IL-6 levels within the first 17 hours of injury as compared to the patients whose ICP remained ≤20 mm Hg. When blinded samples (n = 22 were assessed, a serum IL-6 cut-off of 128 pg/ml correctly identified 85% of isolated TBI patients who subsequently developed elevated ICP, and values between these cut-off values correctly identified 75% of all patients whose ICP remained ≤20 mm Hg throughout the study period. In contrast, the marker had no prognostic value in predicting elevated ICP in polytrauma patients with TBI. When the levels of serum IL-6 were assessed in patients with orthopedic injury (n = 7 in the absence of TBI, a significant increase was found in these patients compared to healthy volunteers, albeit lower than that observed in TBI patients. Conclusions Our results suggest that serum IL-6 can be used for the

  9. Facial emotion recognition deficits following moderate-severe Traumatic Brain Injury (TBI): re-examining the valence effect and the role of emotion intensity.

    Science.gov (United States)

    Rosenberg, Hannah; McDonald, Skye; Dethier, Marie; Kessels, Roy P C; Westbrook, R Frederick

    2014-11-01

    Many individuals who sustain moderate-severe traumatic brain injuries (TBI) are poor at recognizing emotional expressions, with a greater impairment in recognizing negative (e.g., fear, disgust, sadness, and anger) than positive emotions (e.g., happiness and surprise). It has been questioned whether this "valence effect" might be an artifact of the wide use of static facial emotion stimuli (usually full-blown expressions) which differ in difficulty rather than a real consequence of brain impairment. This study aimed to investigate the valence effect in TBI, while examining emotion recognition across different intensities (low, medium, and high). Twenty-seven individuals with TBI and 28 matched control participants were tested on the Emotion Recognition Task (ERT). The TBI group was more impaired in overall emotion recognition, and less accurate recognizing negative emotions. However, examining the performance across the different intensities indicated that this difference was driven by some emotions (e.g., happiness) being much easier to recognize than others (e.g., fear and surprise). Our findings indicate that individuals with TBI have an overall deficit in facial emotion recognition, and that both people with TBI and control participants found some emotions more difficult than others. These results suggest that conventional measures of facial affect recognition that do not examine variance in the difficulty of emotions may produce erroneous conclusions about differential impairment. They also cast doubt on the notion that dissociable neural pathways underlie the recognition of positive and negative emotions, which are differentially affected by TBI and potentially other neurological or psychiatric disorders.

  10. Criteria for Performing Cranial Computed Tomography for Chinese Patients With Mild Traumatic Brain Injury: Canadian Computed Tomography Head Rule or New Orleans Criteria?

    Science.gov (United States)

    Yang, Xiao-Feng; Meng, Yuan-Yuan; Wen, Liang; Wang, Hao

    2017-09-01

    Computed tomography (CT) provides the primary diagnostic evidence for traumatic brain injury (TBI), but few positive traumatic findings are discovered in patients with mild TBI. In China, there are no existing criteria for selecting patients with mild TBI to undergo CT, and almost all of these patients undergo cranial CT in the emergency department. This retrospective study was performed to evaluate the necessity of cranial CT among patients with mild TBI, as well as the feasibility of 2 popular criteria (Canadian CT head rule [CCHR] and New Orleans Criteria [NOC]) in China. Patients with mild TBI who underwent cranial CT within 24 hours of the trauma were included in our institute. Two neurosurgeons reviewed the CT images independently to identify positive CT findings. The sensitivity and specificity of CCHR and NOC for positive CT findings related to TBI were analyzed. Finally, this study included 625 patients. Positive CT findings related to TBI were discovered in 13.12% (82/625) of these patients on cranial CT, and 6.88% (43/625) of them were admitted to the hospital for further management. Ultimately, 11 patients (1.76%, 11/625) underwent neurosurgery. In this study, the sensitivities of both the CCHR and NOC were 100%, but the specificity of CCHR was 43.36% and that of NOC was 33.12%. Based on our study, both CCHR and NOC have high sensitivity for the detection of positive CT findings related to head trauma in patients with mild TBI.

  11. "Help seniors live better, longer: prevent brain injury": an overview of CDC's education initiative to prevent fall-related TBI among older adults.

    Science.gov (United States)

    Sarmiento, Kelly; Langlois, Jean A; Mitchko, Jane

    2008-01-01

    Falls are the leading cause of traumatic brain injury (TBI) among older adults aged 75 and older. Despite this burden, many older adults, their caregivers, and professionals are not aware of the importance of TBI as an outcome of falls among older adults. To address this important public health problem, the Centers for Disease Control and Prevention (CDC) developed the "Help Seniors Live Better, Longer: Prevent Brain Injury" initiative to help raise awareness about methods to prevent, recognize and respond to fall-related TBIs among older adults aged 75 and older. The initiative was launched in March 2008, in collaboration with 26 participating organizations, and included a multipronged outreach strategy to help blanket the country with the messages of the initiative at the national, state, and local levels. Adherence to a logical, comprehensive health-education approach has proven to be highly effective in furthering the initial goals of the project.

  12. Clinical comparison of 99mTc exametazime and 123I Ioflupane SPECT in patients with chronic mild traumatic brain injury.

    Science.gov (United States)

    Newberg, Andrew B; Serruya, Mijail; Gepty, Andrew; Intenzo, Charles; Lewis, Todd; Amen, Daniel; Russell, David S; Wintering, Nancy

    2014-01-01

    This study evaluated the clinical interpretations of single photon emission computed tomography (SPECT) using a cerebral blood flow and a dopamine transporter tracer in patients with chronic mild traumatic brain injury (TBI). The goal was to determine how these two different scan might be used and compared to each other in this patient population. Twenty-five patients with persistent symptoms after a mild TBI underwent SPECT with both (99m)Tc exametazime to measure cerebral blood flow (CBF) and (123)I ioflupane to measure dopamine transporter (DAT) binding. The scans were interpreted by two expert readers blinded to any case information and were assessed for abnormal findings in comparison to 10 controls for each type of scan. Qualitative CBF scores for each cortical and subcortical region along with DAT binding scores for the striatum were compared to each other across subjects and to controls. In addition, symptoms were compared to brain scan findings. TBI patients had an average of 6 brain regions with abnormal perfusion compared to controls who had an average of 2 abnormal regions (pTBI symptoms. Both types of scans might have distinct uses in the evaluation of chronic TBI patients depending on the clinical scenario.

  13. Post-traumatic amnesia predicts intelligence impairment following traumatic brain injury: a meta-analysis

    NARCIS (Netherlands)

    Konigs, M.; de Kieviet, J.F.; Oosterlaan, J.

    2012-01-01

    Context: Worldwide, millions of patients with traumatic brain injury (TBI) suffer from persistent and disabling intelligence impairment. Post-traumatic amnesia (PTA) duration is a promising predictor of intelligence following TBI. Objectives: To determine (1) the impact of TBI on intelligence

  14. Factors affecting mortality in severe traumatic brain injury in adults at ...

    African Journals Online (AJOL)

    Objective: To assess factors contributing to mortality of adult patients admitted to intensive care units for severe traumatic brain injury (TBI). Patients and methods: This is a retrospective, descriptive and analytical study. Included in the study were all adults patients admitted for severe TBI. From the hospital records, ...

  15. Is performance on the Wechsler test of adult reading affected by traumatic brain injury?

    Science.gov (United States)

    Mathias, J L; Bowden, S C; Bigler, E D; Rosenfeld, J V

    2007-11-01

    The validity of the National Adult Reading Test (NART) as a predictor of premorbid IQ when used with patients who have sustained a traumatic brain injury (TBI) has been questioned in recent years. This study examined whether performance on the Wechsler Test of Adult Reading (WTAR) is similarly affected by TBI in the first year after an injury. The WTAR scores of participants who had sustained a mild TBI (N=82), moderate TBI (N=73), severe TBI (N=61) or an orthopaedic injury (N=95) were compared (cross-sectional study). A subset of 21 mild TBI, 31 moderate TBI, 26 severe TBI and 21 control group participants were additionally reassessed 6 months later to assess the impact of recovery on WTAR scores (longitudinal study). The severe TBI group had significantly lower scores on the WTAR than the mild TBI, moderate TBI and control groups in the cross-sectional study, despite being matched demographically. The findings from the longitudinal study revealed a significant group difference and a small improvement in performance over time but the interaction between group and time was not significant, suggesting that the improvements in WTAR performance over time were not restricted to more severely injured individuals whose performance was temporarily suppressed. These findings suggest that reading performance may be affected by severe TBI and that the WTAR may underestimate premorbid IQ when used in this context, which may cause clinicians to underestimate the cognitive deficits experienced by these patients.

  16. Differences in Marital Satisfaction, Coping and Social Support following a Traumatic Brain Injury

    LENUS (Irish Health Repository)

    Carroll, Aine Dr.

    2009-01-01

    Objective: Adverse cognitive, emotional and behavioural sequelae of Traumatic Brain Injury (TBI) are commonly noted by family members. These sequelae can adversely impact on marital and family relationships. The aim of this study is to examine marital and relationship satisfaction following a TBI amongst patients and partners. Design: A questionnaire based postal survey was used to investigate relationship and marital satisfaction. Participants: Thirty four participants (14 male; 20 female), ranging in age from 25-68 years ( = 44 years, SD 11 years), took part in this study. Sixteen had sustained a TBI and eighteen were partners of patients with TBI. Participants with TBI who were inpatients at the National Rehabilitation Hospital (NRH) and their partners were invited to participate in the study. Outcome Measures: The Marital Satisfaction Questionnaire (MSI-R) was used to examine marital and relationship satisfaction. Results: Both patients and partners reported relationship difficulties following brain injury (z = -3.078, p < .05 patients; z = 2.699, p < .05 partners). Conclusion: This study highlights the significant impact of TBI on relationships for both the TBI survivor and their partners. Implications for interventions in neuropsychological rehabilitation are discussed.

  17. Mortality and One-Year Functional Outcome in Elderly and Very Old Patients with Severe Traumatic Brain Injuries: Observed and Predicted

    Directory of Open Access Journals (Sweden)

    Cecilie Røe

    2015-01-01

    Full Text Available The aim of the present study was to evaluate mortality and functional outcome in old and very old patients with severe traumatic brain injury (TBI and compare to the predicted outcome according to the internet based CRASH (Corticosteroid Randomization After Significant Head injury model based prediction, from the Medical Research Council (MRC. Methods. Prospective, national multicenter study including patients with severe TBI ≥65 years. Predicted mortality and outcome were calculated based on clinical information (CRASH basic (age, GCS score, and pupil reactivity to light, as well as with additional CT findings (CRASH CT. Observed 14-day mortality and favorable/unfavorable outcome according to the Glasgow Outcome Scale at one year was compared to the predicted outcome according to the CRASH models. Results. 97 patients, mean age 75 (SD 7 years, 64% men, were included. Two patients were lost to follow-up; 48 died within 14 days. The predicted versus the observed odds ratio (OR for mortality was 2.65. Unfavorable outcome (GOSE < 5 was observed at one year follow-up in 72% of patients. The CRASH models predicted unfavorable outcome in all patients. Conclusion. The CRASH model overestimated mortality and unfavorable outcome in old and very old Norwegian patients with severe TBI.

  18. Mortality and One-Year Functional Outcome in Elderly and Very Old Patients with Severe Traumatic Brain Injuries: Observed and Predicted

    Science.gov (United States)

    Røe, Cecilie; Skandsen, Toril; Manskow, Unn; Ader, Tiina; Anke, Audny

    2015-01-01

    The aim of the present study was to evaluate mortality and functional outcome in old and very old patients with severe traumatic brain injury (TBI) and compare to the predicted outcome according to the internet based CRASH (Corticosteroid Randomization After Significant Head injury) model based prediction, from the Medical Research Council (MRC). Methods. Prospective, national multicenter study including patients with severe TBI ≥65 years. Predicted mortality and outcome were calculated based on clinical information (CRASH basic) (age, GCS score, and pupil reactivity to light), as well as with additional CT findings (CRASH CT). Observed 14-day mortality and favorable/unfavorable outcome according to the Glasgow Outcome Scale at one year was compared to the predicted outcome according to the CRASH models. Results. 97 patients, mean age 75 (SD 7) years, 64% men, were included. Two patients were lost to follow-up; 48 died within 14 days. The predicted versus the observed odds ratio (OR) for mortality was 2.65. Unfavorable outcome (GOSE < 5) was observed at one year follow-up in 72% of patients. The CRASH models predicted unfavorable outcome in all patients. Conclusion. The CRASH model overestimated mortality and unfavorable outcome in old and very old Norwegian patients with severe TBI. PMID:26688614

  19. Employment Outcome Ten Years after Moderate to Severe Traumatic Brain Injury: A Prospective Cohort Study.

    Science.gov (United States)

    Grauwmeijer, Erik; Heijenbrok-Kal, Majanka H; Haitsma, Ian K; Ribbers, Gerard M

    2017-09-01

    The objective of this prospective cohort study was to evaluate the probability of employment and predictors of employment in patients with moderate- to- severe traumatic brain injury (TBI) over 10-year follow-up. One hundred nine patients (18-67 years) were included with follow-up measurements 3, 6, 12, 18, 24, and 36 months and 10 years post-TBI. Potential predictors of employment probability included patient characteristics, injury severity factors, functional outcome measured at discharge from the hospital with the Glasgow Outcome Scale (GOS), Barthel Index (BI), Functional Independence Measure (FIM), and the Functional Assessment Measure (FAM). Forty-eight patients (42%) completed the 10-year follow-up. Three months post-TBI, 12% were employed, which gradually, but significantly, increased to 57% after 2-years follow-up (p employed persons had less-severe TBI, shorter length of hospital stay (LOS), and higher scores on the GOS, BI, FIM, and FAM at hospital discharge than unemployed persons. No significant differences in age, sex, educational level, living with partner/family or not, pre-injury employment, professional category, psychiatric symptoms, or discharge destination were found. Longitudinal multivariable analysis showed that time, pre-injury employment, FAM, and LOS were independent predictors of employment probability. We concluded that employment probability 10 years after moderate or severe TBI is related to injury severity and pre-injury employment. Future studies on vocational rehabilitation should focus on modifiable factors and take into consideration the effects of national legislation and national labor market forces.

  20. Impact of neuropsychological rehabilitation on activities of daily living and community reintegration of patients with traumatic brain injury.

    Science.gov (United States)

    Kanchan, Amrita; Singh, Amool Ranjan; Khan, Nawab Akhtar; Jahan, Masroor; Raman, Rajesh; Sathyanarayana Rao, T S

    2018-01-01

    The present study was targeted to observe the impact of neuropsychological rehabilitation on activities of daily living (ADL) and community reintegration of patients with traumatic brain injury (TBI). Based on purposive sampling technique, ten patients with TBI falling in the age range of 20-40 years and fulfilling the inclusion and exclusion criteria were chosen from All India Institute of Speech and Hearing, Mysuru, India. A quasi-experimental design, i.e., nonequivalent control group design was chosen for the study. Patients were assessed on Luria-Nebraska Neuropsychological Battery for Adults, Cognitive Symptoms Checklist, and Community Integration Questionnaire. Patients in experimental group were given neuropsychological rehabilitation for 6 months. Brainwave-R and Talking Pen were used as rehabilitative tools. Patients with TBI have significant neuropsychological deficits observed in memory, visuo-spatial organization, arithmetic, spelling, writing, fine motor coordination, and executive functioning. Neuropsychological deficits have a major impact on ADL and community reintegration. Neuropsychological rehabilitation is effective in rehabilitating neuropsychological deficits, which in turn leads to improvement in ADL and community reintegration. Neuropsychological rehabilitation should be one of the major goals in rehabilitation procedures for patients with TBI in order to bring overall improvement in them.

  1. Regional CBF in chronic stable TBI treated with hyperbaric oxygen.

    Science.gov (United States)

    Barrett, K F; Masel, B; Patterson, J; Scheibel, R S; Corson, K P; Mader, J T

    2004-01-01

    To investigate whether Hyperbaric Oxygen Therapy (HBO2) could improve neurologic deficits and regional cerebral blood flow (rCBF) in chronic traumatic brain injuries (TBI), the authors employed a nonrandomized control pilot trial. Five subjects, at least three years post head injury, received HBO2. Five head injured controls (HIC) were matched for age, sex, and type of injury. Five healthy subjects served as normal controls. Sixty-eight normal volunteers comprised a reference data bank against which to compare SPECT brain scans. HBO2 subjects received 120 HBO2 in blocks of 80 and 40 treatments with an interval five-month break. Normal controls underwent a single SPECT brain scan, HBO2, and repeat SPECT battery. TBI subjects were evaluated by neurologic, neuropsychometric, exercise testing, and pre and post study MRIs, or CT scans if MRI was contraindicated. Statistical Parametric Mapping was applied to SPECT scans for rCBF analysis. There were no significant objective changes in neurologic, neuropsychometric, exercise testing, MRIs, or rCBF. In this small pilot study, HBO2 did not effect clinical or regional cerebral blood flow improvement in TBI subjects.

  2. Total body irradiation (TBI) of chronic lymphocytic leukemia (CLL)

    Energy Technology Data Exchange (ETDEWEB)

    Ruehl, U; Johnson, R E

    1975-01-01

    80 patients with previously untreated CLL have been admitted to the Radiation Oncology Branch of the NCI. Fourteen of these patients have remained classified as 'indolent' until the present time and have not received any treatment. 48 patients with 'active' CLL were treated with TBI and were compared with 18 patients treated with chemotherapy and/or local irradiation. Our series of patients primarily treated with TBI have twice the median survival (57 months) measured from first therapy of the concurrent chemotherapy series (27 months). One third of the TBI group have experienced a complete or nearly complete remission and these patients showed a definite longer survival, with a median survival well in excess of five years until now. However, patients with a less complete remission failed to demonstrate a prolonged survival time with TBI in comparison to other modes of treatment. These results indicate that TBI can induce complete remissions which improve the prognosis in patients with active CLL.

  3. The comparative characteristic of extra- and intracranial hemodynamics in patients with traumatic brain injury in the long-term period

    Directory of Open Access Journals (Sweden)

    Shkolnyk V.M.

    2017-04-01

    Full Text Available Traumatic brain injury (TBI remains an actual problem of modern medicine, as well as of economic and social sectors. Vascular factor plays a leading role in forming of the clinical presentation of the disease in the long-term period of TBI. The aim of the study was to clarify the characteristics of hemodynamic changes at different levels of cerebral blood supply (main extra- and intracranial arteries and level of cerebral vessels depending on the severity of TBI. We examined 100 patients in the long-term period of mild, moderate and severe TBI. All patients underwent rheoencephalography, ultrasound duplex scanning of the main arteries of the head and neck with transcranial dopplerography and functional test with visual load. Extracranial vascular changes in the long-term period of TBI are characterized by significant increase of carotid intima-media thickness and the diameters of right internal carotid artery and left internal carotid artery together with the severity of TBI. The qualitative analysis of linear blood flow velocity reveals the decrease in the number of patients with a compensatory reaction in the form of its acceleration in the middle cerebral artery with increasing TBI severity but the number of patients with reduced linear blood flow velocity increases. Abnormal autoregulation of the cerebral circulation and reduction of vascular reactivity was established in the majority of patients of all groups. In addition, the incidence of vascular disturbances increased from 1st to 3rd group. According to the results of rheoencephalography, we detected prevailing spastic changes of the curve in all groups of patients. The degree of disturbances manifestations increases with the severity of TBI.

  4. Prognosis in moderate and severe traumatic brain injury: External validation of the IMPACT models and the role of extracranial injuries

    NARCIS (Netherlands)

    Lingsma, Hester; Andriessen, Teuntje M. J. C.; Haitsema, Iain; Horn, Janneke; van der Naalt, Joukje; Franschman, Gaby; Maas, Andrew I. R.; Vos, Pieter E.; Steyerberg, Ewout W.

    2013-01-01

    BACKGROUND: Several prognostic models to predict outcome in traumatic brain injury (TBI) have been developed, but few are externally validated. We aimed to validate the International Mission on Prognosis and Analysis of Clinical Trials in TBI (IMPACT) prognostic models in a recent unselected patient

  5. Isoflurane rescue therapy for bronchospasm reduces intracranial pressure in a patient with traumatic brain injury.

    Science.gov (United States)

    Gradisek, Primoz; Dolenc, Simon

    2016-01-01

    To assess the unusual use of a volatile anaesthetic for treatment of life-threatening bronchospasm in a patient with traumatic brain injury (TBI). Case report. This study presents a previously healthy 30-year-old man with severe TBI and bronchospasm-induced acute hypercapnia. He was treated with inhaled isoflurane in combination with monitoring of intracranial pressure (ICP) and regional cerebral blood flow (rCBF). Three-day-long isoflurane treatment resolved drug-refractory bronchospasm, decreased airway pressure and improved gas exchange, even at a low end-tidal concentration (0.3-0.5 vol%). Although rCBF was increased by 18 ml min(-1) 100 g(-1) during isoflurane treatment, there was a significant decrease in ICP (21 (SD = 3) mmHg, 9 (SD = 5) mmHg, 2 (SD = 3) mmHg; during pre-treatment, treatment and post-treatment, respectively; p < 0.001). Improved autoregulation due to lower partial pressure of carbon dioxide, restoration of carbon dioxide reactivity, isoflurane-induced regional differences in rCBF and improved microcirculation may have been responsible for the prompt and long-lasting normalization of ICP. The patient had no TBI-related disability at 6 months post-injury. Isoflurane at a low dose can be an effective and safe treatment option for drug-refractory bronchospasm in a patient with traumatic intracranial hypertension, provided that multimodality neuromonitoring is used.

  6. Statistical analysis plan for the Erythropoietin in Traumatic Brain Injury trial: a randomised controlled trial of erythropoietin versus placebo in moderate and severe traumatic brain injury.

    LENUS (Irish Health Repository)

    Presneill, Jeffrey

    2014-01-01

    The Erythropoietin in Traumatic Brain Injury (EPO-TBI) trial aims to determine whether the administration of erythropoietin to patients with moderate or severe traumatic brain injury improves patient-centred outcomes.

  7. Immunosuppression prior to marrow transplantation for sensitized aplastic anemia patients: comparison of TLI with TBI

    International Nuclear Information System (INIS)

    Shank, B.; Brochstein, J.A.; Castro-Malaspina, H.; Yahalom, J.; Bonfiglio, P.; O'Reilly, R.J.

    1988-01-01

    From May 1980 through July 1986, 26 patients with severe aplastic anemia, sensitized with multiple transfusions of blood products, were treated on either of two immunosuppressive regimens in preparation for bone marrow transplantation from a matched donor. There were 10 patients treated with total body irradiation (TBI), 200 cGy/fraction X 4 daily fractions (800 cGy total dose), followed by cyclophosphamide, 60 mg/kg/d X 2 d. An additional 16 patients were treated with total lymphoid irradiation (TLI) [or, if they were infants, a modified TLI or thoracoabdominal irradiation (TAI)], 100 cGy/fraction, 3 fractions/d X 2 d (600 cGy total dose), followed by cyclophosphamide, 40 mg/kg/d X 4 d. The extent of immunosuppression was similar in both groups as measured by peripheral blood lymphocyte depression at the completion of the course of irradiation (5% of initial concentration for TBI and 24% for TLI), neutrophil engraftment (10/10 for TBI and 15/16 for TLI), and time to neutrophil engraftment (median of 22 d for TBI and 17 d for TLI). Marrow and peripheral blood cytogenetic analysis for assessment of percent donor cells was also compared in those patients in whom it was available. 2/2 patients studied with TBI had 100% donor cells, whereas 6/11 with TLI had 100% donor cells. Of the five who did not, three were stable mixed chimeras with greater than or equal to 70% donor cells, one became a mixed chimera with about 50% donor cells, but became aplastic again after Cyclosporine A cessation 5 mo post-transplant, and the fifth reverted to all host cells by d. 18 post-transplant. Overall actuarial survival at 2 years was 56% in the TLI group compared with 30% in the TBI group although this was not statistically significant. No survival decrement has been seen after 2 years in either group

  8. Functional MRI in the Investigation of Blast-Related Traumatic Brain Injury

    Science.gov (United States)

    Graner, John; Oakes, Terrence R.; French, Louis M.; Riedy, Gerard

    2012-01-01

    This review focuses on the application of functional magnetic resonance imaging (fMRI) to the investigation of blast-related traumatic brain injury (bTBI). Relatively little is known about the exact mechanisms of neurophysiological injury and pathological and functional sequelae of bTBI. Furthermore, in mild bTBI, standard anatomical imaging techniques (MRI and computed tomography) generally fail to show focal lesions and most of the symptoms present as subjective clinical functional deficits. Therefore, an objective test of brain functionality has great potential to aid in patient diagnosis and provide a sensitive measurement to monitor disease progression and treatment. The goal of this review is to highlight the relevant body of blast-related TBI literature and present suggestions and considerations in the development of fMRI studies for the investigation of bTBI. The review begins with a summary of recent bTBI publications followed by discussions of various elements of blast-related injury. Brief reviews of some fMRI techniques that focus on mental processes commonly disrupted by bTBI, including working memory, selective attention, and emotional processing, are presented in addition to a short review of resting state fMRI. Potential strengths and weaknesses of these approaches as regards bTBI are discussed. Finally, this review presents considerations that must be made when designing fMRI studies for bTBI populations, given the heterogeneous nature of bTBI and its high rate of comorbidity with other physical and psychological injuries. PMID:23460082

  9. The Wechsler Test of Adult Reading as a Measure of Premorbid Intelligence Following Traumatic Brain Injury.

    Science.gov (United States)

    Steward, Kayla A; Novack, Thomas A; Kennedy, Richard; Crowe, Michael; Marson, Daniel C; Triebel, Kristen L

    2017-02-01

    The current study sought to determine whether the Wechsler Test of Adult Reading (WTAR) provides a stable estimate of premorbid intellectual ability in acutely injured patients recovering from traumatic brain injury (TBI). A total of 135 participants (43 mild TBI [mTBI], 40 moderate/severe TBI [msevTBI], 52 healthy controls) were administered the WTAR at 1 and 12 months post-injury. Despite similar demographic profiles, participants with msevTBI performed significantly worse than controls on the WTAR at both time points. Moreover, the msevTBI group had a significant improvement in WTAR performance over the 1-year period. In contrast, those participants with mTBI did not significantly differ from healthy controls and both the mTBI and control groups demonstrated stability on the WTAR over time. Results indicate that word-reading tests may underestimate premorbid intelligence during the immediate recovery period for patients with msevTBI. Clinicians should consider alternative estimation measures in this TBI subpopulation. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Fracture of a HTR-PMI cranioplastic implant after severe TBI.

    Science.gov (United States)

    López González, Antonio; Pérez Borredá, Pedro; Conde Sardón, Rebeca

    2015-02-01

    A 13-year-old girl with a large left fronto-parietal hard-tissue replacement patient-matched implant (HTR®-PMI) cranioplasty-since she suffered from a traumatic brain injury (TBI) 6 years ago-had a new severe TBI that detached and fractured the implant as well as caused a left subdural hematoma and a large frontal contusion. The hematoma and contusion were removed and the implant was substituted by a provisional titanium mesh. To the best of our knowledge, this is the first case reported about an HTR®-PMI fracture. It is theorized that the bone ingrowth into the macroporous implants, like those of hydroxyapatite, gives strength and resistance to the implant. But in the case we describe, no macroscopic bone ingrowth was detected 6 years after implantation and the traumatic force that impacted over the cranioplasty exceeded its properties.

  11. secondary injury in traumatic brain injury patients - a prospective study

    African Journals Online (AJOL)

    incidence of hypoxia, hypotension and delayed evacuation of intracranial haematomas in patients with TBI referred to a tertiary care hospital. METHOD. All TBI patients with a Glasgow Coma Scale (GCS) score less than 13 admitted to Groote Schuur Hospital (GSH) from. 1December1999 to 29 February 2000 were entered ...

  12. Occurrence and severity of agitated behavior after severe traumatic brain injury

    DEFF Research Database (Denmark)

    Moth Wolffbrandt, Mia; Poulsen, Ingrid; Engberg, Aase W

    2013-01-01

    To investigate the occurrence and severity of agitation in patients after severe traumatic brain injury (TBI), to identify predictors of agitation and to study interrater reliability for a translated version of the Agitated Behavior Scale (ABS).......To investigate the occurrence and severity of agitation in patients after severe traumatic brain injury (TBI), to identify predictors of agitation and to study interrater reliability for a translated version of the Agitated Behavior Scale (ABS)....

  13. Music-Based Cognitive Remediation Therapy for Patients with Traumatic Brain Injury

    OpenAIRE

    Hegde, Shantala

    2014-01-01

    Traumatic brain injury (TBI) is one of the common causes of disability in physical, psychological, and social domains of functioning leading to poor quality of life. TBI leads to impairment in sensory, motor, language, and emotional processing, and also in cognitive functions such as attention, information processing, executive functions, and memory. Cognitive impairment plays a central role in functional recovery in TBI. Innovative methods such as music therapy to alleviate cognitive impairm...

  14. MICROGLIA ACTIVATION AS A BIOMARKER FOR TRAUMATIC BRAIN INJURY

    Directory of Open Access Journals (Sweden)

    Diana G Hernadez-Ontiveros

    2013-03-01

    Full Text Available Traumatic brain injury (TBI has become the signature wound of wars in Afghanistan and Iraq. Injury may result from a mechanical force, a rapid acceleration-deceleration movement, or a blast wave. A cascade of secondary cell death events ensues after the initial injury. In particular, multiple inflammatory responses accompany TBI. A series of inflammatory cytokines and chemokines spreads to normal brain areas juxtaposed to the core impacted tissue. Among the repertoire of immune cells involved, microglia is a key player in propagating inflammation to tissues neighboring the core site of injury. Neuroprotective drug trials in TBI have failed, likely due to their sole focus on abrogating neuronal cell death and ignoring the microglia response despite these inflammatory cells’ detrimental effects on the brain. Another relevant point to consider is the veracity of results of animal experiments due to deficiencies in experimental design, such as incomplete or inadequate method description, data misinterpretation and reporting may introduce bias and give false-positive results. Thus, scientific publications should follow strict guidelines that include randomization, blinding, sample-size estimation and accurate handling of all data (Landis et al., 2012. A prolonged state of inflammation after brain injury may linger for years and predispose patients to develop other neurological disorders, such as Alzheimer’s disease. TBI patients display progressive and long-lasting impairments in their physical, cognitive, behavioral, and social performance. Here, we discuss inflammatory mechanisms that accompany TBI in an effort to increase our understanding of the dynamic pathological condition as the disease evolves over time and begin to translate these findings for defining new and existing inflammation-based biomarkers and treatments for TBI.

  15. Targeted treatment of severe head injury

    African Journals Online (AJOL)

    injury is not a homogeneous concept and is poorly classified for the purposes of treatment.1 The separation of patients into 3 categories of severity (mild, moderate and severe) remains a blunt measure used to guide therapy in individual patients. Patients with severe traumatic brain injury (TBI), i.e. a Glasgow Coma Score ...

  16. 4: Rehabilitation after traumatic brain injury.

    Science.gov (United States)

    Khan, Fary; Baguley, Ian J; Cameron, Ian D

    2003-03-17

    Traumatic brain injury (TBI) commonly affects younger people and causes life-long impairments in physical, cognitive, behavioural and social function. The cognitive, behavioural and personality deficits are usually more disabling than the residual physical deficits. Recovery from TBI can continue for at least 5 years after injury. Rehabilitation is effective using an interdisciplinary approach, and close liaison with the patient, family and carers. The focus is on issues such as retraining in activities of daily living, pain management, cognitive and behavioural therapies, and pharmacological management. The social burden of TBI is significant, and therefore family education and counselling, and support of patient and carers, is important. General practitioners play an important role in providing ongoing support in the community, monitoring for medical complications, behavioural and personality issues, social reintegration, carer coping skills and return-to-work issues.

  17. Computed tomography findings in young children with minor head injury presenting to the emergency department greater than 24h post injury.

    Science.gov (United States)

    Gelernter, Renana; Weiser, Giora; Kozer, Eran

    2018-01-01

    Large studies which developed decision rules for the use of Computed tomography (CT) in children with minor head trauma excluded children with late presentation (more than 24h). To assess the prevalence of significant traumatic brain injury (TBI) on CT in infants with head trauma presenting to the emergency department (ED) more than 24h from the injury. A retrospective chart review of infants less than 24 months old referred for head CT because of traumatic brain injury from January 2004 to December 2014 in Assaf-Harofeh medical center was conducted. We used the PECARN definitions of TBI on CT to define significant CT findings. 344 cases were analyzed, 68 with late presentation. There was no significant difference in the age between children with late and early presentation (mean 11.4 (SD 5.6) month vs 10. 5 (SD 7.0) month, P=0.27). There was no significant difference between the groups in the incidence of significant TBI (22% vs 19%, p=0.61). Any TBI on CT (e.g. fracture) was found in 43 (63%) patients with late presentation compared with 116 (42%) patients with early presentation (p=0.002, OR 2.37, 95% CI 1.37-4.1). A similar rate of CT-identified traumatic brain injury was detected in both groups.‏ There was no significant difference in the incidence of significant TBI on CT between the groups.‏ Young children presenting to the ED more than 24 hours after the injury may have abnormal findings on CT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Brain activity patterns uniquely supporting visual feature integration after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anjali eRaja Beharelle

    2011-12-01

    Full Text Available Traumatic brain injury (TBI patients typically respond more slowly and with more variability than controls during tasks of attention requiring speeded reaction time. These behavioral changes are attributable, at least in part, to diffuse axonal injury (DAI, which affects integrated processing in distributed systems. Here we use a multivariate method sensitive to distributed neural activity to compare brain activity patterns of patients with chronic phase moderate-to-severe TBI to those of controls during performance on a visual feature-integration task assessing complex attentional processes that has previously shown sensitivity to TBI. The TBI patients were carefully screened to be free of large focal lesions that can affect performance and brain activation independently of DAI. The task required subjects to hold either one or three features of a target in mind while suppressing responses to distracting information. In controls, the multi-feature condition activated a distributed network including limbic, prefrontal, and medial temporal structures. TBI patients engaged this same network in the single-feature and baseline conditions. In multi-feature presentations, TBI patients alone activated additional frontal, parietal, and occipital regions. These results are consistent with neuroimaging studies using tasks assessing different cognitive domains, where increased spread of brain activity changes was associated with TBI. Our results also extend previous findings that brain activity for relatively moderate task demands in TBI patients is similar to that associated with of high task demands in controls.

  19. Prognostic significance of blood-brain barrier disruption in patients with severe nonpenetrating traumatic brain injury requiring decompressive craniectomy.

    Science.gov (United States)

    Ho, Kwok M; Honeybul, Stephen; Yip, Cheng B; Silbert, Benjamin I

    2014-09-01

    The authors assessed the risk factors and outcomes associated with blood-brain barrier (BBB) disruption in patients with severe, nonpenetrating, traumatic brain injury (TBI) requiring decompressive craniectomy. At 2 major neurotrauma centers in Western Australia, a retrospective cohort study was conducted among 97 adult neurotrauma patients who required an external ventricular drain (EVD) and decompressive craniectomy during 2004-2012. Glasgow Outcome Scale scores were used to assess neurological outcomes. Logistic regression was used to identify factors associated with BBB disruption, defined by a ratio of total CSF protein concentrations to total plasma protein concentration > 0.007 in the earliest CSF specimen collected after TBI. Of the 252 patients who required decompressive craniectomy, 97 (39%) required an EVD to control intracranial pressure, and biochemical evidence of BBB disruption was observed in 43 (44%). Presence of disruption was associated with more severe TBI (median predicted risk for unfavorable outcome 75% vs 63%, respectively; p = 0.001) and with worse outcomes at 6, 12, and 18 months than was absence of BBB disruption (72% vs 37% unfavorable outcomes, respectively; p = 0.015). The only risk factor significantly associated with increased risk for BBB disruption was presence of nonevacuated intracerebral hematoma (> 1 cm diameter) (OR 3.03, 95% CI 1.23-7.50; p = 0.016). Although BBB disruption was associated with more severe TBI and worse long-term outcomes, when combined with the prognostic information contained in the Corticosteroid Randomization after Significant Head Injury (CRASH) prognostic model, it did not seem to add significant prognostic value (area under the receiver operating characteristic curve 0.855 vs 0.864, respectively; p = 0.453). Biochemical evidence of BBB disruption after severe nonpenetrating TBI was common, especially among patients with large intracerebral hematomas. Disruption of the BBB was associated with more severe

  20. Fatigue following mild Traumatic Brain Injury : A six-month prospective cohort study

    NARCIS (Netherlands)

    Rakers, Sandra; Scheenen, Myrthe; de Koning, Myrthe; van der Horn, Harm J.; van der Naalt, Joukje; Spikman, Jacoba

    2017-01-01

    Objective: Fatigue is a frequent and profoundly disabling symptom following mild traumatic brain injury (mTBI), that may even persist for years. Approximately 85–90% of thepatients with TBI sustain a mild TBI, and among these patients, about 68% experience complaints of fatigue in the acute phase

  1. rTMS: A Treatment to Restore Function After Severe TBI

    Science.gov (United States)

    2017-10-01

    Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for...magnetic stimulation (rTMS), which is a non-invasive technique to stimulate the brain. The evidence of therapeutic efficacy from the literature in non-TBI...Transcranial Magnetic Stimulation (rTMS), Traumatic Brain Injury (TBI), Vegetative (VS), Minimally Conscious (MCS) 16. SECURITY CLASSIFICATION OF

  2. Mechanistic Links Between PARP, NAD, and Brain Inflammation After TBI

    Science.gov (United States)

    2015-10-01

    1 AWARD NUMBER: W81XWH-13-2-0091 TITLE: Mechanistic Links Between PARP, NAD , and Brain Inflammation After TBI PRINCIPAL INVESTIGATOR...COVERED 25 Sep 2014 - 24 Sep 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Mechanistic Links Between PARP, NAD , and Brain Inflammation After TBI 5b. GRANT...efficacy of veliparib and NAD as agents for suppressing inflammation and improving outcomes after traumatic brain injury. The animal models include

  3. Effects of music production on cortical plasticity within cognitive rehabilitation of patients with mild traumatic brain injury.

    Science.gov (United States)

    Vik, Berit Marie Dykesteen; Skeie, Geir Olve; Vikane, Eirik; Specht, Karsten

    2018-01-01

    We explored the effects of playing the piano on patients with cognitive impairment after mild traumatic brain injury (mTBI) and, addressed the question if this approach would stimulate neural networks in re-routing neural connections and link up cortical circuits that had been functional inhibited due to disruption of brain tissue. Functional neuroimaging scans (fMRI) and neuropsychological tests were performed pre-post intervention. Three groups participated, one mTBI group (n = 7), two groups of healthy participants, one with music training (n = 11), one baseline group without music (n = 12). The music groups participated in 8 weeks music-supported intervention. The patient group revealed training-related neuroplasticity in the orbitofrontal cortex. fMRI results fit well with outcome from neuropsychological tests with significant enhancement of cognitive performance in the music groups. Ninety per cent of mTBI group returned to work post intervention. Here, for the first time, we demonstrated behavioural improvements and functional brain changes after 8 weeks of playing piano on patients with mTBI having attention, memory and social interaction problems. We present evidence for a causal relationship between musical training and reorganisation of neural networks promoting enhanced cognitive performance. These results add a novel music-supported intervention within rehabilitation of patients with cognitive deficits following mTBI.

  4. Effect of binasal occlusion (BNO) and base-in prisms on the visual-evoked potential (VEP) in mild traumatic brain injury (mTBI).

    Science.gov (United States)

    Yadav, Naveen K; Ciuffreda, Kenneth J

    2014-01-01

    To assess quantitatively the effect and relative contribution of binasal occlusion (BNO) and base-in prisms (BI) on visually-evoked potential (VEP) responsivity in persons with mild traumatic brain injury (mTBI) and the symptom of visual motion sensitivity (VMS), as well as in visually-normal (VN) individuals. Subjects were comprised of 20 VN adults and 15 adults with mTBI and VMS. There were four test conditions: (1) conventional pattern VEP, which served as the baseline comparison condition; (2) VEP with BNO alone; (3) VEP with 2 pd BI prisms before each eye; and (4) VEP with the above BNO and BI prism combination. In mTBI, the mean VEP amplitude increased significantly in nearly all subjects (∼90%) with BNO alone. In contrast, in VN, it decreased significantly with BNO alone in all subjects (100%), as compared to the other test conditions. These objective findings were consistent with improvements in visual impressions and sensorimotor tasks in the group with mTBI. Latency remained within normal limits under all test conditions in both groups. Only the BNO condition demonstrated significant, but opposite and consistent, directional effects on the VEP amplitude in both groups. The BNO-VEP test condition may be used clinically for the objectively-based, differential diagnosis of persons suspected of having mTBI and VMS from the VNs.

  5. Correlation between voluntary cough and laryngeal cough reflex flows in patients with traumatic brain injury.

    Science.gov (United States)

    Lee, Sang Chul; Kang, Seong-Woong; Kim, Min Tae; Kim, Yong Kyun; Chang, Won Hyuk; Im, Sang Hee

    2013-08-01

    To correlate voluntary cough and laryngeal cough reflex (LCR) flows in patients with traumatic brain injury (TBI). Cross-sectional study. University rehabilitation hospital. Patients with TBI (n=25) and healthy controls (n=48). Not applicable. Peak cough flows (PCFs) and LCR flows were measured using a peak flow meter at the oral-nasal interface. The largest value of 3 attempts was recorded for PCF and LCR, respectively. LCR was elicited by 20% solution of pharmaceutic-grade citric acid dissolved in sterile .15M NaCl solution that was inhaled from a nebulizer. PCF was 447.4 ± 99.0 L/min in the control group and 211.7 ± 58.2 L/min in the patient group. LCR was 209.2 ± 63.8L/min in the control group and 170.0 ± 59.7 L/min in the patient group. Both PCF (P=.000) and LCR (P=.013) were significantly reduced in patients with TBI compared to that of the control group. LCR was strongly related to the PCF in both control (R=.645; P=.000) and patient (R=.711; P=.000) groups. As LCR can be measured as a numerical value and significantly correlates with PCF, LCR can be used to estimate cough ability of patients with TBI who cannot cooperate with PCF measurement. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  6. Citicoline for traumatic brain injury: a systematic review & meta-analysis

    Directory of Open Access Journals (Sweden)

    Ali Meshkini

    2017-04-01

    Full Text Available Background: Traumatic Brain Injury (TBI is the leading cause of mortality and morbidity especially in young ages. Despite over 30 years of using Neuroprotective agents for TBI management, there is no absolute recommended agent for the condition yet. Methods: This study is a part of a scoping review thesis on "Neuroprotective agents using for Traumatic Brain Injury: a systematic review & meta-analyses"; which had a wide proposal keywords and ran in "Cochrane CENTRAL", "MedLine/PubMed", "SCOPUS", "Thomson Reuters Web of Science", "SID.ir", "Barket Foundation", and "clinicaltrials.gov" databases up to September 06, 2015. This study limits the retrieved search results only to those which used citicoline for TBI management. The included Randomized Clinical Trials' (RCTs were assessed for their quality of reporting by adapting CONSORT-checklist prior to extracting their data into meta-analysis. Meta-analyses of this review were conducted by Glasgow Outcome Scale (GOS in acute TBI patients and total neuropsychological assessments in both acute and chronic TBI management, mortalities and adverse-effects. Results: Four RCTs were retrieved and included in this review with 1196 participants (10 were chronic TBI impaired patients; analysis of 1128 patients for their favorable GOS outcomes in two studies showed no significant difference between the study groups; however, neuropsychological outcomes were significantly better in placebo/control group of 971 patients of three studies. Mortality rates and adverse-effects analysis based on two studies with 1429 patients showed no significant difference between the study groups. However, two other studies have neither mortality nor adverse effects reports due to their protocol. Conclusions: Citicoline use for acute TBI seems to have no field of support anymore, whereas it may have some benefits in improving the neuro-cognitive state in chronic TBI patients. It's also recommended to keep in mind acute interventions

  7. Mixed Reality for PTSD/TBI Assessment.

    Science.gov (United States)

    Fidopiastis, Cali; Hughes, Charles E; Smith, Eileen

    2009-01-01

    Mixed Reality (MR) refers to the blending of virtual content into the real world. Using MR, we create contextually meaningful scenarios in which users carry out tasks encountered in the presence of visual and aural distracters. Visual distracters can include subtle ones - people walking; and more abrupt ones - cartons falling. Aural distracters can include gentle ones - fans whirring; and more aggressive ones - automobiles backfiring. The intensity of these distracters can be dynamically controlled by a therapist or software that takes into account the patient's perceived level of stress. Intensity can also be controlled between experiences. For example, one may increase the stress level in a subsequent session, attempting to improve a person's tolerance. Assessment of progress includes psychophysical metrics (stress indicators) and the performance of tasks (accuracy and adherence to time constraints). By accurately capturing a patient's interaction with the environment in the context of simulation events, we can use MR as a tool for assessment and rehabilitation planning for individuals with stress-related injuries. This paper reports on the MR environment we have developed and its efficacy (realized and potential) for the assessment of post-traumatic stress disorder (PTSD) with or without traumatic brain injury (TBI).

  8. Fracture of the temporal bone in patients with traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Secchi, Myrian Marajó Dal

    2012-01-01

    Full Text Available Introduction: The fractures in the temporal bone are lesions that are observed in patients with traumatic brain injury (TBI. The computed tomography of high-resolution (CT allows evaluating the fracture and the complications. Objective: Evaluate patients with TBI and temporal bone fracture. Way of study: Retrospective study. Method: Were evaluated 28 patients interned by TBI with clinical evidence and/or radiologic from temporal bone fractures. Results: The age ranged from 3 to 75 years. The most affected side was the right side 50% (n=14, left side 36% (n=10 and both sides 14% (n=4. The etiology of the trauma was the falling 25% (n=7, accidents with motorcycles and bicycles 21% (n=6, physical aggression 14% (n=4, running over 11% (n=3, fall of object 4% (n=1 and other causes 25% (n=7. The clinical signs were: Otorrhagia 78%, otalgia 11% (n=3, otorrhea 7% (n=2, facial paralysis 7% (n=2 and hearing loss 7% (n=2. The otoscopic findings: otorrhagia 57% (n=16, laceration of external auditory canal 36% (n=10, hemotympanum 11% (n=3, normal 7% (n=2 and Battle signal 7% (n=2. The findings for CT of skull were: with no alterations 54% (n=15 and temporal fracture 7% (n=2 and the CT of temporal bones were: line of fracture 71% (n=20, opacification of the mastoid 25% (n=7, glenoid cavity air 14% (n=1, dislocation of the ossicular chain 7% (n=2 and veiling of the middle ear 4% (n=1. Conclusion: Patients with TBI must be submitted to the otorhinolaryngological evaluation and imaging, for the early diagnosis of the complications and treatment.

  9. Incidence of Headache After Traumatic Brain Injury in China: A Large Prospective Study.

    Science.gov (United States)

    Xu, Hongmei; Pi, Hongying; Ma, Lili; Su, Xinyang; Wang, Jianrong

    2016-04-01

    There have yet to be any large-scale studies in China on headaches after traumatic brain injury (TBI). We evaluate the incidence of headache after TBI and investigate risk factors and functional outcome in a large tertiary center with a high caseload. A total of 543 patients (82% men, 18% women) with a mean age of 48.4 ± 18.6 years presenting with TBI were prospectively enrolled in this study between March 2011 and July 2013. Patient demographics, severity of TBI, incidence and classification of headache, and treatment information were collected during initial hospitalization and at 3, 6, and 12 months follow-up. Of our 543 patients (82% men, 18% women), 62% were injured in motor vehicle collisions and 27% in falls. Most patients (97%) were considered to have mild TBI. Follow-up rates at 3, 6, and 12 months were 91%, 75%, and 61%, respectively. Only 12% of patients reported pre-TBI headaches, whereas 58% of respondents reported headache at 3 months follow-up, 54% at 6 months follow-up, and 49% at 1 year follow-up. No statistically significant correlations between age, sex, or TBI severity and posttraumatic headaches were observed. We present the findings of the first study on headaches after TBI in China. Headaches were found to occur in most patients with TBI and persisted through the first year after injury. The incidence of posttraumatic headache observed here is comparable with previously published studies outside China. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Future Directions for Hypothermia following Severe Traumatic Brian Injury.

    Science.gov (United States)

    Chiu, Annie W; Hinson, Holly E

    2017-12-01

    Traumatic brain injury (TBI) is a serious health care problem on both individual and public health levels. As a major cause of death and disability in the United States, it is associated with a significant economic and public health burden. Although the evidence to support the use of induced hypothermia on neurologic outcome after cardiac arrest is well established, its use in treating TBI remains controversial. Hypothermia has the potential to mitigate some of the destructive processes that occur as part of secondary brain injury after TBI. Hypothermia can be helpful in lowering intracranial pressure, for example, but its influence on functional outcome is unclear. There is insufficient evidence to support the broad use of prophylactic hypothermia for neuroprotection after TBI. Investigators are beginning to more carefully select patients for temperature modulating therapies, in a more personalized approach. Examples include targeting immunomodulation and scaling hypothermia to achieve metabolic targets. This review will summarize the clinical evidence for the use of hypothermia to limit secondary brain injury following acute TBI. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  11. Technetium-99m-HMPAO SPECT, CT and MRI in the evaluation of patients with chronic traumatic brain injury: a correlation with neuropsychological performance.

    Science.gov (United States)

    Ichise, M; Chung, D G; Wang, P; Wortzman, G; Gray, B G; Franks, W

    1994-02-01

    The purposes of this study were: (1) to compare 99mTc-hexamethylpropyleneamineoxime (HMPAO) SPECT with CT and MRI in chronic traumatic brain injury (TBI) patients and (2) to correlate both functional and structural neuroimaging measurements of brain damage with neuropsychological (NP) performance. Twenty-nine patients (minor TBI, n = 15 and major TBI, n = 14) and 17 normal controls (NC) underwent HMPAO SPECT, CT, MRI and NP testing. Imaging data were analyzed both visually and quantitatively. Nineteen (66%) patients showed 42 abnormalities on SPECT images, whereas 13 (45%) and 10 (34%) patients showed 29 abnormalities on MRI and 24 abnormalities on CT. SPECT detected relatively more abnormalities than CT or MRI in the minor TBI subgroup. The TBI group showed impairment on 11 tests for memory, attention and executive function. Of these, the anterior-posterior ratio (APR) correlated with six tests, whereas the ventricle-to-brain ratio (VBR), a known structural index of a poor NP outcome, correlated with only two tests. In evaluating chronic TBI patients, HMPAO SPECT, as a complement to CT or MRI, may play a useful role by demonstrating brain dysfunction in morphologically intact brain regions and providing objective evidence for some of the impaired NP performance.

  12. Recovered neuronal viability revealed by Iodine-123-iomazenil SPECT following traumatic brain injury

    OpenAIRE

    Koizumi, Hiroyasu; Fujisawa, Hirosuke; Kurokawa, Tetsu; Suehiro, Eiichi; Iwanaga, Hideyuki; Nakagawara, Jyoji; Suzuki, Michiyasu

    2010-01-01

    We evaluated cortical damages following traumatic brain injury (TBI) in the acute phase with [123I] iomazenil (IMZ) single photon emission computed tomography (SPECT). In all, 12 patients with cerebral contusion following TBI were recruited. All patients underwent IMZ SPECT within 1 week after TBI. To investigate the changes in distribution of IMZ in the cortex in the chronic phase, after conventional treatment, patients underwent IMZ SPECT again. A decrease in the accumulation of radioligand...

  13. Differences in cerebral perfusion deficits in mild traumatic brain injury and depression using single-photon emission computed tomography.

    Science.gov (United States)

    Romero, Kristoffer; Black, Sandra E; Feinstein, Anthony

    2014-01-01

    Numerous studies have shown decreased perfusion in the prefrontal cortex following mild traumatic brain injury (mTBI). However, similar hypoperfusion can also be observed in depression. Given the high prevalence of depressive symptoms following mTBI, it is unclear to what extent depression influences hypoperfusion in TBI. Mild TBI patients without depressive symptoms (mTBI-noD, n = 39), TBI patients with depressive symptoms (mTBI-D, n = 13), and 15 patients with major depressive disorder (MDD), but no TBI were given 99m T-ECD single-photon emission computed tomography (SPECT) scans within 2 weeks of injury. All subjects completed tests of information processing speed, complex attention, and executive functioning, and a self-report questionnaire measuring symptoms of psychological distress. Between-group comparisons of quantified SPECT perfusion were undertaken using univariate and multivariate (partial least squares) analyses. mTBI-D and mTBI-noD groups did not differ in terms of cerebral perfusion. However, patients with MDD showed hypoperfusion compared to both TBI groups in several frontal (orbitofrontal, middle frontal, and superior frontal cortex), superior temporal, and posterior cingulate regions. The mTBI-D group showed poorer performance on a measure of complex attention and working memory compared to both the mTBI-noD and MDD groups. These results suggest that depressive symptoms do not affect SPECT perfusion in the sub-acute phase following a mild TBI. Conversely, MDD is associated with hypoperfusion primarily in frontal regions.

  14. Psychological Characteristics in Acute Mild Traumatic Brain Injury: An MMPI-2 Study.

    Science.gov (United States)

    Gass, Carlton S; Rogers, David; Kinne, Erica

    2017-01-01

    The psychological characteristics of acute traumatic brain injury (TBI) have received limited research focus, despite empirical evidence of their relevance for subsequent psychological adjustment and early therapeutic intervention. This study addressed a wide range of psychological features in 47 individuals who were hospitalized as a result of acute mild TBI (mTBI). Participants were screened from amongst consecutive TBI admissions for moderate to severe brain injury, and for pre-injury neurological, psychiatric, or substance abuse histories. Clinical and content scale scores on the MMPI-2 were explored in relation to patient gender, age, level of education, and extent of cognitive complaints. The results revealed diverse psychosocial problem areas across the sample, the most common of which were somatic and cognitive complaints, compromised insight, and a naively optimistic self-perception. The mediating roles of injury severity and demographic variables are discussed. Clinical implications and specific recommendations are presented.

  15. Early predictors of outcome after mild traumatic brain injury (UPFRONT): an observational cohort study.

    Science.gov (United States)

    van der Naalt, Joukje; Timmerman, Marieke E; de Koning, Myrthe E; van der Horn, Harm J; Scheenen, Myrthe E; Jacobs, Bram; Hageman, Gerard; Yilmaz, Tansel; Roks, Gerwin; Spikman, Jacoba M

    2017-07-01

    Mild traumatic brain injury (mTBI) accounts for most cases of TBI, and many patients show incomplete long-term functional recovery. We aimed to create a prognostic model for functional outcome by combining demographics, injury severity, and psychological factors to identify patients at risk for incomplete recovery at 6 months. In particular, we investigated additional indicators of emotional distress and coping style at 2 weeks above early predictors measured at the emergency department. The UPFRONT study was an observational cohort study done at the emergency departments of three level-1 trauma centres in the Netherlands, which included patients with mTBI, defined by a Glasgow Coma Scale score of 13-15 and either post-traumatic amnesia lasting less than 24 h or loss of consciousness for less than 30 min. Emergency department predictors were measured either on admission with mTBI-comprising injury severity (GCS score, post-traumatic amnesia, and CT abnormalities), demographics (age, gender, educational level, pre-injury mental health, and previous brain injury), and physical conditions (alcohol use on the day of injury, neck pain, headache, nausea, dizziness)-or at 2 weeks, when we obtained data on mood (Hospital Anxiety and Depression Scale), emotional distress (Impact of Event Scale), coping (Utrecht Coping List), and post-traumatic complaints. The functional outcome was recovery, assessed at 6 months after injury with the Glasgow Outcome Scale Extended (GOSE). We dichotomised recovery into complete (GOSE=8) and incomplete (GOSE≤7) recovery. We used logistic regression analyses to assess the predictive value of patient information collected at the time of admission to an emergency department (eg, demographics, injury severity) alone, and combined with predictors of outcome collected at 2 weeks after injury (eg, emotional distress and coping). Between Jan 25, 2013, and Jan 6, 2015, data from 910 patients with mTBI were collected 2 weeks after injury; the final

  16. Hypopituitarism after traumatic brain injury.

    Science.gov (United States)

    Fernandez-Rodriguez, Eva; Bernabeu, Ignacio; Castro, Ana I; Casanueva, Felipe F

    2015-03-01

    The prevalence of hypopituitarism after traumatic brain (TBI) injury is widely variable in the literature; a meta-analysis determined a pooled prevalence of anterior hypopituitarism of 27.5%. Growth hormone deficiency is the most prevalent hormone insufficiency after TBI; however, the prevalence of each type of pituitary deficiency is influenced by the assays used for diagnosis, severity of head trauma, and time of evaluation. Recent studies have demonstrated improvement in cognitive function and cognitive quality of life with substitution therapy in GH-deficient patients after TBI. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Decreasing adrenergic or sympathetic hyperactivity after severe traumatic brain injury using propranolol and clonidine (DASH After TBI Study: study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Patel Mayur B

    2012-09-01

    the Extended Glasgow Outcome Scale and Quality of Life after Brain Injury scale. Safety parameters evaluated will include cardiac complications. Discussion The DASH After TBI Study is the first randomized, double-blinded, placebo-controlled trial powered to determine feasibility and investigate safety and outcomes associated with adrenergic blockade in patients with severe TBI. If the study results in positive trends, this could provide pilot evidence for a larger multicenter randomized clinical trial. If there is no effect of therapy, this trial would still provide a robust prospective description of sympathetic hyperactivity after TBI. Trial registration ClinicalTrials.gov NCT01322048

  18. Tracheostomy is associated with decreased hospital mortality after moderate or severe isolated traumatic brain injury.

    Science.gov (United States)

    Baron, David Marek; Hochrieser, Helene; Metnitz, Philipp G H; Mauritz, Walter

    2016-06-01

    Data regarding the impact and timing of tracheostomy in patients with isolated traumatic brain injury (TBI) are ambiguous. Our goal was to evaluate the impact of tracheostomy on hospital mortality in patients with moderate or severe isolated TBI. We performed a retrospective cohort analysis of data prospectively collected at 87 Austrian intensive care units (ICUs). All patients continuously admitted between 1998 and 2010 were evaluated for the study. In total, 4,735 patients were admitted to ICUs with isolated TBI. Of these patients, 2,156 had a moderate or severe TBI (1,603 patients were endotracheally intubated only, 553 patients underwent tracheostomy). Epidemiological data (trauma severity, treatment, and outcome) of the two groups were compared. Patients with moderate or severe isolated TBI undergoing tracheostomy had a similar Glasgow Coma Scale score, median (interquartile range): 6 (3-8) vs 6 (3-8); p = 0.90, and Simplified Acute Physiology Score II, 45 (37-54) vs 45 (35-56); p = 0.86, compared with intubated patients not undergoing tracheostomy. Furthermore, patients undergoing tracheostomy exhibited higher Abbreviated Injury Scale Head scores and had a longer ICU stay for survivors, 30 (22-42) vs 9 (3-17) days; p tracheostomy compared with patients who remained intubated, observed-to-expected mortality ratio (95 % confidence interval): 0.62 (0.53-0.72) vs 1.00 (0.95-1.05) respectively. Despite the greater severity of head injury, patients with isolated TBI who underwent tracheostomy had a lower risk-adjusted mortality than patients who remained intubated. Reasons for this difference in outcome may be multifactorial and require further investigation.

  19. Symptomatic heterotopic ossification after very severe traumatic brain injury in 114 patients: incidence and risk factors

    DEFF Research Database (Denmark)

    Simonsen, Louise Lau; Sonne-Holm, Stig; Krasheninnikoff, Michael

    2007-01-01

    Injury Unit and to list some of the risk-predicting features. The study comprised an approximately complete, consecutive series of 114 adult patients from a well-defined geographical area, and with a posttraumatic amnesia period of at least 28 days, i.e. very severe TBI. Demographic and functional data...

  20. A Review of Magnetic Resonance Imaging and Diffusion Tensor Imaging Findings in Mild Traumatic Brain Injury

    Science.gov (United States)

    Shenton, ME; Hamoda, HM; Schneiderman, JS; Bouix, S; Pasternak, O; Rathi, Y; M-A, Vu; Purohit, MP; Helmer, K; Koerte, I; Lin, AP; C-F, Westin; Kikinis, R; Kubicki, M; Stern, RA; Zafonte, R

    2013-01-01

    Mild traumatic brain injury (mTBI), also referred to as concussion, remains a controversial diagnosis because the brain often appears quite normal on conventional computed tomography (CT) and magnetic resonance imaging (MRI) scans. Such conventional tools, however, do not adequately depict brain injury in mTBI because they are not sensitive to detecting diffuse axonal injuries (DAI), also described as traumatic axonal injuries (TAI), the major brain injuries in mTBI. Furthermore, for the 15 to 30% of those diagnosed with mTBI on the basis of cognitive and clinical symptoms, i.e., the “miserable minority,” the cognitive and physical symptoms do not resolve following the first three months post-injury. Instead, they persist, and in some cases lead to long-term disability. The explanation given for these chronic symptoms, i.e., postconcussive syndrome, particularly in cases where there is no discernible radiological evidence for brain injury, has led some to posit a psychogenic origin. Such attributions are made all the easier since both post-traumatic stress disorder (PTSD) and depression are frequently co-morbid with mTBI. The challenge is thus to use neuroimaging tools that are sensitive to DAI/TAI, such as diffusion tensor imaging (DTI), in order to detect brain injuries in mTBI. Of note here, recent advances in neuroimaging techniques, such as DTI, make it possible to characterize better extant brain abnormalities in mTBI. These advances may lead to the development of biomarkers of injury, as well as to staging of reorganization and reversal of white matter changes following injury, and to the ability to track and to characterize changes in brain injury over time. Such tools will likely be used in future research to evaluate treatment efficacy, given their enhanced sensitivity to alterations in the brain. In this article we review the incidence of mTBI and the importance of characterizing this patient population using objective radiological measures. Evidence

  1. Increased Incidence of Herpes Zoster and Postherpetic Neuralgia in Adult Patients following Traumatic Brain Injury: A Nationwide Population-Based Study in Taiwan.

    Directory of Open Access Journals (Sweden)

    Yi-Ching Tung

    Full Text Available The aims of this study were to estimate the incidences of herpes zoster (HZ and postherpetic neuralgia (PHN in patients after traumatic brain injury (TBI. Furthermore, we aimed to explore the risk factors of the development of HZ and PHN in patients after TBI. This population-based, longitudinal analysis was conducted using the Taiwan National Health Insurance Research Database (consisting of 1,000,000 beneficiaries from 1996 to 2010. Using the longitudinal National Health Insurance Research Database, we conducted a retrospective population-based cohort study to evaluate the incidence of HZ and PHN in adult TBI patients and controls. Kaplan-Meier analysis and Cox regression were used to compare differences in the development of HZ and PHN. The effects of gender, comorbidity and surgery on the risk of HZ and PHN development were assessed by subgroup analyses. Over a 15-year follow-up, the cumulative incidence of HZ in 28,234 TBI patients (604.00/100,000 person-years was significantly higher than 34,085 controls (322.21/100,000 person-years (P<0.0001, by log-rank test. Females showed a significantly higher incidence of HZ than males (p for interaction = 0.0010. The time to HZ development in the follow-up period was 5.9 years in TBI patients compared to 9.9 years in the control set (p <0.0001. TBI patients were 2.93 and 2.11 times likely to develop HZ and PHN, respectively, than the general population. The incidences of HZ and PHN in TBI patients were also significantly greater than for controls in the CCI = 0 subgroup. To our knowledge, this is the first population-based cohort study to reveal that TBI is an independent risk factor for HZ and PHN in TBI patients, especially in females. Physician should pay attention to the possibility of HZ and PHN in TBI patients and be aware that HZ vaccination early after brain trauma may lower the incidence of HZ and PHN.

  2. Selling the story: narratives and charisma in adults with TBI.

    Science.gov (United States)

    Jones, Corinne A; Turkstra, Lyn S

    2011-01-01

    To examine storytelling performance behaviours in adults with traumatic brain injury (TBI) and relate these behaviours to perceived charisma and desirability as a conversation partner. Seven adult males with traumatic brain injury (TBI) told their accident narratives to a male confederate. Ten male undergraduate students rated 1-minute video clips from the beginning of each narrative using the Charismatic Leadership Communication Scale (CLCS). Raters also indicated whether or not they would like to engage in conversation with each participant. Of the performative behaviours analysed, gestures alone significantly influenced CLCS ratings and reported likelihood of engaging in future conversation with the participant. Post-hoc analysis revealed that speech rate was significantly correlated with all of the preceding measures. There was a significant correlation between self- and other-ratings of charisma. The findings suggest that aspects of non-verbal performance, namely gesture use and speech rate, influence how charismatic an individual is perceived to be and how likely someone is to engage in conversation with that person. Variability in these performance behaviours may contribute to the variation in social outcomes seen in the TBI population.

  3. Differences in cerebral perfusion deficits in mild traumatic brain injury and depression using single photon emission computed tomography

    Directory of Open Access Journals (Sweden)

    Kristoffer eRomero

    2014-08-01

    Full Text Available Background: Numerous studies have shown decreased perfusion in the prefrontal cortex following mild traumatic brain injury (mTBI. However, similar hypoperfusion can also be observed in depression. Given the high prevalence of depressive symptoms following mTBI, it is unclear to what extent depression influences hypoperfusion in TBI.Methods: Mild TBI patients without depressive symptoms (mTBI-noD, n = 39, TBI patients with depressive symptoms (mTBI-D, n = 13, and 15 patients with major depressive disorder, but no TBI (MDD were given 99-m T-ECD SPECT scans within 2 weeks of injury. All subjects completed tests of information processing speed, complex attention, and executive functioning, and a self-report questionnaire measuring symptoms of psychological distress. Between group comparisons of quantified SPECT perfusion were undertaken, using univariate and multivariate (partial least squares analyses.Results: mTBI-D and mTBI-noD groups did not differ in terms of cerebral perfusion. However, patients with MDD showed hypoperfusion in several frontal (orbitofrontal, middle frontal, and superior frontal cortex, superior temporal, and posterior cingulate regions. The mTBI-D group showed poorer performance on a measure of complex attention and working memory, compared to both the mTBI-noD and MDD groups.Conclusions: These results suggest that depressive symptoms do not affect SPECT perfusion in the sub-acute phase following a mild TBI. Conversely, MDD is associated with hypoperfusion primarily in frontal regions.

  4. Impaired dopaminergic neurotransmission in patients with traumatic brain injury: a SPECT study using 123I-beta-CIT and 123I-IBZM.

    Science.gov (United States)

    Donnemiller, E; Brenneis, C; Wissel, J; Scherfler, C; Poewe, W; Riccabona, G; Wenning, G K

    2000-09-01

    Structural imaging suggests that traumatic brain injury (TBI) may be associated with disruption of neuronal networks, including the nigrostriatal dopaminergic pathway. However, to date deficits in pre- and/or postsynaptic dopaminergic neurotransmission have not been demonstrated in TBI using functional imaging. We therefore assessed dopaminergic function in ten TBI patients using [123I]2-beta-carbomethoxy-3-beta-(4-iodophenyl)tropane (beta-CIT) and [123I]iodobenzamide (IBZM) single-photon emission tomography (SPET). Average Glasgow Coma Scale score (+/-SD) at the time of head trauma was 5.8+/-4.2. SPET was performed on average 141 days (SD +/-92) after TBI. The SPET images were compared with structural images using cranial computerised tomography (CCT) and magnetic resonance imaging (MRI). SPET was performed with an ADAC Vertex dual-head camera. The activity ratios of striatal to cerebellar uptake were used as a semiquantitative parameter of striatal dopamine transporter (DAT) and D2 receptor (D2R) binding. Compared with age-matched controls, patients with TBI had significantly lower striatal/cerebellar beta-CIT and IBZM binding ratios (PTBI despite relative structural preservation of the striatum. Further investigations of possible clinical correlates and efficacy of dopaminergic therapy in patients with TBI seem justified.

  5. White matter disruption in moderate/severe pediatric traumatic brain injury: Advanced tract-based analyses

    Directory of Open Access Journals (Sweden)

    Emily L. Dennis

    2015-01-01

    Full Text Available Traumatic brain injury (TBI is the leading cause of death and disability in children and can lead to a wide range of impairments. Brain imaging methods such as DTI (diffusion tensor imaging are uniquely sensitive to the white matter (WM damage that is common in TBI. However, higher-level analyses using tractography are complicated by the damage and decreased FA (fractional anisotropy characteristic of TBI, which can result in premature tract endings. We used the newly developed autoMATE (automated multi-atlas tract extraction method to identify differences in WM integrity. 63 pediatric patients aged 8–19 years with moderate/severe TBI were examined with cross sectional scanning at one or two time points after injury: a post-acute assessment 1–5 months post-injury and a chronic assessment 13–19 months post-injury. A battery of cognitive function tests was performed in the same time periods. 56 children were examined in the first phase, 28 TBI patients and 28 healthy controls. In the second phase 34 children were studied, 17 TBI patients and 17 controls (27 participants completed both post-acute and chronic phases. We did not find any significant group differences in the post-acute phase. Chronically, we found extensive group differences, mainly for mean and radial diffusivity (MD and RD. In the chronic phase, we found higher MD and RD across a wide range of WM. Additionally, we found correlations between these WM integrity measures and cognitive deficits. This suggests a distributed pattern of WM disruption that continues over the first year following a TBI in children.

  6. Aetiology and treatment outcome of severe traumatic brain injuries ...

    African Journals Online (AJOL)

    Background: Severe traumatic brain injury (TBI) is a major challenge to the patient, the relatives, the care givers, and the society in general. The primary and secondary injuries, and the high metabolism are formidable stages of the injury, each capable of taking the life of the patient. The objectives were to determine the ...

  7. Mechanical injury induces brain endothelial-derived microvesicle release: Implications for cerebral vascular injury during traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Allison M. Andrews

    2016-02-01

    Full Text Available It is well established that the endothelium responds to mechanical forces induced by changes in shear stress and mechanotransduction. However, our understanding of vascular remodeling following traumatic brain injury (TBI remains incomplete. Recently published studies have revealed that lung and umbilical endothelial cells produce extracellular microvesicles (eMVs, such as microparticles, in response to changes in mechanical forces (blood flow and mechanical injury. Yet, to date, no studies have shown whether brain endothelial cells produce eMVs following TBI. The brain endothelium is highly specialized and forms the blood-brain barrier (BBB, which regulates diffusion and transport of solutes into the brain. This specialization is largely due to the presence of tight junction proteins (TJPs between neighboring endothelial cells. Following TBI, a breakdown in tight junction complexes at the BBB leads to increased permeability, which greatly contributes to the secondary phase of injury. We have therefore tested the hypothesis that brain endothelium responds to mechanical injury, by producing eMVs that contain brain endothelial proteins, specifically TJPs. In our study, primary human adult brain microvascular endothelial cells (BMVEC were subjected to rapid mechanical injury to simulate the abrupt endothelial disruption that can occur in the primary injury phase of TBI. eMVs were isolated from the media following injury at 2, 6, 24 and 48 hrs. Western blot analysis of eMVs demonstrated a time-dependent increase in TJP occludin, PECAM-1 and ICAM-1 following mechanical injury. In addition, activation of ARF6, a small GTPase linked to extracellular vesicle production, was increased after injury. To confirm these results in vivo, mice were subjected to sham surgery or TBI and blood plasma was collected 24 hrs post-injury. Isolation and analysis of eMVs from blood plasma using cryo-EM and flow cytometry revealed elevated levels of vesicles containing

  8. Mechanical Injury Induces Brain Endothelial-Derived Microvesicle Release: Implications for Cerebral Vascular Injury during Traumatic Brain Injury.

    Science.gov (United States)

    Andrews, Allison M; Lutton, Evan M; Merkel, Steven F; Razmpour, Roshanak; Ramirez, Servio H

    2016-01-01

    It is well established that the endothelium responds to mechanical forces induced by changes in shear stress and strain. However, our understanding of vascular remodeling following traumatic brain injury (TBI) remains incomplete. Recently published studies have revealed that lung and umbilical endothelial cells produce extracellular microvesicles (eMVs), such as microparticles, in response to changes in mechanical forces (blood flow and mechanical injury). Yet, to date, no studies have shown whether brain endothelial cells produce eMVs following TBI. The brain endothelium is highly specialized and forms the blood-brain barrier (BBB), which regulates diffusion and transport of solutes into the brain. This specialization is largely due to the presence of tight junction proteins (TJPs) between neighboring endothelial cells. Following TBI, a breakdown in tight junction complexes at the BBB leads to increased permeability, which greatly contributes to the secondary phase of injury. We have therefore tested the hypothesis that brain endothelium responds to mechanical injury, by producing eMVs that contain brain endothelial proteins, specifically TJPs. In our study, primary human adult brain microvascular endothelial cells (BMVEC) were subjected to rapid mechanical injury to simulate the abrupt endothelial disruption that can occur in the primary injury phase of TBI. eMVs were isolated from the media following injury at 2, 6, 24, and 48 h. Western blot analysis of eMVs demonstrated a time-dependent increase in TJP occludin, PECAM-1 and ICAM-1 following mechanical injury. In addition, activation of ARF6, a small GTPase linked to extracellular vesicle production, was increased after injury. To confirm these results in vivo, mice were subjected to sham surgery or TBI and blood plasma was collected 24 h post-injury. Isolation and analysis of eMVs from blood plasma using cryo-EM and flow cytometry revealed elevated levels of vesicles containing occludin following brain trauma

  9. Traumatic brain injury, the hidden pandemic: A focused response to ...

    African Journals Online (AJOL)

    Introduction: Traumatic brain injury (TBI) has many potential cognitive, behavioural and psychological consequences, and contributes significantly to the national burden of disease and to ongoing violent behaviour. Few resources are available for the rehabilitation of patients with TBI in South Africa, and access to ...

  10. Wechsler Adult Intelligence Scale-Third Edition profiles and their relationship to self-reported outcome following traumatic brain injury.

    Science.gov (United States)

    Harman-Smith, Yasmin E; Mathias, Jane L; Bowden, Stephen C; Rosenfeld, Jeffrey V; Bigler, Erin D

    2013-01-01

    Neuropsychological assessments of outcome after traumatic brain injury (TBI) are often unrelated to self-reported problems after TBI. The current study cluster-analyzed the Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) subtest scores from mild, moderate, and severe TBI (n=220) and orthopedic injury control (n=95) groups, to determine whether specific cognitive profiles are related to people's perceived outcomes after TBI. A two-stage cluster analysis produced 4- and 6-cluster solutions, with the 6-cluster solution better capturing subtle variations in cognitive functioning. The 6 clusters differed in the levels and profiles of cognitive performance, self-reported recovery, and education and injury severity. The findings suggest that subtle cognitive impairments after TBI should be interpreted in conjunction with patient's self-reported problems.

  11. Prehospital rapid sequence intubation improves functional outcome for patients with severe traumatic brain injury: a randomized controlled trial.

    Science.gov (United States)

    Bernard, Stephen A; Nguyen, Vina; Cameron, Peter; Masci, Kevin; Fitzgerald, Mark; Cooper, David J; Walker, Tony; Std, B Paramed; Myles, Paul; Murray, Lynne; David; Taylor; Smith, Karen; Patrick, Ian; Edington, John; Bacon, Andrew; Rosenfeld, Jeffrey V; Judson, Rodney

    2010-12-01

    To determine whether paramedic rapid sequence intubation in patients with severe traumatic brain injury (TBI) improves neurologic outcomes at 6 months compared with intubation in the hospital. Severe TBI is associated with a high rate of mortality and long-term morbidity. Comatose patients with TBI routinely undergo endo-tracheal intubation to protect the airway, prevent hypoxia, and control ventilation. In many places, paramedics perform intubation prior to hospital arrival. However, it is unknown whether this approach improves outcomes. In a prospective, randomized, controlled trial, we assigned adults with severe TBI in an urban setting to either prehospital rapid sequence intubation by paramedics or transport to a hospital emergency department for intubation by physicians. The primary outcome measure was the median extended Glasgow Outcome Scale (GOSe) score at 6 months. Secondary end-points were favorable versus unfavorable outcome at 6 months, length of intensive care and hospital stay, and survival to hospital discharge. A total of 312 patients with severe TBI were randomly assigned to paramedic rapid sequence intubation or hospital intubation. The success rate for paramedic intubation was 97%. At 6 months, the median GOSe score was 5 (interquartile range, 1-6) in patients intubated by paramedics compared with 3 (interquartile range, 1-6) in the patients intubated at hospital (P = 0.28).The proportion of patients with favorable outcome (GOSe, 5-8) was 80 of 157 patients (51%) in the paramedic intubation group compared with 56 of 142 patients (39%) in the hospital intubation group (risk ratio, 1.28; 95% confidence interval, 1.00-1.64; P = 0.046). There were no differences in intensive care or hospital length of stay, or in survival to hospital discharge. In adults with severe TBI, prehospital rapid sequence intubation by paramedics increases the rate of favorable neurologic outcome at 6 months compared with intubation in the hospital.

  12. Recent neuroimaging techniques in mild traumatic brain injury.

    Science.gov (United States)

    Belanger, Heather G; Vanderploeg, Rodney D; Curtiss, Glenn; Warden, Deborah L

    2007-01-01

    Mild traumatic brain injury (TBI) is characterized by acute physiological changes that result in at least some acute cognitive difficulties and typically resolve by 3 months postinjury. Because the majority of mild TBI patients have normal structural magnetic resonance imaging (MRI)/computed tomography (CT) scans, there is increasing attention directed at finding objective physiological correlates of persistent cognitive and neuropsychiatric symptoms through experimental neuroimaging techniques. The authors review studies utilizing these techniques in patients with mild TBI; these techniques may provide more sensitive assessment of structural and functional abnormalities following mild TBI. Particular promise is evident with fMRI, PET, and SPECT scanning, as demonstrated by associations between brain activation and clinical outcomes.

  13. Epidemiology and clinical characteristics of traumatic brain injury in Lebanon

    Science.gov (United States)

    Abou-Abbass, Hussein; Bahmad, Hisham; Ghandour, Hiba; Fares, Jawad; Wazzi-Mkahal, Rayyan; Yacoub, Basel; Darwish, Hala; Mondello, Stefania; Harati, Hayat; El Sayed, Mazen J.; Tamim, Hani; Kobeissy, Firas

    2016-01-01

    Abstract Background: Traumatic brain injury (TBI) is a debilitating medical and emerging public health problem that is affecting people worldwide due to a multitude of factors including both domestic and war-related acts. The objective of this paper is to systematically review the status of TBI in Lebanon – a Middle Eastern country with a weak health system that was chartered by several wars and intermittent outbursts of violence - in order to identify the present gaps in knowledge, direct future research initiatives and to assist policy makers in planning progressive and rehabilitative policies. Methods: OVID/Medline, PubMed, Scopus databases and Google Scholar were lastly searched on April 15th, 2016 to identify all published research studies on TBI in Lebanon. Studies published in English, Arabic or French that assessed Lebanese patients afflicted by TBI in Lebanon were warranting inclusion in this review. Case reports, reviews, biographies and abstracts were excluded. Throughout the whole review process, reviewers worked independently and in duplicate during study selection, data abstraction and methodological assessment using the Downs and Black Checklist. Results: In total, 11 studies were recognized eligible as they assessed Lebanese patients afflicted by TBI on Lebanese soils. Considerable methodological variation was found among the identified studies. All studies, except for two that evaluated domestic causes such as falls, reported TBI due to war-related injuries. Age distribution of TBI victims revealed two peaks, young adults between 18 and 40 years, and older adults aged 60 years and above, where males constituted the majority. Only three studies reported rates of mild TBI. Mortality, rehabilitation and systemic injury rates were rarely reported and so were the complications involved; infections were an exception. Conclusion: Apparently, status of TBI in Lebanon suffers from several gaps which need to be bridged through implementing more basic

  14. Therapeutic effect of erythropoietin in patients with traumatic brain injury: a meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Liu, Wen-Chao; Wen, Liang; Xie, Tao; Wang, Hao; Gong, Jiang-Biao; Yang, Xiao-Feng

    2017-07-01

    OBJECTIVE Erythropoietin (EPO) exerts a neuroprotective effect in animal models of traumatic brain injury (TBI). However, its effectiveness in human patients with TBI is unclear. In this study, the authors conducted the first meta-analysis to assess the effectiveness and safety of EPO in patients with TBI. METHODS In December 2015, a systematic search was performed of PubMed, Web of Science, MEDLINE, Embase, the Cochrane Library databases, and Google Scholar. Only English-language publications of randomized controlled trials (RCTs) using EPO in patients with TBI were selected for analysis. The assessed outcomes included mortality, favorable neurological outcome, hospital stay, and associated adverse effects. Continuous variables were presented as mean difference (MD) with a 95% confidence interval (CI). Dichotomous variables were presented as risk ratio (RR) or risk difference (RD) with a 95% CI. Statistical heterogeneity was examined using both I 2 and chi-square tests. RESULTS Of the 346 studies identified in the search, 5 RCTs involving 915 patients met the inclusion criteria. The overall results demonstrated that EPO significantly reduced mortality (RR 0.69, 95% CI 0.49-0.96, p = 0.03) and shortened the hospitalization time (MD -7.59, 95% CI -9.71 to -5.46, p deep vein thrombosis (DVT; RD 0.00, 95% CI -0.05 to 0.05, p = 1.00) did not show a significant difference. CONCLUSIONS The authors suggested that EPO is beneficial for patients with TBI in terms of reducing mortality and shortening hospitalization time without increasing the risk of DVT. However, its effect on improving favorable neurological outcomes did not reach statistical significance. Therefore, more well-designed RCTs are necessary to ascertain the optimum dosage and time window of EPO treatment for patients with TBI.

  15. Patients "At Risk'' of Suffering from Persistent Complaints after Mild Traumatic Brain Injury : The Role of Coping, Mood Disorders, and Post-Traumatic Stress

    NARCIS (Netherlands)

    Scheenen, Myrthe E.; Spikman, Jacoba M.; de Koning, Myrthe E.; van der Horn, Harm J.; Roks, Gerwin; Hageman, Gerard; van der Naalt, Joukje

    2017-01-01

    Although most patients recover fully following mild traumatic brain injury (mTBI), a minority (15-25%) of all patients develop persistent post-traumatic complaints (PTC) that interfere with the resumption of previous activities. An early identification of patients who are at risk for PTC is

  16. Development and psychometric properties of the Carer - Head Injury Neurobehavioral Assessment Scale (C-HINAS) and the Carer - Head Injury Participation Scale (C-HIPS): patient and family determined outcome scales.

    Science.gov (United States)

    Deb, Shoumitro; Bryant, Eleanor; Morris, Paul G; Prior, Lindsay; Lewis, Glyn; Haque, Sayeed

    2007-06-01

    Develop and assess the psychometric properties of the Carer - Head Injury Participation Scale (C-HIPS) and its biggest factor the Carer - Head Injury Neurobehavioral Assessment Scale (C-HINAS). Furthermore, the aim was to examine the inter-informant reliability by comparing the self reports of individuals with traumatic brain injury (TBI) with the carer reports on the C-HIPS and the C-HINAS. Thirty-two TBI individuals and 27 carers took part in in-depth qualitative interviews exploring the consequences of the TBI. Interview transcripts were analysed and key themes and concepts were used to construct a 49-item and 58-item patient (Patient - Head Injury Participation Scale [P-HIPS]) and carer outcome measure (C-HIPS) respectively, of which 49 were parallel items and nine additional items were used to assess carer burden. Postal versions of the P-HIPS, C-HIPS, Mayo Portland Adaptability Inventory-3 (MPAI-3), and the Glasgow Outcome Scale-Extended (GOSE) were completed by a cohort of 113 TBI individuals and 80 carers. Data from a sub-group of 66 patient/carer pairs were used to compare inter-informant reliability between the P-HIPS and the C-HIPS, and the P-HINAS and the C-HINAS respectively. All individual 49 items of the C-HIPS and their total score showed good test-retest reliability (0.95) and internal consistency (0.95). Comparisons with the MPAI-3 and GOSE found a good correlation with the MPAI-3 (0.7) and a moderate negative correlation with the GOSE (-0.6). Factor analysis of these items extracted a 4-factor structure which represented the domains 'Emotion/Behavior' (C-HINAS), 'Independence/Community Living', 'Cognition', and 'Physical'. The C-HINAS showed good internal consistency (0.92), test-retest reliability (0.93), and concurrent validity with one MPAI subscale (0.7). Assessment of inter-informant reliability revealed good correspondence between the reports of the patients and the carers for both the C-HIPS (0.83) and the C-HINAS (0.82). Both the C

  17. Dynamic imaging in mild traumatic brain injury: support for the theory of medial temporal vulnerability.

    Science.gov (United States)

    Umile, Eric M; Sandel, M Elizabeth; Alavi, Abass; Terry, Charles M; Plotkin, Rosette C

    2002-11-01

    To determine whether patients with mild traumatic brain injury (TBI) and persistent postconcussive symptoms have evidence of temporal lobe injury on dynamic imaging. Case series. An academic medical center. Twenty patients with a clinical diagnosis of mild TBI and persistent postconcussive symptoms were referred for neuropsychologic evaluation and dynamic imaging. Fifteen (75%) had normal magnetic resonance imaging (MRI) and/or computed tomography (CT) scans at the time of injury. Neuropsychologic testing, positron-emission tomography (PET), and single-photon emission-computed tomography (SPECT). Temporal lobe findings on static imaging (MRI, CT) and dynamic imaging (PET, SPECT); neuropsychologic test findings on measures of verbal and visual memory. Testing documented neurobehavioral deficits in 19 patients (95%). Dynamic imaging documented abnormal findings in 18 patients (90%). Fifteen patients (75%) had temporal lobe abnormalities on PET and SPECT (primarily in medial temporal regions); abnormal findings were bilateral in 10 patients (50%) and unilateral in 5 (25%). Six patients (30%) had frontal abnormalities, and 8 (40%) had nonfrontotemporal abnormalities. Correlations between neuropsychologic testing and dynamic imaging could be established but not consistently across the whole group. Patients with mild TBI and persistent postconcussive symptoms have a high incidence of temporal lobe injury (presumably involving the hippocampus and related structures), which may explain the frequent finding of memory disorders in this population. The abnormal temporal lobe findings on PET and SPECT in humans may be analogous to the neuropathologic evidence of medial temporal injury provided by animal studies after mild TBI. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation

  18. Vascular impairment as a pathological mechanism underlying long-lasting cognitive dysfunction after pediatric traumatic brain injury.

    Science.gov (United States)

    Ichkova, Aleksandra; Rodriguez-Grande, Beatriz; Bar, Claire; Villega, Frederic; Konsman, Jan Pieter; Badaut, Jerome

    2017-12-01

    Traumatic brain injury (TBI) is the leading cause of death and disability in children. Indeed, the acute mechanical injury often evolves to a chronic brain disorder with long-term cognitive, emotional and social dysfunction even in the case of mild TBI. Contrary to the commonly held idea that children show better recovery from injuries than adults, pediatric TBI patients actually have worse outcome than adults for the same injury severity. Acute trauma to the young brain likely interferes with the fine-tuned developmental processes and may give rise to long-lasting consequences on brain's function. This review will focus on cerebrovascular dysfunction as an important early event that may lead to long-term phenotypic changes in the brain after pediatric TBI. These, in turn may be associated with accelerated brain aging and cognitive dysfunction. Finally, since no effective treatments are currently available, understanding the unique pathophysiological mechanisms of pediatric TBI is crucial for the development of new therapeutic options. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Socio Economic Status and Traumatic Brain Injury amongst Pediatric Populations: A Spatial Analysis in Greater Vancouver

    Directory of Open Access Journals (Sweden)

    Ofer Amram

    2015-12-01

    Full Text Available Introduction: Within Canada, injuries are the leading cause of death amongst children fourteen years of age and younger, and also one of the leading causes of morbidity. Low Socio Economic Status (SES seems to be a strong indicator of a higher prevalence of injuries. This study aims to identify hotspots for pediatric Traumatic Brain Injury (TBI and examines the relationship between SES and pediatric TBI rates in greater Vancouver, British Columbia (BC, Canada. Methods: Pediatric TBI data from the BC Trauma Registry (BCTR was used to identify all pediatric TBI patients admitted to BC hospitals between the years 2000 and 2013. Spatial analysis was used to identify hotspots for pediatric TBI. Multivariate analysis was used to distinguish census variables that were correlated with rates of injury. Results: Six hundred and fifty three severe pediatric TBI injuries occurred within the BC Lower Mainland between 2000 and 2013. High rates of injury were concentrated in the East, while low rate clusters were most common in the West of the region (more affluent neighborhoods. A low level of education was the main predictor of a high rate of injury (OR = 1.13, 95% CI = 1.03–1.23, p-Value 0.009. Conclusion: While there was a clear relationship between different SES indicators and pediatric TBI rates in greater Vancouver, income-based SES indicators did not serve as good predictors within this region.

  20. Visual problems associated with traumatic brain injury.

    Science.gov (United States)

    Armstrong, Richard A

    2018-02-28

    Traumatic brain injury (TBI) and its associated concussion are major causes of disability and death. All ages can be affected but children, young adults and the elderly are particularly susceptible. A decline in mortality has resulted in many more individuals living with a disability caused by TBI including those affecting vision. This review describes: (1) the major clinical and pathological features of TBI; (2) the visual signs and symptoms associated with the disorder; and (3) discusses the assessment of quality of life and visual rehabilitation of the patient. Defects in primary vision such as visual acuity and visual fields, eye movement including vergence, saccadic and smooth pursuit movements, and in more complex aspects of vision involving visual perception, motion vision ('akinopsia'), and visuo-spatial function have all been reported in TBI. Eye movement dysfunction may be an early sign of TBI. Hence, TBI can result in a variety of visual problems, many patients exhibiting multiple visual defects in combination with a decline in overall health. Patients with chronic dysfunction following TBI may require occupational, vestibular, cognitive and other forms of physical therapy. Such patients may also benefit from visual rehabilitation, including reading-related oculomotor training and the prescribing of spectacles with a variety of tints and prism combinations. © 2018 Optometry Australia.

  1. MMPI-2 profiles 23 years after paediatric mild traumatic brain injury.

    Science.gov (United States)

    Hessen, Erik; Anderson, Vicki; Nestvold, Knut

    2008-01-01

    Research suggest that post-concussive syndrome after mild traumatic brain injury (mTBI) is more common than chronic cognitive impairment. The aim of this study was to investigate very long-term outcome of subjective complaints after paediatric mTBI. The study was a follow-up 23 years after a prospective head injury study at a general hospital in Norway. Forty-one patients were assessed with the Minnesota Multiphasic Personality Inventory-2 (MMPI-2) 23 years after sustaining mTBI as children. A good overall outcome was found with scores close to the normative mean, average length of education and normal employment rate. However, the children that sustained complicated mTBI showed slightly more pathological scores, typical for mild post-concussive syndrome. The most important predictors of poor outcome were skull fracture and a combination of post-traumatic amnesia > 30 minutes and EEG pathology within 24 hours after TBI. No influence of pre- and post-injury risk factors on current MMPI-2 profiles was evident. The results give support for the notion of potentially differential impact of uncomplicated vs complicated mTBI. The findings suggest that children and adolescents sustaining complicated mTBI may be at risk of developing subtle chronic symptoms typical of post-concussive syndrome.

  2. The effects of single dose TBI on hepatic and renal function in non-human primates and patients

    International Nuclear Information System (INIS)

    Broerse, J.J.; Bakker, B.; Davelaar, J.; Leer, J.W.H.; Niemer-Tucker, M.M.B.; Noordijk, E.M.

    1996-01-01

    Total body irradiation (TBI) and bone marrow transplantation (BMT) are common procedures in the treatment of severe combined immune deficiency syndromes, leukemia, non-Hodgkin lymphoma and other hematological disorders. Improved results following TBI and BMT have increased the number of patients in long term follow up. Late detrimental effects of TBI have been investigated in non-human primates and patients with emphasis on vital organs like liver and kidney. The response of monkeys to radiation is not significantly different from that in man. Long term effects of TBI could be studied by keeping 84 monkeys of different ages under continuous observation for a period up to 25 years. Effects on hepatic and renal function were demonstrated using serological and histological parameters. The values of the liver function parameters such as alkaline phosphatase and gamma glutamyl transferase in the irradiated group are significantly increased after TBI. Also the parameters of kidney dysfunction, e.g., Ht and urea show a significant change in the irradiated old aged cohort with respect to the controls. Between 1967 and 1993, 336 bone marrow transplantations were performed at the University Hospital Leiden. The present Study was restricted to those patients who survived at least 18 months after transplantation. This retrospective analysis consequently amounts to 120 patients. The monkey data indicated subclinical organ damage for postirradiation intervals exceeding 15 years. However, up to the present time, the human data do not support these findings since the follow up time is still restricted to a median survival of 4,5 years. Detrimental effects in liver and kidney function at a later stage can not be excluded yet, and careful examinations of the patients remain indicated

  3. Larger ATV engine size correlates with an increased rate of traumatic brain injury.

    Science.gov (United States)

    Butts, C Caleb; Rostas, Jack W; Lee, Y L; Gonzalez, Richard P; Brevard, Sidney B; Frotan, M Amin; Ahmed, Naveed; Simmons, Jon D

    2015-04-01

    Since the introduction of all-terrain vehicles (ATV) to the United States in 1971, injuries and mortalities related to their use have increased significantly. Furthermore, these vehicles have become larger and more powerful. As there are no helmet requirements or limitations on engine-size in the State of Alabama, we hypothesised that larger engine size would correlate with an increased incidence of traumatic brain injury (TBI) in patients following an ATV crash. Patient and ATV data were prospectively collected on all ATV crashes presenting to a level one trauma centre from September 2010 to May 2013. Collected data included: demographics, age of driver, ATV engine size, presence of helmet, injuries, and outcomes. The data were grouped according to the ATV engine size in cubic centimetres (cc). For the purposes of this study, TBI was defined as any type of intracranial haemorrhage on the initial computed tomography scan. There were 61 patients identified during the study period. Two patients (3%) were wearing a helmet at the time of injury. Patients on an ATV with an engine size of 350 cc or greater had higher Injury Severity Scores (13.9 vs. 7.5, p ≤ 0.05) and an increased incidence of TBI (26% vs. 0%, p ≤ 0.05) when compared to patients on ATV's with an engine size less than 350 cc. Patients on an ATV with an engine size of 350 cc or greater were more likely to have a TBI. The use of a helmet was rarely present in this cohort. Legislative efforts to implement rider protection laws for ATVs are warranted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Neurosensory Symptom Complexes after Acute Mild Traumatic Brain Injury.

    Directory of Open Access Journals (Sweden)

    Michael E Hoffer

    Full Text Available Mild Traumatic Brain Injury (mTBI is a prominent public health issue. To date, subjective symptom complaints primarily dictate diagnostic and treatment approaches. As such, the description and qualification of these symptoms in the mTBI patient population is of great value. This manuscript describes the symptoms of mTBI patients as compared to controls in a larger study designed to examine the use of vestibular testing to diagnose mTBI. Five symptom clusters were identified: Post-Traumatic Headache/Migraine, Nausea, Emotional/Affective, Fatigue/Malaise, and Dizziness/Mild Cognitive Impairment. Our analysis indicates that individuals with mTBI have headache, dizziness, and cognitive dysfunction far out of proportion to those without mTBI. In addition, sleep disorders and emotional issues were significantly more common amongst mTBI patients than non-injured individuals. A simple set of questions inquiring about dizziness, headache, and cognitive issues may provide diagnostic accuracy. The consideration of other symptoms may be critical for providing prognostic value and treatment for best short-term outcomes or prevention of long-term complications.

  5. Indications for surgical stabilization of rib fractures in patients without flail chest: surveyed opinions of members of the Chest Wall Injury Society.

    Science.gov (United States)

    Pieracci, Fredric M; Agarwal, Suresh; Doben, Andrew; Shiroff, Adam; Lottenberg, Larwence; Whitbeck, Sarah Ann; White, Thomas W

    2018-02-01

    There are currently no evidence-based indications for surgical stabilization of rib fractures (SSRF) in patients without flail chest. The purpose of this survey was to identify patients for whom there is relative equipoise (operative vs. non-operative) in order to assist in designing a randomized clinical trial. Members of the Chest Wall Injury Society were sent an online survey, in which 18 patient scenarios were presented. The baseline patient had ≥ three displaced, contiguous fractures and had no other contraindications for surgery. This default scenario was then varied based upon patient age, degree of traumatic brain injury (TBI), fracture series location, and number of abnormal pulmonary physiologic variables (oxygen requirement, respiratory rate, incentive spirometry ability, cough, and numeric pain score). Thirty respondents provided a total of 540 answers. Overall, the majority of responses were in favor of SSRF (n = 413, 84.1%). Furthermore, the vast majority of responses indicated that some degree of pulmonary compromise was necessary to recommend SSRF (n = 44, 90.4%), with ≥ two abnormal parameters being the most common threshold (n = 156, 31.8%). Decision to recommend SSRF varied significantly by number of abnormal clinical variables, age, and degree of TBI, but not by fracture series location. Patients aged 85 years old and those with moderate TBI were the least likely to be recommended for SSRF, regardless of abnormal pulmonary physiologic variables. The most appropriate cutoff for equipoise appeared to be a patient aged 21-79 years old, with no or mild TBI, ≥ two abnormal pulmonary parameters, and regardless of fracture location (44.8% consensus for SSRF). SSRF was recommended for most patients with non-flail, displaced rib fractures. However, this recommendation was contingent upon patient age, degree of TBI, and pulmonary clinical status. Results of this survey may be used to inform inclusion criteria for a future randomized

  6. Traumatic Brain Injury Pathophysiology and Treatments: Early, Intermediate, and Late Phases Post-Injury

    Science.gov (United States)

    Algattas, Hanna; Huang, Jason H.

    2014-01-01

    Traumatic Brain Injury (TBI) affects a large proportion and extensive array of individuals in the population. While precise pathological mechanisms are lacking, the growing base of knowledge concerning TBI has put increased emphasis on its understanding and treatment. Most treatments of TBI are aimed at ameliorating secondary insults arising from the injury; these insults can be characterized with respect to time post-injury, including early, intermediate, and late pathological changes. Early pathological responses are due to energy depletion and cell death secondary to excitotoxicity, the intermediate phase is characterized by neuroinflammation and the late stage by increased susceptibility to seizures and epilepsy. Current treatments of TBI have been tailored to these distinct pathological stages with some overlap. Many prophylactic, pharmacologic, and surgical treatments are used post-TBI to halt the progression of these pathologic reactions. In the present review, we discuss the mechanisms of the pathological hallmarks of TBI and both current and novel treatments which target the respective pathways. PMID:24381049

  7. The Development of Neuroendocrine Disturbances over Time: Longitudinal Findings in Patients after Traumatic Brain Injury and Subarachnoid Hemorrhage

    Directory of Open Access Journals (Sweden)

    Anna Kopczak

    2015-12-01

    Full Text Available Previous reports suggest that neuroendocrine disturbances in patients with traumatic brain injury (TBI or aneurysmal subarachnoid hemorrhage (SAH may still develop or resolve months or even years after the trauma. We investigated a cohort of n = 168 patients (81 patients after TBI and 87 patients after SAH in whom hormone levels had been determined at various time points to assess the course and pattern of hormonal insufficiencies. Data were analyzed using three different criteria: (1 patients with lowered basal laboratory values; (2 patients with lowered basal laboratory values or the need for hormone replacement therapy; (3 diagnosis of the treating physician. The first hormonal assessment after a median time of three months after the injury showed lowered hormone laboratory test results in 35% of cases. Lowered testosterone (23.1% of male patients, lowered estradiol (14.3% of female patients and lowered insulin-like growth factor I (IGF-I values (12.1% were most common. Using Criterion 2, a higher prevalence rate of 55.6% of cases was determined, which correlated well with the prevalence rate of 54% of cases using the physicians’ diagnosis as the criterion. Intraindividual changes (new onset insufficiency or recovery were predominantly observed for the somatotropic axis (12.5%, the gonadotropic axis in women (11.1% and the corticotropic axis (10.6%. Patients after TBI showed more often lowered IGF-I values at first testing, but normal values at follow-up (p < 0.0004. In general, most patients remained stable. Stable hormone results at follow-up were obtained in 78% (free thyroxine (fT4 values to 94.6% (prolactin values.

  8. Chronic endocrine consequences of traumatic brain injury - what is the evidence?

    DEFF Research Database (Denmark)

    Klose, Marianne; Feldt-Rasmussen, Ulla

    2018-01-01

    Traumatic brain injury (TBI) is a major public health problem with potentially debilitating consequences for the individual. Hypopituitarism after TBI has received increasing attention over the past decade; development of the condition as a consequence of TBI was previously hardly mentioned...... in textbooks on the subject. Hypopituitarism has been reported in more than 25% of patients with TBI and is now thought to be one of the most important causes of treatable morbidity in TBI survivors. However, most clinicians dealing with neuroendocrine diseases and TBI generally do not see such a high...... incidence of hypopituitarism. This disproportion is not clearly explained, but recent data indicate that diagnostic testing, which is designed for high-risk populations and not for a cohort of patients with, for example, de novo isolated growth hormone deficiency (the predominant finding in TBI), might have...

  9. Quantifying white matter structural integrity with high-definition fiber tracking in traumatic brain injury.

    Science.gov (United States)

    Presson, Nora; Krishnaswamy, Deepa; Wagener, Lauren; Bird, William; Jarbo, Kevin; Pathak, Sudhir; Puccio, Ava M; Borasso, Allison; Benso, Steven; Okonkwo, David O; Schneider, Walter

    2015-03-01

    There is an urgent, unmet demand for definitive biological diagnosis of traumatic brain injury (TBI) to pinpoint the location and extent of damage. We have developed High-Definition Fiber Tracking, a 3 T magnetic resonance imaging-based diffusion spectrum imaging and tractography analysis protocol, to quantify axonal injury in military and civilian TBI patients. A novel analytical methodology quantified white matter integrity in patients with TBI and healthy controls. Forty-one subjects (23 TBI, 18 controls) were scanned with the High-Definition Fiber Tracking diffusion spectrum imaging protocol. After reconstruction, segmentation was used to isolate bilateral hemisphere homologues of eight major tracts. Integrity of segmented tracts was estimated by calculating homologue correlation and tract coverage. Both groups showed high correlations for all tracts. TBI patients showed reduced homologue correlation and tract spread and increased outlier count (correlations>2.32 SD below control mean). On average, 6.5% of tracts in the TBI group were outliers with substantial variability among patients. Number and summed deviation of outlying tracts correlated with initial Glasgow Coma Scale score and 6-month Glasgow Outcome Scale-Extended score. The correlation metric used here can detect heterogeneous damage affecting a low proportion of tracts, presenting a potential mechanism for advancing TBI diagnosis. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  10. Glucose administration after traumatic brain injury improves cerebral metabolism and reduces secondary neuronal injury.

    Science.gov (United States)

    Moro, Nobuhiro; Ghavim, Sima; Harris, Neil G; Hovda, David A; Sutton, Richard L

    2013-10-16

    Clinical studies have indicated an association between acute hyperglycemia and poor outcomes in patients with traumatic brain injury (TBI), although optimal blood glucose levels needed to maximize outcomes for these patients' remain under investigation. Previous results from experimental animal models suggest that post-TBI hyperglycemia may be harmful, neutral, or beneficial. The current studies determined the effects of single or multiple episodes of acute hyperglycemia on cerebral glucose metabolism and neuronal injury in a rodent model of unilateral controlled cortical impact (CCI) injury. In Experiment 1, a single episode of hyperglycemia (50% glucose at 2 g/kg, i.p.) initiated immediately after CCI was found to significantly attenuate a TBI-induced depression of glucose metabolism in cerebral cortex (4 of 6 regions) and subcortical regions (2 of 7) as well as to significantly reduce the number of dead/dying neurons in cortex and hippocampus at 24 h post-CCI. Experiment 2 examined effects of more prolonged and intermittent hyperglycemia induced by glucose administrations (2 g/kg, i.p.) at 0, 1, 3 and 6h post-CCI. The latter study also found significantly improved cerebral metabolism (in 3 of 6 cortical and 3 of 7 subcortical regions) and significant neuroprotection in cortex and hippocampus 1 day after CCI and glucose administration. These results indicate that acute episodes of post-TBI hyperglycemia can be beneficial and are consistent with other recent studies showing benefits of providing exogenous energy substrates during periods of increased cerebral metabolic demand. © 2013 Elsevier B.V. All rights reserved.

  11. Recovery from Mild Traumatic Brain Injury Following Uncomplicated Mounted and Dismounted Blast: A Natural History Approach.

    Science.gov (United States)

    Tschiffely, Anna E; Haque, Ashraful; Haran, Francis J; Cunningham, Craig A; Mehalick, Melissa L; May, Todd; Stuessi, Keith; Walker, Peter B; Norris, Jacob N

    2018-03-01

    The purpose of this study is to utilize a natural history approach to describe and understand symptom recovery in personnel diagnosed with a blast-related mild traumatic brain injury (mTBI) resulting from an improvised explosive device blast. The population included military personnel who experienced a blast mTBI while mounted (vehicle; n = 176) or dismounted (on foot; n = 37) (N = 213). Patients had no co-morbid psychiatric or muscle-skeletal issues and were treated within 72 h of injury. Prevalence and duration of self-reported symptoms were separately analyzed by injury context (mounted vs dismounted). Headache was prominently reported in both mounted (85%) and dismounted (75%) populations. The mean time from injury to return to full duty was between 7.8 d (mounted) and 8.5 d (dismounted). The dismounted population reported visual changes that lasted 0.74 d longer. Our analysis implicates that headache is a common and acutely persistent symptom in mTBI regardless of injury context. Additionally, patients in mounted vs dismounted injury did not report significant differences in symptom prevalence. Although knowing the injury context (i.e., dismounted vs mounted) may be beneficial for providers to understand symptom presentations and deliver accurate anticipatory guidance for patients with blast-related mTBI, no significant differences were observed in this population. This may be due to the population characteristic as the trajectory of recovery may vary for patients who were not able to return to full duty within 30 d or required higher levels of care.

  12. Effects of platelet and plasma transfusion on outcome in traumatic brain injury patients with moderate bleeding diatheses.

    Science.gov (United States)

    Anglin, Catherine O; Spence, Jeffrey S; Warner, Matthew A; Paliotta, Christopher; Harper, Caryn; Moore, Carol; Sarode, Ravi; Madden, Christopher; Diaz-Arrastia, Ramon

    2013-03-01

    Object Coagulopathy and thrombocytopenia are common after traumatic brain injury (TBI), yet transfusion thresholds for mildly to moderately abnormal ranges of international normalized ratio and platelet count remain controversial. This study evaluates associations between fresh frozen plasma (FFP) and platelet transfusions with long-term functional outcome and survival in TBI patients with moderate hemostatic laboratory abnormalities. Methods This study is a retrospective review of prospectively collected data of patients with mild to severe TBI. Data include patient demographics, several initial injury severity metrics, daily laboratory values, Glasgow Outcome Score- Extended (GOSE) scores, Functional Status Examination (FSE) scores, and survival to 6 months. Correlations were evaluated between these variables and transfusion of FFP, platelets, packed red blood cells (RBCs), cryoprecipitate, recombinant factor VIIa, and albumin. Ordinal regression was performed to account for potential confounding variables to further define relationships between transfusion status and long-term outcome. By analyzing collected data, mild to moderate coagulopathy was defined as an international normalized ratio 1.4-2.0, moderate thrombocytopenia as platelet count 50 × 10(9)/L to 107 × 10(9)/L, and moderate anemia as 21%-30% hematocrit. Results In patients with mild to moderate laboratory hematological abnormalities, univariate analysis shows significant correlations between poor outcome scores and FFP, platelet, or packed RBC transfusion; the volume of FFP or packed RBCs transfused also correlated with poor outcome. Several measures of initial injury and laboratory abnormalities also correlated with poor outcome. Patient age, initial Glasgow Coma Scale score, and highest recorded serum sodium were included in the ordinal regression model using backward variable selection. In the moderate coagulopathy subgroup, patients transfused with FFP were more likely to have a lower GOSE

  13. Missense Mutation of Brain Derived Neurotrophic Factor (BDNF Alters Neurocognitive Performance in Patients with Mild Traumatic Brain Injury: A Longitudinal Study.

    Directory of Open Access Journals (Sweden)

    Vairavan Narayanan

    Full Text Available The predictability of neurocognitive outcomes in patients with traumatic brain injury is not straightforward. The extent and nature of recovery in patients with mild traumatic brain injury (mTBI are usually heterogeneous and not substantially explained by the commonly known demographic and injury-related prognostic factors despite having sustained similar injuries or injury severity. Hence, this study evaluated the effects and association of the Brain Derived Neurotrophic Factor (BDNF missense mutations in relation to neurocognitive performance among patients with mTBI. 48 patients with mTBI were prospectively recruited and MRI scans of the brain were performed within an average 10.1 (SD 4.2 hours post trauma with assessment of their neuropsychological performance post full Glasgow Coma Scale (GCS recovery. Neurocognitive assessments were repeated again at 6 months follow-up. The paired t-test, Cohen's d effect size and repeated measure ANOVA were performed to delineate statistically significant differences between the groups [wildtype G allele (Val homozygotes vs. minor A allele (Met carriers] and their neuropsychological performance across the time point (T1 = baseline/ admission vs. T2 = 6th month follow-up. Minor A allele carriers in this study generally performed more poorly on neuropsychological testing in comparison wildtype G allele group at both time points. Significant mean differences were observed among the wildtype group in the domains of memory (M = -11.44, SD = 10.0, p = .01, d = 1.22, executive function (M = -11.56, SD = 11.7, p = .02, d = 1.05 and overall performance (M = -6.89 SD = 5.3, p = .00, d = 1.39, while the minor A allele carriers showed significant mean differences in the domains of attention (M = -11.0, SD = 13.1, p = .00, d = .86 and overall cognitive performance (M = -5.25, SD = 8.1, p = .01, d = .66.The minor A allele carriers in comparison to the wildtype G allele group, showed considerably lower scores at

  14. The spectrum and outcome of paediatric traumatic brain injury in ...

    African Journals Online (AJOL)

    The spectrum and outcome of paediatric traumatic brain injury in ... to develop a comprehensive overview of traumatic brain injury (TBI) in children ... We reviewed the age, gender, outcomes, radiological findings and treatment of the patients.

  15. Decision-making deficit of a patient with axonal damage after traumatic brain injury.

    Science.gov (United States)

    Yasuno, Fumihiko; Matsuoka, Kiwamu; Kitamura, Soichiro; Kiuchi, Kuniaki; Kosaka, Jun; Okada, Koji; Tanaka, Syohei; Shinkai, Takayuki; Taoka, Toshiaki; Kishimoto, Toshifumi

    2014-02-01

    Patients with traumatic brain injury (TBI) were reported to have difficulty making advantageous decisions, but the underlying deficits of the network of brain areas involved in this process were not directly examined. We report a patient with TBI who demonstrated problematic behavior in situations of risk and complexity after cerebral injury from a traffic accident. The Iowa gambling task (IGT) was used to reveal his deficits in the decision-making process. To examine underlying deficits of the network of brain areas, we examined T1-weighted structural MRI, diffusion tensor imaging (DTI) and Tc-ECD SPECT in this patient. The patient showed abnormality in IGT. DTI-MRI results showed a significant decrease in fractional anisotropy (FA) in the fasciculus between the brain stem and cortical regions via the thalamus. He showed significant decrease in gray matter volumes in the bilateral insular cortex, hypothalamus, and posterior cingulate cortex, possibly reflecting Wallerian degeneration secondary to the fasciculus abnormalities. SPECT showed significant blood flow decrease in the broad cortical areas including the ventromedial prefrontal cortex (VM). Our study showed that the patient had dysfunctional decision-making process. Microstructural abnormality in the fasciculus, likely from the traffic accident, caused reduced afferent feedback to the brain, resulting in less efficient decision-making. Our findings support the somatic-marker hypothesis (SMH), where somatic feedback to the brain influences the decision-making process. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Acupuncture for treatment of insomnia in patients with traumatic brain injury: a pilot intervention study.

    Science.gov (United States)

    Zollman, Felise S; Larson, Eric B; Wasek-Throm, Laura K; Cyborski, Cherina M; Bode, Rita K

    2012-01-01

    : To assess the efficacy of acupuncture in treating insomnia in traumatic brain injury (TBI) survivors as compared to medication, to determine whether acupuncture has fewer cognitive and affective adverse effects than does medication. : Twenty-four adult TBI survivors, randomized to acupuncture or control arms. : Outpatient rehabilitation clinic. : Insomnia Severity Index (degree of insomnia); actigraphy (sleep time); Hamilton Depression Rating Scale (depression); Repeatable Battery for the Assessment of Neuropsychological Status and Paced Auditory Serial Addition Test (cognitive function) administered at baseline and postintervention. : Sleep time did not differ between the treatment and control groups after intervention, whereas cognition improved in the former but not the latter. : Acupuncture has a beneficial effect on perception of sleep or sleep quality and on cognition in our small sample of patients with TBI. Further studies of this treatment modality are warranted to validate these findings and to explore factors that contribute to treatment efficacy.

  17. Cognitive impairment after traumatic brain injury: a functional magnetic resonance imaging study using the Stroop task

    International Nuclear Information System (INIS)

    Soeda, Akio; Iwama, Toru; Nakashima, Toshihiko; Okumura, Ayumi; Shinoda, Jun; Kuwata, Kazuo

    2005-01-01

    The anterior cingulate cortex (ACC) plays a key role in cognition, motor function, and emotion processing. However, little is known about how traumatic brain injury (TBI) affects the ACC system. Our purpose was to compare, by functional magnetic resonance imaging (fMRI) studies, the patterns of cortical activation in patients with cognitive impairment after TBI and those of normal subjects. Cortical activation maps of 11 right-handed healthy control subjects and five TBI patients with cognitive impairment were recorded in response to a Stroop task during a block-designed fMRI experiment. Statistical parametric mapping (SPM99) was used for individual subjects and group analysis. In TBI patients and controls, cortical activation, found in similar regions of the frontal, occipital, and parietal lobes, resembled patterns of activation documented in previous neuroimaging studies of the Stroop task in healthy controls. However, the TBI patients showed a relative decrease in ACC activity compared with the controls. Cognitive impairment in TBI patients seems to be associated with alterations in functional cerebral activity, especially less activation of the ACC. These changes are probably the result of destruction of neural networks after diffuse axonal injury and may reflect cortical disinhibition attributable to disconnection or compensation for an inefficient cognitive process. (orig.)

  18. Cognitive impairment after traumatic brain injury: a functional magnetic resonance imaging study using the Stroop task

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Akio; Iwama, Toru [Gifu University School of Medicine, Department of Neurosurgery, Gifu City (Japan); Nakashima, Toshihiko; Okumura, Ayumi; Shinoda, Jun [Kizawa Memorial Hospital, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Department of Neurosurgery, Minokamo (Japan); Kuwata, Kazuo [Gifu University School of Medicine, Department of Biochemistry and Biophysics, Gifu (Japan)

    2005-07-01

    The anterior cingulate cortex (ACC) plays a key role in cognition, motor function, and emotion processing. However, little is known about how traumatic brain injury (TBI) affects the ACC system. Our purpose was to compare, by functional magnetic resonance imaging (fMRI) studies, the patterns of cortical activation in patients with cognitive impairment after TBI and those of normal subjects. Cortical activation maps of 11 right-handed healthy control subjects and five TBI patients with cognitive impairment were recorded in response to a Stroop task during a block-designed fMRI experiment. Statistical parametric mapping (SPM99) was used for individual subjects and group analysis. In TBI patients and controls, cortical activation, found in similar regions of the frontal, occipital, and parietal lobes, resembled patterns of activation documented in previous neuroimaging studies of the Stroop task in healthy controls. However, the TBI patients showed a relative decrease in ACC activity compared with the controls. Cognitive impairment in TBI patients seems to be associated with alterations in functional cerebral activity, especially less activation of the ACC. These changes are probably the result of destruction of neural networks after diffuse axonal injury and may reflect cortical disinhibition attributable to disconnection or compensation for an inefficient cognitive process. (orig.)

  19. Chronic traumatic encephalopathy-integration of canonical traumatic brain injury secondary injury mechanisms with tau pathology.

    Science.gov (United States)

    Kulbe, Jacqueline R; Hall, Edward D

    2017-11-01

    In recent years, a new neurodegenerative tauopathy labeled Chronic Traumatic Encephalopathy (CTE), has been identified that is believed to be primarily a sequela of repeated mild traumatic brain injury (TBI), often referred to as concussion, that occurs in athletes participating in contact sports (e.g. boxing, American football, Australian football, rugby, soccer, ice hockey) or in military combatants, especially after blast-induced injuries. Since the identification of CTE, and its neuropathological finding of deposits of hyperphosphorylated tau protein, mechanistic attention has been on lumping the disorder together with various other non-traumatic neurodegenerative tauopathies. Indeed, brains from suspected CTE cases that have come to autopsy have been confirmed to have deposits of hyperphosphorylated tau in locations that make its anatomical distribution distinct for other tauopathies. The fact that these individuals experienced repetitive TBI episodes during their athletic or military careers suggests that the secondary injury mechanisms that have been extensively characterized in acute TBI preclinical models, and in TBI patients, including glutamate excitotoxicity, intracellular calcium overload, mitochondrial dysfunction, free radical-induced oxidative damage and neuroinflammation, may contribute to the brain damage associated with CTE. Thus, the current review begins with an in depth analysis of what is known about the tau protein and its functions and dysfunctions followed by a discussion of the major TBI secondary injury mechanisms, and how the latter have been shown to contribute to tau pathology. The value of this review is that it might lead to improved neuroprotective strategies for either prophylactically attenuating the development of CTE or slowing its progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. To Fear is to Gain? The Role of Fear Recognition in Risky Decision Making in TBI Patients and Healthy Controls

    NARCIS (Netherlands)

    Visser-Keizer, Annemarie C.; Westerhof-Evers, Herma J.; Gerritsen, Marleen J.J.; van der Naalt, Joukje; Spikman, Jacoba M.

    2016-01-01

    Fear is an important emotional reaction that guides decision making in situations of ambiguity or uncertainty. Both recognition of facial expressions of fear and decision making ability can be impaired after traumatic brain injury (TBI), in particular when the frontal lobe is damaged. So far, it has

  1. To Fear Is to Gain? The Role of Fear Recognition in Risky Decision Making in TBI Patients and Healthy Controls

    NARCIS (Netherlands)

    Visser-Keizer, A.C.; Westerhof-Evers, H.J.; Gerritsen, M.J.P.; Naalt, J. van der; Spikman, J.M.

    2016-01-01

    Fear is an important emotional reaction that guides decision making in situations of ambiguity or uncertainty. Both recognition of facial expressions of fear and decision making ability can be impaired after traumatic brain injury (TBI), in particular when the frontal lobe is damaged. So far, it has

  2. Adult sports-related traumatic brain injury in United States trauma centers.

    Science.gov (United States)

    Winkler, Ethan A; Yue, John K; Burke, John F; Chan, Andrew K; Dhall, Sanjay S; Berger, Mitchel S; Manley, Geoffrey T; Tarapore, Phiroz E

    2016-04-01

    OBJECTIVE Sports-related traumatic brain injury (TBI) is an important public health concern estimated to affect 300,000 to 3.8 million people annually in the United States. Although injuries to professional athletes dominate the media, this group represents only a small proportion of the overall population. Here, the authors characterize the demographics of sports-related TBI in adults from a community-based trauma population and identify predictors of prolonged hospitalization and increased morbidity and mortality rates. METHODS Utilizing the National Sample Program of the National Trauma Data Bank (NTDB), the authors retrospectively analyzed sports-related TBI data from adults (age ≥ 18 years) across 5 sporting categories-fall or interpersonal contact (FIC), roller sports, skiing/snowboarding, equestrian sports, and aquatic sports. Multivariable regression analysis was used to identify predictors of prolonged hospital length of stay (LOS), medical complications, inpatient mortality rates, and hospital discharge disposition. Statistical significance was assessed at α sports-related TBIs were documented in the NTDB, which represented 18,310 incidents nationally. Equestrian sports were the greatest contributors to sports-related TBI (45.2%). Mild TBI represented nearly 86% of injuries overall. Mean (± SEM) LOSs in the hospital or intensive care unit (ICU) were 4.25 ± 0.09 days and 1.60 ± 0.06 days, respectively. The mortality rate was 3.0% across all patients, but was statistically higher in TBI from roller sports (4.1%) and aquatic sports (7.7%). Age, hypotension on admission to the emergency department (ED), and the severity of head and extracranial injuries were statistically significant predictors of prolonged hospital and ICU LOSs, medical complications, failure to discharge to home, and death. Traumatic brain injury during aquatic sports was similarly associated with prolonged ICU and hospital LOSs, medical complications, and failure to be discharged to

  3. Sleep Disturbances, TBI and PTSD: Implications for Treatment and Recovery

    Science.gov (United States)

    Gilbert, Karina Stavitsky; Kark, Sarah M.; Gehrman, Philip; Bogdanova, Yelena

    2015-01-01

    Post-Traumatic Stress Disorder (PTSD), traumatic brain injury (TBI), and sleep problems significantly affect recovery and functional status in military personnel and Veterans returning from combat. Despite recent attention, sleep is understudied in the Veteran population. Few treatments and rehabilitation protocols target sleep, although poor sleep remains at clinical levels and continues to adversely impact functioning even after the resolution of PTSD or mild TBI symptoms. Recent developments in non-pharmacologic sleep treatments have proven efficacious as stand-alone interventions and have potential to improve treatment outcomes by augmenting traditional behavioral and cognitive therapies. This review discusses the extensive scope of work in the area of sleep as it relates to TBI and PTSD, including pathophysiology and neurobiology of sleep; existing and emerging treatment options; as well as methodological issues in sleep measurements for TBI and PTSD. Understanding sleep problems and their role in the development and maintenance of PTSD and TBI symptoms may lead to improvement in overall treatment outcomes while offering a non-stigmatizing entry in mental health services and make current treatments more comprehensive by helping to address a broader spectrum of difficulties. PMID:26164549

  4. Evaluation of diffuse axonal injury in traumatic brain injury - Valoración del daño axonal difuso en los traumatismos cráneo-encefálicos

    Directory of Open Access Journals (Sweden)

    Carme Junqué

    2008-12-01

    Full Text Available Diffuse axonal injury (DAI in traumaticbrain injury (TBI is produced by primary and secondarymechanisms of axonal damage. DAI is the responsibleof neuropsychological impairments associatedto moderate and diffuse TBI such as deficits in attention,memory, speed of mental processing and executivefunctions. Clinical magnetic resonance imagingallows to identify traumatic microbleeds using T2*and to quantify indirect signs of DAI such as the ventricularvolumes of corpus callosum surface. Diffusiontensor imaging (DTI is the most suitable techniqueto identify and to quantify DAI in TBI patients. Thefractional anisotropy (FA values have been found sensitiveto DAI even in mild TBI and correlate withseverity parameters such as Glasgow coma scale andpost-traumatic amnesia. FA values changes over timebut it remains as a permanent TBI sequel even in children.The mean whole brain FA and corpus callosummeasures have shown significant correlations with theclassical neuropsychological deficits seen in TBIpatients with DAI.

  5. Development and preliminary evaluation of a music-based attention assessment for patients with traumatic brain injury.

    Science.gov (United States)

    Jeong, Eunju; Lesiuk, Teresa L

    2011-01-01

    Impairments in attention are commonly seen in individuals with traumatic brain injury (TBI). While visual attention assessment measurements have been rigorously developed and frequently used in cognitive neurorehabilitation, there is a paucity of auditory attention assessment measurements for patients with TBI. The purpose of this study was to field test a researcher-developed Music-based Attention Assessment (MAA), a melodic contour identification test designed to assess three different types of attention (i.e., sustained attention, selective attention, and divided attention), for patients with TBI. Additionally, this study aimed to evaluate the readability and comprehensibility of the test items and to examine the preliminary psychometric properties of the scale and test items. Fifteen patients diagnosed with TBI completed 3 different series of tasks in which they were required to identify melodic contours. The resulting data showed that (a) test items in each of the 3 subtests were found to have an easy to moderate level of item difficulty and an acceptable to high level of item discrimination, and (b) the musical characteristics (i.e., contour, congruence, and pitch interference) were found to be associated with the level of item difficulty, and (c) the internal consistency of the MAA as computed by Cronbach's alpha was .95. Subsequent studies using a larger sample of typical participants, along with individuals with TBI, are needed to confirm construct validity and internal consistency of the MAA. In addition, the authors recommend examination of criterion validity of the MAA as correlated with current neuropsychological attention assessment measurements.

  6. Association of Mild Traumatic Brain Injury With and Without Loss of Consciousness With Dementia in US Military Veterans.

    Science.gov (United States)

    Barnes, Deborah E; Byers, Amy L; Gardner, Raquel C; Seal, Karen H; Boscardin, W John; Yaffe, Kristine

    2018-05-07

    Traumatic brain injury (TBI) is common in both veteran and civilian populations. Prior studies have linked moderate and severe TBI with increased dementia risk, but the association between dementia and mild TBI, particularly mild TBI without loss of consciousness (LOC), remains unclear. To examine the association between TBI severity, LOC, and dementia diagnosis in veterans. This cohort study of all patients diagnosed with a TBI in the Veterans Health Administration health care system from October 1, 2001, to September 30, 2014, and a propensity-matched comparison group. Patients with dementia at baseline were excluded. Researchers identified TBIs through the Comprehensive TBI Evaluation database, which is restricted to Iraq and Afghanistan veterans, and the National Patient Care Database, which includes veterans of all eras. The severity of each TBI was based on the most severe injury recorded and classified as mild without LOC, mild with LOC, mild with LOC status unknown, or moderate or severe using Department of Defense or Defense and Veterans Brain Injury Center criteria. International Classification of Diseases, Ninth Revision codes were used to identify dementia diagnoses during follow-up and medical and psychiatric comorbidities in the 2 years prior to the index date. Dementia diagnosis in veterans who had experienced TBI with or without LOC and control participants without TBI exposure. The study included 178 779 patients diagnosed with a TBI in the Veterans Health Administration health care system and 178 779 patients in a propensity-matched comparison group. Veterans had a mean (SD) age of nearly 49.5 (18.2) years at baseline; 33 250 (9.3%) were women, and 259 136 (72.5%) were non-Hispanic white individuals. Differences between veterans with and without TBI were small. A total of 4698 veterans (2.6%) without TBI developed dementia compared with 10 835 (6.1%) of those with TBI. After adjustment for demographics and medical and psychiatric

  7. Development of an Ontology for Rehabilitation: Traumatic Brain Injury

    Science.gov (United States)

    Grove, Michael J.

    2013-01-01

    Traumatic Brain Injury (TBI) rehabilitation interventions are very heterogeneous due to injury characteristics and pathology, patient demographics, healthcare settings, caregiver variability, and individualized, multi-discipline treatment plans. Consequently, comparing and generalizing the effectiveness of interventions is limited largely due to…

  8. The costs of traumatic brain injury due to motorcycle accidents in Hanoi, Vietnam

    Directory of Open Access Journals (Sweden)

    Vo Thuy TN

    2008-08-01

    Full Text Available Abstract Background Road traffic accidents are the leading cause of fatal and non-fatal injuries in Vietnam. The purpose of this study is to estimate the costs, in the first year post-injury, of non-fatal traumatic brain injury (TBI in motorcycle users not wearing helmets in Hanoi, Vietnam. The costs are calculated from the perspective of the injured patients and their families, and include quantification of direct, indirect and intangible costs, using years lost due to disability as a proxy. Methods The study was a retrospective cross-sectional study. Data on treatment and rehabilitation costs, employment and support were obtained from patients and their families using a structured questionnaire and The European Quality of Life instrument (EQ6D. Results Thirty-five patients and their families were interviewed. On average, patients with severe, moderate and minor TBI incurred direct costs at USD 2,365, USD 1,390 and USD 849, with time lost for normal activities averaging 54 weeks, 26 weeks and 17 weeks and years lived with disability (YLD of 0.46, 0.25 and 0.15 year, respectively. Conclusion All three component costs of TBI were high; the direct cost accounted for the largest proportion, with costs rising with the severity of TBI. The results suggest that the burden of TBI can be catastrophic for families because of high direct costs, significant time off work for patients and caregivers, and impact on health-related quality of life. Further research is warranted to explore the actual social and economic benefits of mandatory helmet use.

  9. Functional level during the first 2 years after moderate and severe traumatic brain injury.

    Science.gov (United States)

    Sandhaug, Maria; Andelic, Nada; Langhammer, Birgitta; Mygland, Aase

    2015-01-01

    Long-term outcomes after TBI are examined to a large extent, but longitudinal studies with more than 1-year follow-up time after injury have been fewer in number. The course of recovery may vary due to a number of factors and it is still somewhat unclear which factors are contributing. The aim of this study was to describe the functional level at four time points up to 24 months after traumatic brain injury (TBI) and to evaluate the predictive impact of pre-injury and injury-related factors. A cohort study. Outpatient. Sixty-five patients with moderate (n = 21) or severe (n = 44) TBI. The patients with TBI were examined with Functional Independence Measure (FIM) and Glasgow Outcome Scale Extended (GOSE) at 3 months, 12 months and 24 months after injury. Possible predictors were analysed in a regression model using FIM total score at 24 months as the outcome measure. FIM scores improved significantly from rehabilitation unit discharge to 24 months after injury, with peak levels at 3 and 24 months after injury (p GOSE scores for the whole group and the moderate group improved significantly over time, but the severe group did not. FIM at admission to the rehabilitation unit and GCS score at admission to the rehabilitation unit were closest to being significant predictors of FIM total scores 24 months after injury (B = 0.265 and 2.883, R(2 )= 0.39, p = 0.073, p = 0.081). FIM levels improved during the period from rehabilitation unit discharge to 3 months follow-up; thereafter, there was a 'plateauing' of recovery. In contrast, GOSE 'plateauing' of recovery was at 12 months. The study results may indicate that two of the most used outcome measures in TBI research are more relevant for assessment of the functional recovery in a sub-acute phase than in later stages of TBI recovery.

  10. Environmental Enrichment Mitigates Deficits after Repetitive Mild Traumatic Brain Injury.

    Science.gov (United States)

    Liu, Xixia; Qiu, Jianhua; Alcon, Sasha; Hashim, Jumana; Meehan, William P; Mannix, Rebekah

    2017-08-15

    Although environmental enrichment has been shown to improve functional and histologic outcomes in pre-clinical moderate-to-severe traumatic brain injury (TBI), there are a paucity of pre-clinical data regarding enrichment strategies in the setting of repetitive mild traumatic brain injury (rmTBI). Given the vast numbers of athletes and those in the military who sustain rmTBI, the mounting evidence of the long-term and progressive sequelae of rmTBI, and the lack of targeted therapies to mitigate these sequelae, successful enrichment interventions in rmTBI could have large public health significance. Here, we evaluated enrichment strategies in an established pre-clinical rmTBI model. Seventy-one male C57BL/6 mice were randomized to two different housing conditions, environmental enrichment (EE) or normal condition (NC), then subjected to rmTBI injury (seven injuries in 9 days) or sham injury (anesthesia only). Functional outcomes in all four groups (NC-TBI, EE-TBI, NC-sham, and EE-sham) were assessed by motor, exploratory/anxiety, and mnemonic behavioral tests. At the synaptic level, N-methyl d-aspartate receptor (NMDAR) subunit expression of phosphorylated glutamate receptor 1 (GluR1), phosphorylated Ca 2+ /calmodulin-dependent protein kinase II (CaMKII), and calpain were evaluated by western blot. Compared to injured NC-TBI mice, EE-TBI mice had improved memory and decreased anxiety and exploratory activity post-injury. Treatment with enrichment also corresponded to normal NMDAR subunit expression, decreased GluR1 phosphorylation, decreased phosphorylated CaMKII, and normal calpain expression post-rmTBI. These data suggest that enrichment strategies may improve functional outcomes and mitigate synaptic changes post-rmTBI. Given that enrichment strategies are feasible in the clinical setting, particularly for athletes and soldiers for whom the risk of repetitive injury is greatest, these data suggest that clinical trials may be warranted.

  11. Vocational outcome 6-15 years after a traumatic brain injury.

    Science.gov (United States)

    Lexell, J; Wihlney, A-K; Jacobsson, L J

    2016-01-01

    To describe vocational outcome 6-15 years after a traumatic brain injury (TBI) among individuals who were productive by working or studying at the time of their TBI and determine the associations with variables related to the time of injury and at follow-up. Thirty-four individuals with a mild TBI and 45 with a moderate-to-severe TBI were assessed on average 10 years post-injury. Logistic regression was used to determine the association between their current vocational situation and variables related to the time of injury (gender, age, injury severity and educational level) and at follow-up (time since injury, marital status and overall disability). A total of 67% were productive at follow-up. Age at injury, injury severity and the degree of disability at follow-up were strongly associated with being productive. Younger individuals with milder TBI and less severe disability were significantly more likely to be fully productive. No significant associations were found between productivity and gender, education, time since injury or marital status. This study indicates that return to productivity in a long-term perspective after a TBI is possible, in particular when the individual is young, has sustained a mild TBI and has a milder form of overall disability.

  12. Severe Traumatic Brain Injury

    Science.gov (United States)

    ... TBI Online Concussion Training Press Room Guide to Writing about TBI in News and Social Media Living with TBI HEADS UP to Brain Injury Awareness Get Email Updates To receive email updates about this topic, ...

  13. Understanding Traumatic Brain Injury: An Introduction

    Science.gov (United States)

    Trudel, Tina M.; Scherer, Marcia J.; Elias, Eileen

    2009-01-01

    This article is the first of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received very limited national public policy attention and support. However since it has become the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained the attention of elected officials, military leaders,…

  14. Moderate Traumatic Brain Injury: Clinical Characteristics and a Prognostic Model of 12-Month Outcome.

    Science.gov (United States)

    Einarsen, Cathrine Elisabeth; van der Naalt, Joukje; Jacobs, Bram; Follestad, Turid; Moen, Kent Gøran; Vik, Anne; Håberg, Asta Kristine; Skandsen, Toril

    2018-03-31

    Patients with moderate traumatic brain injury (TBI) often are studied together with patients with severe TBI, even though the expected outcome of the former is better. Therefore, we aimed to describe patient characteristics and 12-month outcomes, and to develop a prognostic model based on admission data, specifically for patients with moderate TBI. Patients with Glasgow Coma Scale scores of 9-13 and age ≥16 years were prospectively enrolled in 2 level I trauma centers in Europe. Glasgow Outcome Scale Extended (GOSE) score was assessed at 12 months. A prognostic model predicting moderate disability or worse (GOSE score ≤6), as opposed to a good recovery, was fitted by penalized regression. Model performance was evaluated by area under the curve of the receiver operating characteristics curves. Of the 395 enrolled patients, 81% had intracranial lesions on head computed tomography, and 71% were admitted to an intensive care unit. At 12 months, 44% were moderately disabled or worse (GOSE score ≤6), whereas 8% were severely disabled and 6% died (GOSE score ≤4). Older age, lower Glasgow Coma Scale score, no day-of-injury alcohol intoxication, presence of a subdural hematoma, occurrence of hypoxia and/or hypotension, and preinjury disability were significant predictors of GOSE score ≤6 (area under the curve = 0.80). Patients with moderate TBI exhibit characteristics of significant brain injury. Although few patients died or experienced severe disability, 44% did not experience good recovery, indicating that follow-up is needed. The model is a first step in development of prognostic models for moderate TBI that are valid across centers. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. ECONOMIC LOSSES CAUSED BY TRAUMATIC BRAIN INJURY IN CHILDREN

    Directory of Open Access Journals (Sweden)

    S. A. Valiulina

    2015-01-01

    Full Text Available Background: Currently, analyzing the economic losses caused by health problems in population is of particular importance since it stipulates calculations of the volumes invested in healthcare systems in order to improve population’s health. Objective: The aim of our study was to find out economic losses caused by traumatic brain injury (TBI in children. Methods: The given work has utilized governmental statistical reports for Russia, for federal regions as well as for individual subjects. Direct medical expenses (medical services and indirect expenses (losses due to a temporary disability of parents having a sick child were calculated both in general and per patient. Results: Among all the direct medical costs of treatment of children with TBI inpatient care costs account for 85%. In the Central and Volga Federal District accounted for half of nationwide spending in general, brain injury and to provide certain kinds of healthcare. The structure of Russian costs as a result of the incidence of TBI children Moscow accounts for 20%. In Moscow, the cost of treating cases of traumatic brain injury in children is 3.2 times higher than the average for Russia. The resulting calculations of the value of health care costs attributable to a case of child head injury, behind the cost of treatment of the case of a child with head trauma, calculated according to the standards of Russia and the territories. This difference in the whole RF is 23%. Conclusion: The obtained findings have shown that in 2010 in Russia the magnitude of losses caused by TBI incidence in children amounted to 3 billion roubles or 0.008% of the gross product 1.2 billion roubles of which were direct expenses. However, this figure is considerably lower of the real amount; it becomes evident after the analysis of direct medical expenses per one case of pediatric TBI. Our calculations have shown that in Russia and in its regions the amount of expenses per one TBI patient is a quarter less

  16. Pediatric sports-related traumatic brain injury in United States trauma centers.

    Science.gov (United States)

    Yue, John K; Winkler, Ethan A; Burke, John F; Chan, Andrew K; Dhall, Sanjay S; Berger, Mitchel S; Manley, Geoffrey T; Tarapore, Phiroz E

    2016-04-01

    OBJECTIVE Traumatic brain injury (TBI) in children is a significant public health concern estimated to result in over 500,000 emergency department (ED) visits and more than 60,000 hospitalizations in the United States annually. Sports activities are one important mechanism leading to pediatric TBI. In this study, the authors characterize the demographics of sports-related TBI in the pediatric population and identify predictors of prolonged hospitalization and of increased morbidity and mortality rates. METHODS Utilizing the National Sample Program of the National Trauma Data Bank (NTDB), the authors retrospectively analyzed sports-related TBI data from children (age 0-17 years) across 5 sports categories: fall or interpersonal contact (FIC), roller sports, skiing/snowboarding, equestrian sports, and aquatic sports. Multivariable regression analysis was used to identify predictors of prolonged length of stay (LOS) in the hospital or intensive care unit (ICU), medical complications, inpatient mortality rates, and hospital discharge disposition. Statistical significance was assessed at α sports-related TBIs were recorded in the NTDB, and these injuries represented 11,614 incidents nationally after sample weighting. Fall or interpersonal contact events were the greatest contributors to sports-related TBI (47.4%). Mild TBI represented 87.1% of the injuries overall. Mean (± SEM) LOSs in the hospital and ICU were 2.68 ± 0.07 days and 2.73 ± 0.12 days, respectively. The overall mortality rate was 0.8%, and the prevalence of medical complications was 2.1% across all patients. Severities of head and extracranial injuries were significant predictors of prolonged hospital and ICU LOSs, medical complications, failure to discharge to home, and death. Hypotension on admission to the ED was a significant predictor of failure to discharge to home (OR 0.05, 95% CI 0.03-0.07, p sports was independently associated with prolonged hospital LOS compared with FIC events (mean increase

  17. Association of antidepressant medication therapy with inpatient rehabilitation outcomes for stroke, traumatic brain injury, or traumatic spinal cord injury.

    Science.gov (United States)

    Weeks, Douglas L; Greer, Christopher L; Bray, Brenda S; Schwartz, Catrina R; White, John R

    2011-05-01

    To study whether outcomes in patients who have undergone inpatient rehabilitation for stroke, traumatic brain injury (TBI), or traumatic spinal cord injury (TSCI) differ based on antidepressant medication (ADM) use. Retrospective cohort study of 867 electronic medical records of patients receiving inpatient rehabilitation for stroke, TBI, or TSCI. Four cohorts were formed within each rehabilitation condition: patients with no history of ADM use and no indication of history of depression; patients with no history of ADM use but with a secondary diagnostic code for a depressive illness; patients with a history of ADM use prior to and during inpatient rehabilitation; and patients who began ADM therapy in inpatient rehabilitation. Freestanding inpatient rehabilitation facility (IRF). Patients diagnosed with stroke (n=625), TBI (n=175), and TSCI (n=67). Not applicable. FIM, rehabilitation length of stay (LOS), deviation between actual LOS and expected LOS, and functional gain per day. In each impairment condition, patients initiating ADM therapy in inpatient rehabilitation had longer LOS than patients in the same impairment condition on ADM at IRF admission, and had significantly longer LOS than patients with no history of ADM use and no diagnosis of depression (Pstroke and TBI groups initiating ADM in IRF than their counterparts with no history of ADM use, illustrating that the group initiating ADM therapy in rehabilitation significantly exceeded expected LOS. Increased LOS did not translate into functional gains, and in fact, functional gain per day was lower in the group initiating ADM therapy in IRF. Explanations for unexpectedly long LOS in patients initiating ADM in inpatient rehabilitation focus on the potential for ADM to inhibit therapy-driven remodeling of the nervous system when initiated close in time to nervous system injury, or the possibility that untreated sequelae (eg, depressive symptoms or fatigue) were limiting progress in therapy, which triggered

  18. Making waves in the brain: What are oscillations, and why modulating them makes sense for brain injury

    Directory of Open Access Journals (Sweden)

    Aleksandr ePevzner

    2016-04-01

    Full Text Available Traumatic brain injury (TBI can result in persistent cognitive, behavioral and emotional deficits. However, the vast majority of patients are not chronically hospitalized; rather they have to manage their disabilities once they are discharged to home. Promoting recovery to pre-injury level is important from a patient care as well as a societal perspective. Electrical neuromodulation is one approach that has shown promise in alleviating symptoms associated with neurological disorders such as in Parkinson’s disease and epilepsy. Consistent with this perspective, both animal and clinical studies have revealed that TBI alters physiological oscillatory rhythms. More recently several studies demonstrated that low frequency stimulation improves cognitive outcome in models of TBI. Specifically, stimulation of the septohippocampal circuit in the theta frequency entrained oscillations and improved spatial learning following traumatic brain injury. In order to evaluate the potential of electrical deep brain stimulation for clinical translation we review the basic neurophysiology of oscillations, their role in cognition and how they are changed post-TBI. Furthermore, we highlight several factors for future pre-clinical and clinical studies to consider, with the hope that it will promote a hypothesis driven approach to subsequent experimental designs and ultimately successful translation to improve outcome in patients with TBI.

  19. Deep pockets or blueprint for change: traumatic brain injury (TBI) proactive strategy.

    Science.gov (United States)

    Wood, D W; Pohl, S; Lawler, S; Okamoto, G

    1998-09-01

    The Pacific Conference scheduled for October 1-3, 1988, is a critical event in the development of an integrated community-based plan for a comprehensive continuum of services to address the "silent epidemic," Traumatic Brain Injured (TBI). This paper provides insights of the complex nature and the special problems faced by the TBI survivors; their families, natural supports and caregivers, as well as the health, social and educational care providers in Hawaii. Process for the development of the community plan is presented.

  20. Trajectories of sleep changes during the acute phase of traumatic brain injury: A 7-day actigraphy study

    Directory of Open Access Journals (Sweden)

    Hsiao-Yean Chiu

    2013-09-01

    Conclusion: Poor sleep efficiency and longer sleep duration are common symptoms in acute TBI patients. Both head injury severity and age predicted the trajectories of daytime and 24-hour sleep duration during the acute phase of TBI, whereas gender predicted the trajectories of 24-hour sleep duration in the mild TBI subgroup.

  1. Screening for Post-Traumatic Stress Disorder in a Civilian Emergency Department Population with Traumatic Brain Injury.

    Science.gov (United States)

    Haarbauer-Krupa, Juliet; Taylor, Christopher A; Yue, John K; Winkler, Ethan A; Pirracchio, Romain; Cooper, Shelly R; Burke, John F; Stein, Murray B; Manley, Geoffrey T

    2017-01-01

    Post-traumatic stress disorder (PTSD) is a condition associated with traumatic brain injury (TBI). While the importance of PTSD and TBI among military personnel is widely recognized, there is less awareness of PTSD associated with civilian TBI. We examined the incidence and factors associated with PTSD 6 months post-injury in a civilian emergency department population using measures from the National Institute of Neurological Disorders and Stroke TBI Common Data Elements Outcome Battery. Participants with mild TBI (mTBI) from the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot study with complete 6-month outcome batteries (n = 280) were analyzed. Screening for PTSD symptoms was conducted using the PTSD Checklist-Civilian Version. Descriptive measures are summarized and predictors for PTSD were examined using logistic regression. Incidence of screening positive for PTSD was 26.8% at 6 months following mTBI. Screening positive for PTSD was significantly associated with concurrent functional disability, post-concussive and psychiatric symptomatology, decreased satisfaction with life, and decreased performance in visual processing and mental flexibility. Multi-variable regression showed injury mechanism of assault (odds ratio [OR] 3.59; 95% confidence interval [CI] 1.69-7.63; p = 0.001) and prior psychiatric history (OR 2.56; 95% CI 1.42-4.61; p = 0.002) remained significant predictors of screening positive for PTSD, while education (per year OR 0.88; 95% CI 0.79-0.98; p = 0.021) was associated with decreased odds of PTSD. Standardized data collection and review of pre-injury education, psychiatric history, and injury mechanism during initial hospital presentation can aid in identifying patients with mTBI at risk for developing PTSD symptoms who may benefit from closer follow-up after initial injury care.

  2. Sexual Functioning, Desire, and Satisfaction in Women with TBI and Healthy Controls

    Directory of Open Access Journals (Sweden)

    Jenna Strizzi

    2015-01-01

    Full Text Available Traumatic brain injury (TBI can substantially alter many areas of a person’s life and there has been little research published regarding sexual functioning in women with TBI. Methods. A total of 58 women (29 with TBI and 29 healthy controls from Neiva, Colombia, participated. There were no statistically significant differences between groups in sociodemographic characteristics. All 58 women completed the Sexual Quality of Life Questionnaire (SQoL, Female Sexual Functioning Index (FSFI, Sexual Desire Inventory (SDI, and the Sexual Satisfaction Index (ISS. Results. Women with TBI scored statistically significantly lower on the SQoL (p<0.001, FSFI subscales of desire (p<0.05, arousal (p<0.05, lubrication (p<0.05, orgasm (p<0.05, and satisfaction (p<0.05, and the ISS (p<0.001 than healthy controls. Multiple linear regressions revealed that age was negatively associated with some sexuality measures, while months since the TBI incident were positively associated with these variables. Conclusion. These results disclose that women with TBI do not fare as well as controls in these measures of sexual functioning and were less sexually satisfied. Future research is required to further understand the impact of TBI on sexual function and satisfaction to inform for rehabilitation programs.

  3. Dietary Docosahexaenoic Acid Improves Cognitive Function, Tissue Sparing, and Magnetic Resonance Imaging Indices of Edema and White Matter Injury in the Immature Rat after Traumatic Brain Injury

    OpenAIRE

    Schober, Michelle E.; Requena, Daniela F.; Abdullah, Osama M.; Casper, T. Charles; Beachy, Joanna; Malleske, Daniel; Pauly, James R.

    2016-01-01

    Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children. Specific therapies to treat acute TBI are lacking. Cognitive impairment from TBI may be blunted by decreasing inflammation and oxidative damage after injury. Docosahexaenoic acid (DHA) decreases cognitive impairment, oxidative stress, and white matter injury in adult rats after TBI. Effects of DHA on cognitive outcome, oxidative stress, and white matter injury in the developing rat after experimen...

  4. Brain metabolism is significantly impaired at blood glucose below 6 mM and brain glucose below 1 mM in patients with severe traumatic brain injury

    OpenAIRE

    Meierhans, Roman; B?chir, Markus; Ludwig, Silke; Sommerfeld, Jutta; Brandi, Giovanna; Haberth?r, Christoph; Stocker, Reto; Stover, John F

    2010-01-01

    Introduction The optimal blood glucose target following severe traumatic brain injury (TBI) must be defined. Cerebral microdialysis was used to investigate the influence of arterial blood and brain glucose on cerebral glucose, lactate, pyruvate, glutamate, and calculated indices of downstream metabolism. Methods In twenty TBI patients, microdialysis catheters inserted in the edematous frontal lobe were dialyzed at 1 ?l/min, collecting samples at 60 minute intervals. Occult metabolic alteratio...

  5. Brain metabolism is significantly impaired at blood glucose below 6 mM and brain glucose beneath 1 mM in patients with severe traumatic brain injury.

    OpenAIRE

    Meierhans, R; Bechir, M; Ludwig, S; Sommerfeld, J; Brandi, G; Haberthur, C; Stocker, R; Stover, J F

    2010-01-01

    ABSTRACT: INTRODUCTION: The optimal blood glucose target following severe traumatic brain injury (TBI) must be defined. Cerebral microdialysis was used to investigate the influence of arterial blood and brain glucose on cerebral glucose, lactate, pyruvate, glutamate, and calculated indices of downstream metabolism. METHODS: In twenty TBI patients, microdialysis catheters inserted in the edematous frontal lobe were dialyzed at 1 mul/ min, collecting samples at 60 minute intervals. Occult metab...

  6. Brain-Derived Neurotrophic Factor in TBI-related mortality: Interrelationships between Genetics and Acute Systemic and CNS BDNF Profiles

    Science.gov (United States)

    Failla, Michelle D.; Conley, Yvette P.; Wagner, Amy K.

    2015-01-01

    Background Older adults have higher mortality rates after severe traumatic brain injury (TBI) compared to younger adults. Brain derived neurotrophic factor (BDNF) signaling is altered in aging and is important to TBI given its role in neuronal survival/plasticity and autonomic function. Following experimental TBI, acute BDNF administration has not been efficacious. Clinically, genetic variation in BDNF (reduced signaling alleles: rs6265, Met-carriers; rs7124442, C-carriers) were protective in acute mortality. Post-acutely, these genotypes carried lower mortality risk in older adults, and greater mortality risk among younger adults. Objective Investigate BDNF levels in mortality/outcome following severe TBI in the context of age and genetic risk. Methods CSF and serum BDNF were assessed prospectively during the first week following severe TBI (n=203), and in controls (n=10). Age, BDNF genotype, and BDNF levels were assessed as mortality/outcome predictors. Results CSF BDNF levels tended to be higher post-TBI (p=0.061) versus controls and were associated with time until death (p=0.042). In contrast, serum BDNF levels were reduced post-TBI versus controls (pBDNF serum and gene*age interactions were mortality predictors post-TBI in the same multivariate model. CSF and serum BDNF tended to be negatively correlated post-TBI (p=0.07). Conclusions BDNF levels predicted mortality, in addition to gene*age interactions, suggesting levels capture additional mortality risk. Higher CSF BDNF post-TBI may be detrimental due to injury and age-related increases in pro-apoptotic BDNF target receptors. Negative CSF and serum BDNF correlations post-TBI suggest blood-brain barrier transit alterations. Understanding BDNF signaling in neuronal survival, plasticity, and autonomic function may inform treatment. PMID:25979196

  7. Brain injury in a forensic psychiatry population.

    Science.gov (United States)

    Colantonio, A; Stamenova, V; Abramowitz, C; Clarke, D; Christensen, B

    2007-12-01

    The prevalence and profile of adults with a history of traumatic brain injury (TBI) has not been studied in large North American forensic mental health populations. This study investigated how adults with a documented history of TBI differed with the non-TBI forensic population with respect to demographics, psychiatric diagnoses and history of offences. A retrospective chart review of all consecutive admissions to a forensic psychiatry programme in Toronto, Canada was conducted. Information on history of TBI, psychiatric diagnoses, living environments and types of criminal offences were obtained from medical records. History of TBI was ascertained in 23% of 394 eligible patient records. Compared to those without a documented history of TBI, persons with this history were less likely to be diagnosed with schizophrenia but more likely to have alcohol/substance abuse disorder. There were also differences observed with respect to offence profiles. This study provides evidence to support routine screening for a history of TBI in forensic psychiatry.

  8. The Influence of BMX Gene Polymorphisms on Clinical Symptoms after Mild Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Yu-Jia Wang

    2014-01-01

    Full Text Available Mild traumatic brain injury (mTBI is one of the most common neurological disorders. Most patients diagnosed with mTBI could fully recover, but 15% of patients suffer from persistent symptoms. In recent studies, genetic factors were found to be associated with recovery and clinical outcomes after TBI. In addition, results from our previous research have demonstrated that the bone marrow tyrosine kinase gene in chromosome X (BMX, a member of the Tec family of kinases, is highly expressed in rats with TBI. Therefore, our aim in this study was to identify the association between genetic polymorphisms of BMX and clinical symptoms following mTBI. Four tagging single nucleotide polymorphisms (tSNPs of BMX with minimum allele frequency (MAF >1% were selected from the HapMap Han Chinese database. Among these polymorphisms, rs16979956 was found to be associated with the Beck anxiety inventory (BAI and dizziness handicap inventory (DHI scores within the first week after head injury. Additionally, another SNP, rs35697037, showed a significant correlation with dizziness symptoms. These findings suggested that polymorphisms of the BMX gene could be a potential predictor of clinical symptoms following mTBI.

  9. Factors affecting increased risk for substance use disorders following traumatic brain injury: What we can learn from animal models.

    Science.gov (United States)

    Merkel, Steven F; Cannella, Lee Anne; Razmpour, Roshanak; Lutton, Evan; Raghupathi, Ramesh; Rawls, Scott M; Ramirez, Servio H

    2017-06-01

    Recent studies have helped identify multiple factors affecting increased risk for substance use disorders (SUDs) following traumatic brain injury (TBI). These factors include age at the time of injury, repetitive injury and TBI severity, neurocircuits, neurotransmitter systems, neuroinflammation, and sex differences. This review will address each of these factors by discussing 1) the clinical and preclinical data identifying patient populations at greatest risk for SUDs post-TBI, 2) TBI-related neuropathology in discrete brain regions heavily implicated in SUDs, and 3) the effects of TBI on molecular mechanisms that may drive substance abuse behavior, like dopaminergic and glutamatergic transmission or neuroimmune signaling in mesolimbic regions of the brain. Although these studies have laid the groundwork for identifying factors that affect risk of SUDs post-TBI, additional studies are required. Notably, preclinical models have been shown to recapitulate many of the behavioral, cellular, and neurochemical features of SUDs and TBI. Therefore, these models are well suited for answering important questions that remain in future investigations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Disconnection and hyper-connectivity underlie reorganization after TBI: A rodent functional connectomic analysis.

    Science.gov (United States)

    Harris, N G; Verley, D R; Gutman, B A; Thompson, P M; Yeh, H J; Brown, J A

    2016-03-01

    While past neuroimaging methods have contributed greatly to our understanding of brain function after traumatic brain injury (TBI), resting state functional MRI (rsfMRI) connectivity methods have more recently provided a far more unbiased approach with which to monitor brain circuitry compared to task-based approaches. However, current knowledge on the physiologic underpinnings of the correlated blood oxygen level dependent signal, and how changes in functional connectivity relate to reorganizational processes that occur following injury is limited. The degree and extent of this relationship remain to be determined in order that rsfMRI methods can be fully adapted for determining the optimal timing and type of rehabilitative interventions that can be used post-TBI to achieve the best outcome. Very few rsfMRI studies exist after experimental TBI and therefore we chose to acquire rsfMRI data before and at 7, 14 and 28 days after experimental TBI using a well-known, clinically-relevant, unilateral controlled cortical impact injury (CCI) adult rat model of TBI. This model was chosen since it has widespread axonal injury, a well-defined time-course of reorganization including spine, dendrite, axonal and cortical map changes, as well as spontaneous recovery of sensorimotor function by 28 d post-injury from which to interpret alterations in functional connectivity. Data were co-registered to a parcellated rat template to generate adjacency matrices for network analysis by graph theory. Making no assumptions about direction of change, we used two-tailed statistical analysis over multiple brain regions in a data-driven approach to access global and regional changes in network topology in order to assess brain connectivity in an unbiased way. Our main hypothesis was that deficits in functional connectivity would become apparent in regions known to be structurally altered or deficient in axonal connectivity in this model. The data show the loss of functional connectivity

  11. Effects of electromagnetic fields from mobile phones on depression and anxiety after titanium mesh cranioplasty among patients with traumatic brain injury.

    Science.gov (United States)

    Zhu, Yongjian; Jin, Wen; Liu, Hui; Peng, Deqing; Ding, Zheyuan; Tang, Zhuxiao; Zhu, Liangliang; Yu, Yunxian

    2016-01-01

    To explore the effects of radiofrequency-electromagnetic fields (RF-EMFs) from mobile phones on depression and anxiety after titanium mesh cranioplasty among patients with traumatic brain injury (TBI). Two hundred and twenty patients with TBI and titanium mesh cranioplasty who were hospitalized from 2008-2012 were recruited in this study. From November-December 2012, the relevant information was surveyed including socio-demographic characteristics, lifestyle variables, injury-related information, RF-EMF exposure of mobile phone, Self-rating Depression Scale (SDS) and Self-rating Anxiety Scale (SAS). Associations of RF-EMFs exposure after titanium mesh cranioplasty with SAS and SDS were respectively estimated by multivariable linear regression models. The patients with long durations of mobile phone use (β = -6.6, p = 0.002), long individual call duration (β = -5.3, p = 0.012), more daily calls (β = -3.6, p = 0.027), invariably answer call immediately (β = -3.9, p = 0.022) and high comprehensive exposure level (β = -4.8, p = 0.003) had a lower score of depression compared with those without a mobile phone. Moreover, an ipsilateral and contralateral answering phone enhanced the protective effect on depression. Individuals with a long duration of mobile phone use had a lower score of anxiety (β = -4.2, p = 0.008), while those with a bilateral answering phone had higher anxiety (β = 3.9, p = 0.012) in comparison to those without a mobile phone. RF-EMFs after cranioplasty were significantly associated with the lower risk of depression and anxiety status among patients with TBI. Chronic and frequent RF-EMFs exposure may improve psychiatric disorders among patients with TBI.

  12. Characterizing brain structures and remodeling after TBI based on information content, diffusion entropy.

    Science.gov (United States)

    Fozouni, Niloufar; Chopp, Michael; Nejad-Davarani, Siamak P; Zhang, Zheng Gang; Lehman, Norman L; Gu, Steven; Ueno, Yuji; Lu, Mei; Ding, Guangliang; Li, Lian; Hu, Jiani; Bagher-Ebadian, Hassan; Hearshen, David; Jiang, Quan

    2013-01-01

    To overcome the limitations of conventional diffusion tensor magnetic resonance imaging resulting from the assumption of a Gaussian diffusion model for characterizing voxels containing multiple axonal orientations, Shannon's entropy was employed to evaluate white matter structure in human brain and in brain remodeling after traumatic brain injury (TBI) in a rat. Thirteen healthy subjects were investigated using a Q-ball based DTI data sampling scheme. FA and entropy values were measured in white matter bundles, white matter fiber crossing areas, different gray matter (GM) regions and cerebrospinal fluid (CSF). Axonal densities' from the same regions of interest (ROIs) were evaluated in Bielschowsky and Luxol fast blue stained autopsy (n = 30) brain sections by light microscopy. As a case demonstration, a Wistar rat subjected to TBI and treated with bone marrow stromal cells (MSC) 1 week after TBI was employed to illustrate the superior ability of entropy over FA in detecting reorganized crossing axonal bundles as confirmed by histological analysis with Bielschowsky and Luxol fast blue staining. Unlike FA, entropy was less affected by axonal orientation and more affected by axonal density. A significant agreement (r = 0.91) was detected between entropy values from in vivo human brain and histologically measured axonal density from post mortum from the same brain structures. The MSC treated TBI rat demonstrated that the entropy approach is superior to FA in detecting axonal remodeling after injury. Compared with FA, entropy detected new axonal remodeling regions with crossing axons, confirmed with immunohistological staining. Entropy measurement is more effective in distinguishing axonal remodeling after injury, when compared with FA. Entropy is also more sensitive to axonal density than axonal orientation, and thus may provide a more accurate reflection of axonal changes that occur in neurological injury and disease.

  13. Characterizing Brain Structures and Remodeling after TBI Based on Information Content, Diffusion Entropy

    Science.gov (United States)

    Fozouni, Niloufar; Chopp, Michael; Nejad-Davarani, Siamak P.; Zhang, Zheng Gang; Lehman, Norman L.; Gu, Steven; Ueno, Yuji; Lu, Mei; Ding, Guangliang; Li, Lian; Hu, Jiani; Bagher-Ebadian, Hassan; Hearshen, David; Jiang, Quan

    2013-01-01

    Background To overcome the limitations of conventional diffusion tensor magnetic resonance imaging resulting from the assumption of a Gaussian diffusion model for characterizing voxels containing multiple axonal orientations, Shannon's entropy was employed to evaluate white matter structure in human brain and in brain remodeling after traumatic brain injury (TBI) in a rat. Methods Thirteen healthy subjects were investigated using a Q-ball based DTI data sampling scheme. FA and entropy values were measured in white matter bundles, white matter fiber crossing areas, different gray matter (GM) regions and cerebrospinal fluid (CSF). Axonal densities' from the same regions of interest (ROIs) were evaluated in Bielschowsky and Luxol fast blue stained autopsy (n = 30) brain sections by light microscopy. As a case demonstration, a Wistar rat subjected to TBI and treated with bone marrow stromal cells (MSC) 1 week after TBI was employed to illustrate the superior ability of entropy over FA in detecting reorganized crossing axonal bundles as confirmed by histological analysis with Bielschowsky and Luxol fast blue staining. Results Unlike FA, entropy was less affected by axonal orientation and more affected by axonal density. A significant agreement (r = 0.91) was detected between entropy values from in vivo human brain and histologically measured axonal density from post mortum from the same brain structures. The MSC treated TBI rat demonstrated that the entropy approach is superior to FA in detecting axonal remodeling after injury. Compared with FA, entropy detected new axonal remodeling regions with crossing axons, confirmed with immunohistological staining. Conclusions Entropy measurement is more effective in distinguishing axonal remodeling after injury, when compared with FA. Entropy is also more sensitive to axonal density than axonal orientation, and thus may provide a more accurate reflection of axonal changes that occur in neurological injury and disease

  14. Early-onset Infectious Complications among Penetrating and Severe Closed Traumatic Brain Injury in Active Duty Deployed during OIF and OEF, 2008-2013

    Science.gov (United States)

    2015-02-01

    seizures, hydrocephalus, cerebral spinal fluid (CSF) leaks, infections inside the skull, vascular injuries, and cranial nerve injuries. 9-11 The...the form of early in-theater cranial decompression, followed by aggressive critical care management. 8 Medical advances, in addition to improved body...p = 0.66). However, closed TBI patients were significantly more likely than penetrating TBI patients to have anoxic brain damage (coma, stupor

  15. Traumatic Brain Injury: Looking Back, Looking Forward

    Science.gov (United States)

    Bartlett, Sue; Lorenz, Laura; Rankin, Theresa; Elias, Eileen; Weider, Katie

    2011-01-01

    This article is the eighth of a multi-part series on traumatic brain injury (TBI). Historically, TBI has received limited national attention and support. However, since it is the signature injury of the military conflicts in Iraq and Afghanistan, TBI has gained attention of elected officials, military leaders, policymakers, and the public. The…

  16. Clinical Management of a Patient with Chronic Recurrent Vertigo Following a Mild Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Eric G. Johnson

    2009-01-01

    Full Text Available Vertigo, was provoked and right torsional up-beat nystagmus was observed in a 47-year-old patient when she was placed into the right Hallpike-Dix test position using infrared goggle technology. The clinical diagnosis was benign paroxysmal positional vertigo (BPPV, specifically right posterior canalithiasis, resulting from a mild traumatic brain injury (TBI suffered approximately six-months earlier. Previous medical consultations did not include vestibular system examination, and Meclizine was prescribed to suppress her chief complaint of vertigo. Ultimately, the patient was successfully managed by performing two canalith repositioning maneuvers during a single clinical session. The patient reported 100% resolution of symptoms upon reexamination the following day, and the Hallpike-Dix test was negative. Continued symptom resolution was subjectively reported 10 days postintervention via telephone consultation. This case report supports previous publications concerning the presence of BPPV following TBI and the need for inclusion of vestibular system examination during medical consultation.

  17. A multidisciplinary TBI inpatient rehabilitation programme for active duty service members as part of a randomized clinical trial.

    Science.gov (United States)

    Braverman, S E; Spector, J; Warden, D L; Wilson, B C; Ellis, T E; Bamdad, M J; Salazar, A M

    1999-06-01

    To design and describe an effective rehabilitation programme for use in an ongoing trial on the efficacy of multidisciplinary brain injury rehabilitation for moderately head injury military service members. Treatment arm of a randomized control trial. US military tertiary care hospital inpatient rehabilitation programme. Sixty seven active duty military with moderate to severe TBI who were randomized to the treatment arm of the protocol. Eight week rehabilitation programme combining group and individual therapies with an inpatient milieu-oriented neuropsychological focus. Group therapies included fitness, planning and organization, cognitive skills, work skills, medication, and milieu groups, and community re-entry outings. Individual therapy included neuropsychology, work therapy, occupational therapy, and speech and language pathology. Successful return to work and return to duty. At 1 year follow-up, 64 patients returned to work (96%) and 66% (44/67) returned to duty. The described rehabilitation programme demonstrates one successful effort to rehabilitate active duty military service members with TBI who have the potential to return to duty.

  18. [International multicenter studies of treatment of severe traumatic brain injury].

    Science.gov (United States)

    Talypov, A E; Kordonsky, A Yu; Krylov, V V

    2016-01-01

    Despite the introduction of new diagnostic and therapeutic methods, traumatic brain injury (TBI) remains one of the leading cause of death and disability worldwide. Standards and recommendations on conservative and surgical treatment of TBI patients should be based on concepts and methods with proven efficacy. The authors present a review of studies of the treatment and surgery of severe TBI: DECRA, RESCUEicp, STITCH(TRAUMA), CRASH, CRASH-2, CAPTAIN, NABIS: H ll, Eurotherm 3235. Important recommendations of the international group IMPACT are considered.

  19. Longitudinal Examination of Resilience After Traumatic Brain Injury: A Traumatic Brain Injury Model Systems Study.

    Science.gov (United States)

    Marwitz, Jennifer H; Sima, Adam P; Kreutzer, Jeffrey S; Dreer, Laura E; Bergquist, Thomas F; Zafonte, Ross; Johnson-Greene, Douglas; Felix, Elizabeth R

    2018-02-01

    To evaluate (1) the trajectory of resilience during the first year after a moderate-severe traumatic brain injury (TBI); (2) factors associated with resilience at 3, 6, and 12 months postinjury; and (3) changing relationships over time between resilience and other factors. Longitudinal analysis of an observational cohort. Five inpatient rehabilitation centers. Patients with TBI (N=195) enrolled in the resilience module of the TBI Model Systems study with data collected at 3-, 6-, and 12-month follow-up. Not applicable. Connor-Davidson Resilience Scale. Initially, resilience levels appeared to be stable during the first year postinjury. Individual growth curve models were used to examine resilience over time in relation to demographic, psychosocial, and injury characteristics. After adjusting for these characteristics, resilience actually declined over time. Higher levels of resilience were related to nonminority status, absence of preinjury substance abuse, lower anxiety and disability level, and greater life satisfaction. Resilience is a construct that is relevant to understanding brain injury outcomes and has potential value in planning clinical interventions. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  20. Temporal Profile of Microtubule-Associated Protein 2: A Novel Indicator of Diffuse Brain Injury Severity and Early Mortality after Brain Trauma.

    Science.gov (United States)

    Papa, Linda; Robicsek, Steven A; Brophy, Gretchen M; Wang, Kevin K W; Hannay, H Julia; Heaton, Shelley; Schmalfuss, Ilona; Gabrielli, Andrea; Hayes, Ronald L; Robertson, Claudia S

    2018-01-01

    This study compared cerebrospinal fluid (CSF) levels of microtubule-associated protein 2 (MAP-2) from adult patients with severe traumatic brain injury (TBI) with uninjured controls over 10 days, and examined the relationship between MAP-2 concentrations and acute clinical and radiologic measures of injury severity along with mortality at 2 weeks and over 6 months. This prospective study, conducted at two Level 1 trauma centers, enrolled adults with severe TBI (Glasgow Coma Scale [GCS] score ≤8) requiring a ventriculostomy, as well as controls. Ventricular CSF was sampled from each patient at 6, 12, 24, 48, 72, 96, 120, 144, 168, 192, 216, and 240 h following TBI and analyzed via enzyme-linked immunosorbent assay for MAP-2 (ng/mL). Injury severity was assessed by the GCS score, Marshall Classification on computed tomography (CT), Rotterdam CT score, and mortality. There were 151 patients enrolled-130 TBI and 21 control patients. MAP-2 was detectable within 6 h of injury and was significantly elevated compared with controls (p < 0.001) at each time-point. MAP-2 was highest within 72 h of injury and decreased gradually over 10 days. The area under the receiver operating characteristic curve for deciphering TBI versus controls at the earliest time-point CSF was obtained was 0.96 (95% CI 0.93-0.99) and for the maximal 24-h level was 0.98 (95% CI 0.97-1.00). The area under the curve for initial MAP-2 levels predicting 2-week mortality was 0.80 at 6 h, 0.81 at 12 h, 0.75 at 18 h, 0.75 at 24 h, and 0.80 at 48 h. Those with Diffuse Injury III-IV had much higher initial (p = 0.033) and maximal (p = 0.003) MAP-2 levels than those with Diffuse Injury I-II. There was a graded increase in the overall levels and peaks of MAP-2 as the degree of diffuse injury increased within the first 120 h post-injury. These data suggest that early levels of MAP-2 reflect severity of diffuse brain injury and predict 2-week mortality in TBI patients. These

  1. Volumetrics relate to the development of depression after traumatic brain injury.

    Science.gov (United States)

    Maller, Jerome J; Thomson, Richard H S; Pannek, Kerstin; Bailey, Neil; Lewis, Philip M; Fitzgerald, Paul B

    2014-09-01

    Previous research suggests that many people who sustain a traumatic brain injury (TBI), even of the mild form, will develop major depression (MD). We previously reported white matter integrity differences between those who did and did not develop MD after mild TBI. In this current paper, we aimed to investigate whether there were also volumetric differences between these groups, as suggested by previous volumetric studies in mild TBI populations. A sample of TBI-with-MD subjects (N=14), TBI-without-MD subjects (N=12), MD-without-TBI (N=26) and control subjects (no TBI or MD, N=23), received structural MRI brain scans. T1-weighted data were analysed using the Freesurfer software package which produces automated volumetric results. The findings of this study indicate that (1) TBI patients who develop MD have reduced volume in temporal, parietal and lingual regions compared to TBI patients who do not develop MD, and (2) MD patients with a history of TBI have decreased volume in the temporal region compared to those who had MD but without a history of TBI. We also found that more severe MD in those with TBI-with-MD significantly correlated with reduced volume in anterior cingulate, temporal lobe and insula. These findings suggest that volumetric reduction to specific regions, including parietal, temporal and occipital lobes, after a mild TBI may underlie the susceptibility of these patients developing major depression, in addition to altered white matter integrity. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Sci-Thur PM - Colourful Interactions: Highlights 08: ARC TBI using Single-Step Optimized VMAT Fields

    International Nuclear Information System (INIS)

    Hudson, Alana; Gordon, Deborah; Moore, Roseanne; Balogh, Alex; Pierce, Greg

    2016-01-01

    Purpose: This work outlines a new TBI delivery technique to replace a lateral POP full bolus technique. The new technique is done with VMAT arc delivery, without bolus, treating the patient prone and supine. The benefits of the arc technique include: increased patient experience and safety, better dose conformity, better organ at risk sparing, decreased therapist time and reduction of therapist injuries. Methods: In this work we build on a technique developed by Jahnke et al. We use standard arc fields with gantry speeds corrected for varying distance to the patient followed by a single step VMAT optimization on a patient CT to increase dose inhomogeneity and to reduce dose to the lungs (vs. blocks). To compare the arc TBI technique to our full bolus technique, we produced plans on patient CTs for both techniques and evaluated several dosimetric parameters using an ANOVA test. Results and Conclusions: The arc technique is able reduce both the hot areas to the body (D2% reduced from 122.2% to 111.8% p<0.01) and the lungs (mean lung dose reduced from 107.5% to 99.1%, p<0.01), both statistically significant, while maintaining coverage (D98% = 97.8% vs. 94.6%, p=0.313, not statistically significant). We developed a more patient and therapist-friendly TBI treatment technique that utilizes single-step optimized VMAT plans. It was found that this technique was dosimetrically equivalent to our previous lateral technique in terms of coverage and statistically superior in terms of reduced lung dose.

  3. Sci-Thur PM - Colourful Interactions: Highlights 08: ARC TBI using Single-Step Optimized VMAT Fields

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, Alana; Gordon, Deborah; Moore, Roseanne; Balogh, Alex; Pierce, Greg [Tom Baker Cancer Centre (Canada)

    2016-08-15

    Purpose: This work outlines a new TBI delivery technique to replace a lateral POP full bolus technique. The new technique is done with VMAT arc delivery, without bolus, treating the patient prone and supine. The benefits of the arc technique include: increased patient experience and safety, better dose conformity, better organ at risk sparing, decreased therapist time and reduction of therapist injuries. Methods: In this work we build on a technique developed by Jahnke et al. We use standard arc fields with gantry speeds corrected for varying distance to the patient followed by a single step VMAT optimization on a patient CT to increase dose inhomogeneity and to reduce dose to the lungs (vs. blocks). To compare the arc TBI technique to our full bolus technique, we produced plans on patient CTs for both techniques and evaluated several dosimetric parameters using an ANOVA test. Results and Conclusions: The arc technique is able reduce both the hot areas to the body (D2% reduced from 122.2% to 111.8% p<0.01) and the lungs (mean lung dose reduced from 107.5% to 99.1%, p<0.01), both statistically significant, while maintaining coverage (D98% = 97.8% vs. 94.6%, p=0.313, not statistically significant). We developed a more patient and therapist-friendly TBI treatment technique that utilizes single-step optimized VMAT plans. It was found that this technique was dosimetrically equivalent to our previous lateral technique in terms of coverage and statistically superior in terms of reduced lung dose.

  4. Mild-moderate TBI: clinical recommendations to optimize neurobehavioral functioning, learning, and adaptation.

    Science.gov (United States)

    Chen, Anthony J-W; Loya, Fred

    2014-11-01

    Traumatic brain injury (TBI) can result in functional deficits that persist long after acute injury. The authors present a case study of an individual who experienced some of the most common debilitating problems that characterize the chronic phase of mild-to-moderate TBI-difficulties with neurobehavioral functions that manifest via complaints of distractibility, poor memory, disorganization, poor frustration tolerance, and feeling easily overwhelmed. They present a rational strategy for management that addresses important domain-general targets likely to have far-ranging benefits. This integrated, longitudinal, and multifaceted approach first addresses approachable targets and provides an important foundation to enhance the success of other, more specific interventions requiring specialty intervention. The overall approach places an emphasis on accomplishing two major categories of clinical objectives: optimizing current functioning and enhancing learning and adaptation to support improvement of functioning in the long-term for individuals living with brain injury. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  5. Late-onset social anxiety disorder following traumatic brain injury.

    Science.gov (United States)

    Chaves, Cristiano; Trzesniak, Clarissa; Derenusson, Guilherme Nogueira; Araújo, David; Wichert-Ana, Lauro; Machado-de-Sousa, João Paulo; Carlotti, Carlos Gilberto; Nardi, Antonio E; Zuardi, Antônio W; de S Crippa, José Alexandre; Hallak, Jaime E C

    2012-01-01

    Neuropsychiatric sequelae are the predominant long-term disability after traumatic brain injury (TBI). This study reports a case of late-onset social anxiety disorder (SAD) following TBI. A patient that was spontaneous and extroverted up to 18-years-old started to exhibit significant social anxiety symptoms. These symptoms became progressively worse and he sought treatment at age 21. He had a previous history of traumatic brain injury (TBI) at age 17. Neuroimaging investigations (CT, SPECT and MRI) showed a bony protuberance on the left frontal bone, with mass effect on the left frontal lobe. He had no neurological signs or symptoms. The patient underwent neurosurgery with gross total resection of the lesion and the pathological examination was compatible with intradiploic haematoma. Psychiatric symptoms may be the only findings in the initial manifestation of slowly growing extra-axial space-occupying lesions that compress the frontal lobe from the outside. Focal neurological symptoms may occur only when the lesion becomes large. This case report underscores the need for careful exclusion of general medical conditions and TBI history in cases of late-onset SAD and may also contribute to the elucidation of the neurobiology of this disorder.

  6. Automated Comprehensive Evaluation of mTBI Visual Dysfunction

    Science.gov (United States)

    2017-04-01

    of the NODe . Subtask 1: Statistical analysis of NODe data from controls and mTBI patients: COMPLETED Data Processing : Automated data analyses are...order visual processing dysfunctions on a large population of Warfighters with acute mTBI as compared to healthy age-matched controls . This study also... controls ) military personnel will be recruited from the patient population at Womack Army Medical Center (WAMC). The central hypothesis is that a NODe test

  7. The role of biomarkers and MEG-based imaging markers in the diagnosis of post-traumatic stress disorder and blast-induced mild traumatic brain injury.

    Science.gov (United States)

    Huang, Mingxiong; Risling, Mårten; Baker, Dewleen G

    2016-01-01

    Pervasive use of improvised explosive devices (IEDs), rocket-propelled grenades, and land mines in the recent conflicts in Iraq and Afghanistan has brought traumatic brain injury (TBI) and its impact on health outcomes into public awareness. Blast injuries have been deemed signature wounds of these wars. War-related TBI is not new, having become prevalent during WWI and remaining medically relevant in WWII and beyond. Medicine's past attempts to accurately diagnose and disentangle the pathophysiology of war-related TBI parallels current lines of inquiry and highlights limitations in methodology and attribution of symptom etiology, be it organic, psychological, or behavioral. New approaches and biomarkers are needed. Serological biomarkers and biomarkers of injury obtained with imaging techniques represent cornerstones in the translation between experimental data and clinical observations. Experimental models for blast related TBI and PTSD can generate critical data on injury threshold, for example for white matter injury from acceleration. Carefully verified and validated models can be evaluated with gene expression arrays and proteomics to identify new candidates for serological biomarkers. Such models can also be analyzed with diffusion MRI and microscopy in order to identify criteria for detection of diffuse white matter injuries, such as DAI (diffuse axonal injury). The experimental models can also be analyzed with focus on injury outcome in brain stem regions, such as locus coeruleus or nucleus raphe magnus that can be involved in response to anxiety changes. Mild (and some moderate) TBI can be difficult to diagnose because the injuries are often not detectable on conventional MRI or CT. There is accumulating evidence that injured brain tissues in TBI patients generate abnormal low-frequency magnetic activity (ALFMA, peaked at 1-4Hz) that can be measured and localized by magnetoencephalography (MEG). MEG imaging detects TBI abnormalities at the rates of 87

  8. Characteristics of acute treatment costs of traumatic brain injury in Eastern China--a multi-centre prospective observational study.

    Science.gov (United States)

    Yuan, Qiang; Liu, Hua; Wu, Xing; Sun, Yirui; Yao, Haijun; Zhou, Liangfu; Hu, Jin

    2012-12-01

    This study investigated acute treatment costs and related factors for traumatic brain injuries (TBI) in eastern China based on a prospective multicentre study. Data were prospectively collected from 80 hospitals in eastern China by standardized structured questionnaires during 2004. Included patients were admitted to hospitals via an emergency service with a diagnosis of TBI. The total acute hospitalization treatment costs derived from unsubsidized total hospital billings were used as the main outcome measure. Univariate and multivariable regression models were used to examine factors associated with each outcome. In total, 13,007 TBI cases were identified from 80 hospitals in eastern China. The median cost per hospitalization was $879 US (range, $72-45,894). The median cost per day was $79 (interquartile range, $49-126). The hospitalization costs varied based on the cause of TBI, with a median of $1017 for traffic accidents, $816 for falls, $490 for blows to the head, and $712 for falls. The hospitalization costs also varied by injury type with a mean of $918 for TBI associated with other injuries and $831 for isolated TBI. Using multiple regression analyses, lower admission Glasgow Coma score, longer hospital stay (LOS), male sex, transient patient status, traffic accident, injury occurring on a construction site, treatment at a tertiary hospital, neurosurgical intensive care unit (NICU) or ICU stay, associated polytrauma, and those who needed a neurosurgical operation had significantly higher total acute hospitalization costs than those of other groups. Good recovery and self-paying patients had lower total costs. A double LOS was associated with a 1.61 (95% confidence interval, 1.59-1.62) times higher hospital cost. Our results have potential implications for health-care resource planning during TBI treatment. Measures to prevent traffic accidents and reduce the LOS may help to reduce acute hospitalization costs. Crown Copyright © 2012. Published by Elsevier

  9. Thalamic Functional Connectivity in Mild Traumatic Brain Injury: Longitudinal Associations With Patient-Reported Outcomes and Neuropsychological Tests.

    Science.gov (United States)

    Banks, Sarah D; Coronado, Rogelio A; Clemons, Lori R; Abraham, Christine M; Pruthi, Sumit; Conrad, Benjamin N; Morgan, Victoria L; Guillamondegui, Oscar D; Archer, Kristin R

    2016-08-01

    (1) To examine differences in patient-reported outcomes, neuropsychological tests, and thalamic functional connectivity (FC) between patients with mild traumatic brain injury (mTBI) and individuals without mTBI and (2) to determine longitudinal associations between changes in these measures. Prospective observational case-control study. Academic medical center. A sample (N=24) of 13 patients with mTBI (mean age, 39.3±14.0y; 4 women [31%]) and 11 age- and sex-matched controls without mTBI (mean age, 37.6±13.3y; 4 women [36%]). Not applicable. Resting state FC (3T magnetic resonance imaging scanner) was examined between the thalamus and the default mode network, dorsal attention network, and frontoparietal control network. Patient-reported outcomes included pain (Brief Pain Inventory), depressive symptoms (Patient Health Questionnaire-9), posttraumatic stress disorder ([PTSD] Checklist - Civilian Version), and postconcussive symptoms (Rivermead Post-Concussion Symptoms Questionnaire). Neuropsychological tests included the Delis-Kaplan Executive Function System Tower test, Trails B, and Hotel Task. Assessments occurred at 6 weeks and 4 months after hospitalization in patients with mTBI and at a single visit for controls. Student t tests found increased pain, depressive symptoms, PTSD symptoms, and postconcussive symptoms; decreased performance on Trails B; increased FC between the thalamus and the default mode network; and decreased FC between the thalamus and the dorsal attention network and between the thalamus and the frontoparietal control network in patients with mTBI as compared with controls. The Spearman correlation coefficient indicated that increased FC between the thalamus and the dorsal attention network from baseline to 4 months was associated with decreased pain and postconcussive symptoms (corrected P<.05). Findings suggest that alterations in thalamic FC occur after mTBI, and improvements in pain and postconcussive symptoms are correlated with

  10. Association of traumatic brain injury and Alzheimer disease onset: A systematic review.

    Science.gov (United States)

    Julien, J; Joubert, S; Ferland, M-C; Frenette, L C; Boudreau-Duhaime, M M; Malo-Véronneau, L; de Guise, E

    2017-09-01

    Inconsistencies regarding the risk of developing Alzheimer disease after traumatic brain injury (TBI) remain in the literature. Indeed, why AD develops in certain TBI patients while others are unaffected is still unclear. The aim of this study was to performed a systematic review to investigate whether certain variables related to TBI, such as TBI severity, loss of consciousness (LOC) and post-traumatic amnesia (PTA), are predictors of risk of AD in adults. From 841 citations retrieved from MEDLINE via PubMed, EMBASE, PSYINFO and Cochrane Library databases, 18 studies were eligible for the review. The review revealed that about 55.5% of TBI patients may show deteriorated condition, from acute post-TBI cognitive deficits to then meeting diagnostic criteria for AD, but whether TBI is a risk factor for AD remains elusive. Failure to establish such a link may be related to methodological problems in the studies. To shed light on this dilemma, future studies should use a prospective design, define the types and severities of TBI and use standardized AD and TBI diagnostic criteria. Ultimately, an AD prediction model, based on several variables, would be useful for clinicians detecting TBI patients at risk of AD. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. The Default Mode Network as a Biomarker of Persistent Complaints after Mild Traumatic Brain Injury: A Longitudinal Functional Magnetic Resonance Imaging Study.

    Science.gov (United States)

    van der Horn, Harm J; Scheenen, Myrthe E; de Koning, Myrthe E; Liemburg, Edith J; Spikman, Jacoba M; van der Naalt, Joukje

    2017-12-01

    The objective of this study was to examine longitudinal functional connectivity of resting-state networks in patients with and without complaints after uncomplicated mild traumatic brain injury (mTBI). Second, we aimed to determine the value of network connectivity in predicting persistent complaints, anxiety, depression and long-term outcome. Thirty mTBI patients with three or more post-traumatic complaints at 2 weeks post-injury, 19 without complaints, and 20 matched healthy controls were selected for this study. Resting-state functional MRI (fMRI) was performed in patients at 1 month and 3 months post-injury, and once in healthy controls. Independent component analysis (ICA) was used to investigate the default mode, executive and salience networks. Persistent post-traumatic complaints, anxiety, and depression were measured at 3 months post-injury, and outcome was determined at 1 year post-injury. Within the group with complaints, higher functional connectivity between the anterior and posterior components of the default mode network at 1 month post-injury was associated with a greater number of complaints at 3 months post-injury (ρ = 0.59, p = 0.001). Minor longitudinal changes in functional connectivity were found for patients with and without complaints after mTBI, which were limited to connectivity within the precuneus component of the default mode network. No significant results were found for the executive and salience networks. Current results suggest that the default mode network may serve as a biomarker of persistent complaints in patients with uncomplicated mTBI.

  12. ED utilization trends in sports-related traumatic brain injury.

    Science.gov (United States)

    Hanson, Holly R; Pomerantz, Wendy J; Gittelman, Mike

    2013-10-01

    Emergency department (ED) visits for sports-related traumatic brain injuries (TBIs) have risen. This study evaluated how the number and severity of admissions have changed as ED visits for sports-related TBIs have increased. A retrospective study of children aged 0 to 19 years at a level 1 trauma center was performed. Patients from 2002 to 2011 with a primary or secondary diagnosis of TBI were identified from the hospital's inpatient and outpatient trauma registries. Frequencies were used to characterize the population, χ(2) analysis was performed to determine differences between groups, and regression analysis looked at relationship between year and injury severity score or length of stay. Sport was responsible for injury in 3878 (15.4%) cases during the study period; 3506 (90.4%) were discharged from the hospital, and 372 (9.6%) were admitted. Seventy-three percent were male patients and 78% Caucasian; mean age was 13 ± 3.5 years. ED visits for sports-related TBIs increased 92% over the study period, yet there was no significant change (χ(2) = 9.8, df = 9, P = .37) in the percentage of children admitted. Mean injury severity score for those admitted decreased from 7.8 to 4.8 (β = -0.46; P = .006); length of stay trended downward (β = -0.05; P = .05). The percentage of children being admitted from the ED with sports-related TBI has not changed over the past 10 years. The severity of admitted sports-related TBI is decreasing. Additional research is needed to correlate these trends with other TBI mechanisms.

  13. Development and psychometric properties of the Carer – Head Injury Neurobehavioral Assessment Scale (C-HINAS) and the Carer – Head Injury Participation Scale (C-HIPS): patient and family determined outcome scales

    Science.gov (United States)

    Deb, Shoumitro; Bryant, Eleanor; Morris, Paul G; Prior, Lindsay; Lewis, Glyn; Haque, Sayeed

    2007-01-01

    Objective Develop and assess the psychometric properties of the Carer – Head Injury Participation Scale (C-HIPS) and its biggest factor the Carer – Head Injury Neurobehavioral Assessment Scale (C-HINAS). Furthermore, the aim was to examine the inter-informant reliability by comparing the self reports of individuals with traumatic brain injury (TBI) with the carer reports on the C-HIPS and the C-HINAS. Method Thirty-two TBI individuals and 27 carers took part in in-depth qualitative interviews exploring the consequences of the TBI. Interview transcripts were analysed and key themes and concepts were used to construct a 49-item and 58-item patient (Patient – Head Injury Participation Scale [P-HIPS]) and carer outcome measure (C-HIPS) respectively, of which 49 were parallel items and nine additional items were used to assess carer burden. Postal versions of the P-HIPS, C-HIPS, Mayo Portland Adaptability Inventory-3 (MPAI-3), and the Glasgow Outcome Scale-Extended (GOSE) were completed by a cohort of 113 TBI individuals and 80 carers. Data from a sub-group of 66 patient/carer pairs were used to compare inter-informant reliability between the P-HIPS and the C-HIPS, and the P-HINAS and the C-HINAS respectively. Results All individual 49 items of the C-HIPS and their total score showed good test-retest reliability (0.95) and internal consistency (0.95). Comparisons with the MPAI-3 and GOSE found a good correlation with the MPAI-3 (0.7) and a moderate negative correlation with the GOSE (−0.6). Factor analysis of these items extracted a 4-factor structure which represented the domains ‘Emotion/Behavior’ (C-HINAS), ‘Independence/Community Living’, ‘Cognition’, and ‘Physical’. The C-HINAS showed good internal consistency (0.92), test-retest reliability (0.93), and concurrent validity with one MPAI subscale (0.7). Assessment of inter-informant reliability revealed good correspondence between the reports of the patients and the carers for both the C

  14. Recovery of resting brain connectivity ensuing mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Rose Dawn Bharath

    2015-09-01

    Full Text Available Brains reveal amplified plasticity as they recover from an injury. We aimed to define time dependent plasticity changes in patients recovering from mild traumatic brain injury (mTBI. 25 subjects with mild head injury were longitudinally evaluated within 36 hours, 3 and 6 months using resting state functional connectivity (RSFC. Region of interest (ROI based connectivity differences over time within the patient group and in comparison with a healthy control group were analyzed at p<0.005. We found 33 distinct ROI pairs that revealed significant changes in their connectivity strength with time. Within three months, the majority of the ROI pairs had decreased connectivity in mTBI population, which increased and became comparable to healthy controls at 6 months. Initial imaging within 36 hours of injury revealed hyper connectivity predominantly involving the salience network and default mode network, which reduced at 3 months when lingual, inferior frontal and fronto-parietal networks revealed hyper connectivity. At six months all the evaluated networks revealed hyper connectivity and became comparable to the healthy controls. Our findings in a fairly homogenous group of patients with mTBI evaluated during the 6 month window of recovery defines time varying brain connectivity changes as the brain recovers from an injury. A majority of these changes were seen in the frontal and parietal lobes between 3-6 months after injury. Hyper connectivity of several networks supported normal recovery in the first six months and it remains to be seen in future studies whether this can predict an early and efficient recovery of brain function.

  15. Microdialysis Monitoring in Clinical Traumatic Brain Injury and Its Role in Neuroprotective Drug Development.

    Science.gov (United States)

    Thelin, Eric Peter; Carpenter, Keri L H; Hutchinson, Peter J; Helmy, Adel

    2017-03-01

    Injuries to the central nervous system continue to be vast contributors to morbidity and mortality; specifically, traumatic brain injury (TBI) is the most common cause of death during the first four decades of life. Several modalities are used to monitor patients suffering from TBI in order to prevent detrimental secondary injuries. The microdialysis (MD) technique, introduced during the 1990s, presents the treating physician with a robust monitoring tool for brain chemistry in addition to conventional intracranial pressure monitoring. Nevertheless, some limitations remain, such as limited spatial resolution. Moreover, while there have been several attempts to develop new potential pharmacological therapies in TBI, there are currently no available drugs which have shown clinical efficacy that targets the underlying pathophysiology, despite various trials investigating a plethora of pharmaceuticals. Specifically in the brain, MD is able to demonstrate penetration of the drug through the blood-brain barrier into the brain extracellular space at potential site of action. In addition, the downstream effects of drug action can be monitored directly. In the future, clinical MD, together with other monitoring modalities, can identify specific pathological substrates which require tailored treatment strategies for patients suffering from TBI.

  16. Impact of Single-Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) and Positron Emission Tomography/Computed Tomography (PET/CT) in the Diagnosis of Traumatic Brain Injury (TBI): Case Report.

    Science.gov (United States)

    Molina-Vicenty, Irma L; Santiago-Sánchez, Michelaldemar; Vélez-Miró, Iván; Motta-Valencia, Keryl

    2016-09-01

    Traumatic brain injury (TBI) is defined as damage to the brain resulting from an external force. TBI, a global leading cause of death and disability, is associated with serious social, economic, and health problems. In cases of mild-to-moderate brain damage, conventional anatomical imaging modalities may or may not detect the cascade of metabolic changes that have occurred or are occurring at the intracellular level. Functional nuclear medicine imaging and neurophysiological parameters can be used to characterize brain damage, as the former provides direct visualization of brain function, even in the absence of overt behavioral manifestations or anatomical findings. We report the case of a 30-year-old Hispanic male veteran who, after 2 traumatic brain injury events, developed cognitive and neuropsychological problems with no clear etiology in the presence of negative computed tomography (CT) findings.

  17. Fatigue in the first year after traumatic brain injury: course, relationship with injury severity, and correlates.

    Science.gov (United States)

    Beaulieu-Bonneau, Simon; Ouellet, Marie-Christine

    2017-10-01

    The objectives of this study were to document the evolution of fatigue in the first year after traumatic brain injury (TBI), and to explore correlates of fatigue. Participants were 210 adults who were hospitalised following a TBI. They completed questionnaires 4, 8, and 12 months post-injury, including the Multidimensional Fatigue Inventory (MFI). Participants with severe TBI presented greater mental and physical fatigue, and reduced activity compared to participants with moderate TBI. For all MFI subscales except reduced motivation, the general pattern was a reduction of fatigue levels over time after mild TBI, an increase of fatigue after severe TBI, and stable fatigue after moderate TBI. Fatigue was significantly associated with depression, insomnia, cognitive difficulties, and pain at 4 months; the same variables and work status at 8 months; and depression, insomnia, cognitive difficulties, and work status at 12 months. These findings suggest that injury severity could have an impact on the course of fatigue in the first year post-TBI. Depression, insomnia, and cognitive difficulties remain strong correlates of fatigue, while for pain and work status the association with fatigue evolves over time. This could influence the development of intervention strategies for fatigue, implemented at specific times for each severity subgroup.

  18. Social Environmental Moderators of Long-term Functional Outcomes of Early Childhood Brain Injury.

    Science.gov (United States)

    Wade, Shari L; Zhang, Nanhua; Yeates, Keith Owen; Stancin, Terry; Taylor, H Gerry

    2016-04-01

    Pediatric traumatic brain injury (TBI) contributes to impairments in behavior and academic performance. However, the long-term effects of early childhood TBI on functioning across settings remain poorly understood. To examine the long-term functional outcomes of early childhood TBI relative to early childhood orthopedic injuries (OIs). We also examine the moderating role of the social environment as defined by parent report and observational measures of family functioning, parenting practices, and home environment. A prospective, longitudinal, observational cohort study conducted at each child's home, school, and hospital, including 3 children's hospitals and 1 general hospital in the Midwest. Patients were enrolled in the initial study between January 2003 and October 2006. Follow-ups were completed between January 2010 and April 2015. Fifty-eight children who sustained a TBI (67% of original enrolled cohort) and 72 children who sustained an OI (61% of the original enrolled cohort) were prospectively followed up from shortly after injury (between the ages of 3 and 7 years at enrollment) to an average of 6.7 years after injury, with assessments occurring at multiple points. Long-term functional outcomes in everyday settings, as assessed through the Child and Adolescent Functional Assessment Scale (CAFAS). Of the 130 children included, the median age for those with OIs was 11.72 years and 11.97, 12.21, and 11.72 years for those with complicated mild, moderate, and severe TBIs, respectively. Children with moderate and severe TBI were rated as having more functional impairments in multiple domains than those with OIs (P authoritarian (mean CAFAS of 56.45, 41.80, 54.90, and 17.12 for severe TBI, moderate TBI, complicated mild TBI, and OI, respectively, with significant difference between severe TBI and OI [difference = 39.33; P parenting or with fewer home resources (mean CAFAS of 69.57, 47.45, 49.00, and 23.81 for severe TBI, moderate TBI, complicated mild TBI, and OI

  19. VA/DoD Clinical Practice Guideline for Management of Concussion/Mild Traumatic Brain Injury (mTBI)

    Science.gov (United States)

    2009-04-01

    responsibilities, and teaching compensatory strategies and environmental modifications. Most patients with symptoms following a single concussion...better outcomes in individuals with mTBI-related symptoms? 5. Are there compensatory strategies /techniques that have been shown to result in better...with increased environmental stimulation • Squinting/closing one eye during activities • Difficulty standing in midline or noted head tilt

  20. Recovery of episodic memory subprocesses in mild and complicated mild traumatic brain injury at 1 and 12 months post injury.

    Science.gov (United States)

    Tayim, Fadi M; Flashman, Laura A; Wright, Matthew J; Roth, Robert M; McAllister, Thomas W

    2016-11-01

    Episodic memory complaints are commonly reported after traumatic brain injury (TBI). The contributions of specific memory subprocesses (encoding, consolidation, and retrieval), however, are not well understood in mild TBI (mTBI). In the present study, we evaluated subprocesses of episodic memory in patients with mTBI using the item-specific deficit approach (ISDA), which analyzes responses on list learning tasks at an item level. We also conducted exploratory analyses to evaluate the effects of complicated mTBI (comp-mTBI) on memory. We compared episodic verbal memory performance in mTBI (n = 92) at approximately 1 and 12 months post TBI, as well as in a healthy comparison (HC) group (n = 40) at equivalent time points. Episodic memory was assessed using the California Verbal Learning Test-2nd Edition (CVLT-II), and both standard CVLT-II scores and ISDA indices were evaluated. Compared to the HC group, the mTBI group showed significantly poorer encoding and learning across time, as measured by ISDA and CVLT-II. Further analyses of these mTBI subgroups [(noncomplicated mTBI (NC-mTBI, n = 77) and comp-mTBI (n = 15)], indicated that it was the comp-mTBI group who continued to demonstrate poorer encoding ability than the HC group. When the patient groups were directly compared, the NC-mTBI group improved slightly on the ISDA Encoding Deficit Index. While the comp-mTBI group worsened slightly over time, their poorer encoding ability was not likely clinically meaningful. These findings indicate that, while the NC-mTBI and HC groups' performances were comparable by 12 months, a primary, long-term deficit in encoding of auditory verbal information remained problematic in the comp-mTBI group.

  1. Utility of cerebral circulation evaluation in acute traumatic brain injuries

    International Nuclear Information System (INIS)

    Honda, Mitsuru; Sakata, Yoshihito; Haga, Daisuke; Nomoto, Jun; Noguchi, Yoshitaka; Seiki, Yoshikatsu; Machida, Keiichi; Sase, Shigeru

    2007-01-01

    Severe traumatic brain injury (TBI) is well-known to cause dynamic changes in cerebral blood flow (CBF). Specifically, TBI has been reported to cause decreases in cerebral blood flow (CBF). In this study, we measured CBF, mean transit time (MTT) and cerebral blood volume (CBV) after TBI. Our purpose was investigate the possibility of assessing TBI outcome and severity with these physiological parameters, and the clinical utility of cerebral circulation evaluation for brain-oriented intensive care. In 37 patients with TBI, xenon-enhanced CT (Xe-CT) and perfusion CT were performed on days 1-3 post-event (phase II). We measured CBF using Xe-CT and MTT by Perfusion CT and calculated CBV using an AZ-7000W98 computer system. Relative intra cranicol pressure (ICP) and CBF showed significant negative correlations. Relative ICP and MTT showed significant positive correlations. Outcomes, correlated with valuse of CBF and MIT. Significant differences in CBF and MTT were found between favorable outcome group (good recovery (GR) and moderate disability (MD)) and poor outcome group (severe disability (SD), vegetative state (VS), and dead (D)). We could estimate the outcome of patients after TBI by analyzing values of CBF and MTT with a probability of 74%. We evaluated cerebral circulation status in patients with TBI by CBF and MTT. These tests can help to optimize management and improve outcome in patients with severe TBI. (author)

  2. Inter-Subject Variability of Axonal Injury in Diffuse Traumatic Brain Injury.

    Science.gov (United States)

    Ware, Jeffrey B; Hart, Tessa; Whyte, John; Rabinowitz, Amanda; Detre, John A; Kim, Junghoon

    2017-07-15

    Traumatic brain injury (TBI) is a leading cause of cognitive morbidity worldwide for which reliable biomarkers are needed. Diffusion tensor imaging (DTI) is a promising biomarker of traumatic axonal injury (TAI); however, existing studies have been limited by a primary reliance on group-level analytic methods not well suited to account for inter-subject variability. In this study, 42 adults with TBI of at least moderate severity were examined 3 months following injury and compared with 35 healthy controls. DTI data were used for both traditional group-level comparison and subject-specific analysis using the distribution-corrected Z-score (DisCo-Z) approach. Inter-subject variation in TAI was assessed in a threshold-invariant manner using a threshold-weighted overlap map derived from subject-specific analysis. Receiver operator curve analysis was used to examine the ability of subject-specific DTI analysis to identify TBI subjects with significantly impaired processing speed in comparison with region of interest-based fractional anisotropy (FA) measurements and clinical characteristics. Traditional group-wise analysis demonstrated widespread reductions of white matter FA within the TBI group (voxel-wise p traumatic deficits in processing speed. Significant group-level effects do not necessarily represent consistent effects at the individual level. Better accounting for inter-subject variability in neurobiological manifestations of TBI may substantially improve the ability to detect and classify patterns of injury.

  3. Supported Employment for Veterans With Traumatic Brain Injury: Patient Perspectives.

    Science.gov (United States)

    Carlson, Kathleen F; Pogoda, Terri K; Gilbert, Tess A; Resnick, Sandra G; Twamley, Elizabeth W; O'Neil, Maya E; Sayer, Nina A

    2018-02-01

    To quantify the need for, and interest in, supported employment (SE) among recent military veterans with traumatic brain injury (TBI); and to examine characteristics associated with veterans' interest in SE. Stratified random sample of Iraq and Afghanistan War veterans confirmed to have TBI through the Veterans Health Administration (VHA) screening and evaluation system. Community-based via mailed survey. We recruited 1800 veterans with clinician-confirmed TBI (mild TBI: n=1080; moderate/severe TBI: n=720) through multiple mailings. Among 1451 surveys that were not returned undeliverable, N=616 (42%) responded. Not applicable. Veterans rated their interest in SE after reading a script describing the program. Additional measures assessed mental health and pain-related comorbidities, employment, financial/housing difficulties, demographics, and military service characteristics. Estimates were weighted to represent the population of veterans with VHA clinician-confirmed TBI. Unemployment was reported by 45% (95% confidence interval [CI], 43-47) of veterans with TBI. Although 42% (95% CI, 40-44) reported they would be interested in using SE if it were offered to them, only 12% had heard of SE (95% CI, 11-14) and interest in SE. However, those who were unemployed, looking for work, experiencing financial strain, or at risk for homelessness were more likely to be interested in SE. Our research highlights an important gap between veterans' vocational needs and interests and their use of SE. Systematically identifying and referring those with employment and financial/housing difficulties may help close this gap. Published by Elsevier Inc.

  4. Effects of neurosurgical treatment and severity of head injury on cognitive functioning, general health and incidence of mental disorders in patients with traumatic brain injury.

    Science.gov (United States)

    Rezaei, Sajjad; Asgari, Karim; Yousefzadeh, Shahrokh; Moosavi, Heshmat-Allah; Kazemnejad, Ehsan

    2012-01-01

    Neurosurgical treatment and the severity of head injury (HI) can have remarkable effect on patients' neuropsychiatric outcomes. This research aimed to study the effect of these factors on cognitive functioning, general health and incidence of mental disorders in patients with a traumatic brain injury (TBI). In this descriptive, longitudinal study, 206 TBI patients entered the study by consecutive sampling; they were then compared according to neurosurgery status and severity of their HI. Both groups underwent neurosurgical and psychological examinations. The mini mental state examination (MMSE) and general health questionnaire-28 items (GHQ-28) were administered to the study participants. At follow-up, four months later, the groups underwent a structured clinical interview by a psychiatrist based on the diagnostic and statistical manual of mental disorders, fourth edition (DSM-IV) diagnostic criteria regarding the presence of mental disorders. Analysis of covariance (ANCOVA) and multivariate analysis of covariance (MANCOVA) were performed and adjusted for the effect of confounding variables (age, gender, Glasgow outcome scale (GOS) , and level of education). The severity of HI had the most significant effect for the following variables; cognitive functioning and physical symptoms (P < 0.05). The effect of the neurosurgical treatment factor was not significant; however, the interaction effect of the two variables on social dysfunction, and total score of the GHQ-28 questionnaire appeared to be significant (P < 0.05). Fisher's exact test indicated that after a four month follow-up period, no significant differences were seen between the two groups (with or without neurosurgery) in the incidence of mental disorders, while χ(2) Test showed that having a more severe HI is significantly correlated with the incidence of mental disorders (P < 0.01). The implications of this study should be discussed with an emphasis on negative, effective factors on the cognitive

  5. Interpersonal Stressors and Resources as Predictors of Parental Adaptation Following Pediatric Traumatic Injury

    Science.gov (United States)

    Wade, Shari L.; Stancin, Terry; Taylor, H. Gerry; Drotar, Dennis; Yeates, Keith Owen; Minish, Nori M.

    2004-01-01

    The authors examined the relationship of preinjury interpersonal resources and stressors to parental adaptation following pediatric traumatic brain injury (TBI) and orthopedic injury. Parents of children with severe TBI (n = 53), moderate TBI (n = 56), and orthopedic injuries (n = 80) were assessed soon after injury, 6 and 12 months after the…

  6. Traumatic Brain Injury Rehabilitation in Hong Kong: A Review of Practice and Research.

    Science.gov (United States)

    Yu, Junhong; Tam, Helena M K; Lee, Tatia M C

    2015-01-01

    The rising public health concern regarding traumatic brain injury (TBI) implies a growing need for rehabilitation services for patients surviving TBI. To this end, this paper reviews the practices and research on TBI rehabilitation in Hong Kong so as to inform future developments in this area. This paper begins by introducing the general situation of TBI patients in Hong Kong and the need for rehabilitation. Next, the trauma system in Hong Kong is introduced. Following that is a detailed description of the rehabilitation services for TBI patients in Hong Kong, as exemplified by a rehabilitation hospital in Hong Kong. This paper will also review intervention studies on rehabilitating brain-injured populations in Hong Kong with respect to various rehabilitation goals. Lastly, the implications of culture-related issues will be discussed in relation to TBI. The intervention studies conducted in Hong Kong are generally successful in achieving various rehabilitative outcomes. Additionally, certain cultural-related issues, such as the stigma associated with TBI, may impede the rehabilitative process and lead to various psychosocial problems.

  7. Traumatic Brain Injury Rehabilitation in Hong Kong: A Review of Practice and Research

    Directory of Open Access Journals (Sweden)

    Junhong Yu

    2015-01-01

    Full Text Available Background. The rising public health concern regarding traumatic brain injury (TBI implies a growing need for rehabilitation services for patients surviving TBI. Methods. To this end, this paper reviews the practices and research on TBI rehabilitation in Hong Kong so as to inform future developments in this area. This paper begins by introducing the general situation of TBI patients in Hong Kong and the need for rehabilitation. Next, the trauma system in Hong Kong is introduced. Following that is a detailed description of the rehabilitation services for TBI patients in Hong Kong, as exemplified by a rehabilitation hospital in Hong Kong. This paper will also review intervention studies on rehabilitating brain-injured populations in Hong Kong with respect to various rehabilitation goals. Lastly, the implications of culture-related issues will be discussed in relation to TBI. Results/Conclusions. The intervention studies conducted in Hong Kong are generally successful in achieving various rehabilitative outcomes. Additionally, certain cultural-related issues, such as the stigma associated with TBI, may impede the rehabilitative process and lead to various psychosocial problems.

  8. Pediatric acquired brain injury.

    Science.gov (United States)

    Bodack, Marie I

    2010-10-01

    Although pediatric patients are sometimes included in studies about visual problems in patients with acquired brain injury (ABI), few studies deal solely with children. Unlike studies dealing with adult patients, in which mechanisms of brain injury are divided into cerebral vascular accident (CVA) and traumatic brain injury (TBI), studies on pediatric patients deal almost exclusively with traumatic brain injury, specifically caused by accidents. Here we report on the vision problems of 4 pediatric patients, ages 3 to 18 years, who were examined in the ophthalmology/optometry clinic at a children's hospital. All patients had an internally caused brain injury and after the initial insult manifested problems in at least one of the following areas: acuity, binocularity, motility (tracking or saccades), accommodation, visual fields, and visual perceptual skills. Pediatric patients can suffer from a variety of oculo-visual problems after the onset of head injury. These patients may or may not be symptomatic and can benefit from optometric intervention. Copyright © 2010 American Optometric Association. Published by Elsevier Inc. All rights reserved.

  9. Clinical comparison of 99mTc exametazime and 123I Ioflupane SPECT in patients with chronic mild traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Andrew B Newberg

    Full Text Available BACKGROUND: This study evaluated the clinical interpretations of single photon emission computed tomography (SPECT using a cerebral blood flow and a dopamine transporter tracer in patients with chronic mild traumatic brain injury (TBI. The goal was to determine how these two different scan might be used and compared to each other in this patient population. METHODS AND FINDINGS: Twenty-five patients with persistent symptoms after a mild TBI underwent SPECT with both (99mTc exametazime to measure cerebral blood flow (CBF and (123I ioflupane to measure dopamine transporter (DAT binding. The scans were interpreted by two expert readers blinded to any case information and were assessed for abnormal findings in comparison to 10 controls for each type of scan. Qualitative CBF scores for each cortical and subcortical region along with DAT binding scores for the striatum were compared to each other across subjects and to controls. In addition, symptoms were compared to brain scan findings. TBI patients had an average of 6 brain regions with abnormal perfusion compared to controls who had an average of 2 abnormal regions (p<0.001. Patient with headaches had lower CBF in the right frontal lobe, and higher CBF in the left parietal lobe compared to patients without headaches. Lower CBF in the right temporal lobe correlated with poorer reported physical health. Higher DAT binding was associated with more depressive symptoms and overall poorer reported mental health. There was no clear association between CBF and DAT binding in these patients. CONCLUSIONS: Overall, both scans detected abnormalities in brain function, but appear to reflect different types of physiological processes associated with chronic mild TBI symptoms. Both types of scans might have distinct uses in the evaluation of chronic TBI patients depending on the clinical scenario.

  10. Cerebral microbleed detection in traumatic brain injury patients using 3D convolutional neural networks

    Science.gov (United States)

    Standvoss, K.; Crijns, T.; Goerke, L.; Janssen, D.; Kern, S.; van Niedek, T.; van Vugt, J.; Alfonso Burgos, N.; Gerritse, E. J.; Mol, J.; van de Vooren, D.; Ghafoorian, M.; van den Heuvel, T. L. A.; Manniesing, R.

    2018-02-01

    The number and location of cerebral microbleeds (CMBs) in patients with traumatic brain injury (TBI) is important to determine the severity of trauma and may hold prognostic value for patient outcome. However, manual assessment is subjective and time-consuming due to the resemblance of CMBs to blood vessels, the possible presence of imaging artifacts, and the typical heterogeneity of trauma imaging data. In this work, we present a computer aided detection system based on 3D convolutional neural networks for detecting CMBs in 3D susceptibility weighted images. Network architectures with varying depth were evaluated. Data augmentation techniques were employed to improve the networks' generalization ability and selective sampling was implemented to handle class imbalance. The predictions of the models were clustered using a connected component analysis. The system was trained on ten annotated scans and evaluated on an independent test set of eight scans. Despite this limited data set, the system reached a sensitivity of 0.87 at 16.75 false positives per scan (2.5 false positives per CMB), outperforming related work on CMB detection in TBI patients.

  11. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system.

    Science.gov (United States)

    Plog, Benjamin A; Dashnaw, Matthew L; Hitomi, Emi; Peng, Weiguo; Liao, Yonghong; Lou, Nanhong; Deane, Rashid; Nedergaard, Maiken

    2015-01-14

    The nonspecific and variable presentation of traumatic brain injury (TBI) has motivated an intense search for blood-based biomarkers that can objectively predict the severity of injury. However, it is not known how cytosolic proteins released from traumatized brain tissue reach the peripheral blood. Here we show in a murine TBI model that CSF movement through the recently characterized glymphatic pathway transports biomarkers to blood via the cervical lymphatics. Clinically relevant manipulation of glymphatic activity, including sleep deprivation and cisternotomy, suppressed or eliminated TBI-induced increases in serum S100β, GFAP, and neuron specific enolase. We conclude that routine TBI patient management may limit the clinical utility of blood-based biomarkers because their brain-to-blood transport depends on glymphatic activity. Copyright © 2015 the authors 0270-6474/15/350518-09$15.00/0.

  12. Legacy Clinical Data from the Mission Connect Mild TBI Translational Research Consortium

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-2-0026 TITLE: Legacy Clinical Data from the Mission Connect Mild TBI Translational Research Consortium PRINCIPAL...2017 4. TITLE AND SUBTITLE Legacy Clinical Data from the Mission Connect Mild TBI Translational Research 5a. CONTRACT NUMBER Consortium 5b. GRANT...mTBI) Translational Research Consortium was to improve the diagnosis and treatment of mTBI. We enrolled a total of 88 mTBI patients and 73 orthopedic

  13. Primary blast-induced traumatic brain injury: lessons from lithotripsy

    Science.gov (United States)

    Nakagawa, A.; Ohtani, K.; Armonda, R.; Tomita, H.; Sakuma, A.; Mugikura, S.; Takayama, K.; Kushimoto, S.; Tominaga, T.

    2017-11-01

    Traumatic injury caused by explosive or blast events is traditionally divided into four mechanisms: primary, secondary, tertiary, and quaternary blast injury. The mechanisms of blast-induced traumatic brain injury (bTBI) are biomechanically distinct and can be modeled in both in vivo and in vitro systems. The primary bTBI injury mechanism is associated with the response of brain tissue to the initial blast wave. Among the four mechanisms of bTBI, there is a remarkable lack of information regarding the mechanism of primary bTBI. On the other hand, 30 years of research on the medical application of shock waves (SWs) has given us insight into the mechanisms of tissue and cellular damage in bTBI, including both air-mediated and underwater SW sources. From a basic physics perspective, the typical blast wave consists of a lead SW followed by shock-accelerated flow. The resultant tissue injury includes several features observed in primary bTBI, such as hemorrhage, edema, pseudo-aneurysm formation, vasoconstriction, and induction of apoptosis. These are well-described pathological findings within the SW literature. Acoustic impedance mismatch, penetration of tissue by shock/bubble interaction, geometry of the skull, shear stress, tensile stress, and subsequent cavitation formation are all important factors in determining the extent of SW-induced tissue and cellular injury. In addition, neuropsychiatric aspects of blast events need to be taken into account, as evidenced by reports of comorbidity and of some similar symptoms between physical injury resulting in bTBI and the psychiatric sequelae of post-traumatic stress. Research into blast injury biophysics is important to elucidate specific pathophysiologic mechanisms of blast injury, which enable accurate differential diagnosis, as well as development of effective treatments. Herein we describe the requirements for an adequate experimental setup when investigating blast-induced tissue and cellular injury; review SW physics

  14. Underbody Blast Models of TBI Caused by Hyper-Acceleration and Secondary Head Impact

    Science.gov (United States)

    2017-10-01

    brain injury (TBI), with most of these head injuries caused by explosive munitions such as bombs , land mines, improvised explosive devices and missiles...with most of these injuries caused by explosive munitions such as bombs , land mines, improvised explosive devices (IEDs), and missiles.1,2 Little is...Neurosurg. 2008;108: 124–131. 21. Richards EM , Fiskum G, Rosenthal RE, Hopkins I, McKenna MC. Hyperoxic reperfusion after global ischemia decreases

  15. Experimental Traumatic Brain Injury Induces Bone Loss in Rats.

    Science.gov (United States)

    Brady, Rhys D; Shultz, Sandy R; Sun, Mujun; Romano, Tania; van der Poel, Chris; Wright, David K; Wark, John D; O'Brien, Terence J; Grills, Brian L; McDonald, Stuart J

    2016-12-01

    Few studies have investigated the influence of traumatic brain injury (TBI) on bone homeostasis; however, pathophysiological mechanisms involved in TBI have potential to be detrimental to bone. The current study assessed the effect of experimental TBI in rats on the quantity and quality of two different weight-bearing bones, the femur and humerus. Rats were randomly assigned into either sham or lateral fluid percussion injury (FPI) groups. Open-field testing to assess locomotion was conducted at 1, 4, and 12 weeks post-injury, with the rats killed at 1 and 12 weeks post-injury. Bones were analyzed using peripheral quantitative computed tomography (pQCT), histomorphometric analysis, and three-point bending. pQCT analysis revealed that at 1 and 12 weeks post-injury, the distal metaphyseal region of femora from FPI rats had reduced cortical content (10% decrease at 1 week, 8% decrease at 12 weeks; p in trabecular bone volume ratio at 1 week post-injury and a 27% reduction at 12 weeks post-injury in FPI rats compared to sham (p in bone quantity and mechanical properties of the femoral midshaft between sham and TBI animals. There were no differences in locomotor outcomes, which suggested that post-TBI changes in bone were not attributed to immobility. Taken together, these findings indicate that this rat model of TBI was detrimental to bone and suggests a link between TBI and altered bone remodeling.

  16. Multi-modal MRI of mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Ponnada A. Narayana

    2015-01-01

    Full Text Available Multi-modal magnetic resonance imaging (MRI that included high resolution structural imaging, diffusion tensor imaging (DTI, magnetization transfer ratio (MTR imaging, and magnetic resonance spectroscopic imaging (MRSI were performed in mild traumatic brain injury (mTBI patients with negative computed tomographic scans and in an orthopedic-injured (OI group without concomitant injury to the brain. The OI group served as a comparison group for mTBI. MRI scans were performed both in the acute phase of injury (~24 h and at follow-up (~90 days. DTI data was analyzed using tract based spatial statistics (TBSS. Global and regional atrophies were calculated using tensor-based morphometry (TBM. MTR values were calculated using the standard method. MRSI was analyzed using LC Model. At the initial scan, the mean diffusivity (MD was significantly higher in the mTBI cohort relative to the comparison group in several white matter (WM regions that included internal capsule, external capsule, superior corona radiata, anterior corona radiata, posterior corona radiata, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, forceps major and forceps minor of the corpus callosum, superior longitudinal fasciculus, and corticospinal tract in the right hemisphere. TBSS analysis failed to detect significant differences in any DTI measures between the initial and follow-up scans either in the mTBI or OI group. No significant differences were found in MRSI, MTR or morphometry between the mTBI and OI cohorts either at the initial or follow-up scans with or without family wise error (FWE correction. Our study suggests that a number of WM tracts are affected in mTBI in the acute phase of injury and that these changes disappear by 90 days. This study also suggests that none of the MRI-modalities used in this study, with the exception of DTI, is sensitive in detecting changes in the acute phase of mTBI.

  17. Blast-induced traumatic brain injury: a new trend of blast injury research.

    Science.gov (United States)

    Zhao, Yan; Wang, Zheng-Guo

    2015-01-01

    Blast injury has become the major life- and function-threatening injuries in recent warfares. There is increased research interest in the mental disorders caused by blast-induced traumatic brain injury (bTBI), which has been proved as one of the "signature wounds" in modern battlefield. We reviewed the recent progresses in bTBI-related researches and concluded that the new era of blast injury research has shifted from the traditional physical impairments to cognitive dysfunctional/mental disorders that are proved to be more related to the outcome of combat casualty care.

  18. Robust training attenuates TBI-induced deficits in reference and working memory on the radial 8-arm maze

    Directory of Open Access Journals (Sweden)

    Veronica eSebastian

    2013-05-01

    Full Text Available Globally, it is estimated that nearly 10 million people sustain severe brain injuries leading to hospitalization and/or death every year. Amongst survivors, traumatic brain injury (TBI results in a wide variety of physical, emotional and cognitive deficits. The most common cognitive deficit associated with TBI is memory loss, involving impairments in spatial reference and working memory. However, the majority of research thus far has characterized the deficits associated with TBI on either reference or working memory systems separately, without investigating how they interact within in a single task. Thus we examined the effects of TBI on short-term working and long-term reference memory using the radial 8-arm maze (RAM with a sequence of 4 baited and 4 unbaited arms. Subjects were given 10 daily trials for 6 days followed by a memory retrieval test two weeks after training. Multiple training trials not only provide robust training, but also test the subjects’ ability to frequently update short-term memory while learning the reference rules of the task. Our results show that TBI significantly impaired short-term working memory function on previously acquired spatial information but has little effect on long-term reference memory. Additionally, TBI significantly increased working memory errors during acquisition and reference memory errors during retention testing two weeks later. With a longer recovery period after TBI, the robust RAM training mitigated the reference memory deficit in retention but not the short-term working memory deficit during acquisition. These results identify the resiliency and vulnerabilities of short-term working and long-term reference memory to TBI in the context of robust training. The data highlight the role of cognitive training and other behavioral remediation strategies implicated in attenuating deficits associated with TBI.

  19. Robust training attenuates TBI-induced deficits in reference and working memory on the radial 8-arm maze.

    Science.gov (United States)

    Sebastian, Veronica; Diallo, Aissatou; Ling, Douglas S F; Serrano, Peter A

    2013-01-01

    Globally, it is estimated that nearly 10 million people sustain severe brain injuries leading to hospitalization and/or death every year. Amongst survivors, traumatic brain injury (TBI) results in a wide variety of physical, emotional and cognitive deficits. The most common cognitive deficit associated with TBI is memory loss, involving impairments in spatial reference and working memory. However, the majority of research thus far has characterized the deficits associated with TBI on either reference or working memory systems separately, without investigating how they interact within a single task. Thus, we examined the effects of TBI on short-term working and long-term reference memory using the radial 8-arm maze (RAM) with a sequence of four baited and four unbaited arms. Subjects were given 10 daily trials for 6 days followed by a memory retrieval test 2 weeks after training. Multiple training trials not only provide robust training, but also test the subjects' ability to frequently update short-term memory while learning the reference rules of the task. Our results show that TBI significantly impaired short-term working memory function on previously acquired spatial information but has little effect on long-term reference memory. Additionally, TBI significantly increased working memory errors during acquisition and reference memory errors during retention testing 2 weeks later. With a longer recovery period after TBI, the robust RAM training mitigated the reference memory deficit in retention but not the short-term working memory deficit during acquisition. These results identify the resiliency and vulnerabilities of short-term working and long-term reference memory to TBI in the context of robust training. The data highlight the role of cognitive training and other behavioral remediation strategies implicated in attenuating deficits associated with TBI.

  20. Clinical application of magnetic resonance in acute traumatic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Dionei F.; Gaia, Felipe F.P. [Hospital de Base de Sao Jose do Rio Preto, SP (Brazil). Servico de Neurocirurgia]. E-mail: centro@cerebroecoluna.com.br; Spotti, Antonio R.; Tognola, Waldir A. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Ciencias Neurologicas; Andrade, Almir F. [Universidade de Sao Paulo (USP), SP (Brazil). Hospital das Clinicas. Dept. de Neurocirurgia da Emergencia

    2008-07-01

    Purpose: To evaluate the clinical applications of magnetic resonance imaging (MRI) in patients with acute traumatic brain injury (TBI): to identify the type, quantity, severity; and improvement clinical-radiological correlation. Method: Assessment of 55 patients who were imaged using CT and MRI, 34 (61.8%) males and 21 (38.2%) females, with acute (0 to 5 days) and closed TBI. Results: Statistical significant differences (McNemar test): occurred fractures were detected by CT in 29.1% and by MRI in 3.6% of the patients; subdural hematoma by CT in 10.9% and MRI in 36.4 %; diffuse axonal injury (DAI) by CT in 1.8% and MRI in 50.9%; cortical contusions by CT in 9.1% and MRI in 41.8%; subarachnoid hemorrhage by CT in 18.2% and MRI in 41.8%. Conclusion: MRI was superior to the CT in the identification of DAI, subarachnoid hemorrhage, cortical contusions, and acute subdural hematoma; however it was inferior in diagnosing fractures. The detection of DAI was associated with the severity of acute TBI. (author)

  1. Clinical application of magnetic resonance in acute traumatic brain injury

    International Nuclear Information System (INIS)

    Morais, Dionei F.; Gaia, Felipe F.P.; Spotti, Antonio R.; Tognola, Waldir A.; Andrade, Almir F.

    2008-01-01

    Purpose: To evaluate the clinical applications of magnetic resonance imaging (MRI) in patients with acute traumatic brain injury (TBI): to identify the type, quantity, severity; and improvement clinical-radiological correlation. Method: Assessment of 55 patients who were imaged using CT and MRI, 34 (61.8%) males and 21 (38.2%) females, with acute (0 to 5 days) and closed TBI. Results: Statistical significant differences (McNemar test): occurred fractures were detected by CT in 29.1% and by MRI in 3.6% of the patients; subdural hematoma by CT in 10.9% and MRI in 36.4 %; diffuse axonal injury (DAI) by CT in 1.8% and MRI in 50.9%; cortical contusions by CT in 9.1% and MRI in 41.8%; subarachnoid hemorrhage by CT in 18.2% and MRI in 41.8%. Conclusion: MRI was superior to the CT in the identification of DAI, subarachnoid hemorrhage, cortical contusions, and acute subdural hematoma; however it was inferior in diagnosing fractures. The detection of DAI was associated with the severity of acute TBI. (author)

  2. Hypopituitarism in Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Klose, Marianne; Feldt-Rasmussen, Ulla

    2015-01-01

    While hypopituitarism after traumatic brain injury (TBI) was previously considered rare, it is now thought to be a major cause of treatable morbidity among TBI survivors. Consequently, recommendations for assessment of pituitary function and replacement in TBI were recently introduced. Given...

  3. Ethnic disparities in traumatic brain injury care referral in a Hispanic-majority population.

    Science.gov (United States)

    Budnick, Hailey C; Tyroch, Alan H; Milan, Stacey A

    2017-07-01

    Functional outcomes after traumatic brain injury (TBI) can be significantly improved by discharge to posthospitalization care facilities. Many variables influence the discharge disposition of the TBI patient, including insurance status, patient condition, and patient prognosis. The literature has demonstrated an ethnic disparity in posthospitalization care referral, with Hispanics being discharged to rehabilitation and nursing facilities less often than non-Hispanics. However, this relationship has not been studied in a Hispanic-majority population, and thus, this study seeks to determine if differences in neurorehabilitation referrals exist among ethnic groups in a predominately Hispanic region. This study is a retrospective cohort that includes 1128 TBI patients who presented to University Medical Center El Paso, Texas, between the years 2005 and 2015. The patients' age, sex, race, residence, admission Glasgow Coma Scale (GCS), GCS motor, Injury Severity Score (ISS), hospital and intensive care unit length of stay (LOS), mechanism of injury, and discharge disposition were analyzed in univariate and multivariate models. Our study population had an insurance rate of 55.5%. Insurance status and markers of injury severity (hospital LOS, intensive care unit LOS, ISS, GCS, and GCS motor) were predictive of discharge disposition to rehabilitation facilities. The study population was 70% Hispanic, yet Hispanics were discharged to rehabilitation facilities (relative risk: 0.56, P: 0.001) and to long-term acute care/nursing facilities (relative risk: 0.35, P < 0.0001) less than non-Hispanics even after LOS, ISS, ethnicity, insurance status, and residence were adjusted for in multivariate analysis. This study suggests that patients of different ethnicities but comparable traumatic severity and insurance status receive different discharge dispositions post-TBI even in regions in which Hispanics are the demographic majority. Copyright © 2017 Elsevier Inc. All rights

  4. [Evaluation of diffuse cerebral atrophy in patients with a history of traumatic brain injury and its relation to cognitive deterioration].

    Science.gov (United States)

    Narberhaus, A; Segarra-Castells, M D; Verger-Maestre, K; Serra-Grabulosa, J M; Salgado-Pineda, P; Bartomeus-Jené, F; Mercader-Sobrequés, J M

    Diffuse damage secondary to traumatic brain injury (TBI) can be studied through volumetric analysis of several structures that are sensible to this kind of injury, such as corpus callosum, ventricular system, hippocampus, basal ganglia and the volume of cerebrospinal fluid spaces. Our aim is to describe how closed head injury (CHI) occurred in early years produce diffuse damage, and how this damage affects general cognitive functioning at long term. Initially the group of subjects was composed of 27 head injured children and adolescents following paediatric moderate to severe TBI. From this initial group we selected 15 patients without focal lesion, or in case of having suffered focal lesion, this was smaller than 2,600 mm3. These subjects were assessed by means of volumetric analysis of cerebrospinal fluid spaces, corpus callosum, hippocampus and caudate nucleus, comparing the results with a matched control group. We calculated the degree of general cognitive ability of these subjects through tests of intellectual, memory, frontal lobe and motor speed functioning. This study demonstrates that early CHI produce a volume decrease in all measured structures. Corpus callosum atrophy is the factor that better explains general cognitive impairment. Diffuse damage secondary to moderate to severe peadiatric TBI has long term effects on several cerebral structures and on cognitive performance. Corpus callosum atrophy is the best predictor for general cognitive impairment, compared with other affected structures.

  5. Traumatic brain injury in England and Wales: prospective audit of epidemiology, complications and standardised mortality

    Science.gov (United States)

    Lawrence, T; Bouamra, O; Woodford, M; Lecky, F; Hutchinson, P J

    2016-01-01

    Objectives To provide a comprehensive assessment of the management of traumatic brain injury (TBI) relating to epidemiology, complications and standardised mortality across specialist units. Design The Trauma Audit and Research Network collects data prospectively on patients suffering trauma across England and Wales. We analysed all data collected on patients with TBI between April 2014 and June 2015. Setting Data were collected on patients presenting to emergency departments across 187 hospitals including 26 with specialist neurosurgical services, incorporating factors previously identified in the Ps14 multivariate logistic regression (Ps14n) model multivariate TBI outcome prediction model. The frequency and timing of secondary transfer to neurosurgical centres was assessed. Results We identified 15 820 patients with TBI presenting to neurosurgical centres directly (6258), transferred from a district hospital to a neurosurgical centre (3682) and remaining in a district general hospital (5880). The commonest mechanisms of injury were falls in the elderly and road traffic collisions in the young, which were more likely to present in coma. In severe TBI (Glasgow Coma Score (GCS) ≤8), the median time from admission to imaging with CT scan is 0.5 hours. Median time to craniotomy from admission is 2.6 hours and median time to intracranial pressure monitoring is 3 hours. The most frequently documented complication of severe TBI is bronchopneumonia in 5% of patients. Risk-adjusted W scores derived from the Ps14n model indicate that no neurosurgical unit fell outside the 3 SD limits on a funnel plot. Conclusions We provide the first comprehensive report of the management of TBI in England and Wales, including data from all neurosurgical units. These data provide transparency and suggests equity of access to high-quality TBI management provided in England and Wales. PMID:27884843

  6. Suicidality, bullying and other conduct and mental health correlates of traumatic brain injury in adolescents.

    Science.gov (United States)

    Ilie, Gabriela; Mann, Robert E; Boak, Angela; Adlaf, Edward M; Hamilton, Hayley; Asbridge, Mark; Rehm, Jürgen; Cusimano, Michael D

    2014-01-01

    Our knowledge on the adverse correlates of traumatic brain injuries (TBI), including non-hospitalized cases, among adolescents is limited to case studies. We report lifetime TBI and adverse mental health and conduct behaviours associated with TBI among adolescents from a population-based sample in Ontario. Data were derived from 4,685 surveys administered to adolescents in grades 7 through 12 as part of the 2011 population-based cross-sectional Ontario Student Drug Use and Health Survey (OSDUHS). Lifetime TBI was defined as head injury that resulted in being unconscious for at least 5 minutes or being retained in the hospital for at least one night, and was reported by 19.5% (95%CI:17.3,21.9) of students. When holding constant sex, grade, and complex sample design, students with TBI had significantly greater odds of reporting elevated psychological distress (AOR = 1.52), attempting suicide (AOR = 3.39), seeking counselling through a crisis help-line (AOR = 2.10), and being prescribed medication for anxiety, depression, or both (AOR = 2.45). Moreover, students with TBI had higher odds of being victimized through bullying at school (AOR = 1.70), being cyber-bullied (AOR = 2.05), and being threatened with a weapon at school (AOR = 2.90), compared with students who did not report TBI. Students with TBI also had higher odds of victimizing others and engaging in numerous violent as well as nonviolent conduct behaviours. Significant associations between TBI and adverse internalizing and externalizing behaviours were found in this large population-based study of adolescents. Those who reported lifetime TBI were at a high risk for experiencing mental and physical health harms in the past year than peers who never had a head injury. Primary physicians should be vigilant and screen for potential mental heath and behavioural harms in adolescent patients with TBI. Efforts to prevent TBI during adolescence and intervene at an early stage may reduce

  7. Suicidality, bullying and other conduct and mental health correlates of traumatic brain injury in adolescents.

    Directory of Open Access Journals (Sweden)

    Gabriela Ilie

    Full Text Available Our knowledge on the adverse correlates of traumatic brain injuries (TBI, including non-hospitalized cases, among adolescents is limited to case studies. We report lifetime TBI and adverse mental health and conduct behaviours associated with TBI among adolescents from a population-based sample in Ontario.Data were derived from 4,685 surveys administered to adolescents in grades 7 through 12 as part of the 2011 population-based cross-sectional Ontario Student Drug Use and Health Survey (OSDUHS. Lifetime TBI was defined as head injury that resulted in being unconscious for at least 5 minutes or being retained in the hospital for at least one night, and was reported by 19.5% (95%CI:17.3,21.9 of students. When holding constant sex, grade, and complex sample design, students with TBI had significantly greater odds of reporting elevated psychological distress (AOR = 1.52, attempting suicide (AOR = 3.39, seeking counselling through a crisis help-line (AOR = 2.10, and being prescribed medication for anxiety, depression, or both (AOR = 2.45. Moreover, students with TBI had higher odds of being victimized through bullying at school (AOR = 1.70, being cyber-bullied (AOR = 2.05, and being threatened with a weapon at school (AOR = 2.90, compared with students who did not report TBI. Students with TBI also had higher odds of victimizing others and engaging in numerous violent as well as nonviolent conduct behaviours.Significant associations between TBI and adverse internalizing and externalizing behaviours were found in this large population-based study of adolescents. Those who reported lifetime TBI were at a high risk for experiencing mental and physical health harms in the past year than peers who never had a head injury. Primary physicians should be vigilant and screen for potential mental heath and behavioural harms in adolescent patients with TBI. Efforts to prevent TBI during adolescence and intervene at an early stage may

  8. Family adaptation 18 months after traumatic brain injury in early childhood.

    Science.gov (United States)

    Stancin, Terry; Wade, Shari L; Walz, Nicolay C; Yeates, Keith Owen; Taylor, H Gerry

    2010-05-01

    The purpose of this study was to examine family adaptation to a traumatic brain injury (TBI) in young children during the first 18-month postinjury, when compared with children who had an orthopedic injury. A concurrent cohort/prospective research design was used with repeated assessments of children aged 3 to 6 years with TBI or orthopedic injury requiring hospitalization and their families. Shortly after injury and at 6-, 12-, and 18-month postinjury, parents of 99 children with TBI (20 severe, 64 moderate, 15 mild) and 117 with orthopedic injury completed standardized assessments of family functioning, parental distress and coping, injury-related burden, and noninjury-related parent stressors and resources. Mixed models analyses examined group differences in parental burden and distress adjusted for race and social demographic factors. Both moderate and severe TBI were associated with higher levels of injury-related stress than orthopedic injury, with stress levels diminishing over time in all groups. Severe TBI was also associated with greater psychological distress on the Brief Symptom Inventory but not with more depressive symptoms. Family functioning and social resources moderated the relationship of TBI severity to injury-related burden and caregiver distress, respectively. Lower child adaptive skills were associated with poorer family outcome but group differences remained even when controlling for this effect. Severe TBI in young children has adverse consequences for parents and families during the first 18-month postinjury. The consequences lessen over time for many families and vary as a function of social resources.

  9. Social Environmental Moderators of Long-term Functional Outcomes of Early Childhood Brain Injury

    Science.gov (United States)

    Wade, Shari L.; Zhang, Nanhua; Yeates, Keith Owen; Stancin, Terry; Taylor, H. Gerry

    2017-01-01

    IMPORTANCE Pediatric traumatic brain injury (TBI) contributes to impairments in behavior and academic performance. However, the long-term effects of early childhood TBI on functioning across settings remain poorly understood. OBJECTIVE To examine the long-term functional outcomes of early childhood TBI relative to early childhood orthopedic injuries (OIs). We also examine the moderating role of the social environment as defined by parent report and observational measures of family functioning, parenting practices, and home environment. DESIGN, SETTING, AND PARTICIPANTS A prospective, longitudinal, observational cohort study conducted at each child’s home, school, and hospital, including 3 children’s hospitals and 1 general hospital in the Midwest. Patients were enrolled in the initial study between January 2003 and October 2006. Follow-ups were completed between January 2010 and April 2015. Fifty-eight children who sustained a TBI (67%of original enrolled cohort) and 72 children who sustained an OI (61% of the original enrolled cohort) were prospectively followed up from shortly after injury (between the ages of 3 and 7 years at enrollment) to an average of 6.7 years after injury, with assessments occurring at multiple points. MAIN OUTCOMES AND MEASURES Long-term functional outcomes in everyday settings, as assessed through the Child and Adolescent Functional Assessment Scale (CAFAS). RESULTS Of the 130 children included, the median age for those with OIs was 11.72 years and 11.97, 12.21, and 11.72 years for those with complicated mild, moderate, and severe TBIs, respectively. Children with moderate and severe TBI were rated as having more functional impairments in multiple domains than those with OIs (P authoritarian (mean CAFAS of 56.45, 41.80, 54.90, and 17.12 for severe TBI, moderate TBI, complicated mild TBI, and OI, respectively, with significant difference between severe TBI and OI [difference = 39.33; P < .001], moderate TBI and OI [difference = 24

  10. Adolescent TBI-induced hypopituitarism causes sexual dysfunction in adult male rats.

    Science.gov (United States)

    Greco, Tiffany; Hovda, David A; Prins, Mayumi L

    2015-02-01

    Adolescents are at greatest risk for traumatic brain injury (TBI) and repeat TBI (RTBI). TBI-induced hypopituitarism has been documented in both adults and juveniles and despite the necessity of pituitary function for normal physical and brain development, it is still unrecognized and untreated in adolescents following TBI. TBI induced hormonal dysfunction during a critical developmental window has the potential to cause long-term cognitive and behavioral deficits and the topic currently remains unaddressed. The purpose of this study was to determine if four mild TBIs delivered to adolescent male rats disrupts testosterone production and adult behavioral outcomes. Plasma testosterone was quantified from 72 hrs preinjury to 3 months postinjury and pubertal onset, reproductive organ growth, erectile function and reproductive behaviors were assessed at 1 and 2 months postinjury. RTBI resulted in both acute and chronic decreases in testosterone production and delayed onset of puberty. Significant deficits were observed in reproductive organ growth, erectile function and reproductive behaviors in adult rats at both 1 and 2 months postinjury. These data suggest adolescent RTBI-induced hypopituitarism underlies abnormal behavioral changes observed during adulthood. The impact of undiagnosed hypopituitarism following RTBI in adolescence has significance not only for growth and puberty, but also for brain development and neurobehavioral function as adults. © 2014 Wiley Periodicals, Inc.

  11. WAIS Digit Span-Based Indicators of Malingered Neurocognitive Dysfunction: Classification Accuracy in Traumatic Brain Injury

    Science.gov (United States)

    Heinly, Matthew T.; Greve, Kevin W.; Bianchini, Kevin J.; Love, Jeffrey M.; Brennan, Adrianne

    2005-01-01

    The present study determined specificity and sensitivity to malingered neurocognitive dysfunction (MND) in traumatic brain injury (TBI) for several Wechsler Adult Intelligence Scale (WAIS) Digit Span scores. TBI patients (n = 344) were categorized into one of five groups: no incentive, incentive only, suspect, probable MND, and definite MND.…

  12. Oxidative burst of circulating neutrophils following traumatic brain injury in human.

    Directory of Open Access Journals (Sweden)

    Yiliu Liao

    Full Text Available Besides secondary injury at the lesional site, Traumatic brain injury (TBI can cause a systemic inflammatory response, which may cause damage to initially unaffected organs and potentially further exacerbate the original injury. Here we investigated plasma levels of important inflammatory mediators, oxidative activity of circulating leukocytes, particularly focusing on neutrophils, from TBI subjects and control subjects with general trauma from 6 hours to 2 weeks following injury, comparing with values from uninjured subjects. We observed increased plasma level of inflammatory cytokines/molecules TNF-α, IL-6 and CRP, dramatically increased circulating leukocyte counts and elevated expression of TNF-α and iNOS in circulating leukocytes from TBI patients, which suggests a systemic inflammatory response following TBI. Our data further showed increased free radical production in leukocyte homogenates and elevated expression of key oxidative enzymes iNOS, COX-2 and NADPH oxidase (gp91(phox in circulating leukocytes, indicating an intense induction of oxidative burst following TBI, which is significantly greater than that in control subjects with general trauma. Furthermore, flow cytometry assay proved neutrophils as the largest population in circulation after TBI and showed significantly up-regulated oxidative activity and suppressed phagocytosis rate for circulating neutrophils following brain trauma. It suggests that the highly activated neutrophils might play an important role in the secondary damage, even outside the injured brain. Taken together, the potent systemic inflammatory response induced by TBI, especially the intensively increase oxidative activity of circulating leukocytes, mainly neutrophils, may lead to a systemic damage, dysfunction/damage of bystander tissues/organs and even further exacerbate secondary local damage. Controlling these pathophysiological processes may be a promising therapeutic strategy and will protect unaffected

  13. Influence of refractive error on pupillary dynamics in the normal and mild traumatic brain injury (mTBI populations

    Directory of Open Access Journals (Sweden)

    James Q. Truong

    2018-04-01

    Full Text Available Purpose: There have been several studies investigating static, baseline pupil diameter in visually-normal individuals across refractive error. However, none have assessed the dynamic pupillary light reflex (PLR. In the present study, both static and dynamic pupillary parameters of the PLR were assessed in both the visually-normal (VN and the mild traumatic brain injury (mTBI populations and compared as a function of refractive error. Methods: The VN population comprised 40 adults (22–56 years of age, while the mTBI population comprised 32 adults (21–60 years of age over a range of refractive errors (−9.00 D to +1.25 D. Seven pupillary parameters (baseline static diameter, latency, amplitude, and peak and average constriction and dilation velocities were assessed and compared under four white-light stimulus conditions (dim pulse, dim step, bright pulse, and bright step. The Neuroptics, infrared, DP-2000 binocular pupillometer (30 Hz sampling rate; 0.05 mm resolution was used in the monocular (right eye stimulation mode. Results: For the majority of pupillary parameters and stimulus conditions, a Gaussian distribution best fit the data, with the apex centered in the low myopic range (−2.3 to −4.9D. Responsivity was reduced to either side of the apex. Conclusions: Over a range of dynamic and static pupillary parameters, the PLR was influenced by refractive error in both populations. In cases of high refractive error, the PLR parameters may need to be compensated for this factor for proper categorization and diagnosis. Resumen: Objetivo: Existen diversos estudios que han investigado el diámetro pupilar estático y basal en individuos con visión normal en todo el espectro de errores refractivos. Sin embargo, ninguno de ellos ha evaluado el reflejo dinámico pupilar a la luz (RPL. En el presente estudio, se evaluaron tanto los parámetros pupilares estáticos como los dinámicos en poblaciones con visión normal (VN y en las afectadas

  14. Comparison of acute and chronic traumatic brain injury using semi-automatic multimodal segmentation of MR volumes.

    Science.gov (United States)

    Irimia, Andrei; Chambers, Micah C; Alger, Jeffry R; Filippou, Maria; Prastawa, Marcel W; Wang, Bo; Hovda, David A; Gerig, Guido; Toga, Arthur W; Kikinis, Ron; Vespa, Paul M; Van Horn, John D

    2011-11-01

    Although neuroimaging is essential for prompt and proper management of traumatic brain injury (TBI), there is a regrettable and acute lack of robust methods for the visualization and assessment of TBI pathophysiology, especially for of the purpose of improving clinical outcome metrics. Until now, the application of automatic segmentation algorithms to TBI in a clinical setting has remained an elusive goal because existing methods have, for the most part, been insufficiently robust to faithfully capture TBI-related changes in brain anatomy. This article introduces and illustrates the combined use of multimodal TBI segmentation and time point comparison using 3D Slicer, a widely-used software environment whose TBI data processing solutions are openly available. For three representative TBI cases, semi-automatic tissue classification and 3D model generation are performed to perform intra-patient time point comparison of TBI using multimodal volumetrics and clinical atrophy measures. Identification and quantitative assessment of extra- and intra-cortical bleeding, lesions, edema, and diffuse axonal injury are demonstrated. The proposed tools allow cross-correlation of multimodal metrics from structural imaging (e.g., structural volume, atrophy measurements) with clinical outcome variables and other potential factors predictive of recovery. In addition, the workflows described are suitable for TBI clinical practice and patient monitoring, particularly for assessing damage extent and for the measurement of neuroanatomical change over time. With knowledge of general location, extent, and degree of change, such metrics can be associated with clinical measures and subsequently used to suggest viable treatment options.

  15. Quantitative analysis of computed tomography images and early detection of cerebral edema for pediatric traumatic brain injury patients: retrospective study

    OpenAIRE

    Kim, Hakseung; Kim, Gwang-dong; Yoon, Byung C; Kim, Keewon; Kim, Byung-Jo; Choi, Young Hun; Czosnyka, Marek; Oh, Byung-Mo; Kim, Dong-Joo

    2014-01-01

    Background The purpose of this study was to identify whether the distribution of Hounsfield Unit (HU) values across the intracranial area in computed tomography (CT) images can be used as an effective diagnostic tool for determining the severity of cerebral edema in pediatric traumatic brain injury (TBI) patients. Methods CT images, medical records and radiology reports on 70 pediatric patients were collected. Based on radiology reports and the Marshall classification, the patients were group...

  16. Multi-scale mechanics of traumatic brain injury

    NARCIS (Netherlands)

    Cloots, R.J.H.

    2011-01-01

    Traumatic brain injury (TBI) can be caused by road traffic, sports-related or other types of accidents and often leads to permanent health issues or even death. For a good prevention or diagnosis of TBI, brain injury criteria are used to assess the probability of brain injury as a result of a

  17. Optimized hyperventilation preserves 2,3-diphosphoglycerate in severe traumatic brain injury

    OpenAIRE

    Torres,Rayne Borges; Terzi,Renato Giuseppe Giovanni; Falcão,Antônio Luís Eiras; Höehr,Nelci Fenalti; Dantas Filho,Venâncio Pereira

    2007-01-01

    INTRODUCTION: The concentration of 2,3-diphosphoglycerate (2,3-DPG/Hct) increases as a physiological occurrence to pH increase and hyperventilation. This response was tested in patients with severe traumatic brain injury (TBI). METHOD: The concentration of 2,3-DPG/Hct was measured daily for six days in eleven patients with severe TBI in need of optimized hyperventilation because of intracranial hypertension. RESULTS:There was correlation between pH and the concentration of DPG/Hct. The concen...

  18. Pre-Clinical Traumatic Brain Injury Common Data Elements: Toward a Common Language Across Laboratories.

    Science.gov (United States)

    Smith, Douglas H; Hicks, Ramona R; Johnson, Victoria E; Bergstrom, Debra A; Cummings, Diana M; Noble, Linda J; Hovda, David; Whalen, Michael; Ahlers, Stephen T; LaPlaca, Michelle; Tortella, Frank C; Duhaime, Ann-Christine; Dixon, C Edward

    2015-11-15

    Traumatic brain injury (TBI) is a major public health issue exacting a substantial personal and economic burden globally. With the advent of "big data" approaches to understanding complex systems, there is the potential to greatly accelerate knowledge about mechanisms of injury and how to detect and modify them to improve patient outcomes. High quality, well-defined data are critical to the success of bioinformatics platforms, and a data dictionary of "common data elements" (CDEs), as well as "unique data elements" has been created for clinical TBI research. There is no data dictionary, however, for preclinical TBI research despite similar opportunities to accelerate knowledge. To address this gap, a committee of experts was tasked with creating a defined set of data elements to further collaboration across laboratories and enable the merging of data for meta-analysis. The CDEs were subdivided into a Core module for data elements relevant to most, if not all, studies, and Injury-Model-Specific modules for non-generalizable data elements. The purpose of this article is to provide both an overview of TBI models and the CDEs pertinent to these models to facilitate a common language for preclinical TBI research.

  19. Current status of fluid biomarkers in mild traumatic brain injury

    Science.gov (United States)

    Kulbe, Jacqueline R.; Geddes, James W.

    2015-01-01

    Mild traumatic brain injury (mTBI) affects millions of people annually and is difficult to diagnose. Mild injury is insensitive to conventional imaging techniques and diagnoses are often made using subjective criteria such as self-reported symptoms. Many people who sustain a mTBI develop persistent post-concussive symptoms. Athletes and military personnel are at great risk for repeat injury which can result in second impact syndrome or chronic traumatic encephalopathy. An objective and quantifiable measure, such as a serum biomarker, is needed to aid in mTBI diagnosis, prognosis, return to play/duty assessments, and would further elucidate mTBI pathophysiology. The majority of TBI biomarker research focuses on severe TBI with few studies specific to mild injury. Most studies use a hypothesis-driven approach, screening biofluids for markers known to be associated with TBI pathophysiology. This approach has yielded limited success in identifying markers that can be used clinically, additional candidate biomarkers are needed. Innovative and unbiased methods such as proteomics, microRNA arrays, urinary screens, autoantibody identification and phage display would complement more traditional approaches to aid in the discovery of novel mTBI biomarkers. PMID:25981889

  20. Computerized measures of finger tapping: reliability, malingering and traumatic brain injury.

    Science.gov (United States)

    Hubel, Kerry A; Yund, E William; Herron, Timothy J; Woods, David L

    2013-01-01

    We analyzed computerized finger tapping metrics in four experiments. Experiment 1 showed tapping-rate differences associated with hand dominance, digits, sex, and fatigue that replicated those seen in a previous, large-scale community sample. Experiment 2 revealed test-retest correlations (r = .91) that exceeded those reported in previous tapping studies. Experiment 3 investigated subjects simulating symptoms of traumatic brain injury (TBI); 62% of malingering subjects produced abnormally slow tapping rates. A tapping-rate malingering index, based on rate-independent tapping patterns, provided confirmatory evidence of malingering in 48% of the subjects with abnormal tapping rates. Experiment 4 compared tapping in 24 patients with mild TBI (mTBI) and a matched control group; mTBI patients showed slowed tapping without evidence of malingering. Computerized finger tapping measures are reliable measures of motor speed, useful in detecting subjects performing with suboptimal effort, and are sensitive to motor abnormalities following mTBI.

  1. Profiling biomarkers of traumatic axonal injury: From mouse to man.

    Science.gov (United States)

    Manivannan, Susruta; Makwana, Milan; Ahmed, Aminul Islam; Zaben, Malik

    2018-05-18

    Traumatic brain injury (TBI) poses a major public health problem on a global scale. Its burden results from high mortality and significant morbidity in survivors. This stems, in part, from an ongoing inadequacy in diagnostic and prognostic indicators despite significant technological advances. Traumatic axonal injury (TAI) is a key driver of the ongoing pathological process following TBI, causing chronic neurological deficits and disability. The science underpinning biomarkers of TAI has been a subject of many reviews in recent literature. However, in this review we provide a comprehensive account of biomarkers from animal models to clinical studies, bridging the gap between experimental science and clinical medicine. We have discussed pathogenesis, temporal kinetics, relationships to neuro-imaging, and, most importantly, clinical applicability in order to provide a holistic perspective of how this could improve TBI diagnosis and predict clinical outcome in a real-life setting. We conclude that early and reliable identification of axonal injury post-TBI with the help of body fluid biomarkers could enhance current care of TBI patients by (i) increasing speed and accuracy of diagnosis, (ii) providing invaluable prognostic information, (iii) allow efficient allocation of rehabilitation services, and (iv) provide potential therapeutic targets. The optimal model for assessing TAI is likely to involve multiple components, including several blood biomarkers and neuro-imaging modalities, at different time points. Copyright © 2018. Published by Elsevier B.V.

  2. Prehospital plasma resuscitation associated with improved neurologic outcomes after traumatic brain injury.

    Science.gov (United States)

    Hernandez, Matthew C; Thiels, Cornelius A; Aho, Johnathon M; Habermann, Elizabeth B; Zielinski, Martin D; Stubbs, James A; Jenkins, Donald H; Zietlow, Scott P

    2017-09-01

    Trauma-related hypotension and coagulopathy worsen secondary brain injury in patients with traumatic brain injuries (TBIs). Early damage control resuscitation with blood products may mitigate hypotension and coagulopathy. Preliminary data suggest resuscitation with plasma in large animals improves neurologic function after TBI; however, data in humans are lacking. We retrospectively identified all patients with multiple injuries age >15 years with head injuries undergoing prehospital resuscitation with blood products at a single Level I trauma center from January 2002 to December 2013. Inclusion criteria were prehospital resuscitation with either packed red blood cells (pRBCs) or thawed plasma as sole colloid resuscitation. Patients who died in hospital and those using anticoagulants were excluded. Primary outcomes were Glasgow Outcomes Score Extended (GOSE) and Disability Rating Score (DRS) at dismissal and during follow-up. Of 76 patients meeting inclusion criteria, 53% (n = 40) received prehospital pRBCs and 47% (n = 36) received thawed plasma. Age, gender, injury severity or TBI severity, arrival laboratory values, and number of prehospital units were similar (all p > 0.05). Patients who received thawed plasma had an improved neurologic outcome compared to those receiving pRBCs (median GOSE 7 [7-8] vs. 5.5 [3-7], p plasma had improved functionality compared to pRBCs (median DRS 2 [1-3.5] vs. 9 [3-13], p plasma compared to pRBCs by both median GOSE (8 [7-8] vs. 6 [6-7], p plasma is associated with improved neurologic and functional outcomes at discharge and during follow-up compared to pRBCs alone. These preliminary data support the further investigation and use of plasma in the resuscitation of critically injured TBI patients. Therapeutic, level V.

  3. Neuroendocrine Disturbances One to Five or More Years after Traumatic Brain Injury and Aneurysmal Subarachnoid Hemorrhage: Data from the German Database on Hypopituitarism.

    Science.gov (United States)

    Krewer, Carmen; Schneider, Manfred; Schneider, Harald Jörn; Kreitschmann-Andermahr, Ilonka; Buchfelder, Michael; Faust, Michael; Berg, Christian; Wallaschofski, Henri; Renner, Caroline; Uhl, Eberhard; Koenig, Eberhard; Jordan, Martina; Stalla, Günter Karl; Kopczak, Anna

    2016-08-15

    Neuroendocrine disturbances are common after traumatic brain injury (TBI) and aneurysmal subarachnoid hemorrhage (SAH), but only a few data exist on long-term anterior pituitary deficiencies after brain injury. We present data from the Structured Data Assessment of Hypopituitarism after TBI and SAH, a multi-center study including 1242 patients. We studied a subgroup of 351 patients, who had sustained a TBI (245) or SAH (106) at least 1 year before endocrine assessment (range 1-55 years) in a separate analysis. The highest prevalence of neuroendocrine disorders was observed 1-2 years post-injury, and it decreased over time only to show another maximum in the long-term phase in patients with brain injury occurring ≥5 years prior to assessment. Gonadotropic and somatotropic insufficiencies were most common. In the subgroup from 1 to 2 years after brain injury (n = 126), gonadotropic insufficiency was the most common hormonal disturbance (19%, 12/63 men) followed by somatotropic insufficiency (11.5%, 7/61), corticotropic insufficiency (9.2%, 11/119), and thyrotropic insufficiency (3.3%, 4/122). In patients observed ≥ 5 years after brain injury, the prevalence of somatotropic insufficiency increased over time to 24.1%, whereas corticotropic and thyrotrophic insufficiency became less frequent (2.5% and 0%, respectively). The prevalence differed regarding the diagnostic criteria (laboratory values vs. physician`s diagnosis vs. stimulation tests). Our data showed that neuroendocrine disturbances are frequent even years after TBI or SAH, in a cohort of patients who are still on medical treatment.

  4. Molecular mechanisms of cognitive dysfunction following traumatic brain injury

    Science.gov (United States)

    Walker, Kendall R.; Tesco, Giuseppina

    2013-01-01

    Traumatic brain injury (TBI) results in significant disability due to cognitive deficits particularly in attention, learning and memory, and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and most recently chronic traumatic encephalopathy (CTE) is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review, we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury, and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration. PMID:23847533

  5. Molecular mechanisms of cognitive dysfunction following traumatic brain injury.

    Science.gov (United States)

    Walker, Kendall R; Tesco, Giuseppina

    2013-01-01

    Traumatic brain injury (TBI) results in significant disability due to cognitive deficits particularly in attention, learning and memory, and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and most recently chronic traumatic encephalopathy (CTE) is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review, we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury, and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration.

  6. Psychosocial outcome following traumatic brain injury in adults: a long-term population-based follow-up

    DEFF Research Database (Denmark)

    Engberg, Aase Worså; Teasdale, T W

    2004-01-01

    PRIMARY OBJECTIVE: On a national basis to conduct a 5, 10 and 15 year follow-up study of representative samples of survivors after traumatic brain injury (TBI) and to identify factors of importance for long-term survival and life satisfaction after TBI occurring in 1982, 1987 or 1992. RESEARCH......, against up to 14% of cranial fracture patients. Significantly more cerebral lesion patients than cranial fracture patients found emotional control more difficult, as well as increased difficulties with memory and concentration, maintenance of leisure time interests and general life satisfaction....... In the long run, an important factor influencing survival among cerebral lesion patients seemed to be whether relations with family and friends could be maintained at the pre-injury level....

  7. THE INTERNET ADDICTION OF PATIENTS WITH PSYCHOPATHOLOGICAL CONSEQUENCES OFCRANIOCEREBRAL INJURY

    Directory of Open Access Journals (Sweden)

    D. N. Voloshyna

    2013-12-01

    Full Text Available Based on the Kharkov Regional Clinical Psychiatric Hospital № 3 examined 100 male patients aged 38,35±0,96 years, with psychopathological consequences of craniocerebral injury (TBI. The control group consisted of 73 healthy male volunteers aged 36,97±1,73 years. The frequency of different degrees of Internet use was assessed by using AUDIT-like test INTERNET-UDIT (Internet Use Disorders Identification Test and calculation of addictive potential in groups. In patients with psychopathological consequences of craniocerebral trauma, despite the high prevalence of lack of experience “usage” of the Internet, high degrees of addiction and dependence were reported. The addictive potential of the Internet addiction in the study group exceeded 32% of that of the control group.

  8. EFFECTS OF L-LYSINE AESCINAT ON INTRACRANIAL PRESSURE IN CRITICALLY ILL PATIENTS WITH SEVERE TRAUMATIC BRAIN INJURY

    Directory of Open Access Journals (Sweden)

    S. S. Petrikov

    2016-01-01

    Full Text Available Abstract. Increased intracranial pressure results in cerebral blood flow decrease and cerebral edema formation. Correction of intracranial hypertension is one of the most important goals of intensive care in patients with severe traumatic brain injury. Objectives To determine the effects of L-lysine aescinat on ICP in patients with severe TBI.Material and methods. Twenty patients with TBI and Glasgow coma scale below 9 enrolled in the study. All patients were operated: 6 patients underwent craniotomy and intracranial hematoma removing; 11 — decompressive craniotomy and intracranial hematoma removing. In 3 patients only ICP-sensor was implanted. ICP-monitoring was used in all patients. Ten patients were randomized to L-lysine aescinat treatment (daily dose of 20 ml for 7 days after surgery (study group, 10 — to standard therapy (control group. We perfomed a comparative analysis of the mean ICP and the incidence of ICH within 7 days after surgery in the study and control groups.Results. The length of ICP monitoring was 6.4±3.7 days: in the control group — 7.6±4.9 days, in the study group — 5.2±1.4 days. Mean intracranial pressure was less in the study group as compared to patients in the control group. The number of intracranial hypertension episodes was higher in the control group compared with patients who received L-lysine aescinat.Conclusion. L-lysine aescinat treatment in patients with severe traumatic brain injury is accompanied by reduction of mean intracranial pressure and the number of intracranial hypertension episodes.

  9. The Impact of Traumatic Brain Injury on the Aging Brain.

    Science.gov (United States)

    Young, Jacob S; Hobbs, Jonathan G; Bailes, Julian E

    2016-09-01

    Traumatic brain injury (TBI) has come to the forefront of both the scientific and popular culture. Specifically, sports-related concussions or mild TBI (mTBI) has become the center of scientific scrutiny with a large amount of research focusing on the long-term sequela of this type of injury. As the populace continues to age, the impact of TBI on the aging brain will become clearer. Currently, reports have come to light that link TBI to neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, as well as certain psychiatric diseases. Whether these associations are causations, however, is yet to be determined. Other long-term sequelae, such as chronic traumatic encephalopathy (CTE), appear to be associated with repetitive injuries. Going forward, as we gain better understanding of the pathophysiological process involved in TBI and subclinical head traumas, and individual traits that influence susceptibility to neurocognitive diseases, a clearer, more comprehensive understanding of the connection between brain injury and resultant disease processes in the aging brain will become evident.

  10. Outcomes of decompressive craniectomy in patients after traumatic brain injury.

    Science.gov (United States)

    Nambiar, Mithun; MacIsaac, Christopher; Grabinski, Rafal; Liew, Danny; Kavar, Bhadrakant

    2015-06-01

    Traumatic brain injury (TBI) can result in cerebral oedema and vascular changes resulting in an increase in intracranial pressure (ICP), which can lead to further secondary damage. Decompressive craniectomy (DC) is a surgical option in the management of ICP. We aimed to investigate outcomes of DC after TBI. We performed a retrospective audit of 57 adult patients (aged > 15 years) who underwent DC after TBI, at the Royal Melbourne Hospital from 1 January 2005 to 30 June 2011. Our functional outcome measure was the Extended Glasgow Outcome Scale (GOSE). Patients had a median age of 30 years (range, 17- 73 years). The hospital mortality rate was 47% (27 patients). A higher postoperative median ICP was the most significant predictor of hospital mortality (OR, 1.1; 95% CI, 1-1.3). There was a mean decrease of 7.7mmHg in ICP between the mean preoperative and postoperative ICP values (95% CI, - 10.5 to - 5.0mmHg). There was a mean decrease of 3.5mmHg in the mean cerebral perfusion pressure (CPP) from preoperative to postoperative CPP values (95% CI, - 6.2 to - 0.8mmHg). At the 6-month fol