WorldWideScience

Sample records for injury induces impaired

  1. Renal Impairment with Sublethal Tubular Cell Injury in a Chronic Liver Disease Mouse Model.

    Directory of Open Access Journals (Sweden)

    Tokiko Ishida

    Full Text Available The pathogenesis of renal impairment in chronic liver diseases (CLDs has been primarily studied in the advanced stages of hepatic injury. Meanwhile, the pathology of renal impairment in the early phase of CLDs is poorly understood, and animal models to elucidate its mechanisms are needed. Thus, we investigated whether an existing mouse model of CLD induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC shows renal impairment in the early phase. Renal injury markers, renal histology (including immunohistochemistry for tubular injury markers and transmission electron microscopy, autophagy, and oxidative stress were studied longitudinally in DDC- and standard diet-fed BALB/c mice. Slight but significant renal dysfunction was evident in DDC-fed mice from the early phase. Meanwhile, histological examinations of the kidneys with routine light microscopy did not show definitive morphological findings, and electron microscopic analyses were required to detect limited injuries such as loss of brush border microvilli and mitochondrial deformities. Limited injuries have been recently designated as sublethal tubular cell injury. As humans with renal impairment, either with or without CLD, often show almost normal tubules, sublethal injury has been of particular interest. In this study, the injuries were associated with mitochondrial aberrations and oxidative stress, a possible mechanism for sublethal injury. Intriguingly, two defense mechanisms were associated with this injury that prevent it from progressing to apparent cell death: autophagy and single-cell extrusion with regeneration. Furthermore, the renal impairment of this model progressed to chronic kidney disease with interstitial fibrosis after long-term DDC feeding. These findings indicated that DDC induces renal impairment with sublethal tubular cell injury from the early phase, leading to chronic kidney disease. Importantly, this CLD mouse model could be useful for studying the

  2. Systemic Metabolic Impairment and Lung Injury Following Acrolein Inhalation

    Science.gov (United States)

    A single ozone exposure causes pulmonary injury and systemic metabolic alterations through neuronal and hypothalamus pituitary adrenal axis activation. Metabolically impaired Goto Kakizaki (GK) rats with non-obese type-2 diabetes are more sensitive to ozone induced changes than h...

  3. Involvement of microglia activation in the lead induced long-term potentiation impairment.

    Directory of Open Access Journals (Sweden)

    Ming-Chao Liu

    Full Text Available Exposure of Lead (Pb, a known neurotoxicant, can impair spatial learning and memory probably via impairing the hippocampal long-term potentiation (LTP as well as hippocampal neuronal injury. Activation of hippocampal microglia also impairs spatial learning and memory. Thus, we raised the hypothesis that activation of microglia is involved in the Pb exposure induced hippocampal LTP impairment and neuronal injury. To test this hypothesis and clarify its underlying mechanisms, we investigated the Pb-exposure on the microglia activation, cytokine release, hippocampal LTP level as well as neuronal injury in in vivo or in vitro model. The changes of these parameters were also observed after pretreatment with minocycline, a microglia activation inhibitor. Long-term low dose Pb exposure (100 ppm for 8 weeks caused significant reduction of LTP in acute slice preparations, meanwhile, such treatment also significantly increased hippocampal microglia activation as well as neuronal injury. In vitro Pb-exposure also induced significantly increase of microglia activation, up-regulate the release of cytokines including tumor necrosis factor-alpha (TNF-α, interleukin-1β (IL-1β and inducible nitric oxide synthase (iNOS in microglia culture alone as well as neuronal injury in the co-culture with hippocampal neurons. Inhibiting the microglia activation with minocycline significantly reversed the above-mentioned Pb-exposure induced changes. Our results showed that Pb can cause microglia activation, which can up-regulate the level of IL-1β, TNF-α and iNOS, these proinflammatory factors may cause hippocampal neuronal injury as well as LTP deficits.

  4. Radiation-induced brain injury: A review

    Directory of Open Access Journals (Sweden)

    Michael eRobbins

    2012-07-01

    Full Text Available Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (> 6 months to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses > 30 Gy; white matter necrosis occurs at fractionated doses > 60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain

  5. Blast-induced traumatic brain injury: a new trend of blast injury research.

    Science.gov (United States)

    Zhao, Yan; Wang, Zheng-Guo

    2015-01-01

    Blast injury has become the major life- and function-threatening injuries in recent warfares. There is increased research interest in the mental disorders caused by blast-induced traumatic brain injury (bTBI), which has been proved as one of the "signature wounds" in modern battlefield. We reviewed the recent progresses in bTBI-related researches and concluded that the new era of blast injury research has shifted from the traditional physical impairments to cognitive dysfunctional/mental disorders that are proved to be more related to the outcome of combat casualty care.

  6. Loss of the inducible Hsp70 delays the inflammatory response to skeletal muscle injury and severely impairs muscle regeneration.

    Directory of Open Access Journals (Sweden)

    Sarah M Senf

    Full Text Available Skeletal muscle regeneration following injury is a highly coordinated process that involves transient muscle inflammation, removal of necrotic cellular debris and subsequent replacement of damaged myofibers through secondary myogenesis. However, the molecular mechanisms which coordinate these events are only beginning to be defined. In the current study we demonstrate that Heat shock protein 70 (Hsp70 is increased following muscle injury, and is necessary for the normal sequence of events following severe injury induced by cardiotoxin, and physiological injury induced by modified muscle use. Indeed, Hsp70 ablated mice showed a significantly delayed inflammatory response to muscle injury induced by cardiotoxin, with nearly undetected levels of both neutrophil and macrophage markers 24 hours post-injury. At later time points, Hsp70 ablated mice showed sustained muscle inflammation and necrosis, calcium deposition and impaired fiber regeneration that persisted several weeks post-injury. Through rescue experiments reintroducing Hsp70 intracellular expression plasmids into muscles of Hsp70 ablated mice either prior to injury or post-injury, we confirm that Hsp70 optimally promotes muscle regeneration when expressed during both the inflammatory phase that predominates in the first four days following severe injury and the regenerative phase that predominates thereafter. Additional rescue experiments reintroducing Hsp70 protein into the extracellular microenvironment of injured muscles at the onset of injury provides further evidence that Hsp70 released from damaged muscle may drive the early inflammatory response to injury. Importantly, following induction of physiological injury through muscle reloading following a period of muscle disuse, reduced inflammation in 3-day reloaded muscles of Hsp70 ablated mice was associated with preservation of myofibers, and increased muscle force production at later time points compared to WT. Collectively our

  7. Radiation-induced brain injury: A review

    Energy Technology Data Exchange (ETDEWEB)

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G. [Department of Radiation Oncology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Wheeler, Kenneth T. [Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Department of Radiology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Chan, Michael D., E-mail: mrobbins@wakehealth.edu [Department of Radiation Oncology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States)

    2012-07-19

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  8. Radiation-induced brain injury: A review

    International Nuclear Information System (INIS)

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G.; Wheeler, Kenneth T.; Chan, Michael D.

    2012-01-01

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  9. Lawn mower injuries as a cause of serious visual acuity impairment – Case reports

    Directory of Open Access Journals (Sweden)

    Monika Jasielska

    2017-05-01

    Lawn mower induced eye injuries are a significant cause of serious visual acuity impairment or blindness. The presented study shows that lawn mower eye injuries are still a therapeutic, social and economic problem, yet are very preventable with proper eye protection and patients’ education. Current prevention strategies are inadequate, and therefore should be updated.

  10. Fructose downregulates miR-330 to induce renal inflammatory response and insulin signaling impairment: Attenuation by morin.

    Science.gov (United States)

    Gu, Ting-Ting; Song, Lin; Chen, Tian-Yu; Wang, Xing; Zhao, Xiao-Juan; Ding, Xiao-Qin; Yang, Yan-Zi; Pan, Ying; Zhang, Dong-Mei; Kong, Ling-Dong

    2017-08-01

    Fructose induces insulin resistance with kidney inflammation and injury. MicroRNAs are emerged as key regulators of insulin signaling. Morin has insulin-mimetic effect with the improvement of insulin resistance and kidney injury. This study investigated the protective mechanisms of morin against fructose-induced kidney injury, with particular focus on miR-330 expression change, inflammatory response, and insulin signaling impairment. miR-330, sphingosine kinase 1 (SphK1)/sphingosine-1-phosphate (S1P)/S1P receptor (S1PR)1/3 signaling, nuclear factor-κB (NF-κB)/NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome, and insulin signaling were detected in kidney cortex of fructose-fed rats and fructose-exposed HK-2 cells, respectively. Whether miR-330 mediated inflammatory response to affect insulin signaling was examined using SphK1 inhibitor, S1PR1/3 short interfering RNA, or miR-330 mimic/inhibitor, respectively. Fructose was found to downregulate miR-330 expression to increase SphK1/S1P/S1PR1/3 signaling, and then activate NF-κB/NLRP3 inflammasome to produce IL-1β, causing insulin signaling impairment. Moreover, morin upregulated miR-330 and partly attenuated inflammatory response and insulin signaling impairment to alleviate kidney injury. These findings suggest that morin protects against fructose-induced kidney insulin signaling impairment by upregulating miR-330 to reduce inflammatory response. Morin may be a potential therapeutic agent for the treatment of kidney injury associated with fructose-induced inflammation and insulin signaling impairment. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Telomere shortening impairs regeneration of the olfactory epithelium in response to injury but not under homeostatic conditions.

    Directory of Open Access Journals (Sweden)

    Masami Watabe-Rudolph

    Full Text Available Atrophy of the olfactory epithelium (OE associated with impaired olfaction and dry nose represents one of the most common phenotypes of human aging. Impairment in regeneration of a functional olfactory epithelium can also occur in response to injury due to infection or nasal surgery. These complications occur more frequently in aged patients. Although age is the most unifying risk factor for atrophic changes and functional decline of the olfactory epithelium, little is known about molecular mechanisms that could influence maintenance and repair of the olfactory epithelium. Here, we analyzed the influence of telomere shortening (a basic mechanism of cellular aging on homeostasis and regenerative reserve in response to chemical induced injury of the OE in late generation telomere knockout mice (G3 mTerc(-/- with short telomeres compared to wild type mice (mTerc(+/+ with long telomeres. The study revealed no significant influence of telomere shortening on homeostatic maintenance of the OE during mouse aging. In contrast, the regenerative response to chemical induced injury of the OE was significantly impaired in G3 mTerc(-/- mice compared to mTerc(+/+ mice. Seven days after chemical induced damage, G3 mTerc(-/- mice exhibited significantly enlarged areas of persisting atrophy compared to mTerc(+/+ mice (p = 0.031. Telomere dysfunction was associated with impairments in cell proliferation in the regenerating epithelium. Deletion of the cell cycle inhibitor, Cdkn1a (p21 rescued defects in OE regeneration in telomere dysfunctional mice. Together, these data indicate that telomere shortening impairs the regenerative capacity of the OE by impairing cell cycle progression in a p21-dependent manner. These findings could be relevant for the impairment in OE function in elderly people.

  12. A model for mild traumatic brain injury that induces limited transient memory impairment and increased levels of axon related serum biomarkers

    Directory of Open Access Journals (Sweden)

    Elham eRostami

    2012-07-01

    Full Text Available Mild traumatic brain injury (mTBI is one of the most common neuronal insults and can lead to long-term disabilities. mTBI occurs when the head is exposed to a rapid acceleration-deceleration movement triggering axonal injuries. Our limited understanding of the underlying pathological changes makes it difficult to predict the outcome of mTBI. In this study we used a scalable rat model for rotational acceleration TBI, previously characterized for the threshold of axonal pathology. We have analyzed whether a TBI just above the defined threshold would induce any detectable behavioral changes and/or changes in serum biomarkers. The effect of injury on sensory motor functions, memory and anxiety were assessed by beam walking, radial arms maze and elevated plus maze at 3 to 7 days following TBI. The only behavioral deficits found were transient impairments in working and reference memory. Blood serum was analyzed at 1, 3 and 14 days after injury for changes in selected protein biomarkers. Serum levels of neurofilament heavy chain (NF-H and Tau, as well as S100B and myelin basic protein (MBP showed significant increases in the injured animals at all time points. No signs of macroscopic injuries such as intracerebral hematomas or contusions were found. Amyloid precursor protein (APP immunostaining indicated axonal injuries at all time points analyzed. In summary, this model mimics some of the key symptoms of mTBI, such as transient memory impairment, which is paralleled by an increase in serum biomarkers. Our findings suggest that serum biomarkers may be used to detect mTBI. The model provides a suitable foundation for further investigation of the underlying pathology of mTBI.

  13. Mild traumatic brain injury: Impairment and disability assessment caveats.

    Science.gov (United States)

    Zasler, Nathan D; Martelli, Michael F

    2003-01-01

    Mild traumatic brain injury (MTBI) accounts for approximately 80% of all brain injuries, and persistent sequelae can impede physical, emotional, social, marital, vocational, and avocational functioning. Evaluation of impairment and disability following MTBI typically can involve such contexts as social security disability application, personal injury litigation, worker's compensation claims, disability insurance policy application, other health care insurance policy coverage issues, and the determination of vocational and occupational competencies and limitations. MTBI is still poorly understood and impairment and disability assessment in MTBI can present a significant diagnostic challenge. There are currently no ideal systems for rating impairment and disability for MTBI residua. As a result, medicolegal examiners and clinicians must necessarily familiarise themselves with the variety of disability and impairment evaluation protocols and understand their limitations. The current paper reviews recommended procedures and potential obstacles and confounding issues.

  14. Rehabilitation of discourse impairments after acquired brain injury

    Directory of Open Access Journals (Sweden)

    Gigiane Gindri

    Full Text Available ABSTRACT Language impairments in patients with acquired brain injury can have a negative impact on social life as well as on other cognitive domains. Discourse impairments are among the most commonly reported communication deficits among patients with acquired brain damage. Despite advances in the development of diagnostic tools for detecting such impairments, few studies have investigated interventions to rehabilitate patients presenting with these conditions. Objective: The aim of this study was to present a systematic review of the methods used in the rehabilitation of discourse following acquired brain injury. Methods: The PubMed database was searched for articles using the following keywords: "rehabilitation", "neurological injury", "communication" and "discursive abilities". Results: A total of 162 abstracts were found, but only seven of these met criteria for inclusion in the review. Four studies involved samples of individuals with aphasia whereas three studies recruited samples of individuals with traumatic brain injury. Conclusion: All but one article found that patient performance improved following participation in a discourse rehabilitation program.

  15. Role and mechanisms of autophagy in acetaminophen-induced liver injury.

    Science.gov (United States)

    Chao, Xiaojuan; Wang, Hua; Jaeschke, Hartmut; Ding, Wen-Xing

    2018-04-23

    Acetaminophen (APAP) overdose is the most frequent cause of acute liver failure in the USA and many other countries. Although the metabolism and pathogenesis of APAP has been extensively investigated for decades, the mechanisms by which APAP induces liver injury are incompletely known, which hampers the development of effective therapeutic approaches to tackle this important clinical problem. Autophagy is a highly conserved intracellular degradation pathway, which aims at recycling cellular components and damaged organelles in response to adverse environmental conditions and stresses as a survival mechanism. There is accumulating evidence indicating that autophagy is activated in response to APAP overdose in specific liver zone areas, and pharmacological activation of autophagy protects against APAP-induced liver injury. Increasing evidence also suggests that hepatic autophagy is impaired in nonalcoholic fatty livers (NAFLD), and NAFLD patients are more susceptible to APAP-induced liver injury. Here, we summarized the current progress on the role and mechanisms of autophagy in protecting against APAP-induced liver injury. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Impaired Skin Barrier Due to Sebaceous Gland Atrophy in the Latent Stage of Radiation-Induced Skin Injury: Application of Non-Invasive Diagnostic Methods

    Directory of Open Access Journals (Sweden)

    Hyosun Jang

    2018-01-01

    Full Text Available Radiation-induced skin injury can take the form of serious cutaneous damage and have specific characteristics. Asymptomatic periods are classified as the latent stage. The skin barrier plays a critical role in the modulation of skin permeability and hydration and protects the body against a harsh external environment. However, an analysis on skin barrier dysfunction against radiation exposure in the latent stage has not been conducted. Thus, we investigated whether the skin barrier is impaired by irradiation in the latent stage and aimed to identify the molecules involved in skin barrier dysfunction. We analyzed skin barrier function and its components in SKH1 mice that received 20 and 40 Gy local irradiation. Increased transepidermal water loss and skin pH were observed in the latent stage of the irradiated skin. Skin barrier components, such as structural proteins and lipid synthesis enzymes in keratinocyte, increased in the irradiated group. Interestingly, we noted sebaceous gland atrophy and increased serine protease and inflammatory cytokines in the irradiated skin during the latent period. This finding indicates that the main factor of skin barrier dysfunction in the latent stage of radiation-induced skin injury is sebaceous gland deficiency, which could be an intervention target for skin barrier impairment.

  17. White Matter Damage and Cognitive Impairment after Traumatic Brain Injury

    Science.gov (United States)

    Kinnunen, Kirsi Maria; Greenwood, Richard; Powell, Jane Hilary; Leech, Robert; Hawkins, Peter Charlie; Bonnelle, Valerie; Patel, Maneesh Chandrakant; Counsell, Serena Jane; Sharp, David James

    2011-01-01

    White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury…

  18. Lawn mower injuries as a cause of serious visual acuity impairment - Case reports.

    Science.gov (United States)

    Jasielska, Monika; Winiarczyk, Mateusz; Bieliński, Paweł; Mackiewicz, Jerzy

    2017-05-11

    [b]Abstract Objective.[/b] The aim of the study is to present four cases of lawn mowers injuries as a cause of serious visual acuity impairment. [b]Materials and Method[/b]. A retrospective study of four patients admitted in 2013-2015 to the Department of Vitreoretinal Surgery in Lublin with severe open or closed globe injury, one with an intraocular foreign body (IOFB). The presence of eye protective equipment was assessed, as well as visual acuity, eye tissue condition before and after treatment, and applied therapy. In all cases an improvement was achieved in local conditions. The intraocular foreign body was removed, wounds sutured and damaged tissues placed in position. All eyeballs were saved. In three cases, visual acuity was improved to a usable level. Three patients underwent pars plana vitrectomy, one with IOFB removal from the vitreous cavity. [b]Conclusions[/b]. Lawn mower induced eye injuries are a significant cause of serious visual acuity impairment or blindness. The presented study shows that lawn mower eye injuries are still a therapeutic, social and economic problem, yet are very preventable with proper eye protection and patients' education. Current prevention strategies are inadequate, and therefore should be updated.

  19. Lawn mower injuries in children: a preventable impairment.

    Science.gov (United States)

    Alonso, J E; Sanchez, F L

    1995-01-01

    Every year there are seven million new lawn mowers purchased in the United States, each of which is capable of injuring young children, especially those > 14 years of age. A total of 33 children injured by a lawn mower were reviewed to identify the mechanism of injury, to determine the factors responsible for the accident, to determine an effective treatment regime, and to evaluate the permanent impairment for these patients. Classified according to their mechanism of injury, 14 children were injured as bystanders, 13 injured as riders, and six injured as operators. Categorized according to the anatomical location of injury, there were eight head and eye injuries, 12 upper extremity injuries, and 13 lower extremity injuries. There were 13 amputations (39.3%). The treatment management was satisfactory, but 23 children had an impairment > 40% of the whole person. We believe that the incidence of these injuries can be reduced by public awareness. Each orthopaedic surgeon should take on the task of educating the public about the dangers and wounding capacity of these machines and instructing the proper safety precautions that should be taken when mowing the lawn, especially when children are involved. The bottom line is that children should not be allowed in the yard while the lawn is being mowed nor should they be allowed to mow the lawn until they are > or = 15 years of age.

  20. Impaired macrophage and satellite cell infiltration occurs in a muscle-specific fashion following injury in diabetic skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Matthew P Krause

    Full Text Available Systemic elevations in PAI-1 suppress the fibrinolytic pathway leading to poor collagen remodelling and delayed regeneration of tibialis anterior (TA muscles in type-1 diabetic Akita mice. However, how impaired collagen remodelling was specifically attenuating regeneration in Akita mice remained unknown. Furthermore, given intrinsic differences between muscle groups, it was unclear if the reparative responses between muscle groups were different.Here we reveal that diabetic Akita muscles display differential regenerative responses with the TA and gastrocnemius muscles exhibiting reduced regenerating myofiber area compared to wild-type mice, while soleus muscles displayed no difference between animal groups following injury. Collagen levels in TA and gastrocnemius, but not soleus, were significantly increased post-injury versus controls. At 5 days post-injury, when degenerating/necrotic regions were present in both animal groups, Akita TA and gastrocnemius muscles displayed reduced macrophage and satellite cell infiltration and poor myofiber formation. By 10 days post-injury, necrotic regions were absent in wild-type TA but persisted in Akita TA. In contrast, Akita soleus exhibited no impairment in any of these measures compared to wild-type soleus. In an effort to define how impaired collagen turnover was attenuating regeneration in Akita TA, a PAI-1 inhibitor (PAI-039 was orally administered to Akita mice following cardiotoxin injury. PAI-039 administration promoted macrophage and satellite cell infiltration into necrotic areas of the TA and gastrocnemius. Importantly, soleus muscles exhibit the highest inducible expression of MMP-9 following injury, providing a mechanism for normative collagen degradation and injury recovery in this muscle despite systemically elevated PAI-1.Our findings suggest the mechanism underlying how impaired collagen remodelling in type-1 diabetes results in delayed regeneration is an impairment in macrophage

  1. Eccentric Contraction-Induced Muscle Injury: Reproducible, Quantitative, Physiological Models to Impair Skeletal Muscle's Capacity to Generate Force.

    Science.gov (United States)

    Call, Jarrod A; Lowe, Dawn A

    2016-01-01

    In order to investigate the molecular and cellular mechanisms of muscle regeneration an experimental injury model is required. Advantages of eccentric contraction-induced injury are that it is a controllable, reproducible, and physiologically relevant model to cause muscle injury, with injury being defined as a loss of force generating capacity. While eccentric contractions can be incorporated into conscious animal study designs such as downhill treadmill running, electrophysiological approaches to elicit eccentric contractions and examine muscle contractility, for example before and after the injurious eccentric contractions, allows researchers to circumvent common issues in determining muscle function in a conscious animal (e.g., unwillingness to participate). Herein, we describe in vitro and in vivo methods that are reliable, repeatable, and truly maximal because the muscle contractions are evoked in a controlled, quantifiable manner independent of subject motivation. Both methods can be used to initiate eccentric contraction-induced injury and are suitable for monitoring functional muscle regeneration hours to days to weeks post-injury.

  2. Brain injury impairs working memory and prefrontal circuit function

    Directory of Open Access Journals (Sweden)

    Colin James Smith

    2015-11-01

    Full Text Available More than 2.5 million Americans suffer a traumatic brain injury (TBI each year. Even mild to moderate traumatic brain injury causes long-lasting neurological effects. Despite its prevalence, no therapy currently exists to treat the underlying cause of cognitive impairment suffered by TBI patients. Following lateral fluid percussion injury (LFPI, the most widely used experimental model of TBI, we investigated alterations in working memory and excitatory/inhibitory synaptic balance in the prefrontal cortex. LFPI impaired working memory as assessed with a T-maze behavioral task. Field excitatory postsynaptic potentials recorded in the prefrontal cortex were reduced in slices derived from brain-injured mice. Spontaneous and miniature excitatory postsynaptic currents onto layer 2/3 neurons were more frequent in slices derived from LFPI mice while inhibitory currents onto layer 2/3 neurons were smaller after LFPI. Additionally, an increase in action potential threshold and concomitant decrease in firing rate was observed in layer 2/3 neurons in slices from injured animals. Conversely, no differences in excitatory or inhibitory synaptic transmission onto layer 5 neurons were observed; however, layer 5 neurons demonstrated a decrease in input resistance and action potential duration after LFPI. These results demonstrate synaptic and intrinsic alterations in prefrontal circuitry that may underlie working memory impairment caused by TBI.

  3. Neuroprotection and mechanisms of atractylenolide III in preventing learning and memory impairment induced by chronic high-dose homocysteine administration in rats.

    Science.gov (United States)

    Zhao, H; Ji, Z-H; Liu, C; Yu, X-Y

    2015-04-02

    Studies demonstrated that chronic high-dose homocysteine administration induced learning and memory impairment in animals. Atractylenolide III (Aen-III), a neuroprotective constituent of Atractylodis macrocephalae Koidz, was isolated in our previous study. In this study, we investigated potential benefits of Aen-III in preventing learning and memory impairment following chronic high-dose homocysteine administration in rats. Results showed that administration of Aen-III significantly ameliorated learning and memory impairment induced by chronic high-dose homocysteine administration in rats, decreased homocysteine-induced reactive oxygen species (ROS) formation and restored homocysteine-induced decrease of phosphorylated protein kinase C expression level. Moreover, Aen-III protected primary cultured neurons from apoptotic death induced by homocysteine treatment. This study provides the first evidence for the neuroprotective effect of Aen-III in preventing learning and impairment induced by chronic administration of homocysteine. Aen-III may have therapeutic potential in treating homocysteine-mediated cognitive impairment and neuronal injury. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Can mesenchymal stem cells reverse chronic stress-induced impairment of lung healing following traumatic injury?

    Science.gov (United States)

    Gore, Amy V; Bible, Letitia E; Livingston, David H; Mohr, Alicia M; Sifri, Ziad C

    2015-04-01

    One week following unilateral lung contusion (LC), rat lungs demonstrate full histologic recovery. When animals undergo LC plus the addition of chronic restraint stress (CS), wound healing is significantly delayed. Mesenchymal stem cells (MSCs) are pluripotent cells capable of immunomodulation, which have been the focus of much research in wound healing and tissue regeneration. We hypothesize that the addition of MSCs will improve wound healing in the setting of CS. Male Sprague-Dawley rats (n = 6-7 per group) were subjected to LC/CS with or without the injection of MSCs. MSCs were given as a single intravenous dose of 5 × 10 cells in 1 mL Iscove's Modified Dulbecco's Medium at the time of LC. Rats were subjected to 2 hours of restraint stress on Days 1 to 6 following LC. Seven days following injury, rats were sacrificed, and the lungs were examined for histologic evidence of wound healing using a well-established histologic lung injury score (LIS) to grade injury. LIS examines inflammatory cells/high-power field (HPF) averaged over 30 fields, interstitial edema, pulmonary edema, and alveolar integrity, with scores ranging from 0 (normal) to 11 (highly damaged). Peripheral blood was analyzed by flow cytometry for the presence of T-regulatory (C4CD25FoxP3) cells. Data were analyzed by analysis of variance followed by Tukey's multiple comparison test, expressed as mean (SD). As previously shown, 7 days following isolated LC, LIS has returned to 0.83 (0.41), with a subscore of zero for inflammatory cells/HPF. The addition of CS results in an LIS of 4.4 (2.2), with a subscore of 1.9 (0.7) for inflammatory cells/HPF. Addition of MSC to LC/CS decreased LIS to 1.7 (0.8), with a subscore of zero for inflammatory cells/HPF. Furthermore, treatment of animals undergoing LC/CS with MSCs increased the %T-regulatory cells by 70% in animals undergoing LC/CS alone (12.9% [2.4]% vs. 6.2% [1.3%]). Stress-induced impairment of wound healing is reversed by the addition of MSCs given

  5. Thermal injury induces impaired function in polymorphonuclear neutrophil granulocytes and reduced control of burn wound infection

    DEFF Research Database (Denmark)

    Calum, H.; Moser, C.; Jensen, P. O.

    2009-01-01

    Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6% third-degree burn...... injury was induced in mice with a hot-air blower. The third-degree burn was confirmed histologically. The mice were allocated into five groups: control, shave, burn, infection and burn infection group. At 48 h, a decline in the concentration of peripheral blood leucocytes was observed in the group...... of mice with burn wound. The reduction was ascribed to the decline in concentration of polymorphonuclear neutrophil leucocytes and monocytes. When infecting the skin with Pseudomonas aeruginosa, a dissemination of bacteria was observed only in the burn wound group. Histological characterization...

  6. Chronic liver injury in mice promotes impairment of skin barrier function via tumor necrosis factor-alpha.

    Science.gov (United States)

    Yokoyama, Satoshi; Hiramoto, Keiichi; Koyama, Mayu; Ooi, Kazuya

    2016-09-01

    Alcohol is frequently used to induce chronic liver injury in laboratory animals. Alcohol causes oxidative stress in the liver and increases the expression of inflammatory mediators that cause hepatocellular damage. However, during chronic liver injury, it is unclear if/how these liver-derived factors affect distal tissues, such as the skin. The purpose of this study was to evaluate skin barrier function during chronic liver injury. Hairless mice were administered 5% or 10% ethanol for 8 weeks, and damages to the liver and skin were assessed using histological and protein-analysis methods, as well as by detecting inflammatory mediators in the plasma. After alcohol administration, the plasma concentration of the aspartate and alanine aminotransferases increased, while albumin levels decreased. In mice with alcohol-induced liver injury, transepidermal water loss was significantly increased, and skin hydration decreased concurrent with ceramide and type I collagen degradation. The plasma concentrations of [Formula: see text]/[Formula: see text] and tumor necrosis factor-alpha (TNF-α) were significantly increased in mice with induced liver injury. TNF receptor (TNFR) 2 expression was upregulated in the skin of alcohol-administered mice, while TNFR1 levels remained constant. Interestingly, the impairment of skin barrier function in mice administered with 10% ethanol was ameliorated by administering an anti-TNF-α antibody. We propose a novel mechanism whereby plasma TNF-α, via TNFR2 alone or with TNFR1, plays an important role in skin barrier function during chronic liver disease in these mouse models.

  7. Traumatic brain injury and obesity induce persistent central insulin resistance.

    Science.gov (United States)

    Karelina, Kate; Sarac, Benjamin; Freeman, Lindsey M; Gaier, Kristopher R; Weil, Zachary M

    2016-04-01

    Traumatic brain injury (TBI)-induced impairments in cerebral energy metabolism impede tissue repair and contribute to delayed functional recovery. Moreover, the transient alteration in brain glucose utilization corresponds to a period of increased vulnerability to the negative effects of a subsequent TBI. In order to better understand the factors contributing to TBI-induced central metabolic dysfunction, we examined the effect of single and repeated TBIs on brain insulin signalling. Here we show that TBI induced acute brain insulin resistance, which resolved within 7 days following a single injury but persisted until 28 days following repeated injuries. Obesity, which causes brain insulin resistance and neuroinflammation, exacerbated the consequences of TBI. Obese mice that underwent a TBI exhibited a prolonged reduction of Akt (also known as protein kinase B) signalling, exacerbated neuroinflammation (microglial activation), learning and memory deficits, and anxiety-like behaviours. Taken together, the transient changes in brain insulin sensitivity following TBI suggest a reduced capacity of the injured brain to respond to the neuroprotective and anti-inflammatory actions of insulin and Akt signalling, and thus may be a contributing factor for the damaging neuroinflammation and long-lasting deficits that occur following TBI. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. Acute fibrinous and organising pneumonia: a rare histopathological variant of chemotherapy-induced lung injury.

    Science.gov (United States)

    Gupta, Arjun; Sen, Shiraj; Naina, Harris

    2016-04-06

    Bleomycin-induced lung injury is the most common chemotherapy-associated lung disease, and is linked with several histopathological patterns. Acute fibrinous and organising pneumonia (AFOP) is a relatively new and rare histological pattern of diffuse lung injury. We report the first known case of bleomycin-induced AFOP. A 36-year-old man with metastatic testicular cancer received three cycles of bleomycin, etoposide and cisplatin, before being transitioned to paclitaxel, ifosfamide and cisplatin. He subsequently presented with exertional dyspnoea, cough and pleuritic chest pain. CT of the chest demonstrated bilateral ground glass opacities with peribronchovascular distribution and pulmonary function tests demonstrated a restrictive pattern of lung disease with impaired diffusion. Transbronchial biopsy revealed intra-alveolar fibrin deposits with organising pneumonia, consisting of intraluminal loose connective tissue consistent with AFOP. The patient received high-dose corticosteroids with symptomatic and radiographic improvement. AFOP should be recognised as a histopathological variant of bleomycin-induced lung injury. 2016 BMJ Publishing Group Ltd.

  9. Impaired EphA4 signaling leads to congenital hydronephrosis, renal injury, and hypertension

    DEFF Research Database (Denmark)

    Sällström, Johan; Peuckert, Christiane; Gao, Xiang

    2013-01-01

    Experimental hydronephrosis induced by partial ureteral obstruction at 3 wk of age causes hypertension and renal impairment in adult rats and mice. Signaling by Ephrin receptors (Eph) and their ligands (ephrins) importantly regulates embryonic development. Genetically modified mice, where...... the cytoplasmic domain of the EphA4 receptor has been substituted by enhanced green fluorescent protein (EphA4(gf/gf)), develop spontaneous hydronephrosis and provide a model for further studies of the disorder. The present study aimed to determine if animals with congenital hydronephrosis develop hypertension...... and renal injuries, similar to that of experimental hydronephrosis. Ultrasound and Doppler techniques were used to visualize renal impairment in the adult mice. Telemetric blood pressure measurements were performed in EphA4(gf/gf) mice and littermate controls (EphA4(+/+)) during normal (0.7% NaCl)- and high...

  10. Activating mitochondrial function and haemoglobin expression with EH-201, an inducer of erythropoietin in neuronal cells, reverses memory impairment.

    Science.gov (United States)

    Horng, Lin-Yea; Hsu, Pei-Lun; Chen, Li-Wen; Tseng, Wang-Zou; Hsu, Kai-Tin; Wu, Chia-Ling; Wu, Rong-Tsun

    2015-10-01

    Memory impairment can be progressive in neurodegenerative diseases, and physiological ageing or brain injury, mitochondrial dysfunction and oxidative stress are critical components of these issues. An early clinical study has demonstrated cognitive improvement during erythropoietin treatment in patients with chronic renal failure. As erythropoietin cannot freely cross the blood-brain barrier, we tested EH-201 (2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucoside, also known as TSG), a low MW inducer of erythropoietin, for its therapeutic effects on memory impairment in models of neurodegenerative diseases, physiological ageing or brain injury. The effects of EH-201 were investigated in astrocytes and PC12 neuronal-like cells. In vivo, we used sleep-deprived (SD) mice as a stress model, amyloid-β (Aβ)-injected mice as a physiological ageing model and kainic acid (KA)-injected mice as a brain damage model to assess the therapeutic effects of EH-201. EH-201 induced expression of erythropoietin, PPAR-γ coactivator 1α (PGC-1α) and haemoglobin in astrocytes and PC12 neuronal-like cells. In vivo, EH-201 treatment restored memory impairment, as assessed by the passive avoidance test, in SD, Aβ and KA mouse models. In the hippocampus of mice given EH-201 in their diet, levels of erythropoietin, PGC-1α and haemoglobin were increased The induction of endogenous erythropoietin in neuronal cells by inducers such as EH-201 might be a therapeutic strategy for memory impairment in neurodegenerative disease, physiological ageing or traumatic brain injury. © 2015 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.

  11. One day of motor training with amphetamine impairs motor recovery following spinal cord injury.

    Science.gov (United States)

    Wong, Jamie K; Steward, Oswald

    2012-02-01

    It has previously been reported that a single dose of amphetamine paired with training on a beam walking task can enhance locomotor recovery following brain injury (Feeney et al., 1982). Here, we investigated whether this same drug/training regimen could enhance functional recovery following either thoracic (T9) or cervical (C5) spinal cord injury. Different groups of female Sprague-Dawley rats were trained on a beam walking task, and in a straight alley for assessment of hindlimb locomotor recovery using the BBB locomotor scale. For rats that received C5 hemisections, forelimb grip strength was assessed using a grip strength meter. Three separate experiments assessed the consequences of training rats on the beam walking task 24 h following a thoracic lateral hemisection with administration of either amphetamine or saline. Beginning 1 h following drug administration, rats either received additional testing/retraining on the beam hourly for 6 h, or they were returned to their home cages without further testing/retraining. Rats with thoracic spinal cord injuries that received amphetamine in conjunction with testing/retraining on the beam at 1 day post injury (DPI) exhibited significantly impaired recovery on the beam walking task and BBB. Rats with cervical spinal cord injuries that received training with amphetamine also exhibited significant impairments in beam walking and locomotion, as well as impairments in gripping and reaching abilities. Even when administered at 14 DPI, the drug/training regimen significantly impaired reaching ability in cervical spinal cord injured rats. Impairments were not seen in rats that received amphetamine without training. Histological analyses revealed that rats that received training with amphetamine had significantly larger lesions than saline controls. These data indicate that an amphetamine/training regimen that improves recovery after cortical injury has the opposite effect of impairing recovery following spinal cord injury

  12. Lateral Fluid Percussion Injury Impairs Hippocampal Synaptic Soluble N-Ethylmaleimide Sensitive Factor Attachment Protein Receptor Complex Formation

    Directory of Open Access Journals (Sweden)

    Shaun W. Carlson

    2017-10-01

    Full Text Available Traumatic brain injury (TBI and the activation of secondary injury mechanisms have been linked to impaired cognitive function, which, as observed in TBI patients and animal models, can persist for months and years following the initial injury. Impairments in neurotransmission have been well documented in experimental models of TBI, but the mechanisms underlying this dysfunction are poorly understood. Formation of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE complex facilitates vesicular docking and neurotransmitter release in the synaptic cleft. Published studies highlight a direct link between reduced SNARE complex formation and impairments in neurotransmitter release. While alterations in the SNARE complex have been described following severe focal TBI, it is not known if deficits in SNARE complex formation manifest in a model with reduced severity. We hypothesized that lateral fluid percussion injury (lFPI reduces the abundance of SNARE proteins, impairs SNARE complex formation, and contributes to impaired neurobehavioral function. To this end, rats were subjected to lFPI or sham injury and tested for acute motor performance and cognitive function at 3 weeks post-injury. lFPI resulted in motor impairment between 1 and 5 days post-injury. Spatial acquisition and spatial memory, as assessed by the Morris water maze, were significantly impaired at 3 weeks after lFPI. To examine the effect of lFPI on synaptic SNARE complex formation in the injured hippocampus, a separate cohort of rats was generated and brains processed to evaluate hippocampal synaptosomal-enriched lysates at 1 week post-injury. lFPI resulted in a significant reduction in multiple monomeric SNARE proteins, including VAMP2, and α-synuclein, and SNARE complex abundance. The findings in this study are consistent with our previously published observations suggesting that impairments in hippocampal SNARE complex formation may contribute to

  13. Socially Constructed Hierarchies of Impairments: The Case of Australian and Irish Workers' Access to Compensation for Injuries.

    Science.gov (United States)

    Harpur, Paul; Connolly, Ursula; Blanck, Peter

    2017-12-01

    Socially constructed hierarchies of impairment complicate the general disadvantage experienced by workers with disabilities. Workers with a range of abilities categorized as a "disability" are likely to experience less favourable treatment at work and have their rights to work discounted by laws and institutions, as compared to workers without disabilities. Value judgments in workplace culture and local law mean that the extent of disadvantage experienced by workers with disabilities additionally will depend upon the type of impairment they have. Rather than focusing upon the extent and severity of the impairment and how society turns an impairment into a recognized disability, this article aims to critically analyse the social hierarchy of physical versus mental impairment. Using legal doctrinal research methods, this paper analysis how Australian and Irish workers' compensation and negligence laws regard workers with mental injuries and impairments as less deserving of compensation and protection than like workers who have physical and sensory injuries or impairments. This research finds that workers who acquire and manifest mental injuries and impairments at work are less able to obtain compensation and protection than workers who have developed physical and sensory injuries of equal or lesser severity. Organizational cultures and governmental laws and policies that treat workers less favourably because they have mental injuries and impairments perpetuates unfair and artificial hierarchies of disability attributes. We conclude that these "sanist" attitudes undermine equal access to compensation for workplace injury as prohibited by the United Nations Convention on the Rights of Persons with Disabilities.

  14. Drug-induced hepatic injury

    DEFF Research Database (Denmark)

    Friis, Henrik; Andreasen, P B

    1992-01-01

    The Danish Committee on Adverse Drug Reactions received 1100 reports of suspected drug-induced hepatic injury during the decade 1978-1987. The causal relationship between drug and hepatic injury was classified as definite in 57 (5.2%) reports, probable in 989 (89.9%) reports, possible in 50 (4.......5%) reports and unclassifiable in four (0.4%) reports. Hepatic injuries accounted for 5.9% of all adverse drug reactions reported, and 14.7% of the lethal adverse drug reactions. A total of 47.2% were classified as acute cytotoxic, 16.2% as acute cholestatic and 26.9% as abnormal hepatic function. In 52 (4.......7%) cases the hepatic injury was lethal; only 14 (1.3%) cases were chronic. Halothane accounted for 25% of the cases. The incidence of halothane-induced hepatic injury is decreasing, and only one lethal case has been reported since 1981. Next to halothane, sulfasalazine was the drug most often suspected...

  15. Impairment of leaf photosynthesis after insect herbivory or mechanical injury on common milkweed, Asclepias syriaca.

    Science.gov (United States)

    Delaney, K J; Haile, F J; Peterson, R K D; Higley, L G

    2008-10-01

    Insect herbivory has variable consequences on plant physiology, growth, and reproduction. In some plants, herbivory reduces photosynthetic rate (Pn) activity on remaining tissue of injured leaves. We sought to better understand the influence of leaf injury on Pn of common milkweed, Asclepias syriaca (Asclepiadaceae), leaves. Initially, we tested whether Pn reductions occurred after insect herbivory or mechanical injury. We also (1) examined the duration of photosynthetic recovery, (2) compared mechanical injury with insect herbivory, (3) studied the relationship between leaf Pn with leaf injury intensity, and (4) considered uninjured leaf compensatory Pn responses neighboring an injured leaf. Leaf Pn was significantly reduced on mechanically injured or insect-fed leaves in all reported experiments except one, so some factor(s) (cardiac glycoside induction, reproductive investment, and water stress) likely interacts with leaf injury to influence whether Pn impairment occurs. Milkweed tussock moth larval herbivory, Euchaetes egle L. (Arctiidae), impaired leaf Pn more severely than mechanical injury in one experiment. Duration of Pn impairment lasted > 5 d to indicate high leaf Pn sensitivity to injury, but Pn recovery occurred within 13 d in one experiment. The degree of Pn reduction was more severe from E. egle herbivory than similar levels of mechanical tissue removal. Negative linear relationships characterized leaf Pn with percentage tissue loss from single E. egle-fed leaves and mechanically injured leaves and suggested that the signal to trigger leaf Pn impairment on remaining tissue of an injured leaf was amplified by additional tissue loss. Finally, neighboring uninjured leaves to an E. egle-fed leaf had a small (approximately 10%) degree of compensatory Pn to partly offset tissue loss and injured leaf Pn impairment.

  16. Impaired growth of denervated muscle contributes to contracture formation following neonatal brachial plexus injury.

    Science.gov (United States)

    Nikolaou, Sia; Peterson, Elizabeth; Kim, Annie; Wylie, Christopher; Cornwall, Roger

    2011-03-02

    The etiology of shoulder and elbow contractures following neonatal brachial plexus injury is incompletely understood. With use of a mouse model, the current study tests the novel hypothesis that reduced growth of denervated muscle contributes to contractures following neonatal brachial plexus injury. Unilateral brachial plexus injuries were created in neonatal mice by supraclavicular C5-C6 nerve root excision. Shoulder and elbow range of motion was measured four weeks after injury. Fibrosis, cross-sectional area, and functional length of the biceps, brachialis, and subscapularis muscles were measured over four weeks following injury. Muscle satellite cells were cultured from denervated and control biceps muscles to assess myogenic capability. In a comparison group, shoulder motion and subscapularis length were assessed following surgical excision of external rotator muscles. Shoulder internal rotation and elbow flexion contractures developed on the involved side within four weeks following brachial plexus injury. Excision of the biceps and brachialis muscles relieved the elbow flexion contractures. The biceps muscles were histologically fibrotic, whereas fatty infiltration predominated in the brachialis and rotator cuff muscles. The biceps and brachialis muscles displayed reduced cross-sectional and longitudinal growth compared with the contralateral muscles. The upper subscapularis muscle similarly displayed reduced longitudinal growth, with the subscapularis shortening correlating with internal rotation contracture. However, excision of the external rotators without brachial plexus injury caused no contractures or subscapularis shortening. Myogenically capable satellite cells were present in denervated biceps muscles despite impaired muscle growth in vivo. Injury of the upper trunk of the brachial plexus leads to impaired growth of the biceps and brachialis muscles, which are responsible for elbow flexion contractures, and impaired growth of the subscapularis

  17. Intermittent fasting attenuates lipopolysaccharide-induced neuroinflammation and memory impairment.

    Science.gov (United States)

    Vasconcelos, Andrea R; Yshii, Lidia M; Viel, Tania A; Buck, Hudson S; Mattson, Mark P; Scavone, Cristoforo; Kawamoto, Elisa M

    2014-05-06

    Systemic bacterial infections often result in enduring cognitive impairment and are a risk factor for dementia. There are currently no effective treatments for infection-induced cognitive impairment. Previous studies have shown that intermittent fasting (IF) can increase the resistance of neurons to injury and disease by stimulating adaptive cellular stress responses. However, the impact of IF on the cognitive sequelae of systemic and brain inflammation is unknown. Rats on IF for 30 days received 1 mg/kg of lipopolysaccharide (LPS) or saline intravenously. Half of the rats were subjected to behavioral tests and the other half were euthanized two hours after LPS administration and the hippocampus was dissected and frozen for analyses. Here, we report that IF ameliorates cognitive deficits in a rat model of sepsis by a mechanism involving NF-κB activation, suppression of the expression of pro-inflammatory cytokines, and enhancement of neurotrophic support. Treatment of rats with LPS resulted in deficits in cognitive performance in the Barnes maze and inhibitory avoidance tests, without changing locomotor activity, that were ameliorated in rats that had been maintained on the IF diet. IF also resulted in reduced levels of mRNAs encoding the LPS receptor TLR4 and inducible nitric oxide synthase (iNOS) in the hippocampus. Moreover, IF prevented LPS-induced elevation of IL-1α, IL-1β and TNF-α levels, and prevented the LPS-induced reduction of BDNF levels in the hippocampus. IF also significantly attenuated LPS-induced elevations of serum IL-1β, IFN-γ, RANTES, TNF-α and IL-6 levels. Taken together, our results suggest that IF induces adaptive responses in the brain and periphery that can suppress inflammation and preserve cognitive function in an animal model of systemic bacterial infection.

  18. Radiation-induced heart injury

    International Nuclear Information System (INIS)

    Suzuki, Yoshihiko; Niibe, Hideo

    1975-01-01

    In order to identify radiation-induced heart injury and to differentiate it from heart disease, an attempt was made to clarify post-irradiation heart injury by investigating the histological changes which occur during the internal between the irradiation and the time of demonstrable histological changes. A study was made of 83 autopsies in which most of the primary neoplasms were breast cancers, lung cancers and mediastinal tumors. In 43 of these autopsies the heart had been irradiated. Sixty eight dd-strain mice were also used for microautoradiographic study. Histological changes in the heart were observed in 27 of the 43 cases receiving irradiation. The limit of the tolerance dose to the heart for indicating histological changes was 1220 ret in humans. The latent period without histological changes was 2.7 months after initiation of radiation therapy. Greater heart injury was observed after re-irradiation or after the combined therapy of radiation and chemotherapy especially mitomycin (MMC). The histological findings after treatment with MMC were similar to those of radiation-induced heart injury. Results of the study indicate that the damage is secondary to radiation-induced changes of the vascula connective tissue. (Evans, G.)

  19. Alda-1 Protects Against Acrolein-Induced Acute Lung Injury and Endothelial Barrier Dysfunction.

    Science.gov (United States)

    Lu, Qing; Mundy, Miles; Chambers, Eboni; Lange, Thilo; Newton, Julie; Borgas, Diana; Yao, Hongwei; Choudhary, Gaurav; Basak, Rajshekhar; Oldham, Mahogany; Rounds, Sharon

    2017-12-01

    Inhalation of acrolein, a highly reactive aldehyde, causes lung edema. The underlying mechanism is poorly understood and there is no effective treatment. In this study, we demonstrated that acrolein not only dose-dependently induced lung edema but also promoted LPS-induced acute lung injury. Importantly, acrolein-induced lung injury was prevented and rescued by Alda-1, an activator of mitochondrial aldehyde dehydrogenase 2. Acrolein also dose-dependently increased monolayer permeability, disrupted adherens junctions and focal adhesion complexes, and caused intercellular gap formation in primary cultured lung microvascular endothelial cells (LMVECs). These effects were attenuated by Alda-1 and the antioxidant N-acetylcysteine, but not by the NADPH inhibitor apocynin. Furthermore, acrolein inhibited AMP-activated protein kinase (AMPK) and increased mitochondrial reactive oxygen species levels in LMVECs-effects that were associated with impaired mitochondrial respiration. AMPK total protein levels were also reduced in lung tissue of mice and LMVECs exposed to acrolein. Activation of AMPK with 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside blunted an acrolein-induced increase in endothelial monolayer permeability, but not mitochondrial oxidative stress or inhibition of mitochondrial respiration. Our results suggest that acrolein-induced mitochondrial dysfunction may not contribute to endothelial barrier dysfunction. We speculate that detoxification of acrolein by Alda-1 and activation of AMPK may be novel approaches to prevent and treat acrolein-associated acute lung injury, which may occur after smoke inhalation.

  20. Prevalence of traumatic dental injuries among visually impaired children attending special schools of Chhattisgarh

    OpenAIRE

    Harsha Munot; Alok Avinash; Nilotpol Kashyap; Rashmi Baranwal; Brij Kumar; Maylavarapu Krishna Sagar

    2017-01-01

    Background: Studies on dental trauma of the normal population have been carried out in the past; however, limited data are available on dental trauma of the handicapped population, especially visually impaired children in Chhattisgarh, India. Aim: The aim of this study is to determine the prevalence of traumatic dental injuries (TDIs) in visually impaired children in relation to age, cause, and place of injury. Materials and Methods: Epidemiological study was carried out among 400 children fr...

  1. Neonatal erythropoietin mitigates impaired gait, social interaction and diffusion tensor imaging abnormalities in a rat model of prenatal brain injury.

    Science.gov (United States)

    Robinson, Shenandoah; Corbett, Christopher J; Winer, Jesse L; Chan, Lindsay A S; Maxwell, Jessie R; Anstine, Christopher V; Yellowhair, Tracylyn R; Andrews, Nicholas A; Yang, Yirong; Sillerud, Laurel O; Jantzie, Lauren L

    2018-04-01

    Children who are born preterm are at risk for encephalopathy of prematurity, a leading cause of cerebral palsy, cognitive delay and behavioral disorders. Current interventions are limited and none have been shown to reverse cognitive and behavioral impairments, a primary determinant of poor quality of life for these children. Moreover, the mechanisms of perinatal brain injury that result in functional deficits and imaging abnormalities in the mature brain are poorly defined, limiting the potential to target interventions to those who may benefit most. To determine whether impairments are reversible after a prenatal insult, we investigated a spectrum of functional deficits and diffusion tensor imaging (DTI) abnormalities in young adult animals. We hypothesized that prenatal transient systemic hypoxia-ischemia (TSHI) would induce multiple functional deficits concomitant with reduced microstructural white and gray matter integrity, and tested whether these abnormalities could be ameliorated using postnatal erythropoietin (EPO), an emerging neurorestorative intervention. On embryonic day 18 uterine arteries were transiently occluded for 60min via laparotomy. Shams underwent anesthesia and laparotomy for 60min. Pups were born and TSHI pups were randomized to receive EPO or vehicle via intraperitoneal injection on postnatal days 1 to 5. Gait, social interaction, olfaction and open field testing was performed from postnatal day 25-35 before brains underwent ex vivo DTI to measure fractional anisotropy, axial diffusivity and radial diffusivity. Prenatal TSHI injury causes hyperactivity, impaired gait and poor social interaction in young adult rats that mimic the spectrum of deficits observed in children born preterm. Collectively, these data show for the first time in a model of encephalopathy of prematurity that postnatal EPO treatment mitigates impairments in social interaction, in addition to gait deficits. EPO also normalizes TSHI-induced microstructural abnormalities

  2. Methionine sulfoxide reductase A deficiency exacerbates acute liver injury induced by acetaminophen

    International Nuclear Information System (INIS)

    Singh, Mahendra Pratap; Kim, Ki Young; Kim, Hwa-Young

    2017-01-01

    Acetaminophen (APAP) overdose induces acute liver injury via enhanced oxidative stress and glutathione (GSH) depletion. Methionine sulfoxide reductase A (MsrA) acts as a reactive oxygen species scavenger by catalyzing the cyclic reduction of methionine-S-sulfoxide. Herein, we investigated the protective role of MsrA against APAP-induced liver damage using MsrA gene-deleted mice (MsrA −/− ). We found that MsrA −/− mice were more susceptible to APAP-induced acute liver injury than wild-type mice (MsrA +/+ ). The central lobule area of the MsrA −/− liver was more impaired with necrotic lesions. Serum alanine transaminase, aspartate transaminase, and lactate dehydrogenase levels were significantly higher in MsrA −/− than in MsrA +/+ mice after APAP challenge. Deletion of MsrA enhanced APAP-induced hepatic GSH depletion and oxidative stress, leading to increased susceptibility to APAP-induced liver injury in MsrA-deficient mice. APAP challenge increased Nrf2 activation more profoundly in MsrA −/− than in MsrA +/+ livers. Expression and nuclear accumulation of Nrf2 and its target gene expression were significantly elevated in MsrA −/− than in MsrA +/+ livers after APAP challenge. Taken together, our results demonstrate that MsrA protects the liver from APAP-induced toxicity. The data provided herein constitute the first in vivo evidence of the involvement of MsrA in hepatic function under APAP challenge. - Highlights: • MsrA deficiency increases APAP-induced liver damage. • MsrA deletion enhances APAP-induced hepatic GSH depletion and oxidative stress. • MsrA deficiency induces more profound activation of Nrf2 in response to APAP. • MsrA protects the liver from APAP-induced toxicity.

  3. The Triaging and Treatment of Cold-Induced Injuries.

    Science.gov (United States)

    Sachs, Christoph; Lehnhardt, Marcus; Daigeler, Adrien; Goertz, Ole

    2015-10-30

    In Central Europe, cold-induced injuries are much less common than burns. In a burn center in western Germany, the mean ratio of these two types of injury over the past 10 years was 1 to 35. Because cold-induced injuries are so rare, physicians often do not know how to deal with them. This article is based on a review of publications (up to December 2014) retrieved by a selective search in PubMed using the terms "freezing," "frostbite injury," "non-freezing cold injury," and "frostbite review," as well as on the authors' clinical experience. Freezing and cold-induced trauma are part of the treatment spectrum in burn centers. The treatment of cold-induced injuries is not standardized and is based largely on case reports and observations of use. distinction is drawn between non-freezing injuries, in which there is a slow temperature drop in tissue without freezing, and freezing injuries in which ice crystals form in tissue. In all cases of cold-induced injury, the patient should be slowly warmed to 22°-27°C to prevent reperfusion injury. Freezing injuries are treated with warming of the body's core temperature and with the bathing of the affected body parts in warm water with added antiseptic agents. Any large or open vesicles that are already apparent should be debrided. To inhibit prostaglandin-mediated thrombosis, ibuprofen is given (12 mg/kg body weight b.i.d.). The treatment of cold-induced injuries is based on their type, severity, and timing. The recommendations above are grade C recommendations. The current approach to reperfusion has yielded promising initial results and should be further investigated in prospective studies.

  4. Dexamethasone Protects Against Tourniquet-Induced Acute Ischemia-Reperfusion Injury in Mouse Hindlimb

    Directory of Open Access Journals (Sweden)

    Ryan M. Corrick

    2018-03-01

    Full Text Available Extremity injuries with hemorrhage have been a significant cause of death in civilian medicine and on the battlefield. The use of a tourniquet as an intervention is necessary for treatment to an injured limb; however, the tourniquet and subsequent release results in serious acute ischemia-reperfusion (IR injury in the skeletal muscle and neuromuscular junction (NMJ. Much evidence demonstrates that inflammation is an important factor to cause acute IR injury. To find effective therapeutic interventions for tourniquet-induced acute IR injuries, our current study investigated effect of dexamethasone, an anti-inflammatory drug, on tourniquet-induced acute IR injury in mouse hindlimb. In C57/BL6 mice, a tourniquet was placed on unilateral hindlimb (left hindlimb at the hip joint for 3 h, and then released for 24 h to induce IR. Three hours of tourniquet and 24 h of release (24-h IR caused gastrocnemius muscle injuries including rupture of the muscle sarcolemma and necrosis (42.8 ± 2.3% for infarct size of the gastrocnemius muscle. In the NMJ, motor nerve terminals disappeared, and endplate potentials were undetectable in 24-h IR mice. There was no gastrocnemius muscle contraction in 24-h IR mice. Western blot data showed that inflammatory cytokines (TNFα and IL-1β were increased in the gastrocnemius muscle after 24-h IR. Treatment with dexamethasone at the beginning of reperfusion (1 mg/kg, i.p. significantly inhibited expression of TNFα and IL-1β, reduced rupture of the muscle sarcolemma and infarct size (24.8 ± 2.0%, and improved direct muscle stimulation-induced gastrocnemius muscle contraction in 24-h IR mice. However, this anti-inflammatory drug did not improve NMJ morphology and function, and sciatic nerve-stimulated skeletal muscle contraction in 24-h IR mice. The data suggest that one-time treatment with dexamethasone at the beginning of reperfusion only reduced structural and functional impairments of the skeletal muscle but not the

  5. Impaired cerebral autoregulation and brain injury in newborns with hypoxic-ischemic encephalopathy treated with hypothermia.

    Science.gov (United States)

    Massaro, An N; Govindan, R B; Vezina, Gilbert; Chang, Taeun; Andescavage, Nickie N; Wang, Yunfei; Al-Shargabi, Tareq; Metzler, Marina; Harris, Kari; du Plessis, Adre J

    2015-08-01

    Impaired cerebral autoregulation may contribute to secondary injury in newborns with hypoxic-ischemic encephalopathy (HIE). Continuous, noninvasive assessment of cerebral pressure autoregulation can be achieved with bedside near-infrared spectroscopy (NIRS) and systemic mean arterial blood pressure (MAP) monitoring. This study aimed to evaluate whether impaired cerebral autoregulation measured by NIRS-MAP monitoring during therapeutic hypothermia and rewarming relates to outcome in 36 newborns with HIE. Spectral coherence analysis between NIRS and MAP was used to quantify changes in the duration [pressure passivity index (PPI)] and magnitude (gain) of cerebral autoregulatory impairment. Higher PPI in both cerebral hemispheres and gain in the right hemisphere were associated with neonatal adverse outcomes [death or detectable brain injury by magnetic resonance imaging (MRI), P < 0.001]. NIRS-MAP monitoring of cerebral autoregulation can provide an ongoing physiological biomarker that may help direct care in perinatal brain injury. Copyright © 2015 the American Physiological Society.

  6. Dammarane Sapogenins Ameliorates Neurocognitive Functional Impairment Induced by Simulated Long-Duration Spaceflight

    Directory of Open Access Journals (Sweden)

    Xiaorui Wu

    2017-05-01

    Full Text Available Increasing evidence indicates the occurrence of cognitive impairment in astronauts under spaceflight compound conditions, but the underlying mechanisms and countermeasures need to be explored. In this study, we found that learning and memory abilities were significantly reduced in rats under a simulated long-duration spaceflight environment (SLSE, which includes microgravity, isolation confinement, noises, and altered circadian rhythms. Dammarane sapogenins (DS, alkaline hydrolyzed products of ginsenosides, can enhance cognition function by regulating brain neurotransmitter levels and inhibiting SLSE-induced neuronal injury. Bioinformatics combined with experimental verification identified that the PI3K-Akt-mTOR pathway was inhibited and the MAPK pathway was activated during SLSE-induced cognition dysfunction, whereas DS substantially ameliorated the changes in brain. These findings defined the characteristics of SLSE-induced cognitive decline and the mechanisms by which DS improves it. The results provide an effective candidate for improving cognitive function in spaceflight missions.

  7. Tetrahydrobiopterin in antenatal brain hypoxia-ischemia-induced motor impairments and cerebral palsy.

    Science.gov (United States)

    Vasquez-Vivar, Jeannette; Shi, Zhongjie; Luo, Kehuan; Thirugnanam, Karthikeyan; Tan, Sidhartha

    2017-10-01

    Antenatal brain hypoxia-ischemia, which occurs in cerebral palsy, is considered a significant cause of motor impairments in children. The mechanisms by which antenatal hypoxia-ischemia causes brain injury and motor deficits still need to be elucidated. Tetrahydrobiopterin is an important enzyme cofactor that is necessary to produce neurotransmitters and to maintain the redox status of the brain. A genetic deficiency of this cofactor from mutations of biosynthetic or recycling enzymes is a well-recognized factor in the development of childhood neurological disorders characterized by motor impairments, developmental delay, and encephalopathy. Experimental hypoxia-ischemia causes a decline in the availability of tetrahydrobiopterin in the immature brain. This decline coincides with the loss of brain function, suggesting this occurrence contributes to neuronal dysfunction and motor impairments. One possible mechanism linking tetrahydrobiopterin deficiency, hypoxia-ischemia, and neuronal injury is oxidative injury. Evidence of the central role of the developmental biology of tetrahydrobiopterin in response to hypoxic ischemic brain injury, especially the development of motor deficits, is discussed. Copyright © 2017. Published by Elsevier B.V.

  8. Fructokinase activity mediates dehydration-induced renal injury.

    Science.gov (United States)

    Roncal Jimenez, Carlos A; Ishimoto, Takuji; Lanaspa, Miguel A; Rivard, Christopher J; Nakagawa, Takahiko; Ejaz, A Ahsan; Cicerchi, Christina; Inaba, Shinichiro; Le, MyPhuong; Miyazaki, Makoto; Glaser, Jason; Correa-Rotter, Ricardo; González, Marvin A; Aragón, Aurora; Wesseling, Catharina; Sánchez-Lozada, Laura G; Johnson, Richard J

    2014-08-01

    The epidemic of chronic kidney disease in Nicaragua (Mesoamerican nephropathy) has been linked with recurrent dehydration. Here we tested whether recurrent dehydration may cause renal injury by activation of the polyol pathway, resulting in the generation of endogenous fructose in the kidney that might subsequently induce renal injury via metabolism by fructokinase. Wild-type and fructokinase-deficient mice were subjected to recurrent heat-induced dehydration. One group of each genotype was provided water throughout the day and the other group was hydrated at night, after the dehydration. Both groups received the same total hydration in 24 h. Wild-type mice that received delayed hydration developed renal injury, with elevated serum creatinine, increased urinary NGAL, proximal tubular injury, and renal inflammation and fibrosis. This was associated with activation of the polyol pathway, with increased renal cortical sorbitol and fructose levels. Fructokinase-knockout mice with delayed hydration were protected from renal injury. Thus, recurrent dehydration can induce renal injury via a fructokinase-dependent mechanism, likely from the generation of endogenous fructose via the polyol pathway. Access to sufficient water during the dehydration period can protect mice from developing renal injury. These studies provide a potential mechanism for Mesoamerican nephropathy.

  9. Brain injury with diabetes mellitus: evidence, mechanisms and treatment implications.

    Science.gov (United States)

    Hamed, Sherifa A

    2017-04-01

    Diabetes mellitus is a risk for brain injury. Brain injury is associated with acute and chronic hyperglycaemia, insulin resistance, hyperinsulinemia, diabetic ketoacidosis (DKA) and hypoglycaemic events in diabetic patients. Hyperglycemia is a cause of cognitive deterioration, low intelligent quotient, neurodegeneration, brain aging, brain atrophy and dementia. Areas covered: The current review highlights the experimental, clinical, neuroimaging and neuropathological evidence of brain injury induced by diabetes and its associated metabolic derangements. It also highlights the mechanisms of diabetes-induced brain injury. It seems that the pathogenesis of hyperglycemia-induced brain injury is complex and includes combination of vascular disease, oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis, reduction of neurotrophic factors, acetylcholinesterase (AChE) activation, neurotransmitters' changes, impairment of brain repair processes, impairment of brain glymphatic system, accumulation of amyloid β and tau phosphorylation and neurodegeneration. The potentials for prevention and treatment are also discussed. Expert commentary: We summarize the risks and the possible mechanisms of DM-induced brain injury and recommend strategies for neuroprotection and neurorestoration. Recently, a number of drugs and substances [in addition to insulin and its mimics] have shown promising potentials against diabetes-induced brain injury. These include: antioxidants, neuroinflammation inhibitors, anti-apoptotics, neurotrophic factors, AChE inhibitors, mitochondrial function modifiers and cell based therapies.

  10. Subject-specific regional measures of water diffusion are associated with impairment in chronic spinal cord injury.

    Science.gov (United States)

    Choe, Ann S; Sadowsky, Cristina L; Smith, Seth A; van Zijl, Peter C M; Pekar, James J; Belegu, Visar

    2017-08-01

    We aimed to identify non-invasive imaging parameters that can serve as biomarkers for the integrity of the spinal cord, which is paramount to neurological function. Diffusion tensor imaging (DTI) indices are sensitive to axonal and myelin damage, and have strong potential to serve as such biomarkers. However, averaging DTI indices over large regions of interest (ROIs), a common approach to analyzing the images of injured spinal cord, leads to loss of subject-specific information. We investigated if DTI-tractography-driven, subject-specific demarcation approach can yield measures that are more specific to impairment. In 18 individuals with chronic spinal cord injury (SCI), subject-specific demarcation of the injury region was performed using DTI tractography, which yielded three regions relative to injury (RRI; regions superior to, at, and below injury epicenter). DTI indices averaged over each RRI were correlated with measures of residual motor and sensory function, obtained using the International Standard of Neurological Classification for Spinal Cord Injury (ISNCSCI). Total ISNCSCI score (ISNCSCI-tot; sum of ISNCSCI motor and sensory scores) was significantly (p injury epicenter (IRRI), the degree of which exceeded that of those measured from the entire cervical cord-suggesting contribution from Wallerian degeneration. DTI tractography-driven, subject-specific injury demarcation approach provided measures that were more specific to impairment. Notably, DTI indices obtained from the IRRI region showed the highest specificity to impairment, demonstrating their strong potential as biomarkers for the SCI severity.

  11. Vanillin improves scopolamine‑induced memory impairment through restoration of ID1 expression in the mouse hippocampus.

    Science.gov (United States)

    Lee, Jae-Chul; Kim, In Hye; Cho, Jeong Hwi; Lee, Tae-Kyeong; Park, Joon Ha; Ahn, Ji Hyeon; Shin, Bich Na; Yan, Bing Chun; Kim, Jong-Dai; Jeon, Yong Hwan; Lee, Young Joo; Won, Moo-Ho; Kang, Il Jun

    2018-03-01

    4-Hydroxy-3-methoxybenzaldehyde (vanillin), contained in a number of species of plant, has been reported to display beneficial effects against brain injuries. In the present study, the impact of vanillin on scopolamine‑induced alterations in cognition and the expression of DNA binding protein inhibitor ID‑1 (ID1), one of the inhibitors of DNA binding/differentiation proteins that regulate gene transcription, in the mouse hippocampus. Mice were treated with 1 mg/kg scopolamine with or without 40 mg/kg vanillin once daily for 4 weeks. Scopolamine‑induced cognitive impairment was observed from 1 week and was deemed to be severe 4 weeks following the administration of scopolamine. However, treatment with vanillin in scopolamine‑treated mice markedly attenuated cognitive impairment 4 weeks following treatment with scopolamine. ID1‑immunoreactive cells were revealed in the hippocampus of vehicle‑treated mice, and were hardly detected 4 weeks following treatment with scopolamine. However, treatment with vanillin in scopolamine‑treated mice markedly restored ID1‑immunoreactive cells and expression 4 weeks subsequent to treatment. The results of the present study suggested that vanillin may be beneficial for cognitive impairment, by preventing the reduction of ID1 expression which may be associated with cognitive impairment.

  12. Estrogen-related receptor α is essential for maintaining mitochondrial integrity in cisplatin-induced acute kidney injury.

    Science.gov (United States)

    Tsushida, Keigo; Tanabe, Katsuyuki; Masuda, Kana; Tanimura, Satoshi; Miyake, Hiromasa; Arata, Yuka; Sugiyama, Hitoshi; Wada, Jun

    2018-04-15

    Acute kidney injury (AKI) has been associated with not only higher in-hospital mortality but also the subsequent development of chronic kidney disease (CKD). Recent evidence has suggested the involvement of mitochondrial dysfunction and impaired dynamics in the pathogenesis of AKI. Estrogen-related receptor α (ERRα) is an orphan nuclear receptor that acts as a transcription factor to regulate the transcription of genes required for mitochondrial biogenesis and oxidative phosphorylation. In the present study, we examined the effects of ERRα deficiency on the progression of AKI induced by cisplatin. Male C57BL/6 J wild-type and ERRα -/- mice received a single intraperitoneal injection of 20 mg/kg cisplatin. Seventy-two hours after the injection, kidney function and morphology were evaluated. ERRα expression was observed in renal tubules, and cisplatin inhibited its translocation into nuclei. ERRα deficiency exacerbated cisplatin-induced renal dysfunction and tubular injury, as well as oxidative stress and apoptosis. ERRα -/- mice kidneys revealed lower mitochondrial DNA content and swollen mitochondria with reduced cristae. In addition, these mice had lower expression of the mitochondrial fusion protein mitofusin-2. The cisplatin-induced decrease in mitochondrial DNA and altered mitochondrial structure were more severe in ERRα -/- mice. In cultured mouse proximal tubular epithelial cells, the ERRα inverse agonist XCT-790 significantly inhibited mitofusin-2 expression and induced mitochondrial fragmentation. Taken together, our findings suggest the involvement of ERRα in the progression of cisplatin-induced AKI probably through impaired mitochondrial dynamics. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Traditional Chinese Medicine and Herb-induced Liver Injury: Comparison with Drug-induced Liver Injury.

    Science.gov (United States)

    Jing, Jing; Teschke, Rolf

    2018-03-28

    Cases of suspected herb-induced liver injury (HILI) caused by herbal Traditional Chinese Medicines (TCMs) and of drug-induced liver injury (DILI) are commonly published in the scientific literature worldwide. As opposed to the multiplicity of botanical chemicals in herbal TCM products, which are often mixtures of several herbs, conventional Western drugs contain only a single synthetic chemical. It is therefore of interest to study how HILI by TCM and DILI compare with each other, and to what extent results from each liver injury type can be transferred to the other. China is among the few countries with a large population using synthetic Western drugs as well as herbal TCM. Therefore, China is well suited to studies of liver injury comparing drugs with TCM herbs. Despite some concordance, recent analyses of liver injury cases with verified causality, using the Roussel Uclaf Causality Assessment Method, revealed major differences in HILI caused by TCMs as compared to DILI with respect to the following features: HILI cases are less frequently observed as compared to DILI, have a smaller proportion of females and less unintentional rechallenge events, and present a higher rate of hepatocellular injury features. Since many results were obtained among Chinese residents who had access to and had used Western drugs and TCM herbs, such ethnic homogeneity supports the contention that the observed differences of HILI and DILI in the assessed population are well founded.

  14. Trigeminal Inflammatory Compression (TIC) injury induces chronic facial pain and susceptibility to anxiety-related behaviors.

    Science.gov (United States)

    Lyons, D N; Kniffin, T C; Zhang, L P; Danaher, R J; Miller, C S; Bocanegra, J L; Carlson, C R; Westlund, K N

    2015-06-04

    Our laboratory previously developed a novel neuropathic and inflammatory facial pain model for mice referred to as the Trigeminal Inflammatory Compression (TIC) model. Rather than inducing whole nerve ischemia and neuronal loss, this injury induces only slight peripheral nerve demyelination triggering long-term mechanical allodynia and cold hypersensitivity on the ipsilateral whisker pad. The aim of the present study is to further characterize the phenotype of the TIC injury model using specific behavioral assays (i.e. light-dark box, open field exploratory activity, and elevated plus maze) to explore pain- and anxiety-like behaviors associated with this model. Our findings determined that the TIC injury produces hypersensitivity 100% of the time after surgery that persists at least 21 weeks post injury (until the animals are euthanized). Three receptive field sensitivity pattern variations in mice with TIC injury are specified. Animals with TIC injury begin displaying anxiety-like behavior in the light-dark box preference and open field exploratory tests at week eight post injury as compared to sham and naïve animals. Panic anxiety-like behavior was shown in the elevated plus maze in mice with TIC injury if the test was preceded with acoustic startle. Thus, in addition to mechanical and cold hypersensitivity, the present study identified significant anxiety-like behaviors in mice with TIC injury resembling the clinical symptomatology and psychosocial impairments of patients with chronic facial pain. Overall, the TIC injury model's chronicity, reproducibility, and reliability in producing pain- and anxiety-like behaviors demonstrate its usefulness as a chronic neuropathic facial pain model. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Cognitive, emotional and behavioral impairments following traumatic brain injury and the neuro-radiological diagnosis

    International Nuclear Information System (INIS)

    Shinoda, Jun; Asano, Yoshitaka

    2011-01-01

    Definition and diagnostic criteria in Japan of a high order brain functional impairment are explained and recent findings of the useful imaging for the criteria are discussed. The criteria of cognitive, emotional and behavioral impairments following brain injury (BI) defined by Ministry of Health, Labour and Welfare (MHLW) and National Rehabilitation Center for Persons with Disabilities contain 4 items of major symptoms, test findings, exclusion criteria and diagnosis. The criteria contain parts of diseases F04, F06 and F7 in ICD (International Classification of Diseases) 10, and conceivably correspond to such Western terms as the neuropsychological impairment, neurobehavioral impairment, cognitive disability and post-concussion syndrome. Head trauma is the major cause of BI and in the second item (test findings) of the diagnostic criteria above, imaging confirmation of the organic BI (mainly diffuse) is essential. For imaging technology of chronic diffuse injury, discussed are on findings of the structural MRI, diffusion tensor imaging (DTI), functional MRI; 18 F-fluorodeoxyglucose-positron emission tomography (FDG-PET); and single photon emission computed tomography (SPECT) with 99m Tc-ethyl-cysteinate dimmer and 123 I-iomazenil. Based on those findings, it is thought that the impairment of the high order brain functions by diffuse injury is caused by the dysfunction of the primarily injured region and by its consequent disorder of cingulated gyrus and frontal anterior medial region through disturbance of cerebral nerve transmission and control. It is also suggested that a part of the blast related mild traumatic BI in US ex-servicemen is caused by the light diffuse BI, which can only be identified by the fractional anisotropy-statistical parametric mapping image in DTI. Number of patients with the high order brain functional impairment is estimated to be about 300,000 in Japan, but only 1/3 of those are actually diagnosed to be of the disease. (T.T.)

  16. Hydrogen-rich saline protects retina against glutamate-induced excitotoxic injury in guinea pig.

    Science.gov (United States)

    Wei, Lihua; Ge, Li; Qin, Shucun; Shi, Yunzhi; Du, Changqing; Du, Hui; Liu, Liwei; Yu, Yang; Sun, Xuejun

    2012-01-01

    Molecular hydrogen (H(2)) is an efficient antioxidant that can selectively reduce hydroxyl radicals and inhibit oxidative stress-induced injuries. We investigated the protective effects and mechanism of hydrogen-rich saline in a glutamate-induced retinal injury model. Retinal excitotoxicity was induced in healthy guinea pigs by injecting glutamate into the vitreous cavity. After 30 min, hydrogen-rich saline was injected into the vitreous cavity, the peritoneal cavity or both. Seven days later, the retinal stress response was evaluated by examining the stress biomarkers, inducible nitric-oxide synthase (iNOS) and glucose-regulated protein 78 (GRP78). The impaired glutamate uptake was assessed by the expression of the excitatory amino acid transporter 1(EAAT-1). The retinal histopathological changes were investigated, focusing on the thicknesses of the entire retina and its inner layer, the number of cells in the retinal ganglion cell layer (GCL) and the ultrastructure of the retinal ganglion cells (RGCs) and glial cells. Compared with the glutamate-induced injury group, the hydrogen-rich saline treatment reduced the loss of cells in the GCL and thinning of the retina and attenuated cellular morphological damage. These improvements were greatest in animals that received H(2) injections into both the vitreous and the peritoneal cavities. The hydrogen-rich saline also inhibited the expression of glial fibrillary acidic protein (GFAP) in Müller cells, CD11b in microglia, and iNOS and GRP78 in glial cells. Moreover, the hydrogen-rich saline increased the expression of EAAT-1. In conclusion, the administration of hydrogen-rich saline through the intravitreal or/and intraperitoneal routes could reduce the retinal excitotoxic injury and promote retinal recovery. This result likely occurs by inhibiting the activation of glial cells, decreasing the production of the iNOS and GRP78 and promoting glutamate clearance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Suramin protects from cisplatin-induced acute kidney injury

    Science.gov (United States)

    Dupre, Tess V.; Doll, Mark A.; Shah, Parag P.; Sharp, Cierra N.; Kiefer, Alex; Scherzer, Michael T.; Saurabh, Kumar; Saforo, Doug; Siow, Deanna; Casson, Lavona; Arteel, Gavin E.; Jenson, Alfred Bennett; Megyesi, Judit; Schnellmann, Rick G.; Beverly, Levi J.

    2015-01-01

    Cisplatin, a commonly used cancer chemotherapeutic, has a dose-limiting side effect of nephrotoxicity. Approximately 30% of patients administered cisplatin suffer from kidney injury, and there are limited treatment options for the treatment of cisplatin-induced kidney injury. Suramin, which is Federal Drug Administration-approved for the treatment of trypanosomiasis, improves kidney function after various forms of kidney injury in rodent models. We hypothesized that suramin would attenuate cisplatin-induced kidney injury. Suramin treatment before cisplatin administration reduced cisplatin-induced decreases in kidney function and injury. Furthermore, suramin attenuated cisplatin-induced expression of inflammatory cytokines and chemokines, endoplasmic reticulum stress, and apoptosis in the kidney cortex. Treatment of mice with suramin 24 h after cisplatin also improved kidney function, suggesting that the mechanism of protection is not by inhibition of tubular cisplatin uptake or its metabolism to nephrotoxic species. If suramin is to be used in the context of cancer, then it cannot prevent cisplatin-induced cytotoxicity of cancer cells. Suramin did not alter the dose-response curve of cisplatin in lung adenocarcinoma cells in vitro. In addition, suramin pretreatment of mice harboring lung adenocarcinomas did not alter the initial cytotoxic effects of cisplatin (DNA damage and apoptosis) on tumor cells. These results provide evidence that suramin has potential as a renoprotective agent for the treatment/prevention of cisplatin-induced acute kidney injury and justify future long-term preclinical studies using cotreatment of suramin and cisplatin in mouse models of cancer. PMID:26661653

  18. Effects of scallop shell extract on scopolamine-induced memory impairment and MK801-induced locomotor activity.

    Science.gov (United States)

    Hasegawa, Yasushi; Inoue, Tatsuro; Kawaminami, Satoshi; Fujita, Miho

    2016-07-01

    To evaluate the neuroprotective effects of the organic components of scallop shells (scallop shell extract) on memory impairment and locomotor activity induced by scopolamine or 5-methyl-10,11-dihydro-5H-dibenzo (a,d) cyclohepten-5,10-imine (MK801). Effect of the scallop shell extract on memory impairment and locomotor activity was investigated using the Y-maze test, the Morris water maze test, and the open field test. Scallop shell extract significantly reduced scopolamine-induced short-term memory impairment and partially reduced scopolamine-induced spatial memory impairment in the Morris water maze test. Scallop shell extract suppressed scopolamine-induced elevation of acetylcholine esterase activity in the cerebral cortex. Treatment with scallop shell extract reversed the increase in locomotor activity induced by scopolamine. Scallop shell extract also suppressed the increase in locomotor activity induced by MK801. Our results provide initial evidence that scallop shell extract reduces scopolamine-induced memory impairment and suppresses MK-801-induced hyperlocomotion. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  19. Potential immunotoxic effects of trichloroethylene-induced IV allergic reaction in renal impairment

    Directory of Open Access Journals (Sweden)

    Jun-Feng Yu

    2017-08-01

    Full Text Available Trichloroethylene (TCE is known to induce allergic contact dermatitis and subsequent occupational medicamentosa-like dermatitis (OMLD with multi-system injuries, including liver, kidney, and skin injuries. However, the mechanisms underlying immune system dysfunction that result in organ injury have not yet been clearly elucidated. In the present study, we measured the levels of secreted cytokines by effect or T cells in TCE-treated guinea pigs to better understand the contribution of allergic disorders in renal injuries. We immunized guinea pigs with trichloroethylene using the Guinea Pig Maximization Test (GPMT and scored the inflammation on the guinea pigs’ skin. The kidney function and ultra-structural changes in the kidneys were detected using biochemical methods and electron microscopy. The deposition of cytokines was determined using immunohistochemistry. The sensitization rate was 63.16% in the TCE-sensitized groups. The electron microscopy results showed tubular epithelial cell mitochondrial swelling, vacuolar degeneration, and atrophy of the microvillus in the sensitized groups. A high degree of cytokine deposition was observed in the renal tubular proximal epithelial cells in the TCE-sensitized groups. As observed in this study, the variation in the level of immune system activation not only indicates that TCE can largely magnify the immune reaction but also suggests a potential role of immune dysfunction in renal impairment.

  20. Hypercholesterolemic myocardium is vulnerable to ischemia-reperfusion injury and refractory to sevoflurane-induced protection.

    Directory of Open Access Journals (Sweden)

    Yong Xu

    Full Text Available Recent studies have demonstrated that volatile anesthetic postconditioning confers myocardial protection against ischemia-reperfusion (IR injury through activation of the reperfusion injury salvage kinase (RISK pathway. As RISK has been shown to be impaired in hypercholesterolemia. Therefore, we investigate whether anesthetic-induced cardiac protection was maintained in hypercholesterolemic rats. In the present study, normocholesteolemic or hypercholesterolemic rat hearts were subjected to 30 min of ischemia and 2 h of reperfusion. Animals received 2.4% sevoflurane for 5 min or 3 cycles of 10-s ischemia/10-s reperfusion. The hemodynamic parameters, including left ventricular developed pressure, left ventricular end-diastolic pressure and heart rate, were continuously monitored. The infarct size, apoptosis, p-Akt, p-ERK1/2, p-GSK3β were determined. We found that both sevoflurane and ischemic postconditioning significantly improved heart pump function, reduced infarct size and increased the phosphorylation of Akt, ERK1/2 and their downstream target of GSK3β in the healthy rats. In the hypercholesterolemic rats, neither sevoflurane nor ischemic postconditioning improved left ventricular hemodynamics, reduced infarct size and increased the phosphorylated Akt, ERK1/2 and GSK3β. In contrast, GSK inhibitor SB216763 conferred cardioprotection against IR injury in healthy and hypercholesterolemic hearts. In conclusions, hyperchoesterolemia abrogated sevoflurane-induced cardioprotection against IR injury by alteration of upstream signaling of GSK3β and acute GSK inhibition may provide a novel therapeutic strategy to protect hypercholesterolemic hearts against IR injury.

  1. Radiation-induced heart injury. Radiopathological study

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Y; Niibe, H [Gunma Univ., Maebashi (Japan). School of Medicine

    1975-11-01

    In order to identify radiation-induced heart injury and to differentiate it from heart disease, an attempt was made to clarify post-irradiation heart injury by investigating the histological changes which occur during the interval between the irradiation and the time of demonstrable histological changes. A study was made of 83 autopsies in which most of the primary neoplasms were breast cancers, lung cancers and mediastinal tumors. In 43 of these autopsies the heart had been irradiated. Sixty eight dd-strain mice were also used for microautoradiographic study. Histological changes in the heart were observed in 27 of the 43 cases receiving irradiation. The limit of the tolerance dose to the heart for indicating histological changes was 1220 ret in humans. The latent period without histological changes was 2.7 months after initiation of radiation therapy. Greater heart injury was observed after re-irradiation or after the combined therapy of radiation and chemotherapy especially mitomycin (MMC). The histological findings after treatment with MMC were similar to those of radiation-induced heart injury. Results of the study indicate that the damage is secondary to radiation-induced changes of the vascula connective tissue.

  2. Montelukast induced acute hepatocellular liver injury

    Directory of Open Access Journals (Sweden)

    Harugeri A

    2009-01-01

    Full Text Available A 46-year-old male with uncontrolled asthma on inhaled albuterol and formoterol with budesonide was commenced on montelukast. He developed abdominal pain and jaundice 48 days after initiating montelukast therapy. His liver tests showed an increase in serum total bilirubin, conjugated bilirubin, aspartate aminotranferase, alanine aminotranferase, and alkaline phosphatase. The patient was evaluated for possible non-drug related liver injury. Montelukast was discontinued suspecting montelukast induced hepatocellular liver injury. Liver tests began to improve and returned to normal 55 days after drug cessation. Causality of this adverse drug reaction by the Council for International Organizations of Medical Sciences or Roussel Uclaf Causality Assessment Method (CIOMS or RUCAM and Naranjo′s algorithm was ′probable′. Liver tests should be monitored in patients receiving montelukast and any early signs of liver injury should be investigated with a high index of suspicion for drug induced liver injury.

  3. Induced hypernatraemia is protective in acute lung injury.

    Science.gov (United States)

    Bihari, Shailesh; Dixon, Dani-Louise; Lawrence, Mark D; Bersten, Andrew D

    2016-06-15

    Sucrose induced hyperosmolarity is lung protective but the safety of administering hyperosmolar sucrose in patients is unknown. Hypertonic saline is commonly used to produce hyperosmolarity aimed at reducing intra cranial pressure in patients with intracranial pathology. Therefore we studied the protective effects of 20% saline in a lipopolysaccharide lung injury rat model. 20% saline was also compared with other commonly used fluids. Following lipopolysaccharide-induced acute lung injury, male Sprague Dawley rats received either 20% hypertonic saline, 0.9% saline, 4% albumin, 20% albumin, 5% glucose or 20% albumin with 5% glucose, i.v. During 2h of non-injurious mechanical ventilation parameters of acute lung injury were assessed. Hypertonic saline resulted in hypernatraemia (160 (1) mmol/l, mean (SD)) maintained through 2h of ventilation, and in amelioration of lung oedema, myeloperoxidase, bronchoalveolar cell infiltrate, total soluble protein and inflammatory cytokines, and lung histological injury score, compared with positive control and all other fluids (p ≤ 0.001). Lung physiology was maintained (conserved PaO2, elastance), associated with preservation of alveolar surfactant (p ≤ 0.0001). Independent of fluid or sodium load, induced hypernatraemia is lung protective in lipopolysaccharide-induced acute lung injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Impaired TFEB-mediated Lysosome Biogenesis and Autophagy Promote Chronic Ethanol-induced Liver Injury and Steatosis in Mice.

    Science.gov (United States)

    Chao, Xiaojuan; Wang, Shaogui; Zhao, Katrina; Li, Yuan; Williams, Jessica A; Li, Tiangang; Chavan, Hemantkumar; Krishnamurthy, Partha; He, Xi C; Li, Linheng; Ballabio, Andrea; Ni, Hong-Min; Ding, Wen-Xing

    2018-05-18

    Defects in lysosome function and autophagy contribute to pathogenesis of alcoholic liver disease. We investigated the mechanisms by which alcohol consumption affects these processes, evaluating the functions transcription factor EB (TFEB), which regulates lysosomal biogenesis. We performed studies with GFP-LC3 mice, mice with liver-specific deletion of transcription factor EB (TFEB), mice with disruption of the transcription factor E3 gene (TFE3-knockout mice), mice with disruption of the Tefb and Tfe3 genes (TFEB, TFE3 double-knockout mice), and Tfeb flox/flox albumin cre-negative mice (controls). TFEB was overexpressed from adenoviral vectors or knocked down with small interfering RNAs in mouse livers. Mice were placed on diets of chronic ethanol feeding plus an acute binge to induce liver damage (ethanol diet); some mice were also given injections of torin1, an inhibitor of the kinase activity of the mechanistic target of rapamycin (mTOR). Liver tissues were collected and analyzed by immunohistochemistry, immunoblots, and quantitative real-time PCR to monitor lysosome biogenesis. We analyzed levels of TFEB in liver tissues from patients with alcoholic hepatitis and from healthy donors (controls) by immunohistochemistry. Liver tissues from mice on the ethanol diet had lower levels of total and nuclear TFEB, compared with control mice, and hepatocytes had reduced lysosome biogenesis and autophagy. Hepatocytes from mice on the ethanol diet had increased translocation of mTOR into lysosomes, resulting increased mTOR activation. Administration of torin1 increased liver levels of TFEB and reduced steatosis and liver injury induced by ethanol. Mice that overexpressed TFEB in liver developed less-severe ethanol-induced liver injury and had increased lysosomal biogenesis and mitochondrial bioenergetics compared to mice carrying a control vector. Mice with knockdown of TFEB, as well as TFEB, TFE3 double-knockout mice, developed more severe liver injury in response to the

  5. Biomarkers of drug-induced vascular injury

    International Nuclear Information System (INIS)

    Brott, D.; Gould, S.; Jones, H.; Schofield, J.; Prior, H.; Valentin, J.P; Bjurstrom, S.; Kenne, K.; Schuppe-Koistinen, I.; Katein, A.; Foster-Brown, L.; Betton, G.; Richardson, R.; Evans, G.; Louden, C.

    2005-01-01

    In pre-clinical safety studies, drug-induced vascular injury is an issue of concern because there are no obvious diagnostic markers for pre-clinical or clinical monitoring and there is an intellectual gap in our understanding of the pathogenesis of this lesion. While vasodilatation and increased shear stress appear to play a role, the exact mechanism(s) of injury to the primary targets, smooth muscle and endothelial cells are unknown. However, evaluation of novel markers for potential clinical monitoring with a mechanistic underpinning would add value in risk assessment and management. This mini review focuses on the progress to identify diagnostic markers of drug-induced vascular injury. Von Willebrand factor (vWF), released upon perturbation of endothelial cells, is transiently increased in plasma prior to morphological evidence of damage in dogs or rats treated with vascular toxicants. Therefore, vWF might be a predictive biomarker of vascular injury. However, vWF is not an appropriate biomarker of lesion progression or severity since levels return to baseline values when there is morphological evidence of injury. A potential mechanistically linked biomarker of vascular injury is caveolin-1. Expression of this protein, localized primarily to smooth muscle and endothelial cells, decreases with the onset of vascular damage. Since vascular injury involves multiple mediators and cell types, evaluation of a panel rather than a single biomarker may be more useful in monitoring early and severe progressive vascular injury

  6. Functional implications of corticospinal tract impairment on gait after spinal cord injury

    DEFF Research Database (Denmark)

    Barthélemy, Dorothy; Knudsen, Hanne; Willerslev-Olsen, Maria

    2013-01-01

    elevation with clinical physiotherapy tests.Setting:Cross-sectional study, laboratory and clinical settings.Methods:A total of 24 individuals with SCI (American Spinal Injury Association (ASIA) Impairment Scale D) were recruited. Maximum toe elevation during the swing phase of treadmill gait was measured...... indicate that maximum toe elevation, which is directly correlated with CST impairment, is functionally relevant as it also correlates with timed clinical tests, LEMS and sensory scores.Spinal Cord advance online publication, 13 August 2013; doi:10.1038/sc.2013.84....

  7. Social Cognition Impairments in Relation to General Cognitive Deficits, Injury Severity, and Prefrontal Lesions in Traumatic Brain Injury Patients

    NARCIS (Netherlands)

    Spikman, Jacoba M.; Timmerman, Marieke E.; Milders, Maarten V.; Veenstra, Wencke S.; van der Naalt, Joukje

    2012-01-01

    Impairments in social behavior are frequently found in moderate to severe traumatic brain injury (TBI) patients and are associated with an unfavorable outcome with regard to return to work and social reintegration. Neuropsychological tests measuring aspects of social cognition are thought to be

  8. Protective effects of compound FLZ on β-amyloid peptide-(25-35)-induced mouse hippocampal injury and learning and memory impairment

    Institute of Scientific and Technical Information of China (English)

    Fang FANG; Geng-tao LIU

    2006-01-01

    Aim: To study the protective effects of compound FLZ, a novel synthetic analogue of natural squamosamide, on learning and memory impairment and lesions of the hippocampus caused by icv injection of β-amyloid25-35 (Aβ25-35) in mice. Methods: Mice were icv injected with the Aβ25-35 (15 nmol/mouse), and then treated with oral administration of 75 mg/kg or 150 mg/kg of FLZ once daily for 16 consecutive days. The impairment of learning and memory in mice were tested using step-down test and Morris water maze test. The content of malondialdehyde (MDA) and the expressions of acetylcholinesterase (AChE), Bax, and Bcl-2 in the CA1 region of the mouse hippocampus were measured by biochemical and immu-nohistochemical analysis, respectively. The pathological damages of hippocampus were observed using a microscope. Results: FLZ (75 mg/kg, 150 mg/kg) significantly attenuated Aβ25-35-induced impairment of learning and memory in the step-down test and Morris water maze test. FLZ also reduced pathological damages to the hippocampus induced by Aβ25-35 Furthermore, FLZ prevented the increase of AChE and Bax, and the decrease of Bcl-2 immunoreactive cells in the CA1 region of the hippocampus, and reduced the increase of MDA content in the hippocampus in mice injected with Aβ25-35. Conclusion: FLZ has protective action against the impairment of learning and memory and pathological damage to the hippocampus induced by icv injection of Aβ25-35 in mice.

  9. Sevoflurane posttreatment prevents oxidative and inflammatory injury in ventilator-induced lung injury.

    Directory of Open Access Journals (Sweden)

    Julie Wagner

    Full Text Available Mechanical ventilation is a life-saving clinical treatment but it can induce or aggravate lung injury. New therapeutic strategies, aimed at reducing the negative effects of mechanical ventilation such as excessive production of reactive oxygen species, release of pro-inflammatory cytokines, and transmigration as well as activation of neutrophil cells, are needed to improve the clinical outcome of ventilated patients. Though the inhaled anesthetic sevoflurane is known to exert organ-protective effects, little is known about the potential of sevoflurane therapy in ventilator-induced lung injury. This study focused on the effects of delayed sevoflurane application in mechanically ventilated C57BL/6N mice. Lung function, lung injury, oxidative stress, and inflammatory parameters were analyzed and compared between non-ventilated and ventilated groups with or without sevoflurane anesthesia. Mechanical ventilation led to a substantial induction of lung injury, reactive oxygen species production, pro-inflammatory cytokine release, and neutrophil influx. In contrast, sevoflurane posttreatment time dependently reduced histological signs of lung injury. Most interestingly, increased production of reactive oxygen species was clearly inhibited in all sevoflurane posttreatment groups. Likewise, the release of the pro-inflammatory cytokines interleukin-1β and MIP-1β and neutrophil transmigration were completely prevented by sevoflurane independent of the onset of sevoflurane administration. In conclusion, sevoflurane posttreatment time dependently limits lung injury, and oxidative and pro-inflammatory responses are clearly prevented by sevoflurane irrespective of the onset of posttreatment. These findings underline the therapeutic potential of sevoflurane treatment in ventilator-induced lung injury.

  10. Ramipril mitigates radiation-induced impairment of neurogenesis in the rat dentate gyrus

    International Nuclear Information System (INIS)

    Jenrow, Kenneth A; Brown, Stephen L; Liu, Jianguo; Kolozsvary, Andrew; Lapanowski, Karen; Kim, Jae Ho

    2010-01-01

    Sublethal doses of whole brain irradiation (WBI) are commonly administered therapeutically and frequently result in late delayed radiation injuries, manifesting as severe and irreversible cognitive impairment. Neural progenitors within the subgranular zone (SGZ) of the dentate gyrus are among the most radiosensitive cell types in the adult brain and are known to participate in hippocampal plasticity and normal cognitive function. These progenitors and the specialized SZG microenvironment required for neuronal differentiation are the source of neurogenic potential in the adult dentate gyrus, and provide a continuous supply of immature neurons which may then migrate into the adjacent granule cell layer to become mature granule cell neurons. The extreme radiosensitivity of these progenitors and the SGZ microenvironment suggests the hippocampus as a prime target for radiation-induced cognitive impairment. The brain renin-angiotensin system (RAS) has previously been implicated as a potent modulator of neurogenesis within the SGZ and selective RAS inhibitors have been implicated as mitigators of radiation brain injury. Here we investigate the angiotensin converting enzyme (ACE) inhibitor, ramipril, as a mitigator of radiation injury in this context. Adult male Fisher 344 rats received WBI at doses of 10 Gy and 15 Gy. Ramipril was administered beginning 24 hours post-WBI and maintained continuously for 12 weeks. Ramipril produced small but significant reductions in the deleterious effects of radiation on progenitor proliferation and neuronal differentiation in the rat dentate gyrus following 10 Gy-WBI, but was not effective following 15 Gy-WBI. Ramipril also reduced the basal rate of neurogenesis within the SGZ in unirradiated control rats. Our results indicate that chronic ACE inhibition with ramipril, initiated 24 hours post-irradiation, may reduce apoptosis among SGZ progenitors and/or inflammatory disruption of neurogenic signaling within SGZ microenvironment, and

  11. Parcellating the neuroanatomical basis of impaired decision-making in traumatic brain injury.

    Science.gov (United States)

    Newcombe, Virginia F J; Outtrim, Joanne G; Chatfield, Doris A; Manktelow, Anne; Hutchinson, Peter J; Coles, Jonathan P; Williams, Guy B; Sahakian, Barbara J; Menon, David K

    2011-03-01

    Cognitive dysfunction is a devastating consequence of traumatic brain injury that affects the majority of those who survive with moderate-to-severe injury, and many patients with mild head injury. Disruption of key monoaminergic neurotransmitter systems, such as the dopaminergic system, may play a key role in the widespread cognitive dysfunction seen after traumatic axonal injury. Manifestations of injury to this system may include impaired decision-making and impulsivity. We used the Cambridge Gambling Task to characterize decision-making and risk-taking behaviour, outside of a learning context, in a cohort of 44 patients at least six months post-traumatic brain injury. These patients were found to have broadly intact processing of risk adjustment and probability judgement, and to bet similar amounts to controls. However, a patient preference for consistently early bets indicated a higher level of impulsiveness. These behavioural measures were compared with imaging findings on diffusion tensor magnetic resonance imaging. Performance in specific domains of the Cambridge Gambling Task correlated inversely and specifically with the severity of diffusion tensor imaging abnormalities in regions that have been implicated in these cognitive processes. Thus, impulsivity was associated with increased apparent diffusion coefficient bilaterally in the orbitofrontal gyrus, insula and caudate; abnormal risk adjustment with increased apparent diffusion coefficient in the right thalamus and dorsal striatum and left caudate; and impaired performance on rational choice with increased apparent diffusion coefficient in the bilateral dorsolateral prefrontal cortices, and the superior frontal gyri, right ventrolateral prefrontal cortex, the dorsal and ventral striatum, and left hippocampus. Importantly, performance in specific cognitive domains of the task did not correlate with diffusion tensor imaging abnormalities in areas not implicated in their performance. The ability to

  12. Effects of quercetin on kidney injury induced by doxorubicin.

    Science.gov (United States)

    Yagmurca, M; Yasar, Z; Bas, O

    2015-01-01

    The anthracycline antitumor drug doxorubicine causes severe nephrotoxicity in a variety of experimental animals and may be nephrotoxic to humans. The aim of present study was to determine the protective effects of quercetin against doxorubicin-induced kidney injury with light microscopy. Forty male Wistar albino rats were divided into four groups: control, doxorubicin, doxorubicin+quercetin and quercetin. A single dose of 20 mg/kg/ i.p. doxorubicin was used to induce injury. Quercetin was administrated orally against doxorubicin toxicity. The kidneys were examined under light microscopy after H-E (hematoxylin-eosin) staining and the changes were scored. Significant tissue injury was observed in doxorubicin-administered group. Among these injuries, renal tubular dilatation, tubular vacuolar changes, glomerular vacuolization, decrease in bowman space, bowman capsule thickening, and interstitial infiltration were evident. However, the injury induced by doxorubicin was attenuated with quercetin administration. Quercetin decreased doxorubicin-induced kidney damage (Tab. 1, Fig. 4, Ref. 27).

  13. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice.

    Science.gov (United States)

    Toth, Peter; Tucsek, Zsuzsanna; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2014-12-01

    Aging impairs autoregulatory protection in the brain, exacerbating hypertension-induced cerebromicrovascular injury, neuroinflammation, and development of vascular cognitive impairment. Despite the importance of the age-related decline in circulating insulin-like growth factor-1 (IGF-1) levels in cerebrovascular aging, the effects of IGF-1 deficiency on functional adaptation of cerebral arteries to high blood pressure remain elusive. To determine whether IGF-1 deficiency impairs autoregulatory protection, hypertension was induced in control and IGF-1-deficient mice (Igf1(f/f)+TBG-iCre-AAV8) by chronic infusion of angiotensin-II. In hypertensive control mice, cerebral blood flow (CBF) autoregulation was extended to higher pressure values and the pressure-induced tone of middle cerebral arteries (MCAs) was increased. In hypertensive IGF-1-deficient mice, autoregulation was markedly disrupted, and MCAs did not show adaptive increases in myogenic tone. In control mice, the mechanism of adaptation to hypertension involved upregulation of TRPC channels in MCAs and this mechanism was impaired in hypertensive IGF-1-deficient mice. Likely downstream consequences of cerebrovascular autoregulatory dysfunction in hypertensive IGF-1-deficient mice included exacerbated disruption of the blood-brain barrier and neuroinflammation (microglia activation and upregulation of proinflammatory cytokines and chemokines), which were associated with impaired hippocampal cognitive function. Collectively, IGF-1 deficiency impairs autoregulatory protection in the brain of hypertensive mice, potentially exacerbating cerebromicrovascular injury and neuroinflammation mimicking the aging phenotype.

  14. Amphiphile-induced heart muscle-cell (myocyte) injury: effects of intracellular fatty acid overload.

    Science.gov (United States)

    Janero, D R; Burghardt, C; Feldman, D

    1988-10-01

    Lipid amphiphile toxicity may be an important contributor to myocardial injury, especially during ischemia/reperfusion. In order to investigate directly the potential biochemical and metabolic effects of amphiphile overload on the functioning heart muscle cell (myocyte), a novel model of nonesterified fatty acid (NEFA)-induced myocyte damage has been defined. The model uses intact, beating neonatal rat myocytes in primary monolayer culture as a study object and 5-(tetradecyloxy)-2-furoic acid (TOFA) as a nonmetabolizable fatty acid. Myocytes incubated with TOFA accumulated it as NEFA, and the consequent NEFA amphiphile overload elicited a variety of cellular defects (including decreased beating rate, depletion of high-energy stores and glycogen pools, and breakdown of myocyte membrane phospholipid) and culminated in cell death. The amphiphile-induced cellular pathology could be reversed by removing TOFA from the culture medium, which resulted in intracellular TOFA "wash-out." Although the development and severity of amphiphile-induced myocyte injury could be correlated with both the intracellular TOFA/NEFA content (i.e., the level of TOFA to which the cells were exposed) and the duration of this exposure, removal of amphiphile overload did not inevitably lead to myocyte recovery. TOFA had adverse effects on myocyte mitochondrial function in situ (decoupling of oxidative phosphorylation, impairing respiratory control) and on myocyte oxidative catabolism (transiently increasing fatty acid beta oxidation, citric acid cycle flux, and glucose oxidation). The amphiphile-induced bioenergetic abnormalities appeared to constitute a state of "metabolic anoxia" underlying the progression of myocyte injury to cell death. This anoxic state could be ameliorated to some extent, but not prevented, by carbohydrate catabolism.

  15. Review of sport-induced groin injuries.

    Science.gov (United States)

    Sedaghati, Parisa; Alizadeh, Mohammad-Hossein; Shirzad, Elham; Ardjmand, Abolfazl

    2013-12-01

    Groin injuries are among the most common injuries co-existing with sports. The aim of this review was to outline the epidemiology and identify risk factors, as well as examine preventative and interventional measures for reducing the occurrence of this form of injury among athletes. An electronic, systematic search for relevant keywords, either separately or in combination was sought in the academic scientific databases. Groin injuries, acute or chronic, consist of a high percentage of injuries that manifest with pain. Despite the specific tendency for injury among some sports, such injuries make up 2-5% of sport-induced injuries. There are few available reports on lower limb injuries, especially groin injuries, in Iran. Numerous factors predispose to groin injuries. A lengthy list of preventive/ treatment measures, from preliminary to sophisticated, have been proposed. Although using a programmed strategy designed to decrease the risk of groin injuries by taking a strategic approach to exercise may alleviate complications, in some cases the chronic nature of the injury may threaten the professional life of the athlete. More research is required to plan suitable programs for reducing the risk of this type of injury in athletes.

  16. Experimentally-induced dissociation impairs visual memory.

    Science.gov (United States)

    Brewin, Chris R; Mersaditabari, Niloufar

    2013-12-01

    Dissociation is a phenomenon common in a number of psychological disorders and has been frequently suggested to impair memory for traumatic events. In this study we explored the effects of dissociation on visual memory. A dissociative state was induced experimentally using a mirror-gazing task and its short-term effects on memory performance were investigated. Sixty healthy individuals took part in the experiment. Induced dissociation impaired visual memory performance relative to a control condition; however, the degree of dissociation was not associated with lower memory scores in the experimental group. The results have theoretical and practical implications for individuals who experience frequent dissociative states such as patients with posttraumatic stress disorder (PTSD). Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Fibroblast-Specific Deletion of Hypoxia Inducible Factor-1 Critically Impairs Murine Cutaneous Neovascularization and Wound Healing.

    Science.gov (United States)

    Duscher, Dominik; Maan, Zeshaan N; Whittam, Alexander J; Sorkin, Michael; Hu, Michael S; Walmsley, Graham G; Baker, Hutton; Fischer, Lauren H; Januszyk, Michael; Wong, Victor W; Gurtner, Geoffrey C

    2015-11-01

    Diabetes and aging are known risk factors for impaired neovascularization in response to ischemic insult, resulting in chronic wounds, and poor outcomes following myocardial infarction and cerebrovascular injury. Hypoxia-inducible factor (HIF)-1α, has been identified as a critical regulator of the response to ischemic injury and is dysfunctional in diabetic and elderly patients. To better understand the role of this master hypoxia regulator within cutaneous tissue, the authors generated and evaluated a fibroblast-specific HIF-1α knockout mouse model. The authors generated floxed HIF-1 mice (HIF-1) by introducing loxP sites around exon 1 of the HIF-1 allele in C57BL/6J mice. Fibroblast-restricted HIF-1α knockout (FbKO) mice were generated by breeding our HIF-1 with tamoxifen-inducible Col1a2-Cre mice (Col1a2-CreER). HIF-1α knockout was evaluated on a DNA, RNA, and protein level. Knockout and wild-type mice were subjected to ischemic flap and wound healing models, and CD31 immunohistochemistry was performed to assess vascularity of healed wounds. Quantitative real-time polymerase chain reaction of FbKO skin demonstrated significantly reduced Hif1 and Vegfa expression compared with wild-type. This finding was confirmed at the protein level (p wound closure and vascularity (p wound healing, reduced wound vascularity, and significant impairment in the ischemic neovascular response. These findings provide new insight into the importance of cell-specific responses to hypoxia during cutaneous neovascularization.

  18. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    Energy Technology Data Exchange (ETDEWEB)

    Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751 (Egypt); Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Omar, Hany A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Maghrabi, Ibrahim A. [Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); AlSaeed, Mohammed S. [Department of Surgery, College of Medicine, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); EL-Tarras, Adel E. [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia)

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  19. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    International Nuclear Information System (INIS)

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  20. Dose-dependency and reversibility of radiation-induced injury in cardiac explant-derived cells of mice

    Science.gov (United States)

    Luo, Lan; Yan, Chen; Urata, Yoshishige; Hasan, Al Shaimaa; Goto, Shinji; Guo, Chang-Ying; Zhang, Shouhua; Li, Tao-Sheng

    2017-01-01

    We evaluated the dose-dependency and reversibility of radiation-induced injury in cardiac explant-derived cells (CDCs), a mixed cell population grown from heart tissues. Adult C57BL/6 mice were exposed to 0, 10, 50 and 250 mGy γ-rays for 7 days and atrial tissues were collected for experiments 24 hours after last exposure. The number of CDCs was significantly decreased by daily exposure to over 250 mGy. Interestingly, daily exposure to over 50 mGy significantly decreased the c-kit expression and telomerase activity, increased 53BP1 foci in the nuclei of CDCs. However, CD90 expression and growth factors production in CDCs were not significantly changed even after daily exposure to 250 mGy. We further evaluated the reversibility of radiation-induced injury in CDCs at 1 week and 3 weeks after a single exposure to 3 Gy γ-rays. The number and growth factors production of CDCs were soon recovered at 1 week. However, the increased expression of CD90 were retained at 1 week, but recovered at 3 weeks. Moreover, the decreased expression of c-kit, impaired telomerase activity, and increased 53BP1 foci were poorly recovered even at 3 weeks. These data may help us to find the most sensitive and reliable bio-parameter(s) for evaluating radiation-induced injury in CDCs. PMID:28098222

  1. Rare acute kidney injury secondary to hypothyroidism-induced rhabdomyolysis.

    Science.gov (United States)

    Cai, Ying; Tang, Lin

    2013-01-01

    Acute kidney injury (AKI) caused by hypothyroidism-induced rhabdomyolysis is a rare and potentially life-threatening syndrome. The aim of this study was to investigate the clinical characteristics of such patients. We retrospectively analyzed five patients treated at the Second Affiliated Hospital of Chongqing Medical University with AKI secondary to hypothyroidism- induced rhabdomyolysis from January 2006 to December 2010. Of the five cases reviewed (4 males, age range of 37 to 62 years), adult primary hypothyroidism was caused by amiodarone (1 case), chronic autoimmune thyroiditis (1 case), and by uncertain etiologies (3 cases). All patients presented with facial and lower extremity edema. Three patients presented with weakness, while two presented with blunted facies and oliguria. Only one patient reported experiencing myalgia and proximal muscle weakness, in addition to fatigue and chills. Creatine kinase, lactate dehydrogenase, and renal function normalized after thyroid hormone replacement, except in two patients who improved through blood purification. Hypothyroidism should be considered in patients presenting with renal impairment associated with rhabdomyolysis. Moreover, further investigation into the etiology of the hypothyroidism is warranted.

  2. Neutrophil elastase-induced elastin degradation mediates macrophage influx and lung injury in 60% O2-exposed neonatal rats.

    Science.gov (United States)

    Masood, Azhar; Yi, Man; Belcastro, Rosetta; Li, Jun; Lopez, Lianet; Kantores, Crystal; Jankov, Robert P; Tanswell, A Keith

    2015-07-01

    Neutrophil (PMNL) influx precedes lung macrophage (LM) influx into the lung following exposure of newborn pups to 60% O2. We hypothesized that PMNL were responsible for the signals leading to LM influx. This was confirmed when inhibition of PMNL influx with a CXC chemokine receptor-2 antagonist, SB-265610, also prevented the 60% O2-dependent LM influx, LM-derived nitrotyrosine formation, and pruning of small arterioles. Exposure to 60% O2 was associated with increased lung contents of neutrophil elastase and α-elastin, a marker of denatured elastin, and a decrease in elastin fiber density. This led us to speculate that neutrophil elastase-induced elastin fragments were the chemokines that led to a LM influx into the 60% O2-exposed lung. Inhibition of neutrophil elastase with sivelestat or elafin attenuated the LM influx. Sivelestat also attenuated the 60% O2-induced decrease in elastin fiber density. Daily injections of pups with an antibody to α-elastin prevented the 60% O2-dependent LM influx, impaired alveologenesis, and impaired small vessel formation. This suggests that neutrophil elastase inhibitors may protect against neonatal lung injury not only by preventing structural elastin degradation, but also by blocking elastin fragment-induced LM influx, thus preventing tissue injury from LM-derived peroxynitrite formation. Copyright © 2015 the American Physiological Society.

  3. Repeated mild closed head injury impairs short-term visuospatial memory and complex learning.

    Science.gov (United States)

    Hylin, Michael J; Orsi, Sara A; Rozas, Natalia S; Hill, Julia L; Zhao, Jing; Redell, John B; Moore, Anthony N; Dash, Pramod K

    2013-05-01

    Concussive force can cause neurocognitive and neurobehavioral dysfunction by inducing functional, electrophysiological, and/or ultrastructural changes within the brain. Although concussion-triggered symptoms typically subside within days to weeks in most people, in 15%-20% of the cases, symptomology can continue beyond this time point. Problems with memory, attention, processing speed, and cognitive flexibility (e.g., problem solving, conflict resolution) are some of the prominent post-concussive cognitive symptoms. Repeated concussions (with loss or altered consciousness), which are common to many contact sports, can exacerbate these symptoms. The pathophysiology of repeated concussions is not well understood, nor is an effective treatment available. In order to facilitate drug discovery to treat post-concussive symptoms (PCSs), there is a need to determine if animal models of repeated mild closed head injury (mCHI) can mimic the neurocognitive and histopathological consequences of repeated concussions. To this end, we employed a controlled cortical impact (CCI) device to deliver a mCHI directly to the skull of mice daily for 4 days, and examined the ensuing neurological and neurocognitive functions using beam balance, foot-fault, an abbreviated Morris water maze test, context discrimination, and active place avoidance tasks. Repeated mCHI exacerbated vestibulomotor, motor, short-term memory and conflict learning impairments as compared to a single mCHI. Learning and memory impairments were still observed in repeated mCHI mice when tested 3 months post-injury. Repeated mCHI also reduced cerebral perfusion, prolonged the inflammatory response, and in some animals, caused hippocampal neuronal loss. Our results show that repeated mCHI can reproduce some of the deficits seen after repeated concussions in humans and may be suitable for drug discovery studies and translational research.

  4. Post-traumatic amnesia predicts intelligence impairment following traumatic brain injury: a meta-analysis

    NARCIS (Netherlands)

    Konigs, M.; de Kieviet, J.F.; Oosterlaan, J.

    2012-01-01

    Context: Worldwide, millions of patients with traumatic brain injury (TBI) suffer from persistent and disabling intelligence impairment. Post-traumatic amnesia (PTA) duration is a promising predictor of intelligence following TBI. Objectives: To determine (1) the impact of TBI on intelligence

  5. Trauma hemorrhagic shock-induced lung injury involves a gut-lymph-induced TLR4 pathway in mice.

    Directory of Open Access Journals (Sweden)

    Diego C Reino

    Full Text Available Injurious non-microbial factors released from the stressed gut during shocked states contribute to the development of acute lung injury (ALI and multiple organ dysfunction syndrome (MODS. Since Toll-like receptors (TLR act as sensors of tissue injury as well as microbial invasion and TLR4 signaling occurs in both sepsis and noninfectious models of ischemia/reperfusion (I/R injury, we hypothesized that factors in the intestinal mesenteric lymph after trauma hemorrhagic shock (T/HS mediate gut-induced lung injury via TLR4 activation.The concept that factors in T/HS lymph exiting the gut recreates ALI is evidenced by our findings that the infusion of porcine lymph, collected from animals subjected to global T/HS injury, into naïve wildtype (WT mice induced lung injury. Using C3H/HeJ mice that harbor a TLR4 mutation, we found that TLR4 activation was necessary for the development of T/HS porcine lymph-induced lung injury as determined by Evan's blue dye (EBD lung permeability and myeloperoxidase (MPO levels as well as the induction of the injurious pulmonary iNOS response. TRIF and Myd88 deficiency fully and partially attenuated T/HS lymph-induced increases in lung permeability respectively. Additional studies in TLR2 deficient mice showed that TLR2 activation was not involved in the pathology of T/HS lymph-induced lung injury. Lastly, the lymph samples were devoid of bacteria, endotoxin and bacterial DNA and passage of lymph through an endotoxin removal column did not abrogate the ability of T/HS lymph to cause lung injury in naïve mice.Our findings suggest that non-microbial factors in the intestinal mesenteric lymph after T/HS are capable of recreating T/HS-induced lung injury via TLR4 activation.

  6. Edaravone attenuates intracerebroventricular streptozotocin-induced cognitive impairment in rats.

    Science.gov (United States)

    Reeta, K H; Singh, Devendra; Gupta, Yogendra K

    2017-04-01

    Alzheimer's disease is a major cause of dementia worldwide. Edaravone, a potent free radical scavenger, is reported to be neuroprotective. The present study was designed to investigate the effect of chronic edaravone administration on intracerebroventricular-streptozotocin (ICV-STZ) induced cognitive impairment in male Wistar rats. Cognitive impairment was developed by single ICV-STZ (3 mg/kg) injection bilaterally on day 1. Edaravone (1, 3 and 10 mg/kg, orally, once daily) was administered for 28 days. Morris water maze and passive avoidance tests were used to assess cognitive functions at baseline and on days 14 and 28. ICV-STZ caused cognitive impairment as evidenced by increased escape latency and decreased time spent in target quadrant in the Morris water maze test and reduced retention latency in the passive avoidance test. STZ caused increase in oxidative stress, cholinesterases, inflammatory cytokines and protein expression of ROCK-II and decrease in protein expression of ChAT. Edaravone ameliorated the STZ-induced cognitive impairment. STZ-induced increase in oxidative stress and increased levels of pro-inflammatory cytokines (TNF-α, IL-1β) were mitigated by edaravone. Edaravone also prevented STZ-induced increased protein expression of ROCK-II. Moreover, edaravone significantly prevented STZ-induced increased activity of cholinesterases in the cortex and hippocampus. The decreased expression of ChAT caused by STZ was brought towards normal by edaravone in the hippocampus. The results thus show that edaravone is protective against STZ-induced cognitive impairment, oxidative stress, cholinergic dysfunction and altered protein expressions. This study thus suggests the potential of edaravone as an adjuvant in the treatment of Alzheimer's disease. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Depletion of kidney CD11c+ F4/80+ cells impairs the recovery process in ischaemia/reperfusion-induced acute kidney injury.

    Science.gov (United States)

    Kim, Myung-Gyu; Boo, Chang Su; Ko, Yoon Sook; Lee, Hee Young; Cho, Won Yong; Kim, Hyoung Kyu; Jo, Sang-Kyung

    2010-09-01

    Recent studies provided evidence of the potential role of CD11c(+) F4/80(+) dendritic subset in mediating injury and repair. The purpose of this study was to examine the role of kidney CD11c(+) F4/80(+) dendritic subset in the recovery phase of ischaemia/reperfusion injury (IRI). Following ischaemia/reperfusion (I/R), liposome clodronate or phosphate buffered saline (PBS) was administered, and on day 7 biochemical and histologic kidney damage was assessed. Activation and depletion of CD11c(+) F4/80(+) dendritic subset were confirmed by flow cytometry. Isolation of kidney CD11c(+) cells on days 1 and 7 with in vitro culture for measuring cytokines was performed to define functional characteristics of these cells, and adoptive transfer of CD11c(+) cells was also done. Following kidney IRI, the percentage of CD11c(+) F4/80(+) kidney dendritic cell subset that co-expresses maturation marker increased. Liposome clodronate injection after I/R resulted in preferential depletion of CD11c(+) F4/80(+) kidney dendritic subset, and depletion of these cells was associated with persistent kidney injury, more apoptosis, inflammation and impaired tubular cell proliferation. CD11c(+) F4/80(+) cell depletion was also associated with higher tissue levels of pro-inflammatory cytokines and lower level of IL-10, indicating the persistence of inflammatory milieu. Isolated kidney CD11c(+) cells on day 7 showed different phenotype with increased production of IL-10 compared with those on day 1. Adoptive transfer of CD11c(+) cells partially reversed impaired tissue recovery. Our results suggest that kidney CD11c(+) F4/80(+) dendritic subset might contribute to the recovery process by dynamic phenotypic change from pro-inflammatory to anti-inflammatory with modulation of immune response.

  8. Mesenchymal stem cells ameliorate rhabdomyolysis-induced acute kidney injury via the activation of M2 macrophages

    Science.gov (United States)

    2014-01-01

    Introduction The mortality of rhabdomyolysis-induced acute kidney injury (AKI) is still high, as there is no effective therapy. It has been shown that bone marrow-derived mesenchymal stem cells (MSCs) can induce M2 macrophages, which mediate MSC protection in other experimental inflammation-related organ injury. This study was designed to investigate the protective effects of macrophage activation in MSC therapy of rhabdomyolysis-induced AKI. Methods MSCs were injected into glycerol-induced rhabdomyolysis mice. Renal injury was evaluated using the serum creatinine, urea nitrogen, renal pathology and acute tubular necrosis score. The distribution of MSCs was detected using two-photon fluorescence confocal imaging. Immunofluorescence of anti-F4/80 and anti-CD206 was performed to determine macrophages and M2 macrophages in the tissues of the kidney, and M2 macrophage infiltration was also evaluated using western blotting analyses. After depletion of macrophages using clodronate liposomes at the phase of kidney repair, renal injury was re-evaluated. RAW 264.7 macrophages were incubated with lipopolysaccharide and co-cultured with MSCs and subsequently visualised using immunofluorescence staining and flow cytometry analysis. Finally, disparate phenotype macrophages, including normal macrophages (M0), lipopolysaccharide-stimulated macrophages (M1), and MSC-co-cultured macrophages (M2), were infused into mice with AKI, which were pre-treated with liposomal clodronate. Results In vivo infusion of MSCs protected AKI mice from renal function impairment and severe tubular injury, which was accompanied by a time-dependent increase in CD206-positive M2 macrophage infiltration. In addition, depleting macrophages with clodronate delayed restoration of AKI. In vitro, macrophages co-cultured with MSCs acquired an anti-inflammatory M2 phenotype, which was characterised by an increased expression of CD206 and the secretory cytokine interleukin (IL)-10. The concentrations of IL-10, IL

  9. Nicotinamide exacerbates hypoxemia in ventilator-induced lung injury independent of neutrophil infiltration.

    Directory of Open Access Journals (Sweden)

    Heather D Jones

    Full Text Available Ventilator-induced lung injury is a form of acute lung injury that develops in critically ill patients on mechanical ventilation and has a high degree of mortality. Nicotinamide phosphoribosyltransferase is an enzyme that is highly upregulated in ventilator-induced lung injury and exacerbates the injury when given exogenously. Nicotinamide (vitamin B3 directly inhibits downstream pathways activated by Nicotinamide phosphoribosyltransferase and is protective in other models of acute lung injury.We administered nicotinamide i.p. to mice undergoing mechanical ventilation with high tidal volumes to study the effects of nicotinamide on ventilator-induced lung injury. Measures of injury included oxygen saturations and bronchoalveolar lavage neutrophil counts, protein, and cytokine levels. We also measured expression of nicotinamide phosophoribosyltransferase, and its downstream effectors Sirt1 and Cebpa, Cebpb, Cebpe. We assessed the effect of nicotinamide on the production of nitric oxide during ventilator-induced lung injury. We also studied the effects of ventilator-induced lung injury in mice deficient in C/EBPε.Nicotinamide treatment significantly inhibited neutrophil infiltration into the lungs during ventilator-induced lung injury, but did not affect protein leakage or cytokine production. Surprisingly, mice treated with nicotinamide developed significantly worse hypoxemia during mechanical ventilation. This effect was not linked to increases in nitric oxide production or alterations in expression of Nicotinamide phosphoribosyl transferase, Sirt1, or Cebpa and Cebpb. Cebpe mRNA levels were decreased with either nicotinamide treatment or mechanical ventilation, but mice lacking C/EBPε developed the same degree of hypoxemia and ventilator-induced lung injury as wild-type mice.Nicotinamide treatment during VILI inhibits neutrophil infiltration of the lungs consistent with a strong anti-inflammatory effect, but paradoxically also leads to the

  10. Drug-induced liver injury due to antibiotics.

    Science.gov (United States)

    Björnsson, Einar S

    Drug-induced liver injury (DILI) is an important differential diagnosis in patients with abnormal liver tests and normal hepatobiliary imaging. Of all known liver diseases, the diagnosis of DILI is probably one of the most difficult one to be established. In all major studies on DILI, antibiotics are the most common type of drugs that have been reported. The clinical phenotype of different types of antibiotics associated with liver injury is highly variable. Some widely used antibiotics such as amoxicillin-clavulanate have been shown to have a delayed onset on liver injury and recently cefazolin has been found to lead to liver injury 1-3 weeks after exposure of a single infusion. The other extreme is the nature of nitrofurantoin-induced liver injury, which can occur after a few years of treatment and lead to acute liver failure (ALF) or autoimmune-like reaction. Most patients with liver injury associated with use of antibiotics have a favorable prognosis. However, patients with jaundice have approximately 10% risk of death from liver failure and/or require liver transplantation. In rare instances, the hepatoxicity can lead to chronic injury and vanishing bile duct syndrome. Given, sometimes very severe consequences of the adverse liver reactions, it cannot be over emphasized that the indication for the different antibiotics should be evidence-based and symptoms and signs of liver injury from the drugs should lead to prompt cessation of therapy.

  11. Minocycline protects against lipopolysaccharide-induced cognitive impairment in mice.

    Science.gov (United States)

    Hou, Yue; Xie, Guanbo; Liu, Xia; Li, Guoxun; Jia, Congcong; Xu, Jinghua; Wang, Bing

    2016-03-01

    The role of glial cells, especially microglia and astrocytes, in neuroinflammation and cognition has been studied intensively. Lipopolysaccharide (LPS), a commonly used inducer of neuroinflammation, can cause cognitive impairment. Minocycline is known to possess potent neuroprotective activity, but its effect on LPS-induced cognitive impairment is unknown. This study aims to investigate the effects of minocycline on LPS-induced cognitive impairment and glial cell activation in mice. Behavioral tests were conducted for cognitive function, immunohistochemistry for microglial and astrocyte response, and quantitative PCR for mRNA expression of proinflammatory cytokines. Minocycline significantly reversed the decreased spontaneous alternation induced by intrahippocampal administration of LPS in the Y-maze task. In the Morris water maze place navigation test, minocycline decreased the escape latency and distance traveled compared to LPS-treated mice. In the probe test, minocycline-treated mice spent more time in the target quadrant and crossed the platform area more frequently than animals in the LPS-treated group. Minocycline produced a significant decrease in the number of Iba-1- and GFAP-positive hippocampal cells compared to the LPS-treated group. Minocycline-treated mice had significantly reduced hippocampal TNF-α and IL-1β mRNA levels compared with LPS-treated animals. Minocycline caused a significant increase in hippocampal BDNF expression compared to the LPS-treated group. Minocycline can attenuate LPS-induced cognitive impairments in mice. This effect may be associated with its action to suppress the activation of microglia and astrocytes and to normalize BDNF expression. Since neuroinflammatory processes and cognitive impairments are implicated in neurodegenerative disorders, minocycline may be a promising candidate for treating such diseases.

  12. Primary blast-induced traumatic brain injury: lessons from lithotripsy

    Science.gov (United States)

    Nakagawa, A.; Ohtani, K.; Armonda, R.; Tomita, H.; Sakuma, A.; Mugikura, S.; Takayama, K.; Kushimoto, S.; Tominaga, T.

    2017-11-01

    Traumatic injury caused by explosive or blast events is traditionally divided into four mechanisms: primary, secondary, tertiary, and quaternary blast injury. The mechanisms of blast-induced traumatic brain injury (bTBI) are biomechanically distinct and can be modeled in both in vivo and in vitro systems. The primary bTBI injury mechanism is associated with the response of brain tissue to the initial blast wave. Among the four mechanisms of bTBI, there is a remarkable lack of information regarding the mechanism of primary bTBI. On the other hand, 30 years of research on the medical application of shock waves (SWs) has given us insight into the mechanisms of tissue and cellular damage in bTBI, including both air-mediated and underwater SW sources. From a basic physics perspective, the typical blast wave consists of a lead SW followed by shock-accelerated flow. The resultant tissue injury includes several features observed in primary bTBI, such as hemorrhage, edema, pseudo-aneurysm formation, vasoconstriction, and induction of apoptosis. These are well-described pathological findings within the SW literature. Acoustic impedance mismatch, penetration of tissue by shock/bubble interaction, geometry of the skull, shear stress, tensile stress, and subsequent cavitation formation are all important factors in determining the extent of SW-induced tissue and cellular injury. In addition, neuropsychiatric aspects of blast events need to be taken into account, as evidenced by reports of comorbidity and of some similar symptoms between physical injury resulting in bTBI and the psychiatric sequelae of post-traumatic stress. Research into blast injury biophysics is important to elucidate specific pathophysiologic mechanisms of blast injury, which enable accurate differential diagnosis, as well as development of effective treatments. Herein we describe the requirements for an adequate experimental setup when investigating blast-induced tissue and cellular injury; review SW physics

  13. Differences in visual vs. verbal memory impairments as a result of focal temporal lobe damage in patients with traumatic brain injury.

    Science.gov (United States)

    Ariza, Mar; Pueyo, Roser; Junqué, Carme; Mataró, María; Poca, María Antonia; Mena, Maria Pau; Sahuquillo, Juan

    2006-09-01

    The aim of the present study was to determine whether the type of lesion in a sample of moderate and severe traumatic brain injury (TBI) was related to material-specific memory impairment. Fifty-nine patients with TBI were classified into three groups according to whether the site of the lesion was right temporal, left temporal or diffuse. Six-months post-injury, visual (Warrington's Facial Recognition Memory Test and Rey's Complex Figure Test) and verbal (Rey's Auditory Verbal Learning Test) memories were assessed. Visual memory deficits assessed by facial memory were associated with right temporal lobe lesion, whereas verbal memory performance assessed with a list of words was related to left temporal lobe lesion. The group with diffuse injury showed both verbal and visual memory impairment. These results suggest a material-specific memory impairment in moderate and severe TBI after focal temporal lesions and a non-specific memory impairment after diffuse damage.

  14. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Cheng; Li, Zhengqian; Qian, Min; Zhou, Yang; Wang, Jun; Guo, Xiangyang, E-mail: puthmzk@163.com

    2015-05-15

    Calcineurin (CaN) over-activation constrains synaptic plasticity and memory formation. Upon CaN activation, NFAT imports into the nucleus and guides its downstream genes, which also affect neuronal and synaptic function. Aberrant CaN/NFAT signaling involves in neurotoxicity and cognitive impairment in neurological disorders such as Alzheimer's disease, but its role in postoperative cognitive dysfunction (POCD) remains uninvestigated. Inhaled anesthetic isoflurane facilitates the development of POCD, and the present study investigated the role of CaN/NFAT signaling in isoflurane induced cognitive impairment of aged rats, and the therapeutic effects of CaN inhibitor cyclosporine A (CsA). The results indicated that hippocampal CaN activity increased and peaked at 6 h after isoflurane exposure, and NFAT, especially NFATc4, imported into the nucleus following CaN activation. Furthermore, phamacological inhibition of CaN by CsA markedly attenuated isoflurane induced aberrant CaN/NFATc4 signaling in the hippocampus, and rescued relevant spatial learning and memory impairment of aged rats. Overall, the study suggests hippocampal CaN/NFAT signaling as the upstream mechanism of isoflurane induced cognitive impairment, and provides potential therapeutic target and possible treatment methods for POCD. - Highlights: • Isoflurane induces hippocampal calcineurin activation. • Isoflurane induces hippocampal NFAT, especially NFATc4, nuclear import. • Cyclosporine A attenuates isoflurane induced aberrant calcineurin/NFAT signaling. • Cyclosporine A rescues isoflurane induced cognitive impairment. • Calcineurin/NFAT signaling is the upstream mechanism of isoflurane induced synaptic dysfunction and cognitive impairment.

  15. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling

    International Nuclear Information System (INIS)

    Ni, Cheng; Li, Zhengqian; Qian, Min; Zhou, Yang; Wang, Jun; Guo, Xiangyang

    2015-01-01

    Calcineurin (CaN) over-activation constrains synaptic plasticity and memory formation. Upon CaN activation, NFAT imports into the nucleus and guides its downstream genes, which also affect neuronal and synaptic function. Aberrant CaN/NFAT signaling involves in neurotoxicity and cognitive impairment in neurological disorders such as Alzheimer's disease, but its role in postoperative cognitive dysfunction (POCD) remains uninvestigated. Inhaled anesthetic isoflurane facilitates the development of POCD, and the present study investigated the role of CaN/NFAT signaling in isoflurane induced cognitive impairment of aged rats, and the therapeutic effects of CaN inhibitor cyclosporine A (CsA). The results indicated that hippocampal CaN activity increased and peaked at 6 h after isoflurane exposure, and NFAT, especially NFATc4, imported into the nucleus following CaN activation. Furthermore, phamacological inhibition of CaN by CsA markedly attenuated isoflurane induced aberrant CaN/NFATc4 signaling in the hippocampus, and rescued relevant spatial learning and memory impairment of aged rats. Overall, the study suggests hippocampal CaN/NFAT signaling as the upstream mechanism of isoflurane induced cognitive impairment, and provides potential therapeutic target and possible treatment methods for POCD. - Highlights: • Isoflurane induces hippocampal calcineurin activation. • Isoflurane induces hippocampal NFAT, especially NFATc4, nuclear import. • Cyclosporine A attenuates isoflurane induced aberrant calcineurin/NFAT signaling. • Cyclosporine A rescues isoflurane induced cognitive impairment. • Calcineurin/NFAT signaling is the upstream mechanism of isoflurane induced synaptic dysfunction and cognitive impairment

  16. Mechanisms of the hepatoprotective effects of tamoxifen against drug-induced and chemical-induced acute liver injuries

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Yukitaka; Miyashita, Taishi; Higuchi, Satonori [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Tsuneyama, Koichi [Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Sugitani, Toyama 930‐0194 (Japan); Endo, Shinya [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Tsukui, Tohru [Research Center for Genomic Medicine, Saitama Medical University, Yamane, Hidaka 350‐1241 (Japan); Toyoda, Yasuyuki; Fukami, Tatsuki; Nakajima, Miki [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan); Yokoi, Tsuyoshi, E-mail: tyokoi@p.kanazawa-u.ac.jp [Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920‐1192 (Japan)

    2012-10-01

    Although estrogen receptor (ER)α agonists, such as estradiol and ethinylestradiol (EE2), cause cholestasis in mice, they also reduce the degree of liver injury caused by hepatotoxicants as well as ischemia–reperfusion. The functional mechanisms of ERα have yet to be elucidated in drug-induced or chemical-induced liver injury. The present study investigated the effects of an ERα agonist, selective ER modulators (SERMs) and an ER antagonist on drug-induced and chemical-induced liver injuries caused by acetaminophen, bromobenzene, diclofenac, and thioacetamide (TA). We observed hepatoprotective effects of EE2, tamoxifen (TAM) and raloxifene pretreatment in female mice that were exposed to a variety of hepatotoxic compounds. In contrast, the ER antagonist did not show any hepatoprotective effects. DNA microarray analyses suggested that monocyte to macrophage differentiation-associated 2 (Mmd2) protein, which has an unknown function, is commonly increased by TAM and RAL pretreatment, but not by pretreatment with the ER antagonist. In ERα-knockout mice, the hepatoprotective effects of TAM and the increased expression of Mmd2 mRNA were not observed in TA-induced liver injury. To investigate the function of Mmd2, the expression level of Mmd2 mRNA was significantly knocked down to approximately 30% in mice by injection of siRNA for Mmd2 (siMmd2). Mmd2 knockdown resulted in a reduction of the protective effects of TAM on TA-induced liver injury in mice. This is the first report of the involvement of ERα in drug-induced or chemical-induced liver injury. Upregulation of Mmd2 protein in the liver was suggested as the mechanism of the hepatoprotective effects of EE2 and SERMs. -- Highlights: ► Liver injury induced by drugs or chemicals was investigated in mice. ► Liver injury was suppressed by pretreatment with tamoxifen in female mice. ► Mmd2, whose function was unknown, could be a candidate gene for liver protection. ► Tamoxifen up-regulated Mmd2 mRNA expression

  17. Mechanisms of the hepatoprotective effects of tamoxifen against drug-induced and chemical-induced acute liver injuries

    International Nuclear Information System (INIS)

    Yoshikawa, Yukitaka; Miyashita, Taishi; Higuchi, Satonori; Tsuneyama, Koichi; Endo, Shinya; Tsukui, Tohru; Toyoda, Yasuyuki; Fukami, Tatsuki; Nakajima, Miki; Yokoi, Tsuyoshi

    2012-01-01

    Although estrogen receptor (ER)α agonists, such as estradiol and ethinylestradiol (EE2), cause cholestasis in mice, they also reduce the degree of liver injury caused by hepatotoxicants as well as ischemia–reperfusion. The functional mechanisms of ERα have yet to be elucidated in drug-induced or chemical-induced liver injury. The present study investigated the effects of an ERα agonist, selective ER modulators (SERMs) and an ER antagonist on drug-induced and chemical-induced liver injuries caused by acetaminophen, bromobenzene, diclofenac, and thioacetamide (TA). We observed hepatoprotective effects of EE2, tamoxifen (TAM) and raloxifene pretreatment in female mice that were exposed to a variety of hepatotoxic compounds. In contrast, the ER antagonist did not show any hepatoprotective effects. DNA microarray analyses suggested that monocyte to macrophage differentiation-associated 2 (Mmd2) protein, which has an unknown function, is commonly increased by TAM and RAL pretreatment, but not by pretreatment with the ER antagonist. In ERα-knockout mice, the hepatoprotective effects of TAM and the increased expression of Mmd2 mRNA were not observed in TA-induced liver injury. To investigate the function of Mmd2, the expression level of Mmd2 mRNA was significantly knocked down to approximately 30% in mice by injection of siRNA for Mmd2 (siMmd2). Mmd2 knockdown resulted in a reduction of the protective effects of TAM on TA-induced liver injury in mice. This is the first report of the involvement of ERα in drug-induced or chemical-induced liver injury. Upregulation of Mmd2 protein in the liver was suggested as the mechanism of the hepatoprotective effects of EE2 and SERMs. -- Highlights: ► Liver injury induced by drugs or chemicals was investigated in mice. ► Liver injury was suppressed by pretreatment with tamoxifen in female mice. ► Mmd2, whose function was unknown, could be a candidate gene for liver protection. ► Tamoxifen up-regulated Mmd2 mRNA expression

  18. Mitochondria-Targeted Antioxidant Mito-Tempo Protects Against Aldosterone-Induced Renal Injury In Vivo

    Directory of Open Access Journals (Sweden)

    Wei Ding

    2017-11-01

    Full Text Available Background/Aims: Growing evidence suggests mitochondrial dysfunction (MtD and the Nlrp3 inflammasome play critical roles in chronic kidney disease (CKD progression. We previously reported that Aldosterone (Aldo-induced renal injury in vitro is directly caused by mitochondrial reactive oxygen species (mtROS-mediated activation of the Nlrp3 inflammasome. Here we aimed to determine whether a mitochondria-targeted antioxidant (Mito-Tempo could prevent Aldo-induced kidney damage in vivo. Methods: C57BL/6J mice were treated with Aldo and/or Mito-Tempo (or ethanol as a control for 4 weeks. Renal injury was evaluated by Periodic Acid-Schiff reagent or Masson’s trichrome staining and electron microscopy. ROS were measured by DCFDA fluorescence and ELISA. MtD was determined by real-time PCR and electron microscopy. Activation of the Nlrp3 inflammasome and endoplasmic reticulum stress (ERS was detected via western blot. Results: Compared with control mice, Aldo-infused mice showed impaired renal function, increased mtROS production and MtD, Nlrp3 inflammasome activation, and elevated ERS. We showed administration of Mito-Tempo significantly improved renal function and MtD, and reduced Nlrp3 inflammasome activation and ERS in vivo. Conclusion: Mitochondria-targeted antioxidants may attenuate Aldo-infused renal injury by inhibiting MtD, the Nlrp3 inflammasome, and ERS in vivo. Therefore, targeting mtROS might be an effective strategy for preventing CKD.

  19. Histopathology of cryoballoon ablation-induced phrenic nerve injury.

    Science.gov (United States)

    Andrade, Jason G; Dubuc, Marc; Ferreira, Jose; Guerra, Peter G; Landry, Evelyn; Coulombe, Nicolas; Rivard, Lena; Macle, Laurent; Thibault, Bernard; Talajic, Mario; Roy, Denis; Khairy, Paul

    2014-02-01

    Hemi-diaphragmatic paralysis is the most common complication associated with cryoballoon ablation for atrial fibrillation, yet the histopathology of phrenic nerve injury has not been well described. A preclinical randomized study was conducted to characterize the histopathology of phrenic nerve injury induced by cryoballoon ablation and assess the potential for electromyographic (EMG) monitoring to limit phrenic nerve damage. Thirty-two dogs underwent cryoballoon ablation of the right superior pulmonary vein with the objective of inducing phrenic nerve injury. Animals were randomized 1:1 to standard monitoring (i.e., interruption of ablation upon reduction in diaphragmatic motion) versus EMG guidance (i.e., cessation of ablation upon a 30% reduction in the diaphragmatic compound motor action potential [CMAP] amplitude). The acute procedural endpoint was achieved in all dogs. Phrenic nerve injury was characterized by Wallerian degeneration, with subperineural injury to large myelinated axons and evidence of axonal regeneration. The degree of phrenic nerve injury paralleled the reduction in CMAP amplitude (P = 0.007). Animals randomized to EMG guidance had a lower incidence of acute hemi-diaphragmatic paralysis (50% vs 100%; P = 0.001), persistent paralysis at 30 days (21% vs 75%; multivariate odds ratio 0.12, 95% confidence interval [0.02, 0.69], P = 0.017), and a lesser severity of histologic injury (P = 0.001). Mature pulmonary vein ablation lesion characteristics, including circumferentiality and transmurality, were similar in both groups. Phrenic nerve injury induced by cryoballoon ablation is axonal in nature and characterized by Wallerian degeneration, with potential for recovery. An EMG-guided approach is superior to standard monitoring in limiting phrenic nerve damage. © 2013 Wiley Periodicals, Inc.

  20. Bowel injuries secondary to induced abortion: a dilemma

    International Nuclear Information System (INIS)

    Rehman, A.; Fatima, S.; Soomro, N.

    2006-01-01

    To study the pattern of bowel injuries incurred by induced abortion, and the morbidity and mortality associated with them. All patients with bowel injuries due to induced abortion. Detailed data of all the patients was collected and analyzed. A total of 22 patients, mostly young with an average age of 26.86 years, presented with bowel injuries following induced abortion. Severe hemorrhage occurred in 8(36.4%) patients while 11(50%) had ileal perforation; 9(40.9%) underwent primary repair and 2(9.1%) ileostomy formation. Two (9.1%) patients with jejunal perforation had primary repair, whereas two with both jejunal and ileal perforations underwent resections with anastomosis in one and ileostomy in another. Seven (31.8%) with large gut involvement had colostomy formation. Septicemia and wound infection occurred in 7(31.8%) patients each, faecal fistula and abdominal wound dehiscence in 3(13.6%), and pelvic abscess in 1(4.6%) patient. The total mortality in this series was 6(27.3%) patients. Iatrogenic injuries during induced abortion, most commonly caused by quacks, can be minimized substantially if the procedure is performed by qualified medical personnel in proper health care facilities. There is a need for radical overhauling of the mind set in our society together with legislation. (author)

  1. Cerebrovascular Remodeling and Neuroinflammation is a Late Effect of Radiation-Induced Brain Injury in Non-Human Primates

    Science.gov (United States)

    Andrews, Rachel N.; Metheny-Barlow, Linda J.; Peiffer, Ann M.; Hanbury, David B.; Tooze, Janet A.; Bourland, J. Daniel; Hampson, Robert E.; Deadwyler, Samuel A.; Cline, J. Mark

    2017-01-01

    Andrews, R. N., Metheny-Barlow, L. J., Peiffer, A. M., Hanbury, D. B., Tooze, J. A., Bourland, J. D., Hampson, R. E., Deadwyler, S. A. and Cline, J. M. Cerebrovascular Remodeling and Neuroinflammation is a Late Effect of Radiation-Induced Brain Injury in Non-Human Primates. Radiat. Res. 187, 599–611 (2017). Fractionated whole-brain irradiation (fWBI) is a mainstay of treatment for patients with intracranial neoplasia; however late-delayed radiation-induced normal tissue injury remains a major adverse consequence of treatment, with deleterious effects on quality of life for affected patients. We hypothesize that cerebrovascular injury and remodeling after fWBI results in ischemic injury to dependent white matter, which contributes to the observed cognitive dysfunction. To evaluate molecular effectors of radiation-induced brain injury (RIBI), real-time quantitative polymerase chain reaction (RT-qPCR) was performed on the dorsolateral prefrontal cortex (DLPFC, Brodmann area 46), hippocampus and temporal white matter of 4 male Rhesus macaques (age 6–11 years), which had received 40 Gray (Gy) fWBI (8 fractions of 5 Gy each, twice per week), and 3 control comparators. All fWBI animals developed neurologic impairment; humane euthanasia was elected at a median of 6 months. Radiation-induced brain injury was confirmed histopathologically in all animals, characterized by white matter degeneration and necrosis, and multifocal cerebrovascular injury consisting of perivascular edema, abnormal angiogenesis and perivascular extracellular matrix deposition. Herein we demonstrate that RIBI is associated with white matter-specific up-regulation of hypoxia-associated lactate dehydrogenase A (LDHA) and that increased gene expression of fibronectin 1 (FN1), SERPINE1 and matrix metalloprotease 2 (MMP2) may contribute to cerebrovascular remodeling in late-delayed RIBI. Additionally, vascular stability and maturation associated tumor necrosis super family member 15 (TNFSF15) and

  2. Ramipril mitigates radiation-induced impairment of neurogenesis in the rat dentate gyrus

    Directory of Open Access Journals (Sweden)

    Lapanowski Karen

    2010-02-01

    Full Text Available Abstract Background Sublethal doses of whole brain irradiation (WBI are commonly administered therapeutically and frequently result in late delayed radiation injuries, manifesting as severe and irreversible cognitive impairment. Neural progenitors within the subgranular zone (SGZ of the dentate gyrus are among the most radiosensitive cell types in the adult brain and are known to participate in hippocampal plasticity and normal cognitive function. These progenitors and the specialized SZG microenvironment required for neuronal differentiation are the source of neurogenic potential in the adult dentate gyrus, and provide a continuous supply of immature neurons which may then migrate into the adjacent granule cell layer to become mature granule cell neurons. The extreme radiosensitivity of these progenitors and the SGZ microenvironment suggests the hippocampus as a prime target for radiation-induced cognitive impairment. The brain renin-angiotensin system (RAS has previously been implicated as a potent modulator of neurogenesis within the SGZ and selective RAS inhibitors have been implicated as mitigators of radiation brain injury. Here we investigate the angiotensin converting enzyme (ACE inhibitor, ramipril, as a mitigator of radiation injury in this context. Methods Adult male Fisher 344 rats received WBI at doses of 10 Gy and 15 Gy. Ramipril was administered beginning 24 hours post-WBI and maintained continuously for 12 weeks. Results Ramipril produced small but significant reductions in the deleterious effects of radiation on progenitor proliferation and neuronal differentiation in the rat dentate gyrus following 10 Gy-WBI, but was not effective following 15 Gy-WBI. Ramipril also reduced the basal rate of neurogenesis within the SGZ in unirradiated control rats. Conclusions Our results indicate that chronic ACE inhibition with ramipril, initiated 24 hours post-irradiation, may reduce apoptosis among SGZ progenitors and/or inflammatory

  3. Green Tea Polyphenols, Mimicking the Effects of Dietary Restriction, Ameliorate High-Fat Diet-Induced Kidney Injury via Regulating Autophagy Flux

    Directory of Open Access Journals (Sweden)

    Xiao Xie

    2017-05-01

    Full Text Available Epidemiological and experimental studies reveal that Western dietary patterns contribute to chronic kidney disease, whereas dietary restriction (DR or dietary polyphenols such as green tea polyphenols (GTPs can ameliorate the progression of kidney injury. This study aimed to investigate the renal protective effects of GTPs and explore the underlying mechanisms. Sixty Wistar rats were randomly divided into 6 groups: standard diet (STD, DR, high-fat diet (HFD, and three diets plus 200 mg/kg(bw/day GTPs, respectively. After 18 weeks, HFD group exhibited renal injuries by increased serum cystatin C levels and urinary N-acetyl-β-d-glucosaminidase activity, which can be ameliorated by GTPs. Meanwhile, autophagy impairment as denoted by autophagy-lysosome related proteins, including LC3-II, Beclin-1, p62, cathepsin B, cathepsin D and LAMP-1, was observed in HFD group, whereas DR or GTPs promoted renal autophagy activities and GTPs ameliorated HFD-induced autophagy impairment. In vitro, autophagy flux suppression was detected in palmitic acid (PA-treated human proximal tubular epithelial cells (HK-2, which was ameliorated by epigallocatechin-3-gallate (EGCG. Furthermore, GTPs (or EGCG elevated phosphorylation of AMP-activated protein kinase in the kidneys of HFD-treated rats and in PA-treated HK-2 cells. These findings revealed that GTPs mimic the effects of DR to induce autophagy and exert a renal protective effect by alleviating HFD-induced autophagy suppression.

  4. Gut dysbiosis impairs recovery after spinal cord injury.

    Science.gov (United States)

    Kigerl, Kristina A; Hall, Jodie C E; Wang, Lingling; Mo, Xiaokui; Yu, Zhongtang; Popovich, Phillip G

    2016-11-14

    The trillions of microbes that exist in the gastrointestinal tract have emerged as pivotal regulators of mammalian development and physiology. Disruption of this gut microbiome, a process known as dysbiosis, causes or exacerbates various diseases, but whether gut dysbiosis affects recovery of neurological function or lesion pathology after traumatic spinal cord injury (SCI) is unknown. Data in this study show that SCI increases intestinal permeability and bacterial translocation from the gut. These changes are associated with immune cell activation in gut-associated lymphoid tissues (GALTs) and significant changes in the composition of both major and minor gut bacterial taxa. Postinjury changes in gut microbiota persist for at least one month and predict the magnitude of locomotor impairment. Experimental induction of gut dysbiosis in naive mice before SCI (e.g., via oral delivery of broad-spectrum antibiotics) exacerbates neurological impairment and spinal cord pathology after SCI. Conversely, feeding SCI mice commercial probiotics (VSL#3) enriched with lactic acid-producing bacteria triggers a protective immune response in GALTs and confers neuroprotection with improved locomotor recovery. Our data reveal a previously unknown role for the gut microbiota in influencing recovery of neurological function and neuropathology after SCI. © 2016 Kigerl et al.

  5. Proinflammatory Factors Mediate Paclitaxel-Induced Impairment of Learning and Memory

    Directory of Open Access Journals (Sweden)

    Zhao Li

    2018-01-01

    Full Text Available The chemotherapeutic agent paclitaxel is widely used for cancer treatment. Paclitaxel treatment impairs learning and memory function, a side effect that reduces the quality of life of cancer survivors. However, the neural mechanisms underlying paclitaxel-induced impairment of learning and memory remain unclear. Paclitaxel treatment leads to proinflammatory factor release and neuronal apoptosis. Thus, we hypothesized that paclitaxel impairs learning and memory function through proinflammatory factor-induced neuronal apoptosis. Neuronal apoptosis was assessed by TUNEL assay in the hippocampus. Protein expression levels of tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β in the hippocampus tissue were analyzed by Western blot assay. Spatial learning and memory function were determined by using the Morris water maze (MWM test. Paclitaxel treatment significantly increased the escape latencies and decreased the number of crossing in the MWM test. Furthermore, paclitaxel significantly increased the number of TUNEL-positive neurons in the hippocampus. Also, paclitaxel treatment increased the expression levels of TNF-α and IL-1β in the hippocampus tissue. In addition, the TNF-α synthesis inhibitor thalidomide significantly attenuated the number of paclitaxel-induced TUNEL-positive neurons in the hippocampus and restored the impaired spatial learning and memory function in paclitaxel-treated rats. These data suggest that TNF-α is critically involved in the paclitaxel-induced impairment of learning and memory function.

  6. Concepts and strategies for clinical management of blast-induced traumatic brain injury and posttraumatic stress disorder.

    Science.gov (United States)

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2013-01-01

    After exposure of the human body to blast, kinetic energy of the blast shock waves might be transferred into hydraulic energy in the cardiovascular system to cause a rapid physical movement or displacement of blood (a volumetric blood surge). The volumetric blood surge moves through blood vessels from the high-pressure body cavity to the low-pressure cranial cavity, causing damage to tiny cerebral blood vessels and the blood-brain barrier (BBB). Large-scale cerebrovascular insults and BBB damage that occur globally throughout the brain may be the main causes of non-impact, blast-induced brain injuries, including the spectrum of traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD). The volumetric blood surge may be a major contributor not only to blast-induced brain injuries resulting from physical trauma, but may also be the trigger to psychiatric disorders resulting from emotional and psychological trauma. Clinical imaging technologies, which are able to detect tiny cerebrovascular insults, changes in blood flow, and cerebral edema, may help diagnose both TBI and PTSD in the victims exposed to blasts. Potentially, prompt medical treatment aiming at prevention of secondary neuronal damage may slow down or even block the cascade of events that lead to progressive neuronal damage and subsequent long-term neurological and psychiatric impairment.

  7. Protective effect of basic fibroblast growth factor on retinal injury induced by argon laser photocoagulation

    International Nuclear Information System (INIS)

    Chen, P; San, Q; Wang, C Z; Yang, Z F; Kang, H X; Qian, H W; Zhang, C P

    2010-01-01

    Laser photocoagulation treatment is often complicated by a side effect of visual impairment, which is caused by the unavoidable laser-induced retinal destruction. At present no specific is found to cure this retinopathy. The aim of this study was to observe the neuroprotective effect of bFGF on laser-induced retinal injury. Chinchilla rabbits were divided into three groups and argon laser lesions were created in the retinas. Then bFGF or dexamethasone, a widely used ophthalmic preparation, or saline was given severally by retrobulbar injection. The retinal lesions were evaluated histologically and morphometrically, and visual function was examined by ERG. The results showed that bFGF administration better preserved morphology of retinal photoreceptors and significantly diminished the area of the lesions. Furthermore, bFGF promoted the restoration of the ERG b-wave amplitude. In rabbits treated with dexamethasone, however, the lesions showed almost no ameliorative changes. This is the first study to investigate the potential role of bFGF as a remedial agent in laser photocoagulation treatment. These findings suggest that bFGF has significant neuroprotective properties in the retina and this type of neuroprotection may be of clinical significance in reducing iatrogenic laser-induced retinal injuries in humans

  8. Acute liver injury induced by weight-loss herbal supplements.

    Science.gov (United States)

    Chen, Gary C; Ramanathan, Vivek S; Law, David; Funchain, Pauline; Chen, George C; French, Samuel; Shlopov, Boris; Eysselein, Viktor; Chung, David; Reicher, Sonya; Pham, Binh V

    2010-11-27

    We report three cases of patients with acute liver injury induced by weight-loss herbal supplements. One patient took Hydroxycut while the other two took Herbalife supplements. Liver biopsies for all patients demonstrated findings consistent with drug-induced acute liver injury. To our knowledge, we are the first institute to report acute liver injury from both of these two types of weight-loss herbal supplements together as a case series. The series emphasizes the importance of taking a cautious approach when consuming herbal supplements for the purpose of weight loss.

  9. Artesunate Protects Against the Organ Injury and Dysfunction Induced by Severe Hemorrhage and Resuscitation.

    Science.gov (United States)

    Sordi, Regina; Nandra, Kiran K; Chiazza, Fausto; Johnson, Florence L; Cabrera, Claudia P; Torrance, Hew D; Yamada, Noriaki; Patel, Nimesh S A; Barnes, Michael R; Brohi, Karim; Collino, Massimo; Thiemermann, Christoph

    2017-02-01

    To evaluate the effects of artesunate on organ injury and dysfunction associated with hemorrhagic shock (HS) in the rat. HS is still a common cause of death in severely injured patients and is characterized by impairment of organ perfusion, systemic inflammatory response, and multiple organ failure. There is no specific therapy that reduces organ injury/dysfunction. Artesunate exhibits pharmacological actions beyond its antimalarial activity, such as anticancer, antiviral, and anti-inflammatory effects. Rats were submitted to HS. Mean arterial pressure was reduced to 30 mm Hg for 90 minutes, followed by resuscitation. Rats were randomly treated with artesunate (2.4 or 4.8 mg/kg i.v.) or vehicle upon resuscitation. Four hours later, parameters of organ injury and dysfunction were assessed. Artesunate attenuated the multiple organ injury and dysfunction caused by HS. Pathway analysis of RNA sequencing provided good evidence to support an effect of artesunate on the Akt-survival pathway, leading to downregulation of interleukin-1 receptor-associated kinase 1. Using Western blot analysis, we confirmed that treatment of HS rats with artesunate enhanced the phosphorylation (activation) of Protein kinase B (Akt) and endothelial nitric oxide synthase and the phosphorylation (inhibition) of glycogen synthase kinase-3β (GSK-3β). Moreover, artesunate attenuated the HS-induced activation of nuclear factor kappa B and reduced the expression of proinflammatory proteins (inducible nitric oxide synthase, tumor necrosis factor-α, and interleukin 6). Artesunate attenuated the organ injury/dysfunction associated with HS by a mechanism that involves the activation of the Akt-endothelial nitric oxide synthase survival pathway, and the inhibition of glycogen synthase kinase-3β and nuclear factor kappa B. A phase II clinical trial evaluating the effects of good manufacturing practice-artesunate in patients with trauma and severe hemorrhage is planned.

  10. Obeticholic acid protects against carbon tetrachloride-induced acute liver injury and inflammation

    International Nuclear Information System (INIS)

    Zhang, Da-Gang; Zhang, Cheng; Wang, Jun-Xian; Wang, Bi-Wei; Wang, Hua; Zhang, Zhi-Hui; Chen, Yuan-Hua; Lu, Yan; Tao, Li; Wang, Jian-Qing; Chen, Xi; Xu, De-Xiang

    2017-01-01

    The farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays important roles in regulating bile acid homeostasis. The aim of the present study was to investigate the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, carbon tetrachloride (CCl 4 )-induced acute liver injury. Mice were intraperitoneally injected with CCl 4 (0.15 ml/kg). In CCl 4 + OCA group, mice were orally with OCA (5 mg/kg) 48, 24 and 1 h before CCl 4 . As expected, hepatic FXR was activated by OCA. Interestingly, OCA pretreatment alleviated CCl 4 -induced elevation of serum ALT and hepatic necrosis. Moreover, OCA pretreatment inhibited CCl 4 -induced hepatocyte apoptosis. Additional experiment showed that OCA inhibits CCl 4 -induced hepatic chemokine gene Mcp-1, Mip-2 and Kc. Moreover, OCA inhibits CCl 4 -induced hepatic pro-inflammatory gene Tnf-α and Il-1β. By contrast, OCA pretreatment elevated hepatic anti-inflammatory gene Il-4. Further analysis showed that OCA pretreatment inhibited hepatic IκB phosphorylation and blocked nuclear translocation of NF-κB p65 and p50 subunits during CCl 4 -induced acute liver injury. In addition, OCA pretreatment inhibited hepatic Akt, ERK and p38 phosphorylation in CCl 4 -induced acute liver injury. These results suggest that OCA protects against CCl 4 -induced acute liver injury and inflammation. Synthetic FXR agonists may be effective antidotes for hepatic inflammation during acute liver injury. - Highlights: • OCA pretreatment activates hepatic FXR. • FXR activation protects against CCl 4 -induced acute liver injury. • FXR activation inhibits hepatocyte apoptosis during CCl 4 -induced liver injury. • FXR activation differentially regulates hepatic inflammatory genes. • Synthetic FXR agonists are effective antidotes for acute liver injury.

  11. Obeticholic acid protects against carbon tetrachloride-induced acute liver injury and inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Da-Gang [First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Zhang, Cheng [Department of Toxicology, Anhui Medical University, Hefei 230032 (China); Wang, Jun-Xian [First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Wang, Bi-Wei; Wang, Hua; Zhang, Zhi-Hui; Chen, Yuan-Hua [Department of Toxicology, Anhui Medical University, Hefei 230032 (China); Lu, Yan; Tao, Li; Wang, Jian-Qing [Second Affiliated Hospital, Anhui Medical University, Hefei 230601 (China); Chen, Xi [First Affiliated Hospital, Anhui Medical University, Hefei 230022 (China); Xu, De-Xiang, E-mail: xudex@126.com [Department of Toxicology, Anhui Medical University, Hefei 230032 (China)

    2017-01-01

    The farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays important roles in regulating bile acid homeostasis. The aim of the present study was to investigate the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, carbon tetrachloride (CCl{sub 4})-induced acute liver injury. Mice were intraperitoneally injected with CCl{sub 4} (0.15 ml/kg). In CCl{sub 4} + OCA group, mice were orally with OCA (5 mg/kg) 48, 24 and 1 h before CCl{sub 4}. As expected, hepatic FXR was activated by OCA. Interestingly, OCA pretreatment alleviated CCl{sub 4}-induced elevation of serum ALT and hepatic necrosis. Moreover, OCA pretreatment inhibited CCl{sub 4}-induced hepatocyte apoptosis. Additional experiment showed that OCA inhibits CCl{sub 4}-induced hepatic chemokine gene Mcp-1, Mip-2 and Kc. Moreover, OCA inhibits CCl{sub 4}-induced hepatic pro-inflammatory gene Tnf-α and Il-1β. By contrast, OCA pretreatment elevated hepatic anti-inflammatory gene Il-4. Further analysis showed that OCA pretreatment inhibited hepatic IκB phosphorylation and blocked nuclear translocation of NF-κB p65 and p50 subunits during CCl{sub 4}-induced acute liver injury. In addition, OCA pretreatment inhibited hepatic Akt, ERK and p38 phosphorylation in CCl{sub 4}-induced acute liver injury. These results suggest that OCA protects against CCl{sub 4}-induced acute liver injury and inflammation. Synthetic FXR agonists may be effective antidotes for hepatic inflammation during acute liver injury. - Highlights: • OCA pretreatment activates hepatic FXR. • FXR activation protects against CCl{sub 4}-induced acute liver injury. • FXR activation inhibits hepatocyte apoptosis during CCl{sub 4}-induced liver injury. • FXR activation differentially regulates hepatic inflammatory genes. • Synthetic FXR agonists are effective antidotes for acute liver injury.

  12. Rehabilitation of executive function and social cognition impairments after brain injury.

    Science.gov (United States)

    Manly, Tom; Murphy, Fionnuala C

    2012-12-01

    Brain injury is a major cause of long-term disability. Executive and social cognition sequelae are associated with poor outcome. This review examines recent evidence on the efficacy of rehabilitation in these areas. Accumulating evidence shows that interventions that work with patients on developing insight and strategies to offset executive impairments can produce significant benefits. Training of specific capacities, such as working memory, holds some promise, but more needs to be known about effect generalization. Evidence on social cognition rehabilitation following brain injury is sparse. Although there are some encouraging early results, more information on the clinical significance of change for everyday function is required. Rehabilitation in these areas is inherently difficult but vital if outcomes are to improve. Significant gains have been reported, and further work applying appropriate methods is urgently required.

  13. Perivascular delivery of Notch 1 siRNA inhibits injury-induced arterial remodeling.

    Directory of Open Access Journals (Sweden)

    Eileen M Redmond

    Full Text Available To determine the efficacy of perivascular delivery of Notch 1 siRNA in preventing injury-induced arterial remodeling.Carotid artery ligation was performed to induce arterial remodeling. After 14 days, morphometric analysis confirmed increased vSMC growth and subsequent media thickening and neointimal formation. Laser capture microdissection, quantitative qRT-PCR and immunoblot analysis of medial tissue revealed a significant increase in Notch1 receptor and notch target gene, Hrt 1 and 2 expression in the injured vessels. Perivascular delivery of Notch 1 siRNA by pluronic gel inhibited the injury-induced increase in Notch 1 receptor and target gene expression when compared to scrambled siRNA controls while concomitantly reducing media thickening and neointimal formation to pre-injury, sham-operated levels. Selective Notch 1 knockdown also reversed the injury-induced inhibition of pro-apoptotic Bax expression while decreasing injury-induced anti-apoptotic Bcl-XL expression to sham-operated control levels. In parallel experiments, proliferative cyclin levels, as measured by PCNA expression, were reversed to sham-operated control levels following selective Notch 1 knockdown.These results suggest that injury-induced arterial remodeling can be successfully inhibited by localized perivascular delivery of Notch 1 siRNA.

  14. Inducible satellite cell depletion attenuates skeletal muscle regrowth following a scald-burn injury.

    Science.gov (United States)

    Finnerty, Celeste C; McKenna, Colleen F; Cambias, Lauren A; Brightwell, Camille R; Prasai, Anesh; Wang, Ye; El Ayadi, Amina; Herndon, David N; Suman, Oscar E; Fry, Christopher S

    2017-11-01

    Severe burns result in significant skeletal muscle cachexia that impedes recovery. Activity of satellite cells, skeletal muscle stem cells, is altered following a burn injury and likely hinders regrowth of muscle. Severe burn injury induces satellite cell proliferation and fusion into myofibres with greater activity in muscles proximal to the injury site. Conditional depletion of satellite cells attenuates recovery of myofibre area and volume following a scald burn injury in mice. Skeletal muscle regrowth following a burn injury requires satellite cell activity, underscoring the therapeutic potential of satellite cells in the prevention of prolonged frailty in burn survivors. Severe burns result in profound skeletal muscle atrophy; persistent muscle atrophy and weakness are major complications that hamper recovery from burn injury. Many factors contribute to the erosion of muscle mass following burn trauma, and we have previously shown concurrent activation and apoptosis of muscle satellite cells following a burn injury in paediatric patients. To determine the necessity of satellite cells during muscle recovery following a burn injury, we utilized a genetically modified mouse model (Pax7 CreER -DTA) that allows for the conditional depletion of satellite cells in skeletal muscle. Additionally, mice were provided 5-ethynyl-2'-deoxyuridine to determine satellite cell proliferation, activation and fusion. Juvenile satellite cell-wild-type (SC-WT) and satellite cell-depleted (SC-Dep) mice (8 weeks of age) were randomized to sham or burn injury consisting of a dorsal scald burn injury covering 30% of total body surface area. Both hindlimb and dorsal muscles were studied at 7, 14 and 21 days post-burn. SC-Dep mice had >93% depletion of satellite cells compared to SC-WT (P satellite cell proliferation and fusion. Depletion of satellite cells impaired post-burn recovery of both muscle fibre cross-sectional area and volume (P satellite cells in the aetiology of lean

  15. Aberrant innate immune activation following tissue injury impairs pancreatic regeneration.

    Directory of Open Access Journals (Sweden)

    Alexandra E Folias

    Full Text Available Normal tissue architecture is disrupted following injury, as resident tissue cells become damaged and immune cells are recruited to the site of injury. While injury and inflammation are critical to tissue remodeling, the inability to resolve this response can lead to the destructive complications of chronic inflammation. In the pancreas, acinar cells of the exocrine compartment respond to injury by transiently adopting characteristics of progenitor cells present during embryonic development. This process of de-differentiation creates a window where a mature and stable cell gains flexibility and is potentially permissive to changes in cellular fate. How de-differentiation can turn an acinar cell into another cell type (such as a pancreatic β-cell, or a cell with cancerous potential (as in cases of deregulated Kras activity is of interest to both the regenerative medicine and cancer communities. While it is known that inflammation and acinar de-differentiation increase following pancreatic injury, it remains unclear which immune cells are involved in this process. We used a combination of genetically modified mice, immunological blockade and cellular characterization to identify the immune cells that impact pancreatic regeneration in an in vivo model of pancreatitis. We identified the innate inflammatory response of macrophages and neutrophils as regulators of pancreatic regeneration. Under normal conditions, mild innate inflammation prompts a transient de-differentiation of acinar cells that readily dissipates to allow normal regeneration. However, non-resolving inflammation developed when elevated pancreatic levels of neutrophils producing interferon-γ increased iNOS levels and the pro-inflammatory response of macrophages. Pancreatic injury improved following in vivo macrophage depletion, iNOS inhibition as well as suppression of iNOS levels in macrophages via interferon-γ blockade, supporting the impairment in regeneration and the

  16. Considerations for the optimization of induced white matter injury preclinical models

    Directory of Open Access Journals (Sweden)

    Abdullah Shafique Ahmad

    2015-08-01

    Full Text Available The white matter injury in relation to acute neurologic conditions, especially stroke, has remained obscure until recently. Current advances in the imaging technologies in the field of stroke have confirmed that white matter injury plays an important role in the prognosis of stroke and suggest that white matter protection is essential for functional recovery and post-stroke rehabilitation. However, due to the lack of a reproducible animal model of white matter injury, the pathophysiology and mechanisms of this injury are not well studied. Moreover, producing selective white matter injury in animals, especially in rodents, has proven to be challenging. Problems associated with inducing selective white matter ischemic injury in the rodent derive from differences in the architecture of the brain, most particularly the ratio of white matter to gray matter in rodents compared to humans, the agents used to induce the injury, and the location of the injury. Aging, gender differences, and comorbidities further add to this complexity. This review provides a brief account of the techniques commonly used to induce general white matter injury in animal models (stroke and non-stroke related and highlights relevance, optimization issues, and translational potentials associated with this particular form of injury.

  17. Arterial Injury and Endothelial Repair: Rapid Recovery of Function after Mechanical Injury in Healthy Volunteers

    Directory of Open Access Journals (Sweden)

    Lindsey Tilling

    2014-01-01

    Full Text Available Objective. Previous studies suggest a protracted course of recovery after mechanical endothelial injury; confounders may include degree of injury and concomitant endothelial dysfunction. We sought to define the time course of endothelial function recovery using flow-mediated dilation (FMD, after ischaemia-reperfusion (IR and mechanical injury in patients and healthy volunteers. The contribution of circulating CD133+/CD34+/VEGFR2+ “endothelial progenitor” (EPC or repair cells to endothelial repair was also examined. Methods. 28 healthy volunteers aged 18–35 years underwent transient forearm ischaemia induced by cuff inflation around the proximal biceps and radial artery mechanical injury induced by inserting a wire through a cannula. A more severe mechanical injury was induced using an arterial sheath and catheter inserted into the radial artery of 18 patients undergoing angiography. Results. IR and mechanical injury produced immediate impairment of FMD (from 6.5 ± 1.2% to 2.9 ± 2.2% and from 7.4 ± 2.3% to 1.5 ± 1.6% for IR and injury, resp., each P<0.001 but recovered within 6 hours and 2 days, respectively. FMD took up to 4 months to recover in patients. Circulating EPC did not change significantly during the injury/recovery period in all subjects. Conclusions. Recovery of endothelial function after IR and mechanical injury is rapid and not associated with a change in circulating EPC.

  18. Apoptosis-induced lymphopenia in sepsis and other severe injuries.

    Science.gov (United States)

    Girardot, Thibaut; Rimmelé, Thomas; Venet, Fabienne; Monneret, Guillaume

    2017-02-01

    Sepsis and other acute injuries such as severe trauma, extensive burns, or major surgeries, are usually followed by a period of marked immunosuppression. In particular, while lymphocytes play a pivotal role in immune response, their functions and numbers are profoundly altered after severe injuries. Apoptosis plays a central role in this process by affecting immune response at various levels. Indeed, apoptosis-induced lymphopenia duration and depth have been associated with higher risk of infection and mortality in various clinical settings. Therapies modulating apoptosis represent an interesting approach to restore immune competence after acute injury, although their use in clinical practice still presents several limitations. After briefly describing the apoptosis process in physiology and during severe injuries, we will explore the immunological consequences of injury-induced lymphocyte apoptosis, and describe associations with clinically relevant outcomes in patients. Therapeutic perspectives targeting apoptosis will also be discussed.

  19. Hearing Impairment Caused by Occupational Noise | Mets | South ...

    African Journals Online (AJOL)

    Occupational noise-induced hearing impairment is an insidiously developing injury which only becomes apparent when it affects the hearing of conversational speech. As no remedy is possible, prevention is the only answer. In view of the impending legislation in South Africa a review of the literature is presented. This is ...

  20. Antioxidant protection of statins in acute kidney injury induced by sepsis

    Directory of Open Access Journals (Sweden)

    Franciele do Nascimento Santos

    2014-10-01

    Full Text Available Objective Evaluating the effect of preconditioning with simvastatin in acute kidney injury induced by sepsis. Method Male adult Wistar rats were divided into the following groups: SHAM (control; SHAM+Statin (0.5 mg/kg simvastatin, orally; Sepsis (cecal puncture ligation – CPL; Sepsis+Statin. Physiological parameters, peritoneal fluid culture, renal function, oxidative metabolites, severity of acute kidney injury and animal survival were evaluated. Results The treatment with simvastatin in induced sepsis showed elevation of creatinine clearance with attenuation of generation of oxidative metabolites, lower severity of acute kidney injury and reduced mortality. Conclusion This investigation confirmed the renoprotection with antioxidant principle of the simvastatin in acute kidney injury induced by sepsis in an experimental model.

  1. Prolonged superficial local cryotherapy attenuates microcirculatory impairment, regional inflammation, and muscle necrosis after closed soft tissue injury in rats.

    Science.gov (United States)

    Schaser, Klaus-Dieter; Disch, Alexander C; Stover, John F; Lauffer, Annette; Bail, Herman J; Mittlmeier, Thomas

    2007-01-01

    Closed soft tissue injury induces progressive microvascular dysfunction and regional inflammation. The authors tested the hypothesis that adverse trauma-induced effects can be reduced by local cooling. While superficial cooling reduces swelling, pain, and cellular oxygen demand, the effects of cryotherapy on posttraumatic microcirculation are incompletely understood. Controlled laboratory study. After a standardized closed soft tissue injury to the left tibial compartment, male rats were randomly subjected to percutaneous perfusion for 6 hours with 0.9% NaCL (controls; room temperature) or cold NaCL (cryotherapy; 8 degrees C) (n = 7 per group). Uninjured rats served as shams (n = 7). Microcirculatory changes and leukocyte adherence were determined by intravital microscopy. Intramuscular pressure was measured, and invasion of granulocytes and macrophages was assessed by immunohistochemistry. Edema and tissue damage was quantified by gravimetry and decreased desmin staining. Closed soft tissue injury significantly decreased functional capillary density (240 +/- 12 cm(-1)); increased microvascular permeability (0.75 +/- 0.03), endothelial leukocyte adherence (995 +/- 77/cm(2)), granulocyte (182.0 +/- 25.5/mm(2)) and macrophage infiltration, edema formation, and myonecrosis (ratio: 2.95 +/- 0.45) within the left extensor digitorum longus muscle. Cryotherapy for 6 hours significantly restored diminished functional capillary density (393 +/- 35), markedly decreased elevated intramuscular pressure, reduced the number of adhering (462 +/- 188/cm(2)) and invading granulocytes (119 +/- 28), and attenuated tissue damage (ratio: 1.7 +/- 0.17). The hypothesis that prolonged cooling reduces posttraumatic microvascular dysfunction, inflammation, and structural impairment was confirmed. These results may have therapeutic implications as cryotherapy after closed soft tissue injury is a valuable therapeutic approach to improve nutritive perfusion and attenuate leukocyte

  2. Chronic alcoholism-mediated impairment in the medulla oblongata: a mechanism of alcohol-related mortality in traumatic brain injury?

    Science.gov (United States)

    Lai, Xiao-ping; Yu, Xiao-jun; Qian, Hong; Wei, Lai; Lv, Jun-yao; Xu, Xiao-hu

    2013-01-01

    Alcohol-related traumatic brain injury (TBI) is a common condition in medical and forensic practice, and results in high prehospital mortality. We investigated the mechanism of chronic alcoholism-related mortality by examining the effects of alcohol on the synapses of the medulla oblongata in a rat model of TBI. Seventy adult male Sprague-Dawley rats were randomly assigned to either ethanol (EtOH) group, EtOH-TBI group, or control groups (water group, water-TBI group). To establish chronic alcoholism model, rats in the EtOH group were given EtOH twice daily (4 g/kg for 2 weeks and 6 g/kg for another 2 weeks). The rats also received a minor strike on the occipital tuberosity with an iron pendulum. Histopathologic and ultrastructure changes and the numerical density of the synapses in the medulla oblongata were examined. Expression of postsynaptic density-95 (PSD-95) in the medulla oblongata was measured by ELISA. Compared with rats in the control group, rats in the chronic alcoholism group showed: (1) minor axonal degeneration; (2) a significant decrease in the numerical density of synapses (p Chronic alcoholism induces significant synapse loss and axonal impairment in the medulla oblongata and renders the brain more susceptible to TBI. The combined effects of chronic alcoholism and TBI induce significant synapse and axon impairment and result in high mortality.

  3. Sleep disturbance induces neuroinflammation and impairment of learning and memory.

    Science.gov (United States)

    Zhu, Biao; Dong, Yuanlin; Xu, Zhipeng; Gompf, Heinrich S; Ward, Sarah A P; Xue, Zhanggang; Miao, Changhong; Zhang, Yiying; Chamberlin, Nancy L; Xie, Zhongcong

    2012-12-01

    Hospitalized patients can develop cognitive function decline, the mechanisms of which remain largely to be determined. Sleep disturbance often occurs in hospitalized patients, and neuroinflammation can induce learning and memory impairment. We therefore set out to determine whether sleep disturbance can induce neuroinflammation and impairment of learning and memory in rodents. Five to 6-month-old wild-type C57BL/6J male mice were used in the studies. The mice were placed in rocking cages for 24 h, and two rolling balls were present in each cage. The mice were tested for learning and memory function using the Fear Conditioning Test one and 7 days post-sleep disturbance. Neuroinflammation in the mouse brain tissues was also determined. Of the Fear Conditioning studies at one day and 7 days after sleep disturbance, twenty-four hour sleep disturbance decreased freezing time in the context test, which assesses hippocampus-dependent learning and memory; but not the tone test, which assesses hippocampus-independent learning and memory. Sleep disturbance increased pro-inflammatory cytokine IL-6 levels and induced microglia activation in the mouse hippocampus, but not the cortex. These results suggest that sleep disturbance induces neuroinflammation in the mouse hippocampus, and impairs hippocampus-dependent learning and memory in mice. Pending further studies, these findings suggest that sleep disturbance-induced neuroinflammation and impairment of learning and memory may contribute to the development of cognitive function decline in hospitalized patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Diphenhydramine as a Cause of Drug-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Yunseok Namn

    2017-01-01

    Full Text Available Drug-induced liver injury (DILI is the most common cause of acute liver failure in the Unites States and accounts for 10% of acute hepatitis cases. We report the only known case of diphenhydramine-induced acute liver injury in the absence of concomitant medications. A 28-year-old man with history of 13/14-chromosomal translocation presented with fevers, vomiting, and jaundice. Aspartate-aminotransferase and alanine-aminotransferase levels peaked above 20,000 IU/L and 5,000 IU/L, respectively. He developed coagulopathy but without altered mental status. Patient reported taking up to 400 mg diphenhydramine nightly, without concomitant acetaminophen, for insomnia. He denied taking other medications, supplements, antibiotics, and herbals. A thorough workup of liver injury ruled out viral hepatitis (including A, B, C, and E, autoimmune, toxic, ischemic, and metabolic etiologies including Wilson’s disease. A liver biopsy was consistent with DILI without evidence of iron or copper deposition. Diphenhydramine was determined to be the likely culprit. This is the first reported case of diphenhydramine-induced liver injury without concomitant use of acetaminophen.

  5. L-carnitine prevents memory impairment induced by chronic REM-sleep deprivation.

    Science.gov (United States)

    Alzoubi, Karem H; Rababa'h, Abeer M; Owaisi, Amani; Khabour, Omar F

    2017-05-01

    Sleep deprivation (SD) negatively impacts memory, which was related to oxidative stress induced damage. L-carnitine is a naturally occurring compound, synthesized endogenously in mammalian species and known to possess antioxidant properties. In this study, the effect of L-carnitine on learning and memory impairment induced by rapid eye movement sleep (REM-sleep) deprivation was investigated. REM-sleep deprivation was induced using modified multiple platform model (8h/day, for 6 weeks). Simultaneously, L-carnitine was administered (300mg/kg/day) intraperitoneally for 6 weeks. Thereafter, the radial arm water maze (RAWM) was used to assess spatial learning and memory. Additionally, the hippocampus levels of antioxidant biomarkers/enzymes: reduced glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG ratio, glutathione peroxidase (GPx), catalase, and superoxide dismutase (SOD) and thiobarbituric acid reactive substance (TBARS) were assessed. The results showed that chronic REM-sleep deprivation impaired both short- and long-term memory (Psleep deprivation induced reduction in the hippocampus ratio of GSH/GSSG, activity of catalase, GPx, and SOD. No change was observed in TBARS among tested groups (P>0.05). In conclusion, chronic REM-sleep deprivation induced memory impairment, and treatment with L-carnitine prevented this impairment through normalizing antioxidant mechanisms in the hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Drug-induced liver injury

    DEFF Research Database (Denmark)

    Nielsen, Mille Bækdal; Ytting, Henriette; Skalshøi Kjær, Mette

    2017-01-01

    OBJECTIVE: The idiosyncratic subtype of drug-induced liver injury (DILI) is a rare reaction to medical treatment that in severe cases can lead to acute liver failure and death. The aim of this study was to describe the presentation and outcome of DILI and to identify potential predictive factors...... that DILI may be severe and run a fatal course, and that bilirubin and INR levels may predict poor outcome....

  7. Risk of Injuries in Paralympic Track and Field Differs by Impairment and Event Discipline: A Prospective Cohort Study at the London 2012 Paralympic Games.

    Science.gov (United States)

    Blauwet, Cheri A; Cushman, Daniel; Emery, Carolyn; Willick, Stuart E; Webborn, Nick; Derman, Wayne; Schwellnus, Martin; Stomphorst, Jaap; Van de Vliet, Peter

    2016-06-01

    The incidence rates (IRs) and factors associated with injuries in the sport of Paralympic athletics (track and field) have not been comprehensively and prospectively studied. To determine injury IRs, characteristics of injuries, and associated factors in the sport of athletics at the London 2012 Paralympic Games. Cohort study; Level of evidence, 2. A total of 977 athletes competing in the sport of athletics were followed over a total 10-day competition period of the Paralympic Games. Daily injury data were obtained via 2 databases: (1) a custom-built, web-based injury and illness surveillance system (WEB-IISS), maintained by team medical personnel; and (2) the organizing committee database, maintained by medical providers in the medical stations operated by the London Organising Committee of the Olympic and Paralympic Games. Athlete impairment and event discipline were obtained via the International Paralympic Committee athlete database. IRs (injuries per 1000 athlete-days) by impairment, event discipline, sex, and age were examined. The overall IR was 22.1 injuries per 1000 athlete-days (95% CI, 19.5-24.7). In track disciplines, ambulant athletes with cerebral palsy experienced a lower incidence of injuries (IR, 10.2; 95% CI, 4.2-16.2) when compared with ambulant athletes from other impairment categories. Athletes in seated throwing experienced a higher incidence of injuries (IR, 23.7; 95% CI, 17.5-30.0) when compared with athletes in wheelchair racing (IR, 10.6; 95% CI, 5.5-15.6). In both track and field disciplines, the majority of injuries did not result in time loss from competition or training. Ambulant athletes experienced the greatest proportion of injuries to the thigh (16.4% of all injuries; IR, 4.0), observed predominantly in track athletes. Wheelchair or seated athletes experienced the greatest proportion of injuries to the shoulder/clavicle (19.3% of all injuries; IR, 3.4), observed predominantly in field athletes. This is the first prospective cohort

  8. Melatonin mitigates neomycin-induced hair cell injury in zebrafish.

    Science.gov (United States)

    Oh, Kyoung Ho; Rah, Yoon Chan; Hwang, Kyu Ho; Lee, Seung Hoon; Kwon, Soon Young; Cha, Jae Hyung; Choi, June

    2017-10-01

    Ototoxicity due to medications, such as aminoglycosides, is irreversible, and free radicals in the inner ear are assumed to play a major role. Because melatonin has an antioxidant property, we hypothesize that it might mitigate hair cell injury by aminoglycosides. The objective of this study was to evaluate whether melatonin has an alleviative effect on neomycin-induced hair cell injury in zebrafish (Danio rerio). Various concentrations of melatonin were administered to 5-day post-fertilization zebrafish treated with 125 μM neomycin for 1 h. Surviving hair cells within four neuromasts were compared with that of a control group. Apoptosis was assessed via terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. The changes of ultrastructure were confirmed using a scanning electron microscope. Melatonin alleviated neomycin-induced hair cell injury in neuromasts (neomycin + melatonin 100 μM: 13.88 ± 0.91 cells, neomycin only: 7.85 ± 0.90 cells; n = 10, p melatonin for 1 h in SEM findings. Melatonin is effective in alleviating aminoglycoside-induced hair cell injury in zebrafish. The results of this study demonstrated that melatonin has the potential to reduce apoptosis induced by aminoglycosides in zebrafish.

  9. Role of IRAK-M in alcohol induced liver injury.

    Directory of Open Access Journals (Sweden)

    Yipeng Wang

    Full Text Available Increasing evidence suggests that innate immunity plays an important role in alcohol-induced liver injury and most studies have focused on positive regulation of innate immunity. The main objective of this study was to investigate the negative regulator of innate immunity, IL-1/Toll-like receptor (TLR signaling pathways and interleukin receptor-associated kinase-M (IRAK-M in alcoholic liver injury. We established an alcohol-induced liver injury model using wild type and IRAK-M deficient B6 mice and investigated the possible mechanisms. We found that in the absence of IRAK-M, liver damage by alcohol was worse with higher alanine transaminase (ALT, more immune cell infiltration and increased numbers of IFNγ producing cells. We also found enhanced phagocytic activity in CD68(+ cells. Moreover, our results revealed altered gut bacteria after alcohol consumption and this was more striking in the absence of IRAK-M. Our study provides evidence that IRAK-M plays an important role in alcohol-induced liver injury and IRAK-M negatively regulates the innate and possibly the adaptive immune response in the liver reacting to acute insult by alcohol. In the absence of IRAK-M, the hosts developed worse liver injury, enhanced gut permeability and altered gut microbiota.

  10. Ethanol extract from portulaca oleracea L. attenuated acetaminophen-induced mice liver injury

    Science.gov (United States)

    Liu, Xue-Feng; Zheng, Cheng-Gang; Shi, Hong-Guang; Tang, Gu-Sheng; Wang, Wan-Yin; Zhou, Juan; Dong, Li-Wei

    2015-01-01

    Acetaminophen-induced liver injury represents the most frequent cause of drug-induced liver failure in the world. Portulaca oleracea L., a widely distributed weed, has been used as a folk medicine in many countries. Previously, we reported that the ethanol extracts of Portulaca oleracea L. (PO) exhibited significant anti-hypoxic activity. In the present study, we investigated the role of PO on acetaminophen (APAP) induced hepatotoxicity. The results demonstrated that PO was an effective anti-oxidative agent, which could, to some extent, reverse APAP-induced hepatotoxicity by regulating the reactive oxygen species (ROS) in the liver of mice. At the same time, PO treatment significantly decreased mice serum levels of IL-6 and TNFα and their mRNA expression in liver tissue IL-α and TNFα play an important role during APAP-induced liver injury. Furthermore, PO inhibited APAP and TNFα-induced activation of JNK, whose activation play an important effect during APAP induced liver injury. These findings suggested that administration of PO may be an effective strategy to prevent or treat liver injury induced by APAP. PMID:25901199

  11. Histone deacetylase inhibition abolishes stress-induced spatial memory impairment.

    Science.gov (United States)

    Vargas-López, Viviana; Lamprea, Marisol R; Múnera, Alejandro

    2016-10-01

    Acute stress induced before spatial training impairs memory consolidation. Although non-epigenetic underpinning of such effect has been described, the epigenetic mechanisms involved have not yet been studied. Since spatial training and intense stress have opposite effects on histone acetylation balance, it is conceivable that disruption of such balance may underlie acute stress-induced spatial memory consolidation impairment and that inhibiting histone deacetylases prevents such effect. Trichostatin-A (TSA, a histone deacetylase inhibitor) was used to test its effectiveness in preventing stress' deleterious effect on memory. Male Wistar rats were trained in a spatial task in the Barnes maze; 1-h movement restraint was applied to half of them before training. Immediately after training, stressed and non-stressed animals were randomly assigned to receive either TSA (1mg/kg) or vehicle intraperitoneal injection. Twenty-four hours after training, long-term spatial memory was tested; plasma and brain tissue were collected immediately after the memory test to evaluate corticosterone levels and histone H3 acetylation in several brain areas. Stressed animals receiving vehicle displayed memory impairment, increased plasma corticosterone levels and markedly reduced histone H3 acetylation in prelimbic cortex and hippocampus. Such effects did not occur in stressed animals treated with TSA. The aforementioned results support the hypothesis that acute stress induced-memory impairment is related to histone deacetylation. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Blast overpressure induced axonal injury changes in rat brainstem and spinal cord

    Directory of Open Access Journals (Sweden)

    Srinivasu Kallakuri

    2015-01-01

    Full Text Available Introduction: Blast induced neurotrauma has been the signature wound in returning soldiers from the ongoing wars in Iraq and Afghanistan. Of importance is understanding the pathomechansim(s of blast overpressure (OP induced axonal injury. Although several recent animal models of blast injury indicate the neuronal and axonal injury in various brain regions, animal studies related to axonal injury in the white matter (WM tracts of cervical spinal cord are limited. Objective: The purpose of this study was to assess the extent of axonal injury in WM tracts of cervical spinal cord in male Sprague Dawley rats subjected to a single insult of blast OP. Materials and Methods: Sagittal brainstem sections and horizontal cervical spinal cord sections from blast and sham animals were stained by neurofilament light (NF-L chain and beta amyloid precursor protein immunocytochemistry and observed for axonal injury changes. Results: Observations from this preliminary study demonstrate axonal injury changes in the form of prominent swellings, retraction bulbs, and putative signs of membrane disruptions in the brainstem and cervical spinal cord WM tracts of rats subjected to blast OP. Conclusions: Prominent axonal injury changes following the blast OP exposure in brainstem and cervical spinal WM tracts underscores the need for careful evaluation of blast induced injury changes and associated symptoms. NF-L immunocytochemistry can be considered as an additional tool to assess the blast OP induced axonal injury.

  13. Gastric injury induced by hemorrhage, local ischemia, and oxygen radical generation

    International Nuclear Information System (INIS)

    Wadhwa, S.S.; Perry, M.A.

    1987-01-01

    Gastric mucosal injury caused by local intra-arterial generation of oxygen-derived free radicals was compared with gastric injury caused by 30 min of hemorrhage-induced ischemia or local ischemia. The index of injury was the loss of 51 Cr-labeled red cells across the gastric mucosa. Generation of oxygen radicals in the celiac artery caused a rapid increase in mucosal blood loss during the period of radical generation, and this loss was maintained after radical production ceased. Local ischemia produced similar mucosal injury; however, this occurred after reperfusion of the stomach and not during the ischemic episode. Hemorrhage-induced ischemia produced a threefold greater mucosal blood loss than local ischemia. The results of this study indicate that (1) oxygen radicals generated enzymatically in the blood supply to the stomach cause mucosal bleeding of similar magnitude to that observed after local ischemia and (2) that gastric ischemia induced by systemic hypotension produces more severe gastric injury than the same level of local hypotension

  14. Radiated-induced brain injury: advance of molecular mechanisms and neuroprotection strategies

    International Nuclear Information System (INIS)

    Gao Bo; Wang Xuejian

    2007-01-01

    The underlying mechanisms of radiated-induced brain injury (RBI) remain incompletely clear. Pathophysiological data indicate that the development of RBI involves complex and dynamic interactions between neurons, glia, and vascular endothelial cells within thecentral nervous system (CNS). Radiated-induced injury in the CNS can be modulated by the therapies directed at altering steps in the cascade of events leading to the clinical expression of normal tissue injury. Some neuroprotective strategies are also addressed in the review. (authors)

  15. Tanshinone IIA Sodium Sulfonate Attenuates LPS-Induced Intestinal Injury in Mice

    Directory of Open Access Journals (Sweden)

    Xin-Jing Yang

    2018-01-01

    Full Text Available Background. Tanshinone IIA sodium sulfonate (TSS is known to possess anti-inflammatory effects and has exhibited protective effects in various inflammatory conditions; however, its role in lipopolysaccharide- (LPS- induced intestinal injury is still unknown. Objective. The present study is designed to explore the role and possible mechanism of TSS in LPS-induced intestinal injury. Methods. Male C57BL/6J mice, challenged with intraperitoneal LPS injection, were treated with or without TSS 0.5 h prior to LPS exposure. At 1, 6, and 12 h after LPS injection, mice were sacrificed, and the small intestine was excised. The intestinal tissue injury was analyzed by HE staining. Inflammatory factors (TNF-α, IL-1β, and IL-6 in the intestinal tissue were examined by ELISA and RT-PCR. In addition, expressions of autophagy markers (microtubule-associated light chain 3 (LC3 and Beclin-1 were detected by western blot and RT-PCR. A number of autophagosomes were also observed under electron microscopy. Results. TSS treatment significantly attenuated small intestinal epithelium injury induced by LPS. LPS-induced release of inflammatory mediators, including TNF-α, IL-1β, and IL-6, were markedly inhibited by TSS. Furthermore, TSS treatment could effectively upregulate LPS-induced decrease of autophagy levels, as evidenced by the increased expression of LC3 and Beclin-1, and more autophagosomes. Conclusion. The protective effect of TSS on LPS-induced small intestinal injury may be attributed to the inhibition of inflammatory factors and promotion of autophagy levels. The present study may provide novel insight into the molecular mechanisms of TSS on the treatment of intestinal injury.

  16. Frontal White Matter Damage Impairs Response Inhibition in Children Following Traumatic Brain Injury

    Science.gov (United States)

    Lipszyc, Jonathan; Levin, Harvey; Hanten, Gerri; Hunter, Jill; Dennis, Maureen; Schachar, Russell

    2014-01-01

    Inhibition, the ability to suppress inappropriate cognitions or behaviors, can be measured using computer tasks and questionnaires. Inhibition depends on the frontal cortex, but the role of the underlying white matter (WM) is unclear. We assessed the specific impact of frontal WM damage on inhibition in 29 children with moderate-to-severe traumatic brain injury (15 with and 14 without frontal WM damage), 21 children with orthopedic injury, and 29 population controls. We used the Stop Signal Task to measure response inhibition, the Behavior Rating Inventory of Executive Function to assess everyday inhibition, and T2 fluid-attenuated inversion recovery magnetic resonance imaging to identify lesions. Children with frontal WM damage had impaired response inhibition compared with all other groups and poorer everyday inhibition than the orthopedic injury group. Frontal WM lesions most often affected the superior frontal gyrus. These results provide evidence for the critical role of frontal WM in inhibition. PMID:24618405

  17. Prodigiosin inhibits gp91phox and iNOS expression to protect mice against the oxidative/nitrosative brain injury induced by hypoxia–ischemia

    International Nuclear Information System (INIS)

    Chang, Chia-Che; Wang, Yea-Hwey; Chern, Chang-Ming; Liou, Kuo-Tong; Hou, Yu-Chang; Peng, Yu-Ta; Shen, Yuh-Chiang

    2011-01-01

    This study aimed to explore the mechanisms by which prodigiosin protects against hypoxia-induced oxidative/nitrosative brain injury induced by middle cerebral artery occlusion/reperfusion (MCAo/r) injury in mice. Hypoxia in vitro was modeled using oxygen–glucose deprivation (OGD) followed by reoxygenation of BV-2 microglial cells. Our results showed that treatment of mice that have undergone MCAo/r injury with prodigiosin (10 and 100 μg/kg, i.v.) at 1 h after hypoxia ameliorated MCAo/r-induced oxidative/nitrosative stress, brain infarction, and neurological deficits in the mice, and enhanced their survival rate. MCAo/r induced a remarkable production in the mouse brains of reactive oxygen species (ROS) and a significant increase in protein nitrosylation; this primarily resulted from enhanced expression of NADPH oxidase 2 (gp91 phox ), inducible nitric oxide synthase (iNOS), and the infiltration of CD11b leukocytes due to breakdown of blood–brain barrier (BBB) by activation of nuclear factor-kappa B (NF-κB). All these changes were significantly diminished by prodigiosin. In BV-2 cells, OGD induced ROS and nitric oxide production by up-regulating gp91 phox and iNOS via activation of the NF-κB pathway, and these changes were suppressed by prodigiosin. In conclusion, our results indicate that prodigiosin reduces gp91 phox and iNOS expression possibly by impairing NF-κB activation. This compromises the activation of microglial and/or inflammatory cells, which then, in turn, mediates prodigiosin's protective effect in the MCAo/r mice. -- Highlights: ► Prodigiosin ameliorated brain infarction and deficits. ► Prodigiosin protected against hypoxia/reperfusion-induced brain injury. ► Prodigiosin diminished oxidative/nitrosativestress and leukocytes infiltration. ► Prodigiosin reduced BBB breakdown. ► Prodigiosin down-regulated gp91 phox and iNOS by inhibiting NF-κB activation.

  18. Dose-dependent neuroprotective effect of enoxaparin on cold-induced traumatic brain injury.

    Science.gov (United States)

    Keskin, Ilknur; Gunal, M Yalcin; Ayturk, Nilufer; Kilic, Ulkan; Ozansoy, Mehmet; Kilic, Ertugrul

    2017-05-01

    Recent evidence exists that enoxaparin can reduce brain injury because of its anticoagulant activity. To investigate the potential therapeutic effect of enoxaparin on cold-induced traumatic brain injury, at 20 minutes after modeling, male BALB/c mouse models of cold-induced traumatic brain injury were intraperitoneally administered 3 and 10 mg/kg enoxaparin or isotonic saline solution. Twenty-four hours later, enoxaparin at 10 mg/kg greatly reduced infarct volume, decreased cell apoptosis in the cortex and obviously increased serum level of total antioxidant status. By contrast, administration of enoxaparin at 3 mg/kg did not lead to these changes. These findings suggest that enoxaparin exhibits neuroprotective effect on cold-induced traumatic brain injury in a dose-dependent manner.

  19. Mucus reduction promotes acetyl salicylic acid-induced small intestinal mucosal injury in rats.

    Science.gov (United States)

    Suyama, Yosuke; Handa, Osamu; Naito, Yuji; Takayama, Shun; Mukai, Rieko; Ushiroda, Chihiro; Majima, Atsushi; Yasuda-Onozawa, Yuriko; Higashimura, Yasuki; Fukui, Akifumi; Dohi, Osamu; Okayama, Tetsuya; Yoshida, Naohisa; Katada, Kazuhiro; Kamada, Kazuhiro; Uchiyama, Kazuhiko; Ishikawa, Takeshi; Takagi, Tomohisa; Konishi, Hideyuki; Itoh, Yoshito

    2018-03-25

    Acetyl salicylic acid (ASA) is a useful drug for the secondary prevention of cerebro-cardiovascular diseases, but it has adverse effects on the small intestinal mucosa. The pathogenesis and prophylaxis of ASA-induced small intestinal injury remain unclear. In this study, we focused on the intestinal mucus, as the gastrointestinal tract is covered by mucus, which exhibits protective effects against various gastrointestinal diseases. ASA was injected into the duodenum of rats, and small intestinal mucosal injury was evaluated using Evans blue dye. To investigate the importance of mucus, Polysorbate 80 (P80), an emulsifier, was used before ASA injection. In addition, rebamipide, a mucus secretion inducer in the small intestine, was used to suppress mucus reduction in the small intestine of P80-administered rats. The addition of P80 reduced the mucus and exacerbated the ASA-induced small intestinal mucosal injury. Rebamipide significantly suppressed P80-reduced small intestinal mucus and P80-increased intestinal mucosal lesions in ASA-injected rats, demonstrating that mucus is important for the protection against ASA-induced small intestinal mucosal injury. These results provide new insight into the mechanism of ASA-induced small intestinal mucosal injury. Mucus secretion-increasing therapy might be useful in preventing ASA-induced small intestinal mucosal injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Acetaminophen-induced acute liver injury in HCV transgenic mice

    International Nuclear Information System (INIS)

    Uehara, Takeki; Kosyk, Oksana; Jeannot, Emmanuelle; Bradford, Blair U.; Tech, Katherine; Macdonald, Jeffrey M.; Boorman, Gary A.; Chatterjee, Saurabh; Mason, Ronald P.; Melnyk, Stepan B.; Tryndyak, Volodymyr P.; Pogribny, Igor P.; Rusyn, Ivan

    2013-01-01

    The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wild type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24 h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility. -- Highlights: ► Acetaminophen-induced liver injury is a significant clinical challenge. ► HCV-infected subjects may be at higher risk for acetaminophen-induced liver injury. ► We used HCV transgenics to test if liver injury due to acetaminophen is exacerbated.

  1. Acetaminophen-induced acute liver injury in HCV transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, Takeki; Kosyk, Oksana; Jeannot, Emmanuelle; Bradford, Blair U. [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Tech, Katherine; Macdonald, Jeffrey M. [Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States); Boorman, Gary A. [Covance, Chantilly, VA 20151 (United States); Chatterjee, Saurabh; Mason, Ronald P. [Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, RTP, NC 27713 (United States); Melnyk, Stepan B. [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72201 (United States); Tryndyak, Volodymyr P.; Pogribny, Igor P. [Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079 (United States); Rusyn, Ivan, E-mail: iir@unc.edu [Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 (United States)

    2013-01-15

    The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wild type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24 h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility. -- Highlights: ► Acetaminophen-induced liver injury is a significant clinical challenge. ► HCV-infected subjects may be at higher risk for acetaminophen-induced liver injury. ► We used HCV transgenics to test if liver injury due to acetaminophen is exacerbated.

  2. Injury timing alters metabolic, inflammatory and functional outcomes following repeated mild traumatic brain injury.

    Science.gov (United States)

    Weil, Zachary M; Gaier, Kristopher R; Karelina, Kate

    2014-10-01

    Repeated head injuries are a major public health concern both for athletes, and members of the police and armed forces. There is ample experimental and clinical evidence that there is a period of enhanced vulnerability to subsequent injury following head trauma. Injuries that occur close together in time produce greater cognitive, histological, and behavioral impairments than do injuries separated by a longer period. Traumatic brain injuries alter cerebral glucose metabolism and the resolution of altered glucose metabolism may signal the end of the period of greater vulnerability. Here, we injured mice either once or twice separated by three or 20days. Repeated injuries that were separated by three days were associated with greater axonal degeneration, enhanced inflammatory responses, and poorer performance in a spatial learning and memory task. A single injury induced a transient but marked increase in local cerebral glucose utilization in the injured hippocampus and sensorimotor cortex, whereas a second injury, three days after the first, failed to induce an increase in glucose utilization at the same time point. In contrast, when the second injury occurred substantially later (20days after the first injury), an increase in glucose utilization occurred that paralleled the increase observed following a single injury. The increased glucose utilization observed after a single injury appears to be an adaptive component of recovery, while mice with 2 injuries separated by three days were not able to mount this response, thus this second injury may have produced a significant energetic crisis such that energetic demands outstripped the ability of the damaged cells to utilize energy. These data strongly reinforce the idea that too rapid return to activity after a traumatic brain injury can induce permanent damage and disability, and that monitoring cerebral energy utilization may be a tool to determine when it is safe to return to the activity that caused the initial

  3. Alcohol-Induced Impairment of Balance is Antagonized by Energy Drinks.

    Science.gov (United States)

    Marczinski, Cecile A; Fillmore, Mark T; Stamates, Amy L; Maloney, Sarah F

    2018-01-01

    The acute administration of alcohol reliably impairs balance and motor coordination. While it is common for consumers to ingest alcohol with other stimulant drugs (e.g., caffeine, nicotine), little is known whether prototypical alcohol-induced balance impairments are altered by stimulant drugs. The purpose of this study was to examine whether the coadministration of a high-caffeine energy drink with alcohol can antagonize expected alcohol-induced increases in body sway. Sixteen social drinkers (of equal gender) participated in 4 separate double-blind dose administration sessions that involved consumption of alcohol and energy drinks, alone and in combination. Following dose administration, participants completed automated assessments of balance stability (both eyes open and eyes closed) measured using the Biosway Portable Balance System. Participants completed several subjective measures including self-reported ratings of sedation, stimulation, fatigue, and impairment. Blood pressure and pulse rate were recorded repeatedly. The acute administration of alcohol increased body sway, and the coadministration of energy drinks antagonized this impairment. When participants closed their eyes, alcohol-induced body sway was similar whether or not energy drinks were ingested. While alcohol administration increased ratings of sedation and fatigue, energy drink administration increased ratings of stimulation and reduced ratings of fatigue. Modest increases in systolic and diastolic blood pressure following energy drink administration were also observed. Visual assessment of balance impairment is frequently used to indicate that an individual has consumed too much alcohol (e.g., as part of police-standardized field sobriety testing or by a bartender assessing when someone should no longer be served more alcohol). The current findings suggest that energy drinks can antagonize alcohol-induced increases in body sway, indicating that future work is needed to determine whether this

  4. Critical Role of Endoplasmic Reticulum Stress in Cognitive Impairment Induced by Microcystin-LR

    Directory of Open Access Journals (Sweden)

    Fei Cai

    2015-11-01

    Full Text Available Recent studies showed that cyanobacteria-derived microcystin-leucine-arginine (MCLR can cause hippocampal pathological damage and trigger cognitive impairment; but the underlying mechanisms have not been well understood. The objective of the present study was to investigate the mechanism of MCLR-induced cognitive deficit; with a focus on endoplasmic reticulum (ER stress. The Morris water maze test and electrophysiological study demonstrated that MCLR caused spatial memory injury in male Wistar rats; which could be inhibited by ER stress blocker; tauroursodeoxycholic acid (TUDCA. Meanwhile; real-time polymerase chain reaction (real-time PCR and immunohistochemistry demonstrated that the expression level of the 78-kDa glucose-regulated protein (GRP78; C/EBP homologous protein (CHOP and caspase 12 were significantly up-regulated. These effects were rescued by co-administration of TUDCA. In agreement with this; we also observed that treatment of rats with TUDCA blocked the alterations in ER ultrastructure and apoptotic cell death in CA1 neurons from rats exposed to MCLR. Taken together; the present results suggested that ER stress plays an important role in potential memory impairments in rats treated with MCLR; and amelioration of ER stress may serve as a novel strategy to alleviate damaged cognitive function triggered by MCLR.

  5. An Overview on the Proposed Mechanisms of Antithyroid Drugs-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Reza Heidari

    2015-03-01

    Full Text Available Drug-induced liver injury (DILI is a major problem for pharmaceutical industry and drug development. Mechanisms of DILI are many and varied. Elucidating the mechanisms of DILI will allow clinicians to prevent liver failure, need for liver transplantation, and death induced by drugs. Methimazole and propylthiouracil (PTU are two convenient antithyroid agents which their administration is accompanied by hepatotoxicity as a deleterious side effect. Although several cases of antithyroid drugs-induced liver injury are reported, there is no clear idea about the mechanism(s of hepatotoxicity induced by these medications. Different mechanisms such as reactive metabolites formation, oxidative stress induction, intracellular targets dysfunction, and immune-mediated toxicity are postulated to be involved in antithyroid agents-induced hepatic damage. Due to the idiosyncratic nature of antithyroid drugs-induced hepatotoxicity, it is impossible to draw a specific conclusion about the mechanisms of liver injury. However, it seems that reactive metabolite formation and immune-mediated toxicity have a great role in antithyroids liver toxicity, especially those caused by methimazole. This review attempted to discuss different mechanisms proposed to be involved in the hepatic injury induced by antithyroid drugs.

  6. Ghrelin ameliorates acute lung injury induced by oleic acid via inhibition of endoplasmic reticulum stress.

    Science.gov (United States)

    Tian, Xiuli; Liu, Zhijun; Yu, Ting; Yang, Haitao; Feng, Linlin

    2018-03-01

    Acute lung injury (ALI) is associated with excessive mortality and lacks appropriate therapy. Ghrelin is a novel peptide that protects the lung against ALI. This study aimed to investigate whether endoplasmic reticulum stress (ERS) mediates the protective effect of ghrelin on ALI. We used a rat oleic acid (OA)-induced ALI model. Pulmonary impairment was detected by hematoxylin and eosin (HE) staining, lung mechanics, wet/dry weight ratio, and arterial blood gas analysis. Plasma and lung content of ghrelin was examined by ELISA, and mRNA expression was measured by quantitative real-time PCR. Protein levels were detected by western blot. Rats with OA treatment showed significant pulmonary injury, edema, inflammatory cellular infiltration, cytokine release, hypoxia and CO 2 retention as compared with controls. Plasma and pulmonary content of ghrelin was reduced in rats with ALI, and mRNA expression was downregulated. Ghrelin (10nmol/kg) treatment ameliorated the above symptoms, but treatment with the ghrelin antagonists D-Lys 3 GHRP-6 (1μmol/kg) and JMV 2959 (6mg/kg) exacerbated the symptoms. ERS induced by OA was prevented by ghrelin and augmented by ghrelin antagonist treatment. The ERS inducer, tunicamycin (Tm) prevented the ameliorative effect of ghrelin on ALI. The decreased ratio of p-Akt and Akt induced by OA was improved by ghrelin treatment, and was further exacerbated by ghrelin antagonists. Ghrelin protects against ALI by inhibiting ERS. These results provide a new target for prevention and therapy of ALI. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Glucocorticoids mediate stress-induced impairment of retrieval of stimulus-response memory.

    Science.gov (United States)

    Atsak, Piray; Guenzel, Friederike M; Kantar-Gok, Deniz; Zalachoras, Ioannis; Yargicoglu, Piraye; Meijer, Onno C; Quirarte, Gina L; Wolf, Oliver T; Schwabe, Lars; Roozendaal, Benno

    2016-05-01

    Acute stress and elevated glucocorticoid hormone levels are well known to impair the retrieval of hippocampus-dependent 'declarative' memory. Recent findings suggest that stress might also impair the retrieval of non-hippocampal memories. In particular, stress shortly before retention testing was shown to impair the retrieval of striatal stimulus-response associations in humans. However, the mechanism underlying this stress-induced retrieval impairment of non-hippocampal stimulus-response memory remains elusive. In the present study, we investigated whether an acute elevation in glucocorticoid levels mediates the impairing effects of stress on retrieval of stimulus-response memory. Male Sprague-Dawley rats were trained on a stimulus-response task in an eight-arm radial maze until they learned to associate a stimulus, i.e., cue, with a food reward in one of the arms. Twenty-four hours after successful acquisition, they received a systemic injection of vehicle, corticosterone (1mg/kg), the corticosterone-synthesis inhibitor metyrapone (35mg/kg) or were left untreated 1h before retention testing. We found that the corticosterone injection impaired the retrieval of stimulus-response memory. We further found that the systemic injection procedure per se was stressful as the vehicle administration also increased plasma corticosterone levels and impaired the retrieval of stimulus-response memory. However, memory retrieval was not impaired when rats were tested 2min after the systemic vehicle injection, before any stress-induced elevation in corticosterone levels had occurred. Moreover, metyrapone treatment blocked the effect of injection stress on both plasma corticosterone levels and memory retrieval impairment, indicating that the endogenous corticosterone response mediates the stress-induced memory retrieval impairment. None of the treatments affected rats' locomotor activity or motivation to search for the food reward within the maze. These findings show that stress

  8. Minocycline Attenuates Iron-Induced Brain Injury.

    Science.gov (United States)

    Zhao, Fan; Xi, Guohua; Liu, Wenqaun; Keep, Richard F; Hua, Ya

    2016-01-01

    Iron plays an important role in brain injury after intracerebral hemorrhage (ICH). Our previous study found minocycline reduces iron overload after ICH. The present study examined the effects of minocycline on the subacute brain injury induced by iron. Rats had an intracaudate injection of 50 μl of saline, iron, or iron + minocycline. All the animals were euthanized at day 3. Rat brains were used for immunohistochemistry (n = 5-6 per each group) and Western blotting assay (n = 4). Brain swelling, blood-brain barrier (BBB) disruption, and iron-handling proteins were measured. We found that intracerebral injection of iron resulted in brain swelling, BBB disruption, and brain iron-handling protein upregulation (p minocycline with iron significantly reduced iron-induced brain swelling (n = 5, p Minocycline significantly decreased albumin protein levels in the ipsilateral basal ganglia (p minocycline co-injected animals. In conclusion, the present study suggests that minocycline attenuates brain swelling and BBB disruption via an iron-chelation mechanism.

  9. Effect of heme oxygenase-1 on radiation-induced skin injury

    International Nuclear Information System (INIS)

    Song Chuanjun; Meng Xingjun; Xie Ling; Chen Qing; Zhou Jundong; Zhang Shuyu; Wu Jinchang

    2012-01-01

    Objective: To investigate the effect of heme oxygenase-1 (HO-1) on the acute radiation-induced skin injury by gene transfer. Methods: Thirty-three male SD rats were randomly divided into three groups as PBS-injected group, Ad-EGFP-injected group and Ad-HO-1-injected group (n=11). In each group, three rats were used for determining the expression of target gene and the other rats were irradiated on the buttock skin with 40 Gy electron beam generated by a linear accelerator. Immediately after irradiation, rats were administered with a subcutaneous injection of PBS, Ad-EGFP or Ad-HO-1, respectively. Subsequently, the skin reactions were measured twice a week using the semi-quantitative skin injury scale. Results: The strong positive expression of HO-1 was observed in subcutaneous dermal tissue after injection of Ad-HO-1. Compared to the PBS-injected group or the Ad-EGFP-injected group, a significant mitigation of skin injury was observed in Ad-HO-1-injected mice 14 d after irradiation (q=0.000-0.030, P<0.05). Conclusions: HO-1 could significantly mitigate radiation-induced acute skin injury and Ad-HO-1 could be used to treat radiation-induced skin injury. (authors)

  10. Pressure induced deep tissue injury explained

    NARCIS (Netherlands)

    Oomens, C.W.J.; Bader, D.L.; Loerakker, S.; Baaijens, F.P.T.

    The paper describes the current views on the cause of a sub-class of pressure ulcers known as pressure induced deep tissue injury (DTI). A multi-scale approach was adopted using model systems ranging from single cells in culture, tissue engineered muscle to animal studies with small animals. This

  11. Spontaneous excitation patterns computed for axons with injury-like impairments of sodium channels and Na/K pumps.

    Directory of Open Access Journals (Sweden)

    Na Yu

    Full Text Available In injured neurons, "leaky" voltage-gated sodium channels (Nav underlie dysfunctional excitability that ranges from spontaneous subthreshold oscillations (STO, to ectopic (sometimes paroxysmal excitation, to depolarizing block. In recombinant systems, mechanical injury to Nav1.6-rich membranes causes cytoplasmic Na(+-loading and "Nav-CLS", i.e., coupled left-(hyperpolarizing-shift of Nav activation and availability. Metabolic injury of hippocampal neurons (epileptic discharge results in comparable impairment: left-shifted activation and availability and hence left-shifted I(Na-window. A recent computation study revealed that CLS-based I(Na-window left-shift dissipates ion gradients and impairs excitability. Here, via dynamical analyses, we focus on sustained excitability patterns in mildly damaged nodes, in particular with more realistic Gaussian-distributed Nav-CLS to mimic "smeared" injury intensity. Since our interest is axons that might survive injury, pumps (sine qua non for live axons are included. In some simulations, pump efficacy and system volumes are varied. Impacts of current noise inputs are also characterized. The diverse modes of spontaneous rhythmic activity evident in these scenarios are studied using bifurcation analysis. For "mild CLS injury", a prominent feature is slow pump/leak-mediated E(Ion oscillations. These slow oscillations yield dynamic firing thresholds that underlie complex voltage STO and bursting behaviors. Thus, Nav-CLS, a biophysically justified mode of injury, in parallel with functioning pumps, robustly engenders an emergent slow process that triggers a plethora of pathological excitability patterns. This minimalist "device" could have physiological analogs. At first nodes of Ranvier and at nociceptors, e.g., localized lipid-tuning that modulated Nav midpoints could produce Nav-CLS, as could co-expression of appropriately differing Nav isoforms.

  12. Crocin Improved Learning and Memory Impairments in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Esmaeal Tamaddonfard

    2013-01-01

    Full Text Available Objective(s: Crocin influences many biological functions including memory and learning. The present study was aimed to investigate the effects of crocin on learning and memory impairments in streptozotocine-induced diabetic rats. Materials and Methods: Diabetes was induced by intraperitoneal (IP injection of streptozotocin (STZ, 45 mg/kg. Transfer latency (TL paradigm in elevated plus-maze (EPM was used as an index of learning and memory. Plasma levels of total antioxidant capacity (TAC and malondialdehyde (MDA, blood levels of glucose, and serum concentrations of insulin were measured. The number of hippocampal neurons was also counted. Results: STZ increased acquisition transfer latency (TL1 and retention transfer latency (TL2, and MDA, decreased transfer latency shortening (TLs and TCA, produced hyperglycemia and hypoinsulinemia, and reduced the number of neurons in the hippocampus. Learning and memory impairments and blood TCA, MDA, glucose, and insulin changes induced by streptozotocin were improved with long-term IP injection of crocin at doses of 15 and 30 mg/kg. Crocin prevented hippocampal neurons number loss in diabetic rats. Conclusion: The results indicate that oxidative stress, hyperglycemia, hypoinsulinemia, and reduction of hippocampal neurons may be involved in learning and memory impairments in STZ-induced diabetic rats. Antioxidant, antihyperglycemic, antihypoinsulinemic, and neuroprotective activities of crocin might be involved in improving learning and memory impairments.

  13. Repeated mild traumatic brain injury can cause acute neurologic impairment without overt structural damage in juvenile rats.

    Directory of Open Access Journals (Sweden)

    Alicia Meconi

    Full Text Available Repeated concussion is becoming increasingly recognized as a serious public health concern around the world. Moreover, there is a greater awareness amongst health professionals of the potential for repeated pediatric concussions to detrimentally alter the structure and function of the developing brain. To better study this issue, we developed an awake closed head injury (ACHI model that enabled repeated concussions to be performed reliably and reproducibly in juvenile rats. A neurological assessment protocol (NAP score was generated immediately after each ACHI to help quantify the cumulative effects of repeated injury on level of consciousness, and basic motor and reflexive capacity. Here we show that we can produce a repeated ACHI (4 impacts in two days in both male and female juvenile rats without significant mortality or pain. We show that both single and repeated injuries produce acute neurological deficits resembling clinical concussion symptoms that can be quantified using the NAP score. Behavioural analyses indicate repeated ACHI acutely impaired spatial memory in the Barnes maze, and an interesting sex effect was revealed as memory impairment correlated moderately with poorer NAP score performance in a subset of females. These cognitive impairments occurred in the absence of motor impairments on the Rotarod, or emotional changes in the open field and elevated plus mazes. Cresyl violet histology and structural magnetic resonance imaging (MRI indicated that repeated ACHI did not produce significant structural damage. MRI also confirmed there was no volumetric loss in the cortex, hippocampus, or corpus callosum of animals at 1 or 7 days post-ACHI. Together these data indicate that the ACHI model can provide a reliable, high throughput means to study the effects of concussions in juvenile rats.

  14. Language impairments in youths with traumatic brain injury: implications for participation in criminal proceedings.

    Science.gov (United States)

    Wszalek, Joseph A; Turkstra, Lyn S

    2015-01-01

    As many as 30% of incarcerated juveniles have a history of traumatic brain injury (TBI). Moderate or severe TBI is associated with a high risk of impairment in language comprehension and expression, which may have profound effects on juveniles' ability to understand and express themselves in criminal proceedings. In this article, we review common language impairments in youths with TBI and discuss potential effects of these impairments on 3 stages of US criminal proceedings: (1) initial encounter with law enforcement; (2) interrogation and Miranda rights; and (3) competence to undergo trial proceedings. We then describe language assessment tools and procedures that may be helpful in legal contexts. Our aim was to inform clinicians and legal staff working with juvenile defendants with TBI, with the long-term goal of developing empirically based guidelines to ensure that juvenile defendants with TBI can fully and effectively participate in criminal proceedings.

  15. Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury.

    Science.gov (United States)

    Yang, Lianhong; Yang, Jianhua; Li, Guoqian; Li, Yi; Wu, Rong; Cheng, Jinping; Tang, Yamei

    2017-03-01

    The brain is the major dose-limiting organ in patients undergoing radiotherapy for assorted conditions. Radiation-induced brain injury is common and mainly occurs in patients receiving radiotherapy for malignant head and neck tumors, arteriovenous malformations, or lung cancer-derived brain metastases. Nevertheless, the underlying mechanisms of radiation-induced brain injury are largely unknown. Although many treatment strategies are employed for affected individuals, the effects remain suboptimal. Accordingly, animal models are extremely important for elucidating pathogenic radiation-associated mechanisms and for developing more efficacious therapies. So far, models employing various animal species with different radiation dosages and fractions have been introduced to investigate the prevention, mechanisms, early detection, and management of radiation-induced brain injury. However, these models all have limitations, and none are widely accepted. This review summarizes the animal models currently set forth for studies of radiation-induced brain injury, especially rat and mouse, as well as radiation dosages, dose fractionation, and secondary pathophysiological responses.

  16. Obeticholic acid protects mice against lipopolysaccharide-induced liver injury and inflammation.

    Science.gov (United States)

    Xiong, Xi; Ren, Yuqian; Cui, Yun; Li, Rui; Wang, Chunxia; Zhang, Yucai

    2017-12-01

    Cholestasis, as a main manifestation, induces liver injury during sepsis. The farnesoid X receptor (FXR) plays an important role in regulating bile acid homeostasis. Whether FXR activation by its agonist obeticholic acid (OCA) is contributed to improve sepsis-induced liver injury remains unknown. The aim of the present study was to investigate the effect of OCA on lipopolysaccharide (LPS)-induced acute liver injury in mice. 8-week old male C57BL/6J mice were randomly divided into control group, LPS group, oral OCA group and LPS plus oral OCA (LPS + OCA) group. The serum and livers were collected for further analysis. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bile acid (TBA) and total bilirubin (TBIL) were measured at indicated time after LPS administration. Liver sections were stained with hematoxylin & eosin (H&E). Orally OCA pretreatment stimulated the expression of FXR and BSEP in livers and protected mice from LPS-induced hepatocyte apoptosis and inflammatory infiltration. Consistently, LPS-induced higher serum levels of ALT, AST, TBA and TBIL were significantly reversed by OCA administration. Meanwhile, the mRNA levels of interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α) and IL-6 were decreased in livers of mice in LPS + OCA group compared with LPS group. Further investigation indicated that the higher expression of ATF4 and LC3II/I were associated with the protective effect of OCA on LPS-induced liver injury. Orally OCA pretreatment protects mice from LPS-induced liver injury possibly contributed by improved bile acid homeostasis, decreased inflammatory factors and ATF4-mediated autophagy activity in hepatocytes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Bardoxolone methyl (BARD) ameliorates aristolochic acid (AA)-induced acute kidney injury through Nrf2 pathway.

    Science.gov (United States)

    Wu, Juan; Liu, Xinhui; Fan, Jinjin; Chen, Wenfang; Wang, Juan; Zeng, Youjia; Feng, Xiaorang; Yu, Xueqing; Yang, Xiao

    2014-04-06

    Bardoxolone methyl (BARD) is an antioxidant modulator that acts through induction of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. This study aimed to investigate the role of BARD in protecting kidneys from aristolochic acid (AA)-induced acute kidney injury (AKI). Male C57BL/6 mice received intraperitoneal (i.p.) injections of aristolochic acid I (AAI) (5mg/kg/day) for 5 days to produce acute AA nephropathy (AAN) model. BARD (10mg/kg/day, i.p.) was applied for 7 consecutive days, starting 2 days prior to AAI administration. The mice in the AA group showed AKI as evidenced by worsening kidney function evaluated by blood urea nitrogen (BUN) and serum creatinine (SCr) levels, and severe tubulointerstitial injury marked by massive tubule necrosis in kidney tissues. BARD significantly reduced BUN and SCr levels which were elevated by AAI. Additionally, AAI-induced histopathological renal damage was ameliorated by BARD. Furthermore, the expression of Nrf2 was reduced, and its repressor Kelch-like ECH-associated protein 1 (Keap1) was increased significantly, whereas heme oxygenase-1 (HO-1) was upregulated and NAD(P)H quinone oxidoreductase-1 (NQO1) was barely increased in the cytoplasm of tubules in kidneys after treatment with AAI. BARD significantly upregulated renal Nrf2, NQO1 and HO-1 expression and downregulated Keap1 expression compared with those in the AA group. Moreover, it was found that Nrf2 was expressed both in the cytoplasm and nuclear of glomeruli and tubules, whereas NQO1 and HO-1 were localized in the cytoplasm of tubules only. In conclusion, AA-induced acute renal injury was associated with impaired Nrf2 activation and expression of its downstream target genes in renal tissues. BARD prevented renal damage induced by AAI, and this renoprotective effect may be exerted by activating the Nrf2 signaling pathway and increasing expression of the downstream target genes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Cognitive impairment after traumatic brain injury: a functional magnetic resonance imaging study using the Stroop task

    International Nuclear Information System (INIS)

    Soeda, Akio; Iwama, Toru; Nakashima, Toshihiko; Okumura, Ayumi; Shinoda, Jun; Kuwata, Kazuo

    2005-01-01

    The anterior cingulate cortex (ACC) plays a key role in cognition, motor function, and emotion processing. However, little is known about how traumatic brain injury (TBI) affects the ACC system. Our purpose was to compare, by functional magnetic resonance imaging (fMRI) studies, the patterns of cortical activation in patients with cognitive impairment after TBI and those of normal subjects. Cortical activation maps of 11 right-handed healthy control subjects and five TBI patients with cognitive impairment were recorded in response to a Stroop task during a block-designed fMRI experiment. Statistical parametric mapping (SPM99) was used for individual subjects and group analysis. In TBI patients and controls, cortical activation, found in similar regions of the frontal, occipital, and parietal lobes, resembled patterns of activation documented in previous neuroimaging studies of the Stroop task in healthy controls. However, the TBI patients showed a relative decrease in ACC activity compared with the controls. Cognitive impairment in TBI patients seems to be associated with alterations in functional cerebral activity, especially less activation of the ACC. These changes are probably the result of destruction of neural networks after diffuse axonal injury and may reflect cortical disinhibition attributable to disconnection or compensation for an inefficient cognitive process. (orig.)

  19. Cognitive impairment after traumatic brain injury: a functional magnetic resonance imaging study using the Stroop task

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Akio; Iwama, Toru [Gifu University School of Medicine, Department of Neurosurgery, Gifu City (Japan); Nakashima, Toshihiko; Okumura, Ayumi; Shinoda, Jun [Kizawa Memorial Hospital, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Department of Neurosurgery, Minokamo (Japan); Kuwata, Kazuo [Gifu University School of Medicine, Department of Biochemistry and Biophysics, Gifu (Japan)

    2005-07-01

    The anterior cingulate cortex (ACC) plays a key role in cognition, motor function, and emotion processing. However, little is known about how traumatic brain injury (TBI) affects the ACC system. Our purpose was to compare, by functional magnetic resonance imaging (fMRI) studies, the patterns of cortical activation in patients with cognitive impairment after TBI and those of normal subjects. Cortical activation maps of 11 right-handed healthy control subjects and five TBI patients with cognitive impairment were recorded in response to a Stroop task during a block-designed fMRI experiment. Statistical parametric mapping (SPM99) was used for individual subjects and group analysis. In TBI patients and controls, cortical activation, found in similar regions of the frontal, occipital, and parietal lobes, resembled patterns of activation documented in previous neuroimaging studies of the Stroop task in healthy controls. However, the TBI patients showed a relative decrease in ACC activity compared with the controls. Cognitive impairment in TBI patients seems to be associated with alterations in functional cerebral activity, especially less activation of the ACC. These changes are probably the result of destruction of neural networks after diffuse axonal injury and may reflect cortical disinhibition attributable to disconnection or compensation for an inefficient cognitive process. (orig.)

  20. Neuroprotective Treatment of Laser-Induced Retinal Injuries

    National Research Council Canada - National Science Library

    Rosner, Mordechai

    2001-01-01

    .... It is not possible to prevent all these injuries and there is no treatment. This study was designed to evaluate the neuroprotective effect of dextromethorphan, memantine and brimonidine in our rat model of laser- induced retinal-lesions Methods...

  1. Factors affecting drug-induced liver injury: antithyroid drugs as instances

    Directory of Open Access Journals (Sweden)

    Reza Heidari

    2014-09-01

    Full Text Available Methimazole and propylthiouracil have been used in the management of hyperthyroidism for more than half a century. However, hepatotoxicity is one of the most deleterious side effects associated with these medications. The mechanism(s of hepatic injury induced by antithyroid agents is not fully recognized yet. Furthermore, there are no specific tools for predicting the occurrence of hepatotoxicity induced by these drugs. The purpose of this article is to give an overview on possible susceptibility factors in liver injury induced by antithyroid agents. Age, gender, metabolism characteristics, alcohol consumption, underlying diseases, immunologic mechanisms, and drug interactions are involved in enhancing antithyroid drugs-induced hepatic damage. An outline on the clinically used treatments for antithyroid drugs-induced hepatotoxicity and the potential therapeutic strategies found to be effective against this complication are also discussed.

  2. Saponins from Panax japonicus attenuate D-galactose-induced cognitive impairment through its anti-oxidative and anti-apoptotic effects in rats.

    Science.gov (United States)

    Wang, Ting; Di, Guojie; Yang, Li; Dun, Yaoyan; Sun, Zhiwei; Wan, Jingzhi; Peng, Ben; Liu, Chaoqi; Xiong, Guangrun; Zhang, Changcheng; Yuan, Ding

    2015-09-01

    To investigate the neuroprotective effects of saponins from Panax japonicus (SPJ) on D-galactose (D-gal)-induced brain ageing, and further explore the underlying mechanisms. SPJ were analysed using high-pressure liquid chromatography. Male Wistar rats weighing 200 ± 20 g were randomly divided into four groups: control group (saline), D-gal-treated group (400 mg/kg, subcutaneously), D-gal + SPJ groups (50, 100 and 200 mg/kg, orally) and vitamin E group (100 mg/kg). Rats were injected corresponding drugs once daily for 8 weeks. Neuroprotective effects of SPJ were evaluated by Morris water maze, histopathological observations, biochemical assays, western blot analysis and quantitative real-time polymerase chain reaction (PCR) analysis in vivo as well as reactive oxygen species (ROS) measurement and apoptosis assay in vitro. Our present study showed that D-gal had a neurotoxic effect in rats and in SH-SY5Y cells due to oxidative stress induction, including decreased total anti-oxidant capacity, superoxide dismutase (SOD) and glutathione peroxidase activity, ultimately leading to spatial learning and memory impairment in rats and ROS accumulation in SH-SY5Y cells. SPJ improved spatial learning and memory deficits, attenuated hippocampus histopathological injury and restored impaired anti-oxidative as well as anti-apoptotic capacities in D-gal-induced ageing rats. In addition, SPJ remarkably decreased lipofuscin levels, increased hippocampus nuclear factor erythroid 2-related factor 2 (Nrf2) and silent mating type information regulation 2 homologue (SIRT1) protein levels and anti-oxidant genes expression such as manganese superoxide dismutase (Mn-SOD), heme oxygenase (HO-1), NAD(P)H quinone oxidoreductase 1 (NQO1) and cysteine ligase catalytic (GCLC) in D-gal-induced brain ageing. Our data suggested that D-gal induced multiple molecular and functional changes in brain similar to natural ageing process. SPJ protected brain from D-gal-induced neuronal

  3. Acute kidney injury due to star fruit ingestion: A case report

    Directory of Open Access Journals (Sweden)

    Mehruba Alam Ananna

    2016-08-01

    Full Text Available Star fruit (Avarrhoa carambola is a fruit from oxalidace family. lt is found in many countries of the world including Bangladesh. But its ingestion or drinking star fruit juice may lead to intoxication especially in patients with chronic kidney disease and manifestations might be neurological or nephrological. lt may also cause acute kidney injury in patients with previously normal renal function. Here we are presenting a case who presented with acute kidney injury after star fruit ingestion with previously unknown renal function impairment. The etiology was confirmed by histopathological exami­nation after doing renal biopsy. This renal function impairment is mainly due to oxalate crystal induce nephropathy which is richly abundant in star fruit. His renal function was improved ·with conservative management. Physicians should be alert to consider the ingestion of star fruit as a cause of acute kidney injury in a patient even in the absence of previous renal function impairment.

  4. Vildagliptin-induced acute lung injury: a case report.

    Science.gov (United States)

    Ohara, Nobumasa; Kaneko, Masanori; Sato, Kazuhiro; Maruyama, Ryoko; Furukawa, Tomoyasu; Tanaka, Junta; Kaneko, Kenzo; Kamoi, Kyuzi

    2016-08-12

    Dipeptidyl peptidase-4 inhibitors are a class of oral hypoglycemic drugs and are used widely to treat type 2 diabetes mellitus in many countries. Adverse effects include nasopharyngitis, headache, elevated serum pancreatic enzymes, and gastrointestinal symptoms. In addition, a few cases of interstitial pneumonia associated with their use have been reported in the Japanese literature. Here we describe a patient who developed drug-induced acute lung injury shortly after the administration of the dipeptidyl peptidase-4 inhibitor vildagliptin. A 38-year-old Japanese woman with diabetes mellitus developed acute respiratory failure 1 day after administration of vildagliptin. Chest computed tomography revealed nonsegmental ground-glass opacities in her lungs. There was no evidence of bacterial pneumonia or any other cause of her respiratory manifestations. After discontinuation of vildagliptin, she recovered fully from her respiratory disorder. She received insulin therapy for her diabetes mellitus, and her subsequent clinical course has been uneventful. The period of drug exposure in previously reported cases of patients with drug-induced interstitial pneumonia caused by dipeptidyl peptidase-4 inhibitor varied from several days to over 6 months. In the present case, our patient developed interstitial pneumonia only 1 day after the administration of vildagliptin. The precise mechanism of her vildagliptin-induced lung injury remains uncertain, but physicians should consider that dipeptidyl peptidase-4 inhibitor-induced lung injury, although rare, may appear acutely, even within days after administration of this drug.

  5. Acute ciprofloxacin-induced crystal nephropathy with granulomatous interstitial nephritis

    Directory of Open Access Journals (Sweden)

    R Goli

    2017-01-01

    Full Text Available Crystal-induced acute kidney injury (AKI is caused by the intratubular precipitation of crystals, which results in obstruction and kidney injury. Ciprofloxacin, a commonly used antibiotic, causes AKI secondary to immune-mediated interstitial injury. Rare mechanisms of ciprofloxacin-induced renal injury include crystalluria, rhabdomyolysis, and granulomatous interstitial nephritis. Clinical and experimental studies have suggested that crystalluria and crystal nephropathy due to ciprofloxacin occur in alkaline urine. Preexisting kidney function impairment, high dose of the medication, and advanced age predispose to this complication. We report a case of ciprofloxacin-induced crystal nephropathy and granulomatous interstitial nephritis in a young patient with no other predisposing factors. The patient responded to conservative treatment without the need for glucocorticoids.

  6. Influence of high carbohydrate versus high fat diet in ozone induced pulmonary injury and systemic metabolic impairment in a Brown Norway (BN) rat model of healthy aging

    Science.gov (United States)

    Rationale: Air pollution has been recently linked to the increased prevalence of metabolic syndrome. It has been postulated that dietary risk factors might exacerbate air pollution-induced metabolic impairment. We have recently reported that ozone exposure induces acute systemic ...

  7. Idh2 Deficiency Exacerbates Acrolein-Induced Lung Injury through Mitochondrial Redox Environment Deterioration

    Directory of Open Access Journals (Sweden)

    Jung Hyun Park

    2017-01-01

    Full Text Available Acrolein is known to be involved in acute lung injury and other pulmonary diseases. A number of studies have suggested that acrolein-induced toxic effects are associated with depletion of antioxidants, such as reduced glutathione and protein thiols, and production of reactive oxygen species. Mitochondrial NADP+-dependent isocitrate dehydrogenase (idh2 regulates mitochondrial redox balance and reduces oxidative stress-induced cell injury via generation of NADPH. Therefore, we evaluated the role of idh2 in acrolein-induced lung injury using idh2 short hairpin RNA- (shRNA- transfected Lewis lung carcinoma (LLC cells and idh2-deficient (idh2−/− mice. Downregulation of idh2 expression increased susceptibility to acrolein via induction of apoptotic cell death due to elevated mitochondrial oxidative stress. Idh2 deficiency also promoted acrolein-induced lung injury in idh2 knockout mice through the disruption of mitochondrial redox status. In addition, acrolein-induced toxicity in idh2 shRNA-transfected LLC cells and in idh2 knockout mice was ameliorated by the antioxidant, N-acetylcysteine, through attenuation of oxidative stress resulting from idh2 deficiency. In conclusion, idh2 deficiency leads to mitochondrial redox environment deterioration, which causes acrolein-mediated apoptosis of LLC cells and acrolein-induced lung injury in idh2−/− mice. The present study supports the central role of idh2 deficiency in inducing oxidative stress resulting from acrolein-induced disruption of mitochondrial redox status in the lung.

  8. Idh2 Deficiency Exacerbates Acrolein-Induced Lung Injury through Mitochondrial Redox Environment Deterioration.

    Science.gov (United States)

    Park, Jung Hyun; Ku, Hyeong Jun; Lee, Jin Hyup; Park, Jeen-Woo

    2017-01-01

    Acrolein is known to be involved in acute lung injury and other pulmonary diseases. A number of studies have suggested that acrolein-induced toxic effects are associated with depletion of antioxidants, such as reduced glutathione and protein thiols, and production of reactive oxygen species. Mitochondrial NADP + -dependent isocitrate dehydrogenase ( idh2 ) regulates mitochondrial redox balance and reduces oxidative stress-induced cell injury via generation of NADPH. Therefore, we evaluated the role of idh2 in acrolein-induced lung injury using idh2 short hairpin RNA- (shRNA-) transfected Lewis lung carcinoma (LLC) cells and idh2 -deficient ( idh2 -/- ) mice. Downregulation of idh2 expression increased susceptibility to acrolein via induction of apoptotic cell death due to elevated mitochondrial oxidative stress. Idh2 deficiency also promoted acrolein-induced lung injury in idh2 knockout mice through the disruption of mitochondrial redox status. In addition, acrolein-induced toxicity in idh2 shRNA-transfected LLC cells and in idh2 knockout mice was ameliorated by the antioxidant, N-acetylcysteine, through attenuation of oxidative stress resulting from idh2 deficiency. In conclusion, idh2 deficiency leads to mitochondrial redox environment deterioration, which causes acrolein-mediated apoptosis of LLC cells and acrolein-induced lung injury in idh2 -/- mice. The present study supports the central role of idh2 deficiency in inducing oxidative stress resulting from acrolein-induced disruption of mitochondrial redox status in the lung.

  9. Multidimensional Analysis of Magnetic Resonance Imaging Predicts Early Impairment in Thoracic and Thoracolumbar Spinal Cord Injury

    Science.gov (United States)

    Mabray, Marc C.; Whetstone, William D.; Dhall, Sanjay S.; Phillips, David B.; Pan, Jonathan Z.; Manley, Geoffrey T.; Bresnahan, Jacqueline C.; Beattie, Michael S.; Haefeli, Jenny

    2016-01-01

    Abstract Literature examining magnetic resonance imaging (MRI) in acute spinal cord injury (SCI) has focused on cervical SCI. Reproducible systems have been developed for MRI-based grading; however, it is unclear how they apply to thoracic SCI. Our hypothesis is that MRI measures will group as coherent multivariate principal component (PC) ensembles, and that distinct PCs and individual variables will show discriminant validity for predicting early impairment in thoracic SCI. We undertook a retrospective cohort study of 25 patients with acute thoracic SCI who underwent MRI on admission and had American Spinal Injury Association Impairment Scale (AIS) assessment at hospital discharge. Imaging variables of axial grade, sagittal grade, length of injury, thoracolumbar injury classification system (TLICS), maximum canal compromise (MCC), and maximum spinal cord compression (MSCC) were collected. We performed an analytical workflow to detect multivariate PC patterns followed by explicit hypothesis testing to predict AIS at discharge. All imaging variables loaded positively on PC1 (64.3% of variance), which was highly related to AIS at discharge. MCC, MSCC, and TLICS also loaded positively on PC2 (22.7% of variance), while variables concerning cord signal abnormality loaded negatively on PC2. PC2 was highly related to the patient undergoing surgical decompression. Variables of signal abnormality were all negatively correlated with AIS at discharge with the highest level of correlation for axial grade as assessed with the Brain and Spinal Injury Center (BASIC) score. A multiple variable model identified BASIC as the only statistically significant predictor of AIS at discharge, signifying that BASIC best captured the variance in AIS within our study population. Our study provides evidence of convergent validity, construct validity, and clinical predictive validity for the sampled MRI measures of SCI when applied in acute thoracic and thoracolumbar SCI. PMID:26414451

  10. Coronary arterial BK channel dysfunction exacerbates ischemia/reperfusion-induced myocardial injury in diabetic mice.

    Science.gov (United States)

    Lu, Tong; Jiang, Bin; Wang, Xiao-Li; Lee, Hon-Chi

    2016-09-01

    The large conductance Ca(2+)-activated K(+) (BK) channels, abundantly expressed in coronary artery smooth muscle cells (SMCs), play a pivotal role in regulating coronary circulation. A large body of evidence indicates that coronary arterial BK channel function is diminished in both type 1 and type 2 diabetes. However, the consequence of coronary BK channel dysfunction in diabetes is not clear. We hypothesized that impaired coronary BK channel function exacerbates myocardial ischemia/reperfusion (I/R) injury in streptozotocin-induced diabetic mice. Combining patch-clamp techniques and cellular biological approaches, we found that diabetes facilitated the colocalization of angiotensin II (Ang II) type 1 receptors and BK channel α-subunits (BK-α), but not BK channel β1-subunits (BK-β1), in the caveolae of coronary SMCs. This caveolar compartmentation in vascular SMCs not only enhanced Ang II-mediated inhibition of BK-α but also produced a physical disassociation between BK-α and BK-β1, leading to increased infarct size in diabetic hearts. Most importantly, genetic ablation of caveolae integrity or pharmacological activation of coronary BK channels protected the cardiac function of diabetic mice from experimental I/R injury in both in vivo and ex vivo preparations. Our results demonstrate a vascular ionic mechanism underlying the poor outcome of myocardial injury in diabetes. Hence, activation of coronary BK channels may serve as a therapeutic target for cardiovascular complications of diabetes.

  11. Clinical Relevance and Predictive Value of Damage Biomarkers of Drug-Induced Kidney Injury.

    Science.gov (United States)

    Kane-Gill, Sandra L; Smithburger, Pamela L; Kashani, Kianoush; Kellum, John A; Frazee, Erin

    2017-11-01

    Nephrotoxin exposure accounts for up to one-fourth of acute kidney injury episodes in hospitalized patients, and the associated consequences are as severe as acute kidney injury due to other etiologies. As the use of nephrotoxic agents represents one of the few modifiable risk factors for acute kidney injury, clinicians must be able to identify patients at high risk for drug-induced kidney injury rapidly. Recently, significant advancements have been made in the field of biomarker utilization for the prediction and detection of acute kidney injury. Such biomarkers may have a role both for detection of drug-induced kidney disease and implementation of preventative and therapeutic strategies designed to mitigate injury. In this article, basic principles of renal biomarker use in practice are summarized, and the existing evidence for six markers specifically used to detect drug-induced kidney injury are outlined, including liver-type fatty acid binding protein, neutrophil gelatinase-associated lipocalin, tissue inhibitor of metalloproteinase-2 times insulin-like growth factor-binding protein 7 ([TIMP-2]·[IGFBP7]), kidney injury molecule-1 and N-acetyl-β-D-glucosaminidase. The results of the literature search for these six kidney damage biomarkers identified 29 unique articles with none detected for liver-type fatty acid binding protein and [TIMP-2]·[IGFBP7]. For three biomarkers, kidney injury molecule-1, neutrophil gelatinase-associated lipocalin and N-acetyl-β-D-glucosaminidase, the majority of the studies suggest utility in clinical practice. While many questions need to be answered to clearly articulate the use of biomarkers to predict drug-induced kidney disease, current data are promising.

  12. Fire injury reduces inducible defenses of lodgepole pine against Mountain pine beetle.

    Science.gov (United States)

    Powell, Erinn N; Raffa, Kenneth F

    2011-11-01

    We examined the effect of wildfire injury on lodgepole pine chemical defenses against mountain pine beetle. We compared the constitutive phloem chemistry among uninjured, lightly-, moderately-, and severely-injured trees, and the induced chemistry elicited by simulated beetle attack, among these same categories. We also compared the entry rates of caged female beetles into trees of these categories. The volatiles we studied included thirteen monoterpene hydrocarbons, four allylic monoterpene alcohols, one ester, and one phenyl propanoid, of which the monoterpene hydrocarbons always comprised 96% or more of the total. Fire injury reduced the total concentration of these compounds in the induced but not constitutive phloem tissue of lodgepole pines. Fire injury also affected the relative composition of some volatiles in both induced and constitutive phloem. For example, increased fire injury reduced 4-allylanisole, a host compound that inhibits mountain pine beetle aggregation. Increased fire injury also increased (-) α-pinene, which can serve as precursor of pheromone communication. However, it also reduced myrcene and terpinolene, which can serve as stimulants and synergists of pheromone communication. Beetle entry did not show statistical differences among fire injury categories, although there was a trend to increased entry with fire injury. These results suggest that the reduced ability of trees to mobilize induced chemical defenses is an important mechanism behind the higher incidence of attack on fire-injured trees in the field. Future studies should concentrate on whether beetles that enter fire-injured trees are more likely to elicit aggregation, based on the differences we observed in volatile composition.

  13. Amiodarone-Induced Liver Injury and Cirrhosis.

    Science.gov (United States)

    Buggey, Jonathan; Kappus, Matthew; Lagoo, Anand S; Brady, Carla W

    2015-01-01

    We present a case report of an 80-year-old woman with volume overload thought initially to be secondary to heart failure, but determined to be amiodarone-induced acute and chronic liver injury leading to submassive necrosis and bridging fibrosis consistent with early cirrhosis. Her histopathology was uniquely absent of steatosis and phospholipidosis, which are commonly seen in AIC.

  14. [Role of melatonin in calcium overload-induced heart injury].

    Science.gov (United States)

    Kong, Lingheng; Wei, Ming; Sun, Na; Zhu, Juanxia; Su, Xingli

    2017-06-28

    To investigate the role of melatonin in calcium overload-induced heart injury.
 Methods: Thirty-two rats were divided into 4 groups: a control group (Control), a melatonin control group (Mel), a calcium overload group (CaP), and a calcium overload plus melatonin group (Mel+CaP). Isolated Sprague Dawley male rat hearts underwent Langendorff perfusion. Left ventricular developed pressure (LVDP) was calculated to evaluate the myocardial performance. Triphenyltetrazolium chloride staining was used to measure the infarct size of myocardium. Lactate dehydrogenase (LDH) activity in the coronary flow was determined. The expressions of caspase-3 and cytochrome c were determined by Western blot. The pathological morphological changes in myocardial fiber were analyzed by HE staining.
 Results: Compared with the control group, calcium overload significantly induced an enlarged infarct size (Poverload-induced heart injury.

  15. The clinical utility of MR diffusion tensor imaging and spatially normalized PET to evaluate traumatic brain injury patients with memory and cognitive impairments

    International Nuclear Information System (INIS)

    Okumura, Ayumi; Yasokawa, Yuuto; Nakayama, Noriyuki; Miwa, Kazuhiro; Shinoda, Jun; Iwama, Toru

    2005-01-01

    We detected and compared abnormal brain areas using both MR diffusion tensor imaging (DTI) and easy Z score imaging system (eZIS) of fluorodeoxyglucose (FDG)-PET for traumatic brain injury patients with memory and cognitive impairments. Twenty normal subjects and eighteen diffuse axonal injury patients with memory and cognitive impairments were studied with DTI and eZIS of 18 F-FDG-PET. DTI contained fractional anisotorophy (FA) analysis and the tractography for the corpus callosum. After PET imaging was performed, statistical analysis using eZIS was undergone with followed processing steps, including smoothing, normalization and z transformation with respect to normal database. Z score map was superimposed on 3D MRI brain. Group analysis was performed using statistical parametric mapping (SPM). In diffuse axonal injury patients, the decline of FA was observed around the corpus callosum in comparison with normal subjects and the reduction of glucose metabolism was shown in the cingulated association. These results suggest that the reduction of metabolism within the cingulated cortex indicated deprived neuronal activation caused by the impaired neuronal connectivity that was revealed with DTI. Furthermore, the metabolic abnormalities within the cingulated cortex may be responsible for memory and cognitive impairments. DTI and spatially normalized PET have a role in neuroimaging interpretation for patients with memory and cognition impairments be cause its 3D better visualization allows objective and systematic investigation. (author)

  16. Cannabidiol prevents motor and cognitive impairments induced by reserpine in rats

    Directory of Open Access Journals (Sweden)

    Fernanda Fiel Peres

    2016-09-01

    Full Text Available Cannabidiol (CBD is a non-psychotomimetic compound from Cannabis sativa that presents antipsychotic, anxiolytic, anti-inflammatory and neuroprotective effects. In Parkinson’s disease patients, CBD is able to attenuate the psychotic symptoms induced by L-DOPA and to improve quality of life. Repeated administration of reserpine in rodents induces motor impairments that are accompanied by cognitive deficits, and has been applied to model both tardive dyskinesia and Parkinson’s disease. The present study investigated whether CBD administration would attenuate reserpine-induced motor and cognitive impairments in rats. Male Wistar rats received four injections of CBD (0.5 or 5 mg/kg or vehicle (days 2-5. On days 3 and 5, animals received also one injection of 1 mg/kg reserpine or vehicle. Locomotor activity, vacuous chewing movements and catalepsy were assessed from day 1 to day 7. On days 8 and 9, we evaluated animals’ performance on the plus-maze discriminative avoidance task, for learning/memory assessment. CBD (0.5 and 5 mg/kg attenuated the increase in catalepsy behavior and in oral movements – but not the decrease in locomotion – induced by reserpine. CBD (0.5 mg/kg also ameliorated the reserpine-induced memory deficit in the discriminative avoidance task. Our data show that CBD is able to attenuate motor and cognitive impairments induced by reserpine, suggesting the use of this compound in the pharmacotherapy of Parkinson’s disease and tardive dyskinesia.

  17. Signal Transduction Pathways Involved in Brain Death-Induced Renal Injury

    NARCIS (Netherlands)

    Bouma, H. R.; Ploeg, R. J.; Schuurs, T. A.

    Kidneys derived from brain death organ donors show an inferior survival when compared to kidneys derived from living donors. Brain death is known to induce organ injury by evoking an inflammatory response in the donor. Neuronal injury triggers an inflammatory response in the brain, leading to

  18. [Expression of various matrix metalloproteinases in mice with hyperoxia-induced acute lung injury].

    Science.gov (United States)

    Zhang, Xiang-feng; Ding, Shao-fang; Gao, Yuan-ming; Liang, Ying; Foda, Hussein D

    2006-08-01

    To investigate the role of matrix metalloproteinases (MMPs) and extracellular matrix metalloproteinase inducer (EMMPRIN) in the pathogenesis of acute lung injury induced by hyperoxia. Fifty four mice were exposed in sealed cages to >98% oxygen (for 24-72 hours), and another 18 mice to room air. The severity of lung injury was assessed, and the expression of mRNA and protein of MMP-2, MMP-9 and EMMPRIN in lung tissue, after exposure for 24, 48 and 72 hours of hyperoxia were studied by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Hyperoxia caused acute lung injury; this was accompanied by increased expression of an upregulation of MMP-2, MMP-9 and EMMPRIN mRNA and protein in lung tissues. Hyperoxia causes acute lung injury in mice; increases in MMP-2, MMP-9 and EMMPRIN may play an important role in the development of hyperoxia induced lung injury in mice.

  19. Hypertonic saline reduces inflammation and enhances the resolution of oleic acid induced acute lung injury

    Directory of Open Access Journals (Sweden)

    Costello Joseph F

    2008-07-01

    Full Text Available Abstract Background Hypertonic saline (HTS reduces the severity of lung injury in ischemia-reperfusion, endotoxin-induced and ventilation-induced lung injury. However, the potential for HTS to modulate the resolution of lung injury is not known. We investigated the potential for hypertonic saline to modulate the evolution and resolution of oleic acid induced lung injury. Methods Adult male Sprague Dawley rats were used in all experiments. Series 1 examined the potential for HTS to reduce the severity of evolving oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 12 or hypertonic saline (HTS, n = 12, and the extent of lung injury assessed after 6 hours. Series 2 examined the potential for HTS to enhance the resolution of oleic acid (OA induced acute lung injury. Following intravenous OA administration, animals were randomized to receive isotonic (Control, n = 6 or hypertonic saline (HTS, n = 6, and the extent of lung injury assessed after 6 hours. Results In Series I, HTS significantly reduced bronchoalveolar lavage (BAL neutrophil count compared to Control [61.5 ± 9.08 versus 102.6 ± 11.89 × 103 cells.ml-1]. However, there were no between group differences with regard to: A-a O2 gradient [11.9 ± 0.5 vs. 12.0 ± 0.5 KPa]; arterial PO2; static lung compliance, or histologic injury. In contrast, in Series 2, hypertonic saline significantly reduced histologic injury and reduced BAL neutrophil count [24.5 ± 5.9 versus 46.8 ± 4.4 × 103 cells.ml-1], and interleukin-6 levels [681.9 ± 190.4 versus 1365.7 ± 246.8 pg.ml-1]. Conclusion These findings demonstrate, for the first time, the potential for HTS to reduce pulmonary inflammation and enhance the resolution of oleic acid induced lung injury.

  20. Brain Metabolism Alterations Induced by Pregnancy Swimming Decreases Neurological Impairments Following Neonatal Hypoxia-Ischemia in Very Immature Rats

    Directory of Open Access Journals (Sweden)

    Eduardo F. Sanches

    2018-06-01

    Full Text Available Introduction: Prematurity, through brain injury and altered development is a major cause of neurological impairments and can result in motor, cognitive and behavioral deficits later in life. Presently, there are no well-established effective therapies for preterm brain injury and the search for new strategies is needed. Intra-uterine environment plays a decisive role in brain maturation and interventions using the gestational window have been shown to influence long-term health in the offspring. In this study, we investigated whether pregnancy swimming can prevent the neurochemical metabolic alterations and damage that result from postnatal hypoxic-ischemic brain injury (HI in very immature rats.Methods: Female pregnant Wistar rats were divided into swimming (SW or sedentary (SE groups. Following a period of adaptation before mating, swimming was performed during the entire gestation. At postnatal day (PND3, rat pups from SW and SE dams had right common carotid artery occluded, followed by systemic hypoxia. At PND4 (24 h after HI, the early neurochemical profile was measured by 1H-magnetic resonance spectroscopy. Astrogliosis, apoptosis and neurotrophins protein expression were assessed in the cortex and hippocampus. From PND45, behavioral testing was performed. Diffusion tensor imaging and neurite orientation dispersion and density imaging were used to evaluate brain microstructure and the levels of proteins were quantified.Results: Pregnancy swimming was able to prevent early metabolic changes induced by HI preserving the energetic balance, decreasing apoptotic cell death and astrogliosis as well as maintaining the levels of neurotrophins. At adult age, swimming preserved brain microstructure and improved the performance in the behavioral tests.Conclusion: Our study points out that swimming during gestation in rats could prevent prematurity related brain damage in progeny with high translational potential and possibly interesting cost

  1. Pump RIN-induced impairments in unrepeatered transmission systems using distributed Raman amplifier.

    Science.gov (United States)

    Cheng, Jingchi; Tang, Ming; Lau, Alan Pak Tao; Lu, Chao; Wang, Liang; Dong, Zhenhua; Bilal, Syed Muhammad; Fu, Songnian; Shum, Perry Ping; Liu, Deming

    2015-05-04

    High spectral efficiency modulation format based unrepeatered transmission systems using distributed Raman amplifier (DRA) have attracted much attention recently. To enhance the reach and optimize system performance, careful design of DRA is required based on the analysis of various types of impairments and their balance. In this paper, we study various pump RIN induced distortions on high spectral efficiency modulation formats. The vector theory of both 1st and higher-order stimulated Raman scattering (SRS) effect using Jones-matrix formalism is presented. The pump RIN will induce three types of distortion on high spectral efficiency signals: intensity noise stemming from SRS, phase noise stemming from cross phase modulation (XPM), and polarization crosstalk stemming from cross polarization modulation (XPolM). An analytical model for the statistical property of relative phase noise (RPN) in higher order DRA without dealing with complex vector theory is derived. The impact of pump RIN induced impairments are analyzed in polarization-multiplexed (PM)-QPSK and PM-16QAM-based unrepeatered systems simulations using 1st, 2nd and 3rd-order forward pumped Raman amplifier. It is shown that at realistic RIN levels, negligible impairments will be induced to PM-QPSK signals in 1st and 2nd order DRA, while non-negligible impairments will occur in 3rd order case. PM-16QAM signals suffer more penalties compared to PM-QPSK with the same on-off gain where both 2nd and 3rd order DRA will cause non-negligible performance degradations. We also investigate the performance of digital signal processing (DSP) algorithms to mitigate such impairments.

  2. Characteristics of laser-induced shock wave injury to the inner ear of rats

    Science.gov (United States)

    Kurioka, Takaomi; Matsunobu, Takeshi; Niwa, Katsuki; Tamura, Atsushi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro

    2014-12-01

    Recently, the number of blast injuries of the inner ear has increased in the general population. In blast-induced inner ear injury, a shock wave (SW) component in the blast wave is considered to play an important role in sensorineural hearing loss. However, the mechanisms by which an SW affects inner ear tissue remain largely unknown. We aimed to establish a new animal model for SW-induced inner ear injury by using laser-induced SWs (LISWs) on rats. The LISWs were generated by irradiating an elastic laser target with 694-nm nanosecond pulses of a ruby laser. After LISW application to the cochlea through bone conduction, auditory measurements revealed the presence of inner ear dysfunction, the extent of which depended on LISW overpressure. A significantly lower survival rate of hair cells and spiral ganglion neurons, as well as severe oxidative damage, were observed in the inner ear exposed to an LISW. Although considerable differences in the pressure characteristics exist between LISWs and SWs in real blast waves, the functional and morphological changes shown by the present LISW-based model were similar to those observed in real blast-induced injury. Thus, our animal model is expected to be useful for laboratory-based research of blast-induced inner ear injury.

  3. Characteristics of laser-induced shock wave injury to the inner ear of rats.

    Science.gov (United States)

    Kurioka, Takaomi; Matsunobu, Takeshi; Niwa, Katsuki; Tamura, Atsushi; Kawauchi, Satoko; Satoh, Yasushi; Sato, Shunichi; Shiotani, Akihiro

    2014-12-01

    Recently, the number of blast injuries of the inner ear has increased in the general population. In blast-induced inner ear injury, a shock wave (SW) component in the blast wave is considered to play an important role in sensorineural hearing loss. However, the mechanisms by which an SW affects inner ear tissue remain largely unknown. We aimed to establish a new animal model for SW-induced inner ear injury by using laser-induced SWs (LISWs) on rats. The LISWs were generated by irradiating an elastic laser target with 694-nm nanosecond pulses of a ruby laser. After LISW application to the cochlea through bone conduction, auditory measurements revealed the presence of inner ear dysfunction, the extent of which depended on LISW overpressure. A significantly lower survival rate of hair cells and spiral ganglion neurons, as well as severe oxidative damage, were observed in the inner ear exposed to an LISW. Although considerable differences in the pressure characteristics exist between LISWs and SWs in real blast waves, the functional and morphological changes shown by the present LISW-based model were similar to those observed in real blast-induced injury. Thus, our animal model is expected to be useful for laboratory-based research of blast-induced inner ear injury.

  4. Carbonic anhydrase inhibitor attenuates ischemia-reperfusion induced acute lung injury.

    Directory of Open Access Journals (Sweden)

    Chou-Chin Lan

    Full Text Available Ischemia-reperfusion (IR-induced acute lung injury (ALI is implicated in several clinical conditions including lung transplantation, cardiopulmonary bypass surgery, re-expansion of collapsed lung from pneumothorax or pleural effusion and etc. IR-induced ALI remains a challenge in the current treatment. Carbonic anhydrase has important physiological function and influences on transport of CO2. Some investigators suggest that CO2 influences lung injury. Therefore, carbonic anhydrase should have the role in ALI. This study was undertaken to define the effect of a carbonic anhydrase inhibitor, acetazolamide (AZA, in IR-induced ALI, that was conducted in a rat model of isolated-perfused lung with 30 minutes of ischemia and 90 minutes of reperfusion. The animals were divided into six groups (n = 6 per group: sham, sham + AZA 200 mg/kg body weight (BW, IR, IR + AZA 100 mg/kg BW, IR + AZA 200 mg/kg BW and IR+ AZA 400 mg/kg BW. IR caused significant pulmonary micro-vascular hyper-permeability, pulmonary edema, pulmonary hypertension, neutrophilic sequestration, and an increase in the expression of pro-inflammatory cytokines. Increases in carbonic anhydrase expression and perfusate pCO2 levels were noted, while decreased Na-K-ATPase expression was noted after IR. Administration of 200mg/kg BW and 400mg/kg BW AZA significantly suppressed the expression of pro-inflammatory cytokines (TNF-α, IL-1, IL-6 and IL-17 and attenuated IR-induced lung injury, represented by decreases in pulmonary hyper-permeability, pulmonary edema, pulmonary hypertension and neutrophilic sequestration. AZA attenuated IR-induced lung injury, associated with decreases in carbonic anhydrase expression and pCO2 levels, as well as restoration of Na-K-ATPase expression.

  5. 1-methylmalate from camu-camu (Myrciaria dubia) suppressed D-galactosamine-induced liver injury in rats.

    Science.gov (United States)

    Akachi, Toshiyuki; Shiina, Yasuyuki; Kawaguchi, Takumi; Kawagishi, Hirokazu; Morita, Tatsuya; Sugiyama, Kimio

    2010-01-01

    To evaluate the protective effects of fruit juices against D-galactosamine (GalN)-induced liver injury, lyophilized fruit juices (total 12 kinds) were fed to rats for 7 d, and then we evoked liver injury by injecting GalN. The juice of camu-camu (Myrciaria dubia) significantly suppressed GalN-induced liver injury when the magnitude of liver injury was assessed by plasma alanine aminotransferase and aspartate aminotransferase activities, although some other juices (acerola, dragon fruit, shekwasha, and star fruit) also tended to have suppressive effects. An active compound was isolated from camu-camu juice by solvent fractionation and silica gel column chromatography. The structure was determined to be 1-methylmalate. On the other hand, malate, 1,4-dimethylmalate, citrate, and tartrate had no significant effect on GalN-induced liver injury. It is suggested that 1-methylmalate might be a rather specific compound among organic acids and their derivatives in fruit juices in suppressing GalN-induced liver injury.

  6. Electrophysiologic and clinico-pathologic characteristics of statin-induced muscle injury

    Directory of Open Access Journals (Sweden)

    Mohammed Abdulrazaq

    2015-08-01

    Conclusion: Atorvastatin increased average creatine kinase, suggesting, statins produce mild muscle injury even in asymptomatic subjects. Diabetic statin users were more prone to develop muscle injury than others. Muscle fiber conduction velocity evaluation is recommended as a simple and reliable test to diagnose statin-induced myopathy instead of invasive muscle biopsy.

  7. Sodium hypochlorite-induced acute kidney injury

    Directory of Open Access Journals (Sweden)

    Brandon W Peck

    2014-01-01

    Full Text Available Sodium hypochlorite (bleach is commonly used as an irrigant during dental proce-dures as well as a topical antiseptic agent. Although it is generally safe when applied topically, reports of accidental injection of sodium hypochlorite into tissue have been reported. Local necrosis, pain and nerve damage have been described as a result of exposure, but sodium hypo-chlorite has never been implicated as a cause of an acute kidney injury (AKI. In this report, we describe the first case of accidental sodium hypochlorite injection into the infraorbital tissue during a dental procedure that precipitated the AKI. We speculate that oxidative species induced by sodium hypochlorite caused AKI secondary to the renal tubular injury, causing mild acute tubular necrosis.

  8. Inhibition of chlorine-induced lung injury by the type 4 phosphodiesterase inhibitor rolipram

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Weiyuan; Chen, Jing; Schlueter, Connie F. [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States); Rando, Roy J. [Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University Health Sciences Center, New Orleans, LA (United States); Pathak, Yashwant V. [College of Pharmacy, University of South Florida, Tampa, FL (United States); Hoyle, Gary W., E-mail: Gary.Hoyle@louisville.edu [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States)

    2012-09-01

    Chlorine is a highly toxic respiratory irritant that when inhaled causes epithelial cell injury, alveolar-capillary barrier disruption, airway hyperreactivity, inflammation, and pulmonary edema. Chlorine is considered a chemical threat agent, and its release through accidental or intentional means has the potential to result in mass casualties from acute lung injury. The type 4 phosphodiesterase inhibitor rolipram was investigated as a rescue treatment for chlorine-induced lung injury. Rolipram inhibits degradation of the intracellular signaling molecule cyclic AMP. Potential beneficial effects of increased cyclic AMP levels include inhibition of pulmonary edema, inflammation, and airway hyperreactivity. Mice were exposed to chlorine (whole body exposure, 228–270 ppm for 1 h) and were treated with rolipram by intraperitoneal, intranasal, or intramuscular (either aqueous or nanoemulsion formulation) delivery starting 1 h after exposure. Rolipram administered intraperitoneally or intranasally inhibited chlorine-induced pulmonary edema. Minor or no effects were observed on lavage fluid IgM (indicative of plasma protein leakage), KC (Cxcl1, neutrophil chemoattractant), and neutrophils. All routes of administration inhibited chlorine-induced airway hyperreactivity assessed 1 day after exposure. The results of the study suggest that rolipram may be an effective rescue treatment for chlorine-induced lung injury and that both systemic and targeted administration to the respiratory tract were effective routes of delivery. -- Highlights: ► Chlorine causes lung injury when inhaled and is considered a chemical threat agent. ► Rolipram inhibited chlorine-induced pulmonary edema and airway hyperreactivity. ► Post-exposure rolipram treatments by both systemic and local delivery were effective. ► Rolipram shows promise as a rescue treatment for chlorine-induced lung injury.

  9. Caffeine attenuates scopolamine-induced memory impairment in humans.

    Science.gov (United States)

    Riedel, W; Hogervorst, E; Leboux, R; Verhey, F; van Praag, H; Jolles, J

    1995-11-01

    Caffeine consumption can be beneficial for cognitive functioning. Although caffeine is widely recognized as a mild CNS stimulant drug, the most important consequence of its adenosine antagonism is cholinergic stimulation, which might lead to improvement of higher cognitive functions, particularly memory. In this study, the scopolamine model of amnesia was used to test the cholinergic effects of caffeine, administered as three cups of coffee. Subjects were 16 healthy volunteers who received 250 mg caffeine and 2 mg nicotine separately, in a placebo-controlled double-blind cross-over design. Compared to placebo, nicotine attenuated the scopolamine-induced impairment of storage in short-term memory and attenuated the scopolamine-induced slowing of speed of short-term memory scanning. Nicotine also attenuated the scopolamine-induced slowing of reaction time in a response competition task. Caffeine attenuated the scopolamine-induced impairment of free recall from short- and long-term memory, quality and speed of retrieval from long-term memory in a word learning task, and other cognitive and non-cognitive measures, such as perceptual sensitivity in visual search, reading speed, and rate of finger-tapping. On the basis of these results it was concluded that caffeine possesses cholinergic cognition enhancing properties. Caffeine could be used as a control drug in studies using the scopolamine paradigm and possibly also in other experimental studies of cognitive enhancers, as the effects of a newly developed cognition enhancing drug should at least be superior to the effects of three cups of coffee.

  10. Developing better mouse models to study cisplatin-induced kidney injury.

    Science.gov (United States)

    Sharp, Cierra N; Siskind, Leah J

    2017-10-01

    Cisplatin is a potent chemotherapeutic used for the treatment of many types of cancer. However, its dose-limiting side effect is nephrotoxicity leading to acute kidney injury (AKI). Patients who develop AKI have an increased risk of mortality and are more likely to develop chronic kidney disease (CKD). Unfortunately, there are no therapeutic interventions for the treatment of AKI. It has been suggested that the lack of therapies is due in part to the fact that the established mouse model used to study cisplatin-induced AKI does not recapitulate the cisplatin dosing regimen patients receive. In recent years, work has been done to develop more clinically relevant models of cisplatin-induced kidney injury, with much work focusing on incorporation of multiple low doses of cisplatin administered over a period of weeks. These models can be used to recapitulate the development of CKD after AKI and, by doing so, increase the likelihood of identifying novel therapeutic targets for the treatment of cisplatin-induced kidney injury. Copyright © 2017 the American Physiological Society.

  11. Fibroblast growth factor 10 protects neuron against oxygen–glucose deprivation injury through inducing heme oxygenase-1

    International Nuclear Information System (INIS)

    Li, Yong-Hua; Yang, Li-Ye; Chen, Wei; Li, Ying-Ke; Yuan, Hong-Bin

    2015-01-01

    Highlights: • FGF10 attenuates OGD induced injury in cortical neuron. • FGF10 reduces OGD triggered ROS level in cortical neuron. • FGF10 induces HO-1 expression upon OGD stimuli in cortical neuron. • Knockdown of HO-1 impairs the neuroprotection of FGF10 in OGD model. - Abstract: Fibroblast growth factors (FGFs) are a family of structurally related heparin-binding proteins with diverse biological functions. FGFs participate in mitogenesis, angiogenesis, cell proliferation, development, differentiation and cell migration. Here, we investigated the potential effect of FGF10, a member of FGFs, on neuron survival in oxygen–glucose deprivation (OGD) model. In primary cultured mouse cortical neurons upon OGD, FGF10 treatment (100 and 1000 ng/ml) attenuated the decrease of cell viability and rescued the LDH release. Tuj-1 immunocytochemistry assay showed that FGF10 promoted neuronal survival. Apoptosis assay with Annexin V + PI by flow cytometry demonstrated that FGF10 treatment reduced apoptotic cell proportion. Moreover, immunoblotting showed that FGF10 alleviated the cleaved caspase-3 upregulation caused by OGD. FGF10 treatment also depressed the OGD-induced increase of caspase-3, -8 and -9 activities. At last, we found FGF10 triggered heme oxygenase-1 (HO-1) protein expression rather than hypoxia-inducible factor-1 (HIF-1), AMP-activated protein kinase (AMPK) signaling and extracellular signal-regulated kinases 1/2 (ERK1/2) signaling. Knockdown of HO-1 by siRNA partly abolished the neuroprotection of FGF10 in OGD model. In summary, our observations provide the first evidence for the neuroprotective function of FGF10 against ischemic neuronal injury and suggest that FGF10 may be a promising agent for treatment of ischemic stroke

  12. Fibroblast growth factor 10 protects neuron against oxygen–glucose deprivation injury through inducing heme oxygenase-1

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yong-Hua; Yang, Li-Ye; Chen, Wei; Li, Ying-Ke, E-mail: liyingke6f@126.com; Yuan, Hong-Bin, E-mail: yuanhongbin6f@126.com

    2015-01-02

    Highlights: • FGF10 attenuates OGD induced injury in cortical neuron. • FGF10 reduces OGD triggered ROS level in cortical neuron. • FGF10 induces HO-1 expression upon OGD stimuli in cortical neuron. • Knockdown of HO-1 impairs the neuroprotection of FGF10 in OGD model. - Abstract: Fibroblast growth factors (FGFs) are a family of structurally related heparin-binding proteins with diverse biological functions. FGFs participate in mitogenesis, angiogenesis, cell proliferation, development, differentiation and cell migration. Here, we investigated the potential effect of FGF10, a member of FGFs, on neuron survival in oxygen–glucose deprivation (OGD) model. In primary cultured mouse cortical neurons upon OGD, FGF10 treatment (100 and 1000 ng/ml) attenuated the decrease of cell viability and rescued the LDH release. Tuj-1 immunocytochemistry assay showed that FGF10 promoted neuronal survival. Apoptosis assay with Annexin V + PI by flow cytometry demonstrated that FGF10 treatment reduced apoptotic cell proportion. Moreover, immunoblotting showed that FGF10 alleviated the cleaved caspase-3 upregulation caused by OGD. FGF10 treatment also depressed the OGD-induced increase of caspase-3, -8 and -9 activities. At last, we found FGF10 triggered heme oxygenase-1 (HO-1) protein expression rather than hypoxia-inducible factor-1 (HIF-1), AMP-activated protein kinase (AMPK) signaling and extracellular signal-regulated kinases 1/2 (ERK1/2) signaling. Knockdown of HO-1 by siRNA partly abolished the neuroprotection of FGF10 in OGD model. In summary, our observations provide the first evidence for the neuroprotective function of FGF10 against ischemic neuronal injury and suggest that FGF10 may be a promising agent for treatment of ischemic stroke.

  13. Mononuclear Phagocyte-Derived Microparticulate Caspase-1 Induces Pulmonary Vascular Endothelial Cell Injury.

    Directory of Open Access Journals (Sweden)

    Srabani Mitra

    Full Text Available Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS and impacts disease progression. Lung endothelial injury has traditionally been focused on the role of neutrophil trafficking to lung vascular integrin receptors induced by proinflammatory cytokine expression. Although much is known about the pathogenesis of cell injury and death in ALI/ARDS, gaps remain in our knowledge; as a result of which there is currently no effective pharmacologic therapy. Enzymes known as caspases are essential for completion of the apoptotic program and secretion of pro-inflammatory cytokines. We hypothesized that caspase-1 may serve as a key regulator of human pulmonary microvascular endothelial cell (HPMVEC apoptosis in ALI/ARDS. Our recent experiments confirm that microparticles released from stimulated monocytic cells (THP1 induce lung endothelial cell apoptosis. Microparticles pretreated with the caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, were unable to induce cell death of HPMVEC, suggesting the role of caspase-1 or its substrate in the induction of HPMVEC cell death. Neither un-induced microparticles (control nor direct treatment with LPS induced apoptosis of HPMVEC. Further experiments showed that caspase-1 uptake into HPMVEC and the induction of HPMVEC apoptosis was facilitated by caspase-1 interactions with microparticulate vesicles. Altering vesicle integrity completely abrogated apoptosis of HPMVEC suggesting an encapsulation requirement for target cell uptake of active caspase-1. Taken together, we confirm that microparticle centered caspase-1 can play a regulator role in endothelial cell injury.

  14. Prodigiosin inhibits gp91{sup phox} and iNOS expression to protect mice against the oxidative/nitrosative brain injury induced by hypoxia-ischemia

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chia-Che [Institute of Biomedical Sciences, National Chung-Hsing University, Taichung, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China); Agricultural Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan (China); Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan (China); Wang, Yea-Hwey [Department of Nursing, College of Medicine and Nursing, Hungkuang University, Taichung, Taiwan (China); Chern, Chang-Ming [Division of Neurovascular Disease, Neurological Institute, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, Taiwan (China); Liou, Kuo-Tong [Department of Chinese Martial Arts, Chinese Culture University, Taipei, Taiwan (China); Hou, Yu-Chang [Department of Chinese Medicine, Taoyuan General Hospital, Department of Health, Taiwan (China); Department of Nursing, Yuanpei University, Hsinchu, Taiwan (China); Department of Bioscience Technology, Chuan-Yuan Christian University, Taoyuan, Taiwan (China); Peng, Yu-Ta [Institute of Biomedical Sciences, National Chung-Hsing University, Taichung, Taiwan (China); Shen, Yuh-Chiang, E-mail: yuhcs@nricm.edu.tw [National Research Institute of Chinese Medicine, Taipei, Taiwan (China); Institute of Biomedical Sciences, National Chung-Hsing University, Taichung, Taiwan (China)

    2011-11-15

    This study aimed to explore the mechanisms by which prodigiosin protects against hypoxia-induced oxidative/nitrosative brain injury induced by middle cerebral artery occlusion/reperfusion (MCAo/r) injury in mice. Hypoxia in vitro was modeled using oxygen-glucose deprivation (OGD) followed by reoxygenation of BV-2 microglial cells. Our results showed that treatment of mice that have undergone MCAo/r injury with prodigiosin (10 and 100 {mu}g/kg, i.v.) at 1 h after hypoxia ameliorated MCAo/r-induced oxidative/nitrosative stress, brain infarction, and neurological deficits in the mice, and enhanced their survival rate. MCAo/r induced a remarkable production in the mouse brains of reactive oxygen species (ROS) and a significant increase in protein nitrosylation; this primarily resulted from enhanced expression of NADPH oxidase 2 (gp91{sup phox}), inducible nitric oxide synthase (iNOS), and the infiltration of CD11b leukocytes due to breakdown of blood-brain barrier (BBB) by activation of nuclear factor-kappa B (NF-{kappa}B). All these changes were significantly diminished by prodigiosin. In BV-2 cells, OGD induced ROS and nitric oxide production by up-regulating gp91{sup phox} and iNOS via activation of the NF-{kappa}B pathway, and these changes were suppressed by prodigiosin. In conclusion, our results indicate that prodigiosin reduces gp91{sup phox} and iNOS expression possibly by impairing NF-{kappa}B activation. This compromises the activation of microglial and/or inflammatory cells, which then, in turn, mediates prodigiosin's protective effect in the MCAo/r mice. -- Highlights: Black-Right-Pointing-Pointer Prodigiosin ameliorated brain infarction and deficits. Black-Right-Pointing-Pointer Prodigiosin protected against hypoxia/reperfusion-induced brain injury. Black-Right-Pointing-Pointer Prodigiosin diminished oxidative/nitrosativestress and leukocytes infiltration. Black-Right-Pointing-Pointer Prodigiosin reduced BBB breakdown. Black

  15. Time Window Is Important for Adenosine Preventing Cold-induced Injury to the Endothelium.

    Science.gov (United States)

    Li, Yan; Hu, Xiao-Xia; Fu, Li; Chen, Jing; Lu, Li-He; Liu, Xiang; Xu, Zhe; Zhou, Li; Wang, Zhi-Ping; Zhang, Xi; Ou, Zhi-Jun; Ou, Jing-Song

    2017-06-01

    Cold cardioplegia is used to induce heart arrest during cardiac surgery. However, endothelial function may be compromised after this procedure. Accordingly, interventions such as adenosine, that mimic the effects of preconditioning, may minimize endothelial injury. Herein, we investigated whether adenosine prevents cold-induced injury to the endothelium. Cultured human cardiac microvascular endothelial cells were treated with adenosine for different durations. Phosphorylation and expression of endothelial nitric oxide synthase (eNOS), p38MAPK, ERK1/2, and p70S6K6 were measured along with nitric oxide (NO) production using diaminofluorescein-2 diacetate (DAF-2DA) probe. Cold-induced injury by hypothermia to 4°C for 45 minutes to mimic conditions of cold cardioplegia during open heart surgery was induced in human cardiac microvascular endothelial cells. Under basal conditions, adenosine stimulated NO production, eNOS phosphorylation at serine 1177 from 5 minutes to 4 hours and inhibited eNOS phosphorylation at threonine 495 from 5 minutes to 6 hours, but increased phosphorylation of ERK1/2, p38MAPK, and p70S6K only after exposure for 5 minutes. Cold-induced injury inhibited NO production and the phosphorylation of the different enzymes. Importantly, adenosine prevented these effects of hypothermic injury. Our data demonstrated that adenosine prevents hypothermic injury to the endothelium by activating ERK1/2, eNOS, p70S6K, and p38MAPK signaling pathways at early time points. These findings also indicated that 5 minutes after administration of adenosine or release of adenosine is an important time window for cardioprotection during cardiac surgery.

  16. Blueberry Anthocyanins-Enriched Extracts Attenuate Cyclophosphamide-Induced Cardiac Injury.

    Directory of Open Access Journals (Sweden)

    Yunen Liu

    Full Text Available We sought to explore the effect of blueberry anthocyanins-enriched extracts (BAE on cyclophosphamide (CTX-induced cardiac injury. The rats were divided randomly into five groups including normal control, CTX 100 mg/kg, BAE 80mg/kg, CTX+BAE 20mg/kg and CTX+BAE 80mg/kg groups. The rats in the three BAE-treated groups were administered BAE for four weeks. Seven days after BAE administration, rats in CTX group and two BAE-treated groups were intraperitoneally injected with a single dose of 100 mg/kg CTX. Cardiac injury was assessed using physiological parameters, Echo, morphological staining, real-time PCR and western blot. In addition, cardiotoxicity indices, inflammatory cytokines expression and oxidative stress markers were also detected. Four weeks 20mg/kg and 80mg/kg dose of BAE treatment following CTX exposure attenuated mean arterial blood pressure, heart rate and activities of heart enzymes, improved cardiac dysfunction, left ventricular hypertrophy and fibrosis. Importantly, BAE also attenuated CTX-induced LV leukocyte infiltration and inflammatory cytokines expression, ameliorated oxidative stress as well as cardiomyocyte apoptosis. In conclusion, BAE attenuated the CTX-induced cardiac injury and the protective mechanisms were related closely to the anti-inflammatory, antioxidant and anti-inflammatory characteristics of BAE.

  17. Spinal cord injury-induced immune deficiency syndrome enhances infection susceptibility dependent on lesion level.

    Science.gov (United States)

    Brommer, Benedikt; Engel, Odilo; Kopp, Marcel A; Watzlawick, Ralf; Müller, Susanne; Prüss, Harald; Chen, Yuying; DeVivo, Michael J; Finkenstaedt, Felix W; Dirnagl, Ulrich; Liebscher, Thomas; Meisel, Andreas; Schwab, Jan M

    2016-03-01

    Pneumonia is the leading cause of death after acute spinal cord injury and is associated with poor neurological outcome. In contrast to the current understanding, attributing enhanced infection susceptibility solely to the patient's environment and motor dysfunction, we investigate whether a secondary functional neurogenic immune deficiency (spinal cord injury-induced immune deficiency syndrome, SCI-IDS) may account for the enhanced infection susceptibility. We applied a clinically relevant model of experimental induced pneumonia to investigate whether the systemic SCI-IDS is functional sufficient to cause pneumonia dependent on spinal cord injury lesion level and investigated whether findings are mirrored in a large prospective cohort study after human spinal cord injury. In a mouse model of inducible pneumonia, high thoracic lesions that interrupt sympathetic innervation to major immune organs, but not low thoracic lesions, significantly increased bacterial load in lungs. The ability to clear the bacterial load from the lung remained preserved in sham animals. Propagated immune susceptibility depended on injury of central pre-ganglionic but not peripheral postganglionic sympathetic innervation to the spleen. Thoracic spinal cord injury level was confirmed as an independent increased risk factor of pneumonia in patients after motor complete spinal cord injury (odds ratio = 1.35, P spinal cord injury directly causes increased risk for bacterial infection in mice as well as in patients. Besides obvious motor and sensory paralysis, spinal cord injury also induces a functional SCI-IDS ('immune paralysis'), sufficient to propagate clinically relevant infection in an injury level dependent manner. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Finite Element Crash Simulations and Impact-Induced Injuries

    Directory of Open Access Journals (Sweden)

    Jaroslav Mackerle

    1999-01-01

    Full Text Available This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element simulations of crashes, impact-induced injuries and their protection that were published in 1980–1998. 390 citations are listed.

  19. Protective Effects of Lemon Juice on Alcohol-Induced Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Tong Zhou

    2017-01-01

    Full Text Available Chronic excessive alcohol consumption (more than 40–80 g/day for males and more than 20–40 g/day for females could induce serious liver injury. In this study, effects of lemon juice on chronic alcohol-induced liver injury in mice were evaluated. The serum biochemical profiles and hepatic lipid peroxidation levels, triacylglycerol (TG contents, antioxidant enzyme activities, and histopathological changes were examined for evaluating the hepatoprotective effects of lemon juice in mice. In addition, the in vitro antioxidant capacities of lemon juice were determined. The results showed that lemon juice significantly inhibited alcohol-induced increase of alanine transaminase (ALT, aspartate transaminase (AST, hepatic TG, and lipid peroxidation levels in a dose-dependent manner. Histopathological changes induced by alcohol were also remarkably improved by lemon juice treatment. These findings suggest that lemon juice has protective effects on alcohol-induced liver injury in mice. The protective effects might be related to the antioxidant capacity of lemon juice because lemon juice showed in vitro antioxidant capacity.

  20. Hypoxia inducible factor-1 alpha stabilization for regenerative therapy in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Mushfiquddin Khan

    2017-01-01

    Full Text Available Mild traumatic brain injury (TBI, also called concussion, initiates sequelae leading to motor deficits, cognitive impairments and subtly compromised neurobehaviors. While the acute phase of TBI is associated with neuroinflammation and nitroxidative burst, the chronic phase shows a lack of stimulation of the neurorepair process and regeneration. The deficiency of nitric oxide (NO, the consequent disturbed NO metabolome, and imbalanced mechanisms of S-nitrosylation are implicated in blocking the mechanisms of neurorepair processes and functional recovery in the both phases. Hypoxia inducible factor-1 alpha (HIF-1α, a master regulator of hypoxia/ischemia, stimulates the process of neurorepair and thus aids in functional recovery after brain trauma. The activity of HIF-1α is regulated by NO via the mechanism of S-nitrosylation of HIF-1α. S-nitrosylation is dynamically regulated by NO metabolites such as S-nitrosoglutathione (GSNO and peroxynitrite. GSNO stabilizes, and peroxynitrite destabilizes HIF-1α. Exogenously administered GSNO was found not only to stabilize HIF-1α and to induce HIF-1α-dependent genes but also to stimulate the regeneration process and to aid in functional recovery in TBI animals.

  1. Neuroprotective effect of curcumin on okadaic acid induced memory impairment in mice.

    Science.gov (United States)

    Rajasekar, N; Dwivedi, Subhash; Tota, Santosh Kumar; Kamat, Pradeep Kumar; Hanif, Kashif; Nath, Chandishwar; Shukla, Rakesh

    2013-09-05

    Okadaic acid (OKA) has been observed to cause memory impairment in human subjects having seafood contaminated with dinoflagellate (Helicondria okadai). OKA induces tau hyperphosphorylation and oxidative stress leading to memory impairment as our previous study has shown. Curcumin a natural antioxidant has demonstrated neuroprotection in various models of neurodegeneration. However, the effect of curcumin has not been explored in OKA induced memory impairment. Therefore, present study evaluated the effect of curcumin on OKA (100ng, intracerebrally) induced memory impairment in male Swiss albino mice as evaluated in Morris water maze (MWM) and passive avoidance tests (PAT). OKA administration resulted in memory impairment with a decreased cerebral blood flow (CBF) (measured by laser doppler flowmetry), ATP level and increased mitochondrial (Ca(2+))i, neuroinflammation (increased TNF-α, IL-1β, COX-2 and GFAP), oxidative-nitrosative stress, increased Caspase-9 and cholinergic dysfunction (decreased AChE activity/expression and α7 nicotinic acetylcholine receptor expression) in cerebral cortex and hippocampus of mice brain. Oral administration of curcumin (50mg/kg) for 13 days significantly improved memory function in both MWM and PAT along with brain energy metabolism, CBF and cholinergic function. It decreased mitochondrial (Ca(2+))i, and ameliorated neuroinflammation and oxidative-nitrostative stress in different brain regions of OKA treated mice. Curcumin also inhibited astrocyte activation as evidenced by decreased GFAP expression. This neuroprotective effect of curcumin is due to its potent anti-oxidant action thus confirming previous studies. Therefore, use of curcumin should be encouraged in people consuming sea food (contaminated with dinoflagellates) to prevent cognitive impairment. © 2013 Elsevier B.V. All rights reserved.

  2. Caffeine antagonism of alcohol-induced driving impairment.

    Science.gov (United States)

    Liguori, A; Robinson, J H

    2001-07-01

    The extent to which caffeine antagonizes alcohol-induced impairment of simulated automobile driving at the current lowest legal American limit (0.08% BrAC) was the focus of this study. Fifteen adults swallowed a capsule (0, 200, or 400 mg caffeine) then drank a beverage (0.0 or 0.6 g/kg ethanol) in a within-subject, double-blind, randomized procedure. Forty-five minutes later, participants completed a test battery of subjective effects scales, dynamic posturography, critical flicker fusion (CFF), choice reaction time (CRT), divided attention (Stroop test), and simulated driving. Alcohol alone increased ratings of 'dizzy', 'drug effect', and 'high', slowed CRT and brake latency, and increased body sway. Caffeine alone increased ratings of 'alert' and 'jittery', but did not significantly affect body sway or psychomotor performance. Both caffeine doses comparably counteracted alcohol impairment of brake latency but not CRT or body sway. Brake latency with either alcohol-caffeine combination remained significantly longer than that with placebo. Stroop and CFF performance were unaffected by any drug condition. The results suggest that caffeine may increase alertness and improve reaction time after alcohol use but will not completely counteract alcohol impairment in a driver.

  3. Cordyceps militaris extract attenuates D-galactose-induced memory impairment in mice.

    Science.gov (United States)

    Li, Zaixin; Zhang, Zhi; Zhang, Jinshan; Jia, Jing; Ding, Jie; Luo, Rongzhen; Liu, Zhangqin

    2012-12-01

    Memory impairment is one of main clinical symptoms of brain senescence. To address the effects of Cordyceps militaris Link extract (CE) on memory impairment, a D-galactose (D-Gal)-induced aging mouse model was employed. Mice injected with D-Gal showed a significant learning and memory impairment that was rescued by CE treatment. The mechanism was further investigated by analyzing the protein level and activity of oxidant and antioxidant molecules, including malondialdehyde (MDA), monoamine oxidase (MAO), total super-oxide dismutase (T-SOD), total antioxidant capacity (T-AOC), glutathione (GSH), and glutathione peroxidase (GSH-px), which played critical roles in the development of brain senescence. The results showed that CE treatment resulted in a significant decrease in the oxidative activity of MAO and the level of MDA, and significantly increased the antioxidant activities of T-SOD and T-AOC in the cerebral cortices. Moreover, the level of GSH and the activity of antioxidant enzymes GSH-px in serum were significantly upregulated after CE treatment. Taken together, our results suggest that Cordyceps militaris extract could ameliorate experimental memory impairment in mice with D-Gal-induced aging through its potent antioxidant activities.

  4. Possible gasoline-induced chronic liver injury due to occupational malpractice in a motor mechanic: a case report

    OpenAIRE

    Gunathilaka, Mahesh Lakmal; Niriella, Madunil Anuk; Luke, Nathasha Vihangi; Piyarathna, Chathura Lakmal; Siriwardena, Rohan Chaminda; De Silva, Arjuna Priyadarshin; de Silva, Hithanadura Janaka

    2017-01-01

    Background Hydrocarbon-induced occupational liver injury is a well-known clinical entity among petroleum industry workers. There are many types of hydrocarbon exposure, with inhalation being the most common. Hydrocarbon-induced occupational liver injury is a rarely suspected and commonly missed etiological agent for liver injury. We report a case of a non-petroleum industry worker with chronic liver disease secondary to hydrocarbon-induced occupational liver injury caused by chronic low-grade...

  5. Involvement of a chromatin modifier in response to mono-(2-ethylhexyl) phthalate (MEHP)-induced Sertoli cell injury: Probably an indirect action via the regulation of NFκB/FasL circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shiwei [Department of Urology, 174th Hospital of PLA, Fujian 361001 (China); Dong, Yushu [Department of Neurosurgery, 463rd Hospital of PLA, Shenyang 110042 (China); Xu, Chun; Jiang, Liming; Chen, Yongjie; Jiang, Cheng [Department of Urology, 174th Hospital of PLA, Fujian 361001 (China); Hou, Wugang, E-mail: gangwuhou@163.com [Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032 (China); Li, Wei, E-mail: liweipepeyato@163.com [Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi’an 710032 (China)

    2013-11-01

    Highlights: •MTA1 expression is upregulated in SCs upon MEHP treatment. •Knockdown of MTA1 in SCs impairs the MEHP-induced NFκB signaling activation. •Knockdown of MTA1 inhibits recruitment of NFκB onto FasL promoter in MEHP-treated SCs. -- Abstract: The Fas/FasL signaling pathway, controlled by nuclear factor-κB (NFκB) at the transcriptional level, is critical for triggering germ cell apoptosis in response to mono-(2-ethylhexyl) phthalate (MEHP)-induced Sertoli cell (SC) injury, but the exact regulation mechanism remain unknown. Here, we discovered that expression level of Metastasis associated protein 1 (MTA1), a component of the Mi-2/nucleosome remodeling and deacetylase complex, was upregulated in SCs during the early recovery after MEHP exposure. This expression change was in line with the dynamic changes in germ cell apoptosis in response to MEHP treatment. Furthermore, a knockdown of MTA1 by RNAi in SCs was found to impair the MEHP-induced early activation of NFκB pathway and abolish the recruitment of NFκB onto FasL promoter, which consequently diminished the MEHP-triggered FasL induction. Considering that Fas/FasL is a well characterized apoptosis initiating signaling during SCs injury, our results point to a potential “switch on” effect of MTA1, which may govern the activation of NFκB/FasL cascade in MEHP-insulted SCs. Overall, the MTA1/NFκB/FasL circuit may serve as an important defensive/repairing mechanism to help to control the germ cell quality after SCs injury.

  6. Involvement of a chromatin modifier in response to mono-(2-ethylhexyl) phthalate (MEHP)-induced Sertoli cell injury: Probably an indirect action via the regulation of NFκB/FasL circuitry

    International Nuclear Information System (INIS)

    Chen, Shiwei; Dong, Yushu; Xu, Chun; Jiang, Liming; Chen, Yongjie; Jiang, Cheng; Hou, Wugang; Li, Wei

    2013-01-01

    Highlights: •MTA1 expression is upregulated in SCs upon MEHP treatment. •Knockdown of MTA1 in SCs impairs the MEHP-induced NFκB signaling activation. •Knockdown of MTA1 inhibits recruitment of NFκB onto FasL promoter in MEHP-treated SCs. -- Abstract: The Fas/FasL signaling pathway, controlled by nuclear factor-κB (NFκB) at the transcriptional level, is critical for triggering germ cell apoptosis in response to mono-(2-ethylhexyl) phthalate (MEHP)-induced Sertoli cell (SC) injury, but the exact regulation mechanism remain unknown. Here, we discovered that expression level of Metastasis associated protein 1 (MTA1), a component of the Mi-2/nucleosome remodeling and deacetylase complex, was upregulated in SCs during the early recovery after MEHP exposure. This expression change was in line with the dynamic changes in germ cell apoptosis in response to MEHP treatment. Furthermore, a knockdown of MTA1 by RNAi in SCs was found to impair the MEHP-induced early activation of NFκB pathway and abolish the recruitment of NFκB onto FasL promoter, which consequently diminished the MEHP-triggered FasL induction. Considering that Fas/FasL is a well characterized apoptosis initiating signaling during SCs injury, our results point to a potential “switch on” effect of MTA1, which may govern the activation of NFκB/FasL cascade in MEHP-insulted SCs. Overall, the MTA1/NFκB/FasL circuit may serve as an important defensive/repairing mechanism to help to control the germ cell quality after SCs injury

  7. Protective effects of edaravone combined puerarin on inhalation lung injury induced by black gunpowder smog.

    Science.gov (United States)

    Wang, Zhengguan; Li, Ruibing; Liu, Yifan; Liu, Xiaoting; Chen, Wenyan; Xu, Shumin; Guo, Yuni; Duan, Jinyang; Chen, Yihong; Wang, Chengbin

    2015-05-01

    The present study aimed to investigate the combined effects of puerarin with edaravone on inhalation lung injury induced by black gunpowder smog. Male Wistar rats were divided into five groups (control group, edaravone group, puerarin group, edaravone combined with puerarin group and inhalation group). The severity of pulmonary injuries was evaluated after inducing acute lung injury. Arterial blood gas, inflammatory cytokines, biochemical, parameters, cell counting, W/D weight ratio and histopathology were analyzed. Results in lung tissues, either edaravone or puerarin treatment alone showed significant protective effects against neutrophil infiltration and tissue injury, as demonstrated by myeloperoxidase activity and histopathological analysis (all pedaravone and puerarin demonstrated additive protective effects on smog-induced lung injury, compared with single treatment. Combination of edaravone and puerarin shows promise as a new treatment option for acute lung injury/acute respiratory distress syndrome patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Contrast-induced acute kidney injury in children with cardiovascular defects – results of a pilot study

    Directory of Open Access Journals (Sweden)

    Daria Tomczyk

    2016-12-01

    . Glomerular filtration was slightly impaired between hour 2 and 6, and later improvement of estimated glomerular filtration rate was noted. Conclusions: The analysis of the obtained results indicates the usefulness of measuring neutrophil gelatinase-associated lipocalin level for the diagnosis of early contrast-induced nephropathy – acute kidney injury in paediatric patients. Contrastinduced nephropathy – acute kidney injury biomarkers in such clinical circumstances elevate as early as 2 hours after intravenous administration of contrast agents.

  9. Ozone-Induced Vascular Contractility and Pulmonary Injury Are Differentially Impacted by Diets Enriched With Coconut Oil, Fish Oil, and Olive Oil.

    Science.gov (United States)

    Snow, Samantha J; Cheng, Wan-Yun; Henriquez, Andres; Hodge, Myles; Bass, Virgina; Nelson, Gail M; Carswell, Gleta; Richards, Judy E; Schladweiler, Mette C; Ledbetter, Allen D; Chorley, Brian; Gowdy, Kymberly M; Tong, Haiyan; Kodavanti, Urmila P

    2018-05-01

    Fish, olive, and coconut oil dietary supplementation have several cardioprotective benefits, but it is not established if they protect against air pollution-induced adverse effects. We hypothesized that these dietary supplements would attenuate ozone-induced systemic and pulmonary effects. Male Wistar Kyoto rats were fed either a normal diet, or a diet supplemented with fish, olive, or coconut oil for 8 weeks. Animals were then exposed to air or ozone (0.8 ppm), 4 h/day for 2 days. Ozone exposure increased phenylephrine-induced aortic vasocontraction, which was completely abolished in rats fed the fish oil diet. Despite this cardioprotective effect, the fish oil diet increased baseline levels of bronchoalveolar lavage fluid (BALF) markers of lung injury and inflammation. Ozone-induced pulmonary injury/inflammation were comparable in rats on normal, coconut oil, and olive oil diets with altered expression of markers in animals fed the fish oil diet. Fish oil, regardless of exposure, led to enlarged, foamy macrophages in the BALF that coincided with decreased pulmonary mRNA expression of cholesterol transporters, cholesterol receptors, and nuclear receptors. Serum microRNA profile was assessed and demonstrated marked depletion of a variety of microRNAs in animals fed the fish oil diet, several of which were of splenic origin. No ozone-specific changes were noted. Collectively, these data indicate that although fish oil offered vascular protection from ozone exposure, it increased pulmonary injury/inflammation and impaired lipid transport mechanisms resulting in foamy macrophage accumulation, demonstrating the need to be cognizant of potential off-target pulmonary effects that might offset the overall benefit of this vasoprotective supplement.

  10. DNaseI Protects against Paraquat-Induced Acute Lung Injury and Pulmonary Fibrosis Mediated by Mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Guo Li

    2015-01-01

    Full Text Available Background. Paraquat (PQ poisoning is a lethal toxicological challenge that served as a disease model of acute lung injury and pulmonary fibrosis, but the mechanism is undetermined and no effective treatment has been discovered. Methods and Findings. We demonstrated that PQ injures mitochondria and leads to mtDNA release. The mtDNA mediated PBMC recruitment and stimulated the alveolar epithelial cell production of TGF-β1 in vitro. The levels of mtDNA in circulation and bronchial alveolar lavage fluid (BALF were elevated in a mouse of PQ-induced lung injury. DNaseI could protect PQ-induced lung injury and significantly improved survival. Acute lung injury markers, such as TNFα, IL-1β, and IL-6, and marker of fibrosis, collagen I, were downregulated in parallel with the elimination of mtDNA by DNaseI. These data indicate a possible mechanism for PQ-induced, mtDNA-mediated lung injury, which may be shared by other causes of lung injury, as suggested by the same protective effect of DNaseI in bleomycin-induced lung injury model. Interestingly, increased mtDNA in the BALF of patients with amyopathic dermatomyositis-interstitial lung disease can be appreciated. Conclusions. DNaseI targeting mtDNA may be a promising approach for the treatment of PQ-induced acute lung injury and pulmonary fibrosis that merits fast tracking through clinical trials.

  11. Dexmedetomidine May Produce Extra Protective Effects on Sepsis-induced Diaphragm Injury

    Directory of Open Access Journals (Sweden)

    Jin Wu

    2015-01-01

    Full Text Available Objective: The objective was to evaluate the protective effects of dexmedetomidine (DEX, a selective agonist of α2-adrenergic receptor, on sepsis-induced diaphragm injury and the underlying molecular mechanisms. Data Sources: The data used in this review were mainly from PubMed articles published in English from 1990 to 2015. Study Selection: Clinical or basic research articles were selected mainly according to their level of relevance to this topic. Results: Sepsis could induce severe diaphragm dysfunction and exacerbate respiratory weakness. The mechanism of sepsis-induced diaphragm injury includes the increased inflammatory cytokines and excessive oxidative stress and superfluous production of nitric oxide (NO. DEX can reduce inflammatory cytokines, inhibit nuclear factor-kappaB signaling pathways, suppress the activation of caspase-3, furthermore decrease oxidative stress and inhibit NO synthase. On the basis of these mechanisms, DEX may result in a shorter period of mechanical ventilation in septic patients in clinical practice. Conclusions: Based on this current available evidence, DEX may produce extra protective effects on sepsis-induced diaphragm injury. Further direct evidence and more specific studies are still required to confirm these beneficial effects.

  12. Development and assessment of countermeasure formulations for treatment of lung injury induced by chlorine inhalation

    Energy Technology Data Exchange (ETDEWEB)

    Hoyle, Gary W., E-mail: Gary.Hoyle@louisville.edu [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States); Chen, Jing; Schlueter, Connie F.; Mo, Yiqun; Humphrey, David M. [Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY (United States); Rawson, Greg; Niño, Joe A.; Carson, Kenneth H. [Microencapsulation and Nanomaterials Department, Chemistry and Chemical Engineering Division, Southwest Research Institute, San Antonio, TX (United States)

    2016-05-01

    Chlorine is a commonly used, reactive compound to which humans can be exposed via accidental or intentional release resulting in acute lung injury. Formulations of rolipram (a phosphodiesterase inhibitor), triptolide (a natural plant product with anti-inflammatory properties), and budesonide (a corticosteroid), either neat or in conjunction with poly(lactic:glycolic acid) (PLGA), were developed for treatment of chlorine-induced acute lung injury by intramuscular injection. Formulations were produced by spray-drying, which generated generally spherical microparticles that were suitable for intramuscular injection. Multiple parameters were varied to produce formulations with a wide range of in vitro release kinetics. Testing of selected formulations in chlorine-exposed mice demonstrated efficacy against key aspects of acute lung injury. The results show the feasibility of developing microencapsulated formulations that could be used to treat chlorine-induced acute lung injury by intramuscular injection, which represents a preferred route of administration in a mass casualty situation. - Highlights: • Chlorine causes lung injury when inhaled and is considered a chemical threat agent. • Countermeasures for treatment of chlorine-induced acute lung injury are needed. • Formulations containing rolipram, triptolide, or budesonide were produced. • Formulations with a wide range of release properties were developed. • Countermeasure formulations inhibited chlorine-induced lung injury in mice.

  13. Pridopidine Reverses Phencyclidine-Induced Memory Impairment.

    Science.gov (United States)

    Sahlholm, Kristoffer; Valle-León, Marta; Fernández-Dueñas, Víctor; Ciruela, Francisco

    2018-01-01

    Pridopidine is in clinical trials for Huntington's disease treatment. Originally developed as a dopamine D 2 receptor (D 2 R) ligand, pridopidine displays about 100-fold higher affinity for the sigma-1 receptor (sigma-1R). Interestingly, pridopidine slows disease progression and improves motor function in Huntington's disease model mice and, in preliminarily reports, Huntington's disease patients. The present study examined the anti-amnesic potential of pridopidine. Thus, memory impairment was produced in mice by administration of phencyclidine (PCP, 10 mg/kg/day) for 10 days, followed by 14 days' treatment with pridopidine (6 mg/kg/day), or saline. Finally, novel object recognition performance was assessed in the animals. Mice receiving PCP and saline exhibited deficits in novel object recognition, as expected, while pridopidine treatment counteracted PCP-induced memory impairment. The effect of pridopidine was attenuated by co-administration of the sigma receptor antagonist, NE-100 (10 mg/kg). Our results suggest that pridopidine exerts anti-amnesic and potentially neuroprotective actions. These data provide new insights into the therapeutic potential of pridopidine as a pro-cognitive drug.

  14. Basolateral amygdala GABA-A receptors mediate stress-induced memory retrieval impairment in rats.

    Science.gov (United States)

    Sardari, Maryam; Rezayof, Ameneh; Khodagholi, Fariba; Zarrindast, Mohammad-Reza

    2014-04-01

    The present study was designed to investigate the involvement of GABA-A receptors of the basolateral amygdala (BLA) in the impairing effect of acute stress on memory retrieval. The BLAs of adult male Wistar rats were bilaterally cannulated and memory retrieval was measured in a step-through type passive avoidance apparatus. Acute stress was evoked by placing the animals on an elevated platform for 10, 20 and 30 min. The results indicated that exposure to 20 and 30 min stress, but not 10 min, before memory retrieval testing (pre-test exposure to stress) decreased the step-through latency, indicating stress-induced memory retrieval impairment. Intra-BLA microinjection of a GABA-A receptor agonist, muscimol (0.005-0.02 μg/rat), 5 min before exposure to an ineffective stress (10 min exposure to stress) induced memory retrieval impairment. It is important to note that pre-test intra-BLA microinjection of the same doses of muscimol had no effect on memory retrieval in the rats unexposed to 10 min stress. The blockade of GABA-A receptors of the BLA by injecting an antagonist, bicuculline (0.4-0.5 μg/rat), 5 min before 20 min exposure to stress, prevented stress-induced memory retrieval. Pre-test intra-BLA microinjection of the same doses of bicuculline (0.4-0.5 μg/rat) in rats unexposed to 20 min stress had no effect on memory retrieval. In addition, pre-treatment with bicuculline (0.1-0.4 μg/rat, intra-BLA) reversed muscimol (0.02 μg/rat, intra-BLA)-induced potentiation on the effect of stress in passive avoidance learning. It can be concluded that pre-test exposure to stress can induce memory retrieval impairment and the BLA GABA-A receptors may be involved in stress-induced memory retrieval impairment.

  15. MicroRNA-122 is involved in oxidative stress in isoniazid-induced liver injury in mice.

    Science.gov (United States)

    Song, L; Zhang, Z R; Zhang, J L; Zhu, X B; He, L; Shi, Z; Gao, L; Li, Y; Hu, B; Feng, F M

    2015-10-27

    Many studies have shown that the pathogenesis of liver injury includes oxidative stress. MicroRNA-122 may be a marker for the early diagnosis of drug-induced liver injury. However, the relationship between microRNA-122 and oxidative stress in anti-tuberculosis drug-induced liver injury remains unknown. We measured changes in tissue microRNA-122 levels and indices of oxidative stress during liver injury in mice after administration of isoniazid, a first-line anti-tuberculosis drug. We quantified microRNA-122 expression and indices of oxidative stress at 7 time points, including 1, 3, and 5 days and 1, 2, 3, and 4 weeks. The tissue microRNA-122 levels and oxidative stress significantly changed at 3 and 5 days, suggesting that isoniazid-induced liver injury reduces oxidative stress and microRNA-122 expression compared to in the control group (P microRNA-122, began to change at 5 days (P microRNA-122 profile may affect oxidative stress by regulating mitochondrial ribosome protein S11 gene during isoniazid-induced liver injury, which may contribute to the response mechanisms of microRNA-122 and oxidative stress.

  16. Impaired glucose-induced glucagon suppression after partial pancreatectomy

    DEFF Research Database (Denmark)

    Schrader, Henning; Menge, Bjoern A; Breuer, Thomas G K

    2009-01-01

    INTRODUCTION: The glucose-induced decline in glucagon levels is often lost in patients with type 2 diabetes. It is unclear whether this is due to an independent defect in alpha-cell function or secondary to the impairment in insulin secretion. We examined whether a partial pancreatectomy in humans...... would also impair postchallenge glucagon concentrations and, if so, whether this could be attributed to the reduction in insulin levels. PATIENTS AND METHODS: Thirty-six patients with pancreatic tumours or chronic pancreatitis were studied before and after approximately 50% pancreatectomy with a 240-min...... oral glucose challenge, and the plasma concentrations of glucose, insulin, C-peptide, and glucagon were determined. RESULTS: Fasting and postchallenge insulin and C-peptide levels were significantly lower after partial pancreatectomy (P

  17. Edaravone prevents lung injury induced by hepatic ischemia-reperfusion.

    Science.gov (United States)

    Uchiyama, Munehito; Tojo, Kentaro; Yazawa, Takuya; Ota, Shuhei; Goto, Takahisa; Kurahashi, Kiyoyasu

    2015-04-01

    Lung injury is a major clinical concern after hepatic ischemia-reperfusion (I/R), due to the production of reactive oxygen species in the reperfused liver. We investigated the efficacy of edaravone, a potent free-radical scavenger, for attenuating lung injury after hepatic I/R. Adult male Sprague-Dawley rats were assigned to sham + normal saline (NS), I/R + NS, or I/R + edaravone group. Rats in the I/R groups were subjected to 90 min of partial hepatic I/R. Five minutes before reperfusion, 3 mg/kg edaravone was administered to the I/R + edaravone group. After 6 h of reperfusion, we evaluated lung histopathology and wet-to-dry ratio. We also measured malondialdehyde (MDA), an indicator of oxidative stress, in the liver and the lung, as well as cytokine messenger RNA expressions in the reperfused liver and plasma cytokine concentrations. Histopathology revealed lung damages after 6 h reperfusion of partial ischemic liver. Moreover, a significant increase in lung wet-to-dry ratio was observed. MDA concentration increased in the reperfused liver, but not in the lungs. Edaravone administration attenuated the lung injury and the increase of MDA in the reperfused liver. Edaravone also suppressed the reperfusion-induced increase of interleukin-6 messenger RNA expressions in the liver and plasma interleukin-6 concentrations. Edaravone administration before reperfusion of the ischemic liver attenuates oxidative stress in the reperfused liver and the subsequent lung injury. Edaravone may be beneficial for preventing lung injury induced by hepatic I/R. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Urinary proteomic profiling reveals diclofenac-induced renal injury and hepatic regeneration in mice

    Energy Technology Data Exchange (ETDEWEB)

    Swelm, Rachel P.L. van [Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen (Netherlands); Laarakkers, Coby M.M. [Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen (Netherlands); Pertijs, Jeanne C.L.M.; Verweij, Vivienne; Masereeuw, Rosalinde [Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen (Netherlands); Russel, Frans G.M., E-mail: F.Russel@pharmtox.umcn.nl [Department of Pharmacology and Toxicology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen (Netherlands)

    2013-06-01

    Diclofenac (DF) is a widely used non-steroidal anti-inflammatory drug for the treatment of rheumatic disorders, but is often associated with liver injury. We applied urinary proteomic profiling using MALDI-TOF MS to identify biomarkers for DF-induced hepatotoxicity in mice. Female CH3/HeOUJIco mice were treated with 75 mg/kg bw DF by oral gavage and 24 h urine was collected. Proteins identified in urine of DF-treated mice included epidermal growth factor, transthyretin, kallikrein, clusterin, fatty acid binding protein 1 and urokinase, which are related to liver regeneration but also to kidney injury. Both organs showed enhanced levels of oxidative stress (TBARS, p < 0.01). Kidney injury was confirmed by histology and increased Kim1 and Il-6 mRNA expression levels (p < 0.001 and p < 0.01). Liver histology and plasma ALT levels in DF-treated mice were not different from control, but mRNA expression of Stat3 (p < 0.001) and protein expression of PCNA (p < 0.05) were increased, indicating liver regeneration. In conclusion, urinary proteome analysis revealed that DF treatment in mice induced kidney and liver injury. Within 24 h, however, the liver was able to recover by activating tissue regeneration processes. Hence, the proteins found in urine of DF-treated mice represent kidney damage rather than hepatic injury. - Highlights: • The urinary proteome shows biological processes involved in adverse drug reactions. • Urine proteins of DF-treated mice relate to kidney injury rather than liver injury. • Liver regeneration, not liver injury, is apparent 24h after oral DF administration. • Pretreatment with LPS does not enhance DF-induced liver injury in mice.

  19. Isoliquiritigenin protects against sepsis-induced lung and liver injury by reducing inflammatory responses.

    Science.gov (United States)

    Chen, Xiong; Cai, Xueding; Le, Rongrong; Zhang, Man; Gu, Xuemei; Shen, Feixia; Hong, Guangliang; Chen, Zimiao

    2018-02-05

    Sepsis, one of the most fatal diseases worldwide, often leads to multiple organ failure, mainly due to uncontrolled inflammatory responses. Despite accumulating knowledge obtained in recent years, effective drugs to treat sepsis in the clinic are still urgently needed. Isoliquiritigenin (ISL), a chalcone compound, has been reported to exert anti-inflammatory properties. However, little is known about the effects of ISL on sepsis and its related complications. In this study, we investigated the potential protective effects of ISL on lipopolysaccharide (LPS)-induced injuries and identified the mechanisms underlying these effects. ISL inhibited inflammatory cytokine expression in mouse primary peritoneal macrophages (MPMs) exposed to LPS. In an acute lung injury (ALI) mouse model, ISL prevented LPS-induced structural damage and inflammatory cell infiltration. Additionally, pretreatment with ISL attenuated sepsis-induced lung and liver injury, accompanied by a reduction in inflammatory responses. Moreover, these protective effects were mediated by the nuclear factor kappa B (NF-κB) pathway-mediated inhibition of inflammatory responses in vitro and in vivo. Our study suggests that ISL may be a potential therapeutic agent for sepsis-induced injuries. Copyright © 2017. Published by Elsevier Inc.

  20. Diacylglycerol kinase regulation of protein kinase D during oxidative stress-induced intestinal cell injury

    International Nuclear Information System (INIS)

    Song Jun; Li Jing; Mourot, Joshua M.; Mark Evers, B.; Chung, Dai H.

    2008-01-01

    We recently demonstrated that protein kinase D (PKD) exerts a protective function during oxidative stress-induced intestinal epithelial cell injury; however, the exact role of DAG kinase (DGK)ζ, an isoform expressed in intestine, during this process is unknown. We sought to determine the role of DGK during oxidative stress-induced intestinal cell injury and whether DGK acts as an upstream regulator of PKD. Inhibition of DGK with R59022 compound or DGKζ siRNA transfection decreased H 2 O 2 -induced RIE-1 cell apoptosis as measured by DNA fragmentation and increased PKD phosphorylation. Overexpression of kinase-dead DGKζ also significantly increased PKD phosphorylation. Additionally, endogenous nuclear DGKζ rapidly translocated to the cytoplasm following H 2 O 2 treatment. Our findings demonstrate that DGK is involved in the regulation of oxidative stress-induced intestinal cell injury. PKD activation is induced by DGKζ, suggesting DGK is an upstream regulator of oxidative stress-induced activation of the PKD signaling pathway in intestinal epithelial cells

  1. Sepsis-induced myocardial dysfunction and myocardial protection from ischemia/reperfusion injury.

    Science.gov (United States)

    McDonough, Kathleen H; Virag, Jitka Ismail

    2006-01-01

    Sepsis, bacteremia and inflammation cause myocardial depression. The mechanism of the dysfunction is not clearly established partly because dysfunction can be elicited by many different mechanisms which can all manifest in disruption of myocardial mechanical function. In addition the models of sepsis and bacteremia and inflammation may vary drastically in the sequence of the coordinated immune response to the inflammatory or septic stimulus. Patterns of cytokine expression can vary as can other responses of the immune system. Patterns of neurohumoral activation in response to the stress of sepsis or bacteremia or inflammation can also vary in both magnitude of response and temporal sequence of response. Stress induced activation of the sympathetic nervous system and humoral responses to stress have a wide range of intensity that can be elicited. The fairly uniform response of the myocardium indicating cardiac dysfunction is surprisingly constant. Systolic performance, as measured by stroke volume or cardiac output and pressure work as estimated by ventricular pressure, are impaired when myocardial contraction is compromised. At times, diastolic function, assessed by ventricular relaxation and filling, is impaired. In addition to the dysfunction that occurs, there is a longer term response of the myocardium to sepsis, and this response is similar to that which is elicited in the heart by multiple brief ischemia/reperfusion episodes and by numerous pharmacological agents as well as heat stress and modified forms of lipopolysaccharide. The myocardium develops protection after an initial stress such that during a second stress, the myocardium does not exhibit as much damage as does a non-protected heart. Many agents can induce this protection which has been termed preconditioning. Both early preconditioning (protection that is measurable min to hours after the initial stimulus) and late preconditioning (protection that is measurable hours to days after the initial

  2. Urokinase Plasminogen Activator Receptor-Deficient Mice Demonstrate Reduced Hyperoxia-Induced Lung Injury

    NARCIS (Netherlands)

    van Zoelen, Marieke A. D.; Florquin, Sandrine; de Beer, Regina; Pater, Jennie M.; Verstege, Marleen I.; Meijers, Joost C. M.; van der Poll, Tom

    2009-01-01

    Patients with respiratory failure often require supplemental oxygen therapy and mechanical ventilation. Although both supportive measures are necessary to guarantee adequate oxygen uptake, they can also cause or worsen lung inflammation and injury. Hyperoxia-induced lung injury is characterized by

  3. Possible gasoline-induced chronic liver injury due to occupational malpractice in a motor mechanic: a case report.

    Science.gov (United States)

    Gunathilaka, Mahesh Lakmal; Niriella, Madunil Anuk; Luke, Nathasha Vihangi; Piyarathna, Chathura Lakmal; Siriwardena, Rohan Chaminda; De Silva, Arjuna Priyadarshin; de Silva, Hithanadura Janaka

    2017-07-03

    Hydrocarbon-induced occupational liver injury is a well-known clinical entity among petroleum industry workers. There are many types of hydrocarbon exposure, with inhalation being the most common. Hydrocarbon-induced occupational liver injury is a rarely suspected and commonly missed etiological agent for liver injury. We report a case of a non-petroleum industry worker with chronic liver disease secondary to hydrocarbon-induced occupational liver injury caused by chronic low-grade hydrocarbon ingestion due to occupational malpractice. A 23-year-old Sri Lankan man who was a motor mechanic presented to our hospital with decompensated cirrhosis. He had been chronically exposed to gasoline via inadvertent ingestion due to occupational malpractice. He used to remove gasoline from carburetors by sucking and failed to practice mouth washing thereafter. On evaluation, he had histologically proven established cirrhosis. A comprehensive history and workup ruled out other nonoccupational etiologies for cirrhosis. The patient's long-term occupational gasoline exposure and clinical course led us to a diagnosis of hydrocarbon-induced occupational liver injury leading to decompensated cirrhosis. Hydrocarbon-induced occupational liver injury should be considered as a cause when evaluating a patient with liver injury with possible exposure in relevant occupations.

  4. Diet-induced obesity impairs endometrial stromal cell decidualization: a potential role for impaired autophagy.

    Science.gov (United States)

    Rhee, Julie S; Saben, Jessica L; Mayer, Allyson L; Schulte, Maureen B; Asghar, Zeenat; Stephens, Claire; Chi, Maggie M-Y; Moley, Kelle H

    2016-06-01

    What effect does diet-induced obesity have on endometrial stromal cell (ESC) decidualization? Diet-induced obesity impairs ESC decidualization. Decidualization is important for successful implantation and subsequent health of the pregnancy. Compared with normal-weight women, obese women have lower pregnancy rates (both spontaneous and by assisted reproductive technology), higher rates of early pregnancy loss and poorer oocyte quality. Beginning at 6 weeks of age, female C57Bl/6J mice were fed either a high-fat/high-sugar diet (HF/HS; 58% Fat Energy/Sucrose) or a diet of standard mouse chow (CON; 13% Fat) for 12 weeks. At this point, metabolic parameters were measured. Some of the mice (n = 9 HF/HS and 9 CON) were mated with reproductively competent males, and implantation sites were assessed. Other mice (n = 11 HF/HS and 10 CON) were mated with vasectomized males, and artificial decidualization was induced. For in vitro human studies of primary ESCs, endometrial tissue was obtained via biopsy from normo-ovulatory patients without history of infertility (obese = BMI > 30 kg/m(2), n = 11 and lean = BMI treatment with cAMP and medroxyprogesterone. The level of expression of decidualization markers was assessed by RT-qPCR (mRNA) and western blotting (protein). ATP content of ESCs was measured, and levels of autophagy were assessed by western blotting of the autophagy regulators acetyl coa carboxylase (ACC) and ULK1 (Ser 317). Autophagic flux was measured by western blot of the marker LC3b-II. Mice exposed to an HF/HS diet became obese and metabolically impaired. HF/HS-exposed mice mated to reproductively competent males had smaller implantation sites in early pregnancy (P obese women than in those of normal-weight women (Ptreatment abrogated this increase. Many aspects of obesity and metabolic impairment could contribute to the decidualization defects observed in the HF/HS-exposed mice. Although our findings suggest that both autophagy and decidualization are impaired

  5. Augmented hepatic injury followed by impaired regeneration in metallothionein-I/II knockout mice after treatment with thioacetamide

    International Nuclear Information System (INIS)

    Oliver, Jordan R.; Jiang, Sean; Cherian, M. George

    2006-01-01

    A previous study (Oliver, J.R., Mara, T.W., Cherian, M.G. 2005. Impaired hepatic regeneration in metallothionein-I/II knockout mice after partial hepatectomy. Exp. Biol. Med. 230, 61-67) has shown an impairment of liver regeneration following partial hepatectomy (PH) in metallothionein (MT)-I and MT-II gene knockout (MT-null) mice, thus suggesting a requirement for MT in cellular growth. The present study was undertaken to investigate whether MT may play a similar role in hepatic injury and regeneration after acute treatment with thioacetamide (TAA). Hepatotoxicity of TAA is caused by the generation of oxidative stress. TAA was injected ip to both wild-type (WT) and MT-null mice. Mice were killed at 6, 12, 24, 48, 60, and 72 h after injection of TAA (125 mg/kg) or 48 h after injection of saline (vehicle control), and different parameters of hepatic injury were measured. The levels of hepatic lipid peroxidation were increased at 12 h in both types of mice; however, lipid peroxidation was significantly less in WT mice than MT-null mice at 48 h after injection of TAA. Analysis of hepatic glutathione (GSH) levels after TAA injection showed depletion of GSH at 12 h in WT mice and at 6 h in MT-null mice; however, significantly more GSH was depleted early (6-24 h) in MT-null mice than WT mice. An increase in hepatic iron (Fe) levels was observed in both types of mice after injection of TAA, but Fe levels were significantly higher in MT-null mice than WT mice at 6-60 h. The levels of hepatic copper (Cu) and zinc (Zn) were significantly higher in WT mice than MT-null mice at 6-60 h for Cu, and at 24 h and 60 h for Zn, respectively. Histopathological examination showed hemorrhagic necrosis in the liver of both types of mice at 12-72 h, with hepatic injury being more prominent in MT-null mice than WT mice. The hepatic MT levels were increased in WT mice after injection of TAA, and were highest at 24-72 h. Immunohistochemical staining for MT in WT mice indicated the presence

  6. Effects of positive end-expiratory pressure and recruitment maneuvers in a ventilator-induced injury mouse model.

    Directory of Open Access Journals (Sweden)

    Laura A Cagle

    Full Text Available Positive-pressure mechanical ventilation is an essential therapeutic intervention, yet it causes the clinical syndrome known as ventilator-induced lung injury. Various lung protective mechanical ventilation strategies have attempted to reduce or prevent ventilator-induced lung injury but few modalities have proven effective. A model that isolates the contribution of mechanical ventilation on the development of acute lung injury is needed to better understand biologic mechanisms that lead to ventilator-induced lung injury.To evaluate the effects of positive end-expiratory pressure and recruitment maneuvers in reducing lung injury in a ventilator-induced lung injury murine model in short- and longer-term ventilation.5-12 week-old female BALB/c mice (n = 85 were anesthetized, placed on mechanical ventilation for either 2 hrs or 4 hrs with either low tidal volume (8 ml/kg or high tidal volume (15 ml/kg with or without positive end-expiratory pressure and recruitment maneuvers.Alteration of the alveolar-capillary barrier was noted at 2 hrs of high tidal volume ventilation. Standardized histology scores, influx of bronchoalveolar lavage albumin, proinflammatory cytokines, and absolute neutrophils were significantly higher in the high-tidal volume ventilation group at 4 hours of ventilation. Application of positive end-expiratory pressure resulted in significantly decreased standardized histology scores and bronchoalveolar absolute neutrophil counts at low- and high-tidal volume ventilation, respectively. Recruitment maneuvers were essential to maintain pulmonary compliance at both 2 and 4 hrs of ventilation.Signs of ventilator-induced lung injury are evident soon after high tidal volume ventilation (as early as 2 hours and lung injury worsens with longer-term ventilation (4 hrs. Application of positive end-expiratory pressure and recruitment maneuvers are protective against worsening VILI across all time points. Dynamic compliance can be used guide

  7. Effects of positive end-expiratory pressure and recruitment maneuvers in a ventilator-induced injury mouse model

    Science.gov (United States)

    Franzi, Lisa M.; Linderholm, Angela L.; Last, Jerold A.; Adams, Jason Y.; Harper, Richart W.

    2017-01-01

    Background Positive-pressure mechanical ventilation is an essential therapeutic intervention, yet it causes the clinical syndrome known as ventilator-induced lung injury. Various lung protective mechanical ventilation strategies have attempted to reduce or prevent ventilator-induced lung injury but few modalities have proven effective. A model that isolates the contribution of mechanical ventilation on the development of acute lung injury is needed to better understand biologic mechanisms that lead to ventilator-induced lung injury. Objectives To evaluate the effects of positive end-expiratory pressure and recruitment maneuvers in reducing lung injury in a ventilator-induced lung injury murine model in short- and longer-term ventilation. Methods 5–12 week-old female BALB/c mice (n = 85) were anesthetized, placed on mechanical ventilation for either 2 hrs or 4 hrs with either low tidal volume (8 ml/kg) or high tidal volume (15 ml/kg) with or without positive end-expiratory pressure and recruitment maneuvers. Results Alteration of the alveolar-capillary barrier was noted at 2 hrs of high tidal volume ventilation. Standardized histology scores, influx of bronchoalveolar lavage albumin, proinflammatory cytokines, and absolute neutrophils were significantly higher in the high-tidal volume ventilation group at 4 hours of ventilation. Application of positive end-expiratory pressure resulted in significantly decreased standardized histology scores and bronchoalveolar absolute neutrophil counts at low- and high-tidal volume ventilation, respectively. Recruitment maneuvers were essential to maintain pulmonary compliance at both 2 and 4 hrs of ventilation. Conclusions Signs of ventilator-induced lung injury are evident soon after high tidal volume ventilation (as early as 2 hours) and lung injury worsens with longer-term ventilation (4 hrs). Application of positive end-expiratory pressure and recruitment maneuvers are protective against worsening VILI across all time points

  8. Effects of positive end-expiratory pressure and recruitment maneuvers in a ventilator-induced injury mouse model.

    Science.gov (United States)

    Cagle, Laura A; Franzi, Lisa M; Linderholm, Angela L; Last, Jerold A; Adams, Jason Y; Harper, Richart W; Kenyon, Nicholas J

    2017-01-01

    Positive-pressure mechanical ventilation is an essential therapeutic intervention, yet it causes the clinical syndrome known as ventilator-induced lung injury. Various lung protective mechanical ventilation strategies have attempted to reduce or prevent ventilator-induced lung injury but few modalities have proven effective. A model that isolates the contribution of mechanical ventilation on the development of acute lung injury is needed to better understand biologic mechanisms that lead to ventilator-induced lung injury. To evaluate the effects of positive end-expiratory pressure and recruitment maneuvers in reducing lung injury in a ventilator-induced lung injury murine model in short- and longer-term ventilation. 5-12 week-old female BALB/c mice (n = 85) were anesthetized, placed on mechanical ventilation for either 2 hrs or 4 hrs with either low tidal volume (8 ml/kg) or high tidal volume (15 ml/kg) with or without positive end-expiratory pressure and recruitment maneuvers. Alteration of the alveolar-capillary barrier was noted at 2 hrs of high tidal volume ventilation. Standardized histology scores, influx of bronchoalveolar lavage albumin, proinflammatory cytokines, and absolute neutrophils were significantly higher in the high-tidal volume ventilation group at 4 hours of ventilation. Application of positive end-expiratory pressure resulted in significantly decreased standardized histology scores and bronchoalveolar absolute neutrophil counts at low- and high-tidal volume ventilation, respectively. Recruitment maneuvers were essential to maintain pulmonary compliance at both 2 and 4 hrs of ventilation. Signs of ventilator-induced lung injury are evident soon after high tidal volume ventilation (as early as 2 hours) and lung injury worsens with longer-term ventilation (4 hrs). Application of positive end-expiratory pressure and recruitment maneuvers are protective against worsening VILI across all time points. Dynamic compliance can be used guide the frequency

  9. Impaired masturbation-induced erections: a new cardiovascular risk factor for male subjects with sexual dysfunction.

    Science.gov (United States)

    Rastrelli, Giulia; Boddi, Valentina; Corona, Giovanni; Mannucci, Edoardo; Maggi, Mario

    2013-04-01

    Erectile dysfunction (ED) is considered an early surrogate marker of silent, or even overt, cardiovascular diseases (CVD). However, epidemiological studies take into account only sexual intercourse-related erections. Although autoeroticism is a very common practice, data on masturbation-induced erections as a possible predictor of major adverse cardiovascular events (MACE) are lacking. To evaluate the clinical correlates of impaired masturbation-induced erections and to verify the importance of this sexual aspect in predicting MACE. A consecutive series of 4,031 male patients attending the Outpatient Clinic for sexual dysfunction for the first time was retrospectively studied. Among these subjects, 64% reported autoeroticism during the last 3 months, and only this subset was considered in the following analyses. In the longitudinal study, 862 subjects reporting autoeroticism were enrolled. Several clinical, biochemical, and instrumental (Prostaglandin E1 [PGE1 ] test and penile color Doppler ultrasound) parameters were studied. Subjects with an impaired erection during masturbation (46% of those reporting autoeroticism) had more often a positive personal or family history of CVD, a higher risk of reduced intercourse- and sleep-related erections, hypoactive sexual desire and perceived reduced ejaculate volume, and impaired PGE1 test response. Prolactin levels were lower in those having impaired erection during masturbation. In the longitudinal study, unadjusted incidence of MACE was significantly associated with impaired masturbation-induced erections. When dividing the population according to the median age and diagnosis of diabetes, the association between impaired masturbation-induced erections and incidence of MACE was maintained only in the youngest (masturbation-induced erections, can provide further insights on forthcoming MACE in particular in "low risk" subjects. © 2013 International Society for Sexual Medicine.

  10. Cigarette smoke induced autophagy-impairment regulates AMD pathogenesis mechanisms in ARPE-19 cells.

    Directory of Open Access Journals (Sweden)

    Viren Kumar Govindaraju

    Full Text Available Age related macular degeneration (AMD is one of the leading causes of blindness. Genetics, environmental insult, and age-related factors all play a key role in altering proteostasis, the homeostatic process regulating protein synthesis, degradation and processing. These factors also play a role in the pathogenesis of AMD and it has been well established that cigarette smoking (CS initiates AMD pathogenic mechanisms. The primary goal of this study is to elucidate whether CS can induce proteostasis/autophagy-impairment in retinal pigment epithelial (RPE cells. In our preliminary analysis, it was found that cigarette smoke extract (CSE induces accumulation of ubiquitinated proteins in the insoluble protein fraction (p < 0.01, which was subsequently mitigated through cysteamine (p < 0.01 or fisetin (p < 0.05 treatment. Further, it was verified that these CSE induced ubiquitinated proteins accumulated in the peri-nuclear spaces (p<0.05 that were cleared- off with cysteamine (p < 0.05 or fisetin (p < 0.05. Moreover, CSE-induced aggresome-formation (LC3B-GFP and Ub-RFP co-localization and autophagy-flux impairment was significantly (p<0.01 mitigated by cysteamine (p<0.05 or fisetin (p<0.05 treatment, indicating the restoration of CSE-mediated autophagy-impairment. CSE treatment was also found to induce intracellular reactive oxygen species (ROS, p < 0.001 while impacting cell viability (p < 0.001, which was quantified using CMH2DCFDA-dye (ROS and MTS (proliferation or propodium iodide staining (cell viability assays, respectively. Moreover, cysteamine and fisetin treatment ameliorated CS-mediated ROS production (p < 0.05 and diminished cell viability (p < 0.05. Lastly, CSE was found to induce cellular senescence (p < 0.001, which was significantly ameliorated by cysteamine (p < 0.001 or fisetin (p < 0.001. In conclusion, our study indicates that CS induced proteostasis/autophagy-impairment regulates mechanisms associated with AMD pathogenesis. Moreover

  11. Prevention of hypoglycemia-induced neuronal death by minocycline

    Science.gov (United States)

    2012-01-01

    Diabetic patients who attempt strict management of blood glucose levels frequently experience hypoglycemia. Severe and prolonged hypoglycemia causes neuronal death and cognitive impairment. There is no effective tool for prevention of these unwanted clinical sequelae. Minocycline, a second-generation tetracycline derivative, has been recognized as an anti-inflammatory and neuroprotective agent in several animal models such as stroke and traumatic brain injury. In the present study, we tested whether minocycline also has protective effects on hypoglycemia-induced neuronal death and cognitive impairment. To test our hypothesis we used an animal model of insulin-induced acute hypoglycemia. Minocycline was injected intraperitoneally at 6 hours after hypoglycemia/glucose reperfusion and injected once per day for the following 1 week. Histological evaluation for neuronal death and microglial activation was performed from 1 day to 1 week after hypoglycemia. Cognitive evaluation was conducted 6 weeks after hypoglycemia. Microglial activation began to be evident in the hippocampal area at 1 day after hypoglycemia and persisted for 1 week. Minocycline injection significantly reduced hypoglycemia-induced microglial activation and myeloperoxidase (MPO) immunoreactivity. Neuronal death was significantly reduced by minocycline treatment when evaluated at 1 week after hypoglycemia. Hypoglycemia-induced cognitive impairment is also significantly prevented by the same minocycline regimen when subjects were evaluated at 6 weeks after hypoglycemia. Therefore, these results suggest that delayed treatment (6 hours post-insult) with minocycline protects against microglial activation, neuronal death and cognitive impairment caused by severe hypoglycemia. The present study suggests that minocycline has therapeutic potential to prevent hypoglycemia-induced brain injury in diabetic patients. PMID:22998689

  12. The triterpenoids of Ganoderma tsugae prevent stress-induced myocardial injury in mice.

    Science.gov (United States)

    Kuok, Qian-Yu; Yeh, Chen-Yu; Su, Bor-Chyuan; Hsu, Pei-Ling; Ni, Hao; Liu, Ming-Yie; Mo, Fan-E

    2013-10-01

    Ganoderma mushrooms (Lingzhi in Chinese) have well-documented health benefits. Ganoderma tsugae (G. tsugae), one of the ganoderma species, has been commercially cultivated as a dietary supplement. Because G. tsugae has high antioxidant activity and because oxidative stress is often associated with cardiac injury, we hypothesized that G. tsugae protects against cardiac injury by alleviating oxidative stress. We tested the hypothesis using a work-overload-induced myocardial injury model created by challenging mice with isoproterenol (ISO). Remarkably, oral G. tsugae protected the mice from ISO-induced myocardial injury. Moreover, the triterpenoid fraction of G. tsugae, composed of a mixture of nine structurally related ganoderic acids (GAs), provided cardioprotection by inhibiting the ISO-induced expression of Fas/Fas ligand, oxidative stress, and apoptosis. The antioxidant activity of GAs was tested in cultured cardio-myoblast H9c2 cells against the insult of H₂O₂. GAs dissipated the cellular reactive oxygen species imposed by H₂O₂ and prevented cell death. Our findings uncovered the cardioprotective activity of G. tsugae and identified GAs as the bioactive components against cardiac insults. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Relation of Symptom-Induced Impairment with Other Illness Parameters in Clinic-Referred Youth

    Science.gov (United States)

    Gadow, Kenneth D.; Kaat, Aaron J.; Lecavalier, Luc

    2013-01-01

    Objective: To examine the relation of caregiver ratings of psychiatric symptom-induced impairment with number and severity of symptoms and informant agreement in consecutive child psychiatry outpatient referrals. Methods: Parents and teachers completed a broadband "DSM-IV"-referenced rating scale with disorder-specific impairment for 636…

  14. Quercetin prevents pyrrolizidine alkaloid clivorine-induced liver injury in mice by elevating body defense capacity.

    Directory of Open Access Journals (Sweden)

    Lili Ji

    Full Text Available Quercetin is a plant-derived flavonoid that is widely distributed in nature. The present study is designed to analyze the underlying mechanism in the protection of quercetin against pyrrolizidine alkaloid clivorine-induced acute liver injury in vivo. Serum transaminases, total bilirubin analysis, and liver histological evaluation demonstrated the protection of quercetin against clivorine-induced liver injury. Terminal dUTP nick end-labeling assay demonstrated that quercetin reduced the increased amount of liver apoptotic cells induced by clivorine. Western-blot analysis of caspase-3 showed that quercetin inhibited the cleaved activation of caspase-3 induced by clivorine. Results also showed that quercetin reduced the increase in liver glutathione and lipid peroxidative product malondialdehyde induced by clivorine. Quercetin reduced the enhanced liver immunohistochemical staining for 4-hydroxynonenal induced by clivorine. Results of the Mouse Stress and Toxicity PathwayFinder RT2 Profiler PCR Array demonstrated that the expression of genes related with oxidative or metabolic stress and heat shock was obviously altered after quercetin treatment. Some of the alterations were confirmed by real-time PCR. Our results demonstrated that quercetin prevents clivorine-induced acute liver injury in vivo by inhibiting apoptotic cell death and ameliorating oxidative stress injury. This protection may be caused by the elevation of the body defense capacity induced by quercetin.

  15. Quercetin Prevents Pyrrolizidine Alkaloid Clivorine-Induced Liver Injury in Mice by Elevating Body Defense Capacity

    Science.gov (United States)

    Ji, Lili; Ma, Yibo; Wang, Zaiyong; Cai, Zhunxiu; Pang, Chun; Wang, Zhengtao

    2014-01-01

    Quercetin is a plant-derived flavonoid that is widely distributed in nature. The present study is designed to analyze the underlying mechanism in the protection of quercetin against pyrrolizidine alkaloid clivorine-induced acute liver injury in vivo. Serum transaminases, total bilirubin analysis, and liver histological evaluation demonstrated the protection of quercetin against clivorine-induced liver injury. Terminal dUTP nick end-labeling assay demonstrated that quercetin reduced the increased amount of liver apoptotic cells induced by clivorine. Western-blot analysis of caspase-3 showed that quercetin inhibited the cleaved activation of caspase-3 induced by clivorine. Results also showed that quercetin reduced the increase in liver glutathione and lipid peroxidative product malondialdehyde induced by clivorine. Quercetin reduced the enhanced liver immunohistochemical staining for 4-hydroxynonenal induced by clivorine. Results of the Mouse Stress and Toxicity PathwayFinder RT2 Profiler PCR Array demonstrated that the expression of genes related with oxidative or metabolic stress and heat shock was obviously altered after quercetin treatment. Some of the alterations were confirmed by real-time PCR. Our results demonstrated that quercetin prevents clivorine-induced acute liver injury in vivo by inhibiting apoptotic cell death and ameliorating oxidative stress injury. This protection may be caused by the elevation of the body defense capacity induced by quercetin. PMID:24905073

  16. Angiotensin II induces calcium/calcineurin signaling and podocyte injury by downregulating microRNA-30 family members.

    Science.gov (United States)

    Zhao, Yue; Wu, Junnan; Zhang, Mingchao; Zhou, Minlin; Xu, Feng; Zhu, Xiaodong; Zhou, Xianguang; Lang, Yue; Yang, Fan; Yun, Shifeng; Shi, Shaolin; Liu, Zhihong

    2017-08-01

    Angiotensin II (AngII) is capable of inducing calcium/calcineurin signaling and podocyte injury; however, the precise underlying mechanism is not well understood. Because we have previously demonstrated that microRNA-30s (miR-30s) inhibit calcium/calcineurin signaling in podocytes, we hypothesize that AngII may induce podocyte injury by downregulating miR-30s and thereby activating calcium/calcineurin signaling. To test this hypothesis, we used an AngII-induced podocyte injury mouse model. The mice were treated with AngII via infusion for 28 days, which resulted in hypertension, albuminuria, and glomerular damage. AngII treatment also resulted in a significant reduction of miR-30s and upregulation of calcium/calcineurin signaling components, including TRPC6, PPP3CA, PPP3CB, PPP3R1, and NFATC3, which are the known targets of miR-30s in podocytes. The delivery of miR-30a-expressing lentivirus to the podocytes on day 14 of the infusion ameliorated the AngII-induced podocyte and glomerular injury and attenuated the upregulation of the calcium/calcineurin signaling components. Similarly, treatment with losartan, which is an AngII receptor blocker, also prevented AngII-induced podocyte injury and calcium/calcineurin signaling activation. Notably, losartan was found to sustain miR-30 levels during AngII treatment both in vivo and in vitro. In conclusion, the effect of AngII on podocytes is in part mediated by miR-30s through calcium/calcineurin signaling, a novel mechanism underlying AngII-induced podocyte injury. • AngII infusion resulted in downregulation of miR-30s in podocytes. • Exogenous miR-30a delivery mitigated the glomerular and podocyte injuries induced by AngII. • Both miR-30a and losartan prevented AngII-induced activation of calcium-calcineurin signaling.

  17. LC-MS/MS profiling and neuroprotective effects of Mentat® against transient global ischemia and reperfusion-induced brain injury in rats.

    Science.gov (United States)

    Viswanatha, Gollapalle Lakshminarayanashastry; Kumar, Lakkavalli Mohan Sharath; Rafiq, Mohamed; Kavya, Kethaganahalli Jayaramaiah; Thippeswamy, Agadi Hiremath; Yuvaraj, Huvvinamadu Chandrashekarappa; Azeemuddin, Mohammed; Anturlikar, Suryakanth Dattatreya; Patki, Pralhad Sadashiv; Babu, Uddagiri Venkanna; Ramakrishnan, Shyam

    2015-01-01

    The aim of this study was to evaluate the possible beneficial effects of Mentat against transient global ischemia and reperfusion-induced brain injury in rats. The neuroprotective effects of Mentat were evaluated against transient global ischemia and reperfusion (I/R)-induced brain injury in rats. Various neurobehavioral and biochemical parameters were assessed, followed by morphologic and histopathologic evaluation of brain tissue to conclude the protective effect of Mentat. Additionally, in vitro antioxidant assays were performed to explore the antioxidant capacity of Mentat and detailed liquid chromatography-mass spectrometry (LC-MS/MS) profiling was carried out to identify the active phytoconstituents responsible for the protective effects of Mentat. Sixty minutes of transient global ischemia followed by 24 h reperfusion (I/R) caused significant alterations in the cognitive and neurologic functions in the ischemia control group (P cerebral infarct area (P protective effects. These findings suggest that Mentat is a neuroprotective agent that may be a useful adjunct in the management of ischemic stroke and its rehabilitation especially with respect to associated memory impairment and other related neurologic conditions. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Effects of scallop shell extract on scopolamine-induced memory impairment and MK801-induced locomotor activity

    OpenAIRE

    HASEGAWA, Yasushi; INOUE, Tatsuro; KAWAMINAMI, Satoshi; FUJITA, Miho

    2016-01-01

    ObjectiveTo evaluate the neuroprotective effects of the organic components of scallop shells (scallop shell extract) on memory impairment and locomotor activity induced by scopolamine or 5-methyl-10,11-dihydro-5H-dibenzo (a,d) cyclohepten-5,10-imine (MK801).MethodsEffect of the scallop shell extract on memory impairment and locomotor activity was investigated using the Y-maze test, the Morris water maze test, and the open field test.ResultsScallop shell extract significantly reduced scopolami...

  19. Systemic progesterone for modulating electrocautery-induced secondary brain injury.

    Science.gov (United States)

    Un, Ka Chun; Wang, Yue Chun; Wu, Wutian; Leung, Gilberto Ka Kit

    2013-09-01

    Bipolar electrocautery is an effective and commonly used haemostatic technique but it may also cause iatrogenic brain trauma due to thermal injury and secondary inflammatory reactions. Progesterone has anti-inflammatory and neuroprotective actions in traumatic brain injury. However, its potential use in preventing iatrogenic brain trauma has not been explored. We conducted a pilot animal study to investigate the effect of systemic progesterone on brain cellular responses to electrocautery-induced injury. Adult male Sprague-Dawley rats received standardized bipolar electrocautery (40 W for 2 seconds) over the right cerebral cortex. The treatment group received progesterone intraperitoneally 2 hours prior to surgery; the control group received the drug vehicle only. Immunohistochemical studies showed that progesterone could significantly reduce astrocytic hypertrophy on postoperative day 1, 3 and 7, as well as macrophage infiltration on day 3. The number of astrocytes, however, was unaffected. Our findings suggest that progesterone should be further explored as a neuroprotective agent against electrocautery-induced or other forms of iatrogenic trauma during routine neurosurgical procedures. Future studies may focus on different dosing regimens, neuronal survival, functional outcome, and to compare progesterone with other agents such as dexamethasone. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Does sucralfate prevent apoptosis occurring in the ischemia/reperfusion-induced intestinal injury?

    Science.gov (United States)

    Sencan, A; Yilmaz, O; Ozer, E; Günşar, C; Genç, K; Ulukuş, C; Taneli, C; Mir, E

    2003-08-01

    We have shown in a previous study that sucralfate is beneficial in the prophylaxis and treatment of hypoxia/reoxygenation-induced intestinal injury. The aim of this study is to investigate whether sucralfate has any effect on the prevention of apoptosis in the ischemia/reperfusion (I/R)-induced intestinal injury. Rats were randomized into three groups. Group 1 and 2 were subjected to I/R. Group 1 (treatment group) received sucralfate while group 2 (treatment control group) did not. Group 3 served as a normal control group (sham group). The terminal ileum was harvested for histopathologic investigation by light microscopy. The presence of apoptotic enterocytes (DNA fragmentation in cell nuclei) was detected by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end-labeling (TUNEL) reaction. In treatment control group, 3 of 7 rats had severe inflammation. None of the sucralfate-treated rats showed severe inflammation, 6 of them only showed mild inflammatory changes (p < 0.05). The apoptotic percentage was found to be 37.1 +/- 9.4 in the sucralfate-treated group (group 1), whereas it was 45.4 +/- 3.9 in the untreated group (group 2) (p < 0.05). The sham group had a completely normal intestinal architecture. The present study shows that 1) the experimental model of I/R-induced intestinal injury induces enterocyte apoptosis; 2) sucralfate decreases enterocyte apoptosis in the experimental model of I/R-induced intestinal injury which may play a key role in the pathophysiological events leading to failure of the intrinsic gut barrier defense mechanisms.

  1. Idh2 Deficiency Exacerbates Acrolein-Induced Lung Injury through Mitochondrial Redox Environment Deterioration

    OpenAIRE

    Park, Jung Hyun; Ku, Hyeong Jun; Lee, Jin Hyup; Park, Jeen-Woo

    2017-01-01

    Acrolein is known to be involved in acute lung injury and other pulmonary diseases. A number of studies have suggested that acrolein-induced toxic effects are associated with depletion of antioxidants, such as reduced glutathione and protein thiols, and production of reactive oxygen species. Mitochondrial NADP+-dependent isocitrate dehydrogenase (idh2) regulates mitochondrial redox balance and reduces oxidative stress-induced cell injury via generation of NADPH. Therefore, we evaluated the ro...

  2. Liver injury from Herbals and Dietary Supplements in the US Drug Induced Liver Injury Network

    Science.gov (United States)

    Navarro, Victor J.; Barnhart, Huiman; Bonkovsky, Herbert L.; Davern, Timothy; Fontana, Robert J.; Grant, Lafaine; Reddy, K. Rajender; Seeff, Leonard B.; Serrano, Jose; Sherker, Averell H.; Stolz, Andrew; Talwalkar, Jayant; Vega, Maricruz; Vuppalanchi, Raj

    2014-01-01

    Background The Drug-Induced Liver Injury Network (DILIN) studies hepatotoxicity due to conventional medications as well as herbals and dietary supplements (HDS). Rationale To characterize hepatotoxicity and its outcomes from HDS versus medications, patients with hepatotoxicity attributed to medications or HDS were enrolled prospectively between 2004 and 2013. The study took place among eight US referral centers that are part of the DILIN. Consecutive patients with liver injury referred to a DILIN center were eligible. The final sample comprised 130 (15.5%) of all subjects enrolled (839) who were judged to have experienced liver injury due to HDS. Hepatotoxicity due to HDS was evaluated by expert opinion. Demographic and clinical characteristics and outcome assessments including death and liver transplantation were ascertained. Cases were stratified and compared according to the type of agent implicated in liver injury; 45 had injury due to bodybuilding HDS, 85 due to non-bodybuilding HDS, and 709 due to medications. Main Results Liver injury due to HDS increased from 7% to 20% (p Bodybuilding HDS caused prolonged jaundice (median 91 days) in young men but did not result in any fatalities or liver transplantation. The remaining HDS cases presented as hepatocellular injury, predominantly in middle-aged women and more frequently led to death or transplantation compared to injury from medications (13% vs. 3%, p bodybuilding HDS is more severe than from bodybuilding HDS or medications, as evidenced by differences in unfavorable outcomes; death and transplantation. PMID:25043597

  3. Ameliorating Effects of Ethanol Extract of Fructus mume on Scopolamine-Induced Memory Impairment in Mice

    Directory of Open Access Journals (Sweden)

    Min-Soo Kim

    2015-01-01

    Full Text Available We previously reported that Fructus mume (F. mume extract shows protective effects on memory impairments and anti-inflammatory effects induced by chronic cerebral hypoperfusion. Neurodegeneration of basal cholinergic neurons is also observed in the brain with chronic cerebral hypoperfusion. Therefore, the present study was conducted to examine whether F. mume extracts enhance cognitive function via the action of cholinergic neuron using a scopolamine-induced animal model of memory impairments. F. mume (50, 100, or 200 mg/kg was administered to C57BL/6 mice for 14 days (days 1–14 and memory impairment was induced by scopolamine (1 mg/kg, a muscarinic receptor antagonist for 7 days (days 8–14. Spatial memory was assessed using Morris water maze and hippocampal level of acetylcholinesterase (AChE and choline acetyltransferase (ChAT was examined by ELISA and immunoblotting. Mice that received scopolamine alone showed impairments in acquisition and retention in Morris water maze task and increased activity of AChE in the hippocampus. Mice that received F. mume and scopolamine showed no scopolamine-induced memory impairment and increased activity of AChE. In addition, treatments of F. mume increased ChAT expression in the hippocampus. These results indicated that F. mume might enhance cognitive function via action of cholinergic neurons.

  4. Mechanical injury induces brain endothelial-derived microvesicle release: Implications for cerebral vascular injury during traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Allison M. Andrews

    2016-02-01

    Full Text Available It is well established that the endothelium responds to mechanical forces induced by changes in shear stress and mechanotransduction. However, our understanding of vascular remodeling following traumatic brain injury (TBI remains incomplete. Recently published studies have revealed that lung and umbilical endothelial cells produce extracellular microvesicles (eMVs, such as microparticles, in response to changes in mechanical forces (blood flow and mechanical injury. Yet, to date, no studies have shown whether brain endothelial cells produce eMVs following TBI. The brain endothelium is highly specialized and forms the blood-brain barrier (BBB, which regulates diffusion and transport of solutes into the brain. This specialization is largely due to the presence of tight junction proteins (TJPs between neighboring endothelial cells. Following TBI, a breakdown in tight junction complexes at the BBB leads to increased permeability, which greatly contributes to the secondary phase of injury. We have therefore tested the hypothesis that brain endothelium responds to mechanical injury, by producing eMVs that contain brain endothelial proteins, specifically TJPs. In our study, primary human adult brain microvascular endothelial cells (BMVEC were subjected to rapid mechanical injury to simulate the abrupt endothelial disruption that can occur in the primary injury phase of TBI. eMVs were isolated from the media following injury at 2, 6, 24 and 48 hrs. Western blot analysis of eMVs demonstrated a time-dependent increase in TJP occludin, PECAM-1 and ICAM-1 following mechanical injury. In addition, activation of ARF6, a small GTPase linked to extracellular vesicle production, was increased after injury. To confirm these results in vivo, mice were subjected to sham surgery or TBI and blood plasma was collected 24 hrs post-injury. Isolation and analysis of eMVs from blood plasma using cryo-EM and flow cytometry revealed elevated levels of vesicles containing

  5. Mechanical Injury Induces Brain Endothelial-Derived Microvesicle Release: Implications for Cerebral Vascular Injury during Traumatic Brain Injury.

    Science.gov (United States)

    Andrews, Allison M; Lutton, Evan M; Merkel, Steven F; Razmpour, Roshanak; Ramirez, Servio H

    2016-01-01

    It is well established that the endothelium responds to mechanical forces induced by changes in shear stress and strain. However, our understanding of vascular remodeling following traumatic brain injury (TBI) remains incomplete. Recently published studies have revealed that lung and umbilical endothelial cells produce extracellular microvesicles (eMVs), such as microparticles, in response to changes in mechanical forces (blood flow and mechanical injury). Yet, to date, no studies have shown whether brain endothelial cells produce eMVs following TBI. The brain endothelium is highly specialized and forms the blood-brain barrier (BBB), which regulates diffusion and transport of solutes into the brain. This specialization is largely due to the presence of tight junction proteins (TJPs) between neighboring endothelial cells. Following TBI, a breakdown in tight junction complexes at the BBB leads to increased permeability, which greatly contributes to the secondary phase of injury. We have therefore tested the hypothesis that brain endothelium responds to mechanical injury, by producing eMVs that contain brain endothelial proteins, specifically TJPs. In our study, primary human adult brain microvascular endothelial cells (BMVEC) were subjected to rapid mechanical injury to simulate the abrupt endothelial disruption that can occur in the primary injury phase of TBI. eMVs were isolated from the media following injury at 2, 6, 24, and 48 h. Western blot analysis of eMVs demonstrated a time-dependent increase in TJP occludin, PECAM-1 and ICAM-1 following mechanical injury. In addition, activation of ARF6, a small GTPase linked to extracellular vesicle production, was increased after injury. To confirm these results in vivo, mice were subjected to sham surgery or TBI and blood plasma was collected 24 h post-injury. Isolation and analysis of eMVs from blood plasma using cryo-EM and flow cytometry revealed elevated levels of vesicles containing occludin following brain trauma

  6. Involvement of immune-related factors in diclofenac-induced acute liver injury in mice

    International Nuclear Information System (INIS)

    Yano, Azusa; Higuchi, Satonori; Tsuneyama, Koichi; Fukami, Tatsuki; Nakajima, Miki; Yokoi, Tsuyoshi

    2012-01-01

    Drug-induced liver injury (DILI) is a major safety concern in drug development and clinical drug therapy. However, the underlying mechanism of DILI is little known. It is difficult to predict DILI in humans due to the lack of experimental animal models. Diclofenac, a non-steroidal anti-inflammatory drug rarely causes severe liver injury in human, but there is some evidence for immunoallergic idiosyncratic reactions. In this study, the mechanism of diclofenac-induced liver injury in mice was investigated. First, we established the dosing condition for liver injury in normal mice. Plasma ALT and AST levels were significantly increased in diclofenac-administered (80 mg/kg, i.p.) mice in a dose- and time-dependent manner. Among several interleukins (ILs) and chemokines, mRNA expression of helper T (Th) 17 cell-mediated factors, such as retinoid orphan receptor (ROR)-γt, and signal transducers and activators of transcription factor (STAT) 3 in the liver, and the plasma IL-17 level were significantly increased. Neutralization of IL-17 tended to suppress the hepatotoxicity of diclofenac, suggesting that IL-17 was partly involved. Gadolinium chloride (GdCl 3 ) administration demonstrated that Kupffer cells are not likely to be involved in diclofenac hepatotoxicity. Hepatic expressions of IL-1β mRNA and plasma IL-1β were significantly increased soon after the diclofenac administration. Then, the results of an in vivo neutralization study of IL-1β suggested that IL-1β was involved early in the time of pathogenesis of the diclofenac-induced liver injury. In conclusion, we firstly developed a diclofenac-induced acute liver injury model in normal mice, and the involvement of IL-17 and IL-1β was clarified.

  7. Dynamic autoregulation and renal injury in Dahl rats

    DEFF Research Database (Denmark)

    Karlsen, F M; Andersen, C B; Leyssac, P P

    1997-01-01

    of hypertension, a gradual impairment of autoregulatory control of renal blood flow might expose the glomerular circulation to periods of elevated pressure, resulting in renal injuries in Dahl S rats. Dynamic autoregulatory capacity was assessed in Dahl S and Dahl salt-resistant (Dahl R) rats, SHR, and Sprague......-Dawley rats by inducing broad-band fluctuations in the arterial blood pressure and simultaneously measuring renal blood flow. Dynamic autoregulation was estimated by the transfer function using blood pressure as the input and renal blood flow as the output. Renal morphological injuries were evaluated in Dahl......The Dahl salt-sensitive (Dahl S) rat develops hypertension and renal injuries when challenged with a high salt diet and has been considered to be a model of chronic renal failure. Renal injuries appear very early in life compared with the spontaneously hypertensive rat (SHR). During the course...

  8. Novel Toll-like receptor-4 deficiency attenuates trastuzumab (Herceptin induced cardiac injury in mice

    Directory of Open Access Journals (Sweden)

    Yousif Nasser

    2011-10-01

    Full Text Available Abstract Background Cardiac inflammation and generation of oxidative stress are known to contribute to trastuzumab (herceptin induced cardiac toxicity. Toll-like receptors (TLRs are a part of the innate immune system and are involved in cardiac stress reactions. Since TLR4 might play a relevant role in cardiac inflammatory signaling, we investigated whether or not TLR4 is involved in trastuzumab induced cardiotoxicity. Methods Seven days after a single injection of herceptin (2 mg/kg; i.p., left ventricular pressure volume loops were measured in HeN compotent (TLR4+/+ and HeJ mutant (TLR4-/- treated with trastuzumab and control mice. Immunofluorescent staining for monocyte infiltration and analyses of plasma by (ELISAs for different chemokines including: MCP-1and tumor necrosis factor-α (TNF-α, Western immunoblotting assay for ICAM-1, and used troponin I for cardiac injury marker. Results Trastuzumab injection resulted in an impairment of left ventricular function in TLR-4 competent (HeN, in contrast TLR4-/- trastuzumab mice showed improved left ventricular function EF%, CO; p -/-; p -/-, marked reduction of myocardial troponin-I levels in TLR4-deficient mice. Data are presented as means ± SE; n = 8 in each group p Conclusions Treatment with trastuzumab induces an inflammatory response that contributes to myocardial tissue TLR4 mediates chemokine expression (TNF-α, MCP-1and ICAM-1, so in experimental animals TLR4 deficiency improves left ventricular function and attenuates pathophysiological key mechanisms in trastuzumab induced cardiomyopathy.

  9. Calcium channel alpha-2-delta-1 protein upregulation in dorsal spinal cord mediates spinal cord injury-induced neuropathic pain states.

    Science.gov (United States)

    Boroujerdi, Amin; Zeng, Jun; Sharp, Kelli; Kim, Donghyun; Steward, Oswald; Luo, Z David

    2011-03-01

    Spinal cord injury (SCI) commonly results in the development of neuropathic pain, which can dramatically impair the quality of life for SCI patients. SCI-induced neuropathic pain can be manifested as both tactile allodynia (a painful sensation to a non-noxious stimulus) and hyperalgesia (an enhanced sensation to a painful stimulus). The mechanisms underlying these pain states are poorly understood. Clinical studies have shown that gabapentin, a drug that binds to the voltage-gated calcium channel alpha-2-delta-1 subunit (Ca(v)α2δ-1) proteins is effective in the management of SCI-induced neuropathic pain. Accordingly, we hypothesized that tactile allodynia post SCI is mediated by an upregulation of Ca(v)α2δ-1 in dorsal spinal cord. To test this hypothesis, we examined whether SCI-induced dysregulation of spinal Ca(v)α2δ-1 plays a contributory role in below-level allodynia development in a rat spinal T9 contusion injury model. We found that Ca(v)α2δ-1 expression levels were significantly increased in L4-6 dorsal, but not ventral, spinal cord of SCI rats that correlated with tactile allodynia development in the hind paw plantar surface. Furthermore, both intrathecal gabapentin treatment and blocking SCI-induced Ca(v)α2δ-1 protein upregulation by intrathecal Ca(v)α2δ-1 antisense oligodeoxynucleotides could reverse tactile allodynia in SCI rats. These findings support that SCI-induced Ca(v)α2δ-1 upregulation in spinal dorsal horn is a key component in mediating below-level neuropathic pain states, and selectively targeting this pathway may provide effective pain relief for SCI patients. Spinal cord contusion injury caused increased calcium channel Ca(v)α2δ-1 subunit expression in dorsal spinal cord that contributes to neuropathic pain states. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  10. Mild traumatic brain injury results in depressed cerebral glucose uptake: An (18)FDG PET study.

    Science.gov (United States)

    Selwyn, Reed; Hockenbury, Nicole; Jaiswal, Shalini; Mathur, Sanjeev; Armstrong, Regina C; Byrnes, Kimberly R

    2013-12-01

    Moderate to severe traumatic brain injury (TBI) in humans and rats induces measurable metabolic changes, including a sustained depression in cerebral glucose uptake. However, the effect of a mild TBI on brain glucose uptake is unclear, particularly in rodent models. This study aimed to determine the glucose uptake pattern in the brain after a mild lateral fluid percussion (LFP) TBI. Briefly, adult male rats were subjected to a mild LFP and positron emission tomography (PET) imaging with (18)F-fluorodeoxyglucose ((18)FDG), which was performed prior to injury and at 3 and 24 h and 5, 9, and 16 days post-injury. Locomotor function was assessed prior to injury and at 1, 3, 7, 14, and 21 days after injury using modified beam walk tasks to confirm injury severity. Histology was performed at either 10 or 21 days post-injury. Analysis of function revealed a transient impairment in locomotor ability, which corresponds to a mild TBI. Using reference region normalization, PET imaging revealed that mild LFP-induced TBI depresses glucose uptake in both the ipsilateral and contralateral hemispheres in comparison with sham-injured and naïve controls from 3 h to 5 days post-injury. Further, areas of depressed glucose uptake were associated with regions of glial activation and axonal damage, but no measurable change in neuronal loss or gross tissue damage was observed. In conclusion, we show that mild TBI, which is characterized by transient impairments in function, axonal damage, and glial activation, results in an observable depression in overall brain glucose uptake using (18)FDG-PET.

  11. Increasing Optimism Protects Against Pain-Induced Impairment in Task-Shifting Performance.

    Science.gov (United States)

    Boselie, Jantine J L M; Vancleef, Linda M G; Peters, Madelon L

    2017-04-01

    Persistent pain can lead to difficulties in executive task performance. Three core executive functions that are often postulated are inhibition, updating, and shifting. Optimism, the tendency to expect that good things happen in the future, has been shown to protect against pain-induced performance deterioration in executive function updating. This study tested whether this protective effect of a temporary optimistic state by means of a writing and visualization exercise extended to executive function shifting. A 2 (optimism: optimism vs no optimism) × 2 (pain: pain vs no pain) mixed factorial design was conducted. Participants (N = 61) completed a shifting task once with and once without concurrent painful heat stimulation after an optimism or neutral manipulation. Results showed that shifting performance was impaired when experimental heat pain was applied during task execution, and that optimism counteracted pain-induced deterioration in task-shifting performance. Experimentally-induced heat pain impairs shifting task performance and manipulated optimism or induced optimism counteracted this pain-induced performance deterioration. Identifying psychological factors that may diminish the negative effect of persistent pain on the ability to function in daily life is imperative. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  12. Whole brain radiation-induced impairments in learning and memory are time-sensitive and reversible by systemic hypoxia.

    Directory of Open Access Journals (Sweden)

    Junie P Warrington

    Full Text Available Whole brain radiation therapy (WBRT is commonly used for treatment of primary and metastatic brain tumors; however, cognitive impairment occurs in 40-50% of brain tumor survivors. The etiology of the cognitive impairment following WBRT remains elusive. We recently reported that radiation-induced cerebrovascular rarefaction within hippocampal subregions could be completely reversed by systemic hypoxia. However, the effects of this intervention on learning and memory have not been reported. In this study, we assessed the time-course for WBRT-induced impairments in contextual and spatial learning and the capacity of systemic hypoxia to reverse WBRT-induced deficits in spatial memory. A clinical fractionated series of 4.5Gy WBRT was administered to mice twice weekly for 4 weeks, and after various periods of recovery, behavioral analyses were performed. To study the effects of systemic hypoxia, mice were subjected to 11% (hypoxia or 21% oxygen (normoxia for 28 days, initiated 1 month after the completion of WBRT. Our results indicate that WBRT induces a transient deficit in contextual learning, disruption of working memory, and progressive impairment of spatial learning. Additionally, systemic hypoxia completely reversed WBRT-induced impairments in learning and these behavioral effects as well as increased vessel density persisted for at least 2 months following hypoxia treatment. Our results provide critical support for the hypothesis that cerebrovascular rarefaction is a key component of cognitive impairment post-WBRT and indicate that processes of learning and memory, once thought to be permanently impaired after WBRT, can be restored.

  13. Herbicide injury induces DNA methylome alterations in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Gunjune Kim

    2017-07-01

    Full Text Available The emergence of herbicide-resistant weeds is a major threat facing modern agriculture. Over 470 weedy-plant populations have developed resistance to herbicides. Traditional evolutionary mechanisms are not always sufficient to explain the rapidity with which certain weed populations adapt in response to herbicide exposure. Stress-induced epigenetic changes, such as alterations in DNA methylation, are potential additional adaptive mechanisms for herbicide resistance. We performed methylC sequencing of Arabidopsis thaliana leaves that developed after either mock treatment or two different sub-lethal doses of the herbicide glyphosate, the most-used herbicide in the history of agriculture. The herbicide injury resulted in 9,205 differentially methylated regions (DMRs across the genome. In total, 5,914 of these DMRs were induced in a dose-dependent manner, wherein the methylation levels were positively correlated to the severity of the herbicide injury, suggesting that plants can modulate the magnitude of methylation changes based on the severity of the stress. Of the 3,680 genes associated with glyphosate-induced DMRs, only 7% were also implicated in methylation changes following biotic or salinity stress. These results demonstrate that plants respond to herbicide stress through changes in methylation patterns that are, in general, dose-sensitive and, at least partially, stress-specific.

  14. Selective inhibition of iNOS attenuates trauma-hemorrhage/resuscitation-induced hepatic injury.

    Science.gov (United States)

    Kan, Wen-Hong; Hsu, Jun-Te; Schwacha, Martin G; Choudhry, Mashkoor A; Raju, Raghavan; Bland, Kirby I; Chaudry, Irshad H

    2008-10-01

    Although trauma-hemorrhage produces tissue hypoxia, systemic inflammatory response and organ dysfunction, the mechanisms responsible for these alterations are not clear. Using a potent selective inducible nitric oxide (NO) synthase inhibitor, N-[3-(aminomethyl) benzyl]acetamidine (1400W), and a nonselective NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), we investigated whether inducible NO synthase plays any role in producing hepatic injury, inflammation, and changes of protein expression following trauma-hemorrhage. To investigate this, male Sprague-Dawley rats were subjected to midline laparotomy and hemorrhagic shock (mean blood pressure 35-40 mmHg for approximately 90 min) followed by fluid resuscitation. Animals were treated with either vehicle (DMSO) or 1400W (10 mg/kg body wt ip), or L-NAME (30 mg/kg iv), 30 min before resuscitation and killed 2 h after resuscitation. Trauma-hemorrhage/resuscitation induced a marked hypotension and increase in markers of hepatic injury (i.e., plasma alpha-glutathione S-transferase, tissue myeloperoxidase activity, and nitrotyrosine formation). Hepatic expression of iNOS, hypoxia-inducible factor-1alpha, ICAM-1, IL-6, TNF-alpha, and neutrophil chemoattractant (cytokine-induced neutrophil chemoattractant-1 and macrophage inflammatory protein-2) protein levels were also markedly increased following trauma-hemorrhage/resuscitation. Administration of the iNOS inhibitor 1400W significantly attenuated hypotension and expression of these mediators of hepatic injury induced by trauma-hemorrhage/resuscitation. However, administration of L-NAME could not attenuate hepatic dysfunction and tissue injury mediated by trauma-hemorrhage, although it improved mean blood pressure as did 1400W. These results indicate that increased expression of iNOS following trauma-hemorrhage plays an important role in the induction of hepatic damage under such conditions.

  15. Dosage-dependent role of Rac1 in podocyte injury

    Science.gov (United States)

    Wan, Xiaoyang; Lee, Mi-Sun

    2016-01-01

    Activation of small GTPase Rac1 in podocytes is associated with rodent models of kidney injury and familial nephrotic syndrome. Induced Rac1 activation in podocytes in transgenic mice results in rapid transient proteinuria and foot process effacement, but not glomerular sclerosis. Thus it remains an open question whether abnormal activation of Rac1 in podocytes is sufficient to cause permanent podocyte damage. Using a number of transgenic zebrafish models, we showed that moderate elevation of Rac1 activity in podocytes did not impair the glomerular filtration barrier but aggravated metronidazole-induced podocyte injury, while inhibition of Rac1 activity ameliorated metronidazole-induced podocyte injury. Furthermore, a further increase in Rac1 activity in podocytes was sufficient to cause proteinuria and foot process effacement, which resulted in edema and lethality in juvenile zebrafish. We also found that activation of Rac1 in podocytes significantly downregulated the expression of nephrin and podocin, suggesting an adverse effect of Rac1 on slit diaphragm protein expression. Taken together, our data have demonstrated a causal link between excessive Rac1 activity and podocyte injury in a dosage-dependent manner, and transgenic zebrafish of variable Rac1 activities in podocytes may serve as useful animal models for the study of Rac1-related podocytopathy. PMID:26792065

  16. Low-voltage electricity-induced lung injury.

    Science.gov (United States)

    Truong, Thai; Le, Thuong Vu; Smith, David L; Kantrow, Stephen P; Tran, Van Ngoc

    2018-02-01

    We report a case of bilateral pulmonary infiltrates and haemoptysis following low-voltage electricity exposure in an agricultural worker. A 58-year-old man standing in water reached for an electric watering machine and sustained an exposure to 220 V circuit for an uncertain duration. The electricity was turned off by another worker, and the patient was asymptomatic for the next 10 h until he developed haemoptysis. A chest radiograph demonstrated bilateral infiltrates, and chest computed tomography (CT) revealed ground-glass opacities with interstitial thickening. Evaluations, including electrocardiogram, serum troponin, N-terminal pro-B-type natriuretic peptide (NT-pro BNP), coagulation studies, and echocardiogram, found no abnormality. The patient was treated for suspected electricity-induced lung injury and bleeding with tranexamic acid and for rhabdomyolysis with volume resuscitation. He recovered with complete resolution of chest radiograph abnormalities by Day 7. This is the first reported case of bilateral lung oedema and/or injury after electricity exposure without cardiac arrest.

  17. Subfailure overstretch injury leads to reversible functional impairment and purinergic P2X7 receptor activation in intact vascular tissue

    Directory of Open Access Journals (Sweden)

    Weifeng Luo

    2016-09-01

    Full Text Available Vascular stretch injury is associated with blunt trauma, vascular surgical procedures, and harvest of human saphenous vein for use in vascular bypass grafting. A model of subfailure overstretch in rat abdominal aorta was developed to characterize surgical vascular stretch injury. Longitudinal stretch of rat aorta was characterized ex vivo. Stretch to the haptic endpoint where the tissues would no longer lengthen, occurred at twice the resting length. The stress produced at this length was greater than physiologic mechanical forces but well below the level of mechanical disruption. Functional responses were determined in a muscle bath and this subfailure overstretch injury led to impaired smooth muscle function that was partially reversed by treatment with purinergic receptor (P2X7R antagonists. These data suggest that vasomotor dysfunction caused by subfailure overstretch injury may be due to activation of P2X7R. These studies have implications for our understanding of mechanical stretch injury of blood vessels and offer novel therapeutic opportunities.

  18. Nitric oxide protects carbon assimilation process of watermelon from boron-induced oxidative injury.

    Science.gov (United States)

    Farag, Mohamed; Najeeb, Ullah; Yang, Jinghua; Hu, Zhongyuan; Fang, Zhang Ming

    2017-02-01

    Nitric oxide (NO) mediates plant response to a variety of abiotic stresses; however, limited information is available on its effect on boron (B)-stressed watermelon plants. The present study investigates the mechanism through which NO protects watermelon seedlings from B deficiency and toxicity stresses. Five days old watermelon seedlings were exposed to B (0, 0.5 and 10 mg L -1 ) alone or with 75 μmole of NO donor sodium nitroprusside (SNP) for 30 days. Both low and high B concentrations in the media altered nutrient accumulation and impaired various physiological processes of watermelon seedlings, leading to a significant reduction in biomass production. The plants exposed to B deficient or toxic concentrations had 66 and 69% lower shoot dry weight, respectively compared with optimum B levels. B toxicity-induced growth inhibition of watermelon seedlings was associated with high B translocation to shoot tissues, which caused lipid membrane peroxidation (12% increase) and chlorophyll destruction (25% reduction). In contrast, B deficiency accelerated generation of reactive oxygen species (ROS), specifically OH -1 and induced cellular oxidative injury. Exogenously applied SNP promoted leaf chlorophyll, photosynthesis and consequently biomass production in B-stressed watermelon seedlings by reducing B accumulation, lipid membrane peroxidation and ROS generation. It also activated antioxidant enzymes such as SOD, POD and APX, and protected the seedlings from ROS-induced cellular burst. Copyright © 2016. Published by Elsevier Masson SAS.

  19. Long-term mortality risk in individuals with permanent work-related impairment.

    Science.gov (United States)

    Scott-Marshall, Heather K; Tompa, Emile; Wang, Ying; Liao, Qing

    2014-07-11

    Recent estimates indicate that at least one in five activity-limiting injuries occurs at work. Of individuals who suffer these injuries approximately 10% experience some degree of functional impairment. We were interested in investigating long-term mortality risk in individuals with permanent impairment from work injury and to examine whether work disability is a significant explanatory factor. We used a retrospective matched cohort methodology to examine differences in mortality rates between individuals with permanent impairment from a work injury and a group of non-injured controls over a 19-year period. We used a sample of impaired workers to investigate the impact of work disability on mortality risk using percentage of earnings recovery after injury as the key proxy measure. All analyses were stratified by sex. Permanent impairment from a work injury was predictive of premature mortality in both male and female claimants, though the risk was slightly higher among women. Work disability was a key explanatory factor in the rate of death among impaired workers, the effects being more pronounced in men. We also found that higher impairment level was associated with mortality in men but not in women. The study demonstrates the impact of permanent work-related impairment on longevity and identifies work disability as an important determinant of mortality risk. Given the disconnect between impairment ratings derived from standard diagnostic tools and labour-market activity after accident, more research is needed on the specific factors that contribute to work disability, particularly those related to psycho-social health and well-being.

  20. Administration of Protocatechuic Acid Reduces Traumatic Brain Injury-Induced Neuronal Death

    Directory of Open Access Journals (Sweden)

    Sang Hwon Lee

    2017-11-01

    Full Text Available Protocatechuic acid (PCA was first purified from green tea and has shown numerous biological activities, including anti-apoptotic, anti-inflammatory, and anti-atherosclerotic effects. The effect of PCA on traumatic brain injury (TBI-induced neuronal death has not previously been evaluated. TBI is defined as damage to the brain resulting from external mechanical force, such as rapid acceleration or deceleration, impact, blast waves, or penetration by a projectile. TBI causes neuronal death in the hippocampus and cerebral cortex. The present study aimed to evaluate the therapeutic potential of PCA on TBI-induced neuronal death. Here, TBI was induced by a controlled cortical impact model using rats. PCA (30 mg/kg was injected into the intraperitoneal (ip space immediately after TBI. Neuronal death was evaluated with Fluoro Jade-B (FJB staining at 24 h after TBI. Oxidative injury was detected by 4-hydroxy-2-nonenal (4HNE, glutathione (GSH concentration was analyzed by glutathione adduct with N-ethylmaleimide (GS-NEM staining at 24 h after TBI, and microglial activation in the hippocampus was detected by CD11b immunohistochemistry at one week after TBI. We found that the proportion of degenerating neurons, oxidative injury, GSH depletion, and microglia activation in the hippocampus and cortex were all reduced by PCA treatment following TBI. Therefore, our study suggests that PCA may have therapeutic potential in preventing TBI-induced neuronal death.

  1. Agmatine Modulates the Phenotype of Macrophage Acute Phase after Spinal Cord Injury in Rats.

    Science.gov (United States)

    Kim, Jae Hwan; Kim, Jae Young; Mun, Chin Hee; Suh, Minah; Lee, Jong Eun

    2017-10-01

    Agmatine is a decarboxylated arginine by arginine decarboxylase. Agmatine is known to be a neuroprotective agent. It has been reported that agmatine works as a NMDA receptor blocker or a competitive nitric oxide synthase inhibitor in CNS injuries. In spinal cord injury, agmatine showed reduction of neuropathic pain, improvement of locomotor function, and neuroprotection. Macrophage is a key cellular component in neuroinflammation, a major cause of impairment after spinal cord injury. Macrophage has subtypes, M1 and M2 macrophages. M1 macrophage induces a pro-inflammatory response, but M2 inspires an anti-inflammatory response. In this study, it was clarified whether the neuroprotective effect of agmatine is related with the modulation of macrophage subdivision after spinal cord injury. Spinal cord injury was induced in rats with contusion using MASCIS. Animals received agmatine (100 mg/kg, IP) daily for 6 days beginning the day after spinal cord injury. The proportion of M1 and M2 macrophages are confirmed with immunohistochemistry and FACS. CD206 + & ED1 + cells were counted as M2 macrophages. The systemic treatment of agmatine increased M2 macrophages caudal side to epicenter 1 week after spinal cord injury in immunohistochemistry. M2 macrophage related markers, Arginase-1 and CD206 mRNA, were increased in the agmatine treatment group and M2 macrophage expressing and stimulated cytokine, IL-10 mRNA, also was significantly overexpressed by agmatine injection. Among BMPs, BMP2/4/7, agmatine significantly increased only the expression of BMP2 known to reduce M1 macrophage under inflammatory status. These results suggest that agmatine reduces impairment after spinal cord injury through modulating the macrophage phenotype.

  2. Nrf2 activation prevents cadmium-induced acute liver injury

    International Nuclear Information System (INIS)

    Wu, Kai C.; Liu, Jie J.; Klaassen, Curtis D.

    2012-01-01

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-null mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H 2 DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1-HKO mice were

  3. Nrf2 activation prevents cadmium-induced acute liver injury

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kai C. [Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Liu, Jie J. [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Klaassen, Curtis D., E-mail: cklaasse@kumc.edu [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States)

    2012-08-15

    Oxidative stress plays an important role in cadmium-induced liver injury. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that up-regulates cytoprotective genes in response to oxidative stress. To investigate the role of Nrf2 in cadmium-induced hepatotoxicity, Nrf2-null mice, wild-type mice, kelch-like ECH-associated protein 1-knockdown (Keap1-KD) mice with enhanced Nrf2, and Keap1-hepatocyte knockout (Keap1-HKO) mice with maximum Nrf2 activation were treated with cadmium chloride (3.5 mg Cd/kg, i.p.). Blood and liver samples were collected 8 h thereafter. Cadmium increased serum alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities, and caused extensive hepatic hemorrhage and necrosis in the Nrf2-null mice. In contrast, Nrf2-enhanced mice had lower serum ALT and LDH activities and less morphological alternations in the livers than wild-type mice. H{sub 2}DCFDA (2′,7′-dichlorodihydrofluoresein diacetate) staining of primary hepatocytes isolated from the four genotypes of mice indicated that oxidative stress was higher in Nrf2-null cells, and lower in Nrf2-enhanced cells than in wild-type cells. To further investigate the mechanism of the protective effect of Nrf2, mRNA of metallothionein (MT) and other cytoprotective genes were determined. Cadmium markedly induced MT-1 and MT-2 in livers of all four genotypes of mice. In contrast, genes involved in glutathione synthesis and reducing reactive oxygen species, including glutamate-cysteine ligase (Gclc), glutathione peroxidase-2 (Gpx2), and sulfiredoxin-1 (Srxn-1) were only induced in Nrf2-enhanced mice, but not in Nrf2-null mice. In conclusion, the present study shows that Nrf2 activation prevents cadmium-induced oxidative stress and liver injury through induction of genes involved in antioxidant defense rather than genes that scavenge Cd. -- Highlights: ► Cadmium caused extensive hepatic hemorrhage and necrosis in Nrf2-null mice. ► Keap1-KD and Keap1-HKO mice

  4. Cardiac dysfunction in pneumovirus-induced lung injury in mice

    NARCIS (Netherlands)

    Bem, Reinout A.; van den Berg, Elske; Suidgeest, Ernst; van der Weerd, Louise; van Woensel, Job B. M.; Grotenhuis, Heynric B.

    2013-01-01

    To determine biventricular cardiac function in pneumovirus-induced acute lung injury in spontaneously breathing mice. Experimental animal study. Animal laboratory. C57Bl/6 mice. Mice were inoculated with the rodent pneumovirus, pneumonia virus of mice. Pneumonia virus of mice-infected mice were

  5. Brain Injury-Induced Synaptic Reorganization in Hilar Inhibitory Neurons Is Differentially Suppressed by Rapamycin.

    Science.gov (United States)

    Butler, Corwin R; Boychuk, Jeffery A; Smith, Bret N

    2017-01-01

    Following traumatic brain injury (TBI), treatment with rapamycin suppresses mammalian (mechanistic) target of rapamycin (mTOR) activity and specific components of hippocampal synaptic reorganization associated with altered cortical excitability and seizure susceptibility. Reemergence of seizures after cessation of rapamycin treatment suggests, however, an incomplete suppression of epileptogenesis. Hilar inhibitory interneurons regulate dentate granule cell (DGC) activity, and de novo synaptic input from both DGCs and CA3 pyramidal cells after TBI increases their excitability but effects of rapamycin treatment on the injury-induced plasticity of interneurons is only partially described. Using transgenic mice in which enhanced green fluorescent protein (eGFP) is expressed in the somatostatinergic subset of hilar inhibitory interneurons, we tested the effect of daily systemic rapamycin treatment (3 mg/kg) on the excitability of hilar inhibitory interneurons after controlled cortical impact (CCI)-induced focal brain injury. Rapamycin treatment reduced, but did not normalize, the injury-induced increase in excitability of surviving eGFP+ hilar interneurons. The injury-induced increase in response to selective glutamate photostimulation of DGCs was reduced to normal levels after mTOR inhibition, but the postinjury increase in synaptic excitation arising from CA3 pyramidal cell activity was unaffected by rapamycin treatment. The incomplete suppression of synaptic reorganization in inhibitory circuits after brain injury could contribute to hippocampal hyperexcitability and the eventual reemergence of the epileptogenic process upon cessation of mTOR inhibition. Further, the cell-selective effect of mTOR inhibition on synaptic reorganization after CCI suggests possible mechanisms by which rapamycin treatment modifies epileptogenesis in some models but not others.

  6. Involvement of immune-related factors in diclofenac-induced acute liver injury in mice.

    Science.gov (United States)

    Yano, Azusa; Higuchi, Satonori; Tsuneyama, Koichi; Fukami, Tatsuki; Nakajima, Miki; Yokoi, Tsuyoshi

    2012-03-11

    Drug-induced liver injury (DILI) is a major safety concern in drug development and clinical drug therapy. However, the underlying mechanism of DILI is little known. It is difficult to predict DILI in humans due to the lack of experimental animal models. Diclofenac, a non-steroidal anti-inflammatory drug rarely causes severe liver injury in human, but there is some evidence for immunoallergic idiosyncratic reactions. In this study, the mechanism of diclofenac-induced liver injury in mice was investigated. First, we established the dosing condition for liver injury in normal mice. Plasma ALT and AST levels were significantly increased in diclofenac-administered (80 mg/kg, i.p.) mice in a dose- and time-dependent manner. Among several interleukins (ILs) and chemokines, mRNA expression of helper T (Th) 17 cell-mediated factors, such as retinoid orphan receptor (ROR)-γt, and signal transducers and activators of transcription factor (STAT) 3 in the liver, and the plasma IL-17 level were significantly increased. Neutralization of IL-17 tended to suppress the hepatotoxicity of diclofenac, suggesting that IL-17 was partly involved. Gadolinium chloride (GdCl₃) administration demonstrated that Kupffer cells are not likely to be involved in diclofenac hepatotoxicity. Hepatic expressions of IL-1β mRNA and plasma IL-1β were significantly increased soon after the diclofenac administration. Then, the results of an in vivo neutralization study of IL-1β suggested that IL-1β was involved early in the time of pathogenesis of the diclofenac-induced liver injury. In conclusion, we firstly developed a diclofenac-induced acute liver injury model in normal mice, and the involvement of IL-17 and IL-1β was clarified. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Moringa oleifera Seed Extract Alleviates Scopolamine-Induced Learning and Memory Impairment in Mice

    Directory of Open Access Journals (Sweden)

    Juan Zhou

    2018-04-01

    Full Text Available The extract of Moringa oleifera seeds has been shown to possess various pharmacological properties. In the present study, we assessed the neuropharmacological effects of 70% ethanolic M. oleifera seed extract (MSE on cognitive impairment caused by scopolamine injection in mice using the passive avoidance and Morris water maze (MWM tests. MSE (250 or 500 mg/kg was administered to mice by oral gavage for 7 or 14 days, and cognitive impairment was induced by intraperitoneal injection of scopolamine (4 mg/kg for 1 or 6 days. Mice that received scopolamine alone showed impaired learning and memory retention and considerably decreased cholinergic system reactivity and neurogenesis in the hippocampus. MSE pretreatment significantly ameliorated scopolamine-induced cognitive impairment and enhanced cholinergic system reactivity and neurogenesis in the hippocampus. Additionally, the protein expressions of phosphorylated Akt, ERK1/2, and CREB in the hippocampus were significantly decreased by scopolamine, but these decreases were reversed by MSE treatment. These results suggest that MSE-induced ameliorative cognitive effects are mediated by enhancement of the cholinergic neurotransmission system and neurogenesis via activation of the Akt, ERK1/2, and CREB signaling pathways. These findings suggest that MSE could be a potent neuropharmacological drug against amnesia, and its mechanism might be modulation of cholinergic activity via the Akt, ERK1/2, and CREB signaling pathways.

  8. Relationship between trauma-induced coagulopathy and progressive hemorrhagic injury in patients with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Jia Liu; Heng-Li Tian

    2016-01-01

    Progressive hemorrhagic injury (PHI) can be divided into coagulopathy-related PHI and normal coagulation PHI.Coagulation disorders after traumatic brain injuries can be included in trauma-induced coagulopathy (TIC).Some studies showed that TIC is associated with PHI and increases the rates of disability and mortality.In this review,we discussed some mechanisms in TIC,which is of great importance in the development of PHI,including tissue factor (TF) hypothesis,protein C pathway and thrombocytopenia.The main mechanism in the relation of TIC to PHI is hypocoagulability.We also reviewed some coagulopathy parameters and proposed some possible risk factors,predictors and therapies.

  9. MicroRNA-mediated Th2 bias in methimazole-induced acute liver injury in mice

    International Nuclear Information System (INIS)

    Uematsu, Yasuaki; Akai, Sho; Tochitani, Tomoaki; Oda, Shingo; Yamada, Toru; Yokoi, Tsuyoshi

    2016-01-01

    MicroRNA (miRNA) is a class of small non-coding RNAs containing approximately 20 nucleotides that negatively regulate target gene expression. Little is known about the role of individual miRNAs and their targets in immune- and inflammation-related responses in drug-induced liver injury. In the present study, involvement of miRNAs in the T helper (Th) 2-type immune response was investigated using a methimazole (MTZ)-induced liver injury mouse model. Co-administration of L-buthionine-S,R-sulfoximine and MTZ induced acute hepatocellular necrosis and elevated plasma levels of alanine aminotransferase (ALT) from 4 h onward in female Balb/c mice. The hepatic mRNA expression of Th2 promotive factors was significantly increased concomitantly with plasma ALT levels. In contrast, the hepatic mRNA expression of Th2 suppressive factors was significantly decreased during the early phase of liver injury. Comprehensive profiling of hepatic miRNA expression was analyzed before the onset of MTZ-induced liver injury. Using in silico prediction of miRNAs that possibly regulate Th2-related genes and subsequent quantification, we identified up-regulation of expression of miR-29b-1-5p and miR-449a-5p. Among targets of these miRNAs, down-regulation of Th2 suppressive transcription factors, such as SRY-related HMG-box 4 (SOX4) and lymphoid enhancer factor-1 (LEF1), were observed from the early phase of liver injury. In conclusion, negative regulation of the expression of SOX4 by miR-29b-1-5p and that of LEF1 by miR-449a-5p is suggested to play an important role in the development of Th2 bias in MTZ-induced liver injury. - Highlights: • Methimazole induced hepatic Th2 bias in the pathogenesis of liver injury in mice. • Rapid down-regulation of SOX4 and LEF1 may initiate and/or maintain hepatic Th2 bias. • Negative regulation of SOX4 by miR-29b-1-5p and LEF1 by miR-449a-5p was suggested.

  10. MicroRNA-mediated Th2 bias in methimazole-induced acute liver injury in mice

    Energy Technology Data Exchange (ETDEWEB)

    Uematsu, Yasuaki, E-mail: yasuaki-uematsu@ds-pharma.co.jp [Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., 1-98 Kasugade-naka, 3-chome, Konohana-ku, Osaka (Japan); Akai, Sho [Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Tochitani, Tomoaki [Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., 1-98 Kasugade-naka, 3-chome, Konohana-ku, Osaka (Japan); Oda, Shingo [Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan); Yamada, Toru [Preclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., 1-98 Kasugade-naka, 3-chome, Konohana-ku, Osaka (Japan); Yokoi, Tsuyoshi [Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550 (Japan)

    2016-09-15

    MicroRNA (miRNA) is a class of small non-coding RNAs containing approximately 20 nucleotides that negatively regulate target gene expression. Little is known about the role of individual miRNAs and their targets in immune- and inflammation-related responses in drug-induced liver injury. In the present study, involvement of miRNAs in the T helper (Th) 2-type immune response was investigated using a methimazole (MTZ)-induced liver injury mouse model. Co-administration of L-buthionine-S,R-sulfoximine and MTZ induced acute hepatocellular necrosis and elevated plasma levels of alanine aminotransferase (ALT) from 4 h onward in female Balb/c mice. The hepatic mRNA expression of Th2 promotive factors was significantly increased concomitantly with plasma ALT levels. In contrast, the hepatic mRNA expression of Th2 suppressive factors was significantly decreased during the early phase of liver injury. Comprehensive profiling of hepatic miRNA expression was analyzed before the onset of MTZ-induced liver injury. Using in silico prediction of miRNAs that possibly regulate Th2-related genes and subsequent quantification, we identified up-regulation of expression of miR-29b-1-5p and miR-449a-5p. Among targets of these miRNAs, down-regulation of Th2 suppressive transcription factors, such as SRY-related HMG-box 4 (SOX4) and lymphoid enhancer factor-1 (LEF1), were observed from the early phase of liver injury. In conclusion, negative regulation of the expression of SOX4 by miR-29b-1-5p and that of LEF1 by miR-449a-5p is suggested to play an important role in the development of Th2 bias in MTZ-induced liver injury. - Highlights: • Methimazole induced hepatic Th2 bias in the pathogenesis of liver injury in mice. • Rapid down-regulation of SOX4 and LEF1 may initiate and/or maintain hepatic Th2 bias. • Negative regulation of SOX4 by miR-29b-1-5p and LEF1 by miR-449a-5p was suggested.

  11. Neuroprotective effect of gadolinium: a stretch-activated calcium channel blocker in mouse model of ischemia-reperfusion injury.

    Science.gov (United States)

    Gulati, Puja; Muthuraman, Arunachalam; Jaggi, Amteshwar S; Singh, Nirmal

    2013-03-01

    The present study was designed to investigate the potential of gadolinium, a stretch-activated calcium channel blocker in ischemic reperfusion (I/R)-induced brain injury in mice. Bilateral carotid artery occlusion of 12 min followed by reperfusion for 24 h was given to induce cerebral injury in male Swiss mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Memory was assessed using Morris water maze test and motor incoordination was evaluated using rota-rod, lateral push, and inclined beam walking tests. In addition, total calcium, thiobarbituric acid reactive substance (TBARS), reduced glutathione (GSH), and acetylcholinesterase (AChE) activity were also estimated in brain tissue. I/R injury produced a significant increase in cerebral infarct size. A significant loss of memory along with impairment of motor performance was also noted. Furthermore, I/R injury also produced a significant increase in levels of TBARS, total calcium, AChE activity, and a decrease in GSH levels. Pretreatment of gadolinium significantly attenuated I/R-induced infarct size, behavioral and biochemical changes. On the basis of the present findings, we can suggest that opening of stretch-activated calcium channel may play a critical role in ischemic reperfusion-induced brain injury and that gadolinium has neuroprotective potential in I/R-induced injury.

  12. Nuclear receptor CAR (NR1I3) is essential for DDC-induced liver injury and oval cell proliferation in mouse liver.

    Science.gov (United States)

    Yamazaki, Yuichi; Moore, Rick; Negishi, Masahiko

    2011-11-01

    The liver is endowed with the ability to regenerate hepatocytes in response to injury. When this regeneration ability is impaired during liver injury, oval cells, which are considered to be postnatal hepatic progenitors, proliferate and differentiate into hepatocytes. Here we have demonstrated that 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) activates the nuclear receptor constitutive active/androstane receptor (CAR), resulting in proliferation of oval cells in mouse liver. Activation of CAR by DDC was shown by hepatic nuclear CAR accumulation and cytochrome P450 (CYP)2B10 mRNA induction after feeding a 0.1% DDC-containing diet to Car(+/+) mice. After being fed the DDC diet, Car(+/+), but not Car(-/-) mice, developed severe liver injury and an A6 antibody-stained ductular reaction in an area around the portal tract. Oval cell proliferation was confirmed by laser capture microdissection and real-time PCR; mRNAs for the two oval cell markers epithelial cell adhesion molecule and TROP2 were specifically induced in the periportal region of DDC diet-fed Car(+/+), but not Car(-/-) mice. Although rates of both hepatocyte growth and death were initially enhanced only in DDC diet-fed Car(+/+) mice, growth was attenuated when oval cells proliferated, whereas death continued unabated. DDC-induced liver injury, which differs from other CAR activators such as phenobarbital, occurred in the periportal region where cells developed hypertrophy, accumulated porphyrin crystals and inflammation developed, all in association with the proliferation of oval cells. Thus, CAR provides an excellent experimental model for further investigations into its roles in liver regeneration, as well as the development of diseases such as hepatocellular carcinoma.

  13. Diffuse traumatic axonal injury in mice induces complex behavioural alterations that are normalized by neutralization of interleukin-1β.

    Science.gov (United States)

    Ekmark-Lewén, Sara; Flygt, Johanna; Fridgeirsdottir, Gudrun A; Kiwanuka, Olivia; Hånell, Anders; Meyerson, Bengt J; Mir, Anis K; Gram, Hermann; Lewén, Anders; Clausen, Fredrik; Hillered, Lars; Marklund, Niklas

    2016-04-01

    Widespread traumatic axonal injury (TAI) results in brain network dysfunction, which commonly leads to persisting cognitive and behavioural impairments following traumatic brain injury (TBI). TBI induces a complex neuroinflammatory response, frequently located at sites of axonal pathology. The role of the pro-inflammatory cytokine interleukin (IL)-1β has not been established in TAI. An IL-1β-neutralizing or a control antibody was administered intraperitoneally at 30 min following central fluid percussion injury (cFPI), a mouse model of widespread TAI. Mice subjected to moderate cFPI (n = 41) were compared with sham-injured controls (n = 20) and untreated, naive mice (n = 9). The anti-IL-1β antibody reached the target brain regions in adequate therapeutic concentrations (up to ~30 μg/brain tissue) at 24 h post-injury in both cFPI (n = 5) and sham-injured (n = 3) mice, with lower concentrations at 72 h post-injury (up to ~18 μg/g brain tissue in three cFPI mice). Functional outcome was analysed with the multivariate concentric square field (MCSF) test at 2 and 9 days post-injury, and the Morris water maze (MWM) at 14-21 days post-injury. Following TAI, the IL-1β-neutralizing antibody resulted in an improved behavioural outcome, including normalized behavioural profiles in the MCSF test. The performance in the MWM probe (memory) trial was improved, although not in the learning trials. The IL-1β-neutralizing treatment did not influence cerebral ventricle size or the number of microglia/macrophages. These findings support the hypothesis that IL-1β is an important contributor to the processes causing complex cognitive and behavioural disturbances following TAI. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Mixed organic solvents induce renal injury in rats.

    Science.gov (United States)

    Qin, Weisong; Xu, Zhongxiu; Lu, Yizhou; Zeng, Caihong; Zheng, Chunxia; Wang, Shengyu; Liu, Zhihong

    2012-01-01

    To investigate the injury effects of organic solvents on kidney, an animal model of Sprague-Dawley (SD) rats treated with mixed organic solvents via inhalation was generated and characterized. The mixed organic solvents consisted of gasoline, dimethylbenzene and formaldehyde (GDF) in the ratio of 2:2:1, and were used at 12,000 PPM to treat the rats twice a day, each for 3 hours. Proteinuria appeared in the rats after exposure for 5-6 weeks. The incidences of proteinuria in male and female rats after exposure for 12 weeks were 43.8% (7/16) and 25% (4/16), respectively. Urinary N-Acetyl-β-(D)-Glucosaminidase (NAG) activity was increased significantly after exposure for 4 weeks. Histological examination revealed remarkable injuries in the proximal renal tubules, including tubular epithelial cell detachment, cloud swelling and vacuole formation in the proximal tubular cells, as well as proliferation of parietal epithelium and tubular reflux in glomeruli. Ultrastructural examination found that brush border and cytoplasm of tubular epithelial cell were dropped, that tubular epithelial cells were partially disintegrated, and that the mitochondria of tubular epithelial cells were degenerated and lost. In addition to tubular lesions, glomerular damages were also observed, including segmental foot process fusion and loss of foot process covering on glomerular basement membrane (GBM). Immunofluorescence staining indicated that the expression of nephrin and podocin were both decreased after exposure of GDF. In contrast, increased expression of desmin, a marker of podocyte injury, was found in some areas of a glomerulus. TUNEL staining showed that GDF induced apoptosis in tubular cells and glomerular cells. These studies demonstrate that GDF can induce both severe proximal tubular damage and podocyte injury in rats, and the tubular lesions appear earlier than that of glomeruli.

  15. Mixed organic solvents induce renal injury in rats.

    Directory of Open Access Journals (Sweden)

    Weisong Qin

    Full Text Available To investigate the injury effects of organic solvents on kidney, an animal model of Sprague-Dawley (SD rats treated with mixed organic solvents via inhalation was generated and characterized. The mixed organic solvents consisted of gasoline, dimethylbenzene and formaldehyde (GDF in the ratio of 2:2:1, and were used at 12,000 PPM to treat the rats twice a day, each for 3 hours. Proteinuria appeared in the rats after exposure for 5-6 weeks. The incidences of proteinuria in male and female rats after exposure for 12 weeks were 43.8% (7/16 and 25% (4/16, respectively. Urinary N-Acetyl-β-(D-Glucosaminidase (NAG activity was increased significantly after exposure for 4 weeks. Histological examination revealed remarkable injuries in the proximal renal tubules, including tubular epithelial cell detachment, cloud swelling and vacuole formation in the proximal tubular cells, as well as proliferation of parietal epithelium and tubular reflux in glomeruli. Ultrastructural examination found that brush border and cytoplasm of tubular epithelial cell were dropped, that tubular epithelial cells were partially disintegrated, and that the mitochondria of tubular epithelial cells were degenerated and lost. In addition to tubular lesions, glomerular damages were also observed, including segmental foot process fusion and loss of foot process covering on glomerular basement membrane (GBM. Immunofluorescence staining indicated that the expression of nephrin and podocin were both decreased after exposure of GDF. In contrast, increased expression of desmin, a marker of podocyte injury, was found in some areas of a glomerulus. TUNEL staining showed that GDF induced apoptosis in tubular cells and glomerular cells. These studies demonstrate that GDF can induce both severe proximal tubular damage and podocyte injury in rats, and the tubular lesions appear earlier than that of glomeruli.

  16. OPTICAL IMAGING OF LIPOPOLYSACCHARIDE-INDUCED OXIDATIVE STRESS IN ACUTE LUNG INJURY FROM HYPEROXIA AND SEPSIS

    Directory of Open Access Journals (Sweden)

    REYHANEH SEPEHR

    2013-07-01

    Full Text Available Reactive oxygen species (ROS have been implicated in the pathogenesis of many acute and chronic pulmonary disorders such as acute lung injury (ALI in adults and bronchopulmonary dysplasia (BPD in premature infants. Bacterial infection and oxygen toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and alveolar simplification seen in the lungs of premature infants with BPD. Hyperoxia induces ALI, reduces cell proliferation, causes DNA damage and promotes cell death by causing mitochondrial dysfunction. The objective of this study was to use an optical imaging technique to evaluate the variations in fluorescence intensities of the auto-fluorescent mitochondrial metabolic coenzymes, NADH and FAD in four different groups of rats. The ratio of these fluorescence signals (NADH/FAD, referred to as NADH redox ratio (NADH RR has been used as an indicator of tissue metabolism in injuries. Here, we investigated whether the changes in metabolic state can be used as a marker of oxidative stress caused by hyperoxia and bacterial lipopolysaccharide (LPS exposure in neonatal rat lungs. We examined the tissue redox states of lungs from four groups of rat pups: normoxic (21% O2 pups, hyperoxic (90% O2 pups, pups treated with LPS (normoxic + LPS, and pups treated with LPS and hyperoxia (hyperoxic + LPS. Our results show that hyperoxia oxidized the respiratory chain as reflected by a ~ 31% decrease in lung tissue NADH RR as compared to that for normoxic lungs. LPS treatment alone or with hyperoxia had no significant effect on lung tissue NADH RR as compared to that for normoxic or hyperoxic lungs, respectively. Thus, NADH RR serves as a quantitative marker of oxidative stress level in lung injury caused by two clinically important conditions: hyperoxia and LPS exposure.

  17. Bacopa monniera Attenuates Scopolamine-Induced Impairment of Spatial Memory in Mice

    Directory of Open Access Journals (Sweden)

    Manish Kumar Saraf

    2011-01-01

    Full Text Available Scopolamine, an anticholinergic, is an attractive amnesic agent for discerning the action of candidate antiamnesic drugs. Bacopa monniera Linn (Syn. Brahmi is one such antiamnesic agent that is frequently used in the ancient Indian medical system. We have earlier reported the reversal of diazepam-induced amnesia with B. monniera. In this study we wanted to test if scopolamine-induced impairment of spatial memory can also be ameliorated by B. monniera using water maze mouse model. The objective of study was to study the effect of B. monniera on scopolamine-induced amnesia. We employed Morris water maze scale to test the amnesic effect of scopolamine and its reversal by B. monniera. Rotarod test was conducted to screen muscle coordination activity of mice. Scopolamine significantly impaired the acquisition and retrieval of memory producing both anterograde and retrograde amnesia. Bacopa monniera extract was able to reverse both anterograde and retrograde amnesia. We propose that B. monniera's effects on cholinergic system may be helpful for developing alternative therapeutic approaches for the treatment of Alzheimer's disease.

  18. Magnetic resonance imaging of cold injury-induced brain edema in rats

    International Nuclear Information System (INIS)

    Houkin, Kiyohiro; Abe, Hiroshi; Hashiguchi, Yuji; Seri, Shigemi.

    1996-01-01

    The chronological changes of blood-brain barrier disruption, and diffusion and absorption of edema fluid were investigated in rats with cold-induced brain injury (vasogenic edema) using magnetic resonance imaging. Contrast medium was administered intravenously at 3 and 24 hours after lesioning as a tracer of edema fluid. Serial T 1 -weighted multiple-slice images were obtained for 180 minutes after contrast administration. Disruption of the blood-brain barrier was more prominent at 24 hours after lesioning than at 3 hours. Contrast medium leaked from the periphery of the injury and gradually diffused to the center of the lesion. Contrast medium diffused into the corpus callosum and the ventricular system (cerebrospinal fluid). Disruption of the blood-brain barrier induced by cold injury was most prominent at the periphery of the vasogenic edema. Edema fluid subsequently extended into the center of the lesion and was also absorbed by the ventricular system. Magnetic resonance imaging is a useful method to assess the efficacy of therapy for vasogenic edema. (author)

  19. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Bakkal, B.H. [Department of Radiation Oncology, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Gultekin, F.A. [Department of General Surgery, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Guven, B. [Department of Biochemistry, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Turkcu, U.O. [Mugla School of Health Sciences, Mugla Sitki Kocman University, Mugla (Turkey); Bektas, S. [Department of Pathology, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey); Can, M. [Department of Biochemistry, School of Medicine, Bulent Ecevit University, Kozlu, Zonguldak (Turkey)

    2013-09-27

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage.

  20. Effect of ozone oxidative preconditioning in preventing early radiation-induced lung injury in rats

    International Nuclear Information System (INIS)

    Bakkal, B.H.; Gultekin, F.A.; Guven, B.; Turkcu, U.O.; Bektas, S.; Can, M.

    2013-01-01

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage

  1. Murine P-glycoprotein deficiency alters intestinal injury repair and blunts lipopolysaccharide-induced radioprotection.

    Science.gov (United States)

    Staley, Elizabeth M; Yarbrough, Vanisha R; Schoeb, Trenton R; Daft, Joseph G; Tanner, Scott M; Steverson, Dennis; Lorenz, Robin G

    2012-09-01

    P-glycoprotein (P-gp) has been reported to increase stem cell proliferation and regulate apoptosis. Absence of P-gp results in decreased repair of intestinal epithelial cells after chemical injury. To further explore the mechanisms involved in the effects of P-gp on intestinal injury and repair, we used the well-characterized radiation injury model. In this model, injury repair is mediated by production of prostaglandins (PGE(2)) and lipopolysaccharide (LPS) has been shown to confer radioprotection. B6.mdr1a(-/-) mice and wild-type controls were subjected to 12 Gy total body X-ray irradiation and surviving crypts in the proximal jejunum and distal colon were evaluated 3.5 days after irradiation. B6.mdr1a(-/-) mice exhibited normal baseline stem cell proliferation and COX dependent crypt regeneration after irradiation. However, radiation induced apoptosis was increased and LPS-induced radioprotection was blunted in the C57BL6.mdr1a(-/-) distal colon, compared to B6 wild-type controls. The LPS treatment induced gene expression of the radioprotective cytokine IL-1α, in B6 wild-type controls but not in B6.mdr1a(-/-) animals. Lipopolysaccharid-induced radioprotection was absent in IL-1R1(-/-) animals, indicating a role for IL-1α in radioprotection, and demonstrating that P-gp deficiency interferes with IL-1α gene expression in response to systemic exposure to LPS.

  2. Hypoxia-preconditioned mesenchymal stem cells ameliorate ischemia/reperfusion-induced lung injury.

    Directory of Open Access Journals (Sweden)

    Yung-Yang Liu

    Full Text Available Hypoxia preconditioning has been proven to be an effective method to enhance the therapeutic action of mesenchymal stem cells (MSCs. However, the beneficial effects of hypoxic MSCs in ischemia/reperfusion (I/R lung injury have yet to be investigated. In this study, we hypothesized that the administration of hypoxic MSCs would have a positive therapeutic impact on I/R lung injury at molecular, cellular, and functional levels.I/R lung injury was induced in isolated and perfused rat lungs. Hypoxic MSCs were administered in perfusate at a low (2.5×105 cells and high (1×106 cells dose. Rats ventilated with a low tidal volume of 6 ml/kg served as controls. Hemodynamics, lung injury indices, inflammatory responses and activation of apoptotic pathways were determined.I/R induced permeability pulmonary edema with capillary leakage and increased levels of reactive oxygen species (ROS, pro-inflammatory cytokines, adhesion molecules, cytosolic cytochrome C, and activated MAPK, NF-κB, and apoptotic pathways. The administration of a low dose of hypoxic MSCs effectively attenuated I/R pathologic lung injury score by inhibiting inflammatory responses associated with the generation of ROS and anti-apoptosis effect, however this effect was not observed with a high dose of hypoxic MSCs. Mechanistically, a low dose of hypoxic MSCs down-regulated P38 MAPK and NF-κB signaling but upregulated glutathione, prostaglandin E2, IL-10, mitochondrial cytochrome C and Bcl-2. MSCs infused at a low dose migrated into interstitial and alveolar spaces and bronchial trees, while MSCs infused at a high dose aggregated in the microcirculation and induced pulmonary embolism.Hypoxic MSCs can quickly migrate into extravascular lung tissue and adhere to other inflammatory or structure cells and attenuate I/R lung injury through anti-oxidant, anti-inflammatory and anti-apoptotic mechanisms. However, the dose of MSCs needs to be optimized to prevent pulmonary embolism and thrombosis.

  3. Early biomarkers of doxorubicin-induced heart injury in a mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Desai, Varsha G., E-mail: varsha.desai@fda.hhs.gov [Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States); Kwekel, Joshua C.; Vijay, Vikrant; Moland, Carrie L. [Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States); Herman, Eugene H. [Toxicology and Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, The National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850-9734 (United States); Lee, Taewon [Department of Mathematics, Korea University, Sejong, Chungnam 339-700 (Korea, Republic of); Han, Tao [Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States); Lewis, Sherry M. [Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States); Davis, Kelly J.; Muskhelishvili, Levan [Toxicologic Pathology Associates, National Center for Toxicological Research, Jefferson, AR 72079 (United States); Kerr, Susan [Arkansas Heart Hospital, Little Rock, AR 72211 (United States); Fuscoe, James C. [Personalized Medicine Branch, Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States)

    2014-12-01

    Cardiac troponins, which are used as myocardial injury markers, are released in plasma only after tissue damage has occurred. Therefore, there is a need for identification of biomarkers of earlier events in cardiac injury to limit the extent of damage. To accomplish this, expression profiling of 1179 unique microRNAs (miRNAs) was performed in a chronic cardiotoxicity mouse model developed in our laboratory. Male B6C3F{sub 1} mice were injected intravenously with 3 mg/kg doxorubicin (DOX; an anti-cancer drug), or saline once a week for 2, 3, 4, 6, and 8 weeks, resulting in cumulative DOX doses of 6, 9, 12, 18, and 24 mg/kg, respectively. Mice were euthanized a week after the last dose. Cardiac injury was evidenced in mice exposed to 18 mg/kg and higher cumulative DOX dose whereas examination of hearts by light microscopy revealed cardiac lesions at 24 mg/kg DOX. Also, 24 miRNAs were differentially expressed in mouse hearts, with the expression of 1, 1, 2, 8, and 21 miRNAs altered at 6, 9, 12, 18, and 24 mg/kg DOX, respectively. A pro-apoptotic miR-34a was the only miRNA that was up-regulated at all cumulative DOX doses and showed a significant dose-related response. Up-regulation of miR-34a at 6 mg/kg DOX may suggest apoptosis as an early molecular change in the hearts of DOX-treated mice. At 12 mg/kg DOX, up-regulation of miR-34a was associated with down-regulation of hypertrophy-related miR-150; changes observed before cardiac injury. These findings may lead to the development of biomarkers of earlier events in DOX-induced cardiotoxicity that occur before the release of cardiac troponins. - Highlights: • Upregulation of miR-34a before doxorubicin-induced cardiac tissue injury • Apoptosis might be an early event in mouse heart during doxorubicin treatment. • Expression of miR-150 declined before doxorubicin-induced cardiac tissue injury.

  4. Slit2 ameliorates renal inflammation and fibrosis after hypoxia-and lipopolysaccharide-induced epithelial cells injury in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiangjun [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Yao, Qisheng, E-mail: yymcyqs@126.com [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Sun, Xinbo; Gong, Xiaoxin; Yang, Yong; Chen, Congbo [Department of Urology, Taihe Hospital, Hubei University of Medicine, Hubei (China); Shan, Guang [Department of Urology, Renmin Hospital of Wuhan University, Hubei (China)

    2017-03-01

    Hypoxic acute kidney injury (AKI) is often incompletely repaired and leads to chronic kidney disease (CKD), which is characterized by tubulointerstitial inflammation and fibrosis. The Slit2 family of secreted glycoproteins is expressed in the kidney, it has been shown to exert an anti-inflammatory activity and prevent ischemic renal injury in vivo. However, whether Slit2 reduces renal fibrosis and inflammation after hypoxic and inflammatory epithelial cells injury in vitro remains unknown. In this study, we aimed to evaluate whether Slit2 ameliorated fibrosis and inflammation in two renal epithelial cells line challenged with hypoxia and lipopolysaccharide (LPS). Renal epithelial cells were treated with hypoxia and LPS to induce cell injury. Hoechst staining and Western blot analysis was conducted to examine epithelial cells injury. Immunofluorescence staining and Western blot analysis was performed to evaluate tubulointerstitial fibrosis. Real-time polymerase chain reaction (PCR) tested the inflammatory factor interleukin (IL)−1β and tumor necrosis factor (TNF)-α, and Western blot analysis determined the hypoxia-inducible factor (HIF)−1α, Toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB. Results revealed that hypoxia induced epithelial cells apoptosis, inflammatory factor IL-1β and TNF-α release and tubulointerstitial fibrosis. LPS could exacerbate hypoxia -induced epithelial cells apoptosis, IL-1β and TNF-α release and fibrosis. Slit2 reduced the expression of fibronectin, the rate of epithelial cell apoptosis, and the expression of inflammatory factor. Slit2 could also inhibit the expression of TLR4 and NF-κB, but not the expression of HIF-1α. Therefore, Slit2 attenuated inflammation and fibrosis after LPS- and hypoxia-induced epithelial cells injury via the TLR4/NF-κB signaling pathway, but not depending on the HIF-1α signaling pathway. - Highlights: • Slit2 ameliorates inflammation after hypoxia-and LPS-induced epithelial cells injury

  5. Antituberculosis Drug-Induced Liver Injury with Autoimmune Features: Facing Diagnostic and Treatment Challenges

    Directory of Open Access Journals (Sweden)

    Maria Adriana Rangel

    2017-01-01

    Full Text Available The authors present a case report of antituberculosis drug-induced liver injury that offered diagnostic challenges (namely, the possibility of drug-induced autoimmune hepatitis and treatment difficulties.

  6. Liver injury from herbals and dietary supplements in the U.S. Drug-Induced Liver Injury Network.

    Science.gov (United States)

    Navarro, Victor J; Barnhart, Huiman; Bonkovsky, Herbert L; Davern, Timothy; Fontana, Robert J; Grant, Lafaine; Reddy, K Rajender; Seeff, Leonard B; Serrano, Jose; Sherker, Averell H; Stolz, Andrew; Talwalkar, Jayant; Vega, Maricruz; Vuppalanchi, Raj

    2014-10-01

    The Drug-Induced Liver Injury Network (DILIN) studies hepatotoxicity caused by conventional medications as well as herbals and dietary supplements (HDS). To characterize hepatotoxicity and its outcomes from HDS versus medications, patients with hepatotoxicity attributed to medications or HDS were enrolled prospectively between 2004 and 2013. The study took place among eight U.S. referral centers that are part of the DILIN. Consecutive patients with liver injury referred to a DILIN center were eligible. The final sample comprised 130 (15.5%) of all subjects enrolled (839) who were judged to have experienced liver injury caused by HDS. Hepatotoxicity caused by HDS was evaluated by expert opinion. Demographic and clinical characteristics and outcome assessments, including death and liver transplantation (LT), were ascertained. Cases were stratified and compared according to the type of agent implicated in liver injury; 45 had injury caused by bodybuilding HDS, 85 by nonbodybuilding HDS, and 709 by medications. Liver injury caused by HDS increased from 7% to 20% (P Bodybuilding HDS caused prolonged jaundice (median, 91 days) in young men, but did not result in any fatalities or LT. The remaining HDS cases presented as hepatocellular injury, predominantly in middle-aged women, and, more frequently, led to death or transplantation, compared to injury from medications (13% vs. 3%; P bodybuilding HDS or medications, as evidenced by differences in unfavorable outcomes (death and transplantation). (Hepatology 2014;60:1399-1408). © 2014 by the American Association for the Study of Liver Diseases.

  7. Minocycline attenuates cognitive impairment induced by isoflurane anesthesia in aged rats.

    Directory of Open Access Journals (Sweden)

    Feijuan Kong

    Full Text Available Postoperative cognitive dysfunction (POCD is a clinical phenomenon characterized by cognitive deficits in patients after anesthesia and surgery, especially in geriatric surgical patients. Although it has been documented that isoflurane exposure impaired cognitive function in several aged animal models, there are few clinical interventions and treatments available to prevent this disorder. Minocycline has been well established to exert neuroprotective effects in various experimental animal models and neurodegenerative diseases. Therefore, we hypothesized that pretreatment with minocycline attenuates isoflurane-induced cognitive decline in aged rats. In the present study, twenty-month-old rats were administered minocycline or an equal volume of saline by intraperitoneal injection 12 h before exposure to isoflurane. Then the rats were exposed to 1.3% isoflurane for 4 h. Two weeks later, spatial learning and memory of the rats were examined using the Morris Water Maze. We found that pretreatment with minocycline mitigated isoflurane-induced cognitive deficits and suppressed the isoflurane-induced excessive release of IL-1β and caspase-3 in the hippocampal CA1 region at 4 h after isoflurane exposure, as well as the number of TUNEL-positive nuclei. In addition, minocycline treatment also prevented the changes of synaptic ultrastructure in the hippocampal CA1 region induced by isoflurane. In conclusion, pretreatment with minocycline attenuated isoflurane-induced cognitive impairment in aged rats.

  8. Lymphocytes contribute to biliary injury and fibrosis in experimental xenobiotic-induced cholestasis

    International Nuclear Information System (INIS)

    Joshi, Nikita; Kopec, Anna K.; Cline-Fedewa, Holly; Luyendyk, James P.

    2017-01-01

    The etiology of chronic bile duct injury and fibrosis in patients with autoimmune cholestatic liver diseases is complex, and likely involves immune cells such as lymphocytes. However, most models of biliary fibrosis are not autoimmune in nature. Biliary fibrosis can be induced experimentally by prolonged exposure of mice to the bile duct toxicant alpha-naphthylisothiocyanate (ANIT). We determined whether lymphocytes contributed to ANIT-mediated biliary hyperplasia and fibrosis in mice. Hepatic accumulation of T-lymphocytes and increased serum levels of anti-nuclear-autoantibodies were evident in wild-type mice exposed to ANIT (0.05% ANIT in chow). This occurred alongside bile duct hyperplasia and biliary fibrosis. To assess the role of lymphocytes in ANIT-induced biliary fibrosis, we utilized RAG1 −/− mice, which lack T- and B-lymphocytes. ANIT-induced bile duct injury, indicated by increased serum alkaline phosphatase activity, was reduced in ANIT-exposed RAG1 −/− mice compared to ANIT-exposed wild-type mice. Despite this reduction in biliary injury, ANIT-induced bile duct hyperplasia was similar in wild-type and RAG1 −/− mice. However, hepatic induction of profibrogenic genes including COL1A1, ITGβ6 and TGFβ2 was markedly attenuated in ANIT-exposed RAG1 −/− mice compared to ANIT-exposed wild-type mice. Peribiliary collagen deposition was also reduced in ANIT-exposed RAG1 −/− mice. The results indicate that lymphocytes exacerbate bile duct injury and fibrosis in ANIT-exposed mice without impacting bile duct hyperplasia.

  9. A Novel Preclinical Model of Moderate Primary Blast-Induced Traumatic Brain Injury.

    Science.gov (United States)

    Divani, Afshin A; Murphy, Amanda J; Meints, Joyce; Sadeghi-Bazargani, Homayoun; Nordberg, Jessica; Monga, Manoj; Low, Walter C; Bhatia, Prerana M; Beilman, Greg J; SantaCruz, Karen S

    2015-07-15

    Blast-induced traumatic brain injury (bTBI) is the "signature" injury of the recent Iraq and Afghanistan wars. Here, we present a novel method to induce bTBI using shock wave (SW) lithotripsy. Using a lithotripsy machine, Wistar rats (N = 70; 408.3 ± 93 g) received five SW pulses to the right side of the frontal cortex at 24 kV and a frequency of 60 Hz. Animals were then randomly divided into three study endpoints: 24 h (n = 25), 72 h (n = 19) and 168 h (n = 26). Neurological and behavioral assessments (Garcia's test, beam walking, Rotarod, and elevated plus maze) were performed at the baseline, and further assessments followed at 3, 6, 24, 72, and 168 h post-injury, if applicable. We performed digital subtraction angiography (DSA) to assess presence of cerebral vasospasm due to induced bTBI. Damage to brain tissue was assessed by an overall histological severity (OHS) score based on depth of injury, area of hemorrhage, and extent of axonal injury. Except for beam walking, OHS was significantly correlated with the other three outcome measures with at least one of their assessments during the first 6 h after the experiment. OHS manifested the highest absolute correlation coefficients with anxiety at the baseline and 6 h post-injury (r(baseline) = -0.75, r(6hrs) = 0.85; p<0.05). Median hemispheric differences for contrast peak values (obtained from DSA studies) for 24, 72, and 168 h endpoints were 3.45%, 3.05% and 0.2%, respectively, with statistically significant differences at 1 versus 7 d (p<0.05) and 3 versus 7 d (p<0.01). In this study, we successfully established a preclinical rat model of bTBI with characteristics similar to those observed in clinical cases. This new method may be useful for future investigations aimed at understanding bTBI pathophysiology.

  10. Isoflurane-induced spatial memory impairment in mice is prevented by the acetylcholinesterase inhibitor donepezil.

    Directory of Open Access Journals (Sweden)

    Diansan Su

    Full Text Available Although many studies have shown that isoflurane exposure impairs spatial memory in aged animals, there are no clinical treatments available to prevent this memory deficit. The anticholinergic properties of volatile anesthetics are a biologically plausible cause of cognitive dysfunction in elderly subjects. We hypothesized that pretreatment with the acetylcholinesterase inhibitor donepezil, which has been approved by the Food and Drug Administration (FDA for the treatment of Alzheimer's disease, prevents isoflurane-induced spatial memory impairment in aged mice. In present study, eighteen-month-old mice were administered donepezil (5 mg/kg or an equal volume of saline by oral gavage with a feeding needle for four weeks. Then the mice were exposed to isoflurane (1.2% for six hours. Two weeks later, mice were subjected to the Morris water maze to examine the impairment of spatial memory after exposure to isoflurane. After the behavioral test, the mice were sacrificed, and the protein expression level of acetylcholinesterase (AChE, choline acetylase (ChAT and α7 nicotinic receptor (α7-nAChR were measured in the brain. Each group consisted of 12 mice. We found that isoflurane exposure for six hours impaired the spatial memory of the mice. Compared with the control group, isoflurane exposure dramatically decreased the protein level of ChAT, but not AChE or α7-nAChR. Donepezil prevented isoflurane-induced spatial memory impairments and increased ChAT levels, which were downregulated by isoflurane. In conclusions, pretreatment with the AChE inhibitor donepezil prevented isoflurane-induced spatial memory impairment in aged mice. The mechanism was associated with the upregulation of ChAT, which was decreased by isoflurane.

  11. Effect of adoptive transfer or depletion of regulatory T cells on triptolide-induced liver injury

    Directory of Open Access Journals (Sweden)

    Xinzhi eWang

    2016-04-01

    Full Text Available ObjectiveThe aim of this study is to clarify the role of regulatory T cell (Treg in triptolide (TP-induced hepatotoxicity. MethodsFemale C57BL/6 mice received either adoptive transfer of Tregs or depletion of Tregs, then underwent TP administration and were sacrificed 24 hours after TP administration. Liver injury was determined according to ALT and AST levels in serum and histopathological change in liver tissue. Hepatic frequencies of Treg cells and the mRNA expression levles of transcription factor FoxP3 and RORγt, IL-10, SOCS and Notch/Notch ligand were investigated.ResultsDuring TP-induced liver injury, hepatic Treg and IL-10 decreased, while Th17 cell transcription factor RORγt, SOCS signaling and Notch signaling increased, accompanied with liver inflammation. Adoptive transfer of Tregs ameliorated the severity of TP-induced liver injury, accompanied with increased levels of hepatic Treg and IL-10. Adoptive transfer of Tregs remarkably inhibited the expression of RORγt, SOCS3, Notch1 and Notch3. On the contrary, depletion of Treg cells in TP-administered mice resulted in a notable increase of RORγt, SOCS1, SOCS3 and Notch3, while the Treg and IL-10 of liver decreased. Consistent with the exacerbation of liver injury, higher serum levels of ALT and AST were detected in Treg-depleted mice. ConclusionsThese results showed that adoptive transfer or depletion of Tregs attenuated or aggravated TP-induced liver injury, suggesting that Tregs could play important roles in the progression of liver injury. SOCS proteins and Notch signaling affected Tregs, which may contribute to the pathogenesis of TP-induced hepatotoxicity.

  12. Bupivacaine drug-induced liver injury: a case series and brief review of the literature.

    Science.gov (United States)

    Chintamaneni, Preethi; Stevenson, Heather L; Malik, Shahid M

    2016-08-01

    Bupivacaine is an established and efficacious anesthetic that has become increasingly popular in postoperative pain management. However, there is limited literature regarding the potential for bupivacaine-induced delayed liver toxicity. Describe cholestasis as a potential adverse reaction of bupivacaine infusion into a surgical wound. Retrospective review of patients' medical records. We report the cases of 3 patients with new onset of cholestatic injury after receiving bupivacaine infusion for postoperative herniorrhaphy pain management. All patients had negative serologic workups for other causes of liver injury. All patients achieved eventual resolution of their liver injury. Bupivacaine-induced liver injury should be on the differential of individuals presenting with jaundice and cholestasis within a month of infusion via a surgically placed catheter of this commonly used anesthetic. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Silibinin attenuates sulfur mustard analog-induced skin injury by targeting multiple pathways connecting oxidative stress and inflammation.

    Directory of Open Access Journals (Sweden)

    Neera Tewari-Singh

    Full Text Available Chemical warfare agent sulfur mustard (HD inflicts delayed blistering and incapacitating skin injuries. To identify effective countermeasures against HD-induced skin injuries, efficacy studies were carried out employing HD analog 2-chloroethyl ethyl sulfide (CEES-induced injury biomarkers in skin cells and SKH-1 hairless mouse skin. The data demonstrate strong therapeutic efficacy of silibinin, a natural flavanone, in attenuating CEES-induced skin injury and oxidative stress. In skin cells, silibinin (10 µM treatment 30 min after 0.35/0.5 mM CEES exposure caused a significant (p90%, and activation of transcription factors NF-κB and AP-1 (complete reversal. Similarly, silibinin treatment was also effective in attenuating CEES-induced oxidative stress measured by 4-hydroxynonenal and 5,5-dimethyl-2-(8-octanoic acid-1-pyrolline N-oxide protein adduct formation, and 8-oxo-2-deoxyguanosine levels. Since our previous studies implicated oxidative stress, in part, in CEES-induced toxic responses, the reversal of CEES-induced oxidative stress and other toxic effects by silibinin in this study indicate its pleiotropic therapeutic efficacy. Together, these findings support further optimization of silibinin in HD skin toxicity model to develop a novel effective therapy for skin injuries by vesicants.

  14. Perturbation of bile acid homeostasis is an early pathogenesis event of drug induced liver injury in rats

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Makoto; Miyake, Manami; Sato, Hiroko; Masutomi, Naoya; Tsutsui, Naohisa [Mitsubishi Tanabe Pharma Corporation, Kisarazu, Chiba 292-0818 (Japan); Adam, Klaus-Peter; Alexander, Danny C.; Lawton, Kay A.; Milburn, Michael V.; Ryals, John A.; Wulff, Jacob E. [Metabolon Inc., 617 Davis Drive, Suite 400, Durham, NC 27713 (United States); Guo, Lining, E-mail: lguo@metabolon.com [Metabolon Inc., 617 Davis Drive, Suite 400, Durham, NC 27713 (United States)

    2013-04-01

    Drug-induced liver injury (DILI) is a significant consideration for drug development. Current preclinical DILI assessment relying on histopathology and clinical chemistry has limitations in sensitivity and discordance with human. To gain insights on DILI pathogenesis and identify potential biomarkers for improved DILI detection, we performed untargeted metabolomic analyses on rats treated with thirteen known hepatotoxins causing various types of DILI: necrosis (acetaminophen, bendazac, cyclosporine A, carbon tetrachloride, ethionine), cholestasis (methapyrilene and naphthylisothiocyanate), steatosis (tetracycline and ticlopidine), and idiosyncratic (carbamazepine, chlorzoxasone, flutamide, and nimesulide) at two doses and two time points. Statistical analysis and pathway mapping of the nearly 1900 metabolites profiled in the plasma, urine, and liver revealed diverse time and dose dependent metabolic cascades leading to DILI by the hepatotoxins. The most consistent change induced by the hepatotoxins, detectable even at the early time point/low dose, was the significant elevations of a panel of bile acids in the plasma and urine, suggesting that DILI impaired hepatic bile acid uptake from the circulation. Furthermore, bile acid amidation in the hepatocytes was altered depending on the severity of the hepatotoxin-induced oxidative stress. The alteration of the bile acids was most evident by the necrosis and cholestasis hepatotoxins, with more subtle effects by the steatosis and idiosyncratic hepatotoxins. Taking together, our data suggest that the perturbation of bile acid homeostasis is an early event of DILI. Upon further validation, selected bile acids in the circulation could be potentially used as sensitive and early DILI preclinical biomarkers. - Highlights: ► We used metabolomics to gain insights on drug induced liver injury (DILI) in rats. ► We profiled rats treated with thirteen hepatotoxins at two doses and two time points. ► The toxins decreased the

  15. Identification of the effects of peripheral nerves injury on the muscle control - A review

    Science.gov (United States)

    Cabaj, Anna; Zmyslowski, Wojciech

    2011-01-01

    Impairment of motor function following peripheral nerve injury is a serious clinical problem. Generally nerve injury leads to erroneous control of muscle activity that results in gait and voluntary movement abnormalities followed by muscle atrophy. This article presents a review of studies on the effects of peripheral nerve injury on the motor system performed on animal models. We focused our attention on the results that are fundamental for better understanding of the degenerative and regenerative processes induced by nerve injury as well as of the mechanisms of structural changes in neuronal networks controlling movement. Quoted results are also important for clinical applications because they allow to develop new diagnostic and therapeutic techniques that can be used after nerve injury inducing motor deficits. However, till now no efficient therapy inducing satisfactory recovery was found. There is still a need to continue an advanced basic research directed to develop effective therapies. Thus the aim of this review is to compare the results of recent studies performed on various animal models in order to propose new methods for identification of mechanisms responsible for muscle deficits and propose targets for new pharmacological therapies.

  16. Osteopontin protects against hyperoxia-induced lung injury by inhibiting nitric oxide synthases.

    Science.gov (United States)

    Zhang, Xiang-Feng; Liu, Shuang; Zhou, Yu-Jie; Zhu, Guang-Fa; Foda, Hussein D

    2010-04-05

    Exposure of adult mice to more than 95% O(2) produces a lethal injury by 72 hours. Nitric oxide synthase (NOS) is thought to contribute to the pathophysiology of murine hyperoxia-induced acute lung injury (ALI). Osteopontin (OPN) is a phosphorylated glycoprotein produced principally by macrophages. OPN inhibits inducible nitric oxide synthase (iNOS), which generates large amounts of nitric oxide production. However, the relationship between nitric oxide and endogenous OPN in lung tissue during hyperoxia-induced ALI has not yet been elucidated, thus we examined the role that OPN plays in the hyperoxia-induced lung injury and its relationships with NOS. One hundred and forty-four osteopontin knock-out (KO) mice and their matched wild type background control (WT) were exposed in sealed cages > 95% oxygen or room air for 24- 72 hours, and the severity of lung injury was assessed; expression of OPN, endothelial nitric oxide synthase (eNOS) and iNOS mRNA in lung tissues at 24, 48 and 72 hours of hyperoxia were studied by reverse transcription-polymerase chain reaction (RT-PCR); immunohistochemistry (IHC) was performed for the detection of iNOS, eNOS, and OPN protein in lung tissues. OPN KO mice developed more severe acute lung injury at 72 hours of hyperoxia. The wet/dry weight ratio increased to 6.85 +/- 0.66 in the KO mice at 72 hours of hyperoxia as compared to 5.31 +/- 0.92 in the WT group (P < 0.05). iNOS mRNA (48 hours: 1.04 +/- 0.08 vs. 0.63 +/- 0.09, P < 0.01; 72 hours: 0.89 +/- 0.08 vs. 0.72 +/- 0.09, P < 0.05) and eNOS mRNA (48 hours: 0.62 +/- 0.08 vs. 0.43 +/- 0.09, P < 0.05; 72 hours: 0.67 +/- 0.08 vs. 0.45 +/- 0.09, P < 0.05) expression was more significantly increased in OPN KO mice than their matched WT mice when exposed to hyperoxia. IHC study showed higher expression of iNOS (20.54 +/- 3.18 vs. 12.52 +/- 2.46, P < 0.05) and eNOS (19.83 +/- 5.64 vs. 9.45 +/- 3.82, P < 0.05) in lung tissues of OPN KO mice at 72 hours of hyperoxia. OPN can protect against

  17. Effects of Berberine Against Radiation-Induced Intestinal Injury in Mice

    International Nuclear Information System (INIS)

    Li Guanghui; Zhang Yaping; Tang Jinliang; Chen Zhengtang; Hu Yide; Wei Hong; Li Dezhi; Hao Ping; Wang Donglin

    2010-01-01

    Purpose: Radiation-induced intestinal injury is a significant clinical problem in patients undergoing abdominal radiotherapy (RT). Berberine has been used as an antimicrobial, anti-inflammatory, and antimotility agent. The present study investigated the protective effect of berberine against radiation-induced intestinal injury. Methods and Materials: The mice were administrated berberine or distilled water. A total of 144 mice underwent 0, 3, 6, 12, or 16 Gy single session whole-abdominal RT and 16 mice underwent 3 Gy/fraction/d for four fractions of fractionated abdominal RT. Tumor necrosis factor-α, interleukin-10, diamine oxidase, intestinal fatty acid-binding protein, malonaldehyde, and apoptosis were assayed in the mice after RT. The body weight and food intake of the mice receiving fractionated RT were recorded. Another 72 mice who had undergone 12, 16, or 20 Gy abdominal RT were monitored for mortality every 12 h. Results: The body weight and food intake of the mice administered with distilled water decreased significantly compared with before RT. After the same dose of abdominal RT, tumor necrosis factor-α, diamine oxidase, intestinal fatty acid-binding protein in plasma and malonalhehyde and apoptosis of the intestine were significantly greater in the control group than in the mice administered berberine (p < .05-.01). In contrast, interleukin-10 in the mice with berberine treatment was significantly greater than in the control group (p < .01). A similar result was found in the fractionated RT experiment and at different points after 16 Gy abdominal RT (p < .05-.01). Berberine treatment significantly delayed the point of death after 20 Gy, but not 16 Gy, abdominal RT (p < .01). Conclusion: Treatment with berberine can delay mortality and attenuated intestinal injury in mice undergoing whole abdominal RT. These findings could provide a useful therapeutic strategy for radiation-induced intestinal injury.

  18. Total Flavonoids from Mimosa Pudica Protects Carbon Tetrachloride -Induced Acute Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Zhen-qin QIU

    2015-03-01

    Full Text Available Objective: To observe the protective effect of total flavonoids from Mimosa pudica on carbon tetrachloride (CCl4-induced acute liver injury in mice. Methods: CCl4-induced acute liver injury model in mice was established. The activity of ALT and AST, the content of serum albumin (Alb and total antioxidant capacity (T-AOC were determined. The content of malondiadehyde (MDA was measured and the activity of superoxide dismutase (SOD was determined. The histopathological changes of liver were observed.Results: Compared with CCl4 modle group, each dose group of total flavonouida from Mimosa pudica couldreduced the activity of ALT and AST in mice obviously (P<0.01, indicating they had remarkably protective effect on CCl4-induced acute liver injury in mice. high and middle dose groups of total flavonouida from Mimosa pudica couldincrease the content of Alb in mice (P<0.01. Each dose group of total flavonouida from Mimosa pudica could enhance the level of T-AOC (P<0.01. each dose group of total flavonouida from Mimosa pudica could lower the content of liver homogenate MDA but enhance the activity of SOD in a dose-depended manner (P<0.01. Conclusion: Total flavones from Mimosa Pudica have obvious protective effect on CCl4-induced acute liver injury in mice.

  19. Combination Anti-Apoptotic Effect of Erythropoietin and Melatonin on Ischemia Reperfusion-Induced Renal Injury in Rats

    Directory of Open Access Journals (Sweden)

    Shokofeh Banaei

    2016-11-01

    Full Text Available Renal ischemia-reperfusion (IR contributes to the development of acute renal failure (ARF. Oxygen free radicals are considered to be principal components involved in the pathophysiological tissue alterations observed during renal IR. The purpose of this study was to investigate the combination effect of melatonin (MEL and erythropoietin (EPO, which are a potent antioxidant and anti-apoptotic agents, in IR-induced renal injury in rats. Wistar Albino rats were unilaterally nephrectomized and subjected to 45 min of renal pedicle occlusion followed by 24 h reperfusion. MEL (10 mg/kg, i.p and EPO (5000 U/kg, i.p were administered prior to ischemia. After 24 h reperfusion, following decapitation, blood samples were collected for the determination of superoxide dismutase (SOD, glutathione peroxidase (GPx, and malondialdehyde (MDA levels. Also, renal samples were taken for histological evaluation and apoptosis assay. Ischemia-reperfusion increased SOD, GPx, MDA levels, and TUNEL positive cells. Histopathological findings of the IR group confirmed that there was renal impairment in the tubular epithelium. Treatment with EPO and MEL decreased SOD, GPx, and MDA levels, histopathological changes, and TUNEL positive cells. These results indicated that the combination of MEL and EPO could not exert more nephroprotective and anti-apoptotic effects than MEL treatment in renal ischemia-reperfusion injury.

  20. An Update on Drug-induced Liver Injury.

    Science.gov (United States)

    Devarbhavi, Harshad

    2012-09-01

    Idiosyncratic drug-induced liver injury (DILI) is an important cause of morbidity and mortality following drugs taken in therapeutic doses. Hepatotoxicity is a leading cause of attrition in drug development, or withdrawal or restricted use after marketing. No age is exempt although adults and the elderly are at increased risk. DILI spans the entire spectrum ranging from asymptomatic elevation in transaminases to severe disease such as acute hepatitis leading to acute liver failure. The liver specific Roussel Uclaf Causality Assessment Method is the most validated and extensively used for determining the likelihood that an implicated drug caused DILI. Asymptomatic elevation in liver tests must be differentiated from adaptation. Drugs producing DILI have a signature pattern although no single pattern is characteristic. Antimicrobial and central nervous system agents including antiepileptic drugs are the leading causes of DILI worldwide. In the absence of a diagnostic test or a biomarker, the diagnosis rests on the evidence of absence of competing causes such as acute viral hepatitis, autoimmune hepatitis and others. Recent studies show that antituberculosis drugs given for active or latent disease are still a major cause of drug-induced liver injury in India and the West respectively. Presence of jaundice signifies a severe disease and entails a worse outcome. The pathogenesis is unclear and is due to a mix of host, drug metabolite and environmental factors. Research has evolved from incriminating candidate genes to genome wide analysis studies. Immediate cessation of the drug is key to prevent or minimize progressive damage. Treatment is largely supportive. N-acetylcysteine is the antidote for paracetamol toxicity. Carnitine has been tried in valproate injury whereas steroids and ursodeoxycholic acid may be used in DILI associated with hypersensitivity or cholestatic features respectively. This article provides an overview of the epidemiology, the patterns of

  1. Contribution to the pathogenesis of radiation-induced injury to large arteries

    International Nuclear Information System (INIS)

    Zidar, Nina; Ferluga, Dusan; Hvala, Asta; Popovic, Mara; Soba, Erika

    1997-01-01

    We report a case of a 35-year-old man who died of a brain infarct 20 months after radiotherapy for carcinoma of the tonsil with metastases to the cervical lymph nodes. Histology revealed mild atherosclerosis, necrotizing vasculitis, and occlusive thrombosis of the internal carotid artery. Significant changes were observed in the vasa vasorum; swelling and detachment of the endothelium, subendothelial oedema, hyaline change, fibrinoid necrosis of the vessel walls with mononuclear cellular infiltration, accompanied by focal haemorrhages and chronic inflammation in the periadventitial soft tissue. We believe that these changes of the vasa vasorum and necrotizing vasculitis are causally related and that vasculitis represents focal ischaemic necroses with inflammatory reaction. Our findings support the hypothesis, based on experimental studies, that injury to the vasa vasorum is an important mechanism in the development of radiation-induced vasculopathy of large arteries. They also suggest an evolution of the injury to the vasa vasorum and periadventitial tissue from the early lesions described in our patient, to late stages resulting in dense periadventitial fibrosis as reported previously. We suggest that injury to the vasa vasorum and the consequent ischaemic lesions of the arterial wall are morphological features distinguishing radiation-induced arterial injury from spontaneous atherosclerosis. (author)

  2. The Effects of Syzygium samarangense, Passiflora edulis and Solanum muricatum on Alcohol-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Yu-Jie Zhang

    2016-09-01

    Full Text Available Previous studies have shown that fruits have different effects on alcohol metabolism and alcohol-induced liver injury. The present work selected three fruits and aimed at studying the effects of Syzygium samarangense, Passiflora edulis and Solanum muricatum on alcohol-induced liver injury in mice. The animals were treated daily with alcohol and fruit juices for fifteen days. Chronic treatment with alcohol increased the levels of aspartate transaminase (AST, alanine transaminase (ALT, total bilirubin (TBIL, triglyceride (TG, malondialdehyde (MDA, and decreased total protein (TP. Histopathological evaluation also showed that ethanol induced extensive fat droplets in hepatocyte cytoplasm. Syzygium samarangense and Passiflora edulis normalized various biochemical parameters. Solanum muricatum increased the level of ALT and induced infiltration of inflammatory cells in the liver. These results strongly suggest that treatment with Syzygium samarangense and Passiflora edulis could protect liver from the injury of alcohol, while Solanum muricatum could aggravate the damage.

  3. Impaired Hedgehog signalling-induced endothelial dysfunction is sufficient to induce neuropathy: implication in diabetes.

    Science.gov (United States)

    Chapouly, Candice; Yao, Qinyu; Vandierdonck, Soizic; Larrieu-Lahargue, Frederic; Mariani, John N; Gadeau, Alain-Pierre; Renault, Marie-Ange

    2016-02-01

    Microangiopathy, i.e. endothelial dysfunction, has long been suggested to contribute to the development of diabetic neuropathy, although this has never been fully verified. In the present paper, we have identified the role of Hedgehog (Hh) signalling in endoneurial microvessel integrity and evaluated the impact of impaired Hh signalling in endothelial cells (ECs) on nerve function. By using Desert Hedgehog (Dhh)-deficient mice, we have revealed, that in the absence of Dhh, endoneurial capillaries are abnormally dense and permeable. Furthermore, Smoothened (Smo) conditional KO mice clarified that this increased vessel permeability is specifically due to impaired Hh signalling in ECs and is associated with a down-regulation of Claudin5 (Cldn5). Moreover, impairment of Hh signalling in ECs was sufficient to induce hypoalgesia and neuropathic pain. Finally in Lepr(db/db) type 2 diabetic mice, the loss of Dhh expression observed in the nerve was shown to be associated with increased endoneurial capillary permeability and decreased Cldn5 expression. Conversely, systemic administration of the Smo agonist SAG increased Cldn5 expression, decreased endoneurial capillary permeability, and restored thermal algesia to diabetic mice, demonstrating that loss of Dhh expression is crucial in the development of diabetic neuropathy. The present work demonstrates the critical role of Dhh in maintaining blood nerve barrier integrity and demonstrates for the first time that endothelial dysfunction is sufficient to induce neuropathy. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  4. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines.

    Science.gov (United States)

    Zong, L; Yu, Q H; Du, Y X; Deng, X M

    2014-02-01

    Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis.

  5. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Zong, L. [Second Military Medical University, Changhai Hospital, Department of Anesthesiology, Shanghai, China, Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai (China); No. 82 Hospital of People' s Liberation Army, Department of Anesthesiology, Jiangsu, China, Department of Anesthesiology, No. 82 Hospital of People' s Liberation Army, Jiangsu (China); Yu, Q. H. [Second Military Medical University, Changhai Hospital, Department of Gastroenterology, Shanghai, China, Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai (China); Du, Y. X. [No. 82 Hospital of People' s Liberation Army, Department of Anesthesiology, Jiangsu, China, Department of Anesthesiology, No. 82 Hospital of People' s Liberation Army, Jiangsu (China); Deng, X. M. [Second Military Medical University, Changhai Hospital, Department of Anesthesiology, Shanghai, China, Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai (China)

    2014-03-03

    Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis.

  6. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines

    International Nuclear Information System (INIS)

    Zong, L.; Yu, Q.H.; Du, Y.X.; Deng, X.M.

    2014-01-01

    Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis

  7. Identification of Novel Translational Urinary Biomarkers for Acetaminophen-Induced Acute Liver Injury Using Proteomic Profiling in Mice

    NARCIS (Netherlands)

    van Swelm, Rachel P. L.; Laarakkers, Coby M. M.; van der Kuur, Ellen C.; Morava-Kozicz, Eva; Wevers, Ron A.; Augustijn, Kevin D.; Touw, Daan J.; Sandel, Maro H.; Masereeuw, Rosalinde; Russel, Frans G. M.

    2012-01-01

    Drug-induced liver injury (DILI) is the leading cause of acute liver failure. Currently, no adequate predictive biomarkers for DILI are available. This study describes a translational approach using proteomic profiling for the identification of urinary proteins related to acute liver injury induced

  8. Intravenous superoxide dismutase as a protective agent to prevent impairment of lung function induced by high tidal volume ventilation.

    Science.gov (United States)

    Wu, Nan-Chun; Liao, Fan-Ting; Cheng, Hao-Min; Sung, Shih-Hsien; Yang, Yu-Chun; Wang, Jiun-Jr

    2017-07-26

    Positive-pressure mechanical ventilation is essential in assisting patients with respiratory failure in the intensive care unit and facilitating oxygenation in the operating room. However, it was also recognized as a primary factor leading to hospital-acquired pulmonary dysfunction, in which pulmonary oxidative stress and lung inflammation had been known to play important roles. Cu/Zn superoxide dismutase (SOD) is an important antioxidant, and possesses anti-inflammatory capacity. In this study, we aimed to study the efficacy of Cu/Zn SOD, administered intravenously during high tidal volume (HTV) ventilation, to prevent impairment of lung function. Thirty-eight male Sprague-Dawley rats were divided into 3 groups: 5 h ventilation with (A) low tidal volume (LTV; 8 mL/kg; n = 10), (B) high tidal volume (HTV; 18 mL/kg; n = 14), or (C) HTV and intravenous treatment of Cu/Zn SOD at a dose of 1000 U/kg/h (HTV + SOD; n = 14). Lung function was evaluated both at baseline and after 5-h ventilation. Lung injury was assessed by histological examination, lung water and protein contents in the bronchoalveolar lavage fluid (BALF). Pulmonary oxidative stress was examined by concentrations of methylguanidine (MG) and malondialdehyde (MDA) in BALF, and antioxidative activity by protein expression of glutathione peroxidase-1 (GPx-1) in the lung. Severity of lung inflammation was evaluated by white blood cell and differential count in BALF, and protein expression of inducible nitric oxide synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9), and mRNA expression of nuclear factor-κB (NF-κB) in the lung. We also examined protein expression of surfactant protein (SP)-A and D and we measured hourly changes in serum nitric oxide (NO) level. Five hours of LTV ventilation did not induce a major change in lung function, whereas 5 h of HTV ventilation induced apparent combined restrictive and

  9. Mustard vesicant-induced lung injury: Advances in therapy

    International Nuclear Information System (INIS)

    Weinberger, Barry; Malaviya, Rama; Sunil, Vasanthi R.; Venosa, Alessandro; Heck, Diane E.; Laskin, Jeffrey D.; Laskin, Debra L.

    2016-01-01

    Most mortality and morbidity following exposure to vesicants such as sulfur mustard is due to pulmonary toxicity. Acute injury is characterized by epithelial detachment and necrosis in the pharynx, trachea and bronchioles, while long-term consequences include fibrosis and, in some instances, cancer. Current therapies to treat mustard poisoning are primarily palliative and do not target underlying pathophysiologic mechanisms. New knowledge about vesicant-induced pulmonary disease pathogenesis has led to the identification of potentially efficacious strategies to reduce injury by targeting inflammatory cells and mediators including reactive oxygen and nitrogen species, proteases and proinflammatory/cytotoxic cytokines. Therapeutics under investigation include corticosteroids, N-acetyl cysteine, which has both mucolytic and antioxidant properties, inducible nitric oxide synthase inhibitors, liposomes containing superoxide dismutase, catalase, and/or tocopherols, protease inhibitors, and cytokine antagonists such as anti-tumor necrosis factor (TNF)-α antibody and pentoxifylline. Antifibrotic and fibrinolytic treatments may also prove beneficial in ameliorating airway obstruction and lung remodeling. More speculative approaches include inhibitors of transient receptor potential channels, which regulate pulmonary epithelial cell membrane permeability, non-coding RNAs and mesenchymal stem cells. As mustards represent high priority chemical threat agents, identification of effective therapeutics for mitigating toxicity is highly significant.

  10. Mustard vesicant-induced lung injury: Advances in therapy

    Energy Technology Data Exchange (ETDEWEB)

    Weinberger, Barry, E-mail: bweinberger@northwell.edu [Division of Neonatal and Perinatal Medicine, Hofstra Northwell School of Medicine, Cohen Children' s Medical Center of New York, New Hyde Park, NY 11040 (United States); Malaviya, Rama; Sunil, Vasanthi R.; Venosa, Alessandro [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Heck, Diane E. [Department of Environmental Health Science, New York Medical College, School of Public Health, Valhalla, NY 10595 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2016-08-15

    Most mortality and morbidity following exposure to vesicants such as sulfur mustard is due to pulmonary toxicity. Acute injury is characterized by epithelial detachment and necrosis in the pharynx, trachea and bronchioles, while long-term consequences include fibrosis and, in some instances, cancer. Current therapies to treat mustard poisoning are primarily palliative and do not target underlying pathophysiologic mechanisms. New knowledge about vesicant-induced pulmonary disease pathogenesis has led to the identification of potentially efficacious strategies to reduce injury by targeting inflammatory cells and mediators including reactive oxygen and nitrogen species, proteases and proinflammatory/cytotoxic cytokines. Therapeutics under investigation include corticosteroids, N-acetyl cysteine, which has both mucolytic and antioxidant properties, inducible nitric oxide synthase inhibitors, liposomes containing superoxide dismutase, catalase, and/or tocopherols, protease inhibitors, and cytokine antagonists such as anti-tumor necrosis factor (TNF)-α antibody and pentoxifylline. Antifibrotic and fibrinolytic treatments may also prove beneficial in ameliorating airway obstruction and lung remodeling. More speculative approaches include inhibitors of transient receptor potential channels, which regulate pulmonary epithelial cell membrane permeability, non-coding RNAs and mesenchymal stem cells. As mustards represent high priority chemical threat agents, identification of effective therapeutics for mitigating toxicity is highly significant.

  11. Immobilisation-induced hypercalcemia following spinal cord injury affecting the kidney function in two young native Greenlanders

    DEFF Research Database (Denmark)

    Linstow, Michael V; Biering-Sørensen, Fin

    2017-01-01

    INTRODUCTION: Immobilisation-induced hypercalcemia following SCI affecting the kidney function, is a rare but potentially serious condition. We report immobilisation-induced hypercalcemia affecting the kidney function in two young native Greenlanders with spinal cord injury (SCI). CASE...... PRESENTATIONS: Two 15- and 24-year-old male native Greenlanders, both with traumatic C5 SCI were admitted to our spinal cord unit. They were non-smokers without history of daily alcohol intake pre- or immediately post-injury. No physical demanding activities pre-injury. Due to complaints of nausea/vomiting 10...... the last 20 years our spinal cord unit has only experienced immobilisation-induced hypercalcemia following SCI affecting the kidney function in two young male native Greenlanders. This finding of immobilisation-induced hypercalcemia following SCI affecting the kidney function in two young native...

  12. Protection of Pentoxifylline against Testis Injury Induced by Intermittent Hypobaric Hypoxia

    Directory of Open Access Journals (Sweden)

    Chen Yao

    2016-01-01

    Full Text Available To investigate the effect of pentoxifylline (PTX on spermatogenesis dysfunction induced by intermittent hypobaric hypoxia (IHH and unveil the underlying mechanism, experimental animals were assigned to Control, IHH+Vehicle, and IHH+PTX groups and exposed to 4 cycles of 96 h of hypobaric hypoxia followed by 96 h of normobaric normoxia for 32 days. PTX was administered for 32 days. Blood and tissue samples were collected 7 days thereafter. Serum malondialdehyde levels were used to assess lipid peroxidation; ferric-reducing antioxidant power (FRAP, superoxide dismutase, and catalase and glutathione peroxidase enzyme activities were assessed to determine antioxidant capacity in various samples. Testis histopathology was assessed after hematoxylin-eosin staining by Johnsen’s testicular scoring system. Meanwhile, testosterone synthase and vimentin amounts were assessed by immunohistochemistry. Sperm count, motility, and density were assessed to determine epididymal sperm quality. IHH treatment induced significant pathological changes in testicular tissue and enhanced serum lipid peroxide levels, while reducing serum FRAP, antioxidant enzyme activities, and testosterone synthase expression. Moreover, IHH impaired epididymal sperm quality and vimentin structure in Sertoli cells. Oral administration of PTX improved the pathological changes in the testis. IHH may impair spermatogenesis function of testicular tissues by inducing oxidative stress, but this impairment could be attenuated by administration of PTX.

  13. MRI signal intensity as a maker of impairment in incomplete cervical spinal cord injuries

    International Nuclear Information System (INIS)

    Chiba, Hidefumi; Aoki, Haruhito; Hamabe, Masaki; Sasao, Yutaka; Miura, Takehiko

    1998-01-01

    Incomplete cervical spinal cord injuries such as central cord syndrome may result in prolonged spasticity of the limbs, especially disabilities of the upper extremities, even if the patient is able to walk. In this study, relationship between cord impairment and clinical outcome was investigated using MRI. Results showed that small foci of low signal intensity in T 1 -weighted imaging combined with foci of high signal intensity in T 2 -weighted imaging in follow-up MRI are closely related to the severity of sequelae. Small foci of low signal intensity in T 1 -weighted imaging are considered in the literature to indicate myelomalacia or cyst formation with gliosis. (author)

  14. Effects of early nerve repair on experimental brachial plexus injury in neonatal rats.

    Science.gov (United States)

    Bourke, Gráinne; McGrath, Aleksandra M; Wiberg, Mikael; Novikov, Lev N

    2018-03-01

    Obstetrical brachial plexus injury refers to injury observed at the time of delivery, which may lead to major functional impairment in the upper limb. In this study, the neuroprotective effect of early nerve repair following complete brachial plexus injury in neonatal rats was examined. Brachial plexus injury induced 90% loss of spinal motoneurons and 70% decrease in biceps muscle weight at 28 days after injury. Retrograde degeneration in spinal cord was associated with decreased density of dendritic branches and presynaptic boutons and increased density of astrocytes and macrophages/microglial cells. Early repair of the injured brachial plexus significantly delayed retrograde degeneration of spinal motoneurons and reduced the degree of macrophage/microglial reaction but had no effect on muscle atrophy. The results demonstrate that early nerve repair of neonatal brachial plexus injury could promote survival of injured motoneurons and attenuate neuroinflammation in spinal cord.

  15. Microglial activation induced by brain trauma is suppressed by post-injury treatment with a PARP inhibitor

    Directory of Open Access Journals (Sweden)

    d'Avila Joana C

    2012-02-01

    Full Text Available Abstract Background Traumatic brain injury (TBI induces activation of microglia. Activated microglia can in turn increase secondary injury and impair recovery. This innate immune response requires hours to days to become fully manifest, thus providing a clinically relevant window of opportunity for therapeutic intervention. Microglial activation is regulated in part by poly(ADP-ribose polymerase-1 (PARP-1. Inhibition of PARP-1 activity suppresses NF-kB-dependent gene transcription and thereby blocks several aspects of microglial activation. Here we evaluated the efficacy of a PARP inhibitor, INO-1001, in suppressing microglial activation after cortical impact in the rat. Methods Rats were subjected to controlled cortical impact and subsequently treated with 10 mg/kg of INO-1001 (or vehicle alone beginning 20 - 24 hours after the TBI. Brains were harvested at several time points for histological evaluation of inflammation and neuronal survival, using markers for microglial activation (morphology and CD11b expression, astrocyte activation (GFAP, and neuronal survival (NeuN. Rats were also evaluated at 8 weeks after TBI using measures of forelimb dexterity: the sticky tape test, cylinder test, and vermicelli test. Results Peak microglial and astrocyte activation was observed 5 to 7 days after this injury. INO-1001 significantly reduced microglial activation in the peri-lesion cortex and ipsilateral hippocampus. No rebound inflammation was observed in rats that were treated with INO-1001 or vehicle for 12 days followed by 4 days without drug. The reduced inflammation was associated with increased neuronal survival in the peri-lesion cortex and improved performance on tests of forelimb dexterity conducted 8 weeks after TBI. Conclusions Treatment with a PARP inhibitor for 12 days after TBI, with the first dose given as long as 20 hours after injury, can reduce inflammation and improve histological and functional outcomes.

  16. Different imaging methods in the assessment of radiation-induced lung injury following hemithorax irradiation for pleural mesothelioma

    International Nuclear Information System (INIS)

    Maasilta, P.; Kivisaari, L.; Mattson, K.

    1990-01-01

    The authors have characterized the radiation-induced lung-injury on serial chest X-rays, CTs and ultralow field MRs and evaluated the clinical value and cost/benefit ratio of the different imaging methods in 30 patients receiving high-dose hemithorax irradiation for pleural mesothelioma. Lung injury was severe in all patients, but non-specific and essentially as described in text-books. CT provided no clinically relevant, cost effective diagnostic advantage over conventional X-rays in the detection of early or late radiation-induced lung injury, but it was necessary for the evaluation of the disease status of the mesothelioma. The possible advantage of MR over CT could not be evaluated and needs further studies. Optimal time-points for imaging CTs or MRs to detect early radiation-induced lung injury following high dose hemithorax irradiation were during the latter part of the treatment or very shortly after the end of the irradiation. Late injury or irreversible fibrosis develop rapidly after 6 months and was clearly documented by chest X-rays. The authors recommend serial chest X-rays at 1-2, 6 and 12 months following radiotherapy as a cost-effective method for the detection of radiation-induced lung injury with additional CTs to document the stage of mesothelioma, when needed. (author). 31 refs.; 4 figs

  17. Impaired Healing of a Cutaneous Wound in an Inducible Nitric Oxide Synthase-Knockout Mouse

    Directory of Open Access Journals (Sweden)

    Takashi Kitano

    2017-01-01

    Full Text Available Background. We investigated the effects of loss of inducible nitric oxide synthase (iNOS on the healing process of cutaneous excisional injury by using iNOS-null (KO mice. Population of granulation tissue-related cell types, that is, myofibroblasts and macrophages, growth factor expression, and reepithelialization were evaluated. Methods. KO and wild type (WT mice of C57BL/6 background were used. Under general anesthesia two round full-thickness excision wounds of 5.0 mm in diameter were produced in dorsal skin. After specific intervals of healing, macroscopic observation, histology, immunohistochemistry, and real-time reverse transcription-polymerase chain reaction (RT-PCR were employed to evaluate the healing process. Results. The loss of iNOS retards granulation tissue formation and reepithelialization in excision wound model in mice. Detailed analyses showed that myofibroblast appearance, macrophage infiltration, and mRNA expression of transforming growth factor b and of collagen 1α2 were all suppressed by lacking iNOS. Conclusions. iNOS is required in the process of cutaneous wound healing. Lacking iNOS retards macrophage invasion and its expression of fibrogenic components that might further impair fibrogenic behaviors of fibroblasts.

  18. Valsartan Protects Against Contrast-Induced Acute Kidney Injury in Rats by Inhibiting Endoplasmic Reticulum Stress-Induced Apoptosis.

    Science.gov (United States)

    Sun, Yan; Peng, Ping-An; Ma, Yue; Liu, Xiao-Li; Yu, Yi; Jia, Shuo; Xu, Xiao-Han; Wu, Si-Jing; Zhou, Yu-Jie

    2017-01-01

    Contrast-induced acute kidney injury (CI-AKI) is a serious complication of the administration of iodinated contrast media (CM) for diagnostic and interventional cardiovascular procedures and is associated with substantial morbidity and mortality. While the preventative measures can mitigate the risk of CI-AKI, there remains a need for novel and effective therapeutic approaches. The pathogenesis of CI-AKI is complex and not completely understood. CM-induced renal tubular cell apoptosis caused by the activation of endoplasmic reticulum (ER) stress is involved in CIAKI. We previously demonstrated that valsartan alleviated CM-induced human renal tubular cell apoptosis by inhibiting ER stress in vitro. However, the nephroprotective effect of valsartan on CI-AKI in vivo has not been investigated. Therefore, the aim of this study was to explore the protective effect of valsartan in a rat model of CI-AKI by measuring the amelioration of renal damage and the changes in ER stressrelated biomarkers. Our results showed that the radiocontrast agent meglumine diatrizoate caused significant renal insufficiency, renin-angiotensin system (RAS) activation, and renal tubular apoptosis by triggering ER stress through activation of glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), caspase 12, CCAAT/enhancer-binding protein-homologous protein (CHOP) and c-Jun N-terminal protein kinase (JNK) (Pvalsartan significantly alleviated renal dysfunction, pathological injury, and apoptosis along with the inhibition of ER stressrelated biomarkers (PValsartan could protect against meglumine diatrizoate-induced kidney injury in rats by inhibiting the ER stress-induced apoptosis, making it a promising strategy for preventing CI-AKI. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Post-injury stretch promotes recovery in a rat model of muscle damage induced by lengthening contractions.

    Science.gov (United States)

    Mori, Tomohiro; Agata, Nobuhide; Itoh, Yuta; Inoue-Miyazu, Masumi; Mizumura, Kazue; Sokabe, Masahiro; Taguchi, Toru; Kawakami, Keisuke

    2017-06-30

    We investigated the cellular mechanisms and therapeutic effect of post-injury stretch on the recovery process from muscle injury induced by lengthening contractions (LC). One day after LC, a single 15-min bout of muscle stretch was applied at an intensity of 3 mNm. The maximal isometric torque was measured before and at 2-21 days after LC. The myofiber size was analyzed at 21 days after LC. Developmental myosin heavy chain-immunoreactive (dMHC-ir) cells, a marker of regenerating myofibers, were observed in the early recovery stage (2-5 days after LC). We observed that LC-induced injury markedly decreased isometric torque and myofiber size, which recovered faster in rats that underwent stretch than in rats that did not. Regenerating myofiber with dMHC-ir cells was observed earlier in rats that underwent stretch. These results indicate that post-injury stretch may facilitate the regeneration and early formation of new myofibers, thereby promoting structural and functional recovery from LC-induced muscle injury.

  20. Nebivolol and chrysin protect the liver against ischemia/reperfusion-induced injury in rats

    Directory of Open Access Journals (Sweden)

    Sayed M. Mizar

    2015-03-01

    Full Text Available Oxidative stress plays a key role in the pathogenesis of hepatic ischemia/reperfusion (I/R-induced injury, one of the leading causes of liver damage post-surgical intervention, trauma and transplantation. This study aimed to evaluate the protective effect of nebivolol and chrysin against I/R-induced liver injury via their vasodilator and antioxidant effects, respectively. Adult male Wister rats received nebivolol (5 mg/kg and/or chrysin (25 mg/kg by oral gavage daily for one week then subjected to ischemia via clamping the portal triad for 30 min then reperfusion for 30 min. Liver function enzymes, alanine transaminase (ALT and aspartate transaminase (AST, as well as hepatic Myeloperoxidase (MPO, total nitrate (NOx, glutathione (GSH and liver malondialdehyde (MDA were measured at the end of the experiment. Liver tissue damage was examined by histopathology. In addition, the expression levels of nitric oxide synthase (NOS subtypes, endothelial (eNOS and inducible (iNOS in liver samples were assessed by Western blotting and confirmed by immunohistochemical analysis. Both chrysin and nebivolol significantly counteracted I/R-induced oxidative stress and tissue damage biomarkers. The combination of these agents caused additive liver protective effect against I/R-induced damage via the up regulation of nitric oxide expression and the suppression of oxidative stress. Chrysin and nebivolol combination showed a promising protective effect against I/R-induced liver injury, at least in part, via decreasing oxidative stress and increasing nitric oxide levels.

  1. Maresin 1, a Proresolving Lipid Mediator, Mitigates Carbon Tetrachloride-Induced Liver Injury in Mice

    Directory of Open Access Journals (Sweden)

    Ruidong Li

    2016-01-01

    Full Text Available Maresin 1 (MaR 1 was recently reported to have protective properties in several different animal models of acute inflammation by inhibiting inflammatory response. However, its function in acute liver injury is still unknown. To address this question, we induced liver injury in BALB/c mice with intraperitoneal injection of carbon tetrachloride with or without treatment of MaR 1. Our data showed that MaR 1 attenuated hepatic injury, oxidative stress, and lipid peroxidation induced by carbon tetrachloride, as evidenced by increased thiobarbituric acid reactive substances and reactive oxygen species levels were inhibited by treatment of MaR 1. Furthermore, MaR 1 increased activities of antioxidative mediators in carbon tetrachloride-treated mice liver. MaR 1 decreased indices of inflammatory mediators such as tumor necrosis factor-α, interleukin-6, interleukin-1β, monocyte chemotactic protein 1, myeloperoxidase, cyclooxygenase-2, and inducible nitric oxide synthase. Administration of MaR 1 inhibited activation of nuclear factor kappa B (NF-κb and mitogen-activated protein kinases (MAPKs in the liver of CCl4 treated mice. In conclusion, these results suggested the antioxidative, anti-inflammatory properties of MaR 1 in CCl4 induced liver injury. The possible mechanism is partly implicated in its abilities to inhibit ROS generation and activation of NF-κb and MAPK pathway.

  2. Effects of growth hormone plus a hyperproteic diet on methotrexate-induced injury in rat intestines.

    Science.gov (United States)

    Ortega, M; Gomez-de-Segura, I A; Vázquez, I; López, J M; de Guevara, C L; De-Miguel, E

    2001-01-01

    The aim of this study was to determine whether growth hormone treatment reduces injury to the intestinal mucosa induced by methotrexate (MTX). Wistar rats with intestinal injury induced by methotrexate were treated with daily growth hormone, beginning 3 days before MTX treatment until 3 or 4 days after MTX administration. The rats were killed at 3 or 7 days post-MTX administration. The rats were fed with either a normoproteic diet or a hyperproteic diet. Body weight, mortality, bacterial translocation, intestinal morphometry, proliferation and apoptosis and blood somatostatin and IGF-1 were determined. Combined administration of growth hormone and a hyperproteic diet reduces MTX-induced mortality. This effect was accompanied by increased cell proliferation and decreased apoptosis within the crypt. Morphometric data showed complete recovery of the mucosa by day 7 post-MTX administration. These results indicate a synergistic protective action of growth hormone combined with a hyperproteic diet to MTX-induced injury.

  3. Acute Kidney Injury by Radiographic Contrast Media: Pathogenesis and Prevention

    Science.gov (United States)

    Faga, Teresa; Pisani, Antonio; Michael, Ashour

    2014-01-01

    It is well known that iodinated radiographic contrast media may cause kidney dysfunction, particularly in patients with preexisting renal impairment associated with diabetes. This dysfunction, when severe, will cause acute renal failure (ARF). We may define contrast-induced Acute Kidney Injury (AKI) as ARF occurring within 24–72 hrs after the intravascular injection of iodinated radiographic contrast media that cannot be attributed to other causes. The mechanisms underlying contrast media nephrotoxicity have not been fully elucidated and may be due to several factors, including renal ischaemia, particularly in the renal medulla, the formation of reactive oxygen species (ROS), reduction of nitric oxide (NO) production, and tubular epithelial and vascular endothelial injury. However, contrast-induced AKI can be prevented, but in order to do so, we need to know the risk factors. We have reviewed the risk factors for contrast-induced AKI and measures for its prevention, providing a long list of references enabling readers to deeply evaluate them both. PMID:25197639

  4. Thioredoxin-1 Protects Bone Marrow-Derived Mesenchymal Stromal Cells from Hyperoxia-Induced Injury In Vitro

    Science.gov (United States)

    Zhang, Lei; Wang, Jin; Zeng, Lingkong; Li, Qiong; Liu, Yalan

    2018-01-01

    Background The poor survival rate of mesenchymal stromal cells (MSC) transplanted into recipient lungs greatly limits their therapeutic efficacy for diseases like bronchopulmonary dysplasia (BPD). The aim of this study is to evaluate the effect of thioredoxin-1 (Trx-1) overexpression on improving the potential for bone marrow-derived mesenchymal stromal cells (BMSCs) to confer resistance against hyperoxia-induced cell injury. Methods 80% O2 was used to imitate the microenvironment surrounding-transplanted cells in the hyperoxia-induced lung injury in vitro. BMSC proliferation and apoptotic rates and the levels of reactive oxygen species (ROS) were measured. The effects of Trx-1 overexpression on the level of antioxidants and growth factors were investigated. We also investigated the activation of apoptosis-regulating kinase-1 (ASK1) and p38 mitogen-activated protein kinases (MAPK). Result Trx-1 overexpression significantly reduced hyperoxia-induced BMSC apoptosis and increased cell proliferation. We demonstrated that Trx-1 overexpression upregulated the levels of superoxide dismutase and glutathione peroxidase as well as downregulated the production of ROS. Furthermore, we illustrated that Trx-1 protected BMSCs against hyperoxic injury via decreasing the ASK1/P38 MAPK activation rate. Conclusion These results demonstrate that Trx-1 overexpression improved the ability of BMSCs to counteract hyperoxia-induced injury, thus increasing their potential to treat hyperoxia-induced lung diseases such as BPD. PMID:29599892

  5. Cognitive-Enhancing Effect of Dianthus superbus var. Longicalycinus on Scopolamine-Induced Memory Impairment in Mice.

    Science.gov (United States)

    Weon, Jin Bae; Jung, Youn Sik; Ma, Choong Je

    2016-05-01

    Dianthus superbus (D. superbus) is a traditional crude drug used for the treatment of urethritis, carbuncles and carcinomas. The objective of this study was to confirm the cognitive enhancing effect of D. superbus in memory impairment induced mice and to elucidate the possible potential mechanism. Effect of D. superbus on scopolamine induced memory impairment on mice was evaluated using the Morris water maze and passive avoidance tests. We also investigated acetylcholinesterase (AChE) activity and brain-derived neurotropic factor (BDNF) expression in scopolamine-induced mice. HPLC-DAD analysis was performed to identify active compounds in D. superbus. The results revealed that D. superbus attenuated the learning and memory impairment induced by scopolamine. D. superbus also inhibited AChE levels in the hippocampi of the scopolamine-injected mice. Moreover, D. superbus increased BDNF expression in the hippocampus. Eight compounds were identified using HPLC-DAD analysis. The content of 4-hydroxyphenyl acetic acid was higher than contents of other compounds. These results indicated that D. superbus improved memory functioning accompanied by inhibition of AChE and upregulation of BDNF, suggesting that D. superbus may be a useful therapeutic agent for the prevention or treatment of Alzheimer's disease.

  6. Exercise-induced circulating extracellular vesicles protect against cardiac ischemia-reperfusion injury.

    Science.gov (United States)

    Bei, Yihua; Xu, Tianzhao; Lv, Dongchao; Yu, Pujiao; Xu, Jiahong; Che, Lin; Das, Avash; Tigges, John; Toxavidis, Vassilios; Ghiran, Ionita; Shah, Ravi; Li, Yongqin; Zhang, Yuhui; Das, Saumya; Xiao, Junjie

    2017-07-01

    Extracellular vesicles (EVs) serve an important function as mediators of intercellular communication. Exercise is protective for the heart, although the signaling mechanisms that mediate this cardioprotection have not been fully elucidated. Here using nano-flow cytometry, we found a rapid increase in plasma EVs in human subjects undergoing exercise stress testing. We subsequently identified that serum EVs were increased by ~1.85-fold in mice after 3-week swimming. Intramyocardial injection of equivalent quantities of EVs from exercised mice and non-exercised controls provided similar protective effects against acute ischemia/reperfusion (I/R) injury in mice. However, injection of exercise-induced EVs in a quantity equivalent to the increase seen with exercise (1.85 swim group) significantly enhanced the protective effect. Similarly, treatment with exercise-induced increased EVs provided additional anti-apoptotic effect in H 2 O 2 -treated H9C2 cardiomyocytes mediated by the activation of ERK1/2 and HSP27 signaling. Finally, by treating H9C2 cells with insulin-like growth factor-1 to mimic exercise stimulus in vitro, we found an increased release of EVs from cardiomyocytes associated with ALIX and RAB35 activation. Collectively, our results show that exercise-induced increase in circulating EVs enhances the protective effects of endogenous EVs against cardiac I/R injury. Exercise-derived EVs might serve as a potent therapy for myocardial injury in the future.

  7. Slow information processing after very severe closed head injury : impaired access to declarative knowledge and intact application and acquisition of procedural knowledge

    NARCIS (Netherlands)

    Timmerman, ME; Brouwer, WH

    As an explanation of the pattern of slow information processing after closed head injury (CHI), hypotheses of impaired access to declarative memory and intact application and acquisition of procedural memory after CHI are presented. These two hypotheses were tested by means of four cognitive

  8. Hyperhomocysteinemia potentiates diabetes-impaired EDHF-induced vascular relaxation: Role of insufficient hydrogen sulfide

    Directory of Open Access Journals (Sweden)

    Zhongjian Cheng

    2018-06-01

    Full Text Available Insufficient hydrogen sulfide (H2S has been implicated in Type 2 diabetic mellitus (T2DM and hyperhomocysteinemia (HHcy-related cardiovascular complications. We investigated the role of H2S in T2DM and HHcy-induced endothelial dysfunction in small mesenteric artery (SMA of db/db mice fed a high methionine (HM diet. HM diet (8 weeks induced HHcy in both T2DM db/db mice and non-diabetic db/+ mice (total plasma Hcy: 48.4 and 31.3 µM, respectively, and aggravated the impaired endothelium-derived hyperpolarization factor (EDHF-induced endothelium-dependent relaxation to acetylcholine (ACh, determined by the presence of eNOS inhibitor N(ω-nitro-L-arginine methyl ester (L-NAME and prostacyclin (PGI2 inhibitor indomethacin (INDO, in SMA from db/db mice but not that from db/+ mice. A non-selective Ca2+-active potassium channel (KCa opener NS309 rescued T2DM/HHcy-impaired EDHF-mediated vascular relaxation to ACh. EDHF-induced relaxation to ACh was inhibited by a non-selective KCa blocker TEA and intermediate-conductance KCa blocker (IKCa Tram-34, but not by small-conductance KCa (SKCa blocker Apamin. HHcy potentiated the reduction of free sulfide, H2S and cystathionine γ-lyase protein, which converts L-cysteine to H2S, in SMA of db/db mice. Importantly, a stable H2S donor DATS diminished the enhanced O2- production in SMAs and lung endothelial cells of T2DM/HHcy mice. Antioxidant PEG-SOD and DATS improved T2DM/HHcy impaired relaxation to ACh. Moreover, HHcy increased hyperglycemia-induced IKCa tyrosine nitration in human micro-vascular endothelial cells. EDHF-induced vascular relaxation to L-cysteine was not altered, whereas such relaxation to NaHS was potentiated by HHcy in SMA of db/db mice which was abolished by ATP-sensitive potassium channel blocker Glycolamide but not by KCa blockers. Conclusions: Intermediate HHcy potentiated H2S reduction via CSE-downregulation in microvasculature of T2DM mice. H2S is justified as an EDHF. Insufficient H2S

  9. Drosophila Insulin receptor regulates the persistence of injury-induced nociceptive sensitization

    Science.gov (United States)

    Patel, Atit A.

    2018-01-01

    ABSTRACT Diabetes-associated nociceptive hypersensitivity affects diabetic patients with hard-to-treat chronic pain. Because multiple tissues are affected by systemic alterations in insulin signaling, the functional locus of insulin signaling in diabetes-associated hypersensitivity remains obscure. Here, we used Drosophila nociception/nociceptive sensitization assays to investigate the role of Insulin receptor (Insulin-like receptor, InR) in nociceptive hypersensitivity. InR mutant larvae exhibited mostly normal baseline thermal nociception (absence of injury) and normal acute thermal hypersensitivity following UV-induced injury. However, their acute thermal hypersensitivity persists and fails to return to baseline, unlike in controls. Remarkably, injury-induced persistent hypersensitivity is also observed in larvae that exhibit either type 1 or type 2 diabetes. Cell type-specific genetic analysis indicates that InR function is required in multidendritic sensory neurons including nociceptive class IV neurons. In these same nociceptive sensory neurons, only modest changes in dendritic morphology were observed in the InRRNAi-expressing and diabetic larvae. At the cellular level, InR-deficient nociceptive sensory neurons show elevated calcium responses after injury. Sensory neuron-specific expression of InR rescues the persistent thermal hypersensitivity of InR mutants and constitutive activation of InR in sensory neurons ameliorates the hypersensitivity observed with a type 2-like diabetic state. Our results suggest that a sensory neuron-specific function of InR regulates the persistence of injury-associated hypersensitivity. It is likely that this new system will be an informative genetically tractable model of diabetes-associated hypersensitivity. PMID:29752280

  10. Artemesia annua extract prevents glyoxal-induced cell injury in ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of Artemesia annua extract on glyoxal-induced injury in retinal microvascular endothelial cells (HRECs). Methods: HRECs were cultured in a medium containing 500 μM glyoxal or glyoxal plus 50μM Artemesia annua extract, or in the medium alone for 24 h. Apoptosis was analysed by flow ...

  11. Protective Activity of Dendropanax Morbifera Against Cisplatin-Induced Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Eun-Sun Kim

    2015-01-01

    Full Text Available Background/Aims: Drug-induced acute kidney injury (AKI has been a severe threat to hospitalized patients, raising the urgent needs to develop strategies to reduce AKI. We investigated the protective activity of Dendropanax morbifera (DP, a medicinal plant which has been widely used to treat infectious and pain diseases, on acute kidney injury (AKI using cisplatin-induced nephropathic models. Methods: Both in vitro renal tubular cells (NRK-52E and in vivo rat models were used to demonstrate the nephroprotective effect of DP. Results: Methanolic extract from DP significantly reduced cisplatin-induced toxicity in renal tubular cells. Through successive liquid extraction, the extract of DP was separated into n-hexane, CHCl3, EtOAc, n-BuOH, and H2O fractions. Among these, the CHCl3 fraction (DPCF was found to be most potent. The protective activity of DPCF was found to be mediated through anti-oxidant, mitochondrial protective, and anti-apoptotic activities. In in vivo rat models of AKI, treatment with DPCF significantly reversed the cisplatin-induced increase in blood urea nitrogen and serum creatinine and histopathologic damage, recovered the level of anti-oxidant enzymes, and inhibited renal apoptosis. Conclusion: We demonstrated that DP extracts decreased cisplatin-induced renal toxicity, indicating its potential to ameliorate drug-associated acute kidney damage.

  12. Cardioprotective effect of mumie (shilajit) on experimentally induced myocardial injury.

    Science.gov (United States)

    Joukar, Siyavash; Najafipour, Hamid; Dabiri, Shahriar; Sheibani, Mohammad; Sharokhi, Nader

    2014-09-01

    This study assessed the effects of mumie (shilajit) pre-treatment, a traditional drug which is well known in the ancient medicine of both east and west, on cardiac performance of rats subjected to myocardial injury. Animals were divided into control, M250, and M500 (received mumie at dosages of 250 and 500 mg/kg/day, orally for 7 days, respectively) main groups each consisting of two subgroups-with and without heart injury. On the 6th and 7th days, isoproterenol (ISO) (85 mg/kg i.p.) was injected (s.c.) to half of the animal subgroups to induce myocardial damage. On the 8th day, after hemodynamic parameter recordings, hearts were removed for further evaluation. Mumie pre-treatment had no significant effects on hemodynamic and cardiac indices of normal animals. When the cardiac injury was induced, mumie maintained the ±dp/dt maximum, attenuated the serum cardiac troponin I, and reduced the severity of cardiac lesions. Despite the mild positive effects of mumie on total antioxidant capacity and lipid proxidation index, no significant difference was observed among animal groups. The findings suggest the prominent cardioprotective effect of mumie against destructive effects of ISO. It seems that other mechanisms than reinforcements of antioxidant system are involved in this beneficial effect.

  13. The relationship between agitation and impairments of orientation and memory during the PTA period after traumatic brain injury.

    Science.gov (United States)

    McKay, Adam; Love, Jasmine; Trevena-Peters, Jessica; Gracey, Jacinta; Ponsford, Jennie

    2018-06-03

    Agitation is common during the post-traumatic amnesia (PTA) period after traumatic brain injury (TBI), although our knowledge of what causes or predicts agitation is limited. The current study aimed to examine the association of agitation in PTA with the concurrent impairments in orientation and memory while controlling for covariates of agitation. Participants were 125 patients in PTA following moderate to extremely severe TBI recruited from an inpatient brain injury rehabilitation service who were assessed throughout PTA on the Agitated Behavior Scale (ABS) and the Westmead PTA Scale (WPTAS). Agitation was observed in 42.4% of participants (ABS score > 21), with disinhibited behaviours (e.g., distractibility and impulsivity) most common. Multilevel modelling found daily ABS scores to be associated with daily scores on the WPTAS but in a non-linear pattern. Analysis of covariates found that shorter time post-admission, younger age, presence of infection and higher antipsychotic doses were associated with higher ABS scores. These results support a relationship between agitation and the concurrent cognitive impairment during PTA. While a causal link cannot yet be inferred, management strategies that can potentially interfere with cognition (e.g., sedating medications, environmental changes) should be used cautiously in case they exacerbate agitation.

  14. Constraint-induced movement therapy for children with acquired brain injury

    DEFF Research Database (Denmark)

    Schmidt Pedersen, Kristina; Pallesen, H.; Kristensen, H. K.

    2016-01-01

    An estimated 125-137 Danish children with acquired brain injury (ABI) require rehabilitation annually, 30-40 of these at a highly specialized level. Constraint-induced movement therapy (CIMT) has shown significant effects in increasing function in children with cerebral palsy. More knowledge of h...

  15. Arginyl-glutamine dipeptide or docosahexaenoic acid attenuates hyperoxia-induced small intestinal injury in neonatal mice.

    Science.gov (United States)

    Li, Nan; Ma, Liya; Liu, Xueyan; Shaw, Lynn; Li Calzi, Sergio; Grant, Maria B; Neu, Josef

    2012-04-01

    Supplementation studies of glutamine, arginine, and docosahexaenoic acid (DHA) have established the safety of each of these nutrients in neonates; however, the potential for a more stable and soluble dipeptide, arginyl-glutamine (Arg-Gln) or DHA with anti-inflammatory properties, to exert benefits on hyperoxia-induced intestinal injury has not been investigated. Arg-Gln dipeptide has been shown to prevent retinal damage in a rodent model of oxygen-induced injury. The objective of the present study was to investigate whether Arg-Gln dipeptide or DHA could also attenuate markers of injury and inflammation to the small intestine in this same model. Seven-day-old mouse pups were placed with their dams in 75% oxygen for 5 days. After 5 days of hyperoxic exposure (P7-P12), pups were removed from hyperoxia and allowed to recover in atmospheric conditions for 5 days (P12-P17). Mouse pups received Arg-Gln (5g·kg·day) or DHA (5g·kg·day) or vehicle orally started on P12 through P17. Distal small intestine (DSI) histologic changes, myeloperoxidase (MPO), lactate dehydrogenase (LDH), inflammatory cytokines, and tissue apoptosis were evaluated. Hyperoxic mice showed a greater distortion of overall villus structure and with higher injury score (PDHA supplementation groups were more similar to the room air control group. Supplementation of Arg-Gln or DHA reduced hyperoxia-induced MPO activity (PDHA returned LDH activity to the levels of control. Hyperoxia induced apoptotic cell death in DSIs, and both Arg-Gln and DHA reversed this effect (PDHA may limit some inflammatory and apoptotic processes involved in hyperoxic-induced intestinal injury in neonatal mice.

  16. Edaravone protects endotoxin-induced liver injury by inhibiting apoptosis and reducing proinflammatory cytokines

    Directory of Open Access Journals (Sweden)

    L. Zong

    2014-03-01

    Full Text Available Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN and lipopolysaccharide (LPS in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST and alanine aminotransferase (ALT. Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis.

  17. Lycopene Protects against Hypoxia/Reoxygenation Injury by Alleviating ER Stress Induced Apoptosis in Neonatal Mouse Cardiomyocytes

    Science.gov (United States)

    Xu, Jiqian; Hu, Houxiang; Chen, Bin; Yue, Rongchuan; Zhou, Zhou; Liu, Yin; Zhang, Shuang; Xu, Lei; Wang, Huan; Yu, Zhengping

    2015-01-01

    Endoplasmic reticulum (ER) stress induced apoptosis plays a pivotal role in myocardial ischemia/reperfusion (I/R)-injury. Inhibiting ER stress is a major therapeutic target/strategy in treating cardiovascular diseases. Our previous studies revealed that lycopene exhibits great pharmacological potential in protecting against the I/R-injury in vitro and vivo, but whether attenuation of ER stress (and) or ER stress-induced apoptosis contributes to the effects remains unclear. In the present study, using neonatal mouse cardiomyocytes to establish an in vitro model of hypoxia/reoxygenation (H/R) to mimic myocardium I/R in vivo, we aimed to explore the hypothesis that lycopene could alleviate the ER stress and ER stress-induced apoptosis in H/R-injury. We observed that lycopene alleviated the H/R injury as revealed by improving cell viability and reducing apoptosis, suppressed reactive oxygen species (ROS) generation and improved the phosphorylated AMPK expression, attenuated ER stress as evidenced by decreasing the expression of GRP78, ATF6 mRNA, sXbp-1 mRNA, eIF2α mRNA and eIF2α phosphorylation, alleviated ER stress-induced apoptosis as manifested by reducing CHOP/GADD153 expression, the ratio of Bax/Bcl-2, caspase-12 and caspase-3 activity in H/R-treated cardiomyocytes. Thapsigargin (TG) is a potent ER stress inducer and used to elicit ER stress of cardiomyocytes. Our results showed that lycopene was able to prevent TG-induced ER stress as reflected by attenuating the protein expression of GRP78 and CHOP/GADD153 compared to TG group, significantly improve TG-caused a loss of cell viability and decrease apoptosis in TG-treated cardiomyocytes. These results suggest that the protective effects of lycopene on H/R-injury are, at least in part, through alleviating ER stress and ER stress-induced apoptosis in neonatal mouse cardiomyocytes. PMID:26291709

  18. Expression of Angiotensin II and Aldosterone in Radiation-induced Lung Injury

    OpenAIRE

    Cao, Shuo; Wu, Rong

    2012-01-01

    Objective Radiation-induced lung injury (RILI) is the most common, dose-limiting complication in thoracic malignancy radiotherapy. Considering its negative impact on patients and restrictions to efficacy, the mechanism of RILI was studied. Methods Wistar rats were locally irradiated with a single dose of 0, 16, and 20 Gy to the right half of the lung to establish a lung injury model. Two and six months after irradiation, the right half of the rat lung tissue was removed, and the concentration...

  19. Relationship between changes in the cochlear blood flow and disorder of hearing function induced by blast injury in guinea pigs.

    Science.gov (United States)

    Chen, Wei; Wang, Jianmin; Chen, Jing; Chen, Jichuan; Chen, Zhiqiang

    2013-01-01

    The auditory system is the most susceptible to damages from blast waves. Blast injuries always lead to varying degrees of hearing impairment. Although a disorder of the cochlear blood flow (CoBF) has been considered to be related to many pathological processes of the auditory system and to contribute to various types of hearing loss, changes in the CoBF induced by blast waves and the relationship between such changes and hearing impairment are undefined. To observe the changes in the cochlear microcirculation after exposure to an explosion blast, investigate the relationship between changes in the CoBF and hearing impairment and subsequently explore the mechanism responsible for the changes in the CoBF, we detected the perfusion of the cochlear microcirculation and hearing threshold shift after exposure to an explosion blast. Then, an N-nitro-L-arginine-methyl ester (L-NAME, NO synthase inhibitor) solution and artificial perilymph were applied to the round window (RW) of the cochlea before the blast exposure, followed by an evaluation of the CoBF and hearing function. The results indicated that the changes in the CoBF were correlated to the strength of the blast wave. The cochlear blood flow significantly increased when the peak value of the blast overpressure was greater than approximately 45 kPa, and there was no significant change in the cochlear blood flow when the peak value of the blast overpressure was less than approximately 35 kPa. Following local administration of the NO synthase inhibitor L-NAME, the increase in the CoBF induced by the blast was inhibited, and this reduction was significantly associated with the hearing threshold.

  20. Dexamethasone impairs hypoxia-inducible factor-1 function

    International Nuclear Information System (INIS)

    Wagner, A.E.; Huck, G.; Stiehl, D.P.; Jelkmann, W.; Hellwig-Buergel, T.

    2008-01-01

    Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription-factor composed of α- and β-subunits. HIF-1 is not only necessary for the cellular adaptation to hypoxia, but it is also involved in inflammatory processes and wound healing. Glucocorticoids (GC) are therapeutically used to suppress inflammatory responses. Herein, we investigated whether GC modulate HIF-1 function using GC receptor (GR) possessing (HepG2) and GR deficient (Hep3B) human hepatoma cell cultures as model systems. Dexamethasone (DEX) treatment increased HIF-1α levels in the cytosol of HepG2 cells, while nuclear HIF-1α levels and HIF-1 DNA-binding was reduced. In addition, DEX dose-dependently lowered the hypoxia-induced luciferase activity in a reporter gene system. DEX suppressed the hypoxic stimulation of the expression of the HIF-1 target gene VEGF (vascular endothelial growth factor) in HepG2 cultures. DEX did not reduce hypoxically induced luciferase activity in HRB5 cells, a Hep3B derivative lacking GR. Transient expression of the GR in HRB5 cells restored the susceptibility to DEX. Our study discloses the inhibitory action of GC on HIF-1 dependent gene expression, which may be important with respect to the impaired wound healing in DEX-treated patients

  1. Suprathreshold Heat Pain Response Predicts Activity-Related Pain, but Not Rest-Related Pain, in an Exercise-Induced Injury Model

    Science.gov (United States)

    Coronado, Rogelio A.; Simon, Corey B.; Valencia, Carolina; Parr, Jeffrey J.; Borsa, Paul A.; George, Steven Z.

    2014-01-01

    Exercise-induced injury models are advantageous for studying pain since the onset of pain is controlled and both pre-injury and post-injury factors can be utilized as explanatory variables or predictors. In these studies, rest-related pain is often considered the primary dependent variable or outcome, as opposed to a measure of activity-related pain. Additionally, few studies include pain sensitivity measures as predictors. In this study, we examined the influence of pre-injury and post-injury factors, including pain sensitivity, for induced rest and activity-related pain following exercise induced muscle injury. The overall goal of this investigation was to determine if there were convergent or divergent predictors of rest and activity-related pain. One hundred forty-three participants provided demographic, psychological, and pain sensitivity information and underwent a standard fatigue trial of resistance exercise to induce injury of the dominant shoulder. Pain at rest and during active and resisted shoulder motion were measured at 48- and 96-hours post-injury. Separate hierarchical models were generated for assessing the influence of pre-injury and post-injury factors on 48- and 96-hour rest-related and activity-related pain. Overall, we did not find a universal predictor of pain across all models. However, pre-injury and post-injury suprathreshold heat pain response (SHPR), a pain sensitivity measure, was a consistent predictor of activity-related pain, even after controlling for known psychological factors. These results suggest there is differential prediction of pain. A measure of pain sensitivity such as SHPR appears more influential for activity-related pain, but not rest-related pain, and may reflect different underlying processes involved during pain appraisal. PMID:25265560

  2. Association between cognitive impairments and obsessive-compulsive spectrum presentations following traumatic brain injury.

    Science.gov (United States)

    Rydon-Grange, Michelle; Coetzer, Rudi

    2017-01-02

    This study examined the association between self-reported obsessive-compulsive spectrum symptomatology and cognitive performance in a sample of patients with traumatic brain injury (TBI). Twenty-four adults with a moderate-severe TBI accessing a community brain injury rehabilitation service were recruited. Age ranged between 19 and 69 years. Participants completed a battery of neuropsychological tasks assessing memory, executive functioning, and speed of information processing. Self-report questionnaires assessing obsessive-compulsive (OC) symptoms and obsessive-compulsive personality disorder (OCPD) traits were also completed. Correlational analyses revealed that deficits in cognitive flexibility were associated with greater self-reported OC symptomatology and severity. Greater OC symptom severity was significantly related to poorer performance on a visual memory task. Verbal memory and speed of information processing impairments were unrelated to OC symptoms. Performance on tasks of memory, executive functioning, and speed of information processing were not associated with OCPD traits. Overall, results indicate that greater OC symptomatology and severity were associated with specific neuropsychological functions (i.e., cognitive flexibility, visual memory). OCPD personality traits were unrelated to cognitive performance. Further research is needed to examine the potential causal relationship and longer-term interactions between cognitive sequelae and obsessive-compulsive spectrum presentations post-TBI.

  3. Interleukin-1 inhibition facilitates recovery from liver injury and promotes regeneration of hepatocytes in alcoholic hepatitis in mice.

    Science.gov (United States)

    Iracheta-Vellve, Arvin; Petrasek, Jan; Gyogyosi, Benedek; Bala, Shashi; Csak, Timea; Kodys, Karen; Szabo, Gyongyi

    2017-07-01

    Inflammation and impaired hepatocyte regeneration contribute to liver failure in alcoholic hepatitis (AH). Interleukin (IL)-1 is a key inflammatory cytokine in the pathobiology of AH. The role of IL-1 in liver regeneration in the recovery phase of alcohol-induced liver injury is unknown. In this study, we tested IL-1 receptor antagonist to block IL-1 signalling in a mouse model of acute-on-chronic liver injury on liver inflammation and hepatocyte regeneration in AH. We observed that inhibition of IL-1 signalling decreased liver inflammation and neutrophil infiltration, and resulted in enhanced regeneration of hepatocytes and increased rate of recovery from liver injury in AH. Our novel findings suggest that IL-1 drives sustained liver inflammation and impaired hepatocyte regeneration even after cessation of ethanol exposure. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Lipid-induced insulin resistance does not impair insulin access to skeletal muscle

    Science.gov (United States)

    Richey, Joyce M.; Castro, Ana Valeria B.; Broussard, Josiane L.; Ionut, Viorica; Bergman, Richard N.

    2015-01-01

    Elevated plasma free fatty acids (FFA) induce insulin resistance in skeletal muscle. Previously, we have shown that experimental insulin resistance induced by lipid infusion prevents the dispersion of insulin through the muscle, and we hypothesized that this would lead to an impairment of insulin moving from the plasma to the muscle interstitium. Thus, we infused lipid into our anesthetized canine model and measured the appearance of insulin in the lymph as a means to sample muscle interstitium under hyperinsulinemic euglycemic clamp conditions. Although lipid infusion lowered the glucose infusion rate and induced both peripheral and hepatic insulin resistance, we were unable to detect an impairment of insulin access to the lymph. Interestingly, despite a significant, 10-fold increase in plasma FFA, we detected little to no increase in free fatty acids or triglycerides in the lymph after lipid infusion. Thus, we conclude that experimental insulin resistance induced by lipid infusion does not reduce insulin access to skeletal muscle under clamp conditions. This would suggest that the peripheral insulin resistance is likely due to reduced cellular sensitivity to insulin in this model, and yet we did not detect a change in the tissue microenvironment that could contribute to cellular insulin resistance. PMID:25852002

  5. Mitochondrial Modulation by Epigallocatechin 3-Gallate Ameliorates Cisplatin Induced Renal Injury through Decreasing Oxidative/Nitrative Stress, Inflammation and NF-kB in Mice

    Science.gov (United States)

    Wang, Xueping; Wang, Ping; Fu, Guanghou; Meng, Hongzhou; Wang, Yimin; Jin, Baiye

    2015-01-01

    Cancer chemotherapy drug cisplatin is known for its nephrotoxicity. The aim of this study is to investigate whether Epigallocatechin 3-Gallate (EGCG) can reduce cisplatin mediated side effect in kidney and to understand its mechanism of protection against tissue injury. We used a well-established 3-day cisplatin induced nephrotoxicity mice model where EGCG were administered. EGCG is a major active compound in Green Tea and have strong anti-oxidant and anti-inflammatory properties. EGCG protected against cisplatin induced renal dysfunction as measured by serum creatinine and blood urea nitrogen (BUN). EGCG improved cisplatin induced kidney structural damages such as tubular dilatation, cast formation, granulovaculoar degeneration and tubular cell necrosis as evident by PAS staining. Cisplatin induced kidney specific mitochondrial oxidative stress, impaired activities of mitochondrial electron transport chain enzyme complexes, impaired anti-oxidant defense enzyme activities such as glutathione peroxidase (GPX) and manganese superoxide dismutase (MnSOD) in mitochondria, inflammation (tumor necrosis factor α and interleukin 1β), increased accumulation of NF-κB in nuclear fraction, p53 induction, and apoptotic cell death (caspase 3 activity and DNA fragmentation). Treatment of mice with EGCG markedly attenuated cisplatin induced mitochondrial oxidative/nitrative stress, mitochondrial damages to electron transport chain activities and antioxidant defense enzyme activities in mitochondria. These mitochondrial modulations by EGCG led to protection mechanism against cisplatin induced inflammation and apoptotic cell death in mice kidney. As a result, EGCG improved renal function in cisplatin mediated kidney damage. In addition to that, EGCG attenuated cisplatin induced apoptotic cell death and mitochondrial reactive oxygen species (ROS) generation in human kidney tubular cell line HK-2. Thus, our data suggest that EGCG may represent new promising adjunct candidate for

  6. Overweight in elderly people induces impaired autophagy in skeletal muscle.

    Science.gov (United States)

    Potes, Yaiza; de Luxán-Delgado, Beatriz; Rodriguez-González, Susana; Guimarães, Marcela Rodrigues Moreira; Solano, Juan J; Fernández-Fernández, María; Bermúdez, Manuel; Boga, Jose A; Vega-Naredo, Ignacio; Coto-Montes, Ana

    2017-09-01

    Sarcopenia is the gradual loss of skeletal muscle mass, strength and quality associated with aging. Changes in body composition, especially in skeletal muscle and fat mass are crucial steps in the development of chronic diseases. We studied the effect of overweight on skeletal muscle tissue in elderly people without reaching obesity to prevent this extreme situation. Overweight induces a progressive protein breakdown reflected as a progressive withdrawal of anabolism against the promoted catabolic state leading to muscle wasting. Protein turnover is regulated by a network of signaling pathways. Muscle damage derived from overweight displayed by oxidative and endoplasmic reticulum (ER) stress induces inflammation and insulin resistance and forces the muscle to increase requirements from autophagy mechanisms. Our findings showed that failure of autophagy in the elderly deprives it to deal with the cell damage caused by overweight. This insufficiently efficient autophagy leads to an accumulation of p62 and NBR1, which are robust markers of protein aggregations. This impaired autophagy affects myogenesis activity. Depletion of myogenic regulatory factors (MRFs) without links to variations in myostatin levels in overweight patients suggest a possible reduction of satellite cells in muscle tissue, which contributes to declined muscle quality. This discovery has important implications that improve the understanding of aged-related atrophy caused by overweight and demonstrates how impaired autophagy is one of the main responsible mechanisms that aggravate muscle wasting. Therefore, autophagy could be an interesting target for therapeutic interventions in humans against muscle impairment diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Efficacy of anti-inflammatory, antibiotic and pleiotropic agents in reversing nitrogen mustard-induced injury in ex vivo cultured rabbit cornea.

    Science.gov (United States)

    Goswami, Dinesh G; Kant, Rama; Tewari-Singh, Neera; Agarwal, Rajesh

    2018-09-01

    Vesicating agent, Sulfur mustard (SM), causes devastating eye injury; however, there are no effective antidotes available. Using nitrogen mustard (NM), a bi-functional analog of SM, we have earlier reported that NM-induced corneal injury in ex vivo rabbit cornea organ culture model parallels corneal injury reported with SM. Using this model, we have demonstrated the therapeutic efficacy of dexamethasone (DEX), doxycycline (DOX) and silibinin (SB) in reversing NM (2h exposure)-induced corneal injuries when added immediately after washing NM. In the present study, we further examined the efficacy of similar/higher doses of these agents when added immediately, 2, or 4h after washing NM following its 2h exposure. All three treatment agents caused a reversal in established NM-induced injury biomarkers when added immediately or 2h after washing NM following its 2h exposure; however, when treatments were carried out 4h after washing NM, there was no significant effect. Together, our results further show the beneficial effect of these agents in reversing NM-induced corneal injury and indicate the time window for effective treatment. This could be useful towards future development of targeted therapeutics against vesicant-induced ocular injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Lacking Ketohexokinase-A Exacerbates Renal Injury in Streptozotocin-induced Diabetic Mice.

    Science.gov (United States)

    Doke, Tomohito; Ishimoto, Takuji; Hayasaki, Takahiro; Ikeda, Satsuki; Hasebe, Masako; Hirayama, Akiyoshi; Soga, Tomoyoshi; Kato, Noritoshi; Kosugi, Tomoki; Tsuboi, Naotake; Lanaspa, Miguel A; Johnson, Richard J; Kadomatsu, Kenji; Maruyama, Shoichi

    2018-03-28

    Ketohexokinase (KHK), a primary enzyme in fructose metabolism, has two isoforms, namely, KHK-A and KHK-C. Previously, we reported that renal injury was reduced in streptozotocin-induced diabetic mice which lacked both isoforms. Although both isoforms express in kidney, it has not been elucidated whether each isoform plays distinct roles in the development of diabetic kidney disease (DKD). The aim of the study is to elucidate the role of KHK-A for DKD progression. Diabetes was induced by five consecutive daily intraperitoneal injections of streptozotocin (50 mg/kg) in C57BL/6 J wild-type mice, mice lacking KHK-A alone (KHK-A KO), and mice lacking both KHK-A and KHK-C (KHK-A/C KO). At 35 weeks, renal injury, inflammation, hypoxia, and oxidative stress were examined. Metabolomic analysis including polyol pathway, fructose metabolism, glycolysis, TCA (tricarboxylic acid) cycle, and NAD (nicotinamide adenine dinucleotide) metabolism in kidney and urine was done. Diabetic KHK-A KO mice developed severe renal injury compared to diabetic wild-type mice, and this was associated with further increases of intrarenal fructose, dihydroxyacetone phosphate (DHAP), TCA cycle intermediates levels, and severe inflammation. In contrast, renal injury was prevented in diabetic KHK-A/C KO mice compared to both wild-type and KHK-A KO diabetic mice. Further, diabetic KHK-A KO mice contained decreased renal NAD + level with the increase of renal hypoxia-inducible factor 1-alpha expression despite having increased renal nicotinamide (NAM) level. These results suggest that KHK-C might play a deleterious role in DKD progression through endogenous fructose metabolism, and that KHK-A plays a unique protective role against the development of DKD. Copyright © 2018. Published by Elsevier Inc.

  9. Impairment of endothelial-myocardial interaction increases the susceptibility of cardiomyocytes to ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Thorsten M Leucker

    Full Text Available Endothelial-myocardial interactions may be critically important for ischemia/reperfusion injury. Tetrahydrobiopterin (BH4 is a required cofactor for nitric oxide (NO production by endothelial NO synthase (eNOS. Hyperglycemia (HG leads to significant increases in oxidative stress, oxidizing BH4 to enzymatically incompetent dihydrobiopterin. How alterations in endothelial BH4 content impact myocardial ischemia/reperfusion injury remains elusive. The aim of this study was to examine the effect of endothelial-myocardial interaction on ischemia/reperfusion injury, with an emphasis on the role of endothelial BH4 content. Langendorff-perfused mouse hearts were treated by triton X-100 to produce endothelial dysfunction and subsequently subjected to 30 min of ischemia followed by 2 h of reperfusion. The recovery of left ventricular systolic and diastolic function during reperfusion was impaired in triton X-100 treated hearts compared with vehicle-treated hearts. Cardiomyocytes (CMs were co-cultured with endothelial cells (ECs and subsequently subjected to 2 h of hypoxia followed by 2 h of reoxygenation. Addition of ECs to CMs at a ratio of 1∶3 significantly increased NO production and decreased lactate dehydrogenase activity compared with CMs alone. This EC-derived protection was abolished by HG. The addition of 100 µM sepiapterin (a BH4 precursor or overexpression of GTP cyclohydrolase 1 (the rate-limiting enzyme for BH4 biosynthesis in ECs by gene trasfer enhanced endothelial BH4 levels, the ratio of eNOS dimer/monomer, eNOS phosphorylation, and NO production and decreased lactate dehydrogenase activity in the presence of HG. These results demonstrate that increased BH4 content in ECs by either pharmacological or genetic approaches reduces myocardial damage during hypoxia/reoxygenation in the presence of HG. Maintaining sufficient endothelial BH4 is crucial for cardioprotection against hypoxia/reoxygenation injury.

  10. Ethambutol induces impaired autophagic flux and apoptosis in the rat retina

    Directory of Open Access Journals (Sweden)

    Shun-Ping Huang

    2015-08-01

    Full Text Available Ethambutol (EMB, an effective first-line antituberculosis agent, can cause serious visual impairment or irreversible vision loss in a significant number of patients. However, the mechanism underlying this ocular cytotoxicity remains to be elucidated. In this study, we found that there were statistically significant dose- and time-dependent increases in the number of cytoplasmic vacuoles and the level of cell death in EMB-treated RGC-5 cells (retinal ganglion cells. The protein kinase C (PKCδ inhibitor rottlerin markedly reduced the EMB-induced activation of caspase-3 and the subsequent apoptosis of RGC-5 cells. Western blot analysis revealed that the expression levels of class III PI3K, Beclin-1, p62 and LC3-II were upregulated, and LC3 immunostaining results showed activation of the early phase and inhibition of the late stage of autophagy in retinas of the EMB-intraperitoneal (IP-injected rat model. We further demonstrated that exposure to EMB induces autophagosome accumulation, which results from the impaired autophagic flux that is mediated by a PKCδ-dependent pathway, inhibits the PI3K/Akt/mTOR signaling pathway and leads to apoptotic death in retina neuronal cells. These results indicate that autophagy dysregulation in retinal neuronal cells might play a substantial role in EMB-induced optic neuroretinopathy.

  11. Does brain injury impair speech and gesture differently?

    Directory of Open Access Journals (Sweden)

    Tilbe Göksun

    2016-09-01

    Full Text Available People often use spontaneous gestures when talking about space, such as when giving directions. In a recent study from our lab, we examined whether focal brain-injured individuals’ naming motion event components of manner and path (represented in English by verbs and prepositions, respectively are impaired selectively, and whether gestures compensate for impairment in speech. Left or right hemisphere damaged patients and elderly control participants were asked to describe motion events (e.g., walking around depicted in brief videos. Results suggest that producing verbs and prepositions can be separately impaired in the left hemisphere and gesture production compensates for naming impairments when damage involves specific areas in the left temporal cortex.

  12. In vivo evidence for an endothelium-dependent mechanism in radiation-induced normal tissue injury

    Science.gov (United States)

    Rannou, Emilie; François, Agnès; Toullec, Aurore; Guipaud, Olivier; Buard, Valérie; Tarlet, Georges; Mintet, Elodie; Jaillet, Cyprien; Iruela-Arispe, Maria Luisa; Benderitter, Marc; Sabourin, Jean-Christophe; Milliat, Fabien

    2015-01-01

    The pathophysiological mechanism involved in side effects of radiation therapy, and especially the role of the endothelium remains unclear. Previous results showed that plasminogen activator inhibitor-type 1 (PAI-1) contributes to radiation-induced intestinal injury and suggested that this role could be driven by an endothelium-dependent mechanism. We investigated whether endothelial-specific PAI-1 deletion could affect radiation-induced intestinal injury. We created a mouse model with a specific deletion of PAI-1 in the endothelium (PAI-1KOendo) by a Cre-LoxP system. In a model of radiation enteropathy, survival and intestinal radiation injury were followed as well as intestinal gene transcriptional profile and inflammatory cells intestinal infiltration. Irradiated PAI-1KOendo mice exhibited increased survival, reduced acute enteritis severity and attenuated late fibrosis compared with irradiated PAI-1flx/flx mice. Double E-cadherin/TUNEL labeling confirmed a reduced epithelial cell apoptosis in irradiated PAI-1KOendo. High-throughput gene expression combined with bioinformatic analyses revealed a putative involvement of macrophages. We observed a decrease in CD68+cells in irradiated intestinal tissues from PAI-1KOendo mice as well as modifications associated with M1/M2 polarization. This work shows that PAI-1 plays a role in radiation-induced intestinal injury by an endothelium-dependent mechanism and demonstrates in vivo that the endothelium is directly involved in the progression of radiation-induced enteritis. PMID:26510580

  13. Hypertension-Induced Cerebral Small Vessel Disease Leading to Cognitive Impairment.

    Science.gov (United States)

    Liu, Yang; Dong, Yan-Hong; Lyu, Pei-Yuan; Chen, Wei-Hong; Li, Rui

    2018-03-05

    Alzheimer's disease and vascular dementia are responsible for more than 80% of dementia cases. These two conditions share common risk factors including hypertension. Cerebral small vessel disease (CSVD) is strongly associated with both hypertension and cognitive impairment. In this review, we identify the pathophysiological changes in CSVD that are caused by hypertension and further explore the relationship between CSVD and cognitive impairment. We searched and scanned the PubMed database for recently published literatures up to December 2017. We used the keywords of "hypertension", "cerebral small vessel disease", "white matter lesions", "enlarged perivascular spaces", "lacunar infarcts", "cerebral microbleeds", and "cognitive impairment" in the database of PubMed. Articles were obtained and reviewed to analyze the hypertension-induced pathophysiological changes that occur in CSVD and the correlation between CSVD and cognitive impairment. In recent years, studies have demonstrated that hypertension-related changes (e.g., small vascular lesions, inflammatory reactions, hypoperfusion, oxidative stress, damage to autoregulatory processes and the blood-brain barrier, and cerebral amyloid angiopathy) can occur over time in cerebral small vessels, potentially leading to lower cognitive function when blood pressure (BP) control is poor or lacking. Both isolated and co-occurrent CSVD can lead to cognitive deterioration, and this effect may be attributable to a dysfunction in either the cholinergic system or the functionality of cortical and subcortical tracts. We explore the currently available evidence about the hypertensive vasculopathy and inflammatory changes that occur in CSVD. Both are vital prognostic indicators of the development of cognitive impairment. Future studies should be performed to validate the relationship between BP levels and CSVD progression and between the numbers, volumes, and anatomical locations of CSVD and cognitive impairment.

  14. ERβ-dependent neuroglobin up-regulation impairs 17β-estradiol-induced apoptosis in DLD-1 colon cancer cells upon oxidative stress injury.

    Science.gov (United States)

    Fiocchetti, Marco; Camilli, Giulia; Acconcia, Filippo; Leone, Stefano; Ascenzi, Paolo; Marino, Maria

    2015-05-01

    Besides other mechanism(s) 17β-estradiol (E2) facilitates neuronal survival by increasing, via estrogen receptor β (ERβ), the levels of neuroglobin (NGB) an anti-apoptotic protein. In contrast, E2 could exert protective effects in cancer cells by activating apoptosis when the ERβ level prevails on that of ERα as in colon cancer cell lines. These apparently contrasting results raise the possibility that E2-induced NGB up-regulation could regulate the ERβ activities shunning this receptor subtype to trigger an apoptotic cascade in neurons but not in non-neuronal cells. Here, human colorectal adenocarcinoma cell line (DLD-1) that only expresses ERβ and HeLa cells transiently transfected with ERβ encoding vector has been used to verify this hypothesis. In addition, neuroblastoma SK-N-BE cells were used as positive control. Surprisingly, E2 also induced NGB up-regulation, in a dose- and time-dependent manner, in DLD-1 cells. The ERβ-mediated activation of p38/MAPK was necessary for this E2 effect. E2 induced NGB re-allocation in mitochondria where, subsequently to an oxidative stress injury (i.e., 100μM H2O2), NGB interacted with cytochrome c preventing its release into the cytosol and the activation of an apoptotic cascade. As a whole, these results demonstrate that E2-induced NGB up-regulation could act as an oxidative stress sensor, which does not oppose to the pro-apoptotic E2 effect in ERβ-containing colon cancer cells unless a rise of oxidative stress occurs. These results support the concept that oxidative stress plays a critical role in E2-induced carcinogenesis and further open an important scenario to develop novel therapeutic strategies that target NGB against E2-related cancers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Towards a Mobile Assistive Technology for Monitoring and Assessing Cognitive Fatigue in Individuals with Acquired Brain Injury

    OpenAIRE

    Price, Edward; Moore, George; Galway, Leo; Linden, Mark

    2015-01-01

    Those living with an acquired brain injury often have issues with fatigue due to factors resulting from the injury. Cognitive impairments such as lack of memory, concentration and planning have a great impact on an individual’s ability to carry out general everyday tasks, which subsequently has the effect of inducing cognitive fatigue. Moreover, there is difficulty in assessing cognitive fatigue, as there are no real biological markers that can be measured. Rather, it is a very subjective eff...

  16. Ameliorative potential of Ocimum sanctum in chronic constriction injury-induced neuropathic pain in rats

    Directory of Open Access Journals (Sweden)

    GURPREET KAUR

    2015-03-01

    Full Text Available The present study was designed to investigate the ameliorative potential of Ocimumsanctum and its saponin rich fraction in chronic constriction injury-induced neuropathic pain in rats. The chronic constriction injury was induced by placing four loose ligatures around the sciatic nerve, proximal to its trifurcation. The mechanical hyperalgesia, cold allodynia, paw heat hyperalgesia and cold tail hyperalgesia were assessed by performing the pinprick, acetone, hot plate and cold tail immersion tests, respectively. Biochemically, the tissue thio-barbituric acid reactive species, super-oxide anion content (markers of oxidative stress and total calcium levels were measured. Chronic constriction injury was associated with the development of mechanical hyperalgesia, cold allodynia, heat and cold hyperalgesia along with an increase in oxidative stress and calcium levels. However, administration of Ocimumsanctum (100 and 200 mg/kg p.o. and its saponin rich fraction (100 and 200 mg/kg p.o. for 14 days significantly attenuated chronic constriction injury-induced neuropathic pain as well as decrease the oxidative stress and calcium levels. It may be concluded that saponin rich fraction of Ocimum sanctum has ameliorative potential in attenuating painful neuropathic state, which may be attributed to a decrease in oxidative stress and calcium levels.

  17. Cofilin Knockdown Attenuates Hemorrhagic Brain Injury-induced Oxidative Stress and Microglial Activation in Mice.

    Science.gov (United States)

    Alhadidi, Qasim; Nash, Kevin M; Alaqel, Saleh; Sayeed, Muhammad Shahdaat Bin; Shah, Zahoor A

    2018-05-08

    Intracerebral hemorrhage (ICH) resulting from the rupture of the blood vessels in the brain is associated with significantly higher mortality and morbidity. Clinical studies focused on alleviating the primary injury, hematoma formation and expansion, were largely ineffective, suggesting that secondary injury-induced inflammation and the formation of reactive species also contribute to the overall injury process. In this study, we explored the effects of cofilin knockdown in a mouse model of ICH. Animals given stereotaxic injections of cofilin siRNA, 72-h prior to induction of ICH by collagenase injection within the area of siRNA administration showed significantly decreased cofilin expression levels and lower hemorrhage volume and edema, and the animals performed significantly better in neurobehavioral tasks i.e., rotarod, grip strength and neurologic deficit scores. Cofilin siRNA knocked-down mice had reduced ICH-induced DNA fragmentation, blood-brain barrier disruption and microglial activation, with a concomitant increase in astrocyte activation. Increased expression of pro-survival proteins and decreased markers of oxidative stress were also observed in cofilin siRNA-treated mice possibly due to the reduced levels of cofilin. Our results suggest that cofilin plays a major role in ICH-induced secondary injury, and could become a potential therapeutic target. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. High Serum Pepsinogen I and beta Helicobacter pylori Infection Are Risk Factors for Aspirin-Induced Gastroduodenal Injury.

    Science.gov (United States)

    Shan, Jing; Lei, Hongjun; Shi, Wei; Sun, Xiaobin; Tang, Yu; Ren, Chunrong

    2018-01-01

    Whether gastric hyperchlorhydria and Helicobacter pylori infection contribute to aspirin-induced gastroduodenal injury still lacks evidence. Because serum pepsinogens (PGs) and gastrin-17 (G17) can reflect gastric acid secretion, this study intended to elucidate whether serum PGs, serum G17, and H. pylori infection are associated with aspirin-induced gastrointestinal injury. A total of 60 patients taking low-dose aspirin for more than 1 month were enrolled in this study. Serum PG I, PG II, and G17 were determined using ELISA. A 14C-urea breath test was used for the detection of an H. pylori infection. The modified Lanza score was used to evaluate the degree of gastroduodenal injury under endoscopy. The median serum PG I level was significantly higher in the intensive gastroduodenal injury (IGI) group compared to that in the mild gastroduodenal injury group (155.0 vs. 116.6 ng/mL, p = 0.006). The H. pylori infection rate was significantly higher in the IGI group (73 vs. 40%, p = 0.037). Receiver operator characteristic curves analysis revealed that the cutoff value of PG I was 123 ng/mL, with 80% sensitivity and 61.4% specificity. H. pylori infection combined with PG I at >123 ng/mL had an OR (95% CI) of 15.8 (2.4 ± 104.5) for the prediction of aspirin-induced gastroduodenal injury. Key Messages: Serum PG I and H. pylori infection could be used to identify potential high-risk aspirin-induced gastroduodenal injury patients. © 2017 S. Karger AG, Basel.

  19. Permissive hypercapnia and risk for brain injury and developmental impairment.

    Science.gov (United States)

    Hagen, Erika W; Sadek-Badawi, Mona; Carlton, David P; Palta, Mari

    2008-09-01

    Permissive hypercapnia is a respiratory-care strategy that is used to reduce the risk for lung injury. The goal of this study was to evaluate whether permissive hypercapnia is associated with higher risk for intraventricular hemorrhage and early childhood behavioral and functional problems than normocapnia among very low birth weight infants. Very low birth weight infants from a statewide cohort were eligible for this study when they were born at <32 weeks' gestational age and survived at least 24 hours. Infants were classified as receiving a permissive hypercapnia, normocapnia, or unclassifiable respiratory strategy during the first 24 hours after birth according to an algorithm based on Pco(2) values and respiratory-treatment decisions that were abstracted from medical charts. Intraventricular hemorrhage diagnosis was also abstracted from the medical chart. Behavioral and functional outcomes were assessed by parent interview at 2 to 3 years. Logistic regression was used to evaluate the relationship between intraventricular hemorrhage and respiratory strategy; ordinary linear regression was used to evaluate differences in behavior and function scores between children by respiratory strategy. Infants who received a permissive hypercapnia strategy were not more likely to have intraventricular hemorrhage than those with normocapnia. There were no differences in any of the behavioral or functional scores among children according to respiratory strategy. There was a significant interaction between care strategy and 1-minute Apgar score, indicating that infants with lower Apgar scores may be at higher risk for intraventricular hemorrhage with permissive hypercapnia. This study suggests that permissive hypercapnia does not increase risk for brain injury and impairment among very low birth weight children. The interaction between respiratory strategy and Apgar score is a potential worrisome exception to this conclusion. Future research should further evaluate the effect

  20. Inhibition of HDAC6 protects against rhabdomyolysis-induced acute kidney injury.

    Science.gov (United States)

    Shi, Yingfeng; Xu, Liuqing; Tang, Jinhua; Fang, Lu; Ma, Shuchen; Ma, Xiaoyan; Nie, Jing; Pi, Xiaoling; Qiu, Andong; Zhuang, Shougang; Liu, Na

    2017-03-01

    Histone deacetylase 6 (HDAC6) inhibition has been reported to protect against ischemic stroke and prolong survival after sepsis in animal models. However, it remains unknown whether HDAC6 inhibition offers a renoprotective effect after acute kidney injury (AKI). In this study, we examined the effect of tubastatin A (TA), a highly selective inhibitor of HDAC6, on AKI in a murine model of glycerol (GL) injection-induced rhabdomyolysis. Following GL injection, the mice developed severe acute tubular injury as indicated by renal dysfunction; expression of neutrophil gelatinase-associated lipocalin (NGAL), an injury marker of renal tubules; and an increase of TdT-mediated dUTP nick-end labeling (TUNEL)-positive tubular cells. These changes were companied by increased HDAC6 expression in the cytoplasm of renal tubular cells. Administration of TA significantly reduced serum creatinine and blood urea nitrogen levels as well as attenuated renal tubular damage in injured kidneys. HDAC6 inhibition also resulted in decreased expression of NGAL, reduced apoptotic cell, and inactivated caspase-3 in the kidney after acute injury. Moreover, injury to the kidney increased phosphorylation of nuclear factor (NF)-κB and expression of multiple cytokines/chemokines including tumor necrotic factor-α and interleukin-6 and monocyte chemoattractant protein-1, as well as macrophage infiltration. Treatment with TA attenuated all those responses. Finally, HDAC6 inhibition reduced the level of oxidative stress by suppressing malondialdehyde (MDA) and preserving expression of superoxide dismutase (SOD) in the injured kidney. Collectively, these data indicate that HDAC6 contributes to the pathogenesis of rhabdomyolysis-induced AKI and suggest that HDAC6 inhibitors have therapeutic potential for AKI treatment. Copyright © 2017 the American Physiological Society.

  1. Mechanism of Platinum Derivatives Induced Kidney Injury

    Directory of Open Access Journals (Sweden)

    Feifei YAN

    2015-09-01

    Full Text Available Platinum derivatives are the most widely used chemotherapeutic agents to treat solid tumors including ovarian, head and neck, and testicular germ cell tumors, lung cancer, and colorectal cancer. Two major problems exist, however, in the clinic use of platinum derivatives. One is the development of tumor resistance to the drug during therapy, leading to treatment failure. The other is the drug’s toxicity such as the cisplatin’s nephrotoxicity, which limits the dose that can be administered. This paper describes the mechanism of platinum derivatives induced kidney injury.

  2. High Ca2+ Influx During Traumatic Brain Injury Leads to Caspase-1-Dependent Neuroinflammation and Cell Death.

    Science.gov (United States)

    Abdul-Muneer, P M; Long, Mathew; Conte, Adriano Andrea; Santhakumar, Vijayalakshmi; Pfister, Bryan J

    2017-08-01

    We investigated the hypothesis that high Ca 2+ influx during traumatic brain injury induces the activation of the caspase-1 enzyme, which triggers neuroinflammation and cell apoptosis in a cell culture model of neuronal stretch injury and an in vivo model of fluid percussion injury (FPI). We first established that stretch injury causes a rapid increase in the intracellular Ca 2+ level, which activates interleukin-converting enzyme caspase-1. The increase in the intracellular Ca 2+ level and subsequent caspase-1 activation culminates into neuroinflammation via the maturation of IL-1β. Further, we analyzed caspase-1-mediated apoptosis by TUNEL staining and PARP western blotting. The voltage-gated sodium channel blocker, tetrodotoxin, mitigated the stretch injury-induced neuroinflammation and subsequent apoptosis by blocking Ca 2+ influx during the injury. The effect of tetrodotoxin was similar to the caspase-1 inhibitor, zYVAD-fmk, in neuronal culture. To validate the in vitro results, we demonstrated an increase in caspase-1 activity, neuroinflammation and neurodegeneration in fluid percussion-injured animals. Our data suggest that neuronal injury/traumatic brain injury (TBI) can induce a high influx of Ca 2+ to the cells that cause neuroinflammation and cell death by activating caspase-1, IL-1β, and intrinsic apoptotic pathways. We conclude that excess IL-1β production and cell death may contribute to neuronal dysfunction and cognitive impairment associated with TBI.

  3. Partial Portal Vein Arterialization Attenuates Acute Bile Duct Injury Induced by Hepatic Dearterialization in a Rat Model.

    Science.gov (United States)

    Jiang, Jun; Wei, Jishu; Wu, Junli; Gao, Wentao; Li, Qiang; Jiang, Kuirong; Miao, Yi

    2016-01-01

    Hepatic infarcts or abscesses occur after hepatic artery interruption. We explored the mechanisms of hepatic deprivation-induced acute liver injury and determine whether partial portal vein arterialization attenuated this injury in rats. Male Sprague-Dawley rats underwent either complete hepatic arterial deprivation or partial portal vein arterialization, or both. Hepatic ischemia was evaluated using biochemical analysis, light microscopy, and transmission electron microscopy. Hepatic ATP levels, the expression of hypoxia- and inflammation-associated genes and proteins, and the expression of bile transporter genes were assessed. Complete dearterialization of the liver induced acute liver injury, as evidenced by the histological changes, significantly increased serum biochemical markers, decreased ATP content, increased expression of hypoxia- and inflammation-associated genes and proteins, and decreased expression of bile transporter genes. These detrimental changes were extenuated but not fully reversed by partial portal vein arterialization, which also attenuated ductular reaction and fibrosis in completely dearterialized rat livers. Collectively, complete hepatic deprivation causes severe liver injury, including bile infarcts and biloma formation. Partial portal vein arterialization seems to protect against acute ischemia-hypoxia-induced liver injury.

  4. Partial Portal Vein Arterialization Attenuates Acute Bile Duct Injury Induced by Hepatic Dearterialization in a Rat Model

    Directory of Open Access Journals (Sweden)

    Jun Jiang

    2016-01-01

    Full Text Available Hepatic infarcts or abscesses occur after hepatic artery interruption. We explored the mechanisms of hepatic deprivation-induced acute liver injury and determine whether partial portal vein arterialization attenuated this injury in rats. Male Sprague-Dawley rats underwent either complete hepatic arterial deprivation or partial portal vein arterialization, or both. Hepatic ischemia was evaluated using biochemical analysis, light microscopy, and transmission electron microscopy. Hepatic ATP levels, the expression of hypoxia- and inflammation-associated genes and proteins, and the expression of bile transporter genes were assessed. Complete dearterialization of the liver induced acute liver injury, as evidenced by the histological changes, significantly increased serum biochemical markers, decreased ATP content, increased expression of hypoxia- and inflammation-associated genes and proteins, and decreased expression of bile transporter genes. These detrimental changes were extenuated but not fully reversed by partial portal vein arterialization, which also attenuated ductular reaction and fibrosis in completely dearterialized rat livers. Collectively, complete hepatic deprivation causes severe liver injury, including bile infarcts and biloma formation. Partial portal vein arterialization seems to protect against acute ischemia-hypoxia-induced liver injury.

  5. Postural Stabilization Strategies to Motor Contagion Induced by Action Observation Are Impaired in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Elisa Pelosin

    2018-03-01

    Full Text Available Postural reactions can be influenced by concomitant tasks or different contexts and are modulated by a higher order motor control. Recent studies investigated postural changes determined by motor contagion induced by action observation (chameleon effect showing that observing a model in postural disequilibrium induces an increase in healthy subjects’ body sway. Parkinson’s disease (PD is associated with postural instability and impairments in cognitively controlled balance tasks. However, no studies investigated if viewing postural imbalance might influence postural stability in PD and if patients are able to inhibit a visual postural perturbation. In this study, an action observation paradigm for assessing postural reaction to motor contagion in PD subjects and healthy older adults was used. Postural stability changes were measured during the observation of a static stimulus (control condition and during a point-light display of a gymnast balancing on a rope (biological stimulus. Our results showed that, during the observation of the biological stimulus, sway area and antero-posterior and medio-lateral displacements of center of pressure significantly increased only in PD participants, whereas correct stabilization reactions were present in elderly subjects. These results demonstrate that PD leads to a decreased capacity to control automatic imitative tendencies induced by motor contagion. This behavior could be the consequence either of an inability to inhibit automatic imitative tendencies or of the cognitive load requested by the task. Whatever the case, the issue about the ability to inhibit automatic imitative tendencies could be crucial for PD patients since it might increase falls risk and injuries.

  6. Addiction-like synaptic impairments in diet-induced obesity

    Science.gov (United States)

    Spencer, Sade; Garcia-Keller, Constanza; Spanswick, David C; Lawrence, Andrew John; Simonds, Stephanie Elise; Schwartz, Danielle Joy; Jordan, Kelsey Ann; Jhou, Thomas Clayton; Kalivas, Peter William

    2016-01-01

    Background There is increasing evidence that the pathological overeating underlying some forms of obesity is compulsive in nature, and therefore contains elements of an addictive disorder. However, direct physiological evidence linking obesity to synaptic plasticity akin to that occurring in addiction is lacking. We sought to establish whether the propensity to diet-induced obesity (DIO) is associated with addictive-like behavior, as well as synaptic impairments in the nucleus accumbens core (NAcore) considered hallmarks of addiction. Methods Sprague-Dawley rats were allowed free access to a palatable diet for 8 weeks then separated by weight gain into DIO prone (OP) and resistant (OR) subgroups. Access to palatable food was then restricted to daily operant self-administration sessions using fixed (FR1, 3 and 5) and progressive ratio (PR) schedules. Subsequently, NAcore brain slices were prepared and we tested for changes in the ratio between AMPA and NMDA currents (AMPA/NMDA) and the ability to exhibit long-term depression (LTD). Results We found that propensity to develop DIO is linked to deficits in the ability to induce LTD in the NAcore, as well as increased potentiation at these synapses as measured by AMPA/NMDA currents. Consistent with these impairments, we observed addictive-like behavior in OP rats, including i) heightened motivation for palatable food (ii) excessive intake and (iii) increased food-seeking when food was unavailable. Conclusions Our results show overlap between the propensity for DIO and the synaptic changes associated with facets of addictive behavior, supporting partial coincident neurological underpinnings for compulsive overeating and drug addiction. PMID:26826876

  7. Salidroside Suppresses HUVECs Cell Injury Induced by Oxidative Stress through Activating the Nrf2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yao Zhu

    2016-08-01

    Full Text Available Oxidative stress plays an important role in the pathogenesis of cardiovascular diseases. Salidroside (SAL, one of the main effective constituents of Rhodiola rosea, has been reported to suppress oxidative stress-induced cardiomyocyte injury and necrosis by promoting transcription of nuclear factor E2-related factor 2 (Nrf2-regulated genes such as heme oxygenase-1 (HO-1 and NAD(PH dehydrogenase (quinone1 (NQO1. However, it has not been indicated whether SAL might ameliorate endothelial injury induced by oxidative stress. Here, our study demonstrated that SAL might suppress HUVEC cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. The results of our study indicated that SAL decreased the levels of intercellular reactive oxygen species (ROS and malondialdehyde (MDA, and improved the activities of superoxide dismutase (SOD and catalase (CAT, resulting in protective effects against oxidative stress-induced cell damage in HUVECs. It suppressed oxidative stress damage by inducing Nrf2 nuclear translocation and activating the expression of Nrf2-regulated antioxidant enzyme genes such as HO-1 and NQO1 in HUVECs. Knockdown of Nrf2 with siRNA abolished the cytoprotective effects against oxidative stress, decreased the expression of Nrf2, HO-1, and NQO1, and inhibited the nucleus translocation of Nrf2 in HUVECs. This study is the first to demonstrate that SAL suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway.

  8. Compound edaravone alleviates lipopolysaccharide (LPS)-induced acute lung injury in mice.

    Science.gov (United States)

    Zhang, Zhengping; Luo, Zhaowen; Bi, Aijing; Yang, Weidong; An, Wenji; Dong, Xiaoliang; Chen, Rong; Yang, Shibao; Tang, Huifang; Han, Xiaodong; Luo, Lan

    2017-09-15

    Acute lung injury (ALI) represents an unmet medical need with an urgency to develop effective pharmacotherapies. Compound edaravone, a combination of edaravone and borneol, has been developed for treatment of ischemia stroke in clinical phase III study. The purpose of the present study is to investigate the anti-inflammatory effect of compound edaravone on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 cells and the therapeutic efficacy on LPS-induced ALI in mice. Edaravone and compound edaravone concentration-dependently decreased LPS-induced interleukin-6 (IL-6) production and cyclooxygenase-2 (COX-2) expression in RAW264.7 cells. The efficiency of compound edaravone was stronger than edaravone alone. In the animal study, compound edaravone was injected intravenously to mice after intratracheal instillation of LPS. It remarkably alleviated LPS-induced lung injury including pulmonary histological abnormalities, polymorphonuclear leukocyte (PMN) infiltration and extravasation. Further study demonstrated that compound edaravone suppressed LPS-induced TNF-α and IL-6 increase in mouse serum and bronchoalveolar lavage (BAL) fluid, and inhibited LPS-induced nuclear factor-κB (NF-κB) activation and COX-2 expression in mice lung tissues. Importantly, our findings demonstrated that the compound edaravone showed a stronger protective effect against mouse ALI than edaravone alone, which suggested the synergies between edaravone and borneol. In conclusion, compound edaravone could be a potential novel therapeutic drug for ALI treatment and borneol might produce a synergism with edaravone. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Sarcosine attenuates toluene-induced motor incoordination, memory impairment, and hypothermia but not brain stimulation reward enhancement in mice

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Ming-Huan [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Institute of Neuroscience, National Changchi University, Taipei, Taiwan (China); Chung, Shiang-Sheng [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Department of Pharmacy, Yuli Veterans Hospital, Hualien, Taiwan (China); Stoker, Astrid K.; Markou, Athina [Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (United States); Chen, Hwei-Hsien, E-mail: hwei@nhri.org.tw [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Division of Mental Health and Addiction Medicine, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan (China)

    2012-12-01

    Toluene, a widely used and commonly abused organic solvent, produces various behavioral disturbances, including motor incoordination and cognitive impairment. Toluene alters the function of a large number of receptors and ion channels. Blockade of N-methyl-D-aspartate (NMDA) receptors has been suggested to play a critical role in toluene-induced behavioral manifestations. The present study determined the effects of various toluene doses on motor coordination, recognition memory, body temperature, and intracranial self-stimulation (ICSS) thresholds in mice. Additionally, the effects of sarcosine on the behavioral and physiological effects induced by toluene were evaluated. Sarcosine may reverse toluene-induced behavioral manifestations by acting as an NMDA receptor co-agonist and by inhibiting the effects of the type I glycine transporter (GlyT1). Mice were treated with toluene alone or combined with sarcosine pretreatment and assessed for rotarod performance, object recognition memory, rectal temperature, and ICSS thresholds. Toluene dose-dependently induced motor incoordination, recognition memory impairment, and hypothermia and lowered ICSS thresholds. Sarcosine pretreatment reversed toluene-induced changes in rotarod performance, novel object recognition, and rectal temperature but not ICSS thresholds. These findings suggest that the sarcosine-induced potentiation of NMDA receptors may reverse motor incoordination, memory impairment, and hypothermia but not the enhancement of brain stimulation reward function associated with toluene exposure. Sarcosine may be a promising compound to prevent acute toluene intoxications by occupational or intentional exposure. -- Highlights: ► Toluene induces impairments in Rotarod test and novel object recognition test. ► Toluene lowers rectal temperature and ICSS thresholds in mice. ► Sarcosine reverses toluene-induced changes in motor, memory and body temperature. ► Sarcosine pretreatment does not affect toluene-induced

  10. Sarcosine attenuates toluene-induced motor incoordination, memory impairment, and hypothermia but not brain stimulation reward enhancement in mice

    International Nuclear Information System (INIS)

    Chan, Ming-Huan; Chung, Shiang-Sheng; Stoker, Astrid K.; Markou, Athina; Chen, Hwei-Hsien

    2012-01-01

    Toluene, a widely used and commonly abused organic solvent, produces various behavioral disturbances, including motor incoordination and cognitive impairment. Toluene alters the function of a large number of receptors and ion channels. Blockade of N-methyl-D-aspartate (NMDA) receptors has been suggested to play a critical role in toluene-induced behavioral manifestations. The present study determined the effects of various toluene doses on motor coordination, recognition memory, body temperature, and intracranial self-stimulation (ICSS) thresholds in mice. Additionally, the effects of sarcosine on the behavioral and physiological effects induced by toluene were evaluated. Sarcosine may reverse toluene-induced behavioral manifestations by acting as an NMDA receptor co-agonist and by inhibiting the effects of the type I glycine transporter (GlyT1). Mice were treated with toluene alone or combined with sarcosine pretreatment and assessed for rotarod performance, object recognition memory, rectal temperature, and ICSS thresholds. Toluene dose-dependently induced motor incoordination, recognition memory impairment, and hypothermia and lowered ICSS thresholds. Sarcosine pretreatment reversed toluene-induced changes in rotarod performance, novel object recognition, and rectal temperature but not ICSS thresholds. These findings suggest that the sarcosine-induced potentiation of NMDA receptors may reverse motor incoordination, memory impairment, and hypothermia but not the enhancement of brain stimulation reward function associated with toluene exposure. Sarcosine may be a promising compound to prevent acute toluene intoxications by occupational or intentional exposure. -- Highlights: ► Toluene induces impairments in Rotarod test and novel object recognition test. ► Toluene lowers rectal temperature and ICSS thresholds in mice. ► Sarcosine reverses toluene-induced changes in motor, memory and body temperature. ► Sarcosine pretreatment does not affect toluene-induced

  11. Creatine protects against mitochondrial dysfunction associated with HIV-1 Tat-induced neuronal injury

    Science.gov (United States)

    Stevens, Patrick R.; Gawryluk, Jeremy W.; Hui, Liang; Chen, Xuesong; Geiger, Jonathan D.

    2015-01-01

    HIV-1 infected individuals are living longer but experiencing a prevalence rate of over 50% for HIV-1 associated neurocognitive disorders (HAND) for which no effective treatment is available. Viral and cellular factors secreted by HIV-1 infected cells leads to neuronal injury and HIV-1 Tat continues to be implicated in the pathogenesis of HAND. Here we tested the hypothesis that creatine protected against HIV-1 Tat-induced neuronal injury by preventing mitochondrial bioenergetic crisis and/or redox catastrophe. Creatine blocked HIV-1 Tat1-72-induced increases in neuron cell death and synaptic area loss. Creatine protected against HIV-1 Tat-induced decreases in ATP. Creatine and creatine plus HIV-1 Tat increased cellular levels of creatine, and creatine plus HIV-1 Tat further decreased ratios of phosphocreatine to creatine observed with creatine or HIV-1 Tat treatments alone. Additionally, creatine protected against HIV-1 Tat-induced mitochondrial hypopolarization and HIV-1 Tat-induced mitochondrial permeability transition pore opening. Thus, creatine may be a useful adjunctive therapy against HAND. PMID:25613139

  12. P2X7 Cell Death Receptor Activation and Mitochondrial Impairment in Oxaliplatin-Induced Apoptosis and Neuronal Injury: Cellular Mechanisms and In Vivo Approach.

    Directory of Open Access Journals (Sweden)

    France Massicot

    Full Text Available Limited information is available regarding the cellular mechanisms of oxaliplatin-induced painful neuropathy during exposure of patients to this drug. We therefore determined oxidative stress in cultured cells and evaluated its occurrence in C57BL/6 mice. Using both cultured neuroblastoma (SH-SY5Y and macrophage (RAW 264.7 cell lines and also brain tissues of oxaliplatin-treated mice, we investigated whether oxaliplatin (OXA induces oxidative stress and apoptosis. Cultured cells were treated with 2-200 µM OXA for 24 h. The effects of pharmacological inhibitors of oxidative stress or inflammation (N-acetyl cysteine, ibuprofen, acetaminophen were also tested. Inhibitors were added 30 min before OXA treatment and then in combination with OXA for 24 h. In SH-SY5Y cells, OXA caused a significant dose-dependent decrease in viability, a large increase in ROS and NO production, lipid peroxidation and mitochondrial impairment as assessed by a drop in mitochondrial membrane potential, which are deleterious for the cell. An increase in levels of negatively charged phospholipids such as cardiolipin but also phosphatidylserine and phosphatidylinositol, was also observed. Additionally, OXA caused concentration-dependent P2X7 receptor activation, increased chromatin condensation and caspase-3 activation associated with TNF-α and IL-6 release. The majority of these toxic effects were equally observed in Raw 264.7 which also presented high levels of PGE2. Pretreatment of SH-SY5Y cells with pharmacological inhibitors significantly reduced or blocked all the neurotoxic OXA effects. In OXA-treated mice (28 mg/kg cumulated dose significant cold hyperalgesia and oxidative stress in the tested brain areas were shown. Our study suggests that targeting P2X7 receptor activation and mitochondrial impairment might be a potential therapeutic strategy against OXA-induced neuropathic pain.

  13. Exogenous normal lymph reduces liver injury induced by lipopolysaccharides in rats

    International Nuclear Information System (INIS)

    Zhao, Z.G.; Zhang, L.L.; Niu, C.Y.; Zhang, J.

    2014-01-01

    The liver is one of the target organs damaged by septic shock, wherein the spread of endotoxins begins. This study aimed to investigate the effects of exogenous normal lymph (ENL) on lipopolysaccharide (LPS)-induced liver injury in rats. Male Wistar rats were randomly divided into sham, LPS, and LPS+ENL groups. LPS (15 mg/kg) was administered intravenously via the left jugular vein to the LPS and LPS+ENL groups. At 15 min after the LPS injection, saline or ENL without cell components (5 mL/kg) was administered to the LPS and LPS+ENL groups, respectively, at a rate of 0.5 mL/min. Hepatocellular injury indices and hepatic histomorphology, as well as levels of P-selectin, intercellular adhesion molecule 1 (ICAM-1), myeloperoxidase (MPO), and Na + -K + -ATPase, were assessed in hepatic tissues. Liver tissue damage occurred after LPS injection. All levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in plasma as well as the wet/dry weight ratio of hepatic tissue in plasma increased. Similarly, P-selectin, ICAM-1, and MPO levels in hepatic tissues were elevated, whereas Na + -K + -ATPase activity in hepatocytes decreased. ENL treatment lessened hepatic tissue damage and decreased levels of AST, ALT, ICAM-1, and MPO. Meanwhile, the treatment increased the activity of Na + -K + -ATPase. These results indicated that ENL could alleviate LPS-induced liver injury, thereby suggesting an alternative therapeutic strategy for the treatment of liver injury accompanied by severe infection or sepsis

  14. Decreased miR-128 and increased miR-21 synergistically cause podocyte injury in sepsis.

    Science.gov (United States)

    Wang, Shanshan; Wang, Jun; Zhang, Zengdi; Miao, Hongjun

    2017-08-01

    Glomerular podocytes are injured in sepsis. We studied, in a sepsis patient, whether microRNAs (miRNAs) play a role in the podocyte injury. Podocytes were cultured and treated with lipopolysaccharide (LPS). Filtration barrier function of podocyte was analyzed with albumin influx assay. Nephrin level was analyzed with reverse transcription polymerase chain reaction (RT-PCR) and western blot. MiRNAs were detected using miRNAs PCR Array and in situ hybridization. MiRNA target sites were evaluated with luciferase reporter assays. LPS impaired the filtration barrier function of podocytes. MiR-128 level was decreased and miR-21 level was increased in podocytes in vitro and in the sepsis patient. The decrease in miR-128 was sufficient to induce the loss of nephrin and the impairment of filtration barrier function, while the increase of miR-21 exacerbated the process. Snail and phosphatase and tensin homolog (PTEN) were identified as the targets of miR-128 and miR-21. Decreased miR-128 induced Snail expression, and the increased miR-21 stabilized Snail by regulating the PTEN/Akt/GSK3β pathway. Supplementation of miR-128 and inhibition of miR-21 suppressed Snail expression and prevented the podocyte injury induced by LPS. Our study suggests that decreased miR-128 and increased miR-21 synergistically cause podocyte injury and are the potential therapeutic targets in sepsis.

  15. Remediation of social communication impairments following traumatic brain injury using metacognitive strategy intervention: a pilot study.

    Science.gov (United States)

    Finch, Emma; Cornwell, Petrea; Copley, Anna; Doig, Emmah; Fleming, Jennifer

    2017-01-01

    To perform a pilot study to evaluate whether a novel metacognitive, goal-based intervention improved and maintained the social communication skills of adults with traumatic brain injury (TBI). Eight community-dwelling participants with TBI completed three study phases: (1) baseline, (2) eight-week intervention targeting social communication impairments and (3) follow-up. Participants completed the Profile of Pragmatic Impairment in Communication (PPIC), LaTrobe Communication Questionnaire (LCQ) and Goal Attainment Scaling (GAS) at the commencement of baseline phase, pre- and post-intervention and completion of the follow-up phase. During the intervention programme phase, participants attended two 1-hour therapy sessions (one individual; one group) per week focusing on remediating impaired social communication skills using metacognitive strategy intervention and goal-based therapy. Variable changes in PPIC feature-summary scores were observed post-intervention. A non-significant improvement in LCQ scores was also observed. There was a significant increase in GAS goal T-scores following the intervention, with six of the eight participants achieving or exceeding their expected level of performance on all goals. A goal-driven, metacognitive approach to intervention may assist individuals with TBI to achieve their personal social communication goals, with benefits reported by participants and observable during conversations. Further research is required.

  16. Dietary Fat and Sugar Induce Obesity and Impair Glucose Tolerance in Prepubertal Pigs

    OpenAIRE

    van Eyk, Gregory Ryan

    2012-01-01

    Dietary Fat and Sugar Induce Obesity and Impair Glucose Tolerance in Prepubertal Pigs Abstract A pig model of childhood obesity was used to study the effects of dietary energy on body adiposity, and blood parameters associated with impaired glucose clearance. Prepubertal female pigs weaned at 21 d of age were fed control (CON), refined sugar (SUG), fat (FAT), and sugar-fat (SUGFAT) diets in a completely randomized arrangement for 16 wk. Calories from fat were 8.9% for CON, 5.6% for SU...

  17. Restoration of hippocampal growth hormone reverses stress-induced hippocampal impairment

    Directory of Open Access Journals (Sweden)

    Caitlin M. Vander Weele

    2013-06-01

    Full Text Available Though growth hormone (GH is synthesized by hippocampal neurons, where its expression is influenced by stress exposure, its function is poorly characterized. Here, we show that a regimen of chronic stress that impairs hippocampal function in rats also leads to a profound decrease in hippocampal GH levels. Restoration of hippocampal GH in the dorsal hippocampus via viral-mediated gene transfer completely reversed stress-related impairment of two hippocampus-dependent behavioral tasks, auditory trace fear conditioning and contextual fear conditioning, without affecting hippocampal function in unstressed control rats. GH overexpression reversed stress-induced decrements in both fear acquisition and long-term fear memory. These results suggest that loss of hippocampal GH contributes to hippocampal dysfunction following prolonged stress and demonstrate that restoring hippocampal GH levels following stress can promote stress resilience.

  18. Carvacrol attenuates N-nitrosodiethylamine induced liver injury in experimental Wistar rats

    Directory of Open Access Journals (Sweden)

    Balan Rajan

    2015-06-01

    Full Text Available Carvacrol is a main constituent in the essential oils of countless aromatic plants including Origanum Vulgare and Thymus vulgari, which has been assessed for substantial pharmacological properties. In recent years, notable research has been embarked on to establish the biological actions of Carvacrol for its promising use in clinical applications. The present study is an attempt to reveal the protective role of Carvacrol against N-Nitrosodiethylamine (DEN induced hepatic injury in male Wistar albino rats. DEN is an egregious toxin, present in numerous environmental factors, which enhances chemical driven liver damage by inducing oxidative stress and cellular injury. Administration of DEN (200 mg/kg bodyweight, I.P to rats results in elevated marker enzymes (in both serum and tissue. Carvacrol (15 mg/kg body weight suppressed the elevation of marker enzymes (in both serum and tissue and augmented the antioxidants levels. The hoisted activities of Phase I enzymes and inferior activities of Phase II enzymes were observed in DEN-administered animals, whereas Carvacrol treated animals showed improved near normal activity. Histological observations also support the protective role of Carvacrol against DEN induced liver damage. Final outcome from our findings intimate that Carvacrol might be beneficial in attenuating toxin induced liver damage.

  19. Simvastatin inhibits smoke-induced airway epithelial injury: implications for COPD therapy.

    Science.gov (United States)

    Davis, Benjamin B; Zeki, Amir A; Bratt, Jennifer M; Wang, Lei; Filosto, Simone; Walby, William F; Kenyon, Nicholas J; Goldkorn, Tzipora; Schelegle, Edward S; Pinkerton, Kent E

    2013-08-01

    Chronic obstructive pulmonary disease (COPD) is the third leading cause of death. The statin drugs may have therapeutic potential in respiratory diseases such as COPD, but whether they prevent bronchial epithelial injury is unknown. We hypothesised that simvastatin attenuates acute tobacco smoke-induced neutrophilic lung inflammation and airway epithelial injury. Spontaneously hypertensive rats were given simvastatin (20 mg·kg(-1) i.p.) daily for either 7 days prior to tobacco smoke exposure and during 3 days of smoke exposure, or only during tobacco smoke exposure. Pretreatment with simvastatin prior to and continued throughout smoke exposure reduced the total influx of leukocytes, neutrophils and macrophages into the lung and airways. Simvastatin attenuated tobacco smoke-induced cellular infiltration into lung parenchymal and airway subepithelial and interstitial spaces. 1 week of simvastatin pretreatment almost completely prevented smoke-induced denudation of the airway epithelial layer, while simvastatin given only concurrently with the smoke exposure had no effect. Simvastatin may be a novel adjunctive therapy for smoke-induced lung diseases, such as COPD. Given the need for statin pretreatment there may be a critical process of conditioning that is necessary for statins' anti-inflammatory effects. Future work is needed to elucidate the mechanisms of this statin protective effect.

  20. Alcohol-Induced Memory Blackouts as an Indicator of Injury Risk among College Drinkers

    Science.gov (United States)

    Mundt, Marlon P.; Zakletskaia, Larissa I.; Brown, David D.; Fleming, Michael F.

    2011-01-01

    Objective An alcohol-induced memory blackout represents an amnesia to recall events but does not involve a loss of consciousness. Memory blackouts are a common occurrence among college drinkers, but it is not clear if a history of memory blackouts is predictive of future alcohol-related injury above and beyond the risk associated with heavy drinking episodes. This analysis sought to determine if baseline memory blackouts can prospectively identify college students with alcohol-related injury in the next 24 months after controlling for heavy drinking days. Methods Data were analyzed from the College Health Intervention Project Study (CHIPS), a randomized controlled trial of screening and brief physician intervention for problem alcohol use among 796 undergraduate and 158 graduate students at four university sites in the US and one in Canada, conducted from 2004 to 2009. Multivariate analyses used generalized estimating equations (GEE) with the logit link. Results The overall 24-month alcohol-related injury rate was 25.6%, with no significant difference between males and females (p=.51). Alcohol-induced memory blackouts at baseline exhibited a significant dose-response on odds of alcohol-related injury during follow-up, increasing from 1.57 (95% CI: 1.13–2.19) for subjects reporting 1–2 memory blackouts at baseline to 2.64 (95% CI: 1.65–4.21) for students acknowledging 6+ memory blackouts at baseline. The link between memory blackouts and injury was mediated by younger age, prior alcohol-related injury, heavy drinking, and sensation-seeking disposition. Conclusions Memory blackouts are a significant predictor of future alcohol-related injury among college drinkers after adjusting for heavy drinking episodes. PMID:21708813

  1. Exposure to 100% Oxygen Abolishes the Impairment of Fracture Healing after Thoracic Trauma.

    Directory of Open Access Journals (Sweden)

    Julia Kemmler

    Full Text Available In polytrauma patients a thoracic trauma is one of the most critical injuries and an important trigger of post-traumatic inflammation. About 50% of patients with thoracic trauma are additionally affected by bone fractures. The risk for fracture malunion is considerably increased in such patients, the pathomechanisms being poorly understood. Thoracic trauma causes regional alveolar hypoxia and, subsequently, hypoxemia, which in turn triggers local and systemic inflammation. Therefore, we aimed to unravel the role of oxygen in impaired bone regeneration after thoracic trauma. We hypothesized that short-term breathing of 100% oxygen in the early post-traumatic phase ameliorates inflammation and improves bone regeneration. Mice underwent a femur osteotomy alone or combined with blunt chest trauma 100% oxygen was administered immediately after trauma for two separate 3 hour intervals. Arterial blood gas tensions, microcirculatory perfusion and oxygenation were assessed at 3, 9 and 24 hours after injury. Inflammatory cytokines and markers of oxidative/nitrosative stress were measured in plasma, lung and fracture hematoma. Bone healing was assessed on day 7, 14 and 21. Thoracic trauma induced pulmonary and systemic inflammation and impaired bone healing. Short-term exposure to 100% oxygen in the acute post-traumatic phase significantly attenuated systemic and local inflammatory responses and improved fracture healing without provoking toxic side effects, suggesting that hyperoxia could induce anti-inflammatory and pro-regenerative effects after severe injury. These results suggest that breathing of 100% oxygen in the acute post-traumatic phase might reduce the risk of poorly healing fractures in severely injured patients.

  2. Intelligence after traumatic brain injury: meta-analysis of outcomes and prognosis.

    Science.gov (United States)

    Königs, M; Engenhorst, P J; Oosterlaan, J

    2016-01-01

    Worldwide, 54-60 million individuals sustain traumatic brain injury (TBI) each year. This meta-analysis aimed to quantify intelligence impairments after TBI and to determine the value of age and injury severity in the prognosis of TBI. An electronic database search identified 81 relevant peer-reviewed articles encompassing 3890 patients. Full-scale IQ (FSIQ), performance IQ (PIQ) and verbal IQ (VIQ) impairments were quantified (Cohen's d) for patients with mild, moderate and severe TBI in the subacute phase of recovery and the chronic phase. Meta-regressions explored prognostic values of age and injury severity measures for intelligence impairments. The results showed that, in the subacute phase, FSIQ impairments were absent for patients with mild TBI, medium-sized for patients with moderate TBI (d = -0.61, P intelligence impairments, where children may have better recovery from mild TBI and poorer recovery from severe TBI than adults. Injury severity measures predict intelligence impairments and do not outperform one another. © 2015 EAN.

  3. Motor impairment factors related to brain injury timing in early hemiparesis. Part I: expression of upper-extremity weakness.

    Science.gov (United States)

    Sukal-Moulton, Theresa; Krosschell, Kristin J; Gaebler-Spira, Deborah J; Dewald, Julius P A

    2014-01-01

    Extensive neuromotor development occurs early in human life, but the time that a brain injury occurs during development has not been rigorously studied when quantifying motor impairments. This study investigated the impact of timing of brain injury on the magnitude and distribution of weakness in the paretic arm of individuals with childhood-onset hemiparesis. A total of 24 individuals with hemiparesis were divided into time periods of injury before birth (PRE-natal, n = 8), around the time of birth (PERI-natal, n = 8), or after 6 months of age (POST-natal, n = 8). They, along with 8 typically developing peers, participated in maximal isometric shoulder, elbow, wrist, and finger torque generation tasks using a multiple-degree-of-freedom load cell to quantify torques in 10 directions. A mixed-model ANOVA was used to determine the effect of group and task on a calculated relative weakness ratio between arms. There was a significant effect of both time of injury group (P < .001) and joint torque direction (P < .001) on the relative weakness of the paretic arm. Distal joints were more affected compared with proximal joints, especially in the POST-natal group. The distribution of weakness provides evidence for the relative preservation of ipsilateral corticospinal motor pathways to the paretic limb in those individuals injured earlier, whereas those who sustained later injury may rely more on indirect ipsilateral corticobulbospinal projections during the generation of torques with the paretic arm.

  4. Motor impairment factors related to brain injury timing in early hemiparesis Part I: expression of upper extremity weakness

    Science.gov (United States)

    Sukal-Moulton, Theresa; Krosschell, Kristin J.; Gaebler-Spira, Deborah J.; Dewald, Julius P.A.

    2014-01-01

    Background Extensive neuromotor development occurs early in human life, but the time that a brain injury occurs during development has not been rigorously studied when quantifying motor impairments. Objective This study investigated the impact of timing of brain injury on magnitude and distribution of weakness in the paretic arm of individuals with childhood-onset hemiparesis. Methods Twenty-four individuals with hemiparesis were divided into time periods of injury before birth (PRE-natal, n=8), around the time of birth (PERI-natal, n=8) or after 6 months of age (POST-natal, n=8). They, along with 8 typically developing peers, participated in maximal isometric shoulder, elbow, wrist, and finger torque generation tasks using a multiple degree-of-freedom load cell to quantify torques in 10 directions. A mixed model ANOVA was used to determine the effect of group and task on a calculated relative weakness ratio between arms. Results There was a significant effect of both time of injury group (p<0.001) and joint torque direction (p<0.001) on the relative weakness of the paretic arm. Distal joints were more affected compared to proximal joints, especially in the POST-natal group. Conclusions The distribution of weakness provides evidence for the relative preservation of ipsilateral corticospinal motor pathways to the paretic limb in those individuals injured earlier, while those who sustained later injury may rely more on indirect ipsilateral cortico-bulbospinal projections during the generation of torques with the paretic arm. PMID:24009182

  5. Mice with deleted multimerin 1 and alpha-synuclein genes have impaired platelet adhesion and impaired thrombus formation that is corrected by multimerin 1.

    Science.gov (United States)

    Reheman, Adili; Tasneem, Subia; Ni, Heyu; Hayward, Catherine P M

    2010-05-01

    Multimerin 1 is a stored platelet and endothelial cell adhesive protein that shows significant conservation. In vitro, multimerin 1 supports platelet adhesion and it also binds to collagen and enhances von Willebrand factor-dependent platelet adhesion to collagen. As selective, multimerin 1 deficient mice have not been generated, we investigated multimerin 1 effects on platelet adhesion using a subpopulation of C57BL/6J mice with tandem deletion of the genes for multimerin 1 and alpha-synuclein, a protein that inhibits alpha-granule release in vitro. We postulated that multimerin 1/alpha-synuclein deficient mice might show impaired platelet adhesive function from multimerin 1 deficiency and increased alpha-granule release from alpha-synuclein deficiency. Platelet function was assessed by intravital microscopy, after ferric chloride injury, using untreated and human multimerin 1-transfused multimerin 1/alpha-synuclein deficient mice, and by in vitro assays of adhesion, aggregation and thrombin-induced P-selectin release. Multimerin 1/alpha-synuclein deficient mice showed impaired platelet adhesion and their defective thrombus formation at sites of vessel injury improved with multimerin 1 transfusion. Although multimerin 1/alpha-synuclein deficient platelets showed increased P-selectin release at low thrombin concentrations, they also showed impaired adhesion to collagen, and attenuated aggregation with thrombin, that improved with added multimerin 1. Our data suggest that multimerin 1 supports platelet adhesive functions and thrombus formation, which will be important to verify by generating and testing selective multimerin 1 deficient mice. Copyright (c) 2010. Published by Elsevier Ltd.

  6. Supplementation of pyruvate prevents palmitate-induced impairment of glucose uptake in C2 myotubes.

    Science.gov (United States)

    Jung, Jong Gab; Choi, Sung-E; Hwang, Yoon-Jung; Lee, Sang-A; Kim, Eun Kyoung; Lee, Min-Seok; Han, Seung Jin; Kim, Hae Jin; Kim, Dae Jung; Kang, Yup; Lee, Kwan-Woo

    2011-10-15

    Elevated fatty acid levels have been thought to contribute to insulin resistance. Repression of the glucose transporter 4 (GLUT4) gene as well as impaired GLUT4 translocation may be a mediator for fatty acid-induced insulin resistance. This study was initiated to determine whether palmitate treatment repressed GLUT4 expression, whether glucose/fatty acid metabolism influenced palmitate-induced GLUT4 gene repression (PIGR), and whether attempts to prevent PIGR restored palmitate-induced impairment of glucose uptake (PIIGU) in C2 myotubes. Not only stimulators of fatty acid oxidation, such as bezafibrate, AICAR, and TOFA, but also TCA cycle substrates, such as pyruvate, leucine/glutamine, and α-ketoisocaproate/monomethyl succinate, significantly prevented PIGR. In particular, supplementing with pyruvate through methyl pyruvate resulted in nearly complete prevention of PIIGU, whereas palmitate treatment reduced the intracellular pyruvate level. These results suggest that pyruvate depletion plays a critical role in PIGR and PIIGU; thus, pyruvate supplementation may help prevent obesity-induced insulin resistance in muscle cells. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.

  7. MR imaging and histopathologic correlations of thermal injuries induced by interstitial laser applications

    International Nuclear Information System (INIS)

    Anzai, Y.; Lufkin, R.B.; Castro, D.J.; Farahani, K.; Chen, H.W.; Hirchowiz, S.

    1991-01-01

    Interstitial laser phototherapy for deep-seated tumors may become an attractive therapeutic modality when a noninvasive, accurate monitoring system is developed. In this paper, to devaluate the ability of MR imaging to differentiate reversible and irreversible thermal injuries induced by laser therapy, the precise correlation of MR and histopathologic findings are investigated in the in vivo model. Nd:YAG lasers were applied to normal musculature of rabbits, and MR examinations were performed immediately after laser exposure and followed up for up to 10 weeks. The sequential MR images were correlated with histopathologic findings. T2-weighted MR imaging clearly showed laser-induced thermal injuries on any postoperative day. MR imaging of acute thermal injuries showed a central cavity, low-signal zone of coagulative necrosis and a peripheral high-signal layer of interstitial edema. The infiltration of neutrophils followed by fibrovascular response was identified on the marginal edema layer after 6 postoperative days

  8. Aging exacerbates intracerebral hemorrhage-induced brain injury.

    Science.gov (United States)

    Lee, Jae-Chul; Cho, Geum-Sil; Choi, Byung-Ok; Kim, Hyoung Chun; Kim, Won-Ki

    2009-09-01

    Aging may be an important factor affecting brain injury by intracerebral hemorrhage (ICH). In the present study, we investigated the responses of glial cells and monocytes to intracerebral hemorrhage in normal and aged rats. ICH was induced by microinjecting autologous whole blood (15 microL) into the striatum of young (4 month old) and aged (24 month old) Sprague-Dawley rats. Age-dependent relations of brain tissue damage with glial and macrophageal responses were evaluated. Three days after ICH, activated microglia/macrophages with OX42-positive processes and swollen cytoplasm were more abundantly distributed around and inside the hemorrhagic lesions. These were more dramatic in aged versus the young rats. Western blot and immunohistochemistry analyses showed that the expression of interleukin-1beta protein after ICH was greater in aged rats, whereas the expression of GFAP and ciliary neurotrophic factor protein after ICH was significantly lower in aged rats. These results suggest that ICH causes more severe brain injury in aged rats most likely due to overactivation of microglia/macrophages and concomitant repression of reactive astrocytes.

  9. Treatment and prophylaxis with sucralfate ameliorates hypoxia/reoxygenation-induced intestinal injury in pup rats.

    Science.gov (United States)

    Sencan, Arzu Bostanci; Sencan, Aydin; Aktas, Safiye; Habif, Sara; Kabaroglu, Ceyda; Parildar, Zuhal; Karaca, Irfan

    2005-04-01

    Sucralfate is widely used as a cytoprotective agent in patients with peptic ulcer and other intestinal mucosal injury. The aim of this study is to investigate whether sucralfate has any effect on the prevention and treatment of hypoxia/reoxygenation-induced intestinal injury. Four groups of 10 1-day-old rat pups were studied. Hypoxia/reoxygenation (H/O)-induced intestinal injury was created. Group 1 was subjected to H/O just after birth and sacrificed at the end of the third day (Treatment Control). Group 2 was subjected to H/O just after birth and treated with sucralfate for 3 days. They were sacrificed at the end of the third day (Treatment). Group 3 was subjected to H/O on the third day after birth and then sacrificed (Prophylaxis Control). Group 4 was treated with sucralfate for the first 3 days, then H/O was created. Just after H/O, the pups were sacrificed (Prophylaxis). The intestinal tissues were harvested for histopathological investigation. Malondialdehyde (MDA) levels in the intestinal tissues were determined. The mucosal injury grades of the treatment and prophylaxis groups were significantly lower than those of control groups (p<0.05). The mean MDA level in the treatment and prophylaxis groups were 0.42+/-0.17 and 0.21+/-0.23 nmol/mg respectively. The MDA levels of both groups were significantly lower than in the control groups (p<0.05). The present study shows that sucralfate has beneficial effects in an experimental model of hypoxia/reoxygenation-induced intestinal injury.

  10. Effect of WeiJia on carbon tetrachloride induced chronic liver injury

    Science.gov (United States)

    Cheung, Pik-Yuen; Zhang, Qi; Zhang, Ya-Ou; Bai, Gan-Rong; Lin, Marie Chia-Mi; Chan, Bernard; Fong, Chi-Chun; Shi, Lin; Shi, Yue-Feng; Chun, Jay; Kung, Hsiang-Fu; Yang, Mengsu

    2006-01-01

    AIM: To study the effect of WeiJia on chronic liver injury using carbon tetrachloride (CCl4) induced liver injury animal model. METHODS: Wistar rats weighing 180-220g were randomly divided into three groups: normal control group (Group A), CCl4 induced liver injury control group (Group B) and CCl4 induction with WeiJia treatment group (Group C). Each group consisted of 14 rats. Liver damage and fibrosis was induced by subcutaneous injection with 40% CCl4 in olive oil at 3 mL/kg body weight twice a week for eight weeks for Groups B and C rats whereas olive oil was used for Group A rats. Starting from the third week, Group C rats also received daily intraperitoneal injection of WeiJia at a dose of 1.25 μg/kg body weight. Animals were sacrificed at the fifth week (4 male, 3 female), and eighth week (4 male, 3 female) respectively. Degree of fibrosis were measured and serological markers for liver fibrosis and function including hyaluronic acid (HA), type IV collagen (CIV), γ-glutamyl transferase (γ-GT), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined. Alpha smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA) immunohistochemistry were also performed. RESULTS: CCl4 induction led to the damage of liver and development of fibrosis in Group B and Group C rats when compared to Group A rats. The treatment of WeiJia in Group C rats could reduce the fibrosis condition significantly compared to Group B rats. The effect could be observed after three weeks of treatment and was more obvious after eight weeks of treatment. Serum HA, CIV, ALT, AST and γ-GT levels after eight weeks of treatment for Group C rats were 58±22 µg/L (P0.05) respectively, similar to normal control group (Group A), but significantly different from CCl4 induced liver injury control group (Group B). An increase in PCNA and decrease in α-SMA expression level was also observed. CONCLUSION: WeiJia could improve liver function and reduce liver

  11. Selenium deficiency aggravates T-2 toxin-induced injury of primary neonatal rat cardiomyocytes through ER stress.

    Science.gov (United States)

    Xu, Jing; Pan, Shengchi; Gan, Fang; Hao, Shu; Liu, Dandan; Xu, Haibin; Huang, Kehe

    2018-04-01

    Keshan disease is a potentially fatal cardiomyopathy in humans. Selenium deficiency, T-2 toxin, and myocarditis virus are thought to be the major factors contributing to Keshan disease. But the relationship among these three factors is poorly described. This study aims to explore whether selenium deficiency aggravates T-2 toxin-induced cardiomyocyte injury and its underlying mechanism. Cardiomyocytes were isolated from neonatal rat and cultured at the physiological (2.0 μM) or lower concentrations of selenium with different concentrations of T-2 toxin. Our results showed that selenium deficiencies aggravated T-2 toxin-induced cardiomyocyte injury in a concentration-dependent manner as demonstrated by MTT bioassay, LDH activity, reactive oxygen species levels and caspase 3 protein expressions. T-2 toxin treatment significantly increased mRNA expressions for stress proteins GRP78 and CHOP in cardiomyocytes compared with the control. Selenium deficiencies further promoted GRP78, CHOP and p-eIF2α expressions. Knockdown of CHOP by the specific small interfering RNA eliminated the effect of selenium deficiencies on T-2 toxin-induced injury. It could be concluded that selenium deficiency aggravates T-2 toxin-induced cardiomyocyte injury through initiating more aggressive endoplasmic reticulum stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Autophagic effects of Hibiscus sabdariffa leaf polyphenols and epicatechin gallate (ECG) against oxidized LDL-induced injury of human endothelial cells.

    Science.gov (United States)

    Chen, Jing-Hsien; Lee, Ming-Shih; Wang, Chi-Ping; Hsu, Cheng-Chin; Lin, Hui-Hsuan

    2017-08-01

    Oxidized low-density lipoprotein (ox-LDL) contributes to the pathogenesis of atherosclerosis by promoting vascular endothelial cell injury. Hibiscus sabdariffa leaf polyphenols (HLP), rich in flavonoids, have been shown to possess antioxidant and antiatherosclerotic activities. In this study, we examined the protective role of HLP and its main compound (-)-epicatechin gallate (ECG) in human umbilical vein endothelial cells (HUVECs) exposed to ox-LDL in vitro. In a model of ox-LDL-impaired HUVECs, assessments of cell viability, cytotoxicity, cell proliferation, apoptosis, and autophagy were detected. To highlight the mechanisms of the antiapoptotic effects of HLP and ECG, the expressions of molecular proteins were measured by Western blotting, real-time PCR, and so on. HLP or ECG improved the survival of HUVECs from ox-LDL-induced viability loss. In addition, HLP or ECG showed potential in reducing ox-LDL-dependent apoptosis. Next, the ox-LDL-induced formation of acidic vesicular organelles and upregulation of the autophagy-related genes were increased by HLP or ECG. The HLP-triggered autophagic flux was further confirmed by increasing the LC3-II level under the pretreatment of an autophagy inhibitor chloroquine. Molecular data indicated the autophagic effect of HLP or ECG might be mediated via class III PI3K/Beclin-1 and PTEN/class I PI3K/Akt cascade signaling, as demonstrated by the usage of a class III PI3K inhibitor 3-methyladenine (3-MA) and a PTEN inhibitor SF1670. Our data imply that ECG-enriched HLP upregulates the autophagic pathway, which in turn led to reduce ox-LDL-induced HUVECs injury and apoptosis and provide a new mechanism for its antiatherosclerotic activity.

  13. Impairments of astrocytes are involved in the D-galactose-induced brain aging

    International Nuclear Information System (INIS)

    Lei Ming; Hua Xiangdong; Xiao Ming; Ding Jiong; Han Qunying; Hu Gang

    2008-01-01

    Astrocyte dysfunction is implicated in course of various age-related neurodegenerative diseases. Chronic injection of D-galactose can cause a progressive deterioration in learning and memory capacity and serve as an animal model of aging. To investigate the involvement of astrocytes in this model, oxidative stress biomarkers, biochemical and pathological changes of astrocytes were examined in the hippocampus of the rats with six weeks of D-galactose injection. D-galactose-injected rats displayed impaired antioxidant systems, an increase in nitric oxide levels, and a decrease in reduced glutathione levels. Consistently, western blotting and immunostaining of glial fibrillary acidic protein showed extensive activation of astrocytes. Double-immunofluorescent staining further showed activated astrocytes highly expressed inducible nitric oxide synthase. Electron microscopy demonstrated the degeneration of astrocytes, especially in the aggregated area of synapse and brain microvessels. These findings indicate that impairments of astrocytes are involved in oxidative stress-induced brain aging by chronic injection of D-galactose

  14. Relation between radiation-induced tissue injury and its carcinogenesis of the rat small intestine

    Energy Technology Data Exchange (ETDEWEB)

    Tsubouchi, S [Aichi Cancer Center, Nagoya (Japan). Research Inst.; Matsuzawa, T

    1975-06-01

    This study was undertaken to make clear the relationships between radiation-induced tissue injury and its carcinogenesis in the rat small intestine. The abdomens of Wistar rats were irradiated locally with 1000 to 2000 rads. Approximately 2 months following irradiation, visible nodules were found in the intestines of the groups receiving irradiation. Nodule incidence was 80 to 100% in groups that received 1750 or 2000 rads, 50% in the 1500-rad groups, and 3% in the 1000-rad groups, respectively. The histology of the nodules within 70 days postirradiation, revealed adenomatous hyperplasia, including invasion of submucosa, muscle layers, and serosa of the small intestine accompanied by an area of fibrous tissue resulting from desmoplastic reaction by irradiation injury. The nodule within 140 to 300 days postirradiation induced advanced tissue injuried, that is, a polypoid lesion in histology and intestinal nodular adhesion in macroscopic anatomy. Running parallel with the advance of the above mentioned tissue injuries, the nodules in 3 out of 18 rat during 200 to 300 days postirradiation showed mucoid adenocarcinoma.

  15. Relation between radiation-induced tissue injury and its carcinogenesis of the rat small intestine

    International Nuclear Information System (INIS)

    Tsubouchi, Susumu; Matsuzawa, Taiju.

    1975-01-01

    This study was undertaken to make clear the relationships between radiation-induced tissue injury and its carcinogenesis in the rat small intestine. The abdomens of Wistar rats were irradiated locally with 1000 to 2000 rads. Approximately 2 months following irradiation, visible nodules were found in the intestines of the groups receiving irradiation. Nodule incidence was 80 to 100% in groups that received 1750 or 2000 rads, 50% in the 1500-rad groups, and 3% in the 1000-rad groups, respectively. The histology of the nodules within 70 days postirradiation, revealed adenomatous hyperplasia, including invasion of submucosa, muscle layers, and serosa of the small intestine accompanied by an area of fibrous tissue resulting from desmoplastic reaction by irradiation injury. The nodule within 140-300 days postirradiation induced advanced tissue injuried, that is, a polypoid lesion in histology and intestinal nodular adhesion in macroscopic anatomy. Running parallel with the advance of the above mentioned tissue injuries, the nodules in 3 out of 18 rat during 200-300 days postirradiation showed mucoid adenocarcinoma. (author)

  16. T cells infiltrate the liver and kill hepatocytes in HLA-B(∗)57:01-associated floxacillin-induced liver injury.

    Science.gov (United States)

    Wuillemin, Natascha; Terracciano, Luigi; Beltraminelli, Helmut; Schlapbach, Christoph; Fontana, Stefano; Krähenbühl, Stephan; Pichler, Werner J; Yerly, Daniel

    2014-06-01

    Drug-induced liver injury is a major safety issue. It can cause severe disease and is a common cause of the withdrawal of drugs from the pharmaceutical market. Recent studies have identified the HLA-B(∗)57:01 allele as a risk factor for floxacillin (FLUX)-induced liver injury and have suggested a role for cytotoxic CD8(+) T cells in the pathomechanism of liver injury caused by FLUX. This study aimed to confirm the importance of FLUX-reacting cytotoxic lymphocytes in the pathomechanism of liver injury and to dissect the involved mechanisms of cytotoxicity. IHC staining of a liver biopsy from a patient with FLUX-induced liver injury revealed periportal inflammation and the infiltration of cytotoxic CD3(+) CD8(+) lymphocytes into the liver. The infiltration of cytotoxic lymphocytes into the liver of a patient with FLUX-induced liver injury demonstrates the importance of FLUX-reacting T cells in the underlying pathomechanism. Cytotoxicity of FLUX-reacting T cells from 10 HLA-B(∗)57:01(+) healthy donors toward autologous target cells and HLA-B(∗)57:01-transduced hepatocytes was analyzed in vitro. Cytotoxicity of FLUX-reacting T cells was concentration dependent and required concentrations in the range of peak serum levels after FLUX administration. Killing of target cells was mediated by different cytotoxic mechanisms. Our findings emphasize the role of the adaptive immune system and especially of activated drug-reacting T cells in human leukocyte antigen-associated, drug-induced liver injury. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Nerium oleander indirect leaf photosynthesis and light harvesting reductions after clipping injury or Spodoptera eridania herbivory: high sensitivity to injury.

    Science.gov (United States)

    Delaney, Kevin J

    2012-04-01

    Variable indirect photosynthetic rate (P(n)) responses occur on injured leaves after insect herbivory. It is important to understand factors that influence indirect P(n) reductions after injury. The current study examines the relationship between gas exchange and chlorophyll a fluorescence parameters with injury intensity (% single leaf tissue removal) from clipping or Spodoptera eridania Stoll (Noctuidae) herbivory on Nerium oleander L. (Apocynaceae). Two experiments showed intercellular [CO(2)] increases but P(n) and stomatal conductance reductions with increasing injury intensity, suggesting non-stomatal P(n) limitation. Also, P(n) recovery was incomplete at 3d post-injury. This is the first report of a negative exponential P(n) impairment function with leaf injury intensity to suggest high N. oleander leaf sensitivity to indirect P(n) impairment. Negative linear functions occurred between most other gas exchange and chlorophyll a fluorescence parameters with injury intensity. The degree of light harvesting impairment increased with injury intensity via lower (1) photochemical efficiency indicated lower energy transfer efficiency from reaction centers to PSII, (2) photochemical quenching indicated reaction center closure, and (3) electron transport rates indicated less energy traveling through PSII. Future studies can examine additional mechanisms (mesophyll conductance, carbon fixation, and cardenolide induction) to cause N. oleander indirect leaf P(n) reductions after injury. Published by Elsevier Ireland Ltd.

  18. Interactive HIV-1 Tat and morphine-induced synaptodendritic injury is triggered through focal disruptions in Na⁺ influx, mitochondrial instability, and Ca²⁺ overload.

    Science.gov (United States)

    Fitting, Sylvia; Knapp, Pamela E; Zou, Shiping; Marks, William D; Bowers, M Scott; Akbarali, Hamid I; Hauser, Kurt F

    2014-09-17

    Synaptodendritic injury is thought to underlie HIV-associated neurocognitive disorders and contributes to exaggerated inflammation and cognitive impairment seen in opioid abusers with HIV-1. To examine events triggering combined transactivator of transcription (Tat)- and morphine-induced synaptodendritic injury systematically, striatal neuron imaging studies were conducted in vitro. These studies demonstrated nearly identical pathologic increases in dendritic varicosities as seen in Tat transgenic mice in vivo. Tat caused significant focal increases in intracellular sodium ([Na(+)]i) and calcium ([Ca(2+)]i) in dendrites that were accompanied by the emergence of dendritic varicosities. These effects were largely, but not entirely, attenuated by the NMDA and AMPA receptor antagonists MK-801 and CNQX, respectively. Concurrent morphine treatment accelerated Tat-induced focal varicosities, which were accompanied by localized increases in [Ca(2+)]i and exaggerated instability in mitochondrial inner membrane potential. Importantly, morphine's effects were prevented by the μ-opioid receptor antagonist CTAP and were not observed in neurons cultured from μ-opioid receptor knock-out mice. Combined Tat- and morphine-induced initial losses in ion homeostasis and increases in [Ca(2+)]i were attenuated by the ryanodine receptor inhibitor ryanodine, as well as pyruvate. In summary, Tat induced increases in [Na(+)]i, mitochondrial instability, excessive Ca(2+) influx through glutamatergic receptors, and swelling along dendrites. Morphine, acting via μ-opioid receptors, exacerbates these excitotoxic Tat effects at the same subcellular locations by mobilizing additional [Ca(2+)]i and by further disrupting [Ca(2+)]i homeostasis. We hypothesize that the spatiotemporal relationship of μ-opioid and aberrant AMPA/NMDA glutamate receptor signaling is critical in defining the location and degree to which opiates exacerbate the synaptodendritic injury commonly observed in neuro

  19. Methylglyoxal Induces Changes in the Glyoxalase System and Impairs Glutamate Uptake Activity in Primary Astrocytes.

    Science.gov (United States)

    Hansen, Fernanda; Galland, Fabiana; Lirio, Franciane; de Souza, Daniela Fraga; Da Ré, Carollina; Pacheco, Rafaela Ferreira; Vizuete, Adriana Fernanda; Quincozes-Santos, André; Leite, Marina Concli; Gonçalves, Carlos-Alberto

    2017-01-01

    The impairment of astrocyte functions is associated with diabetes mellitus and other neurodegenerative diseases. Astrocytes have been proposed to be essential cells for neuroprotection against elevated levels of methylglyoxal (MG), a highly reactive aldehyde derived from the glycolytic pathway. MG exposure impairs primary astrocyte viability, as evaluated by different assays, and these cells respond to MG elevation by increasing glyoxalase 1 activity and glutathione levels, which improve cell viability and survival. However, C6 glioma cells have shown strong signs of resistance against MG, without significant changes in the glyoxalase system. Results for aminoguanidine coincubation support the idea that MG toxicity is mediated by glycation. We found a significant decrease in glutamate uptake by astrocytes, without changes in the expression of the major transporters. Carbenoxolone, a nonspecific inhibitor of gap junctions, prevented the cytotoxicity induced by MG in astrocyte cultures. Thus, our data reinforce the idea that astrocyte viability depends on gap junctions and that the impairment induced by MG involves glutamate excitotoxicity. The astrocyte susceptibility to MG emphasizes the importance of this compound in neurodegenerative diseases, where the neuronal damage induced by MG may be aggravated by the commitment of the cells charged with MG clearance.

  20. SPATIAL MEMORY IMPAIRMENT AND HIPPOCAMPAL CELL LOSS INDUCED BY OKADAIC ACID (EXPERIMENTAL STUDY).

    Science.gov (United States)

    Chighladze, M; Dashniani, M; Beselia, G; Kruashvili, L; Naneishvili, T

    2016-01-01

    In the present study, we evaluated and compared effect of intracerebroventricular (ICV) and intrahippocampal bilateral microinjection of okadaic acid (OA) on spatial memory function assessed in one day water maze paradigm and hippocampal structure in rats. Rats were divided in following groups: Control(icv) - rats injected with ICV and aCSF; Control(hipp) - rats injected intrahippocampally with aCSF; OAicv - rats injected with ICV and OA; OAhipp - rats injected intrahippocampally with OA. Nissl staining of hippocampal sections showed that the pyramidal cell loss in OAhipp group is significantly higher than that in the OAicv. The results of behavioral experiments showed that ICV or intrahippocampal bilateral microinjection of OA did not affect learning process and short-term spatial memory but induced impairment in spatial long-term memory assessed in probe test performance 24 h after training. OA-induced spatial memory impairment may be attributed to the hippocampal cell death. Based on these results OA induced memory deficit and hippocampal cell loss in rat may be considered as a potential animal model for preclinical evaluation of antidementic drug activity.

  1. Involvement of caspase-12-dependent apoptotic pathway in ionic radiocontrast urografin-induced renal tubular cell injury

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cheng Tien [Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Weng, Te I. [Department of Forensic Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Chen, Li Ping [Department of Dentistry, Chang Gang Memorial Hospital, Chang Gang University, Taoyuan, Taiwan (China); Chiang, Chih Kang [Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (China); Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (China); Liu, Shing Hwa, E-mail: shinghwaliu@ntu.edu.tw [Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Department of Urology, National Taiwan University Hospital, Taipei, Taiwan (China)

    2013-01-01

    Contrast medium (CM) induces a direct toxic effect on renal tubular cells. This toxic effect subjects in the disorder of CM-induced nephropathy. Our previous work has demonstrated that CM shows to activate the endoplasmic reticulum (ER)-related adaptive unfolding protein response (UPR) activators. Glucose-regulated protein 78 (GRP78)/eukaryotic initiation factor 2α (eIF2α)-related pathways play a protective role during the urografin (an ionic CM)-induced renal tubular injury. However, the involvement of ER stress-related apoptotic signals in the urografin-induced renal tubular cell injury remains unclear. Here, we examined by the in vivo and in vitro experiments to explore whether ER stress-regulated pro-apoptotic activators participate in urografin-induced renal injury. Urografin induced renal tubular dilation, tubular cells detachment, and necrosis in the kidneys of rats. The tubular apoptosis, ER stress-related pro-apoptotic transcriptional factors, and kidney injury marker-1 (kim-1) were also conspicuously up-regulated in urografin-treated rats. Furthermore, treatment of normal rat kidney (NRK)-52E tubular cells with urografin augmented the expressions of activating transcription factor-6 (ATF-6), C/EBP homologous protein (CHOP), Bax, caspase-12, JNK, and inositol-requiring enzyme (IRE) 1 signals. Urografin-induced renal tubular cell apoptosis was not reversed by the inhibitors of ATF-6, JNK signals or CHOP siRNA transfection, but it could be partially reversed by the inhibitor of caspase-12. Taken together, the present results and our previous findings suggest that exposure of CM/urografin activates the ER stress-regulated survival- and apoptosis-related signaling pathways in renal tubular cells. Caspase-12-dependent apoptotic pathway may be partially involved in the urografin-induced nephropathy. -- Highlights: ► Ionic contrast medium-urografin induces renal tubular cell apoptosis. ► Urografin induces the ER stress-regulated survival and apoptosis

  2. Inactivation of basolateral amygdala prevents chronic immobilization stress-induced memory impairment and associated changes in corticosterone levels.

    Science.gov (United States)

    Tripathi, Sunil Jamuna; Chakraborty, Suwarna; Srikumar, B N; Raju, T R; Shankaranarayana Rao, B S

    2017-07-01

    Chronic stress causes detrimental effects on various forms of learning and memory. The basolateral amygdala (BLA) not only plays a crucial role in mediating certain forms of memory, but also in the modulation of the effects of stress. Chronic immobilization stress (CIS) results in hypertrophy of the BLA, which is believed to be one of the underlying causes for stress' effects on learning. Thus, it is plausible that preventing the effects of CIS on amygdala would preclude its deleterious cognitive effects. Accordingly, in the first part, we evaluated the effect of excitotoxic lesion of the BLA on chronic stress-induced hippocampal-dependent spatial learning using a partially baited radial arm maze task. The BLA was ablated bilaterally using ibotenic acid prior to CIS. Chronically stressed rats showed impairment in spatial learning with decreased percentage correct choice and increased reference memory errors. Excitotoxic lesion of the BLA prevented the impairment in spatial learning and reference memory. In the retention test, lesion of the BLA was able to rescue the chronic stress-induced impairment. Interestingly, stress-induced enhanced plasma corticosterone levels were partially prevented by the lesion of BLA. These results motivated us to evaluate if the same effects can be observed with temporary inactivation of BLA, only during stress. We found that chronic stress-induced spatial learning deficits were also prevented by temporary inactivation of the BLA. Additionally, temporary inactivation of BLA partially precluded the stress-induced increase in plasma corticosterone levels. Thus, inactivation of BLA precludes stress-induced spatial learning deficits, and enhanced plasma corticosterone levels. It is speculated that BLA inactivation-induced reduction in corticosterone levels during stress, might be crucial in restoring spatial learning impairments. Our study provides evidence that amygdalar modulation during stress might be beneficial for strategic

  3. Trigeminal nerve injury-induced thrombospondin-4 up-regulation contributes to orofacial neuropathic pain states in a rat model.

    Science.gov (United States)

    Li, K-W; Kim, D-S; Zaucke, F; Luo, Z D

    2014-04-01

    Injury to the trigeminal nerve often results in the development of chronic pain states including tactile allodynia, or hypersensitivity to light touch, in orofacial area, but its underlying mechanisms are poorly understood. Peripheral nerve injury has been shown to cause up-regulation of thrombospondin-4 (TSP4) in dorsal spinal cord that correlates with neuropathic pain development. In this study, we examined whether injury-induced TSP4 is critical in mediating orofacial pain development in a rat model of chronic constriction injury to the infraorbital nerve. Orofacial sensitivity to mechanical stimulation was examined in a unilateral infraorbital nerve ligation rat model. The levels of TSP4 in trigeminal ganglia and associated spinal subnucleus caudalis and C1/C2 spinal cord (Vc/C2) from injured rats were examined at time points correlating with the initiation and peak orofacial hypersensitivity. TSP4 antisense and mismatch oligodeoxynucleotides were intrathecally injected into injured rats to see if antisense oligodeoxynucleotide treatment could reverse injury-induced TSP4 up-regulation and orofacial behavioural hypersensitivity. Our data indicated that trigeminal nerve injury induced TSP4 up-regulation in Vc/C2 at a time point correlated with orofacial tactile allodynia. In addition, intrathecal treatment with TSP4 antisense, but not mismatch, oligodeoxynucleotides blocked both injury-induced TSP4 up-regulation in Vc/C2 and behavioural hypersensitivity. Our data support that infraorbital nerve injury leads to TSP4 up-regulation in trigeminal spinal complex that contributes to orofacial neuropathic pain states. Blocking this pathway may provide an alternative approach in management of orofacial neuropathic pain states. © 2013 European Pain Federation - EFIC®

  4. Does age matter? Age and rehabilitation of visual field disorders after brain injury.

    Science.gov (United States)

    Schuett, Susanne; Zihl, Josef

    2013-04-01

    Homonymous visual field disorders (HVFD) are frequent and disabling consequences of acquired brain injury, particularly in older age. Their rehabilitation is therefore of great importance. Compensatory oculomotor therapy has been found to be effective in improving the associated functional impairments in reading and visual exploration. But older age is commonly considered to adversely affect practice-dependent functional plasticity and, thus, functional and rehabilitation outcome after acquired brain injury. The effect of age in the compensatory treatment of HVFD, however, has never been investigated hitherto. It remains unknown whether age determines not only patients' functional impairments but also the rehabilitation outcome and the required amount of treatment. We therefore present the first study to determine the effect of age in 38 patients with HVFD receiving compensatory oculomotor treatment for their reading and visual exploration impairments. We investigated whether older patients with HVFD (1) show more pronounced impairments and less spontaneous adaptation, (2) show lesser compensatory treatment-related improvement in reading and visual exploration, and (3) require a higher amount of treatment than younger patients. Our main finding is that older patients achieve the same treatment-induced improvements in reading and visual exploration with the same amount of treatment as younger patients; severity of functional impairment also did not differ between older and younger patients, at least in reading. Age does not seem to be a critical factor determining the functional and rehabilitation outcome in the compensatory treatment of HVFD. Older age per se is not necessarily associated with a decline in practice-dependent functional plasticity and adaptation. To the contrary, the effectiveness of compensatory treatment to reduce the functional impairments to a similar extent in younger and older patients with HVFD adds to the growing evidence for a life

  5. Kefir protective effects against nicotine cessation-induced anxiety and cognition impairments in rats.

    Science.gov (United States)

    Noori, Negin; Bangash, Mohammad Yasan; Motaghinejad, Majid; Hosseini, Pantea; Noudoost, Behshad

    2014-01-01

    Nicotine as one of the potent psychostimulant drugs is characterized by its parasympathomimetic activity. Upon the abrupt discontinuation of nicotine intake, a number of symptoms such as anxiety, depression and cognition impairment develop. Kefir as a food supplement is rich in tryptophan. In this study, we have evaluated the effects of Kefir on nicotine cessation-induced anxiety, depression and cognition impairment. Forty adult male rats were divided into four groups. All the groups received 6 mg/kg/day of nicotine for 17 days and then the negative control groups got 5 mg/kg/day of normal saline. The positive control groups were given 40 mg/kg/day of Sertraline HCl for 7 days. The group treated with Cow Milk Kefir (CMK) and Soy Milk Kefir (SMK) received 5 mg/kg/day for 7 days. On the 25(th) day, Elevated Plus Maze (EPM), Open Field Test (OFT) and Forced Swim Test (FST) were used to investigate anxiety and depression. In addition, Moris Water Maze was applied to evaluate learning and memory in the animals between the 20(th) and 25(th) days. The results showed that administration of CMK, SMK and Sertraline had higher anti-depression and anxiolytic effects on nicotine withdrawal-induced depression and anxiety in rats (P Kefir had a potential effect on the treatment of nicotine cessation-induced depression, anxiety and cognition impairment in the animal model. Kefir may be useful for adjunct therapy for nicotine abandonment treatment protocols.

  6. Kefir protective effects against nicotine cessation-induced anxiety and cognition impairments in rats

    Directory of Open Access Journals (Sweden)

    Negin Noori

    2014-01-01

    Conclusion: This study revealed that Kefir had a potential effect on the treatment of nicotine cessation-induced depression, anxiety and cognition impairment in the animal model. Kefir may be useful for adjunct therapy for nicotine abandonment treatment protocols.

  7. Hippocampal NPY gene transfer attenuates seizures without affecting epilepsy-induced impairment of LTP

    DEFF Research Database (Denmark)

    Sørensen, Andreas T; Nikitidou, Litsa; Ledri, Marco

    2009-01-01

    (TLE). However, our previous studies show that recombinant adeno-associated viral (rAAV)-NPY treatment in naive rats attenuates long-term potentiation (LTP) and transiently impairs hippocampal learning process, indicating that negative effect on memory function could be a potential side effect of NPY...... is significantly attenuated in vitro. Importantly, transgene NPY overexpression has no effect on short-term synaptic plasticity, and does not further compromise LTP in kindled animals. These data suggest that epileptic seizure-induced impairment of memory function in the hippocampus may not be further affected...... injected with rAAV-NPY, we show that rapid kindling-induced hippocampal seizures in vivo are effectively suppressed as compared to rAAV-empty injected (control) rats. Six to nine weeks later, basal synaptic transmission and short-term synaptic plasticity are unchanged after rapid kindling, while LTP...

  8. Radiation-Induced Skin Injuries to Patients: What the Interventional Radiologist Needs to Know.

    Science.gov (United States)

    Jaschke, Werner; Schmuth, Matthias; Trianni, Annalisa; Bartal, Gabriel

    2017-08-01

    For a long time, radiation-induced skin injuries were only encountered in patients undergoing radiation therapy. In diagnostic radiology, radiation exposures of patients causing skin injuries were extremely rare. The introduction of fast multislice CT scanners and fluoroscopically guided interventions (FGI) changed the situation. Both methods carry the risk of excessive high doses to the skin of patients resulting in skin injuries. In the early nineties, several reports of epilation and skin injuries following CT brain perfusion studies were published. During the same time, several papers reported skin injuries following FGI, especially after percutaneous coronary interventions and neuroembolisations. Thus, CT and FGI are of major concern regarding radiation safety since both methods can apply doses to patients exceeding 5 Gy (National Council on Radiation Protection and Measurements threshold for substantial radiation dose level). This paper reviews the problem of skin injuries observed after FGI. Also, some practical advices are given how to effectively avoid skin injuries. In addition, guidelines are discussed how to deal with patients who were exposed to a potentially dangerous radiation skin dose during medically justified interventional procedures.

  9. Pressure Combined with Ischemia/Reperfusion Injury Induces Deep Tissue Injury via Endoplasmic Reticulum Stress in a Rat Pressure Ulcer Model

    Directory of Open Access Journals (Sweden)

    Fei-Fei Cui

    2016-02-01

    Full Text Available Pressure ulcer is a complex and significant health problem in long-term bedridden patients, and there is currently no effective treatment or efficient prevention method. Furthermore, the molecular mechanisms and pathogenesis contributing to the deep injury of pressure ulcers are unclear. The aim of the study was to explore the role of endoplasmic reticulum (ER stress and Akt/GSK3β signaling in pressure ulcers. A model of pressure-induced deep tissue injury in adult Sprague-Dawley rats was established. Rats were treated with 2-h compression and subsequent 0.5-h release for various cycles. After recovery, the tissue in the compressed regions was collected for further analysis. The compressed muscle tissues showed clear cellular degenerative features. First, the expression levels of ER stress proteins GRP78, CHOP, and caspase-12 were generally increased compared to those in the control. Phosphorylated Akt and phosphorylated GSK3β were upregulated in the beginning of muscle compression, and immediately significantly decreased at the initiation of ischemia-reperfusion injury in compressed muscles tissue. These data show that ER stress may be involved in the underlying mechanisms of cell degeneration after pressure ulcers and that the Akt/GSK3β signal pathway may play an important role in deep tissue injury induced by pressure and ischemia/reperfusion.

  10. Protective Effect of 1,25-Dihydroxy Vitamin D3 on Pepsin-Trypsin-Resistant Gliadin-Induced Tight Junction Injuries.

    Science.gov (United States)

    Dong, Shouquan; Singh, Tikka Prabhjot; Wei, Xin; Yao, Huang; Wang, Hongling

    2018-01-01

    Tight junction (TJ) injuries induced by pepsin-trypsin-resistant gliadin (PT-G) play an important role in the pathogenesis of celiac disease. Previously, 1,25-dihydroxy vitamin D3 (VD3) was reported to be a TJ regulator that attenuates lipopolysaccharide- and alcohol-induced TJ injuries. However, whether VD3 can attenuate PT-G-induced TJ injuries is unknown. The aim of this study was to evaluate the effects of VD3 on PT-G-induced TJ injuries. Caco-2 monolayers were used as in vitro models. After being cultured for 21 days, the monolayers were treated with PT-G plus different concentrations of VD3. Then, the changes in trans-epithelial electrical resistance and FITC-dextran 4000 (FD-4) flux were determined to evaluate the monolayer barrier function. TJ protein levels were measured to assess TJ injury severity, and myeloid differentiation factor 88 (MyD88) expression and zonulin release levels were determined to estimate zonulin release signaling pathway activity. Additionally, a gluten-sensitized mouse model was established as an in vivo model. After the mice were treated with VD3 for 7 days, we measured serum FD-4 concentrations, TJ protein levels, MyD88 expression, and zonulin release levels to confirm the effect of VD3. Both in vitro and in vivo, VD3 significantly attenuated the TJ injury-related increase in intestinal mucosa barrier permeability. Moreover, VD3 treatment up-regulated TJ protein expression levels and significantly decreased MyD88 expression and zonulin release levels. VD3 has protective effects against PT-G-induced TJ injuries both in vitro and in vivo, which may correlate with the disturbance of the MyD88-dependent zonulin release signaling pathway.

  11. Schisandrin B protects against solar irradiation-induced oxidative injury in BJ human fibroblasts.

    Science.gov (United States)

    Chiu, Po Yee; Lam, Philip Y; Yan, Chung Wai; Ko, Kam Ming

    2011-06-01

    The effects of schisandrin B (Sch B) and its analogs on solar irradiation-induced oxidative injury were examined in BJ human fibroblasts. Sch B and schisandrin C (Sch C) increased cellular reduced glutathione (GSH) level and protected against solar irradiation-induced oxidative injury. The photoprotection was paralleled by decreases in the elastases-type protease activity and matrix-metalloproteinases-1 expression in solar-irradiated fibroblasts. The cytochrome P-450-mediated metabolism of Sch B or Sch C caused ROS production. The results suggest that by virtue of its pro-oxidant action and the subsequent glutathione antioxidant response, Sch B or Sch C may offer the prospect of preventing skin photo-aging. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Cold suppresses agonist-induced activation of TRPV1.

    Science.gov (United States)

    Chung, M-K; Wang, S

    2011-09-01

    Cold therapy is frequently used to reduce pain and edema following acute injury or surgery such as tooth extraction. However, the neurobiological mechanisms of cold therapy are not completely understood. Transient receptor potential vanilloid 1 (TRPV1) is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and pathological pain under conditions of inflammation or injury. Although capsaicin-induced nociception, neuropeptide release, and ionic currents are suppressed by cold, it is not known if cold suppresses agonist-induced activation of recombinant TRPV1. We demonstrate that cold strongly suppressed the activation of recombinant TRPV1 by multiple agonists and capsaicin-evoked currents in trigeminal ganglia neurons under normal and phosphorylated conditions. Cold-induced suppression was partially impaired in a TRPV1 mutant that lacked heat-mediated activation and potentiation. These results suggest that cold-induced suppression of TRPV1 may share a common molecular basis with heat-induced potentiation, and that allosteric inhibition may contribute, in part, to the cold-induced suppression. We also show that combination of cold and a specific antagonist of TRPV1 can produce an additive suppression. Our results provide a mechanistic basis for cold therapy and may enhance anti-nociceptive approaches that target TRPV1 for managing pain under inflammation and tissue injury, including that from tooth extraction.

  13. Lithium prevents REM sleep deprivation-induced impairments on memory consolidation.

    Science.gov (United States)

    Ota, Simone M; Moreira, Karin Di Monteiro; Suchecki, Deborah; Oliveira, Maria Gabriela M; Tiba, Paula A

    2013-11-01

    Pre-training rapid eye movement sleep (REMS) deprivation affects memory acquisition and/or consolidation. It also produces major REMS rebound at the cost of waking and slow wave sleep (SWS). Given that both SWS and REMS appear to be important for memory processes, REMS rebound after training may disrupt the organization of sleep cycles, i.e., excessive amount of REMS and/or little SWS after training could be harmful for memory formation. To examine whether lithium, a drug known to increase SWS and reduce REMS, could prevent the memory impairment induced by pre-training sleep deprivation. Animals were divided in 2 groups: cage control (CC) and REMS-deprived (REMSDep), and then subdivided into 4 subgroups, treated either with vehicle or 1 of 3 doses of lithium (50, 100, and 150 mg/kg) 2 h before training on the multiple trial inhibitory avoidance task. Animals were tested 48 h later to make sure that the drug had been already metabolized and eliminated. Another set of animals was implanted with electrodes and submitted to the same experimental protocol for assessment of drug-induced sleep-wake changes. Wistar male rats weighing 300-400 g. Sleep deprived rats required more trials to learn the task and still showed a performance deficit during test, except from those treated with 150 mg/kg of lithium, which also reduced the time spent in REM sleep during sleep recovery. Lithium reduced rapid eye movement sleep and prevented memory impairment induced by sleep deprivation. These results indicate that these phenomena may be related, but cause-effect relationship cannot be ascertained.

  14. Assessment of emerging biomarkers of liver injury in human subjects.

    Science.gov (United States)

    Schomaker, Shelli; Warner, Roscoe; Bock, Jeff; Johnson, Kent; Potter, David; Van Winkle, Joyce; Aubrecht, Jiri

    2013-04-01

    Hepatotoxicity remains a major challenge in drug development. Although alanine aminotransferase (ALT) remains the gold standard biomarker of liver injury, alternative biomarker strategies to better predict the potential for severe drug-induced liver injury (DILI) are essential. In this study, we evaluated the utility of glutamate dehydrogenase (GLDH), purine nucleoside phosphorylase (PNP), malate dehydrogenase (MDH), and paraxonase 1 (PON1) as indicators of liver injury in cohorts of human subjects, including healthy subjects across age and gender, subjects with a variety of liver impairments, and several cases of acetaminophen poisoning. In the healthy subjects, levels of GLDH and MDH were not affected by age or gender. Reference ranges for GLDH and MDH in healthy subjects were 1-10 and 79-176U/L, respectively. In contrast, the levels of PON1 and PNP were not consistent across cohorts of healthy subjects. Furthermore, GLDH and MDH had a strong correlation with elevated ALT levels and possessed a high predictive power for liver injury, as determined by ROC analysis. In contrast, PON1 and PNP did not detect liver injury in our study. Finally, evaluation of patients with acetaminophen-induced liver injury provided evidence that both GLDH and MDH might have utility as biomarkers of DILI in humans. This study is the first to evaluate GLDH, MDH, PON1, and PNP in a large number of human subjects and, and it provides an impetus for prospective clinical studies to fully evaluate the diagnostic value of GLDH and MDH for detection of liver injury.

  15. Radiation induced early delayed changes in mice brain: a 1h MRS and behavioral evaluation study

    International Nuclear Information System (INIS)

    Gupta, Mamta; Rana, Poonam; Haridas, Seenu; Manda, Kailash; Hemanth Kumar, B.S.; Khushu, Subash

    2014-01-01

    Radiation induced CNS injury can be classified as acute, early delayed and late delayed. Most of the studies suggest that acute injury is reversible whereas early delayed and late delayed injury is irreversible leading to metabolic and cognitive impairment. Extensive research has been carried out on cranial radiation induced early and late delayed changes, there are no reports on whole body radiation induced early and delayed changes. The present study was designed to observe early delayed effects of radiation during whole body radiation exposure. A total of 20 C57 male mice were divided in two groups of 10 animals each. One group was exposed to a dose of 5 Gy whole body radiation through Tele 60 Co irradiation facility with source operating at 2.496 Gy/min, while other group served as sham irradiated control. Behavioral and MR spectroscopy was carried out 3 months post irradiation. Behavioral parameters such as locomotor activity and working memory were evaluated first then followed by MR spectroscopy at 7T animal MRI system. For MRS, voxel was localised in the cortex-hippocampus region of mouse brain. MR spectra were acquired using PRESS sequence, FID was processed using LC model for quantitation. The data showed impaired cognitive functions and altered metabolite levels during early delayed phase of whole body radiation induced injury. In behavioural experiments, there was a significant impairment in the cognitive as well as exploratory functions at 3 months post irradiation in irradiated group as compared to controls. MRS results explained changes in mI, glutamine and glx levels in irradiated animals compared to controls. Altered mI level has been found to be associated with reduced cognitive abilities in many brain disorders including MCI and Alzheimer's disease. The findings of this study suggest that whole body radiation exposure may have long lasting effect on the cognitive performance. (author)

  16. Protective effects of physical exercise on MDMA-induced cognitive and mitochondrial impairment.

    Science.gov (United States)

    Taghizadeh, Ghorban; Pourahmad, Jalal; Mehdizadeh, Hajar; Foroumadi, Alireza; Torkaman-Boutorabi, Anahita; Hassani, Shokoufeh; Naserzadeh, Parvaneh; Shariatmadari, Reyhaneh; Gholami, Mahdi; Rouini, Mohammad Reza; Sharifzadeh, Mohammad

    2016-10-01

    Debate continues about the effect of 3, 4-methylenedioxymethamphetamine (MDMA) on cognitive and mitochondrial function through the CNS. It has been shown that physical exercise has an important protective effect on cellular damage and death. Therefore, we investigated the effect of physical exercise on MDMA-induced impairments of spatial learning and memory as well as MDMA effects on brain mitochondrial function in rats. Male wistar rats underwent short-term (2 weeks) or long-term (4 weeks) treadmill exercise. After completion of exercise duration, acquisition and retention of spatial memory were evaluated by Morris water maze (MWM) test. Rats were intraperitoneally (I.P) injected with MDMA (5, 10, and 15mg/kg) 30min before the first training trial in 4 training days of MWM. Different parameters of brain mitochondrial function were measured including the level of ROS production, mitochondrial membrane potential (MMP), mitochondrial swelling, mitochondrial outermembrane damage, the amount of cytochrome c release from the mitochondria, and ADP/ATP ratio. MDMA damaged the spatial learning and memory in a dose-dependent manner. Brain mitochondria isolated from the rats treated with MDMA showed significant increase in ROS formation, collapse of MMP, mitochondrial swelling, and outer membrane damage, cytochrome c release from the mitochondria, and finally increased ADP/ATP ratio. This study also found that physical exercise significantly decreased the MDMA-induced impairments of spatial learning and memory and also mitochondrial dysfunction. The results indicated that MDMA-induced neurotoxicity leads to brain mitochondrial dysfunction and subsequent oxidative stress is followed by cognitive impairments. However, physical exercise could reduce these deleterious effects of MDMA through protective effects on brain mitochondrial function. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Effects of vitamin E on lead-induced impairments in hippocampal synaptic plasticity.

    Science.gov (United States)

    Salehi, Iraj; Karamian, Ruhollah; Komaki, Alireza; Tahmasebi, Lida; Taheri, Masoumeh; Nazari, Masoumeh; Shahidi, Siamak; Sarihi, Abdolrahman

    2015-12-10

    Lead (Pb) exposure during development is associated with impaired cognitive function and long-term potentiation (LTP). Vitamin E (VE) is an antioxidant that could have protective effects against Pb intoxication. In this study, we examined the protective effects of vitamin E against Pb-induced LTP impairments. Forty-six adult male Wistar rats were randomly divided into 6 treatment groups: (1) control; (2) Pb exposure; (3) VE; (4) Pb +VE; (5) Pb exposure followed by VE 2 months after exposure; (6) VE followed by Pb exposure 1 month after treatment. Rats were exposed to Pb through daily consumption of Pb-contaminated distilled water; VE was administered by daily gavage for 3 months. After this period, the population spike (PS) amplitudes and the slopes of excitatory postsynaptic potentials (EPSPs) were measured in the dentate gyrus (DG) area of the hippocampus in adult rats in response to electrical stimulation applied to the perforant pathway in vivo. Blood samples were also collected to evaluate malondialdehyde (MDA) levels, total antioxidant capacity (TAC), and total oxidant status (TOS). Biochemical analyses demonstrated significant increases in plasma MDA and TOS levels in the Pb-exposed group compared to the control group. VE-protected groups revealed significant increases in TAC levels. Our results demonstrate that Pb decreased EPSP slopes and PS amplitudes compared to the control group, whereas VE increased these parameters compared to the control group. Co-administration of VE with Pb exposure inhibited Pb-induced effects. These findings suggest that VE via its antioxidant activity reverses Pb-induced impairments of synaptic plasticity in the DG. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Caffeic acid phenethyl ester prevents cadmium-induced cardiac impairment in rat

    International Nuclear Information System (INIS)

    Mollaoglu, Hakan; Gokcimen, Alpaslan; Ozguner, Fehmi; Oktem, Faruk; Koyu, Ahmet; Kocak, Ahmet; Demirin, Hilmi; Gokalp, Osman; Cicek, Ekrem

    2006-01-01

    Caffeic acid phenethyl ester (CAPE), a flavonoid like compound, is one of the major components of honeybee propolis. It was found to be a potent free radical scavenger and antioxidant recently. The aim of this study was to examine the effect of CAPE on cadmium (Cd)-induced hypertension and cardiomyopathy in rats. In particular, nitric oxide (NO) may contribute to the pathophysiology of Cd induced cardiac impairment. Malondialdehyde (MDA, an index of lipid peroxidation) levels and nitric oxide (NO, a vasodilator) levels were used as markers Cd-induced cardiac impairment and the success of CAPE treatment. Also, the findings have been supported by the histopathologic evidences. The rats were randomly divided into three experimental groups each (12), as follows: the control group, Cd-treated group (Cd) and Cd plus CAPE-treated group (Cd + CAPE). CdCl 2 in 0.9% NaCl was administrated intraperitoneally (i.p.) with a dose of 1 mg/kg/day. CAPE was co-administered i.p. a dose of 10 μM/kg for 15 days. Hypertension was found to be induced by intraperitoneal administration of Cd in a dose of 1 mg/kg/day on the measurements taken 15 days later. MDA levels were increased (p < 0.001) in cardiac tissue and NO levels were decreased (p < 0.05) in serum in the Cd group than those of the control group had. On the other hand, there was a slight difference (increase) in MDA levels in the Cd + CAPE group than the ones in the control group (p < 0.003). In addition, MDA levels were decreased and NO levels were increased in the Cd + CAPE group compared with the Cd group (p < 0.001, p < 0.0001, respectively). As a result, treatment with CAPE significantly reversed the increased lipid peroxidation (LPO) product, MDA, and decreased NO levels in Cd treated animals. In the histopathologic examination, a significant hypertrophy in atrial and ventricular myofibrils was observed in only Cd administered group, in comparison with the control group. There was no statistically significant difference

  19. Addiction-like Synaptic Impairments in Diet-Induced Obesity.

    Science.gov (United States)

    Brown, Robyn Mary; Kupchik, Yonatan Michael; Spencer, Sade; Garcia-Keller, Constanza; Spanswick, David C; Lawrence, Andrew John; Simonds, Stephanie Elise; Schwartz, Danielle Joy; Jordan, Kelsey Ann; Jhou, Thomas Clayton; Kalivas, Peter William

    2017-05-01

    There is increasing evidence that the pathological overeating underlying some forms of obesity is compulsive in nature and therefore contains elements of an addictive disorder. However, direct physiological evidence linking obesity to synaptic plasticity akin to that occurring in addiction is lacking. We sought to establish whether the propensity to diet-induced obesity (DIO) is associated with addictive-like behavior, as well as synaptic impairments in the nucleus accumbens core considered hallmarks of addiction. Sprague Dawley rats were allowed free access to a palatable diet for 8 weeks then separated by weight gain into DIO-prone and DIO-resistant subgroups. Access to palatable food was then restricted to daily operant self-administration sessions using fixed ratio 1, 3, and 5 and progressive ratio schedules. Subsequently, nucleus accumbens brain slices were prepared, and we tested for changes in the ratio between α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and N-methyl-D-aspartate currents and the ability to exhibit long-term depression. We found that propensity to develop DIO is linked to deficits in the ability to induce long-term depression in the nucleus accumbens, as well as increased potentiation at these synapses as measured by AMPA/N-methyl-D-aspartate currents. Consistent with these impairments, we observed addictive-like behavior in DIO-prone rats, including 1) heightened motivation for palatable food; 2) excessive intake; and 3) increased food seeking when food was unavailable. Our results show overlap between the propensity for DIO and the synaptic changes associated with facets of addictive behavior, supporting partial coincident neurological underpinnings for compulsive overeating and drug addiction. Copyright © 2016 Society of Biological Psychiatry. All rights reserved.

  20. Preventive effect of zinc on nickel-induced oxidative liver injury in rats

    African Journals Online (AJOL)

    MIDOU

    2013-12-18

    Dec 18, 2013 ... induced oxidative liver injury and lipid peroxidation probably due to its antioxidant proprieties. ... enzyme in every enzyme classification (Coyle et al.,. 2002). Others .... control group had a regular histological structure with a.

  1. Traumatic brain injury precipitates cognitive impairment and extracellular Aβ aggregation in Alzheimer's disease transgenic mice.

    Directory of Open Access Journals (Sweden)

    Naoki Tajiri

    Full Text Available Traumatic brain injury (TBI has become a signature wound of the wars in Iraq and Afghanistan. Many American soldiers, even those undiagnosed but likely suffering from mild TBI, display Alzheimer's disease (AD-like cognitive impairments, suggesting a pathological overlap between TBI and AD. This study examined the cognitive and neurohistological effects of TBI in presymptomatic APP/PS1 AD-transgenic mice. AD mice and non-transgenic (NT mice received an experimental TBI on the right parietal cortex using the controlled cortical impact model. Animals were trained in a water maze task for spatial memory before TBI, and then reevaluated in the same task at two and six weeks post-TBI. The results showed that AD mice with TBI made significantly more errors in the task than AD mice without TBI and NT mice regardless of TBI. A separate group of AD mice and NT mice were evaluated neurohistologically at six weeks after TBI. The number of extracellular beta-amyloid (Aβ-deposits significantly increased by at least one fold in the cortex of AD mice that received TBI compared to the NT mice that received TBI or the AD and NT mice that underwent sham surgery. A significant decrease in MAP2 positive cells, indicating neuronal loss, was observed in the cortex of both the AD and NT mice that received TBI compared to the AD and NT mice subjected to sham surgery. Similar changes in extracellular Aβ deposits and MAP2 positive cells were also seen in the hippocampus. These results demonstrate for the first time that TBI precipitates cognitive impairment in presymptomatic AD mice, while also confirming extracellular Aβ deposits following TBI. The recognition of this pathological link between TBI and AD should aid in developing novel treatments directed at abrogating cellular injury and extracellular Aβ deposition in the brain.

  2. Impaired cardiac SIRT1 activity by carbonyl stress contributes to aging-related ischemic intolerance.

    Directory of Open Access Journals (Sweden)

    Chunhu Gu

    Full Text Available Reactive aldehydes can initiate protein oxidative damage which may contribute to heart senescence. Sirtuin 1 (SIRT1 is considered to be a potential interventional target for I/R injury management in the elderly. We hypothesized that aldehyde mediated carbonyl stress increases susceptibility of aged hearts to ischemia/reperfusion (I/R injury, and elucidate the underlying mechanisms with a focus on SIRT1. Male C57BL/6 young (4-6 mo and aged (22-24 mo mice were subjected to myocardial I/R. Cardiac aldehyde dehydrogenase (ALDH2, SIRT1 activity and protein carbonyls were assessed. Our data revealed that aged heart exhibited increased endogenous aldehyde/carbonyl stress due to impaired ALDH2 activity concomitant with blunted SIRT1 activity (P<0.05. Exogenous toxic aldehydes (4-HNE exposure in isolated cardiomyocyte verified that aldehyde-induced carbonyl modification on SIRT1 impaired SIRT1 activity leading to worse hypoxia/reoxygenation (H/R injury, which could all be rescued by Alda-1 (ALDH2 activator (all P<0.05. However, SIRT1 inhibitor blocked the protective effect of Alda-1 on H/R cardiomyocyte. Interestingly, myocardial I/R leads to higher carbonylation but lower activity of SIRT1 in aged hearts than that seen in young hearts (P<0.05. The application of Alda-1 significantly reduced the carbonylation on SIRT1 and markedly improved the tolerance to in vivo I/R injury in aged hearts, but failed to protect Sirt1(+/- knockout mice against myocardial I/R injury. This was verified by Alda-1 treatment improved postischemic contractile function recovery in ex vivo perfused aged but not in Sirt1(+/- hearts. Thus, aldehyde/carbonyl stress is accelerated in aging heart. These results provide a new insight that impaired cardiac SIRT1 activity by carbonyl stress plays a critical role in the increased susceptibility of aged heart to I/R injury. ALDH2 activation can restore this aging-related myocardial ischemic intolerance.

  3. Activation of PPARα by Wy-14643 ameliorates systemic lipopolysaccharide-induced acute lung injury

    International Nuclear Information System (INIS)

    Yoo, Seong Ho; Abdelmegeed, Mohamed A.; Song, Byoung-Joon

    2013-01-01

    Highlights: •Activation of PPARα attenuated LPS-mediated acute lung injury. •Pretreatment with Wy-14643 decreased the levels of IFN-γ and IL-6 in ALI. •Nitrosative stress and lipid peroxidation were downregulated by PPARα activation. •PPARα agonists may be potential therapeutic targets for acute lung injury. -- Abstract: Acute lung injury (ALI) is a major cause of mortality and morbidity worldwide. The activation of peroxisome proliferator-activated receptor-α (PPARα) by its ligands, which include Wy-14643, has been implicated as a potential anti-inflammatory therapy. To address the beneficial efficacy of Wy-14643 for ALI along with systemic inflammation, the in vivo role of PPARα activation was investigated in a mouse model of lipopolysaccharide (LPS)-induced ALI. Using age-matched Ppara-null and wild-type mice, we demonstrate that the activation of PPARα by Wy-14643 attenuated LPS-mediated ALI. This was evidenced histologically by the significant alleviation of inflammatory manifestations and apoptosis observed in the lung tissues of wild-type mice, but not in the corresponding Ppara-null mice. This protective effect probably resulted from the inhibition of LPS-induced increases in pro-inflammatory cytokines and nitroxidative stress levels. These results suggest that the pharmacological activation of PPARα might have a therapeutic effect on LPS-induced ALI

  4. Activation of PPARα by Wy-14643 ameliorates systemic lipopolysaccharide-induced acute lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Seong Ho, E-mail: yoosh@snu.ac.kr [Seoul National University Hospital, Biomedical Research Institute and Institute of Forensic Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of); Abdelmegeed, Mohamed A. [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD (United States); Song, Byoung-Joon, E-mail: bj.song@nih.gov [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD (United States)

    2013-07-05

    Highlights: •Activation of PPARα attenuated LPS-mediated acute lung injury. •Pretreatment with Wy-14643 decreased the levels of IFN-γ and IL-6 in ALI. •Nitrosative stress and lipid peroxidation were downregulated by PPARα activation. •PPARα agonists may be potential therapeutic targets for acute lung injury. -- Abstract: Acute lung injury (ALI) is a major cause of mortality and morbidity worldwide. The activation of peroxisome proliferator-activated receptor-α (PPARα) by its ligands, which include Wy-14643, has been implicated as a potential anti-inflammatory therapy. To address the beneficial efficacy of Wy-14643 for ALI along with systemic inflammation, the in vivo role of PPARα activation was investigated in a mouse model of lipopolysaccharide (LPS)-induced ALI. Using age-matched Ppara-null and wild-type mice, we demonstrate that the activation of PPARα by Wy-14643 attenuated LPS-mediated ALI. This was evidenced histologically by the significant alleviation of inflammatory manifestations and apoptosis observed in the lung tissues of wild-type mice, but not in the corresponding Ppara-null mice. This protective effect probably resulted from the inhibition of LPS-induced increases in pro-inflammatory cytokines and nitroxidative stress levels. These results suggest that the pharmacological activation of PPARα might have a therapeutic effect on LPS-induced ALI.

  5. Exogenous normal lymph reduces liver injury induced by lipopolysaccharides in rats

    Directory of Open Access Journals (Sweden)

    Z.G. Zhao

    2014-02-01

    Full Text Available The liver is one of the target organs damaged by septic shock, wherein the spread of endotoxins begins. This study aimed to investigate the effects of exogenous normal lymph (ENL on lipopolysaccharide (LPS-induced liver injury in rats. Male Wistar rats were randomly divided into sham, LPS, and LPS+ENL groups. LPS (15 mg/kg was administered intravenously via the left jugular vein to the LPS and LPS+ENL groups. At 15 min after the LPS injection, saline or ENL without cell components (5 mL/kg was administered to the LPS and LPS+ENL groups, respectively, at a rate of 0.5 mL/min. Hepatocellular injury indices and hepatic histomorphology, as well as levels of P-selectin, intercellular adhesion molecule 1 (ICAM-1, myeloperoxidase (MPO, and Na+-K+-ATPase, were assessed in hepatic tissues. Liver tissue damage occurred after LPS injection. All levels of alanine aminotransferase (ALT and aspartate aminotransferase (AST in plasma as well as the wet/dry weight ratio of hepatic tissue in plasma increased. Similarly, P-selectin, ICAM-1, and MPO levels in hepatic tissues were elevated, whereas Na+-K+-ATPase activity in hepatocytes decreased. ENL treatment lessened hepatic tissue damage and decreased levels of AST, ALT, ICAM-1, and MPO. Meanwhile, the treatment increased the activity of Na+-K+-ATPase. These results indicated that ENL could alleviate LPS-induced liver injury, thereby suggesting an alternative therapeutic strategy for the treatment of liver injury accompanied by severe infection or sepsis.

  6. Exogenous normal lymph reduces liver injury induced by lipopolysaccharides in rats

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Z.G.; Zhang, L.L.; Niu, C.Y.; Zhang, J. [Institute of Microcirculation, Hebei North University, Zhangjiakou, China, Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei (China)

    2014-02-17

    The liver is one of the target organs damaged by septic shock, wherein the spread of endotoxins begins. This study aimed to investigate the effects of exogenous normal lymph (ENL) on lipopolysaccharide (LPS)-induced liver injury in rats. Male Wistar rats were randomly divided into sham, LPS, and LPS+ENL groups. LPS (15 mg/kg) was administered intravenously via the left jugular vein to the LPS and LPS+ENL groups. At 15 min after the LPS injection, saline or ENL without cell components (5 mL/kg) was administered to the LPS and LPS+ENL groups, respectively, at a rate of 0.5 mL/min. Hepatocellular injury indices and hepatic histomorphology, as well as levels of P-selectin, intercellular adhesion molecule 1 (ICAM-1), myeloperoxidase (MPO), and Na{sup +}-K{sup +}-ATPase, were assessed in hepatic tissues. Liver tissue damage occurred after LPS injection. All levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in plasma as well as the wet/dry weight ratio of hepatic tissue in plasma increased. Similarly, P-selectin, ICAM-1, and MPO levels in hepatic tissues were elevated, whereas Na{sup +}-K{sup +}-ATPase activity in hepatocytes decreased. ENL treatment lessened hepatic tissue damage and decreased levels of AST, ALT, ICAM-1, and MPO. Meanwhile, the treatment increased the activity of Na{sup +}-K{sup +}-ATPase. These results indicated that ENL could alleviate LPS-induced liver injury, thereby suggesting an alternative therapeutic strategy for the treatment of liver injury accompanied by severe infection or sepsis.

  7. Characterization of chemically induced liver injuries using gene co-expression modules.

    Directory of Open Access Journals (Sweden)

    Gregory J Tawa

    Full Text Available Liver injuries due to ingestion or exposure to chemicals and industrial toxicants pose a serious health risk that may be hard to assess due to a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific damage and clinical outcomes via biomarkers or biomarker panels will provide the foundation for highly specific and robust diagnostic tests. Here, we have used DrugMatrix, a toxicogenomics database containing organ-specific gene expression data matched to dose-dependent chemical exposures and adverse clinical pathology assessments in Sprague Dawley rats, to identify groups of co-expressed genes (modules specific to injury endpoints in the liver. We identified 78 such gene co-expression modules associated with 25 diverse injury endpoints categorized from clinical pathology, organ weight changes, and histopathology. Using gene expression data associated with an injury condition, we showed that these modules exhibited different patterns of activation characteristic of each injury. We further showed that specific module genes mapped to 1 known biochemical pathways associated with liver injuries and 2 clinically used diagnostic tests for liver fibrosis. As such, the gene modules have characteristics of both generalized and specific toxic response pathways. Using these results, we proposed three gene signature sets characteristic of liver fibrosis, steatosis, and general liver injury based on genes from the co-expression modules. Out of all 92 identified genes, 18 (20% genes have well-documented relationships with liver disease, whereas the rest are novel and have not previously been associated with liver disease. In conclusion, identifying gene co-expression modules associated with chemically induced liver injuries aids in generating testable hypotheses and has the potential to identify putative biomarkers of adverse health effects.

  8. Synergistic interaction of fatty acids and oxysterols impairs mitochondrial function and limits liver adaptation during nafld progression

    Directory of Open Access Journals (Sweden)

    Francesco Bellanti

    2018-05-01

    Full Text Available The complete mechanism accounting for the progression from simple steatosis to steatohepatitis in nonalcoholic fatty liver disease (NAFLD has not been elucidated. Lipotoxicity refers to cellular injury caused by hepatic free fatty acids (FFAs and cholesterol accumulation. Excess cholesterol autoxidizes to oxysterols during oxidative stress conditions. We hypothesize that interaction of FAs and cholesterol derivatives may primarily impair mitochondrial function and affect biogenesis adaptation during NAFLD progression. We demonstrated that the accumulation of specific non-enzymatic oxysterols in the liver of animals fed high-fat+high-cholesterol diet induces mitochondrial damage and depletion of proteins of the respiratory chain complexes. When tested in vitro, 5α-cholestane-3β,5,6β-triol (triol combined to FFAs was able to reduce respiration in isolated liver mitochondria, induced apoptosis in primary hepatocytes, and down-regulated transcription factors involved in mitochondrial biogenesis. Finally, a lower protein content in the mitochondrial respiratory chain complexes was observed in human non-alcoholic steatohepatitis. In conclusion, hepatic accumulation of FFAs and non-enzymatic oxysterols synergistically facilitates development and progression of NAFLD by impairing mitochondrial function, energy balance and biogenesis adaptation to chronic injury.

  9. Establishment and evaluation of a rat model of inhalation lung injury induced by ship smog

    Directory of Open Access Journals (Sweden)

    Xin-xin DUAN

    2018-03-01

    Full Text Available Objective To establish and evaluate a rat model of inhalation lung injury induced by ship smog. Methods A rat model of inhalation lung injury was established by analyzing the composition of ship materials after combustion. Forty- two healthy male Wistar rats were randomly divided into normal control group and 2, 6, 12, 24, 48 and 72h groups (6 eachafter inhalation, these rats were killed at each time point, and the changes of arterial blood gas, coagulation function, the lung water content (% were detected. Macroscopic and microscopic changes in lung tissues were observed to judge the degree of lung injury. Results The main components after combustion of 7 kinds of nonmetal materials on ship included CO, CO2, H2S, NOx and other harmful gases in this study, AIKE in one gas detector was used to monitor O2, CO, CO2 and H2S, and their concentrations remained relatively stable within 15 minutes, and the injury time was 15 minutes. The rats presented with shortness of breath and mouth breathing. Smoke inhalation caused a significant hypoxemia, the concentration of blood COHb reached a peak value 2h and the lung water content (% did 6h after inhalation (P<0.05. It is metabolic acidosis in the early stage after inhalation, but metabolic acidosis combined with respiratory acidosis in the later period. Histopathological observation showed diffuse hemorrhage, edema and inflammatory cell infiltration in the lung tissue as manifestations of lung injury, and the injury did not recover at 72h after inhalation, the change of blood coagulation function was not statistically significant. Conclusion A rat model of inhalation lung injury induced by ship smog has been successfully established, and has the advantages of easy replication, stability and reliability, thus can be used to research and treat inhalation lung injury induced by ship smog in naval war environment and other cases. DOI: 10.11855/j.issn.0577-7402.2018.03.14

  10. Protective effects of C-phycocyanin on alcohol-induced acute liver injury in mice

    Science.gov (United States)

    Xia, Dong; Liu, Bing; Luan, Xiying; Sun, Junyan; Liu, Nana; Qin, Song; Du, Zhenning

    2016-03-01

    Excessive alcohol consumption leads to liver disease. Extensive evidence suggests that C-phycocyanin (C-PC), a chromophore phycocyanobilin derived from Spirulina platensis, exerts protective effects against chemical-induced organ damage. In this study, we investigated whether C-PC could protect against ethanol-induced acute liver injury. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (CHOL), low-density lipoprotein (LDL), liver homogenate malondialdehyde (MDA), superoxide dismutase (SOD) content were measured, and pathological examination of liver sections were examined. C-PC showed obvious inhibitory effects on serum ALT, AST, TG, CHOL, LDL and MDA, and SOD content significantly increased in the liver. The structure of hepatic lobules was clear, liver sinus returned to normal, and liver cell cords were arranged in neat rows. Cloudiness, swelling, inflammatory cell infiltration and spotty necrosis of liver cells were significantly reduced. Therefore, C-PC can significantly protect against ethanol-induced acute liver injury.

  11. Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama; Venosa, Alessandro [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Hall, LeRoy [Drug Safety Sciences, Johnson and Johnson, Raritan, NJ 08869 (United States); Gow, Andrew J. [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Sinko, Patrick J. [Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2012-12-15

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS{sup +} and cyclooxygenase-2{sup +}) and alternatively activated profibrotic (YM-1{sup +} and galectin-3{sup +}) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ► Nitrogen mustard (NM) induces acute lung injury and fibrosis. ► Pulmonary toxicity is associated with increased expression of iNOS. ► Transient inhibition of iNOS attenuates acute

  12. Drug-induced lung injury associated with sorafenib: analysis of all-patient post-marketing surveillance in Japan.

    Science.gov (United States)

    Horiuchi-Yamamoto, Yuka; Gemma, Akihiko; Taniguchi, Hiroyuki; Inoue, Yoshikazu; Sakai, Fumikazu; Johkoh, Takeshi; Fujimoto, Kiminori; Kudoh, Shoji

    2013-08-01

    Sorafenib is a multi-kinase inhibitor currently approved in Japan for unresectable and/or metastatic renal cell carcinoma and unresectable hepatocellular carcinoma. Although drug-induced lung injury has recently been the focus of interest in Japanese patients treated with molecular targeting agents, the clinical features of patients receiving sorafenib remain to be completely investigated. All-patient post-marketing surveillance data was obtained within the frame of Special Drug Use Investigation; between April 2008 and March 2011, we summarized the clinical information of 62 cases with drug-induced lung injury among approximately 13,600 sorafenib-treated patients in Japan. In addition, we summarized the results of evaluation by a safety board of Japanese experts in 34 patients in whom pulmonary images were available. For the calculation of reporting frequency, interim results of Special Drug Use Investigation were used. In the sets of completed reports (2,407 in renal cell carcinoma and 647 in hepatocellular carcinoma), the reporting frequency was 0.33 % (8 patients; fatal, 4/8) and 0.62 % (4 patients; fatal, 2/4), respectively. Major clinical symptoms included dyspnea, cough, and fever. Evaluation of the images showed that 18 cases out of 34 patients had a pattern of diffuse alveolar damage. The patients with hepatocellular carcinoma showed a greater incidence and earlier onset of lung injury than those with renal cell carcinoma. Although the overall reporting frequency of sorafenib-induced lung injury is not considered high, the radiological diffuse alveolar damage pattern led to a fatal outcome. Therefore, early recognition of sorafenib-induced lung injury is crucial for physicians and patients.

  13. Candesartan ameliorates impaired fear extinction induced by innate immune activation.

    Science.gov (United States)

    Quiñones, María M; Maldonado, Lizette; Velazquez, Bethzaly; Porter, James T

    2016-02-01

    Patients with post-traumatic stress disorder (PTSD) tend to show signs of a relatively increased inflammatory state suggesting that activation of the immune system may contribute to the development of PTSD. In the present study, we tested whether activation of the innate immune system can disrupt acquisition or recall of auditory fear extinction using an animal model of PTSD. Male adolescent rats received auditory fear conditioning in context A. The next day, an intraperitoneal injection of lipopolysaccharide (LPS; 100 μg/kg) prior to auditory fear extinction in context B impaired acquisition and recall of extinction. LPS (100 μg/kg) given after extinction training did not impair extinction recall suggesting that LPS did not affect consolidation of extinction. In contrast to cued fear extinction, contextual fear extinction was not affected by prior injection of LPS (100 μg/kg). Although LPS also reduced locomotion, we could dissociate the effects of LPS on extinction and locomotion by using a lower dose of LPS (50 μg/kg) which impaired locomotion without affecting extinction. In addition, 15 h after an injection of 250 μg/kg LPS in adult rats, extinction learning and recall were impaired without affecting locomotion. A sub-chronic treatment with candesartan, an angiotensin II type 1 receptor blocker, prevented the LPS-induced impairment of extinction in adult rats. Our results demonstrate that activation of the innate immune system can disrupt auditory fear extinction in adolescent and adult animals. These findings also provide direction for clinical studies of novel treatments that modulate the innate immune system for stress-related disorders like PTSD. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Caffeine prevents cognitive impairment induced by chronic psychosocial stress and/or high fat-high carbohydrate diet.

    Science.gov (United States)

    Alzoubi, K H; Abdul-Razzak, K K; Khabour, O F; Al-Tuweiq, G M; Alzubi, M A; Alkadhi, K A

    2013-01-15

    Caffeine alleviates cognitive impairment associated with a variety of health conditions. In this study, we examined the effect of caffeine treatment on chronic stress- and/or high fat-high carbohydrate Western diet (WD)-induced impairment of learning and memory in rats. Chronic psychosocial stress, WD and caffeine (0.3 g/L in drinking water) were simultaneously administered for 3 months to adult male Wistar rats. At the conclusion of the 3 months, and while the previous treatments continued, rats were tested in the radial arm water maze (RAWM) for learning, short-term and long-term memory. This procedure was applied on a daily basis to all animals for 5 consecutive days or until the animal reaches days to criterion (DTC) in the 12th learning trial and memory tests. DTC is the number of days that the animal takes to make zero error in two consecutive days. Chronic stress and/or WD groups caused impaired learning, which was prevented by chronic caffeine administration. In the memory tests, chronic caffeine administration also prevented memory impairment during chronic stress conditions and/or WD. Furthermore, DTC value for caffeine treated stress, WD, and stress/WD groups indicated that caffeine normalizes memory impairment in these groups. These results showed that chronic caffeine administration prevented stress and/or WD-induced impairment of spatial learning and memory. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Seasonal trends in reduced leaf gas exchange and ozone-induced foliar injury in three ozone sensitive woody plant species

    International Nuclear Information System (INIS)

    Novak, K.; Schaub, M.; Fuhrer, J.; Skelly, J.M.; Hug, C.; Landolt, W.; Bleuler, P.; Kraeuchi, N.

    2005-01-01

    Seasonal trends in leaf gas exchange and ozone-induced visible foliar injury were investigated for three ozone sensitive woody plant species. Seedlings of Populus nigra L., Viburnum lantana L., and Fraxinus excelsior L. were grown in charcoal-filtered chambers, non-filtered chambers and open plots. Injury assessments and leaf gas exchange measurements were conducted from June to October during 2002. All species developed typical ozone-induced foliar injury. For plants exposed to non-filtered air as compared to the charcoal-filtered air, mean net photosynthesis was reduced by 25%, 21%, and 18% and mean stomatal conductance was reduced by 25%, 16%, and 8% for P. nigra, V. lantana, and F. excelsior, respectively. The timing and severity of the reductions in leaf gas exchange were species specific and corresponded to the onset of visible foliar injury. - Reductions in leaf gas exchange corresponded to the onset of ozone-induced visible foliar injury for seedlings exposed to ambient ozone exposures

  16. Seasonal trends in reduced leaf gas exchange and ozone-induced foliar injury in three ozone sensitive woody plant species

    Energy Technology Data Exchange (ETDEWEB)

    Novak, K. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)]. E-mail: kristopher.novak@wsl.ch; Schaub, M. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Fuhrer, J. [Swiss Federal Research Station for Agroecology and Agriculture FAL, 8046 Zurich (Switzerland); Skelly, J.M. [Department of Plant Pathology, The Pennsylvania State University, University Park, PA 16802 (United States); Hug, C. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Landolt, W. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Bleuler, P. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Kraeuchi, N. [Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)

    2005-07-15

    Seasonal trends in leaf gas exchange and ozone-induced visible foliar injury were investigated for three ozone sensitive woody plant species. Seedlings of Populus nigra L., Viburnum lantana L., and Fraxinus excelsior L. were grown in charcoal-filtered chambers, non-filtered chambers and open plots. Injury assessments and leaf gas exchange measurements were conducted from June to October during 2002. All species developed typical ozone-induced foliar injury. For plants exposed to non-filtered air as compared to the charcoal-filtered air, mean net photosynthesis was reduced by 25%, 21%, and 18% and mean stomatal conductance was reduced by 25%, 16%, and 8% for P. nigra, V. lantana, and F. excelsior, respectively. The timing and severity of the reductions in leaf gas exchange were species specific and corresponded to the onset of visible foliar injury. - Reductions in leaf gas exchange corresponded to the onset of ozone-induced visible foliar injury for seedlings exposed to ambient ozone exposures.

  17. Role of hypoxia inducing factor-1β in alcohol-induced autophagy, steatosis and liver injury in mice.

    Directory of Open Access Journals (Sweden)

    Hong-Min Ni

    Full Text Available Chronic alcohol causes liver hypoxia and steatosis, which eventually develops into alcoholic liver disease (ALD. While it has been known that alcohol consumption activates hepatic hypoxia inducing factor-1α (HIF-1α, conflicting results regarding the role of HIF-1α in alcohol-induced liver injury and steatosis in mice have been reported. In the present study, we aimed to use hepatocyte-specific HIF-1β knockout mice to eliminate the possible compensatory effects of the single knockout of the 1α subunit of HIF to study the role of HIFs in ALD. C57BL/6 wild type mice were treated with acute ethanol to mimic human binge drinking. Matched wild-type and hepatocyte specific HIF-1β knockout mice were also subjected to a recently established Gao-binge alcohol model to mimic chronic plus binge conditions, which is quite common in human alcoholics. We found that acute alcohol treatment increased BNIP3 and BNIP3L/NIX expression in primary cultured hepatocytes and in mouse livers, suggesting that HIF may be activated in these models. We further found that hepatocyte-specific HIF-1β knockout mice developed less steatosis and liver injury following the Gao-binge model or acute ethanol treatment compared with their matched wild type mice. Mechanistically, protection against Gao-binge treatment-induced steatosis and liver injury was likely associated with increased FoxO3a activation and subsequent induction of autophagy in hepatocyte-specific HIF-1β knockout mice.

  18. MEMANTINE ATTENUATES THE OKADAIC ACID INDUCED SHORT-TERM SPATIAL MEMORY IMPAIRMENT AND HIPPOCAMPAL CELL LOSS IN RATS.

    Science.gov (United States)

    Dashniani, M; Chighladze, M; Burjanadze, M; Beselia, G; Kruashvili, L

    2016-03-01

    In the present study, the possible beneficial effect of memantine on the Okadaic Acid (OA) induced spatial short-term memory impairment was examined in spatial alternation task, and the neuroprotective potential of memantine on OA-induced structural changes in the hippocampus was evaluated by Nissl staining. OA was dissolved in artificial cerebrospinal fluid (aCSF) and injected intracerebroventriculary (ICV) 200 ng in a volume of 10 μl bilaterally. Vehicle control received aCSF ICV bilaterally. Control and OA injected rats were divided into 2 subgroups injected i.p. with saline or memantine (5 mg/kg). Memantine or saline were given daily for 13 days starting from the day of OA injection. Behavioral study showed that bilateral ICV microinjection of OA induced impairment in spatial short-term memory. Nissl staining in the present study showed that the ICV microinjection of OA significantly decreased the number of surviving pyramidal neurons in the CA1 region of the hippocampus. Chronic administration of memantine effectively attenuated OA induced spatial short-term memory impairment and the OA-induced neuropathological changes in the hippocampus. Therefore, ICV injection of OA can be used as an experimental model to study mechanisms of neurodegeneration and define novel therapeutics targets for AD pathology.

  19. Alteration of renal excretion pathways in gentamicin-induced renal injury in rats.

    Science.gov (United States)

    Ma, Yan-Rong; Luo, Xuan; Wu, Yan-Fang; Zhang, Tiffany; Zhang, Fan; Zhang, Guo-Qiang; Wu, Xin-An

    2018-02-20

    The kidney plays a major part in the elimination of many drugs and their metabolites, and drug-induced kidney injury commonly alters either glomerular filtration or tubular transport, or both. However, the renal excretion pathway of drugs has not been fully elucidated at different stages of renal injury. This study aimed to evaluate the alteration of renal excretion pathways in gentamicin (GEN)-induced renal injury in rats. Results showed that serum cystatin C, creatinine and urea nitrogen levels were greatly increased by the exposure of GEN (100 mg kg -1 ), and creatinine concentration was increased by 39.7% by GEN (50 mg kg -1 ). GEN dose-dependently upregulated the protein expression of rOCT1, downregulated rOCT2 and rOAT1, but not affected rOAT2. Efflux transporters, rMRP2, rMRP4 and rBCRP expressions were significantly increased by GEN(100), and the rMATE1 level was markedly increased by GEN(50) but decreased by GEN(100). GEN(50) did not alter the urinary excretion of inulin, but increased metformin and furosemide excretion. However, GEN(100) resulted in a significant decrease of the urinary excretion of inulin, metformin and p-aminohippurate. In addition, urinary metformin excretions in vivo were significantly decreased by GEN(100), but slightly increased by GEN(50). These results suggested that GEN(50) resulted in the induction of rOCTs-rMATE1 and rOAT3-rMRPs pathway, but not changed the glomerular filtration rate, and GEN(100)-induced acute kidney injury caused the downregulated function of glomerular filtration -rOCTs-rMATE1 and -rOAT1-rMRPs pathway. Copyright © 2018 John Wiley & Sons, Ltd.

  20. Neuroprotective effect of resveratrol against scopolamine-induced cognitive impairment and oxidative stress in rats

    Directory of Open Access Journals (Sweden)

    Pushpalatha Bunadri

    2013-01-01

    Full Text Available The objective of this study was to examine the neuroprotective effect of resveratrol on cognitive impairment induced by scopolamine, a muscarinic antagonist, in rats. Memory impairment was induced by administration of scopolamine (1 mg/kg intraperitoneally. Cognitive functions were assessed using radial arm maze, an active avoidance paradigm. Oxidative stress parameters like malondialdehyde, catalase and superoxide dismutase were assessed and acetylcholinesterase activity was estimated. More working and reference memory errors in the radial arm maze test and fewer avoidances in the active avoidance test were observed with scopolamine in the 1 mg/kg i.p.-treated animals. This phenomenon is a clear indication of memory impairment. Oral administration of resveratrol (20 mg/kg inhibited the occurrence of higher working, reference memory errors and prevented the incidence of less avoidances. Resveratrol appeared to have exerted memory-enhancing effects by inhibiting acetylcholinesterase activity and prevented the rise in malondialdehyde levels and loss of antioxidant enzymes catalase and superoxide dismutase, showing antioxidant potential. Based on the above results of behavioral and biochemical studies, it can be concluded that resveratrol protected against scopolamine-induced loss of cognition. The results also indicate that resveratrol is an antioxidant and an acetylcholinesterase inhibitor, and it is likely that resveratrol’s protective effect is related to its antioxidant and cholinesterase inhibitory effects.

  1. Effect of selective versus non-selective cyclooxygenase inhibitors on ischemia-reperfusion-induced hepatic injury in rats.

    Science.gov (United States)

    Abdel-Gaber, Seham A; Ibrahim, Mohamed A; Amin, Entesar F; Ibrahim, Salwa A; Mohammed, Rehab K; Abdelrahman, Aly M

    2015-08-01

    Ischemia-reperfusion (IR) injury represents an important pathological process of liver injury during major hepatic surgery. The role of cyclooxygenase (COX) enzymes in the pathogenesis of ischemia-reperfusion (IR)-induced liver injury is not clear. This study investigated the effect of a selective COX-2 inhibitor, celecoxib, versus non-selective, indomethacin, on hepatic IR injury in rats. Hepatic IR was induced in adult male rats. The animals were divided into 4 groups: normal control (sham group), IR non-treated group; IR-indomethacin-treated group; and IR-celecoxib-treated group. Liver injury was evaluated by serum alanine aminotransferase (ALT) and a histopathological examination of liver tissues. Hepatic tissue content of oxidative stress parameters glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase, malondialdehyde (MDA), nitric oxide (NO) and the inflammatory marker, tumor necrosis factor-alpha, (TNF-α) were measured. Moreover, the immunohistochemical detection of endothelial NO synthase (eNOS), inducible NO synthase (iNOS), and caspase-3 in the hepatic tissue was performed. Celecoxib, but not indomethacin, significantly attenuated hepatic IR injury as evidenced by reduction in serum ALT as well as by improvement in the histopathological scoring. Such effect was associated with attenuation in oxidative stress and TNF-α, along with modulation of immunohistochemical expression of eNOS, iNOS and caspase-3 in the hepatic tissue. The present study concluded that selective COX-2 inhibition (but not non-selective), is hepatoprotective against liver IR injury; indicating a differential role of COX-1 versus COX-2. Modulation of iNOS, eNOS and caspase-3 might participate in the protective effect of selective COX-2-inhibitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. [Non-verbal communication and executive function impairment after traumatic brain injury: a case report].

    Science.gov (United States)

    Sainson, C

    2007-05-01

    Following post-traumatic impairment in executive function, failure to adjust to communication situations often creates major obstacles to social and professional reintegration. The analysis of pathological verbal communication has been based on clinical scales since the 1980s, but that of nonverbal elements has been neglected, although their importance should be acknowledged. The aim of this research was to study non-verbal aspects of communication in a case of executive-function impairment after traumatic brain injury. During the patient's conversation with an interlocutor, all nonverbal parameters - coverbal gestures, gaze, posture, proxemics and facial expressions - were studied in as much an ecological way as possible, to closely approximate natural conversation conditions. Such an approach highlights the difficulties such patients experience in communicating, difficulties of a pragmatic kind, that have so far been overlooked by traditional investigations, which mainly take into account the formal linguistic aspects of language. The analysis of the patient's conversation revealed non-verbal dysfunctions, not only on a pragmatic and interactional level but also in terms of enunciation. Moreover, interactional adjustment phenomena were noted in the interlocutor's behaviour. The two inseparable aspects of communication - verbal and nonverbal - should be equally assessed in patients with communication difficulties; highlighting distortions in each area might bring about an improvement in the rehabilitation of such people.

  3. Functional brown adipose tissue limits cardiomyocyte injury and adverse remodeling in catecholamine-induced cardiomyopathy.

    Science.gov (United States)

    Thoonen, Robrecht; Ernande, Laura; Cheng, Juan; Nagasaka, Yasuko; Yao, Vincent; Miranda-Bezerra, Alexandre; Chen, Chan; Chao, Wei; Panagia, Marcello; Sosnovik, David E; Puppala, Dheeraj; Armoundas, Antonis A; Hindle, Allyson; Bloch, Kenneth D; Buys, Emmanuel S; Scherrer-Crosbie, Marielle

    2015-07-01

    Brown adipose tissue (BAT) has well recognized thermogenic properties mediated by uncoupling protein 1 (UCP1); more recently, BAT has been demonstrated to modulate cardiovascular risk factors. To investigate whether BAT also affects myocardial injury and remodeling, UCP1-deficient (UCP1(-/-)) mice, which have dysfunctional BAT, were subjected to catecholamine-induced cardiomyopathy. At baseline, there were no differences in echocardiographic parameters, plasma cardiac troponin I (cTnI) or myocardial fibrosis between wild-type (WT) and UCP1(-/-) mice. Isoproterenol infusion increased cTnI and myocardial fibrosis and induced left ventricular (LV) hypertrophy in both WT and UCP1(-/-) mice. UCP1(-/-) mice also demonstrated exaggerated myocardial injury, fibrosis, and adverse remodeling, as well as decreased survival. Transplantation of WT BAT to UCP1(-/-) mice prevented the isoproterenol-induced cTnI increase and improved survival, whereas UCP1(-/-) BAT transplanted to either UCP1(-/-) or WT mice had no effect on cTnI release. After 3 days of isoproterenol treatment, phosphorylated AKT and ERK were lower in the LV's of UCP1(-/-) mice than in those of WT mice. Activation of BAT was also noted in a model of chronic ischemic cardiomyopathy, and was correlated to LV dysfunction. Deficiency in UCP1, and accompanying BAT dysfunction, increases cardiomyocyte injury and adverse LV remodeling, and decreases survival in a mouse model of catecholamine-induced cardiomyopathy. Myocardial injury and decreased survival are rescued by transplantation of functional BAT to UCP1(-/-) mice, suggesting a systemic cardioprotective role of functional BAT. BAT is also activated in chronic ischemic cardiomyopathy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Seawater-drowning-induced acute lung injury: From molecular mechanisms to potential treatments.

    Science.gov (United States)

    Jin, Faguang; Li, Congcong

    2017-06-01

    Drowning is a crucial public safety problem and is the third leading cause of accidental fatality, claiming ~372,000 lives annually, worldwide. In near-drowning patients, acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is one of the most common complications. Approximately 1/3 of near-drowning patients fulfill the criteria for ALI or ARDS. In the present article, the current literature of near-drowning, pathophysiologic changes and the molecular mechanisms of seawater-drowning-induced ALI and ARDS was reviewed. Seawater is three times more hyperosmolar than plasma, and following inhalation of seawater the hyperosmotic seawater may cause serious injury in the lung and alveoli. The perturbing effects of seawater may be primarily categorized into insufficiency of pulmonary surfactant, blood-air barrier disruption, formation of pulmonary edema, inflammation, oxidative stress, autophagy, apoptosis and various other hypertonic stimulation. Potential treatments for seawater-induced ALI/ARDS were also presented, in addition to suggestions for further studies. A total of nine therapeutic strategies had been tested and all had focused on modulating the over-activated immunoreactions. In conclusion, seawater drowning is a complex injury process and the exact mechanisms and potential treatments require further exploration.

  5. Seawater-drowning-induced acute lung injury: From molecular mechanisms to potential treatments

    Science.gov (United States)

    Jin, Faguang; Li, Congcong

    2017-01-01

    Drowning is a crucial public safety problem and is the third leading cause of accidental fatality, claiming ~372,000 lives annually, worldwide. In near-drowning patients, acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is one of the most common complications. Approximately 1/3 of near-drowning patients fulfill the criteria for ALI or ARDS. In the present article, the current literature of near-drowning, pathophysiologic changes and the molecular mechanisms of seawater-drowning-induced ALI and ARDS was reviewed. Seawater is three times more hyperosmolar than plasma, and following inhalation of seawater the hyperosmotic seawater may cause serious injury in the lung and alveoli. The perturbing effects of seawater may be primarily categorized into insufficiency of pulmonary surfactant, blood-air barrier disruption, formation of pulmonary edema, inflammation, oxidative stress, autophagy, apoptosis and various other hypertonic stimulation. Potential treatments for seawater-induced ALI/ARDS were also presented, in addition to suggestions for further studies. A total of nine therapeutic strategies had been tested and all had focused on modulating the over-activated immunoreactions. In conclusion, seawater drowning is a complex injury process and the exact mechanisms and potential treatments require further exploration. PMID:28587319

  6. Sentence comprehension following moderate closed head injury in adults.

    Science.gov (United States)

    Leikin, Mark; Ibrahim, Raphiq; Aharon-Peretz, Judith

    2012-09-01

    The current study explores sentence comprehension impairments among adults following moderate closed head injury. It was hypothesized that if the factor of syntactic complexity significantly affects sentence comprehension in these patients, it would testify to the existence of syntactic processing deficit along with working-memory problems. Thirty-six adults (18 closed head injury patients and 18 healthy controls matched in age, gender, and IQ) participated in the study. A picture-sentence matching task together with various tests for memory, language, and reading abilities were used to explore whether sentence comprehension impairments exist as a result of a deficit in syntactic processing or of working-memory dysfunction. Results indicate significant impairment in sentence comprehension among adults with closed head injury compared with their non-head-injured peers. Results also reveal that closed head injury patients demonstrate considerable decline in working memory, short-term memory, and semantic knowledge. Analysis of the results shows that memory impairment and syntactic complexity contribute significantly to sentence comprehension difficulties in closed head injury patients. At the same time, the presentation mode (spoken or written language) was found to have no effect on comprehension among adults with closed head injury, and their reading abilities appear to be relatively intact.

  7. Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiao [Center for Research on Environmental Disease, University of Kentucky, Lexington, KY 40536 (United States); Shetty, Sreerama [Center for Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, TX 75708 (United States); Zhang, Ping [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Gao, Rong; Hu, Yuxin [Center for Research on Environmental Disease, University of Kentucky, Lexington, KY 40536 (United States); Wang, Shuxia [Graduate Center for Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Li, Zhenyu [Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY 40536 (United States); Fu, Jian, E-mail: jian.fu@uky.edu [Center for Research on Environmental Disease, University of Kentucky, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States)

    2014-06-01

    The presence of endotoxin in blood can lead to acute kidney injury (AKI) and septic shock. Resolvins, the endogenous lipid mediators derived from docosahexaenoic acid, have been reported to exhibit potent anti-inflammatory action. Using a mouse model of lipopolysaccharide (LPS)-induced AKI, we investigated the effects of aspirin-triggered resolvin D1 (AT-RvD1) on inflammatory kidney injury. Administration of AT-RvD1 1 h after LPS challenge protected the mice from kidney injury as indicated by the measurements of blood urea nitrogen, serum creatinine, and morphological alterations associated with tubular damage. The protective effects were evidenced by decreased neutrophil infiltration in the kidney indicating reduction in inflammation. AT-RvD1 treatment restored kidney cell junction protein claudin-4 expression, which was otherwise reduced after LPS challenge. AT-RvD1 treatment inhibited endotoxin-induced NF-κB activation and suppressed LPS-induced ICAM-1 and VCAM-1 expression in the kidney. Moreover, AT-RvD1 treatment markedly decreased LPS-induced IL-6 level in the kidney and blocked IL-6-mediated signaling including STAT3 and ERK phosphorylation. Our findings demonstrate that AT-RvD1 is a potent anti-inflammatory mediator in LPS-induced kidney injury, and AT-RvD1 has therapeutic potential against AKI during endotoxemia.

  8. Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury

    International Nuclear Information System (INIS)

    Chen, Jiao; Shetty, Sreerama; Zhang, Ping; Gao, Rong; Hu, Yuxin; Wang, Shuxia; Li, Zhenyu; Fu, Jian

    2014-01-01

    The presence of endotoxin in blood can lead to acute kidney injury (AKI) and septic shock. Resolvins, the endogenous lipid mediators derived from docosahexaenoic acid, have been reported to exhibit potent anti-inflammatory action. Using a mouse model of lipopolysaccharide (LPS)-induced AKI, we investigated the effects of aspirin-triggered resolvin D1 (AT-RvD1) on inflammatory kidney injury. Administration of AT-RvD1 1 h after LPS challenge protected the mice from kidney injury as indicated by the measurements of blood urea nitrogen, serum creatinine, and morphological alterations associated with tubular damage. The protective effects were evidenced by decreased neutrophil infiltration in the kidney indicating reduction in inflammation. AT-RvD1 treatment restored kidney cell junction protein claudin-4 expression, which was otherwise reduced after LPS challenge. AT-RvD1 treatment inhibited endotoxin-induced NF-κB activation and suppressed LPS-induced ICAM-1 and VCAM-1 expression in the kidney. Moreover, AT-RvD1 treatment markedly decreased LPS-induced IL-6 level in the kidney and blocked IL-6-mediated signaling including STAT3 and ERK phosphorylation. Our findings demonstrate that AT-RvD1 is a potent anti-inflammatory mediator in LPS-induced kidney injury, and AT-RvD1 has therapeutic potential against AKI during endotoxemia

  9. Phytoceramide Shows Neuroprotection and Ameliorates Scopolamine-Induced Memory Impairment

    Directory of Open Access Journals (Sweden)

    Seikwan Oh

    2011-10-01

    Full Text Available The function and the role phytoceramide (PCER and phytosphingosine (PSO in the central nervous system has not been well studied. This study was aimed at investigating the possible roles of PCER and PSO in glutamate-induced neurotoxicity in cultured neuronal cells and memory function in mice. Phytoceramide showed neuro-protective activity in the glutamate-induced toxicity in cultured cortical neuronal cells. Neither phytosphingosine nor tetraacetylphytosphingosine (TAPS showed neuroproective effects in neuronal cells. PCER (50 mg/kg, p.o. recovered the scopolamine-induced reduction in step-through latency in the passive avoidance test; however, PSO did not modulate memory function on this task. The ameliorating effects of PCER on spatial memory were confirmed by the Morris water maze test. In conclusion, through behavioral and neurochemical experimental results, it was demonstrated that central administration of PCER produces amelioration of memory impairment. These results suggest that PCER plays an important role in neuroprotection and memory enhancement and PCER could be a potential new therapeutic agent for the treatment of neurodegenerative diseases such as Alzheimer’s disease.

  10. Ruscogenin inhibits lipopolysaccharide-induced acute lung injury in mice: involvement of tissue factor, inducible NO synthase and nuclear factor (NF)-κB.

    Science.gov (United States)

    Sun, Qi; Chen, Ling; Gao, Mengyu; Jiang, Wenwen; Shao, Fangxian; Li, Jingjing; Wang, Jun; Kou, Junping; Yu, Boyang

    2012-01-01

    Acute lung injury is still a significant clinical problem with a high mortality rate and there are few effective therapies in clinic. Here, we studied the inhibitory effect of ruscogenin, an anti-inflammatory and anti-thrombotic natural product, on lipopolysaccharide (LPS)-induced acute lung injury in mice basing on our previous studies. The results showed that a single oral administration of ruscogenin significantly decreased lung wet to dry weight (W/D) ratio at doses of 0.3, 1.0 and 3.0 mg/kg 1 h prior to LPS challenge (30 mg/kg, intravenous injection). Histopathological changes such as pulmonary edema, coagulation and infiltration of inflammatory cells were also attenuated by ruscogenin. In addition, ruscogenin markedly decreased LPS-induced myeloperoxidase (MPO) activity and nitrate/nitrite content, and also downregulated expression of tissue factor (TF), inducible NO synthase (iNOS) and nuclear factor (NF)-κB p-p65 (Ser 536) in the lung tissue at three doses. Furthermore, ruscogenin reduced plasma TF procoagulant activity and nitrate/nitrite content in LPS-induced ALI mice. These findings confirmed that ruscogenin significantly attenuate LPS-induced acute lung injury via inhibiting expressions of TF and iNOS and NF-κB p65 activation, indicating it as a potential therapeutic agent for ALI or sepsis. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Cognitive Ameliorating Effect of Acanthopanax koreanum Against Scopolamine-Induced Memory Impairment in Mice.

    Science.gov (United States)

    Lee, Sunhee; Park, Ho Jae; Jeon, Se Jin; Kim, Eunji; Lee, Hyung Eun; Kim, Haneul; Kwon, Yubeen; Zhang, Jiabao; Jung, In Ho; Ryu, Jong Hoon

    2017-03-01

    Acanthopanax koreanum Nakai (Araliaceae) is one of the most widely cultivated medicinal plants in Jeju Island, Korea, and the roots and stem bark of A. koreanum have been traditionally used as a tonic agent for general weakness. However, the use of A. koreanum for general weakness observed in the elderly, including those with declined cognitive function, has not been intensively investigated. This study was performed to investigate the effect of the ethanol extract of A. koreanum (EEAK) on cholinergic blockade-induced memory impairment in mice. To evaluate the ameliorating effects of EEAK against scopolamine-induced memory impairment, mice were orally administered EEAK (25, 50, 100, or 200 mg/kg), and several behavioral tasks, including a passive avoidance task, the Y-maze, and a novel object recognition task, were employed. Besides, western blot analysis was conducted to examine whether EEAK affected memory-associated signaling molecules, such as protein kinase B (Akt), Ca 2+ /calmodulin-dependent protein kinase II (CaMKII), and cAMP response element-binding protein (CREB). The administration of EEAK (100 or 200 mg/kg, p.o.) significantly ameliorated the scopolamine-induced cognitive impairment in the passive avoidance task, the Y-maze, and the novel object recognition task. The phosphorylation levels of both Akt and CaMKII were significantly increased by approximately two-fold compared with the control group because of the administration of EEAK (100 or 200 mg/kg) (p cognitive dysfunction induced by the cholinergic blockade, in part, via several memory-associated signaling molecules and may hold therapeutic potential against cognitive dysfunction, such as that presented in neurodegenerative diseases, for example, Alzheimer's disease. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Allopurinol Protects against Ischemia/Reperfusion-Induced Injury in Rat Urinary Bladders

    Directory of Open Access Journals (Sweden)

    Ju-Hyun Shin

    2015-01-01

    Full Text Available Bladder ischemia-reperfusion (I/R injury results in the generation of reactive oxygen species (ROS and markedly elevates the risk of lower urinary tract symptoms (LUTS. Allopurinol is an inhibitor of xanthine oxidase (XO and thus can serve as an antioxidant that reduces oxidative stress. Here, a rat model was used to assess the ability of allopurinol treatment to ameliorate the deleterious effects of urinary bladder I/R injury. I/R injury reduced the in vitro contractile responses of longitudinal bladder strips, elevated XO activity in the plasma and bladder tissue, increased the bladder levels of tumor necrosis factor-α (TNF-α, c-Jun N-terminal kinase (JNK, and p38 mitogen-activated protein kinase, reduced the bladder levels of extracellular regulated kinase (ERK, and decreased and increased the bladder levels of Bcl-2 and Bax, respectively. I/R injury also elevated lipid peroxidation in the bladder. Allopurinol treatment in the I/R injury was generated significantly ameliorating all I/R-induced changes. Moreover, an in situ fluorohistological approach also showed that allopurinol reduces the generation of intracellular superoxides enlarged by I/R injury. Together, the beneficial effects of allopurinol reducing ROS production may be mediated by normalizing the activity of the ERK, JNK, and Bax/Bcl-2 pathways and by controlling TNF-α expression.

  13. Britanin Ameliorates Cerebral Ischemia-Reperfusion Injury by Inducing the Nrf2 Protective Pathway.

    Science.gov (United States)

    Wu, Guozhen; Zhu, Lili; Yuan, Xing; Chen, Hao; Xiong, Rui; Zhang, Shoude; Cheng, Hao; Shen, Yunheng; An, Huazhang; Li, Tiejun; Li, Honglin; Zhang, Weidong

    2017-10-10

    Oxidative stress is considered the major cause of tissue injury after cerebral ischemia. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway is one of the most important defensive mechanisms against oxidative stresses and has been confirmed as a target for stroke treatment. Thus, we desired to find new Nrf2 activators and test their neuronal protective activity both in vivo and in vitro. The herb-derived compound, Britanin, is a potent inducer of the Nrf2 system. Britanin can induce the expression of protective enzymes and reverse oxygen-glucose deprivation, followed by reperfusion (OGD-R)-induced neuronal injury in primary cortical neurons in vitro. Furthermore, the administration of Britanin significantly ameliorated middle cerebral artery occlusion-reperfusion (MCAO-R) insult in vivo. We report here the crystal structure of the complex of Britanin and the BTB domain of Keap1. Britanin selectively binds to a conserved cysteine residue, cysteine 151, of Keap1 and inhibits Keap1-mediated ubiquitination of Nrf2, leading to induction of the Nrf2 pathway. Britanin is a potent inducer of Nrf2. The complex crystal structure of Britanin and the BTB domain of Keap1 help clarify the mechanism of Nrf2 induction. Britanin was proven to protect primary cortical neurons against OGD-R-induced injury in an Nrf2-dependant way. Additionally, Britanin had excellent cerebroprotective effect in an MCAO-R model. Our results demonstrate that the natural product Britanin with potent Nrf2-activating and neural protective activities both in vitro and in vivo could be developed into a cerebroprotective therapeutic agent. Antioxid. Redox Signal. 27, 754-768.

  14. MicroRNA changes in rat mesentery and serum associated with drug-induced vascular injury

    International Nuclear Information System (INIS)

    Thomas, Roberta A.; Scicchitano, Marshall S.; Mirabile, Rosanna C.; Chau, Nancy T.; Frazier, Kendall S.; Thomas, Heath C.

    2012-01-01

    Regulatory miRNAs play a role in vascular biology and are involved in biochemical and molecular pathways dysregulated during vascular injury. Collection and integration of functional miRNA data into these pathways can provide insight into pathogenesis at the site of injury; the same technologies applied to biofluids may provide diagnostic or surrogate biomarkers. miRNA was analyzed from mesentery and serum from rats given vasculotoxic compounds for 4 days. Fenoldopam, dopamine and midodrine each alter hemodynamics and are associated with histologic evidence of vascular injury, while yohimbine is vasoactive but does not cause histologic evidence of vascular injury in rat. There were 38 and 35 miRNAs altered in a statistically significant manner with a fold change of 2 or greater in mesenteries of fenoldopam- and dopamine-dosed rats, respectively, with 9 of these miRNAs shared. 10 miRNAs were altered in rats given midodrine; 6 were shared with either fenoldopam or dopamine. In situ hybridization demonstrated strong expression and co-localization of miR-134 in affected but not in adjacent unaffected vessels. Mesenteric miRNA expression may provide clarity or avenues of research into mechanisms involved in vascular injury once the functional role of specific miRNAs becomes better characterized. 102 miRNAs were altered in serum from rats with drug-induced vascular injury. 10 miRNAs were commonly altered in serum from dopamine and either fenoldopam or midodrine dosed rats; 18 of these 102 were also altered in mesenteries from rats with drug-induced vascular injury, suggesting their possible utility as peripheral biomarkers. -- Highlights: ► Mesentery and serum were examined from rats given vasoactive compounds for 4 days. ► 72 miRNAs were altered in mesenteries from rats with vascular injury. ► miR-134 was localized to affected but not adjacent unaffected vessels. ► 102 miRNAs were changed in serum from rats with vascular injury. ► 18 miRNAs changed in both

  15. Motor impairments related to brain injury timing in early hemiparesis. Part II: abnormal upper extremity joint torque synergies.

    Science.gov (United States)

    Sukal-Moulton, Theresa; Krosschell, Kristin J; Gaebler-Spira, Deborah J; Dewald, Julius P A

    2014-01-01

    Extensive neuromotor development occurs early in human life, and the timing of brain injury may affect the resulting motor impairment. In Part I of this series, it was demonstrated that the distribution of weakness in the upper extremity depended on the timing of brain injury in individuals with childhood-onset hemiparesis. The goal of this study was to characterize how timing of brain injury affects joint torque synergies, or losses of independent joint control. Twenty-four individuals with hemiparesis were divided into 3 groups based on the timing of their injury: before birth (PRE-natal, n = 8), around the time of birth (PERI-natal, n = 8), and after 6 months of age (POST-natal, n = 8). Individuals with hemiparesis and 8 typically developing peers participated in maximal isometric shoulder, elbow, wrist, and finger torque generation tasks while their efforts were recorded by a multiple degree-of-freedom load cell. Motor output in 4 joints of the upper extremity was concurrently measured during 8 primary torque generation tasks to quantify joint torque synergies. There were a number of significant coupling patterns identified in individuals with hemiparesis that differed from the typically developing group. POST-natal differences were most noted in the coupling of shoulder abductors with elbow, wrist, and finger flexors, while the PRE-natal group demonstrated significant distal joint coupling with elbow flexion. The torque synergies measured provide indirect evidence for the use of bulbospinal pathways in the POST-natal group, while those with earlier injury may use relatively preserved ipsilateral corticospinal motor pathways.

  16. Parallel Human and Animal Models of Blast- and Concussion-Induced Tinnitus and Related Traumatic Brain Injury (TBI)

    Science.gov (United States)

    2014-01-01

    Andersson G (2009) The role of anxiety sensitivity and behavioral avoidance in tinnitus disability. IntJAudiol 48:295-299. Hiller W, Goebel G (1999...Parallel Human and Animal Models of Blast- and Concussion-Induced Tinnitus and Related Traumatic Brain Injury (TBI) PRINCIPAL INVESTIGATOR...Induced Tinnitus and Related Traumatic Brain Injury (TBI) 5b. GRANT NUMBER W81XWH-11-2-0031 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  17. Saccharomyces boulardii Administration Changes Gut Microbiota and Attenuates D-Galactosamine-Induced Liver Injury

    OpenAIRE

    Yu, Lei; Zhao, Xue-ke; Cheng, Ming-liang; Yang, Guo-zhen; Wang, Bi; Liu, Hua-juan; Hu, Ya-xin; Zhu, Li-li; Zhang, Shuai; Xiao, Zi-wen; Liu, Yong-mei; Zhang, Bao-fang; Mu, Mao

    2017-01-01

    Growing evidence has shown that gut microbiome is a key factor involved in liver health. Therefore, gut microbiota modulation with probiotic bacteria, such as Saccharomyces boulardii, constitutes a promising therapy for hepatosis. In this study, we aimed to investigate the protective effects of S. boulardii on D-Galactosamine-induced liver injury in mice. Liver function test and histopathological analysis both suggested that the liver injury can be effectively attenuated by S. boulardii admin...

  18. Prevention of Severe Hypoglycemia-Induced Brain Damage and Cognitive Impairment with Verapamil.

    Science.gov (United States)

    Jackson, David A; Michael, Trevin; Vieira de Abreu, Adriana; Agrawal, Rahul; Bortolato, Marco; Fisher, Simon J

    2018-05-03

    People with insulin-treated diabetes are uniquely at risk for severe hypoglycemia-induced brain damage. Since calcium influx may mediate brain damage, we tested the hypothesis that the calcium channel blocker, verapamil, would significantly reduce brain damage and cognitive impairment caused by severe hypoglycemia. Ten-week-old Sprague-Dawley rats were randomly assigned to one of three treatments; 1) control hyperinsulinemic (200 mU.kg -1 min -1 ) euglycemic (80-100mg/dl) clamps (n=14), 2) hyperinsulinemic hypoglycemic (10-15mg/dl) clamps (n=16), or 3) hyperinsulinemic hypoglycemic clamps followed by a single treatment with verapamil (20mg/kg) (n=11). As compared to euglycemic controls, hypoglycemia markedly increased dead/dying neurons in the hippocampus and cortex, by 16-fold and 14-fold, respectively. Verapamil treatment strikingly decreased hypoglycemia-induced hippocampal and cortical damage, by 87% and 94%, respectively. Morris Water Maze probe trial results demonstrated that hypoglycemia induced a retention, but not encoding, memory deficit (noted by both abolished target quadrant preference and reduced target quadrant time). Verapamil treatment significantly rescued spatial memory as noted by restoration of target quadrant preference and target quadrant time. In summary, a one-time treatment with verapamil following severe hypoglycemia prevented neural damage and memory impairment caused by severe hypoglycemia. For people with insulin treated diabetes, verapamil may be a useful drug to prevent hypoglycemia-induced brain damage. © 2018 by the American Diabetes Association.

  19. Effects of betaine on lipopolysaccharide-induced memory impairment in mice and the involvement of GABA transporter 2

    Directory of Open Access Journals (Sweden)

    Miwa Masaya

    2011-11-01

    Full Text Available Abstract Background Betaine (glycine betaine or trimethylglycine plays important roles as an osmolyte and a methyl donor in animals. While betaine is reported to suppress expression of proinflammatory molecules and reduce oxidative stress in aged rat kidney, the effects of betaine on the central nervous system are not well known. In this study, we investigated the effects of betaine on lipopolysaccharide (LPS-induced memory impairment and on mRNA expression levels of proinflammatory molecules, glial markers, and GABA transporter 2 (GAT2, a betaine/GABA transporter. Methods Mice were continuously treated with betaine for 13 days starting 1 day before they were injected with LPS, or received subacute or acute administration of betaine shortly before or after LPS injection. Then, their memory function was evaluated using Y-maze and novel object recognition tests 7 and 10-12 days after LPS injection (30 μg/mouse, i.c.v., respectively. In addition, mRNA expression levels in hippocampus were measured by real-time RT-PCR at different time points. Results Repeated administration of betaine (0.163 mmol/kg, s.c. prevented LPS-induced memory impairment. GAT2 mRNA levels were significantly increased in hippocampus 24 hr after LPS injection, and administration of betaine blocked this increase. However, betaine did not affect LPS-induced increases in levels of mRNA related to inflammatory responses. Both subacute administration (1 hr before, and 1 and 24 hr after LPS injection and acute administration (1 hr after LPS injection of betaine also prevented LPS-induced memory impairment in the Y-maze test. Conclusions These data suggest that betaine has protective effects against LPS-induced memory impairment and that prevention of LPS-induced changes in GAT2 mRNA expression is crucial to this ameliorating effect.

  20. Sevoflurane postconditioning against cerebral ischemic neuronal injury is abolished in diet-induced obesity: role of brain mitochondrial KATP channels.

    Science.gov (United States)

    Yang, Zecheng; Chen, Yunbo; Zhang, Yan; Jiang, Yi; Fang, Xuedong; Xu, Jingwei

    2014-03-01

    Obesity is associated with increased infarct volumes and adverse outcomes following ischemic stroke. However, its effect on anesthetic postconditioning‑induced neuroprotection has not been investigated. The present study examined the effect of sevoflurane postconditioning on focal ischemic brain injury in diet‑induced obesity. Sprague‑Dawley rats were fed a high‑fat diet (HF; 45% kcal as fat) for 12 weeks to develop obesity syndrome. Rats fed a low‑fat diet (LF; 10% kcal as fat) served as controls. The HF or LF‑fed rats were subjected to focal cerebral ischemia for 60 min, followed by 24 h of reperfusion. Postconditioning was performed by exposure to sevoflurane for 15 min immediately at the onset of reperfusion. The involvement of the mitochondrial KATP (mitoKATP) channel was analyzed by the administration of a selective inhibitor of 5‑hydroxydecanoate (5‑HD) prior to sevoflurane postconditioning or by administration of diazoxide (DZX), a mitoKATP channel opener, instead of sevoflurane. The cerebral infarct volume, neurological score and motor coordination were evaluated 24 h after reperfusion. The HF‑fed rats had larger infarct volumes, and lower neurological scores than the LF‑fed rats and also failed to respond to neuroprotection by sevoflurane or DZX. By contrast, sevoflurane and DZX reduced the infarct volumes and improved the neurological scores and motor coordination in the LF‑fed rats. Pretreatment with 5‑HD inhibited sevoflurane‑induced neuroprotection in the LF‑fed rats, whereas it had no effect in the HF‑fed rats. Molecular studies demonstrated that the expression of Kir6.2, a significant mitoKATP channel component, was reduced in the brains of the HF‑fed rats compared with the LF‑fed rats. The results of this study indicate that diet‑induced obesity eliminates the ability of anesthetic sevoflurane postconditioning to protect the brain against cerebral ischemic neuronal injury, most likely due to an impaired brain

  1. Mild hypothermia protects hippocampal neurons against oxygen-glucose deprivation/reperfusion-induced injury by improving lysosomal function and autophagic flux.

    Science.gov (United States)

    Zhou, Tianen; Liang, Lian; Liang, Yanran; Yu, Tao; Zeng, Chaotao; Jiang, Longyuan

    2017-09-15

    Mild hypothermia has been proven to be useful to treat brain ischemia/reperfusion injury. However, the underlying mechanisms have not yet been fully elucidated. The present study was undertaken to determine whether mild hypothermia protects hippocampal neurons against oxygen-glucose deprivation/reperfusion(OGD/R)-induced injury via improving lysosomal function and autophagic flux. The results showed that OGD/R induced the occurrence of autophagy, while the acidic environment inside the lysosomes was altered. The autophagic flux assay with RFP-GFP tf-LC3 was impeded in hippocampal neurons after OGD/R. Mild hypothermia recovered the lysosomal acidic fluorescence and the lysosomal marker protein expression of LAMP2, which decreased after OGD/R.Furthermore, we found that mild hypothermia up-regulated autophagic flux and promoted the fusion of autophagosomes and lysosomes in hippocampal neurons following OGD/R injury, but could be reversed by treatment with chloroquine, which acts as a lysosome inhibitor. We also found that mild hypothermia improved mitochondrial autophagy in hippocampal neurons following OGD/R injury. Finally,we found that chloroquine blocked the protective effects of mild hypothermia against OGD/R-induced cell death and injury. Taken together, the present study indicates that mild hypothermia protects hippocampal neurons against OGD/R-induced injury by improving lysosomal function and autophagic flux. Copyright © 2017. Published by Elsevier Inc.

  2. Remote ischaemic preconditioning and prevention of cerebral injury.

    Science.gov (United States)

    Rehni, Ashish K; Shri, Richa; Singh, Manjeet

    2007-03-01

    Bilateral carotid artery occlusion of 10 min followed by reperfusion for 24 hr was employed in present study to produce ischaemia and reperfusion induced cerebral injury in mice. Cerebral infarct size was measured using triphenyltetrazolium chloride staining. Short-term memory was evaluated using elevated plus maze. Inclined beam walking test was employed to assess motor incoordination. Bilateral carotid artery occlusion followed by reperfusion produced cerebral infarction and impaired short-term memory, motor co-ordination and lateral push response. A preceding episode of mesenteric artery occlusion for 15 min and reperfusion of 15 min (remote mesenteric ischaemic preconditioning) prevented markedly ischaemia-reperfusion-induced cerebral injury measured in terms of infarct size, loss of short-term memory, motor coordination and lateral push response. Glibenclamide (5 mg/kg, iv) a KATP channel blocker and caffeine (7 mg/kg, iv) an adenosine receptor blocker attenuated the neuroprotective effect of remote mesenteric ischaemic preconditioning. It may be concluded that neuroprotective effect of remote mesenteric ischaemic preconditioning may be due to activation of adenosine receptors and consequent activation of KATP channels in mice.

  3. Effects of photobiomodulation therapy and topical non-steroidal anti-inflammatory drug on skeletal muscle injury induced by contusion in rats-part 1: morphological and functional aspects.

    Science.gov (United States)

    Tomazoni, Shaiane Silva; Frigo, Lúcio; Dos Reis Ferreira, Tereza Cristina; Casalechi, Heliodora Leão; Teixeira, Simone; de Almeida, Patrícia; Muscara, Marcelo Nicolas; Marcos, Rodrigo Labat; Serra, Andrey Jorge; de Carvalho, Paulo de Tarso Camillo; Leal-Junior, Ernesto Cesar Pinto

    2017-12-01

    Musculoskeletal injuries are very frequent and are responsible for causing pain and impairment of muscle function, as well as significant functional limitations. In the acute phase, the most prescribed treatment is with non-steroidal anti-inflammatory drugs (NSAIDs), despite their questionable effectiveness. However, the use of photobiomodulation therapy (PBMT) in musculoskeletal disorders has been increasing in the last few years, and this therapy appears to be an interesting alternative to the traditional drugs. The objective of the present study was to evaluate and compare the effects of PBMT, with different application doses, and topical NSAIDs, under morphological and functional parameters, during an acute inflammatory process triggered by a controlled model of musculoskeletal injury induced via contusion in rats. Muscle injury was induced by means of a single trauma to the animals' anterior tibialis muscle. After 1 h, the rats were treated with PBMT (830 nm; continuous mode, with a power output of 100 mW; 3.57 W/cm 2 ; 1 J-35.7 J/cm 2 , 3 J-107.1 J/cm 2 , and 9 J-321.4 J/cm 2 ; 10, 30, and 90 s) or diclofenac sodium for topical use (1 g). Morphological analysis (histology) and functional analysis (muscle work) were performed, 6, 12, and 24 h after induction of the injury. PBMT, with all doses tested, improved morphological changes caused by trauma; however, the 9 J (321.4 J/cm 2 ) dose was the most effective in organizing muscle fibers and cell nuclei. On the other hand, the use of diclofenac sodium produced only a slight improvement in morphological changes. Moreover, we observed a statistically significant increase of muscle work in the PBMT 3 J (107.1 J/cm 2 ) group in relation to the injury group and the diclofenac group (p topical use as a means to improve morphological and functional alterations due to muscle injury from contusion.

  4. Alpha-fetoprotein is a predictor of outcome in acetaminophen-induced liver injury

    DEFF Research Database (Denmark)

    Schmidt, Lars E; Dalhoff, Kim

    2005-01-01

    An increase in alpha-fetoprotein (AFP) following hepatic necrosis is considered indicative of hepatic regeneration. This study evaluated the prognostic value of serial AFP measurements in patients with severe acetaminophen-induced liver injury. Prospectively, serial measurements of AFP were...

  5. Blast induces oxidative stress, inflammation, neuronal loss and subsequent short-term memory impairment in rats.

    Science.gov (United States)

    Cho, H J; Sajja, V S S S; Vandevord, P J; Lee, Y W

    2013-12-03

    Molecular and cellular mechanisms of brain injury after exposure to blast overpressure (BOP) are not clearly known. The present study hypothesizes that pro-oxidative and pro-inflammatory pathways in the brain may be responsible for neuronal loss and behavioral deficits following BOP exposure. Male Sprague-Dawley rats were anesthetized and exposed to calibrated BOP of 129.23±3.01kPa while controls received only anesthesia. In situ dihydroethidium fluorescence staining revealed that BOP significantly increased the production of reactive oxygen species in the brain. In addition, real-time reverse transcriptase-polymerase chain reaction, immunofluorescence staining and enzyme-linked immunosorbent assay demonstrated a significant up-regulation of mRNA and protein expressions of pro-inflammatory mediators, such as interferon-γ and monocyte chemoattractant protein-1, in brains collected from BOP-exposed animals compared with the controls. Furthermore, immunoreactivity of neuronal nuclei in brains indicated that fewer neurons were present following BOP exposure. Moreover, novel object recognition paradigm showed a significant impairment in the short-term memory at 2weeks following BOP exposure. These results suggest that pro-oxidative and pro-inflammatory environments in the brain could play a potential role in BOP-induced neuronal loss and behavioral deficits. It may provide a foundation for defining a molecular and cellular basis of the pathophysiology of blast-induced neurotrauma (BINT). It will also contribute to the development of new therapeutic approaches selectively targeting these pathways, which have great potential in the diagnosis and therapy of BINT. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Chlorogenic acid ameliorates endotoxin-induced liver injury by promoting mitochondrial oxidative phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yan [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); College of Food Safety, Guizhou Medical University, Guiyang 550025 (China); Ruan, Zheng, E-mail: ruanzheng@ncu.edu.cn [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Zhou, Lili; Shu, Xugang [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Sun, Xiaohong [College of Food Safety, Guizhou Medical University, Guiyang 550025 (China); Mi, Shumei; Yang, Yuhui [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Yin, Yulong, E-mail: yinyulong@isa.ac.cn [State Key Laboratory of Food Science and Technology and School of Food Science, Nanchang University, Nanchang 330047 (China); Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125 (China)

    2016-01-22

    Acute or chronic hepatic injury is a common pathology worldwide. Mitochondrial dysfunction and the depletion of adenosine triphosphate (ATP) play important roles in liver injury. Chlorogenic acids (CGA) are some of the most abundant phenolic acids in human diet. This study was designed to test the hypothesis that CGA may protect against chronic lipopolysaccharide (LPS)-induced liver injury by modulating mitochondrial energy generation. CGA decreased the activities of serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. The contents of ATP and adenosine monophosphate (AMP), as well as the ratio of AMP/ATP, were increased after CGA supplementation. The activities of enzymes that are involved in glycolysis were reduced, while those of enzymes involved in oxidative phosphorylation were increased. Moreover, phosphorylated AMP-activated protein kinase (AMPK), and mRNA levels of AMPK-α, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial DNA transcription factor A were increased after CGA supplementation. Collectively, these findings suggest that the hepatoprotective effect of CGA might be associated with enhanced ATP production, the stimulation of mitochondrial oxidative phosphorylation and the inhibition of glycolysis. - Highlights: • Dietary supplementation with chlorogenic acid (CGA) improved endotoxin-induced liver injury. • Chlorogenic acid enhances ATP increase and shifts energy metabolism, which is correlated with up-regulation AMPK and PGC-1α. • The possible mechanism of CGA on mitochondrial biogenesis was correlated with up-regulation AMPK and PGC-1α.

  7. Chlorogenic acid ameliorates endotoxin-induced liver injury by promoting mitochondrial oxidative phosphorylation

    International Nuclear Information System (INIS)

    Zhou, Yan; Ruan, Zheng; Zhou, Lili; Shu, Xugang; Sun, Xiaohong; Mi, Shumei; Yang, Yuhui; Yin, Yulong

    2016-01-01

    Acute or chronic hepatic injury is a common pathology worldwide. Mitochondrial dysfunction and the depletion of adenosine triphosphate (ATP) play important roles in liver injury. Chlorogenic acids (CGA) are some of the most abundant phenolic acids in human diet. This study was designed to test the hypothesis that CGA may protect against chronic lipopolysaccharide (LPS)-induced liver injury by modulating mitochondrial energy generation. CGA decreased the activities of serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. The contents of ATP and adenosine monophosphate (AMP), as well as the ratio of AMP/ATP, were increased after CGA supplementation. The activities of enzymes that are involved in glycolysis were reduced, while those of enzymes involved in oxidative phosphorylation were increased. Moreover, phosphorylated AMP-activated protein kinase (AMPK), and mRNA levels of AMPK-α, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial DNA transcription factor A were increased after CGA supplementation. Collectively, these findings suggest that the hepatoprotective effect of CGA might be associated with enhanced ATP production, the stimulation of mitochondrial oxidative phosphorylation and the inhibition of glycolysis. - Highlights: • Dietary supplementation with chlorogenic acid (CGA) improved endotoxin-induced liver injury. • Chlorogenic acid enhances ATP increase and shifts energy metabolism, which is correlated with up-regulation AMPK and PGC-1α. • The possible mechanism of CGA on mitochondrial biogenesis was correlated with up-regulation AMPK and PGC-1α.

  8. Atorvastatin attenuates experimental contrast-induced acute kidney injury: a role for TLR4/MyD88 signaling pathway.

    Science.gov (United States)

    Yue, Rongzheng; Zuo, Chuan; Zeng, Jing; Su, Baihai; Tao, Ye; Huang, Songmin; Zeng, Rui

    2017-11-01

    To investigate the protective effect of different atorvastatin doses on contrast-induced acute kidney injury and the related mechanism. Healthy male Sprague-Dawley (SD) rats were randomly divided into the blank control group, experimental control group and different-dose atorvastatin groups. A rat model of contrast-induced acute kidney injury was established. We detected changes in serum creatinine (Scr) and blood urea nitrogen (BUN) before and after model establishment, observed and scored renal tubular injury, analyzed rat renal cell apoptosis, and measure the expression of signal pathway proteins and downstream inflammatory factors. After contrast agent injection, the Scr and BUN levels of the experimental control group were significantly increased, the different doses applied in the atorvastatin group significantly reduced the Scr and BUN levels (p atorvastatin doses have protective effects on contrast-induced acute renal tubular injury in rats, possibly by targeting TLR4, suppressing TLR4 expression, regulating the TLR4/Myd88 signaling pathway, and inhibiting the expression of downstream inflammatory factors.

  9. Peripheral surgical wounding may induce cognitive impairment through interlukin-6-dependent mechanisms in aged mice

    OpenAIRE

    Dong, Yuanlin; Xu, Zhipeng; Huang, Lining; Zhang, Yiying; Xie, Zhongcong

    2016-01-01

    Post-operative cognitive dysfunction (POCD) is associated with morbidity, mortality and increased cost of medical care. However, the neuropathogenesis and targeted interventions of POCD remain largely to be determined. We have found that the peripheral surgical wounding induces an age-dependent A? accumulation, neuroinflammation and cognitive impairment in aged mice. Pro-inflammatory cytokine interlukin-6 (IL-6) has been reported to be associated with cognitive impairment in rodents and human...

  10. Thioredoxin mitigates radiation-induced hematopoietic stem cell injury in mice

    Directory of Open Access Journals (Sweden)

    Pasupathi Sundaramoorthy

    2017-11-01

    Full Text Available Abstract Background Radiation exposure poses a significant threat to public health. Hematopoietic injury is one of the major manifestations of acute radiation sickness. Protection and/or mitigation of hematopoietic stem cells (HSCs from radiation injury is an important goal in the development of medical countermeasure agents (MCM. We recently identified thioredoxin (TXN as a novel molecule that has marked protective and proliferative effects on HSCs. In the current study, we investigated the effectiveness of TXN in rescuing mice from a lethal dose of total body radiation (TBI and in enhancing hematopoietic reconstitution following a lethal dose of irradiation. Methods We used in-vivo and in-vitro methods to understand the biological and molecular mechanisms of TXN on radiation mitigation. BABL/c mice were used for the survival study and a flow cytometer was used to quantify the HSC population and cell senescence. A hematology analyzer was used for the peripheral blood cell count, including white blood cells (WBCs, red blood cells (RBCs, hemoglobin, and platelets. Colony forming unit (CFU assay was used to study the colongenic function of HSCs. Hematoxylin and eosin staining was used to determine the bone marrow cellularity. Senescence-associated β-galactosidase assay was used for cell senescence. Western blot analysis was used to evaluate the DNA damage and senescence protein expression. Immunofluorescence staining was used to measure the expression of γ-H2AX foci for DNA damage. Results We found that administration of TXN 24 h following irradiation significantly mitigates BALB/c mice from TBI-induced death: 70% of TXN-treated mice survived, whereas only 25% of saline-treated mice survived. TXN administration led to enhanced recovery of peripheral blood cell counts, bone marrow cellularity, and HSC population as measured by c-Kit+Sca-1+Lin– (KSL cells, SLAM + KSL cells and CFUs. TXN treatment reduced cell senescence and radiation-induced

  11. MCPIP1-induced autophagy mediates ischemia/reperfusion injury in endothelial cells via HMGB1 and CaSR.

    Science.gov (United States)

    Xie, Xiaolong; Zhu, Tiebing; Chen, Lulu; Ding, Shuang; Chu, Han; Wang, Jing; Yao, Honghong; Chao, Jie

    2018-01-29

    Monocyte chemotactic protein-1-induced protein 1 (MCPIP1) plays a important role in ischemia/reperfusion (I/R) injury. Autophagy is involved in activating endothelial cells in response to I/R. However, researchers have not clearly determined whether MCPIP1 mediates I/R injury in endothelial cells via autophagy, and its downstream mechanism remains unclear. Western blotting analyses and immunocytochemistry were applied to detect protein levels were detected in HUVECs. An in vitro scratch assay was used to detect cell migration. Cells were transfected with siRNAs to knockdown MCPIP1 and high mobility group box 1 (HMGB1) expression. The pharmacological activator of autophagy rapamycin and the specific calcium-sensing receptor (CaSR) inhibitor NPS-2143 were used to confirm the roles of autophagy and CaSR in I/R injury. I/R induced HMGB1 and CaSR expression, which subsequently upreguated the migration and apoptosis of HUVECs and coincided with the increase of autophagy. HMGB1 was involved in cell migration, whereas CaSR specifically participated in I/R-induced HUVEC apoptosis. Based on these findings, I/R-induced MCPIP1 expression regulates the migration and apoptosis of HUVECs via HMGB1 and CaSR, respectively, suggesting a new therapeutic targetof I/R injury.

  12. Inhibition of PKR protects against H2O2-induced injury on neonatal cardiac myocytes by attenuating apoptosis and inflammation.

    Science.gov (United States)

    Wang, Yongyi; Men, Min; Xie, Bo; Shan, Jianggui; Wang, Chengxi; Liu, Jidong; Zheng, Hui; Yang, Wengang; Xue, Song; Guo, Changfa

    2016-12-08

    Reactive oxygenation species (ROS) generated from reperfusion results in cardiac injury through apoptosis and inflammation, while PKR has the ability to promote apoptosis and inflammation. The aim of the study was to investigate whether PKR is involved in hydrogen peroxide (H 2 O 2 ) induced neonatal cardiac myocytes (NCM) injury. In our study, NCM, when exposed to H 2 O 2 , resulted in persistent activation of PKR due to NCM endogenous RNA. Inhibition of PKR by 2-aminopurine (2-AP) or siRNA protected against H 2 O 2 induced apoptosis and injury. To elucidate the mechanism, we revealed that inhibition of PKR alleviated H 2 O 2 induced apoptosis companied by decreased caspase3/7 activity, BAX and caspase-3 expression. We also revealed that inhibition of PKR suppressed H 2 O 2 induced NFκB pathway and NLRP3 activation. Finally, we found ADAR1 mRNA and protein expression were both induced after H 2 O 2 treatment through STAT-2 dependent pathway. By gain and loss of ADAR1 expression, we confirmed ADAR1 modulated PKR activity. Therefore, we concluded inhibition of PKR protected against H 2 O 2 -induced injury by attenuating apoptosis and inflammation. A self-preservation mechanism existed in NCM that ADAR1 expression is induced by H 2 O 2 to limit PKR activation simultaneously. These findings identify a novel role for PKR/ADAR1 in myocardial reperfusion injury.

  13. Study on bone marrow mesenchymal stem cells in repairing of radiation induced acute liver injury of rats

    International Nuclear Information System (INIS)

    Bao Yongxing; Lou Fan; Zhao Huarong; Zhu Huhu; Ma Yan; Wen Hao

    2010-01-01

    Objective: To investigate the role of mesenchymal stem cells in the repair of radiation induced liver injury. Methods: 12 female SD rats were irradiated with 20 Gy 6 MV X-rays on the right lobe of the liver, to establish the model of radiation induced liver injury. The rats were divided randomly into two groups as invention group and control group, and transplanted with 1 ml male mesenchymal suspension or 1 ml normal saline in 4 hours after radiotherapy. The morphological changes of liver were observed. The existence of sex determining gene Y(SRY) and the level of alpha-smooth muscle actin (a-SMA) were detected. Results: Some injury of right lobe liver in two groups were observed, and the injury degree of right lobe liver in intervention group were lower than that of control group. The amount of SRY positive cells in the right lobe liver of intervention group was higher than that in the left lobe liver (t = 3.77, P <0.05). The positive expression rate of a-SMA in right lobe liver of intervention group was lower than that of control group. Conclusions: Acute radiation induced liver injury could lead BMSCs' homing in order to decrease the degree of liver fibrosis. (authors)

  14. Resuscitation therapy for traumatic brain injury-induced coma in rats: mechanisms of median nerve electrical stimulation

    Directory of Open Access Journals (Sweden)

    Zhen Feng

    2015-01-01

    Full Text Available In this study, rats were put into traumatic brain injury-induced coma and treated with median nerve electrical stimulation. We explored the wake-promoting effect, and possible mechanisms, of median nerve electrical stimulation. Electrical stimulation upregulated the expression levels of orexin-A and its receptor OX1R in the rat prefrontal cortex. Orexin-A expression gradually increased with increasing stimulation, while OX1R expression reached a peak at 12 hours and then decreased. In addition, after the OX1R antagonist, SB334867, was injected into the brain of rats after traumatic brain injury, fewer rats were restored to consciousness, and orexin-A and OXIR expression in the prefrontal cortex was downregulated. Our findings indicate that median nerve electrical stimulation induced an up-regulation of orexin-A and OX1R expression in the prefrontal cortex of traumatic brain injury-induced coma rats, which may be a potential mechanism involved in the wake-promoting effects of median nerve electrical stimulation.

  15. Mismatch Negativity Encoding of Prediction Errors Predicts S-ketamine-Induced Cognitive Impairments

    Science.gov (United States)

    Schmidt, André; Bachmann, Rosilla; Kometer, Michael; Csomor, Philipp A; Stephan, Klaas E; Seifritz, Erich; Vollenweider, Franz X

    2012-01-01

    Psychotomimetics like the N-methyl--aspartate receptor (NMDAR) antagonist ketamine and the 5-hydroxytryptamine2A receptor (5-HT2AR) agonist psilocybin induce psychotic symptoms in healthy volunteers that resemble those of schizophrenia. Recent theories of psychosis posit that aberrant encoding of prediction errors (PE) may underlie the expression of psychotic symptoms. This study used a roving mismatch negativity (MMN) paradigm to investigate whether the encoding of PE is affected by pharmacological manipulation of NMDAR or 5-HT2AR, and whether the encoding of PE under placebo can be used to predict drug-induced symptoms. Using a double-blind within-subject placebo-controlled design, S-ketamine and psilocybin, respectively, were administrated to two groups of healthy subjects. Psychological alterations were assessed using a revised version of the Altered States of Consciousness (ASC-R) questionnaire. As an index of PE, we computed changes in MMN amplitudes as a function of the number of preceding standards (MMN memory trace effect) during a roving paradigm. S-ketamine, but not psilocybin, disrupted PE processing as expressed by a frontally disrupted MMN memory trace effect. Although both drugs produced positive-like symptoms, the extent of PE processing under placebo only correlated significantly with the severity of cognitive impairments induced by S-ketamine. Our results suggest that the NMDAR, but not the 5-HT2AR system, is implicated in PE processing during the MMN paradigm, and that aberrant PE signaling may contribute to the formation of cognitive impairments. The assessment of the MMN memory trace in schizophrenia may allow detecting early phases of the illness and might also serve to assess the efficacy of novel pharmacological treatments, in particular of cognitive impairments. PMID:22030715

  16. Dietary Docosahexaenoic Acid Improves Cognitive Function, Tissue Sparing, and Magnetic Resonance Imaging Indices of Edema and White Matter Injury in the Immature Rat after Traumatic Brain Injury

    OpenAIRE

    Schober, Michelle E.; Requena, Daniela F.; Abdullah, Osama M.; Casper, T. Charles; Beachy, Joanna; Malleske, Daniel; Pauly, James R.

    2016-01-01

    Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children. Specific therapies to treat acute TBI are lacking. Cognitive impairment from TBI may be blunted by decreasing inflammation and oxidative damage after injury. Docosahexaenoic acid (DHA) decreases cognitive impairment, oxidative stress, and white matter injury in adult rats after TBI. Effects of DHA on cognitive outcome, oxidative stress, and white matter injury in the developing rat after experimen...

  17. Alcohol-induced retrograde memory impairment in rats: prevention by caffeine.

    Science.gov (United States)

    Spinetta, Michael J; Woodlee, Martin T; Feinberg, Leila M; Stroud, Chris; Schallert, Kellan; Cormack, Lawrence K; Schallert, Timothy

    2008-12-01

    Ethanol and caffeine are two of the most widely consumed drugs in the world, often used in the same setting. Animal models may help to understand the conditions under which incidental memories formed just before ethanol intoxication might be lost or become difficult to retrieve. Ethanol-induced retrograde amnesia was investigated using a new odor-recognition test. Rats thoroughly explored a wood bead taken from the cage of another rat, and habituated to this novel odor (N1) over three trials. Immediately following habituation, rats received saline, 25 mg/kg pentylenetetrazol (a seizure-producing agent known to cause retrograde amnesia) to validate the test, 1.0 g/kg ethanol, or 3.0 g/kg ethanol. The next day, they were presented again with N1 and also a bead from a new rat's cage (N2). Rats receiving saline or the lower dose of ethanol showed overnight memory for N1, indicated by preferential exploration of N2 over N1. Rats receiving pentylenetetrazol or the higher dose of ethanol appeared not to remember N1, in that they showed equal exploration of N1 and N2. Caffeine (5 mg/kg), delivered either 1 h after the higher dose of ethanol or 20 min prior to habituation to N1, negated ethanol-induced impairment of memory for N1. A combination of a phosphodiesterase-5 inhibitor and an adenosine A(2A) antagonist, mimicking two major mechanisms of action of caffeine, likewise prevented the memory impairment, though either drug alone had no such effect. Binge alcohol can induce retrograde, caffeine-reversible disruption of social odor memory storage or recall.

  18. Lactobacillus salivarius reverse diabetes-induced intestinal defense impairment in mice through non-defensin protein.

    Science.gov (United States)

    Chung, Pei-Hsuan; Wu, Ying-Ying; Chen, Pei-Hsuan; Fung, Chang-Phone; Hsu, Ching-Mei; Chen, Lee-Wei

    2016-09-01

    Altered intestinal microbiota and subsequent endotoxemia play pathogenic roles in diabetes. We aimed to study the mechanisms of intestinal defense impairment in type 1 diabetes and the effects of Lactobacillus salivarius as well as fructooligosaccharides (FOS) supplementation on diabetes-induced bacterial translocation. Alterations in the enteric microbiome, expression of mucosal antibacterial proteins and bacteria-killing activity of the intestinal mucosa in streptozotocin (STZ)-induced diabetic mice and Ins2(Akita) mice were investigated. The effects of dead L. salivarius (2×10(8)CFU/ml) and FOS (250 mg per day) supplementation for 1 week on endotoxin levels and Klebsiella pneumoniae translocation were also examined. Finally, germ-free mice were cohoused with wild-type or Ins2(Akita) mice for 2 weeks to examine the contribution of microbiota on the antibacterial protein expression. STZ-induced diabetic mice developed intestinal defense impairment as demonstrated by decreased mucosal bacteria-killing activity; reduction of non-defensin family proteins, such as Reg3β, Reg3γ, CRP-ductin and RELMβ, but not the defensin family proteins; and increased bacterial translocation. Intestinal bacteria overgrowth, enteric dysbiosis and increased intestinal bacterial translocation, particularly pathogenic K. pneumoniae in STZ-induced diabetic mice and Ins2(Akita) mice, were noted. Treating diabetic mice with dead L. salivarius or FOS reversed enteric dysbiosis, restored mucosal antibacterial protein and lessened endotoxin levels as well as K. pneumoniae translocation. Moreover, germ-free mice cohoused with wild-type mice demonstrated more intestinal Reg3β and RELMβ expression than those cohoused with Ins2(Akita) mice. These results indicate that hyperglycemia induces enteric dysbiosis, reduction of non-defensin proteins as well as bacteria-killing activity of the intestinal mucosa and intestinal defense impairment. Reversal of enteric dysbiosis with dead L. salivarius or

  19. Minocycline attenuates sevoflurane-induced cell injury via activation of Nrf2

    Science.gov (United States)

    Tian, Yue; Wu, Xiuying; Guo, Shanbin; Ma, Ling; Huang, Wei; Zhao, Xiaochun

    2017-01-01

    Minocycline has been demonstrated to exert neuroprotective effects in various experimental models. In the present study, we investigated the mechanisms underlying the protective effects of minocycline on cell injury induced by the inhalation of the anesthetic, sevoflurane. In our in vivo experiments using rats, minocycline attenuated sevoflurane-induced neuronal degeneration and apoptosis in the rat hippocampus, and this effect was associated with the minocycline-mediated suppression of oxidative stress in the hippocampus. In in vitro experiments, minocycline inhibited sevoflurane-induced apoptosis and the production of reactive oxygen species (ROS) in H4 human neuroglioma cells. In addition, minocycline suppressed the sevoflurane-induced upregulation of interleukin (IL)-6 and the activation of the nuclear factor-κB (NF-κB) signaling pathway in H4 cells. Furthermore, we found that nuclear factor E2-related factor 2 (Nrf2), an activator of the stress response, was upregulated and activated upon sevoflurane treatment both in the rat hippocampus and in H4 cells. In addition, minocycline further augmented the upregulation and activation of Nrf2 when used in conjunction with sevoflurane. Moreover, the knockdown of Nrf2 in H4 cells by small interfering RNA (siRNA) diminished the cytoprotective effect of minocycline, and attenuated the inhibitory effect of minocycline on ROS production, IL-6 upregulation and the activation of the NF-κB signaling pathway. On the whole, our findings indicate that minocycline may exert protective effects against sevoflurane-induced cell injury via the Nrf2-modulated antioxidant response and the inhibition of the activation of the NF-κB signaling pathway. PMID:28260081

  20. Manifesto for the current understanding and management of traumatic brain injury-induced hypopituitarism.

    LENUS (Irish Health Repository)

    Tanriverdi, F

    2011-01-01

    Traumatic brain injury (TBI)-induced hypopituitarism remains a relevant medical problem, because it may affect a significant proportion of the population. In the last decade important studies have been published investigating pituitary dysfunction after TBI. Recently, a group of experts gathered and revisited the topic of TBI-induced hypopituitarism. During the 2-day meeting, the main issues of this topic were presented and discussed, and current understanding and management of TBI-induced hypopituitarism are summarized here.

  1. Manifesto for the current understanding and management of traumatic brain injury-induced hypopituitarism

    DEFF Research Database (Denmark)

    Tanriverdi, F; Agha, A; Aimaretti, G

    2011-01-01

    Traumatic brain injury (TBI)-induced hypopituitarism remains a relevant medical problem, because it may affect a significant proportion of the population. In the last decade important studies have been published investigating pituitary dysfunction after TBI. Recently, a group of experts gathered...... and revisited the topic of TBI-induced hypopituitarism. During the 2-day meeting, the main issues of this topic were presented and discussed, and current understanding and management of TBI-induced hypopituitarism are summarized here....

  2. Induced Pluripotent Stem Cell Therapies for Cervical Spinal Cord Injury

    Science.gov (United States)

    Doulames, Vanessa M.; Plant, Giles W.

    2016-01-01

    Cervical-level injuries account for the majority of presented spinal cord injuries (SCIs) to date. Despite the increase in survival rates due to emergency medicine improvements, overall quality of life remains poor, with patients facing variable deficits in respiratory and motor function. Therapies aiming to ameliorate symptoms and restore function, even partially, are urgently needed. Current therapeutic avenues in SCI seek to increase regenerative capacities through trophic and immunomodulatory factors, provide scaffolding to bridge the lesion site and promote regeneration of native axons, and to replace SCI-lost neurons and glia via intraspinal transplantation. Induced pluripotent stem cells (iPSCs) are a clinically viable means to accomplish this; they have no major ethical barriers, sources can be patient-matched and collected using non-invasive methods. In addition, the patient’s own cells can be used to establish a starter population capable of producing multiple cell types. To date, there is only a limited pool of research examining iPSC-derived transplants in SCI—even less research that is specific to cervical injury. The purpose of the review herein is to explore both preclinical and clinical recent advances in iPSC therapies with a detailed focus on cervical spinal cord injury. PMID:27070598

  3. Hydroalcoholic extract of Stevia rebaudiana bert. leaves and stevioside ameliorates lipopolysaccharide induced acute liver injury in rats.

    Science.gov (United States)

    S, Latha; Chaudhary, Sheetal; R S, Ray

    2017-11-01

    Oxidative stress and hepatic inflammatory response is primarily implicated in the pathogenesis of LPS induced acute liver injury. Stevioside, a diterpenoidal glycoside isolated from the Stevia rebaudiana leaves, exerts potent anti-oxidant, anti-inflammatory and immunomodulatory activities. The present study was aimed to investigate the hepatoprotective effect of hydroalcoholic extract of Stevia rebaudiana leaves (STE EXT) and its major phytochemical constituent, stevioside (STE) in LPS induced acute liver injury. The hepatoprotective activity of STE EXT (500mg/kg p.o) and STE (250mg/kg p.o) was investigated in lipopolysaccharide (LPS 5mg/kg i.p.) induced acute liver injury in male wistar rats. Our results revealed that both STE EXT and STE treatment ameliorated LPS induced hepatic oxidative stress, evident from altered levels of reduced SOD, Catalase, GSH, MDA, NO. Histopathological observations revealed that both STE EXT and STE attenuated LPS induced structural changes and hepatocellular apoptosis providing additional evidence for its hepatoprotective effect. Further, STE EXT and STE significantly restored the elevated serum and tissue levels of AST and ALT in LPS treated rats. Furthermore, both STE EXT and STE rescued hepatocellular dysfunctions to normal by altering the level of proinflammatory cytokines such as TNF-α, IL-1β and IL-6 exhibiting its anti-inflammatory potential. In conclusion, both STE EXT and STE demonstrated excellent hepatoprotective effects against endotoxemia induced acute liver injury possibly through suppression of hepatic inflammatory response and oxidative stress, attributing to its medicinal importance in treating various liver ailments. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Protective Effect of Ischemic Postconditioning against Ischemia Reperfusion-Induced Myocardium Oxidative Injury in IR Rats

    Directory of Open Access Journals (Sweden)

    Jiangwei Ma

    2012-03-01

    Full Text Available Brief episodes of myocardial ischemia-reperfusion (IR employed during reperfusion after a prolonged ischemic insult may attenuate the total ischemia-reperfusion injury. This phenomenon has been termed ischemic postconditioning. In the present study, we studied the possible effect of ischemic postconditioning on an ischemic reperfusion (IR-induced myocardium oxidative injury in rat model. Results showed that ischemic postconditioning could improve arrhythmia cordis, reduce myocardium infarction and serum creatin kinase (CK, lactate dehydrogenase (LDH and aspartate transaminase (AST activities in IR rats. In addition, ischemic postconditioning could still decrease myocardium malondialdehyde (MDA level, and increased myocardium Na+-K+-ATPase, Ca2+-Mg2+-ATPase, superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GSH-Px and glutathione reductase (GR activities. It can be concluded that ischemic postconditioning possesses strong protective effects against ischemia reperfusion-induced myocardium oxidative injury in IR rats.

  5. Deficits in facial emotion recognition indicate behavioral changes and impaired self-awareness after moderate to severe traumatic brain injury.

    Science.gov (United States)

    Spikman, Jacoba M; Milders, Maarten V; Visser-Keizer, Annemarie C; Westerhof-Evers, Herma J; Herben-Dekker, Meike; van der Naalt, Joukje

    2013-01-01

    Traumatic brain injury (TBI) is a leading cause of disability, specifically among younger adults. Behavioral changes are common after moderate to severe TBI and have adverse consequences for social and vocational functioning. It is hypothesized that deficits in social cognition, including facial affect recognition, might underlie these behavioral changes. Measurement of behavioral deficits is complicated, because the rating scales used rely on subjective judgement, often lack specificity and many patients provide unrealistically positive reports of their functioning due to impaired self-awareness. Accordingly, it is important to find performance based tests that allow objective and early identification of these problems. In the present study 51 moderate to severe TBI patients in the sub-acute and chronic stage were assessed with a test for emotion recognition (FEEST) and a questionnaire for behavioral problems (DEX) with a self and proxy rated version. Patients performed worse on the total score and on the negative emotion subscores of the FEEST than a matched group of 31 healthy controls. Patients also exhibited significantly more behavioral problems on both the DEX self and proxy rated version, but proxy ratings revealed more severe problems. No significant correlation was found between FEEST scores and DEX self ratings. However, impaired emotion recognition in the patients, and in particular of Sadness and Anger, was significantly correlated with behavioral problems as rated by proxies and with impaired self-awareness. This is the first study to find these associations, strengthening the proposed recognition of social signals as a condition for adequate social functioning. Hence, deficits in emotion recognition can be conceived as markers for behavioral problems and lack of insight in TBI patients. This finding is also of clinical importance since, unlike behavioral problems, emotion recognition can be objectively measured early after injury, allowing for early

  6. Deficits in facial emotion recognition indicate behavioral changes and impaired self-awareness after moderate to severe traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Jacoba M Spikman

    Full Text Available Traumatic brain injury (TBI is a leading cause of disability, specifically among younger adults. Behavioral changes are common after moderate to severe TBI and have adverse consequences for social and vocational functioning. It is hypothesized that deficits in social cognition, including facial affect recognition, might underlie these behavioral changes. Measurement of behavioral deficits is complicated, because the rating scales used rely on subjective judgement, often lack specificity and many patients provide unrealistically positive reports of their functioning due to impaired self-awareness. Accordingly, it is important to find performance based tests that allow objective and early identification of these problems. In the present study 51 moderate to severe TBI patients in the sub-acute and chronic stage were assessed with a test for emotion recognition (FEEST and a questionnaire for behavioral problems (DEX with a self and proxy rated version. Patients performed worse on the total score and on the negative emotion subscores of the FEEST than a matched group of 31 healthy controls. Patients also exhibited significantly more behavioral problems on both the DEX self and proxy rated version, but proxy ratings revealed more severe problems. No significant correlation was found between FEEST scores and DEX self ratings. However, impaired emotion recognition in the patients, and in particular of Sadness and Anger, was significantly correlated with behavioral problems as rated by proxies and with impaired self-awareness. This is the first study to find these associations, strengthening the proposed recognition of social signals as a condition for adequate social functioning. Hence, deficits in emotion recognition can be conceived as markers for behavioral problems and lack of insight in TBI patients. This finding is also of clinical importance since, unlike behavioral problems, emotion recognition can be objectively measured early after injury

  7. Does granulocyte colony-stimulating factor exacerbate radiation-induced acute lung injury in rats?

    International Nuclear Information System (INIS)

    Miura, Gouji; Awaya, Hitomi; Matsumoto, Tsuneo; Tanaka, Nobuyuki; Matsunaga, Naofumi

    2000-01-01

    Radiation pneumonitis (RP) frequently occurs as a complication of thoracic irradiation. However, the mechanism of RP is not well known. Activated neutrophils are a possible pathogenesis of RP. Neutrophil activation induced by granulocyte colony-stimulating factor (G-CSF) may exacerbate RP. We studied the effects of recombinant human G-CSF on acute lung injury induced by thoracic irradiation using rats. Animals were divided into three groups: sham irradiation with saline control, irradiation alone, and irradiation with G-CSF. Actual irradiation was given as a single fraction of 16 Gy delivered to the right hemithorax. G-CSF at a dose of 12 μg/body was administered subcutaneously once a day from 14 to 18 days after actual irradiation. Lung injury was evaluated 21 days after irradiation by bronchoalveolar lavage (BAL) fluid findings and the lung wet/dry weight (W/D) ratio. Neutrophil and lymphocyte counts in BAL fluid and the W/D ratio were significantly increased in the irradiation alone and the irradiation with G-CSF groups compared with those of the sham irradiation+saline control group. However, there was no significant difference observed between the irradiation alone and irradiation with G-CSF groups. In conclusion, this study suggests that postradiation administration of G-CSF does not exacerbate acute lung injury induced by thoracic irradiation in rats. (author)

  8. Does granulocyte colony-stimulating factor exacerbate radiation-induced acute lung injury in rats?

    Energy Technology Data Exchange (ETDEWEB)

    Miura, Gouji; Awaya, Hitomi; Matsumoto, Tsuneo; Tanaka, Nobuyuki; Matsunaga, Naofumi [Yamaguchi Univ., Ube (Japan). School of Medicine

    2000-08-01

    Radiation pneumonitis (RP) frequently occurs as a complication of thoracic irradiation. However, the mechanism of RP is not well known. Activated neutrophils are a possible pathogenesis of RP. Neutrophil activation induced by granulocyte colony-stimulating factor (G-CSF) may exacerbate RP. We studied the effects of recombinant human G-CSF on acute lung injury induced by thoracic irradiation using rats. Animals were divided into three groups: sham irradiation with saline control, irradiation alone, and irradiation with G-CSF. Actual irradiation was given as a single fraction of 16 Gy delivered to the right hemithorax. G-CSF at a dose of 12 {mu}g/body was administered subcutaneously once a day from 14 to 18 days after actual irradiation. Lung injury was evaluated 21 days after irradiation by bronchoalveolar lavage (BAL) fluid findings and the lung wet/dry weight (W/D) ratio. Neutrophil and lymphocyte counts in BAL fluid and the W/D ratio were significantly increased in the irradiation alone and the irradiation with G-CSF groups compared with those of the sham irradiation+saline control group. However, there was no significant difference observed between the irradiation alone and irradiation with G-CSF groups. In conclusion, this study suggests that postradiation administration of G-CSF does not exacerbate acute lung injury induced by thoracic irradiation in rats. (author)

  9. Exposure to elevated sea-surface temperatures below the bleaching threshold impairs coral recovery and regeneration following injury.

    Science.gov (United States)

    Bonesso, Joshua Louis; Leggat, William; Ainsworth, Tracy Danielle

    2017-01-01

    Elevated sea surface temperatures (SSTs) are linked to an increase in the frequency and severity of bleaching events due to temperatures exceeding corals' upper thermal limits. The temperatures at which a breakdown of the coral- Symbiodinium endosymbiosis (coral bleaching) occurs are referred to as the upper thermal limits for the coral species. This breakdown of the endosymbiosis results in a reduction of corals' nutritional uptake, growth, and tissue integrity. Periods of elevated sea surface temperature, thermal stress and coral bleaching are also linked to increased disease susceptibility and an increased frequency of storms which cause injury and physical damage to corals. Herein we aimed to determine the capacity of corals to regenerate and recover from injuries (removal of apical tips) sustained during periods of elevated sea surface temperatures which result in coral stress responses, but which do not result in coral bleaching (i.e., sub-bleaching thermal stress events). In this study, exposure of the species Acropora aspera to an elevated SST of 32 °C (2 °C below the bleaching threshold, 34 °C) was found to result in reduced fluorescence of green fluorescent protein (GFP), reduced skeletal calcification and a lack of branch regrowth at the site of injury, compared to corals maintained under ambient SST conditions (26 °C). Corals maintained under normal, ambient, sea surface temperatures expressed high GFP fluorescence at the injury site, underwent a rapid regeneration of the coral branch apical tip within 12 days of sustaining injury, and showed extensive regrowth of the coral skeleton. Taken together, our results have demonstrated that periods of sustained increased sea surface temperatures, below the corals' bleaching threshold but above long-term summertime averages, impair coral recovery from damage, regardless of the onset or occurrence of coral bleaching.

  10. Human mesenchymal stromal cells reduce influenza A H5N1-associated acute lung injury in vitro and in vivo.

    Science.gov (United States)

    Chan, Michael C W; Kuok, Denise I T; Leung, Connie Y H; Hui, Kenrie P Y; Valkenburg, Sophie A; Lau, Eric H Y; Nicholls, John M; Fang, Xiaohui; Guan, Yi; Lee, Jae W; Chan, Renee W Y; Webster, Robert G; Matthay, Michael A; Peiris, J S Malik

    2016-03-29

    Influenza can cause acute lung injury. Because immune responses often play a role, antivirals may not ensure a successful outcome. To identify pathogenic mechanisms and potential adjunctive therapeutic options, we compared the extent to which avian influenza A/H5N1 virus and seasonal influenza A/H1N1 virus impair alveolar fluid clearance and protein permeability in an in vitro model of acute lung injury, defined the role of virus-induced soluble mediators in these injury effects, and demonstrated that the effects are prevented or reduced by bone marrow-derived multipotent mesenchymal stromal cells. We verified the in vivo relevance of these findings in mice experimentally infected with influenza A/H5N1. We found that, in vitro, the alveolar epithelium's protein permeability and fluid clearance were dysregulated by soluble immune mediators released upon infection with avian (A/Hong Kong/483/97, H5N1) but not seasonal (A/Hong Kong/54/98, H1N1) influenza virus. The reduced alveolar fluid transport associated with down-regulation of sodium and chloride transporters was prevented or reduced by coculture with mesenchymal stromal cells. In vivo, treatment of aged H5N1-infected mice with mesenchymal stromal cells increased their likelihood of survival. We conclude that mesenchymal stromal cells significantly reduce the impairment of alveolar fluid clearance induced by A/H5N1 infection in vitro and prevent or reduce A/H5N1-associated acute lung injury in vivo. This potential adjunctive therapy for severe influenza-induced lung disease warrants rapid clinical investigation.

  11. Relationship between changes of N-methyl-D-aspartate receptor activity and brain edema after brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective: To investigate the relationship between the changes of N-methyl-D-aspartate (NMDA) receptor activity and brain edema after injury in rats.   Methods: The brain injury models were made by using a free-falling body. The treatment model was induced by means of injecting AP5 into lateral ventricle before brain injury; water contents in brain cortex were measured with dry-wet method; and NMDA receptor activity was detected with a radio ligand binding assay.   Results: The water contents began to increase at 30 minutes and reached the peak at 6 hours after brain injury. The maximal binding (Bmax) of NMDA receptor increased significantly at 15 minutes and reached the peak at 30 minutes, then decreased gradually and had the lowest value 6 hours after brain injury. Followed the treatment with AP5, NMDA receptor activity in the injured brain showed a normal value; and the water contents were lower than that of AP5-free injury group 24 hours after brain injury.   Conclusions: It suggests that excessive activation of NMDA receptor may be one of the most important factors to induce the secondary cerebral impairments, and AP5 may protect the brain from edema after brain injury.

  12. DRAM1 Protects Neuroblastoma Cells from Oxygen-Glucose Deprivation/Reperfusion-Induced Injury via Autophagy

    Directory of Open Access Journals (Sweden)

    Mengqiang Yu

    2014-10-01

    Full Text Available DNA damage-regulated autophagy modulator protein 1 (DRAM1, a multi-pass membrane lysosomal protein, is reportedly a tumor protein p53 (TP53 target gene involved in autophagy. During cerebral ischemia/reperfusion (I/R injury, DRAM1 protein expression is increased, and autophagy is activated. However, the functional significance of DRAM1 and the relationship between DRAM1 and autophagy in brain I/R remains uncertain. The aim of this study is to investigate whether DRAM1 mediates autophagy activation in cerebral I/R injury and to explore its possible effects and mechanisms. We adopt the oxygen-glucose deprivation and reperfusion (OGD/R Neuro-2a cell model to mimic cerebral I/R conditions in vitro, and RNA interference is used to knock down DRAM1 expression in this model. Cell viability assay is performed using the LIVE/DEAD viability/cytotoxicity kit. Cell phenotypic changes are analyzed through Western blot assays. Autophagy flux is monitored through the tandem red fluorescent protein–Green fluorescent protein–microtubule associated protein 1 light chain 3 (RFP–GFP–LC3 construct. The expression levels of DRAM1 and microtubule associated protein 1 light chain 3II/I (LC3II/I are strongly up-regulated in Neuro-2a cells after OGD/R treatment and peaked at the 12 h reperfusion time point. The autophagy-specific inhibitor 3-Methyladenine (3-MA inhibits the expression of DRAM1 and LC3II/I and exacerbates OGD/R-induced cell injury. Furthermore, DRAM1 knockdown aggravates OGD/R-induced cell injury and significantly blocks autophagy through decreasing autophagosome-lysosome fusion. In conclusion, our data demonstrate that DRAM1 knockdown in Neuro-2a cells inhibits autophagy by blocking autophagosome-lysosome fusion and exacerbated OGD/R-induced cell injury. Thus, DRAM1 might constitute a new therapeutic target for I/R diseases.

  13. Development and Characterization of VEGF165-Chitosan Nanoparticles for the Treatment of Radiation-Induced Skin Injury in Rats

    Directory of Open Access Journals (Sweden)

    Daojiang Yu

    2016-10-01

    Full Text Available Radiation-induced skin injury, which remains a serious concern in radiation therapy, is currently believed to be the result of vascular endothelial cell injury and apoptosis. Here, we established a model of acute radiation-induced skin injury and compared the effect of different vascular growth factors on skin healing by observing the changes of microcirculation and cell apoptosis. Vascular endothelial growth factor (VEGF was more effective at inhibiting apoptosis and preventing injury progression than other factors. A new strategy for improving the bioavailability of vascular growth factors was developed by loading VEGF with chitosan nanoparticles. The VEGF-chitosan nanoparticles showed a protective effect on vascular endothelial cells, improved the local microcirculation, and delayed the development of radioactive skin damage.

  14. Screening for biomarkers of liver injury induced by Polygonum multiflorum: a targeted metabolomic study

    Directory of Open Access Journals (Sweden)

    Qin eDong

    2015-10-01

    Full Text Available Heshouwu (HSW, the dry roots of Polygonum multiflorum, a classical traditional Chinese medicine is used as a tonic for a wide range of conditions,particularly those associated with aging. However, it tends to be taken overdose or long term in these years, which has resulted in liver damage reported in many countries. In this study, the indicative roles of nine bile acids (BAs were evaluated to offer potential biomarkers for HSW induced liver injury. Nine BAs including cholic acid (CA and chenodeoxycholic acid (CDCA, taurocholic acid (TCA, glycocholic acid (GCA, glycochenodeoxycholic acid (GCDCA, deoxycholic acid (DCA, glycodeoxycholic acid (GDCA, ursodeoxycholic acid (UDCA and hyodeoxycholic acid (HDCA in rat bile and serum were detected by a developed LC-MS method after 42 days treatment. Partial least square-discriminate analysis (PLS-DA was applied to evaluate the indicative roles of the nine BAs, and metabolism of the nine BAs was summarized. Significant change was observed for the concentrations of nine BAs in treatment groups compared with normal control; In the PLS-DA plots of nine BAs in bile, normal control and raw HSW groups were separately clustered and could be clearly distinguished, GDCA was selected as the distinguished components for raw HSW overdose treatment group. In the PLS-DA plots of nine BAs in serum, the normal control and raw HSW overdose treatment group were separately clustered and could be clearly distinguished, and HDCA was selected as the distinguished components for raw HSW overdose treatment group. The results indicated the perturbation of nine BAs was associated with HSW induced liver injury; GDCA in bile, as well as HDCA in serum could be selected as potential biomarkers for HSW induced liver injury; it also laid the foundation for the further search on the mechanisms of liver injury induced by HSW .

  15. Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury

    OpenAIRE

    Fang, Huang; Wang, Peng-Fei; Zhou, Yu; Wang, Yan-Chun; Yang, Qing-Wu

    2013-01-01

    Intracerebral hemorrhage (ICH) is a common type of fatal stroke, accounting for about 15% to 20% of all strokes. Hemorrhagic strokes are associated with high mortality and morbidity, and increasing evidence shows that innate immune responses and inflammatory injury play a critical role in ICH-induced neurological deficits. However, the signaling pathways involved in ICH-induced inflammatory responses remain elusive. Toll-like receptor 4 (TLR4) belongs to a large family of pattern recognition ...

  16. Sex differences in diet and inhaled ozone (O3) induced metabolic impairment

    Science.gov (United States)

    APS 2015 abstract Sex differences in diet and inhaled ozone (O3) induced metabolic impairment U.P. Kodavanti1, V.L. Bass2, M.C. Schladweiler1, C.J. Gordon3, K.A. Jarema1, P. Phillips1, A.D. Ledbetter1, D.B. Miller4, S. Snow5, J.E. Richards1. 1 EPHD, NHEERL, USEPA, Research Triang...

  17. Effects of melatonin on spinal cord injury-induced oxidative damage in mice testis.

    Science.gov (United States)

    Yuan, X-C; Wang, P; Li, H-W; Wu, Q-B; Zhang, X-Y; Li, B-W; Xiu, R-J

    2017-09-01

    This study evaluated the effects of melatonin on spinal cord injury (SCI)-induced oxidative damage in testes. Adult male C57BL/6 mice were randomly divided into sham-, SCI- or melatonin (10 mg/kg, i.p.)-treated SCI groups. To induce SCI, a standard weight-drop method that induced a contusion injury at T10 was used. After 1 week, testicular blood flow velocity was measured using the Laser Doppler Line Scanner. Malondialdehyde (MDA), glutathione (GSH), oxidised glutathione (GSSG) and myeloperoxidase (MPO) were measured in testis homogenates. Microvascular permeability of the testes to Evan's Blue was examined by spectrophotometric and fluorescence microscopic quantitation. The tight junction protein zonula occludens-1 (ZO-1) and occludin in testes were assessed by immunoblot analysis. Melatonin increased the reduced blood flow and decreased SCI-induced permeability of capillaries. MDA levels and MPO activity were elevated in the SCI group compared with shams, which was reversed by melatonin. In contrast, SCI-induced reductions in GSH/GSSG ratio were restored by melatonin. Decreased expression of ZO-1 and occludin was observed, which was attenuated by melatonin. Overall, melatonin treatment protects the testes against oxidative stress damage caused by SCI. © 2016 Blackwell Verlag GmbH.

  18. Ursolic acid inhibits superoxide production in activated neutrophils and attenuates trauma-hemorrhage shock-induced organ injury in rats.

    Directory of Open Access Journals (Sweden)

    Tsong-Long Hwang

    Full Text Available Neutrophil activation is associated with the development of organ injury after trauma-hemorrhagic shock. In the present study, ursolic acid inhibited the superoxide anion generation and elastase release in human neutrophils. Administration of ursolic acid attenuated trauma-hemorrhagic shock-induced hepatic and lung injuries in rats. In addition, administration of ursolic acid attenuated the hepatic malondialdehyde levels and reduced the plasma aspartate aminotransferase and alanine aminotransferase levels after trauma-hemorrhagic shock. In conclusion, ursolic acid, a bioactive natural compound, inhibits superoxide anion generation and elastase release in human neutrophils and ameliorates trauma-hemorrhagic shock-induced organ injury in rats.

  19. Paraquat induced lung injury: long-term follow-up of HRCT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Tong; Kim, Hyun Cheol; Bae, Won Kyung; Kim, Il Young; Im, Han Hyek [Soonchunhyang Univ., Chunan (Korea, Republic of)

    2004-03-01

    To determine the long-term follow-up CT findings of paraquat-induced lung injury. Six patients who ingested paraquat underwent sequential follow-up CT scanning during a period of at least six months, and the results were analysed. Scans were obtained 1-6 (mean, 3.3) time during a 7-84 (mean, 25.7) months period, and the findings at 1-2 months, 3-12 months, 1-2 years, 2-3 years and more than above 7 years after poisoning were analyzed. We observed irregular-shaped areas of consolidation with traction bronchiectasis at 1-2 months (5/5), irregular-shaped consolidation and ground-glass opacity (5/5) at 3-12 months, and irregular-shaped consolidations/ground-glass opacity (4/5) and focal honeycombing (1/5) one year later. In the same patients, follow-up CT scans showed that some areas of focal consolidation could not be visualized and the radio-opacity of the lesions had decreased. The HRCT findings of paraquat-induced lung injury were irregular shaped areas of consolidation 1-2 months after ingestion, and irregular-shaped consolidation and ground-glass opacity or focal honeycombing 3-12 months later. At this thim slight improvement was observed.

  20. Cardioprotective Effects of HuoxueAnshen Recipe against Myocardial Injuries Induced by Sleep Deprivation in Rats

    Directory of Open Access Journals (Sweden)

    Rong Yuan

    2017-01-01

    Full Text Available Background. Traditional Chinese Medicine is extensively used in China and HuoxueAnshen Recipe (HAR was formulated according to its method in treating CHD accompanied with insomnia in clinic. However, there are few studies related to the effect of HAR on myocardial injury and sleep disorders. Purpose. To investigate the effects of HAR on sleep deprivation- (SD- induced myocardial I/R injury. Methods. Male Wistar rats receiving a daily gavage of HAR or vehicle were exposed to SD intervention while control rats had normal sleep. Then all rats were exposed to myocardial I/R. Hormone, vascular endothelial, and inflammatory related factors were detected before and after I/R, while cardiac injury, cardiac function, myocardial infarct size, and apoptosis were detected after I/R. Results. Levels of neuropeptide Y, vascular endothelial and inflammatory related factors were significantly increased while melatonin was decreased in vehicle-treated SD rats but not in HAR-treated SD rats after SD. In addition, cardiac injury, cardiac dysfunction, myocardial infarct size, and myocardial apoptosis were deteriorated in vehicle-treated SD rats but were ameliorated in HAR-treated SD rats after I/R. Conclusion. HAR not only improved SD-induced hormone disorders, inflammation, and endothelial dysfunction, but also alleviated I/R injury, which supports protective usage in CHD and psychocardiology.