WorldWideScience

Sample records for injured adult spinal

  1. Magnetic resonance imaging of the normal and chronically injured adult rat spinal cord in vivo

    International Nuclear Information System (INIS)

    Guizar-Sahagun, G.; Rivera, F.; Babinski, E.; Berlanga, E.; Madrazo, M.; Franco-Bourland, R.; Grijalva, I.; Gonzalez, J.; Contreras, B.; Madrazo, I.

    1994-01-01

    We assessed the capacity of MRI to show and characterise the spinal cord (SC) in vivo in normal and chronically injured adult rats. In the chronically injured animals the SC was studied by MRI and histological examination. MRI was performed at 1.5 T, using gradient-echo and spin-echo (SE) sequences, the latter with and without gadolinium-DTPA (Gd-DTPA). Several positions were tried for good alignment and to diminish interference by respiratory movements. Images of the SC were obtained in sagittal, coronal, and axial planes. Normal SC was observed as a continuous intensity in both sequences, although contrast resolution was better using SE; it was not possible to differentiate the grey and white matter. Low signal was seen in the damaged area in chronically injured rats, which corresponded to cysts, trabeculae, mononuclear infiltrate, and fibroglial wall on histological examination. Gd-DTPA failed to enhance the SC in normal or chronically injured rats. It did, however, cause enhancement of the lesion after acute SC injury. (orig.)

  2. Magnetic resonance imaging of the normal and chronically injured adult rat spinal cord in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Guizar-Sahagun, G [Centro de Investigacion del Proyecto Camina, Mexico City (Mexico) Dept. of Clinical Research in Neurology and Neurosurgery, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Inst. Mexicano del Seguro Social, Mexico City (Mexico); Rivera, F [Centro de Investigacion del Proyecto Camina, Mexico City (Mexico); Babinski, E [Centro de Investigacion del Proyecto Camina, Mexico City (Mexico); Berlanga, E [Dept. of Magnetic Resonance Imaging, Hospital Angeles del Pedregal, Mexico City (Mexico); Madrazo, M [Dept. of Magnetic Resonance Imaging, Hospital Angeles del Pedregal, Mexico City (Mexico); Franco-Bourland, R [Centro de Investigacion del Proyecto Camina, Mexico City (Mexico) Dept. of Biochemistry, Inst. Nacional de la Nutricion, Mexico City (Mexico); Grijalva, I [Centro de Investigacion del Proyecto Camina, Mexico City (Mexico) Dept. of Clinical Research in Neurology and Neurosurgery, Hospital de Especialidades, Centro Medico Nacional Siglo

    1994-08-01

    We assessed the capacity of MRI to show and characterise the spinal cord (SC) in vivo in normal and chronically injured adult rats. In the chronically injured animals the SC was studied by MRI and histological examination. MRI was performed at 1.5 T, using gradient-echo and spin-echo (SE) sequences, the latter with and without gadolinium-DTPA (Gd-DTPA). Several positions were tried for good alignment and to diminish interference by respiratory movements. Images of the SC were obtained in sagittal, coronal, and axial planes. Normal SC was observed as a continuous intensity in both sequences, although contrast resolution was better using SE; it was not possible to differentiate the grey and white matter. Low signal was seen in the damaged area in chronically injured rats, which corresponded to cysts, trabeculae, mononuclear infiltrate, and fibroglial wall on histological examination. Gd-DTPA failed to enhance the SC in normal or chronically injured rats. It did, however, cause enhancement of the lesion after acute SC injury. (orig.)

  3. Abundant expression of guidance and synaptogenic molecules in the injured spinal cord.

    Directory of Open Access Journals (Sweden)

    Anne Jacobi

    Full Text Available BACKGROUND: Spinal interneurons have emerged as crucial targets of supraspinal input during post-injury axonal remodelling. For example, lesioned corticospinal projections use propriospinal neurons as relay stations to form intraspinal detour circuits that circumvent the lesion site and contribute to functional recovery. While a number of the molecules that determine the formation of neuronal circuits in the developing nervous system have been identified, it is much less understood which of these cues are also expressed in the injured spinal cord and can thus guide growing collaterals and initiate synaptogenesis during circuit remodelling. METHODOLOGY/PRINCIPAL FINDINGS: To address this question we characterized the expression profile of a number of guidance and synaptogenic molecules in the cervical spinal cord of healthy and spinal cord-injured mice by in situ hybridization. To assign the expression of these molecules to distinct populations of interneurons we labeled short and long propriospinal neurons by retrograde tracing and glycinergic neurons using a transgenically expressed fluorescent protein. Interestingly, we found that most of the molecules studied including members of slit-, semaphorin-, synCAM-, neuroligin- and ephrin- families as well as their receptors are also present in the adult CNS. While many of these molecules were abundantly expressed in all interneurons examined, some molecules including slits, semaphorin 7a, synCAM4 and neuroligin 1 showed preferential expression in propriospinal interneurons. Overall the expression pattern of guidance and synaptogenic molecules in the cervical spinal cord appeared to be stable over time and was not substantially altered following a midthoracic spinal cord injury. CONCLUSIONS: Taken together, our study indicates that many of the guidance and synaptogenic cues that regulate neuronal circuit formation in development are also present in the adult CNS and therefore likely contribute to the

  4. Plasticity and regeneration in the injured spinal cord after cell transplantation therapy.

    Science.gov (United States)

    Nori, Satoshi; Nakamura, Masaya; Okano, Hideyuki

    2017-01-01

    Spinal cord injury (SCI) typically damages the long axonal tracts of the spinal cord which results in permanent disability. However, regeneration of the injured spinal cord is approaching reality according to the advances in stem cell biology. Cell transplantation therapy holds potential to lead to recovery following SCI through some positive mechanisms. Grafted cells induce plasticity and regeneration in the injured spinal cord by promoting remyelination of damaged axons, reconstruction of neural circuits by synapse formation between host neurons and graft-derived neurons, and secreting neurotrophic factors to promote axonal elongation as well as reduce retrograde axonal degeneration. In this review, we will delineate (1) the microenvironment of the injured spinal cord that influence the plasticity and regeneration capacity after SCI, (2) a number of different kinds of cell transplantation therapies for SCI that has been extensively studied by researchers, and (3) potential mechanisms of grafted cell-induced regeneration and plasticity in the injured spinal cord. © 2017 Elsevier B.V. All rights reserved.

  5. Histological and functional benefit following transplantation of motor neuron progenitors to the injured rat spinal cord.

    Directory of Open Access Journals (Sweden)

    Sharyn L Rossi

    2010-07-01

    Full Text Available Motor neuron loss is characteristic of cervical spinal cord injury (SCI and contributes to functional deficit.In order to investigate the amenability of the injured adult spinal cord to motor neuron differentiation, we transplanted spinal cord injured animals with a high purity population of human motor neuron progenitors (hMNP derived from human embryonic stem cells (hESCs. In vitro, hMNPs displayed characteristic motor neuron-specific markers, a typical electrophysiological profile, functionally innervated human or rodent muscle, and secreted physiologically active growth factors that caused neurite branching and neuronal survival. hMNP transplantation into cervical SCI sites in adult rats resulted in suppression of intracellular signaling pathways associated with SCI pathogenesis, which correlated with greater endogenous neuronal survival and neurite branching. These neurotrophic effects were accompanied by significantly enhanced performance on all parameters of the balance beam task, as compared to controls. Interestingly, hMNP transplantation resulted in survival, differentiation, and site-specific integration of hMNPs distal to the SCI site within ventral horns, but hMNPs near the SCI site reverted to a neuronal progenitor state, suggesting an environmental deficiency for neuronal maturation associated with SCI.These findings underscore the barriers imposed on neuronal differentiation of transplanted cells by the gliogenic nature of the injured spinal cord, and the physiological relevance of transplant-derived neurotrophic support to functional recovery.

  6. Sexuality and sexual dysfunction in spinal cord-injured men in Turkey.

    Science.gov (United States)

    Akman, Ramazan Yavuz; Coşkun Çelik, Evrim; Karataş, Metin

    2015-01-01

    To provide a comprehensive evaluation of sexual function and dysfunction in spinal cord-injured men based on self-reports of patients. Forty-seven spinal cord-injured men who completed the spinal shock and rehabilitation period were included. Patients were asked to complete a questionnaire developed to assess social status, sexual activities, abilities, and sexuality education after injury. Neurologic levels of patients were classified according to American Spinal Cord Injury Association protocol. Erectile function was evaluated by International Index of Erectile Function-5 (IIEF-5) questionnaire. Patients were aged between 20 and 62 years (mean: 35.2). Twenty-eight patients had T10 and above, 15 between T11 and L2, and 4 cauda conus injury. While 61.7% of the patients declared sexual activity, 93.6% declared some degree of erection. Mean IIEF-5 score was 5.3 and 87.3% of the patients had moderate to severe erectile dysfunction. Continuation of sexual activity after injury is very important and has a great impact on quality of life and interpersonal relationships for spinal cord-injured men. More attention must be given to sexuality after spinal cord injury. A very high rate of sexual dysfunction in spinal cord-injured patients was found and the importance of sexual education was emphasized in this study.

  7. Combination of edaravone and neural stem cell transplantation repairs injured spinal cord in rats.

    Science.gov (United States)

    Song, Y Y; Peng, C G; Ye, X B

    2015-12-29

    This study sought to observe the effect of the combination of edaravone and neural stem cell (NSC) transplantation on the repair of complete spinal cord transection in rats. Eighty adult female Sprague-Dawley (SD) rats were used to establish the injury model of complete spinal cord transection at T9. Animals were divided randomly into four groups (N = 20 each): control, edaravone, transplantation, and edaravone + transplantation. The recovery of spinal function was evaluated with the Basso, Beattie, Bresnahan (BBB) rating scale on days 1, 3, and 7 each week after the surgery. After 8 weeks, the BBB scores of the control, edaravone, transplantation, and combination groups were 4.21 ± 0.11, 8.46 ± 0.1, 8.54 ± 0.13, and 11.21 ± 0.14, respectively. At 8 weeks after surgery, the spinal cord was collected; the survival and transportation of transplanted cells were observed with PKH-26 labeling, and the regeneration and distribution of spinal nerve fibers with fluorescent-gold (FG) retrograde tracing. Five rats died due to the injury. PKH-26-labeled NSCs had migrated into the spinal cord. A few intact nerve fibers and pyramidal neurons passed the injured area in the transplantation and combination groups. The numbers of PKH-26-labeled cells and FG-labeled nerve fibers were in the order: combination group > edaravone group and transplantation group > control group (P edaravone can enhance the survival and differentiation of NSCs in injured areas; edaravone with NSC transplantation can improve the effectiveness of spinal cord injury repair in rats.

  8. Employment among Spinal Cord Injured Patients Living in Turkey: A Cross-Sectional Study

    Science.gov (United States)

    Gunduz, Berrin; Erhan, Belgin; Bardak, Ayse Nur

    2010-01-01

    The aim of this study was to determine the rate of employment and to establish the factors affecting vocational status in spinal cord injured patients living in Turkey. One hundred and fifty-two traumatic spinal cord injured patients older than 18 years with injury duration of at least 1 year and living in the community were included in the study;…

  9. A cost analysis of conservative management of spinal cord-injured patients in Nigeria.

    Science.gov (United States)

    Kawu, A A; Olawepo, A; Salami, A O O; Kuranga, S A; Abdulhameed, S; Esenwah, V C

    2011-11-01

    A prospective study. To determine the cost of acute phase of injury (ASCI) among spinal cord-injured patients managed conservatively in Nigeria. Gwagwalada, Abuja. Over a 1-year period (1 January 2009 to 31 December 2009), the cost of ASCI of consecutive spinal cord-injured patients, gainfully employed preinjury, who paid the hospital bill directly from their purses and could estimate their daily income, and who were managed conservatively for 6 weeks before discharge to rehabilitation, was prospectively examined. A total of 34 cases of spinal cord-injured patients with a mean age of 35.4 ± 12.8 years were included in this study. The mean cost of ASCI over 6 weeks was $1598.29, an average of 6.4-232.8% of patients' annual income where >50% of the people live on less than a dollar a day. The mean cost of hospitalization was 14.9% of the total cost of ASCI in this study. It was significantly more expensive to treat tetraplegics compared with paraplegics. This study identified the cost of acute phase of spinal cord injury in Nigeria to assist clinicians in planning treatment that could reduce financial burden on the patients but optimize patients' care.

  10. MR diffusion tensor imaging in the evaluation of neural progenitor cells transplantation to acute injured canine spinal cord

    International Nuclear Information System (INIS)

    Wang Xiaoying; Tan Ke; Ni Shilei; Bao Shengde; Jiang Xuexiang

    2006-01-01

    Objective: To observe the effect of transplantation of telomerase immortalized human neural progenitor cells to acute injured canine spinal cord by using MR diffusion tensor imaging (DTI). Methods: Telomerase immortalized human neural progenitor cells with expression of green fluorescent protein were prepared for transplantation. Eight adult canines with left spinal cord hemisection at the level of T13 were examined by MR diffusion tensor imaging four times sequentially: prior to injury, one week after injury, one week after transplantation (two weeks after injury), and four weeks after transplantation. Results: The ADC values of the injured spinal cord were (1.00 ± 0.15) x 10 -3 mm 2 /s, (1.65 ± 0.45) x 10 -3 mm 2 /s, (1.44 ± 0.48) xl0 -3 mm 2 /s, and (1.43 ± 0.26) x 10 -3 mm 2 /s, respectively. There was statistically significant difference between the data obtained at different times (F= 6.038, P=0.005). The FA values of the injured spinal cord were 0.59±0.11, 0.30±0.17, 0.36±0.25, and 0.34±0.11, respectively. There was also statistically significant difference between the data obtained at different times (F=5.221, P=0.009). The ADC values of the intact spinal cord were (1.01±0.17) x 10 -3 mm 2 /s, (1.32±0.06) x 10 -3 mm 2 /s, (1.10±0.24) x 10 -3 mm 2 /s, and (1.14±0.22) x 10 -3 mm 2 /s, respectively. There was no statistically significant difference between the data obtained at different times (F=1.303, P=0.306). The FA values of the intact spinal cord were 0.60 ± 0.09, 0.38 ± 0.25, 0.46 ± 0.15, and 0.50 ± 0.21, respectively. There was also no statistically significant difference between the data obtained at different times (F=2.797, P=0.072). Conclusion: DTI can provide useful information for spinal cord injury and regeneration in experimental spinal cord injury. (authors)

  11. Vulnerable, but strong: The spinal cord-injured patient during rehabilitation

    DEFF Research Database (Denmark)

    Angel, Sanne

    2010-01-01

    A traumatic spinal cord injury affects the body to an extent that the patient requires the assistance of others to survive and recover. The rehabilitation phase puts the patient in a vulnerable position and involves a considerable amount of strength on the patient's part. The aim of this paper...... is to explore the vulnerability of the spinal cord patient and how this vulnerability connects to the necessary strength, as the patient struggles to survive the injury and get through the rehabilitation. The circumstances of 12 traumatic spinal cord-injured patients were observed in the rehabilitation unit...... and after discharge. A phenomenological-hermeneutic narrative approach applying Ricoeur's theory was used. Data were collected by field observation and interviews during the first 2 years after the spinal cord injury. The patient's strength during the rehabilitation was portrayed by their endurance and from...

  12. Effect of sildenafil on erectile dysfunction in spinal Cord injured ...

    African Journals Online (AJOL)

    Effect of sildenafil on erectile dysfunction in spinal Cord injured patients. ... Trauma was the etiology in 87.5% of the cases (44% were road accidents). 12/16 patients were paraplegics (10 above ... in SCI patients. This approach is compatible with the efforts to improve the quality of life and rehabilitation of these patients.

  13. [What kind of health information search the spinal cord injured patients from Spain on the internet?].

    Science.gov (United States)

    Bea-Muñoz, Manuel; Medina-Sánchez, María; Flórez-García, Mariano

    2015-04-16

    Internet is an alternative for health education to the population. Spinal cord injured individuals usually consult the Internet about their health problems. To identify the health information sources, the more consulted items and the confidence in Internet information of a group of spinal cord injured individuals from Spain. A survey to spinal cord injured individuals from Spain was conducted, with a questionnaire in Google Drive. It was accessible with a link in ASPAYM-Asturias web page. The questionnaire included epidemiological data and information about Internet use and confidence in its contents. 121 individuals answered the survey, 64% male, with an average age of 45 years. The predominant aetiology was traumatic (70%) and 72% were paraplegics. 83% prefer to consult health care providers directly. More of 70% of the sample searches health problems on the Internet, mostly web pages in Spanish. The preferred item was 'orthopaedic materials and wheelchairs'. 27% of the sample trusts in the Internet information and 32% don't. This research provides information about Internet use of spinal cord injured individuals in Spain. Although we have to admit some bias in the study, more than 70% of the sample searches health problems on the Internet, mostly web pages in Spanish. About one in four individuals trust in information from Internet and most of the sample prefers recommendations directly from healthcare professionals.

  14. Understanding physical activity participation in spinal cord injured populations: Three narrative types for consideration

    Science.gov (United States)

    Papathomas, Anthony; Williams, Toni L.; Smith, Brett

    2015-01-01

    The aim of this study was to identity the types of physical activity narratives drawn upon by active spinal injured people. More than 50 h of semi-structured life-story interview data, collected as part of larger interdisciplinary program of disability lifestyle research, was analysed for 30 physically active male and female spinal cord injury (SCI) participants. A structural narrative analysis of data identified three narrative types which people with SCI draw on: (1) exercise is restitution, (2) exercise is medicine, and (3) exercise is progressive redemption. These insights contribute new knowledge by adding a unique narrative perspective to existing cognitive understanding of physical activity behaviour in the spinal cord injured population. The implications of this narrative typology for developing effective positive behavioural change interventions are critically discussed. It is concluded that the identified narratives types may be constitutive, as well as reflective, of physical activity experiences and therefore may be a useful tool on which to base physical activity promotion initiatives. PMID:26282868

  15. Understanding physical activity participation in spinal cord injured populations: Three narrative types for consideration

    Directory of Open Access Journals (Sweden)

    Anthony Papathomas

    2015-08-01

    Full Text Available The aim of this study was to identity the types of physical activity narratives drawn upon by active spinal injured people. More than 50 h of semi-structured life-story interview data, collected as part of larger interdisciplinary program of disability lifestyle research, was analysed for 30 physically active male and female spinal cord injury (SCI participants. A structural narrative analysis of data identified three narrative types which people with SCI draw on: (1 exercise is restitution, (2 exercise is medicine, and (3 exercise is progressive redemption. These insights contribute new knowledge by adding a unique narrative perspective to existing cognitive understanding of physical activity behaviour in the spinal cord injured population. The implications of this narrative typology for developing effective positive behavioural change interventions are critically discussed. It is concluded that the identified narratives types may be constitutive, as well as reflective, of physical activity experiences and therefore may be a useful tool on which to base physical activity promotion initiatives.

  16. Pattern of Pressure Sores in Spinal Injured Patients with in the First ...

    African Journals Online (AJOL)

    Background: Before 2006, all our spinal injured patients were nursed on conventional form mattress without pressure redistributing support surface. Pressure sore was a common complication and was a major contributing factor to prolonged hospitalization. Aim: The aim of this study is to determine the pattern of pressure ...

  17. The experience of being a partner to a spinal cord injured person:

    DEFF Research Database (Denmark)

    Angel, Sanne; Buus, Niels

    2011-01-01

    tasks. Some sought to reestablish their usual functions outside the family, whereas others focused on establishing a new life together. The partners experienced much distress and appreciated the support they got, but felt that they were mainly left to manage the difficult process on their own.......This qualitative interview study focuses on the personal experiences of partners to a spinal cord injured person. Using a Ricoeurian phenomenological-hermeneutic approach, we analysed seven partners’ narratives 1 and 2 years after their partner’s injury. The study revealed how the injury...... supporting the injured partner and the demanding tasks of everyday life outside the institution. After discharge, partners struggled for the injured partner to regain a well-functioning everyday life and for reestablishing life as a couple. The partner struggled to manage the overwhelming amount of everyday...

  18. Central sensitization in spinal cord injured humans assessed by reflex receptive fields

    DEFF Research Database (Denmark)

    Biurrun Manresa, José Alberto; Finnerup, Nanna Susanne Brix; Johannesen, Inger Lauge

    2014-01-01

    OBJECTIVE: To investigate the effects of central sensitization, elicited by intramuscular injection of capsaicin, by comparing the reflex receptive fields (RRF) of spinally-intact volunteers and spinal cord injured volunteers that present presensitized spinal nociceptive mechanisms. METHODS...... after an intramuscular injection of capsaicin in the foot sole in order to induce central sensitization. RESULTS: Both groups presented RRF expansion and lowered NWR thresholds immediately after capsaicin injection, reflected by the enlargement of RRF sensitivity areas and RRF probability areas....... Moreover, the topography of the RRF sensitivity and probability areas were significantly different in SCI volunteers compared to NI volunteers in terms of size and shape. CONCLUSIONS: SCI volunteers can develop central sensitization, despite adaptive/maladaptive changes in synaptic plasticity and lack...

  19. Vibratory ejaculation in 140 spinal cord injured men and home insemination of their partners

    DEFF Research Database (Denmark)

    Sønksen, J; Fode, Mikkel; Löchner-Ernst, D

    2012-01-01

    Study design:Retrospective cohort study.Objectives:Anejaculation is commonly found in spinal cord injured (SCI) men. Clinical treatments and assisted reproductive techniques allow SCI men to father children but few home pregnancies have been reported. The objective of this paper is to evaluate th...... partner has an adequate total motile sperm count and the female partner is healthy.Spinal Cord advance online publication, 13 September 2011; doi:10.1038/sc.2011.101....

  20. Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid.

    Science.gov (United States)

    Widenfalk, J; Lundströmer, K; Jubran, M; Brene, S; Olson, L

    2001-05-15

    Delivery of neurotrophic factors to the injured spinal cord has been shown to stimulate neuronal survival and regeneration. This indicates that a lack of sufficient trophic support is one factor contributing to the absence of spontaneous regeneration in the mammalian spinal cord. Regulation of the expression of neurotrophic factors and receptors after spinal cord injury has not been studied in detail. We investigated levels of mRNA-encoding neurotrophins, glial cell line-derived neurotrophic factor (GDNF) family members and related receptors, ciliary neurotrophic factor (CNTF), and c-fos in normal and injured spinal cord. Injuries in adult rats included weight-drop, transection, and excitotoxic kainic acid delivery; in newborn rats, partial transection was performed. The regulation of expression patterns in the adult spinal cord was compared with that in the PNS and the neonate spinal cord. After mechanical injury of the adult rat spinal cord, upregulations of NGF and GDNF mRNA occurred in meningeal cells adjacent to the lesion. BDNF and p75 mRNA increased in neurons, GDNF mRNA increased in astrocytes close to the lesion, and GFRalpha-1 and truncated TrkB mRNA increased in astrocytes of degenerating white matter. The relatively limited upregulation of neurotrophic factors in the spinal cord contrasted with the response of affected nerve roots, in which marked increases of NGF and GDNF mRNA levels were observed in Schwann cells. The difference between the ability of the PNS and CNS to provide trophic support correlates with their different abilities to regenerate. Kainic acid delivery led to only weak upregulations of BDNF and CNTF mRNA. Compared with several brain regions, the overall response of the spinal cord tissue to kainic acid was weak. The relative sparseness of upregulations of endogenous neurotrophic factors after injury strengthens the hypothesis that lack of regeneration in the spinal cord is attributable at least partly to lack of trophic support.

  1. Effect of electrical stimulation on neural regeneration via the p38-RhoA and ERK1/2-Bcl-2 pathways in spinal cord-injured rats.

    Science.gov (United States)

    Joo, Min Cheol; Jang, Chul Hwan; Park, Jong Tae; Choi, Seung Won; Ro, Seungil; Kim, Min Seob; Lee, Moon Young

    2018-02-01

    Although electrical stimulation is therapeutically applied for neural regeneration in patients, it remains unclear how electrical stimulation exerts its effects at the molecular level on spinal cord injury (SCI). To identify the signaling pathway involved in electrical stimulation improving the function of injured spinal cord, 21 female Sprague-Dawley rats were randomly assigned to three groups: control (no surgical intervention, n = 6), SCI (SCI only, n = 5), and electrical simulation (ES; SCI induction followed by ES treatment, n = 10). A complete spinal cord transection was performed at the 10 th thoracic level. Electrical stimulation of the injured spinal cord region was applied for 4 hours per day for 7 days. On days 2 and 7 post SCI, the Touch-Test Sensory Evaluators and the Basso-Beattie-Bresnahan locomotor scale were used to evaluate rat sensory and motor function. Somatosensory-evoked potentials of the tibial nerve of a hind paw of the rat were measured to evaluate the electrophysiological function of injured spinal cord. Western blot analysis was performed to measure p38-RhoA and ERK1/2-Bcl-2 pathways related protein levels in the injured spinal cord. Rat sensory and motor functions were similar between SCI and ES groups. Compared with the SCI group, in the ES group, the latencies of the somatosensory-evoked potential of the tibial nerve of rats were significantly shortened, the amplitudes were significantly increased, RhoA protein level was significantly decreased, protein gene product 9.5 expression, ERK1/2, p38, and Bcl-2 protein levels in the spinal cord were significantly increased. These data suggest that ES can promote the recovery of electrophysiological function of the injured spinal cord through regulating p38-RhoA and ERK1/2-Bcl-2 pathway-related protein levels in the injured spinal cord.

  2. Effect of electrical stimulation on neural regeneration via the p38-RhoA and ERK1/2-Bcl-2 pathways in spinal cord-injured rats

    Science.gov (United States)

    Joo, Min Cheol; Jang, Chul Hwan; Park, Jong Tae; Choi, Seung Won; Ro, Seungil; Kim, Min Seob; Lee, Moon Young

    2018-01-01

    Although electrical stimulation is therapeutically applied for neural regeneration in patients, it remains unclear how electrical stimulation exerts its effects at the molecular level on spinal cord injury (SCI). To identify the signaling pathway involved in electrical stimulation improving the function of injured spinal cord, 21 female Sprague-Dawley rats were randomly assigned to three groups: control (no surgical intervention, n = 6), SCI (SCI only, n = 5), and electrical simulation (ES; SCI induction followed by ES treatment, n = 10). A complete spinal cord transection was performed at the 10th thoracic level. Electrical stimulation of the injured spinal cord region was applied for 4 hours per day for 7 days. On days 2 and 7 post SCI, the Touch-Test Sensory Evaluators and the Basso-Beattie-Bresnahan locomotor scale were used to evaluate rat sensory and motor function. Somatosensory-evoked potentials of the tibial nerve of a hind paw of the rat were measured to evaluate the electrophysiological function of injured spinal cord. Western blot analysis was performed to measure p38-RhoA and ERK1/2-Bcl-2 pathways related protein levels in the injured spinal cord. Rat sensory and motor functions were similar between SCI and ES groups. Compared with the SCI group, in the ES group, the latencies of the somatosensory-evoked potential of the tibial nerve of rats were significantly shortened, the amplitudes were significantly increased, RhoA protein level was significantly decreased, protein gene product 9.5 expression, ERK1/2, p38, and Bcl-2 protein levels in the spinal cord were significantly increased. These data suggest that ES can promote the recovery of electrophysiological function of the injured spinal cord through regulating p38-RhoA and ERK1/2-Bcl-2 pathway-related protein levels in the injured spinal cord. PMID:29557386

  3. Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish.

    Directory of Open Access Journals (Sweden)

    Subhra Prakash Hui

    Full Text Available Zebrafish can repair their injured brain and spinal cord after injury unlike adult mammalian central nervous system. Any injury to zebrafish spinal cord would lead to increased proliferation and neurogenesis. There are presences of proliferating progenitors from which both neuronal and glial loss can be reversed by appropriately generating new neurons and glia. We have demonstrated the presence of multiple progenitors, which are different types of proliferating populations like Sox2+ neural progenitor, A2B5+ astrocyte/ glial progenitor, NG2+ oligodendrocyte progenitor, radial glia and Schwann cell like progenitor. We analyzed the expression levels of two common markers of dedifferentiation like msx-b and vimentin during regeneration along with some of the pluripotency associated factors to explore the possible role of these two processes. Among the several key factors related to pluripotency, pou5f1 and sox2 are upregulated during regeneration and associated with activation of neural progenitor cells. Uncovering the molecular mechanism for endogenous regeneration of adult zebrafish spinal cord would give us more clues on important targets for future therapeutic approach in mammalian spinal cord repair and regeneration.

  4. Retrograde tracing of fluorescent gold after autogenous nerve transplantation on spinal cord injured in rats

    DEFF Research Database (Denmark)

    Lin, X; Liu, W; Ding, Ming

    2016-01-01

    , the transplantation group using autologous sural nerve graft to repair spinal cord injury period and non-transplantation group was only exposed incision without treatment. In the 4, 6 and 8 weeks after operation, the retrograde tracing of FG Fluoro-Gold was performed to discover the recovery of the axial plasma......Objective To investigate the changes of the fluorescent gold retrograde tracing autogenous nerve transplantation on spinal cord injured in rats. Methods The animals were divided into two groups, with modified Allen impact method to establish model of spinal cord injury. After 4 weeks.......01). Conclusion After spinal cord injury, autologous nerve graft was repaired and survived well and promote the recovery of spinal cord injury segment shaft pulp transportation function....

  5. An oscillating extracellular voltage gradient reduces the density and influences the orientation of astrocytes in injured mammalian spinal cord.

    Science.gov (United States)

    Moriarty, L J; Borgens, R B

    2001-01-01

    We have studied the cellular basis for recovery from acute spinal cord injury induced by applied electric fields. We have emphasized this recovery is due to the regeneration of spinal axons around and through the lesion, and have begun to evaluate the contribution of other cells to the recovery process. We have imposed a voltage gradient of about 320 microV/mm across puncture wounds to the adult rat spinal cord in order to study the accumulation and orientation of GFAP+ astrocytes within and adjacent to the lesion. This electric field was imposed by a miniaturized electronic implant designed to alternate the polarity of the field every 15 minutes. Astrocytes are known to undergo hyperplastic transformation within injured mammalian cords forming a major component of the scar that forms in response to injury. We have made three observations using a new computer based morphometry technique: First, we note a slight shift in the orientation of astrocytes parallel to the long axis of the spinal cord towards an imaginary reference perpendicular to this axis by approximately 10 degrees--but only in undamaged white matter near the lesion. Second, the relative number of astrocytes was markedly, and statistically significantly, reduced within electrically--treated spinal cords, particularly in the lesion. Third, the imposed voltage gradient statistically reduced the numbers of astrocytes possessing oriented cell processes within the injury site compared to adjacent undamaged regions of spinal cord.

  6. The adult spinal cord harbors a population of GFAP-positive progenitors with limited self-renewal potential.

    Science.gov (United States)

    Fiorelli, Roberto; Cebrian-Silla, Arantxa; Garcia-Verdugo, Jose-Manuel; Raineteau, Olivier

    2013-12-01

    Adult neural stem cells (aNSCs) of the forebrain are GFAP-expressing cells that are intercalated within ependymal cells of the subventricular zone (SVZ). Cells showing NSCs characteristics in vitro can also be isolated from the periaqueductal region in the adult spinal cord (SC), but contradicting results exist concerning their glial versus ependymal identity. We used an inducible transgenic mouse line (hGFAP-CreERT2) to conditionally label GFAP-expressing cells in the adult SVZ and SC periaqueduct, and directly and systematically compared their self-renewal and multipotential properties in vitro. We demonstrate that a population of GFAP(+) cells that share the morphology and the antigenic properties of SVZ-NSCs mostly reside in the dorsal aspect of the central canal (CC) throughout the spinal cord. These cells are non-proliferative in the intact spinal cord, but incorporate the S-phase marker EdU following spinal cord injury. Multipotent, clonal YFP-expressing neurospheres (i.e., deriving from recombined GFAP-expressing cells) were successfully obtained from both the intact and injured spinal cord. These spheres however showed limited self-renewal properties when compared with SVZ-neurospheres, even after spinal cord injury. Altogether, these results demonstrate that significant differences exist in NSCs lineages between neurogenic and non-neurogenic regions of the adult CNS. Thus, although we confirm that a population of multipotent GFAP(+) cells co-exists alongside with multipotent ependymal cells within the adult SC, we identify these cells as multipotent progenitors showing limited self-renewal properties. Copyright © 2013 Wiley Periodicals, Inc.

  7. A prospective evaluation of a pressure ulcer prevention and management E-Learning Program for adults with spinal cord injury.

    Science.gov (United States)

    Brace, Jacalyn A; Schubart, Jane R

    2010-08-01

    Pressure ulcers are a common complication of spinal cord injury (SCI). Pressure ulcer education programs for spinal cord injured individuals have been found to have a positive effect on care protocol adherence. A prospective study was conducted among hospitalized spinal cord-injured men and women to determine if viewing the Pressure Ulcer Prevention and Management Education for Adults with Spinal Cord Injury: E-Learning Program affects their knowledge scores. A 20-question multiple-choice pre-/post learning test was developed and validated by 12 rehabilitation nurses. Twenty (20) patients (13 men, seven women; mean age 49 years, [SD: 18.26] with injuries to the cervical [seven], thoracic [six], and lumbar [six] regions) volunteered. Most (42%) had completed high school and time since SCI ranged from 2 weeks to 27 years. Eighteen (18) participants completed both the pre- and post test. Of those, 16 showed improvement in pressure ulcer knowledge scores. The median scores improved from 65 (range 25 to 100) pre-program to 92.5 (range 75 to 100) post-program. Descriptive statistics, Student's t-test, and analysis of variance (ANOVA) were used to analyze the data. The results suggest that a single viewing of this e-learning program could improve pressure ulcer knowledge of hospitalized adults with SCI. Research to ascertain the effects of this and other educational programs on pressure ulcer rates is needed.

  8. Differential gene expression in the EphA4 knockout spinal cord and analysis of the inflammatory response following spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Kathryn M Munro

    Full Text Available Mice lacking the axon guidance molecule EphA4 have been shown to exhibit extensive axonal regeneration and functional recovery following spinal cord injury. To assess mechanisms by which EphA4 may modify the response to neural injury a microarray was performed on spinal cord tissue from mice with spinal cord injury and sham injured controls. RNA was purified from spinal cords of adult EphA4 knockout and wild-type mice four days following lumbar spinal cord hemisection or laminectomy only and was hybridised to Affymetrix All-Exon Array 1.0 GeneChips™. While subsequent analyses indicated that several pathways were altered in EphA4 knockout mice, of particular interest was the attenuated expression of a number of inflammatory genes, including Arginase 1, expression of which was lower in injured EphA4 knockout compared to wild-type mice. Immunohistological analyses of different cellular components of the immune response were then performed in injured EphA4 knockout and wildtype spinal cords. While numbers of infiltrating CD3+ T cells were low in the hemisection model, a robust CD11b+ macrophage/microglial response was observed post-injury. There was no difference in the overall number or spread of macrophages/activated microglia in injured EphA4 knockout compared to wild-type spinal cords at 2, 4 or 14 days post-injury, however a lower proportion of Arginase-1 immunoreactive macrophages/activated microglia was observed in EphA4 knockout spinal cords at 4 days post-injury. Subtle alterations in the neuroinflammatory response in injured EphA4 knockout spinal cords may contribute to the regeneration and recovery observed in these mice following injury.

  9. Body temperature responses in spinal cord injured individuals during exercise in the cold and heat.

    NARCIS (Netherlands)

    Boot, C.R.L.; Binkhorst, R.A.; Hopman, M.T.E.

    2006-01-01

    The aim of this study was to assess the effect of arm exercise on the heat balance in spinal cord-injured (SCI) individuals with complete lesions at ambient temperatures of 10 and 35 degrees C. Four SCI with a high lesion (> or = T6) (SCI-H), seven with a low lesion (< T6) (SCI-L), and ten

  10. Suspension Matrices for Improved Schwann-Cell Survival after Implantation into the Injured Rat Spinal Cord

    Science.gov (United States)

    Patel, Vivek; Joseph, Gravil; Patel, Amit; Patel, Samik; Bustin, Devin; Mawson, David; Tuesta, Luis M.; Puentes, Rocio; Ghosh, Mousumi

    2010-01-01

    Abstract Trauma to the spinal cord produces endogenously irreversible tissue and functional loss, requiring the application of therapeutic approaches to achieve meaningful restoration. Cellular strategies, in particular Schwann-cell implantation, have shown promise in overcoming many of the obstacles facing successful repair of the injured spinal cord. Here, we show that the implantation of Schwann cells as cell suspensions with in-situ gelling laminin:collagen matrices after spinal-cord contusion significantly enhances long-term cell survival but not proliferation, as well as improves graft vascularization and the degree of axonal in-growth over the standard implantation vehicle, minimal media. The use of a matrix to suspend cells prior to implantation should be an important consideration for achieving improved survival and effectiveness of cellular therapies for future clinical application. PMID:20144012

  11. Bone marrow stem cells delivered into the subarachnoid space via cisterna magna improve repair of injured rat spinal cord white matter

    Science.gov (United States)

    Marcol, Wiesław; Slusarczyk, Wojciech; Sieroń, Aleksander L; Koryciak-Komarska, Halina; Lewin-Kowalik, Joanna

    2015-01-01

    The influence of bone marrow stem cells on regeneration of spinal cord in rats was investigated. Young adult male Wistar rats were used (n=22). Focal injury of spinal cord white matter at Th10 level was produced using our original non-laminectomy method by means of high-pressured air stream. Cells from tibial and femoral bone marrow of 1-month old rats (n=3) were cultured, labeled with BrdU/Hoechst and injected into cisterna magna (experimental group) three times: immediately after spinal cord injury and 3 as well as 7 days later. Neurons in brain stem and motor cortex were labeled with FluoroGold (FG) delivered caudally from the injury site a week before the end of experiment. Functional outcome and morphological features of regeneration were analyzed during 12-week follow-up. The lesions were characterized by means of MRI. Maximal distance of expansion of implanted cells in the spinal cord was measured and the number of FG-positive neurons in the brain was counted. Rats treated with stem cells presented significant improvement of locomotor performance and spinal cord morphology when compared to the control group. Distance covered by stem cells was 7 mm from the epicenter of the injury. Number of brain stem and motor cortex FG-positive neurons in experimental group was significantly higher than in control. Obtained data showed that bone marrow stem cells are able to induce the repair of injured spinal cord white matter. The route of cells application via cisterna magna appeared to be useful for their delivery in spinal cord injury therapy. PMID:26628950

  12. Astrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins.

    Science.gov (United States)

    Wang, Yaping; Cheng, Xiaoxin; He, Qian; Zheng, Yiyan; Kim, Dong H; Whittemore, Scott R; Cao, Qilin L

    2011-04-20

    Promotion of remyelination is an important therapeutic strategy to facilitate functional recovery after traumatic spinal cord injury (SCI). Transplantation of neural stem cells (NSCs) or oligodendrocyte precursor cells (OPCs) has been used to enhance remyelination after SCI. However, the microenvironment in the injured spinal cord is inhibitory for oligodendrocyte (OL) differentiation of NSCs or OPCs. Identifying the signaling pathways that inhibit OL differentiation in the injured spinal cord could lead to new therapeutic strategies to enhance remyelination and functional recovery after SCI. In the present study, we show that reactive astrocytes from the injured rat spinal cord or their conditioned media inhibit OL differentiation of adult OPCs with concurrent promotion of astrocyte differentiation. The expression of bone morphogenetic proteins (BMP) is dramatically increased in the reactive astrocytes and their conditioned media. Importantly, blocking BMP activity by BMP receptor antagonist, noggin, reverse the effects of active astrocytes on OPC differentiation by increasing the differentiation of OL from OPCs while decreasing the generation of astrocytes. These data indicate that the upregulated bone morphogenetic proteins in the reactive astrocytes are major factors to inhibit OL differentiation of OPCs and to promote its astrocyte differentiation. These data suggest that manipulation of BMP signaling in the endogenous or grafted NSCs or OPCs may be a useful therapeutic strategy to increase their OL differentiation and remyelination and enhance functional recovery after SCI.

  13. [Post-traumatic reconnection of the cervical spinal cord with skeletal striated muscles. Study in adult rats and marmosets].

    Science.gov (United States)

    Horvat, J C; Affane-Boulaid, F; Baillet-Derbin, C; Davarpanah, Y; Destombes, J; Duchossoy, Y; Emery, E; Kassar-Duchossoy, L; Mira, J C; Moissonnier, P; Pécot-Dechavassine, M; Reviron, T; Rhrich-Haddout, F; Tadié, M; Ye, J H

    1997-01-01

    In an attempt at repairing the injured spinal cord of adult mammals (rat, dog and marmoset) and its damaged muscular connections, we are currently using: 1) peripheral nerve autografts (PNG), containing Schwann cells, to trigger and direct axonal regrowth from host and/or transplanted motoneurons towards denervated muscular targets; 2) foetal spinal cord transplants to replace lost neurons. In adult rats and marmosets, a PNG bridge was used to joint the injured cervical spinal cord to a denervated skeletal muscle (longissimus atlantis [rat] or biceps brachii [rat and marmoset]). The spinal lesion was obtained by the implantation procedure of the PNG. After a post-operative delay ranging from 2 to 22 months, the animals were checked electrophysiologically for functional muscular reconnection and processed for a morphological study including retrograde axonal tracing (HRP, Fast Blue, True Blue), histochemistry (AChE, ATPase), immunocytochemistry (ChAT) and EM. It was thus demonstrated that host motoneurons of the cervical enlargement could extend axons all the way through the PNG bridge as: a) in anaesthetized animals, contraction of the reconnected muscle could be obtained by electrical stimulation of the grafted nerve; b) the retrograde axonal tracing studies indicated that a great number of host cervical neurons extended axons into the PNG bridge up to the muscle; c) many of them were assumed to be motoneurons (double labelling with True Blue and an antibody against ChAT); and even alpha-motoneurons (type C axosomatic synapses in HRP labelled neurons seen in EM in the rat); d) numerous ectopic endplates were seen around the intramuscular tip of the PNG. In larger (cavitation) spinal lesions (rat), foetal motoneurons contained in E14 spinal cord transplants could similarly grow axons through PNG bridges up to the reconnected muscle. Taking all these data into account, it can be concluded that neural transplants are interesting tools for evaluating both the

  14. Spinal cord injury reveals multilineage differentiation of ependymal cells.

    Directory of Open Access Journals (Sweden)

    Konstantinos Meletis

    2008-07-01

    Full Text Available Spinal cord injury often results in permanent functional impairment. Neural stem cells present in the adult spinal cord can be expanded in vitro and improve recovery when transplanted to the injured spinal cord, demonstrating the presence of cells that can promote regeneration but that normally fail to do so efficiently. Using genetic fate mapping, we show that close to all in vitro neural stem cell potential in the adult spinal cord resides within the population of ependymal cells lining the central canal. These cells are recruited by spinal cord injury and produce not only scar-forming glial cells, but also, to a lesser degree, oligodendrocytes. Modulating the fate of ependymal progeny after spinal cord injury may offer an alternative to cell transplantation for cell replacement therapies in spinal cord injury.

  15. Naftidrofuryl affects neurite regeneration by injured adult auditory neurons.

    Science.gov (United States)

    Lefebvre, P P; Staecker, H; Moonen, G; van de Water, T R

    1993-07-01

    Afferent auditory neurons are essential for the transmission of auditory information from Corti's organ to the central auditory pathway. Auditory neurons are very sensitive to acute insult and have a limited ability to regenerate injured neuronal processes. Therefore, these neurons appear to be a limiting factor in restoration of hearing function following an injury to the peripheral auditory receptor. In a previous study nerve growth factor (NGF) was shown to stimulate neurite repair but not survival of injured auditory neurons. In this study, we have demonstrated a neuritogenesis promoting effect of naftidrofuryl in an vitro model for injury to adult auditory neurons, i.e. dissociated cell cultures of adult rat spiral ganglia. Conversely, naftidrofuryl did not have any demonstrable survival promoting effect on these in vitro preparations of injured auditory neurons. The potential uses of this drug as a therapeutic agent in acute diseases of the inner ear are discussed in the light of these observations.

  16. Electroacupuncture improves gait locomotion, H-reflex and ventral root potentials of spinal compression injured rats.

    Science.gov (United States)

    Escobar-Corona, Carlos; Torres-Castillo, Sergio; Rodríguez-Torres, Erika Elizabeth; Segura-Alegría, Bertha; Jiménez-Estrada, Ismael; Quiroz-González, Salvador

    2017-05-01

    This study explored the effect of electroacupuncture stimulation (EA) on alterations in the Hoffman reflex (H-reflex) response and gait locomotion provoked by spinal cord injury (SCI) in the rat. A compression lesion of the spinal cord was evoked by insufflating a Fogarty balloon located in the epidural space at the T8-9 spinal level of adult Wistar male rats (200-250 gr; n=60). In different groups of SCI rats, EA (frequencies: 2, 50 and 100Hz) was applied simultaneously to Huantiao (GB30), Yinmen (BL37), Jizhong (GV6) and Zhiyang (GV9) acupoints from the third post-injury day until the experimental session. At 1, 2, 3 and 4 post-injury weeks, the BBB scores of the SCI group of rats treated with EA at 50Hz showed a gradual but greater enhancement of locomotor activity than the other groups of rats. Unrestrained gait kinematic analysis of SCI rats treated with EA-50Hz stimulation showed a significant improvement in stride duration, length and speed (p<0.05), whereas a discrete recovery of gait locomotion was observed in the other groups of animals. After four post-injury weeks, the H-reflex amplitude and H-reflex/M wave amplitude ratio obtained in SCI rats had a noticeable enhancement (217%) compared to sham rats (n=10). Meanwhile, SCI rats treated with EA at 50Hz manifested a decreased facilitation of the H-reflex amplitude and H/M amplitude ratio (154%) and a reduced frequency-dependent amplitude depression of the H-reflex (66%). In addition, 50 Hz-EA treatment induced a recovery of the presynaptic depression of the Gs-VRP evoked by PBSt conditioning stimulation in the SCI rat (63.2±8.1%; n=9). In concordance with the latter, it could be suggested that 50 Hz-EA stimulation reduced the hyper-excitability of motoneurons and provokes a partial improvement of the locomotive performance and H reflex responses by a possible recovery of presynaptic mechanisms in the spinal cord of experimentally injured rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Gene expression changes in the injured spinal cord following transplantation of mesenchymal stem cells or olfactory ensheathing cells.

    Directory of Open Access Journals (Sweden)

    Abel Torres-Espín

    Full Text Available Transplantation of bone marrow derived mesenchymal stromal cells (MSC or olfactory ensheathing cells (OEC have demonstrated beneficial effects after spinal cord injury (SCI, providing tissue protection and improving the functional recovery. However, the changes induced by these cells after their transplantation into the injured spinal cord remain largely unknown. We analyzed the changes in the spinal cord transcriptome after a contusion injury and MSC or OEC transplantation. The cells were injected immediately or 7 days after the injury. The mRNA of the spinal cord injured segment was extracted and analyzed by microarray at 2 and 7 days after cell grafting. The gene profiles were analyzed by clustering and functional enrichment analysis based on the Gene Ontology database. We found that both MSC and OEC transplanted acutely after injury induce an early up-regulation of genes related to tissue protection and regeneration. In contrast, cells transplanted at 7 days after injury down-regulate genes related to tissue regeneration. The most important change after MSC or OEC transplant was a marked increase in expression of genes associated with foreign body response and adaptive immune response. These data suggest a regulatory effect of MSC and OEC transplantation after SCI regarding tissue repair processes, but a fast rejection response to the grafted cells. Our results provide an initial step to determine the mechanisms of action and to optimize cell therapy for SCI.

  18. Artificial gait in complete spinal cord injured subjects: how to assess clinical performance

    Directory of Open Access Journals (Sweden)

    Karla Rocha Pithon

    2015-02-01

    Full Text Available Objective Adapt the 6 minutes walking test (6MWT to artificial gait in complete spinal cord injured (SCI patients aided by neuromuscular electrical stimulation. Method Nine male individuals with paraplegia (AIS A participated in this study. Lesion levels varied between T4 and T12 and time post injured from 4 to 13 years. Patients performed 6MWT 1 and 6MWT 2. They used neuromuscular electrical stimulation, and were aided by a walker. The differences between two 6MWT were assessed by using a paired t test. Multiple r-squared was also calculated. Results The 6MWT 1 and 6MWT 2 were not statistically different for heart rate, distance, mean speed and blood pressure. Multiple r-squared (r2 = 0.96 explained 96% of the variation in the distance walked. Conclusion The use of 6MWT in artificial gait towards assessing exercise walking capacity is reproducible and easy to apply. It can be used to assess SCI artificial gait clinical performance.

  19. Factors affecting directional migration of bone marrow mesenchymal stem cells to the injured spinal cord

    Science.gov (United States)

    Xia, Peng; Pan, Su; Cheng, Jieping; Yang, Maoguang; Qi, Zhiping; Hou, Tingting; Yang, Xiaoyu

    2014-01-01

    Microtubule-associated protein 1B plays an important role in axon guidance and neuronal migration. In the present study, we sought to discover the mechanisms underlying microtubule-associated protein 1B mediation of axon guidance and neuronal migration. We exposed bone marrow mesenchymal stem cells to okadaic acid or N-acetyl-D-erythro-sphingosine (an inhibitor and stimulator, respectively, of protein phosphatase 2A) for 24 hours. The expression of the phosphorylated form of type I microtubule-associated protein 1B in the cells was greater after exposure to okadaic acid and lower after N-acetyl-D-erythro-sphingosine. We then injected the bone marrow mesenchymal stem cells through the ear vein into rabbit models of spinal cord contusion. The migration of bone marrow mesenchymal stem cells towards the injured spinal cord was poorer in cells exposed to okadaic acid- and N-acetyl-D-erythro-sphingosine than in non-treated bone marrow mesenchymal stem cells. Finally, we blocked phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways in rabbit bone marrow mesenchymal stem cells using the inhibitors LY294002 and U0126, respectively. LY294002 resulted in an elevated expression of phosphorylated type I microtubule-associated protein 1B, whereas U0126 caused a reduction in expression. The present data indicate that PI3K and ERK1/2 in bone marrow mesenchymal stem cells modulate the phosphorylation of microtubule-associated protein 1B via a cross-signaling network, and affect the migratory efficiency of bone marrow mesenchymal stem cells towards injured spinal cord. PMID:25374590

  20. Extended magnetic resonance imaging studies on the effect of classically activated microglia transplantation on white matter regeneration following spinal cord focal injury in adult rats

    Science.gov (United States)

    Marcol, Wiesław; Ślusarczyk, Wojciech; Larysz-Brysz, Magdalena; Łabuzek, Krzysztof; Kapustka, Bartosz; Staszkiewicz, Rafał; Rosicka, Paulina; Kalita, Katarzyna; Węglarz, Władysław; Lewin-Kowalik, Joanna

    2017-01-01

    Spinal cord injuries are still a serious problem for regenerative medicine. Previous research has demonstrated that activated microglia accumulate in spinal lesions, influencing the injured tissues in various ways. Therefore, transplantation of activated microglia may have a beneficial role in the regeneration of the nervous system. The present study examined the influence of transplanted activated microglial cells in adult rats with injured spinal cords. Rats were randomly divided into an experimental (M) and control (C) group, and were subjected to non-laminectomy focal injury of spinal cord white matter by means of a high-pressured air stream. In group M, activated cultured microglial cells were injected twice into the site of injury. Functional outcome and morphological features of regeneration were analyzed during a 12-week follow-up. The lesions were characterized by means of magnetic resonance imaging (MRI). Neurons in the brain stem and motor cortex were labeled with FluoroGold (FG). A total of 12 weeks after surgery, spinal cords and brains were collected and subjected to histopathological and immunohistochemical examinations. Lesion sizes in the spinal cord were measured and the number of FG-positive neurons was counted. Rats in group M demonstrated significant improvement of locomotor performance when compared with group C (PMRI analysis demonstrated moderate improvement in water diffusion along the spinal cord in the group M following microglia treatment, as compared with group C. The water diffusion perpendicular to the spinal cord in group M was closer to the reference values for a healthy spinal cord than it was in group C. The sizes of lesions were also significantly smaller in group M than in the group C (P<0.05). The number of brain stem and motor cortex FG-positive neurons in group M was significantly higher than in group C. The present study demonstrated that delivery of activated microglia directly into the injured spinal cord gives some

  1. Cervical spinal cord injury without radiological abnormality in adults.

    OpenAIRE

    Bhatoe H

    2000-01-01

    Spinal cord injury occurring without concomitant radiologically demonstrable trauma to the skeletal elements of the spinal canal rim, or compromise of the spinal canal rim without fracture, is a rare event. Though documented in children, the injury is not very well reported in adults. We present seventeen adult patients with spinal cord injury without accompanying fracture of the spinal canal rim, or vertebral dislocation, seen over seven years. None had preexisting spinal canal stenosis or c...

  2. Locomotor recovery after spinal cord hemisection/contusion injures in bonnet monkeys: footprint testing--a minireview.

    Science.gov (United States)

    Rangasamy, Suresh Babu

    2013-07-01

    Spinal cord injuries usually produce loss or impairment of sensory, motor and reflex function below the level of damage. In the absence of functional regeneration or manipulations that promote regeneration, spontaneous improvements in motor functions occur due to the activation of multiple compensatory mechanisms in animals and humans following the partial spinal cord injury. Many studies were performed on quantitative evaluation of locomotor recovery after induced spinal cord injury in animals using behavioral tests and scoring techniques. Although few studies on rodents have led to clinical trials, it would appear imperative to use nonhuman primates such as macaque monkeys in order to relate the research outcomes to recovery of functions in humans. In this review, we will discuss some of our research evidences concerning the degree of spontaneous recovery in bipedal locomotor functions of bonnet monkeys that underwent spinal cord hemisection/contusion lesions. To our knowledge, this is the first report to discuss on the extent of spontaneous recovery in bipedal locomotion of macaque monkeys through the application of footprint analyzing technique. In addition, the results obtained were compared with the published data on recovery of quadrupedal locomotion of spinally injured rodents. We propose that the mechanisms underlying spontaneous recovery of functions in spinal cord lesioned monkeys may be correlated to the mature function of spinal pattern generator for locomotion under the impact of residual descending and afferent connections. Moreover, based on analysis of motor functions observed in locomotion in these subjected monkeys, we understand that spinal automatism and development of responses by afferent stimuli from outside the cord could possibly contribute to recovery of paralyzed hindlimbs. This report also emphasizes the functional contribution of progressive strengthening of undamaged nerve fibers through a collateral sprouts/synaptic plasticity formed

  3. Management of Sexual Disorders in Spinal Cord Injured Patients

    Directory of Open Access Journals (Sweden)

    Alexander R Vaccaro

    2012-05-01

    Full Text Available Spinal cord injured (SCI patients have sexual disorders including erectile dysfunction (ED, impotence, priapism, ejaculatory dysfunction and infertility. Treatments for erectile dysfunction include four steps. Step 1 involves smoking cessation, weight loss, and increasing physical activity. Step 2 is phosphodiesterase type 5 inhibitors (PDE5I such as Sildenafil (Viagra, intracavernous injections of Papaverine or prostaglandins, and vacuum constriction devices. Step 3 is a penile prosthesis, and Step 4 is sacral neuromodulation (SNM. Priapism can be resolved spontaneously if there is no ischemia found on blood gas measurement or by Phenylephrine. For anejaculatory dysfunction, massage, vibrator, electrical stimulation and direct surgical biopsy can be used to obtain sperm which can then be used for intra-uterine or in-vitro fertilization. Infertility treatment in male SCI patients involves a combination of the above treatments for erectile and anejaculatory dysfunctions. The basic approach to and management of sexual dysfunction in female SCI patients are similar as for men but do not require treatment for erectile or ejaculatory problems.

  4. Astrocytes from the Contused Spinal Cord Inhibit Oligodendrocyte Differentiation of Adult Oligodendrocyte Precursor Cells by Increasing the Expression of Bone Morphogenetic Proteins

    OpenAIRE

    Wang, Yaping; Cheng, Xiaoxin; He, Qian; Zheng, Yiyan; Kim, Dong H.; Whittemore, Scott R.; Cao, Qilin L.

    2011-01-01

    Promotion of remyelination is an important therapeutic strategy to facilitate functional recovery after traumatic spinal cord injury (SCI). Transplantation of neural stem cells (NSCs) or oligodendrocyte precursor cells (OPCs) has been used to enhance remyelination after SCI. However, the microenvironment in the injured spinal cord is inhibitory for oligodendrocyte (OL) differentiation of NSCs or OPCs. Identifying the signaling pathways that inhibit OL differentiation in the injured spinal cor...

  5. Distributed plasticity of locomotor pattern generators in spinal cord injured patients.

    Science.gov (United States)

    Grasso, Renato; Ivanenko, Yuri P; Zago, Myrka; Molinari, Marco; Scivoletto, Giorgio; Castellano, Vincenzo; Macellari, Velio; Lacquaniti, Francesco

    2004-05-01

    Recent progress with spinal cord injured (SCI) patients indicates that with training they can recover some locomotor ability. Here we addressed the question of whether locomotor responses developed with training depend on re-activation of the normal motor patterns or whether they depend on learning new motor patterns. To this end we recorded detailed kinematic and EMG data in SCI patients trained to step on a treadmill with body-weight support (BWST), and in healthy subjects. We found that all patients could be trained to step with BWST in the laboratory conditions, but they used new coordinative strategies. Patients with more severe lesions used their arms and body to assist the leg movements via the biomechanical coupling of limb and body segments. In all patients, the phase-relationship of the angular motion of the different lower limb segments was very different from the control, as was the pattern of activity of most recorded muscles. Surprisingly, however, the new motor strategies were quite effective in generating foot motion that closely matched the normal in the laboratory conditions. With training, foot motion recovered the shape, the step-by-step reproducibility, and the two-thirds power relationship between curvature and velocity that characterize normal gait. We mapped the recorded patterns of muscle activity onto the approximate rostrocaudal location of motor neuron pools in the human spinal cord. The reconstructed spatiotemporal maps of motor neuron activity in SCI patients were quite different from those of healthy subjects. At the end of training, the locomotor network reorganized at both supralesional and sublesional levels, from the cervical to the sacral cord segments. We conclude that locomotor responses in SCI patients may not be subserved by changes localized to limited regions of the spinal cord, but may depend on a plastic redistribution of activity across most of the rostrocaudal extent of the spinal cord. Distributed plasticity underlies

  6. Glial and neuronal connexin expression patterns in the rat spinal cord during development and following injury

    DEFF Research Database (Denmark)

    Lee, I. Hui; Lindqvist, Eva; Kiehn, Ole

    2005-01-01

    Spinal cord injury induces a complex cascade of degenerative and remodeling events evolving over time. The possible roles of changed intercellular communication via gap junctions after spinal cord injury (SCI) have remained relatively unexplored. We investigated the temporospatial expression...... patterns of gap junctional genes and proteins, connexin 43 (Cx43), Cx36, and Cx32, by in situ hybridization and immunohistochemistry in the rat neonatal, adult normal, and adult injured spinal cord. Cx36 was strongly expressed in immature neurons, and levels declined markedly during development, whereas Cx...

  7. Spinal Cord Diseases

    Science.gov (United States)

    Your spinal cord is a bundle of nerves that runs down the middle of your back. It carries signals back ... of the spine, this can also injure the spinal cord. Other spinal cord problems include Tumors Infections such ...

  8. Guillain-Barre syndrome: A possibility in a spinal cord injured patient

    Directory of Open Access Journals (Sweden)

    Jagatsinh Yogendrasinh

    2007-01-01

    Full Text Available A 28-year-old male had paraplegia as a result of fracture dislocation of T12/L1 six years ago. He was functioning independently until four weeks ago, when he started complaining of trunkal paraesthesia which later progressed to include the upper extremities. The initial diagnosis was that of posttraumatic syringomyelia (PTS. While awaiting the MRI scan he developed weakness of upper limbs. The weakness restricted his self-care activities including transfers. The MRI did not show any evidence of syringomyelia. Neurological consultation and assessment yielded provisional diagnosis of Guillain-Barre syndrome (GBS. The patient was treated with immunoglobulins and regained 90% of his previous neurological status. This case is reported to raise awareness among clinicians to include the possibility of the GBS in the differential diagnosis of progressive neurological loss on top of existing neurological deficiency in spinal cord injured patients.

  9. Extended magnetic resonance imaging studies on the effect of classically activated microglia transplantation on white matter regeneration following spinal cord focal injury in adult rats.

    Science.gov (United States)

    Marcol, Wiesław; Ślusarczyk, Wojciech; Larysz-Brysz, Magdalena; Łabuzek, Krzysztof; Kapustka, Bartosz; Staszkiewicz, Rafał; Rosicka, Paulina; Kalita, Katarzyna; Węglarz, Władysław; Lewin-Kowalik, Joanna

    2017-11-01

    Spinal cord injuries are still a serious problem for regenerative medicine. Previous research has demonstrated that activated microglia accumulate in spinal lesions, influencing the injured tissues in various ways. Therefore, transplantation of activated microglia may have a beneficial role in the regeneration of the nervous system. The present study examined the influence of transplanted activated microglial cells in adult rats with injured spinal cords. Rats were randomly divided into an experimental (M) and control (C) group, and were subjected to non-laminectomy focal injury of spinal cord white matter by means of a high-pressured air stream. In group M, activated cultured microglial cells were injected twice into the site of injury. Functional outcome and morphological features of regeneration were analyzed during a 12-week follow-up. The lesions were characterized by means of magnetic resonance imaging (MRI). Neurons in the brain stem and motor cortex were labeled with FluoroGold (FG). A total of 12 weeks after surgery, spinal cords and brains were collected and subjected to histopathological and immunohistochemical examinations. Lesion sizes in the spinal cord were measured and the number of FG-positive neurons was counted. Rats in group M demonstrated significant improvement of locomotor performance when compared with group C (Pspinal cord in the group M following microglia treatment, as compared with group C. The water diffusion perpendicular to the spinal cord in group M was closer to the reference values for a healthy spinal cord than it was in group C. The sizes of lesions were also significantly smaller in group M than in the group C (Pspinal cord gives some positive effects for the regeneration of the white matter.

  10. Use of a special airbed for transporting injured persons

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, R

    1981-04-01

    A description is given of a special airbed for the purpose of transporting injured persons, especially those with injuries to the spinal column. This special airbed moulds itself to the shape of the injured party. (In German)

  11. Correlation of sequential MR imaging of the injured spinal cord with prognosis

    International Nuclear Information System (INIS)

    Takahashi, Mutsumasa; Izunaga, Hiroshi; Sato, Ryuichiro; Shinzato, Jintetsu; Korogi, Yukunori; Yamashita, Yasuyuki; Sakae, Terumi

    1993-01-01

    Forty-nine patients with acute spinal cord injuries were studied sequentially with MR imaging by using 0.5 Tesla superconductive units, and sequential MR changes were correlated with the prognosis of the patients. MR images were obtained within one week of the injury and then every two to six months when possible. The Frankel classification of neurologic function was correlated with MR findings. The most frequently observed types of signal intensity patterns on MR imaging were type 0 (isointensity on both T 1 - and T 2 -weighted images) and type I (isointensity on T 1 - and hyperintensity on T 2 -weighted images). In subsequent subacute and chronic stages, type II (hypointensity on T 1 and hyperintensity on T 2 ) was most frequently observed. The evolution of type 0 was to types I and II, whereas type I usually turned into type II or remained as type I. Type III (hyperintensity on T 1 and hyper-, iso- or hypointensity on T 2 images) patients were few in number. There was a good correlation between MR imaging patterns and neurologic recovery for initial and subsequent MR patterns, in that type 0 showed good recovery, whereas types I and II revealed good improvement or no recovery. In addition, the extent of the high signal intensity area on initial as well as on subsequent T 2 -weighted images was proportionally correlated to neurologic recovery. The degree of cord compression was also important for predicting recovery of neurologic function. Findings of MR imaging of acutely injured spinal cord suggested the prognosis of spinal cord injury, especially when sequential studies were obtained. (author)

  12. Valproic Acid Arrests Proliferation but Promotes Neuronal Differentiation of Adult Spinal NSPCs from SCI Rats.

    Science.gov (United States)

    Chu, Weihua; Yuan, Jichao; Huang, Lei; Xiang, Xin; Zhu, Haitao; Chen, Fei; Chen, Yanyan; Lin, Jiangkai; Feng, Hua

    2015-07-01

    Although the adult spinal cord contains a population of multipotent neural stem/precursor cells (NSPCs) exhibiting the potential to replace neurons, endogenous neurogenesis is very limited after spinal cord injury (SCI) because the activated NSPCs primarily differentiate into astrocytes rather than neurons. Valproic acid (VPA), a histone deacetylase inhibitor, exerts multiple pharmacological effects including fate regulation of stem cells. In this study, we cultured adult spinal NSPCs from chronic compressive SCI rats and treated with VPA. In spite of inhibiting the proliferation and arresting in the G0/G1 phase of NSPCs, VPA markedly promoted neuronal differentiation (β-tubulin III(+) cells) as well as decreased astrocytic differentiation (GFAP(+) cells). Cell cycle regulator p21(Cip/WAF1) and proneural genes Ngn2 and NeuroD1 were increased in the two processes respectively. In vivo, to minimize the possible inhibitory effects of VPA to the proliferation of NSPCs as well as avoid other neuroprotections of VPA in acute phase of SCI, we carried out a delayed intraperitoneal injection of VPA (150 mg/kg/12 h) to SCI rats from day 15 to day 22 after injury. Both of the newborn neuron marker doublecortin and the mature neuron marker neuron-specific nuclear protein were significantly enhanced after VPA treatment in the epicenter and adjacent segments of the injured spinal cord. Although the impaired corticospinal tracks had not significantly improved, Basso-Beattie-Bresnahan scores in VPA treatment group were better than control. Our study provide the first evidence that administration of VPA enhances the neurogenic potential of NSPCs after SCI and reveal the therapeutic value of delayed treatment of VPA to SCI.

  13. The Comparison of Traditional Exercises & Body Weight Supported Training (BWST Exercises on Sensory-Motor Function, Quality and Quantity of Walking in Paraplegic Spinal Cord Injured Persons

    Directory of Open Access Journals (Sweden)

    Mehdi Raeisi-dehkordi

    2015-01-01

    Full Text Available Objective: The aim of this study was the comparison of traditional exercises & body weight supported training (BWST exercises on sensory-motor function, quality and quantity of walking in paraplegic spinal cord injured persons. Materials & Methods: 17 voluntary paraplegic spinal cord injured persons (Asia B,C, age 32.53±1.793 years, height 175.71±1.658 cm, weight 71.59±2.442 kg, and body mass index (BMI 23.18 ± 0.828 kg/m2 availability. The subjects were randomly assigned to BWSTT group (N=10 and Traditional exercises group (N=7 according to sensory and motor score. The subjects trained for 12 weeks, four times per week and 60 min per session. BWSTT include 15 min warm-up on fixed gear bike, 45 min BWSTT with 50% body weight and 10 min cold-down finally. 10% load was added each week. Traditional exercises included 15 min warm-up plus 45 min stretch exercise and resistance training. Results: The data showed that there were significant differences in changes of sensory function Pin score (P=0.002 and Light Score (P=0.002 sensory function, motor function (P=0.000, Walking index Spinal cord injury (WISCI (P=0.002, 6 min walking test (P=0.001 and 10 meter walking (P=0.001 between BWSTT and traditional exercise. Conclusion: BWSTT in comparison with traditional exercise can improve sensory-motor function and quality and quantity of walking in paraplegic spinal cord injured persons.

  14. Evaluation of purinergic mechanism for the treatment of voiding dysfunction: a study in conscious spinal cord-injured rats.

    Science.gov (United States)

    Lu, Shing-Hwa; Groat, William C de; Lin, Alex T L; Chen, Kuang-Kuo; Chang, Luke S

    2007-10-01

    To investigate the effect of a selective P2X(3-)P2X(2/3) purinergic receptor antagonist (a-317491) on detrusor hyperreflexia in conscious chronic spinal cord-injured female rats. Six chronic spinal cord-transected female Sprague-Dawley rats (290-336 g) were used in this study. Spinal transection at the T8-T9 segmental level was performed using aseptic techniques under halothane anesthesia. Fourteen to 16 weeks after spinal transection, A-317491, a selective P2X(3-)P2X(2/3) purinergic receptor antagonist, was administered intravenously in cystometry studies at increasing doses of 0.03, 0.1, 0.3, 1, 3, 10 and 30 micromol/kg at 40-50 minute intervals. Cystometrograms (CMGs) were performed before and after the administration of each dose of the drug. The continuous filling of CMGs revealed a large number of small-amplitude (> 8 cmH(2)O), non-voiding contractions (NVCs) (average, 9.7 per voiding cycle) preceding voiding contractions (mean amplitude, 31 cmH(2)O; duration, 2.5 minutes), which occurred at an interval of 539 seconds and at a pressure threshold of 5.7 cmH(2)O. When tested in a range of doses (0.03-30 micromol/kg, intravenous), A-317491 in doses between 1 and 30 micromol/kg significantly (p spinal cord injury in rats.

  15. Suicide in a spinal cord injured population

    DEFF Research Database (Denmark)

    Hartkopp, A; Brønnum-Hansen, Henrik; Seidenschnur, A M

    1998-01-01

    To determine the relation between functional status and risk of suicide among individuals with spinal cord injury (SCI).......To determine the relation between functional status and risk of suicide among individuals with spinal cord injury (SCI)....

  16. Electroacupuncture in the repair of spinal cord injury: inhibiting the Notch signaling pathway and promoting neural stem cell proliferation

    Directory of Open Access Journals (Sweden)

    Xin Geng

    2015-01-01

    Full Text Available Electroacupuncture for the treatment of spinal cord injury has a good clinical curative effect, but the underlying mechanism is unclear. In our experiments, the spinal cord of adult Sprague-Dawley rats was clamped for 60 seconds. Dazhui (GV14 and Mingmen (GV4 acupoints of rats were subjected to electroacupuncture. Enzyme-linked immunosorbent assay revealed that the expression of serum inflammatory factors was apparently downregulated in rat models of spinal cord injury after electroacupuncture. Hematoxylin-eosin staining and immunohistochemistry results demonstrated that electroacupuncture contributed to the proliferation of neural stem cells in rat injured spinal cord, and suppressed their differentiation into astrocytes. Real-time quantitative PCR and western blot assays showed that electroacupuncture inhibited activation of the Notch signaling pathway induced by spinal cord injury. These findings indicate that electroacupuncture repaired the injured spinal cord by suppressing the Notch signaling pathway and promoting the proliferation of endogenous neural stem cells.

  17. Radiation-induced apoptosis in the neonatal and adult rat spinal cord.

    Science.gov (United States)

    Li, Y Q; Wong, C S

    2000-09-01

    This study was designed to characterize radiation-induced apoptosis in the spinal cord of the neonatal and young adult rat. Spinal cords (C2-T2) of 1-, 2- and 10-week-old rats were irradiated with a single dose of 8, 18 or 22 Gy. Apoptosis was assessed histologically according to its specific morphological features or by using the TUNEL assay. Cell proliferation was assessed immunohistochemically using BrdU. Identities of cell types undergoing apoptosis were assessed using immunohistochemistry or in situ hybridization using markers for neurons, glial progenitor cells, microglia, oligodendrocytes and astrocytes. The time course of radiation-induced apoptosis in 1- or 2-week-old rat spinal cord was similar to that in the young adult rat spinal cord. A peak response was observed at about 8 h after irradiation, and the apoptosis index returned to the levels in nonirradiated spinal cords at 24 h. The neonatal rat spinal cord demonstrated increased apoptosis compared to the adult. Values for total yield of apoptosis over 24 h induced by 8 Gy in the neonatal rat spinal cord were significantly greater than that in the adult. Immunohistochemistry studies using Leu7, galactocerebroside, Rip and adenomatous polyposis coli tumor suppressor protein indicated that most apoptotic cells were cells of the oligodendroglial lineage regardless of the age of the animal. No evidence of Gfap or factor VIII-related antigen-positive apoptotic cells was observed, and there was a small number of apoptotic microglial cells (lectin-Rca1 positive) in the neonatal and adult rat spinal cord. In the neonatal but not adult rat spinal cord, about 10% of the apoptotic cells appeared to be neurons and were immunoreactive for synaptophysin. Labeling indices (LI) for BrdU in nonirradiated 1- and 2-week-old rat spinal cord were 20.0 and 16.3%, respectively, significantly greater than the LI of 1.0% in the 10-week-old rat spinal cord. At 8 h after a single dose of 8 Gy, 13.4% of the apoptotic cells were

  18. Remyelination of the injured spinal cord

    Science.gov (United States)

    Sasaki, Masanori; Li, Bingcang; Lankford, Karen L.; Radtke, Christine; Kocsis, Jeffery D.

    2008-01-01

    Contusive spinal cord injury (SCI) can result in necrosis of the spinal cord, but often long white matter tracts outside of the central necrotic core are demyelinated. One experimental strategy to improve functional outcome following SCI is to transplant myelin-forming cells to remyelinate these axons and improve conduction. This review focuses on transplantation studies using olfactory ensheathing cell (OEC) to improve functional outcome in experimental models of SCI and demyelination. The biology of the OEC, and recent experimental research and clinical studies using OECs as a potential cell therapy candidate are discussed. PMID:17618995

  19. A novel device for studying weight supported, quadrupedal overground locomotion in spinal cord injured rats.

    Science.gov (United States)

    Hamlin, Marvin; Traughber, Terence; Reinkensmeyer, David J; de Leon, Ray D

    2015-05-15

    Providing weight support facilitates locomotion in spinal cord injured animals. To control weight support, robotic systems have been developed for treadmill stepping and more recently for overground walking. We developed a novel device, the body weight supported ambulatory rodent trainer (i.e. BART). It has a small pneumatic cylinder that moves along a linear track above the rat. When air is supplied to the cylinder, the rats are lifted as they perform overground walking. We tested the BART device in rats that received a moderate spinal cord contusion injury and in normal rats. Locomotor training with the BART device was not performed. All of the rats learned to walk in the BART device. In the contused rats, significantly greater paw dragging and dorsal stepping occurred in the hindlimbs compared to normal. Providing weight support significantly raised hip position and significantly reduced locomotor deficits. Hindlimb stepping was tightly coupled to forelimb stepping but only when the contused rats stepped without weight support. Three weeks after the contused rats received a complete spinal cord transection, significantly fewer hindlimb steps were performed. Relative to rodent robotic systems, the BART device is a simpler system for studying overground locomotion. The BART device lacks sophisticated control and sensing capability, but it can be assembled relatively easily and cheaply. These findings suggest that the BART device is a useful tool for assessing quadrupedal, overground locomotion which is a more natural form of locomotion relative to treadmill locomotion. Published by Elsevier B.V.

  20. Spinal Cord Independence Measure, version III: applicability to the UK spinal cord injured population.

    Science.gov (United States)

    Glass, Clive A; Tesio, Luigi; Itzkovich, Malka; Soni, Bakul M; Silva, Pedro; Mecci, Munawar; Chadwick, Raymond; el Masry, Waghi; Osman, Aheed; Savic, Gordana; Gardner, Brian; Bergström, Ebba; Catz, Amiram

    2009-09-01

    To examine the validity, reliability and usefulness of the Spinal Cord Independence Measure for the UK spinal cord injury population. Multi-centre cohort study. Four UK regional spinal cord injury centres. Eighty-six people with spinal cord injury. Spinal Cord Independence Measure and Functional Independence Measure on admission analysed using inferential statistics, and Rasch analysis of Spinal Cord Independence Measure. Internal consistency, inter-rater reliability, discriminant validity; Spinal Cord Independence Measure subscale match between distribution of item difficulty and patient ability measurements; reliability of patient ability measures; fit of data to Rasch model; unidimensionality of subscales; hierarchical ordering of categories within items; differential item functioning across patient groups. Scale reliability (kappa coefficients range 0.491-0.835; (p Spinal Cord Independence Measure subscales compatible with stringent Rasch requirements; mean infit indices high; distinct strata of abilities identified; most thresholds ordered; item hierarchy stable across clinical groups and centres. Misfit and differences in item hierarchy identified. Difficulties assessing central cord injuries highlighted. Conventional statistical and Rasch analyses justify the use of the Spinal Cord Independence Measure in clinical practice and research in the UK. Cross-cultural validity may be further improved.

  1. Preclinical evidence supporting the clinical development of central pattern generator-modulating therapies for chronic spinal cord-injured patients

    Directory of Open Access Journals (Sweden)

    Pierre eGuertin

    2014-05-01

    Full Text Available Ambulation or walking is one of the main gaits of locomotion. In terrestrial animals, it may be defined as a series of rhythmic and bilaterally coordinated movement of the limbs which creates a forward movement of the body. This applies regardless of the number of limbs - from arthropods with six or more limbs to bipedal primates. These fundamental similarities among species may explain why comparable neural systems and cellular properties have been found, thus far, to control in similar ways locomotor rhythm generation in most animal models. The aim of this article is to provide a comprehensive review of the known structural and functional features associated with central nervous system (CNS networks that are involved in the control of ambulation and other stereotyped motor patterns - specifically Central Pattern Generators (CPGs that produce basic rhythmic patterned outputs for locomotion, micturition, ejaculation, and defecation. Although there is compelling evidence of their existence in humans, CPGs have been most studied in reduced models including in vitro isolated preparations, genetically-engineered mice and spinal cord-transected animals. Compared with other structures of the CNS, the spinal cord is generally considered as being well-preserved phylogenetically. As such, most animal models of SCI should be considered as valuable tools for the development of novel pharmacological strategies aimed at modulating spinal activity and restoring corresponding functions in chronic spinal cord-injured patients.

  2. Maladaptation of cerebral perfusion in the spinal cord injured individuals

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Ihn Ho; Chun, Kyung A.; Lee, Hyoung Woo; Ahn, Sang Ho; Hayashida, Kohei [National Cardiovascular Center, Osaka (Korea, Republic of)

    2001-07-01

    The aim of this study was to evaluate the tilt-induced alteration of cerebral perfusion of spinal cord injured individuals. Supine and upright sitting brain SPECT was performed using a 1-day protocol with {sup 99m}Tc-ethylcysteinate dimer (ECD) in 11 SCI individuals (mean age, 32.6 y), with lesions between C3 and T4, ad 5 AB individuals (mean age, 31.4 y). The patients rested on a wheelchair in the supine position. Then, they sat up and, at the same time 555MBq of ECD was injected. The upright SPECT was done. Finally, 740MBq of ECD was injected and supine SPECT was performed again. The SPECT data were acquired with dual head gamma camera (E-cam, Siemens). For semiquantitative analysis, 14 ROIs were drawn on the brain. In the SCI individuals, the radiotracer uptake in the frontal, temporal and parietal areas were significantly decreased in the upright SPECT. No postural changes was evident in the occipital lobe, basal ganglia and thalamus in the SCI individuals. In the AB individuals, there were no such changes on the upright SPECT. Postural cerebral hypoperfusion in the frontal, temporal and parietal areas in the SCI individuals might relate to maladaptation of the vascular response during the upright position.

  3. CENTRAL SENSITIZATION AND MEDICATION IN SPINAL CORD INJURED IN-PATIENTS. A CROSS-SECTIONAL CLINICAL STUDY

    DEFF Research Database (Denmark)

    Rosendahl, A; Kasch, Helge

    Background and aims: A major proportion of spinal cord injured subjects (SCIS) suffers from chronic pain. A majority with neuropathic pain, being: shooting, burning and stabbing. Neurological examination reveals signs of central sensitization (CS) e.g. allodynia and hyperalgesia. CS plays...... an important role in maintained neuropathic pain conditions and may lead to or be induced by analgesics. Medication-overuse-headaches (MOH) alter CNS pain processing systems, and the situation is reversed after discontinuation of headache medication. Aim: To determine the occurrence of CS and conditions...... pressure algometry, Von Frey filaments and pinprick test. Patients fulfill McGill Pain Questionnaire and the International SCI pain data-set. All participants undergo examination of the Pressure Pain Detection Threshold, Pressure Pain Tolerance Threshold, Mechanical Detection Threshold, and Wind...

  4. Magnetic resonance imaging of acute spinal-cord injury

    International Nuclear Information System (INIS)

    Yamamoto, Hideki; Nakagawa, Hiroshi; Yamada, Takahisa; Iwata, Kinjiro; Okumura, Terufumi; Hoshino, Daisaku.

    1992-01-01

    Magnetic resonance imaging (MRI) provides a noninvasive and very important method of investigating spinal-cord injuries. By means of MRI we examined 36 patients with spinal injuries, 34 of them in the acute stage. 19 cases had complete spinal-cord injury with paraplegia, while 17 cases had incomplete spinal-cord injury. MRI showed the injured spinal-cord in the acute stage to be partially swollen, with a high signal intensity in the T 2 -weighted images. In the chronic stage, the injured cord may show atrophic changes with a post-traumatic cavity or myelomalacia, which appears as a high-signal-intensity lesion in the T 2 -weighted images and as a low-signal intensity in the T 1 -weighted images. The cases with complete spinal injuries showed a high signal intensity at the wide level, and these prognoses were poor. The cases with incomplete injuries showed normal findings or a high-signal-intensity spot. In the Gd-DTPA enhanced images, the injured cords were enhanced very well in the subchronic stage. MRI is thus found to be useful in the diagnosis of spinal injuries; it also demonstrates a potential for predicting the neurological prognosis. (author)

  5. Seminal plasma PSA in spinal cord injured men

    DEFF Research Database (Denmark)

    Brasso, K; Sønksen, J; Sommer, P

    1998-01-01

    The aim of the study was to evaluate the impact of spinal cord injury on seminal plasma PSA concentration.......The aim of the study was to evaluate the impact of spinal cord injury on seminal plasma PSA concentration....

  6. Spinal cord regeneration: moving tentatively towards new perspectives.

    Science.gov (United States)

    Jones, D G; Anderson, E R; Galvin, K A

    2003-01-01

    The failure of the adult human spinal cord to regenerate following injury is not absolute, but appears to be amenable to therapeutic manipulation. Recent work has shown that the provision of a growth permissive environment by the neutralization of inhibitory influences, or the grafting of fetal tissue, peripheral nerve, Schwann cells, or olfactory ensheathing cells can enhance regeneration in animal models of spinal cord injury. Stem cells are gaining ever-increasing favour as a treatment option for spinal cord injury. The potential of neural stem cells, embryonic stem cells, and bone marrow stromal cells is discussed. Additional treatment options such as pharmacological interventions, functional electrical stimulation and physiotherapy approaches are also explored. Basic science insights are used as a foundation for a discussion of a variety of clinical perspectives including repair of the chronically injured spinal cord, animal models of human spinal cord injuries and clinical trials. A more holistic approach towards spinal cord injury is suggested, one where a hierarchy of needs is recognised and quality of life is paramount. Finally, this review cautions against overly grandiose claims of an imminent miracle cure for human spinal cord injury.

  7. Evaluation of the occurrence and diagnose definitions for Nocturnal Polyuria in Spinal Cord Injured patients during rehabilitation.

    Science.gov (United States)

    Viaene, Annick; Denys, Marie-Astrid; Goessaert, An-Sofie; Claeys, Jana; Raes, Ann; Roggeman, Saskia; Everaert, Karel

    2017-11-03

    Little is known about the occurrence of nocturnal polyuria in spinal cord injured (SCI) patients and the definitions which are preferable in this population. To determine the occurrence of nocturnal polyuria (NP) in spinal cord injured patients during in-patient rehabilitation in the Ghent University Hospital. To study the influence of different time periods (daytime, bed rest and sleep) on the accuracy of the existing diagnose definitions for NP specifically for this type of patients. Retrospective study using patient records. SCI patients during hospital based rehabilitation between 2011 and 2014. Seventy-four SCI patients were selected and their records of frequency-volume charts were examined, after exclusion of unreliable data, forty-seven patients were retained for the current study. Retrospective study using data from frequency-volume charts of either two or three days from patients with SCI. Nocturnal urine production (NUP) and nocturnal polyuria index (NPi) were calculated. There was a significant increase in diuresis, calculated as urine production, between day time and bed rest (p=0.008) and between day time and sleep (p=0.001). All patients showed nocturnal polyuria during a 12-hour night time period (including both bed rest and sleep) and 39 patients showed nocturnal polyuria during the 8 hour period of sleep. There was no significant difference in mean urine production between bed rest and sleep. Prevalence of NP did not significantly differ between the complete or incomplete SCI patients or between patients with higher and lower SCI levels. This study showed that the occurrence of nocturnal polyuria in patients with SCI is high and that it is important to consider which definitions of NP are used for diagnosis. Increase in diuresis is observed during bed rest and sleep and the diagnose is correctly estimated when nocturnal urine production definitions are used in both time periods. In accordance with what was expected, diagnose of NP was

  8. Childhood onset of spinal cord injury: self-esteem and self-perception.

    Science.gov (United States)

    Kennedy, P; Gorsuch, N; Marsh, N

    1995-11-01

    The effects of spinal cord injury in childhood upon later psychological adjustment were investigated by comparing a group of 86 people injured as children with a control group (matched for time since injury and level of injury) of people injured as adults. It was hypothesized that adolescence is a crucial period in psychological development and that the effect of spinal cord injury on body image, self-concept and social relationships during adolescence will have a long-term negative effect on psychological well-being. However, on overall measures of depression, self-esteem and self-perception, there were no significant differences between the experimental and control groups. Furthermore, there were no significant differences between paraplegics and tetraplegics, between men women, or between those who were involved in a significant intimate relationship and those who were not. These findings support previous research which has suggested that organic variables, such as age at injury and level of injury, are not predictive of long-term psychological adjustment.

  9. Can injured adult CNS axons regenerate by recapitulating development?

    Science.gov (United States)

    Hilton, Brett J; Bradke, Frank

    2017-10-01

    In the adult mammalian central nervous system (CNS), neurons typically fail to regenerate their axons after injury. During development, by contrast, neurons extend axons effectively. A variety of intracellular mechanisms mediate this difference, including changes in gene expression, the ability to form a growth cone, differences in mitochondrial function/axonal transport and the efficacy of synaptic transmission. In turn, these intracellular processes are linked to extracellular differences between the developing and adult CNS. During development, the extracellular environment directs axon growth and circuit formation. In adulthood, by contrast, extracellular factors, such as myelin and the extracellular matrix, restrict axon growth. Here, we discuss whether the reactivation of developmental processes can elicit axon regeneration in the injured CNS. © 2017. Published by The Company of Biologists Ltd.

  10. Endogenous neural stem cells in central canal of adult rats acquired limited ability to differentiate into neurons following mild spinal cord injury

    Science.gov (United States)

    Liu, Yuan; Tan, Botao; Wang, Li; Long, Zaiyun; Li, Yingyu; Liao, Weihong; Wu, Yamin

    2015-01-01

    Endogenous neural stem cells in central canal of adult mammalian spinal cord exhibit stem cell properties following injury. In the present study, the endogenous neural stem cells were labeled with Dil to track the differentiation of cells after mild spinal cord injury (SCI). Compared with 1 and 14 days post mild injury, the number of endogenous neural stem cells significantly increased at the injured site of spinal cord on 3 and 7 days post-injury. Dil-labeled βIII-tublin and GFAP expressing cells could be detected on 7 days post-injury, which indicated that the endogenous neural stem cells in central canal of spinal cord differentiated into different type of neural cells, but there were more differentiated astrocytes than the neurons after injury. Furthermore, after injury the expression of inhibitory Notch1 and Hes1 mRNA began to increase at 6 hours and was evident at 12 and 24 hours, which maintained high levels up to 7 days post-injury. These results indicated that a mild SCI in rat is sufficient to induce endogenous neural stem cells proliferation and differentiation. However, the ability to differentiate into neurons is limited, which may be, at least in part, due to high expression of inhibitory Notch1 and Hes1 genes after injury. PMID:26097566

  11. Diagnosis and treatment of adult medulloblastoma seeding in the intracranial-spinal subarachnoid space

    Directory of Open Access Journals (Sweden)

    Ji-wei WANG

    2015-10-01

    Full Text Available Objective To investigate the clinical diagnosis and treatment of adult medulloblastoma seeding in the intracranial-spinal subarachnoid space. Methods Eleven cases of adult medulloblastoma seeding in the intracranial-spinal subarachnoid space were retrospectively analyzed on the clinical features, cerebrospinal fluid (CSF cytology, radiological characteristics and treatments. Results All patients underment neurosurgical procedures to remove medulloblastomas. In 10 patients, tumor was removed through suboccipital posterior midline approach and in one patient through post-sigmoid sinus approach. In 7 patients tumor cell seeding was found in the intracranial-spinal subarachnoid space before postoperative radiotherapy and disappeared after radiological and chemical treatment, while in other 4 patients tumor cell seeding was found in the intracranial-spinal subarachnoid space at 3 months to 3 years follow-up period (average 20 months after radiotherapy. In 2 of all the patients tumor cells were found by CSF cytology before operation. All the patients were treated with radiotherapy and adjuvant chemotherapy. Two patients were still alive, while 9 patients were dead. Conclusions Patients with adult medulloblastoma seeding in intracranial-spinal subarachnoid space have a poor prognosis. In the diagnosis of adult medulloblastomas seeding in the intracranial-spinal subarachnoid space, MRI is more sensitive than CSF cytology. Once the seeding in intracranial-spinal subarachnoid space was found, the patients should be treated with radiotherapy and adjuvant chemotherapy, which can prolong the survival time and improve the quality of life. DOI: 10.3969/j.issn.1672-6731.2015.10.012 

  12. An In Vivo Characterization of Trophic Factor Production Following Neural Precursor Cell or Bone Marrow Stromal Cell Transplantation for Spinal Cord Injury

    Science.gov (United States)

    Hawryluk, Gregory W.J.; Mothe, Andrea; Wang, Jian; Wang, Shelly; Tator, Charles

    2012-01-01

    Cellular transplantation strategies for repairing the injured spinal cord have shown consistent benefit in preclinical models, and human clinical trials have begun. Interactions between transplanted cells and host tissue remain poorly understood. Trophic factor secretion is postulated a primary or supplementary mechanism of action for many transplanted cells, however, there is little direct evidence to support trophin production by transplanted cells in situ. In the present study, trophic factor expression was characterized in uninjured, injured-untreated, injured-treated with transplanted cells, and corresponding control tissue from the adult rat spinal cord. Candidate trophic factors were identified in a literature search, and primers were designed for these genes. We examined in vivo trophin expression in 3 paradigms involving transplantation of either brain or spinal cord-derived neural precursor cells (NPCs) or bone marrow stromal cells (BMSCs). Injury without further treatment led to a significant elevation of nerve growth factor (NGF), leukemia inhibitory factor (LIF), insulin-like growth factor-1 (IGF-1), and transforming growth factor-β1 (TGF-β1), and lower expression of vascular endothelial growth factor isoform A (VEGF-A) and platelet-derived growth factor-A (PDGF-A). Transplantation of NPCs led to modest changes in trophin expression, and the co-administration of intrathecal trophins resulted in significant elevation of the neurotrophins, glial-derived neurotrophic factor (GDNF), LIF, and basic fibroblast growth factor (bFGF). BMSCs transplantation upregulated NGF, LIF, and IGF-1. NPCs isolated after transplantation into the injured spinal cord expressed the neurotrophins, ciliary neurotrophic factor (CNTF), epidermal growth factor (EGF), and bFGF at higher levels than host cord. These data show that trophin expression in the spinal cord is influenced by injury and cell transplantation, particularly when combined with intrathecal trophin infusion

  13. Computed tomography of the spinal canal for the cervical spine and spinal cord injury

    International Nuclear Information System (INIS)

    Kimura, Isao; Niimiya, Hikosuke; Nasu, Kichiro; Shioya, Akihide; Ohhama, Mitsuru

    1983-01-01

    The cervical spinal canal and cervical spinal cord were measured in normal cases and 34 cases of spinal or spinal cord injury. The anteroposterior diameter and area of the normal cervical spinal canal showed a high correlation. The area ratio of the normal cervical spinal canal to the cervical spinal cord showed that the proportion of the cervical spinal cord in the spinal canal was 1/3 - 1/5, Csub(4,5) showing a particularly large proportion. In acute and subacute spinal or spinal cord injury, CT visualized in more details of the spinal canal in cases that x-ray showed definite bone injuries. Computer assisted myelography visualized more clearly the condition of the spinal cord in cases without definite findings bone injuries on x-ray. Demonstrating the morphology of spinal injury in more details, CT is useful for selection of therapy for injured spines. (Chiba, N.)

  14. Spinal Plasticity and Behavior: BDNF-Induced Neuromodulation in Uninjured and Injured Spinal Cord

    Science.gov (United States)

    Huie, J. Russell

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophic factor family of signaling molecules. Since its discovery over three decades ago, BDNF has been identified as an important regulator of neuronal development, synaptic transmission, and cellular and synaptic plasticity and has been shown to function in the formation and maintenance of certain forms of memory. Neural plasticity that underlies learning and memory in the hippocampus shares distinct characteristics with spinal cord nociceptive plasticity. Research examining the role BDNF plays in spinal nociception and pain overwhelmingly suggests that BDNF promotes pronociceptive effects. BDNF induces synaptic facilitation and engages central sensitization-like mechanisms. Also, peripheral injury-induced neuropathic pain is often accompanied with increased spinal expression of BDNF. Research has extended to examine how spinal cord injury (SCI) influences BDNF plasticity and the effects BDNF has on sensory and motor functions after SCI. Functional recovery and adaptive plasticity after SCI are typically associated with upregulation of BDNF. Although neuropathic pain is a common consequence of SCI, the relation between BDNF and pain after SCI remains elusive. This article reviews recent literature and discusses the diverse actions of BDNF. We also highlight similarities and differences in BDNF-induced nociceptive plasticity in naïve and SCI conditions. PMID:27721996

  15. Spinal Plasticity and Behavior: BDNF-Induced Neuromodulation in Uninjured and Injured Spinal Cord

    Directory of Open Access Journals (Sweden)

    Sandra M. Garraway

    2016-01-01

    Full Text Available Brain-derived neurotrophic factor (BDNF is a member of the neurotrophic factor family of signaling molecules. Since its discovery over three decades ago, BDNF has been identified as an important regulator of neuronal development, synaptic transmission, and cellular and synaptic plasticity and has been shown to function in the formation and maintenance of certain forms of memory. Neural plasticity that underlies learning and memory in the hippocampus shares distinct characteristics with spinal cord nociceptive plasticity. Research examining the role BDNF plays in spinal nociception and pain overwhelmingly suggests that BDNF promotes pronociceptive effects. BDNF induces synaptic facilitation and engages central sensitization-like mechanisms. Also, peripheral injury-induced neuropathic pain is often accompanied with increased spinal expression of BDNF. Research has extended to examine how spinal cord injury (SCI influences BDNF plasticity and the effects BDNF has on sensory and motor functions after SCI. Functional recovery and adaptive plasticity after SCI are typically associated with upregulation of BDNF. Although neuropathic pain is a common consequence of SCI, the relation between BDNF and pain after SCI remains elusive. This article reviews recent literature and discusses the diverse actions of BDNF. We also highlight similarities and differences in BDNF-induced nociceptive plasticity in naïve and SCI conditions.

  16. Connexin 50 Expression in Ependymal Stem Progenitor Cells after Spinal Cord Injury Activation

    Directory of Open Access Journals (Sweden)

    Francisco Javier Rodriguez-Jimenez

    2015-11-01

    Full Text Available Ion channels included in the family of Connexins (Cx help to control cell proliferation and differentiation of neuronal progenitors. Here we explored the role of Connexin 50 (Cx50 in cell fate modulation of adult spinal cord derived neural precursors located in the ependymal canal (epSPC. epSPC from non-injured animals showed high expression levels of Cx50 compared to epSPC from animals with spinal cord injury (SCI (epSPCi. When epSPC or epSPCi were induced to spontaneously differentiate in vitro we found that Cx50 favors glial cell fate, since higher expression levels, endogenous or by over-expression of Cx50, augmented the expression of the astrocyte marker GFAP and impaired the neuronal marker Tuj1. Cx50 was found in both the cytoplasm and nucleus of glial cells, astrocytes and oligodendrocyte-derived cells. Similar expression patterns were found in primary cultures of mature astrocytes. In addition, opposite expression profile for nuclear Cx50 was observed when epSPC and activated epSPCi were conducted to differentiate into mature oligodendrocytes, suggesting a different role for this ion channel in spinal cord beyond cell-to-cell communication. In vivo detection of Cx50 by immunohistochemistry showed a defined location in gray matter in non-injured tissues and at the epicenter of the injury after SCI. epSPCi transplantation, which accelerates locomotion regeneration by a neuroprotective effect after acute SCI is associated with a lower signal of Cx50 within the injured area, suggesting a minor or detrimental contribution of this ion channel in spinal cord regeneration by activated epSPCi.

  17. Cortex-dependent recovery of unassisted hindlimb locomotion after complete spinal cord injury in adult rats

    Science.gov (United States)

    Manohar, Anitha; Foffani, Guglielmo; Ganzer, Patrick D; Bethea, John R; Moxon, Karen A

    2017-01-01

    After paralyzing spinal cord injury the adult nervous system has little ability to ‘heal’ spinal connections, and it is assumed to be unable to develop extra-spinal recovery strategies to bypass the lesion. We challenge this assumption, showing that completely spinalized adult rats can recover unassisted hindlimb weight support and locomotion without explicit spinal transmission of motor commands through the lesion. This is achieved with combinations of pharmacological and physical therapies that maximize cortical reorganization, inducing an expansion of trunk motor cortex and forepaw sensory cortex into the deafferented hindlimb cortex, associated with sprouting of corticospinal axons. Lesioning the reorganized cortex reverses the recovery. Adult rats can thus develop a novel cortical sensorimotor circuit that bypasses the lesion, probably through biomechanical coupling, to partly recover unassisted hindlimb locomotion after complete spinal cord injury. DOI: http://dx.doi.org/10.7554/eLife.23532.001 PMID:28661400

  18. Spinal cord stimulation of dorsal columns in a rat model of neuropathic pain: evidence for a segmental spinal mechanism of pain relief.

    Science.gov (United States)

    Smits, H; van Kleef, M; Joosten, E A

    2012-01-01

    Although spinal cord stimulation (SCS) of the dorsal columns is an established method for treating chronic neuropathic pain, patients still suffer from a substantial level of pain. From a clinical perspective it is known that the location of the SCS is of pivotal importance, thereby suggesting a segmental spinal mode of action. However, experimental studies suggest that SCS acts also through the modulation of supraspinal mechanisms, which might suggest that the location is unimportant. Here we investigated the effect of the rostrocaudal location of SCS stimulation and the effectiveness of pain relief in a rat model of chronic neuropathic pain. Adult male rats (n=45) were submitted to a partial ligation of the sciatic nerve. The majority of animals developed tactile hypersensitivity in the nerve lesioned paw. All allodynic rats were submitted to SCS (n=33) for 30 minutes (f=50 Hz; pulse width 0.2 ms). In one group (n=16) the electrodes were located at the level where the injured sciatic nerve afferents enter the spinal cord (T13), and in a second group (n=17) the electrodes were positioned at more rostral levels (T11) as verified by X-ray. A repositioning experiment of electrodes from T12 to T13 was performed in 2 animals. Our data demonstrate that SCS of the dorsal columns at the level where the injured fibers enter the spinal cord dorsal horn result in a much better pain-relieving effect than SCS at more rostral levels. From this we conclude that SCS in treatment of neuropathic pain acts through a segmental spinal site of action. Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  19. Perineural pretreatment of bee venom attenuated the development of allodynia in the spinal nerve ligation injured neuropathic pain model; an experimental study.

    Science.gov (United States)

    Koh, Won Uk; Choi, Seong Soo; Lee, Jong Hyuk; Lee, So Hee; Lee, Sun Kyung; Lee, Yoon Kyung; Leem, Jeong Gil; Song, Jun Gol; Shin, Jin Woo

    2014-11-04

    Diluted bee venom (BV) is known to have anti-nociceptive and anti-inflammatory effects. We therefore assessed whether perineural bee venom pretreatment could attenuate the development of neuropathic pain in the spinal nerve ligation injured animal model. Neuropathic pain was surgically induced in 30 male Sprague Dawley rats by ligation of the L5 and L6 spinal nerves, with 10 rats each treated with saline and 0.05 and 0.1 mg BV. Behavioral testing for mechanical, cold, and thermal allodynia was conducted on postoperative days 3 to 29. Three rats in each group and 9 sham operated rats were sacrificed on day 9, and the expression of transient receptor potential vanilloid type 1 (TRPV1), ankyrin type 1 (TRPA1), and melastatin type 8 (TRPM8) receptors in the ipsilateral L5 dorsal root ganglion was analyzed. The perineural administration of BV to the spinal nerves attenuated the development of mechanical, thermal, and cold allodynia, and the BV pretreatment reduced the expression of TRPV1, TRPA1, TRPM8 and c - Fos in the ipsilateral dorsal root ganglion. The current study demonstrates that the perineural pretreatment with diluted bee venom before the induction of spinal nerve ligation significantly suppresses the development of neuropathic pain. Furthermore, this bee venom induced suppression was strongly related with the involvement of transient receptor potential family members.

  20. Adeno-associated viral vector-mediated neurotrophin gene transfer in the injured adult rat spinal cord improves hind-limb function

    NARCIS (Netherlands)

    Blits, B; Oudega, M.; Boer, G J; Bartlett Bunge, M; Verhaagen, J

    2003-01-01

    To foster axonal growth from a Schwann cell bridge into the caudal spinal cord, spinal cells caudal to the implant were transduced with adeno-associated viral (AAV) vectors encoding for brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (AAV-NT-3). Control rats received AAV vectors encoding

  1. Protein composition and synthesis in the adult mouse spinal cord

    International Nuclear Information System (INIS)

    Stodieck, L.S.; Luttges, M.W.

    1983-01-01

    Properties of spinal cord proteins were studied in adult mice subjected to unilateral crush or electrical stimulation of sciatic nerve. The protein composition of spinal tissue was determined using SDS-polyacrylamide gel electrophoresis coupled with subcellular fractionation. Comparisons of mouse spinal cord and brain revealed similarities in the types but differences in the concentrations of myelin associated proteins, nuclear histones and other proteins. Comparisons with sciatic nerve proteins demonstrated differences in types of proteins but similarities in the concentration of myelin proteins and nuclear histones. The short term (less than 2 hrs.) incorporation of radioactive amino acids into spinal cord proteins revealed heterogeneous rates of incorporation. Neither nerve crush six days prior to testing nor sciatic nerve stimulation had a significant effect on the protein composition or amino acid incorporation rates of spinal cord tissue. These observations suggest that known differences in spinal cord function following alterations in nerve input may be dependent upon different mechanisms than have been found in the brain

  2. The increased prevalence of cervical spondylosis in patients with adult thoracolumbar spinal deformity.

    Science.gov (United States)

    Schairer, William W; Carrer, Alexandra; Lu, Michael; Hu, Serena S

    2014-12-01

    Retrospective cohort study. To assess the concomitance of cervical spondylosis and thoracolumbar spinal deformity. Patients with degenerative cervical spine disease have higher rates of degeneration in the lumbar spine. In addition, degenerative cervical spine changes have been observed in adult patients with thoracolumbar spinal deformities. However, to the best of our knowledge, there have been no studies quantifying the association between cervical spondylosis and thoracolumbar spinal deformity in adult patients. Patients seen by a spine surgeon or spine specialist at a single institution were assessed for cervical spondylosis and/or thoracolumbar spinal deformity using an administrative claims database. Spinal radiographic utilization and surgical intervention were used to infer severity of spinal disease. The relative prevalence of each spinal diagnosis was assessed in patients with and without the other diagnosis. A total of 47,560 patients were included in this study. Cervical spondylosis occurred in 13.1% overall, but was found in 31.0% of patients with thoracolumbar spinal deformity (OR=3.27, Pspondylosis (OR=3.26, Pspondylosis or thoracolumbar spinal deformity had significantly higher rates of the other spinal diagnosis. This correlation was increased with increased severity of disease. Patients with both diagnoses were significantly more likely to have received a spine fusion. Further research is warranted to establish the cause of this correlation. Clinicians should use this information to both screen and counsel patients who present for cervical spondylosis or thoracolumbar spinal deformity.

  3. Rapid recovery and altered neurochemical dependence of locomotor central pattern generation following lumbar neonatal spinal cord injury.

    Science.gov (United States)

    Züchner, Mark; Kondratskaya, Elena; Sylte, Camilla B; Glover, Joel C; Boulland, Jean-Luc

    2018-01-15

    Spinal compression injury targeted to the neonatal upper lumbar spinal cord, the region of highest hindlimb locomotor rhythmogenicity, leads to an initial paralysis of the hindlimbs. Behavioural recovery is evident within a few days and approaches normal function within about 3 weeks. Fictive locomotion in the isolated injured spinal cord cannot be elicited by a neurochemical cocktail containing NMDA, dopamine and serotonin 1 day post-injury, but can 3 days post-injury as readily as in the uninjured spinal cord. Low frequency coordinated rhythmic activity can be elicited in the isolated uninjured spinal cord by NMDA + dopamine (without serotonin), but not in the isolated injured spinal cord. In both the injured and uninjured spinal cord, eliciting bona fide fictive locomotion requires the additional presence of serotonin. Following incomplete compression injury in the thoracic spinal cord of neonatal mice 1 day after birth (P1), we previously reported that virtually normal hindlimb locomotor function is recovered within about 3 weeks despite substantial permanent thoracic tissue loss. Here, we asked whether similar recovery occurs following lumbar injury that impacts more directly on the locomotor central pattern generator (CPG). As in thoracic injuries, lumbar injuries caused about 90% neuronal loss at the injury site and increased serotonergic innervation below the injury. Motor recovery was slower after lumbar than thoracic injury, but virtually normal function was attained by P25 in both cases. Locomotor CPG status was tested by eliciting fictive locomotion in isolated spinal cords using a widely used neurochemical cocktail (NMDA, dopamine, serotonin). No fictive locomotion could be elicited 1 day post-injury, but could within 3 days post-injury as readily as in age-matched uninjured control spinal cords. Burst patterning and coordination were largely similar in injured and control spinal cords but there were differences. Notably, in both groups there

  4. Recovery of forward stepping in spinal cord injured patients does not transfer to untrained backward stepping.

    Science.gov (United States)

    Grasso, Renato; Ivanenko, Yuri P; Zago, Myrka; Molinari, Marco; Scivoletto, Giorgio; Lacquaniti, Francesco

    2004-08-01

    Six spinal cord injured (SCI) patients were trained to step on a treadmill with body-weight support for 1.5-3 months. At the end of training, foot motion recovered the shape and the step-by-step reproducibility that characterize normal gait. They were then asked to step backward on the treadmill belt that moved in the opposite direction relative to standard forward training. In contrast to healthy subjects, who can immediately reverse the direction of walking by time-reversing the kinematic waveforms, patients were unable to step backward. Similarly patients were unable to perform another untrained locomotor task, namely stepping in place on the idle treadmill. Two patients who were trained to step backward for 2-3 weeks were able to develop control of foot motion appropriate for this task. The results show that locomotor improvement does not transfer to untrained tasks, thus supporting the idea of task-dependent plasticity in human locomotor networks.

  5. Incidence, aetiology and injury characteristics of traumatic spinal cord injury in Stockholm, Sweden: A prospective, population-based update.

    Science.gov (United States)

    Joseph, Conran; Andersson, Nina; Bjelak, Sapko; Giesecke, Kajsa; Hultling, Claes; Nilsson Wikmar, Lena; Phillips, Julie; Seiger, Åke; Stenimahitis, Vasilios; Trok, Katarzyna; Åkesson, Elisabet; Wahman, Kerstin

    2017-05-16

    To update the incidence rate, aetiology and injury characteristics of acutely-injured adults with traumatic spinal cord injury in Stockholm, Sweden, using international standards of reporting. Prospective, (regional) population-based observation. Forty-nine consecutively enrolled individuals. A surveillance system of newly-injured adults with traumatic spinal cord injury was implemented for an 18-month period. The International Spinal Cord Injury Core Data Set was used to collect data on those who survived the first 7 days post-injury. After an 18-month period, 49 incident cases were registered, of whom 45 were included in this study. The crude incidence rate was 19.0 per million, consisting mainly of men (60%), and the mean age of the cohort was 55 years (median 58). Causes of injury were almost exclusively limited to falls and transport-related events, accounting for 58% and 40% of cases, respectively. The incidence has remained stable when compared with the previous study; however, significant differences exist for injury aetiology (p = 0.004) and impairment level (p = 0.01) in that more fall- and transport-related spinal cord injury occurred, and a larger proportion of persons was left with resultant tetraplegia, in the current study, compared with more sport-related injuries and those left with paraplegia in the previous study. The incidence rate appeared to remain stable in Stockholm, Sweden. However, significant changes in injury aetiology and impairment-level post injury were found, compared with the previous study. There remains a need for developing fall-related prevention strategies in rehabilitation settings as well as in population-based programmes.

  6. Robot-assisted arm assessments in spinal cord injured patients: a consideration of concept study.

    Directory of Open Access Journals (Sweden)

    Urs Keller

    Full Text Available Robotic assistance is increasingly used in neurological rehabilitation for enhanced training. Furthermore, therapy robots have the potential for accurate assessment of motor function in order to diagnose the patient status, to measure therapy progress or to feedback the movement performance to the patient and therapist in real time. We investigated whether a set of robot-based assessments that encompasses kinematic, kinetic and timing metrics is applicable, safe, reliable and comparable to clinical metrics for measurement of arm motor function. Twenty-four healthy subjects and five patients after spinal cord injury underwent robot-based assessments using the exoskeleton robot ARMin. Five different tasks were performed with aid of a visual display. Ten kinematic, kinetic and timing assessment parameters were extracted on joint- and end-effector level (active and passive range of motion, cubic reaching volume, movement time, distance-path ratio, precision, smoothness, reaction time, joint torques and joint stiffness. For cubic volume, joint torques and the range of motion for most joints, good inter- and intra-rater reliability were found whereas precision, movement time, distance-path ratio and smoothness showed weak to moderate reliability. A comparison with clinical scores revealed good correlations between robot-based joint torques and the Manual Muscle Test. Reaction time and distance-path ratio showed good correlation with the "Graded and Redefined Assessment of Strength, Sensibility and Prehension" (GRASSP and the Van Lieshout Test (VLT for movements towards a predefined position in the center of the frontal plane. In conclusion, the therapy robot ARMin provides a comprehensive set of assessments that are applicable and safe. The first results with spinal cord injured patients and healthy subjects suggest that the measurements are widely reliable and comparable to clinical scales for arm motor function. The methods applied and results can

  7. Mechanisms underlying the promotion of functional recovery by deferoxamine after spinal cord injury in rats

    Directory of Open Access Journals (Sweden)

    Jian Hao

    2017-01-01

    Full Text Available Deferoxamine, a clinically safe drug used for treating iron overload, also repairs spinal cord injury although the mechanism for this action remains unknown. Here, we determined whether deferoxamine was therapeutic in a rat model of spinal cord injury and explored potential mechanisms for this effect. Spinal cord injury was induced by impacting the spinal cord at the thoracic T10 vertebra level. One group of injured rats received deferoxamine, a second injured group received saline, and a third group was sham operated. Both 2 days and 2 weeks after spinal cord injury, total iron ion levels and protein expression levels of the proinflammatory cytokines tumor necrosis factor-α and interleukin-1β and the pro-apoptotic protein caspase-3 in the spinal cords of the injured deferoxamine-treated rats were significantly lower than those in the injured saline-treated group. The percentage of the area positive for glial fibrillary acidic protein immunoreactivity and the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells were also significantly decreased both 2 days and 2 weeks post injury, while the number of NeuN-positive cells and the percentage of the area positive for the oligodendrocyte marker CNPase were increased in the injured deferoxamine-treated rats. At 14–56 days post injury, hind limb motor function in the deferoxamine-treated rats was superior to that in the saline-treated rats. These results suggest that deferoxamine decreases total iron ion, tumor necrosis factor-α, interleukin-1β, and caspase-3 expression levels after spinal cord injury and inhibits apoptosis and glial scar formation to promote motor function recovery.

  8. Radiation therapy for primary spinal cord tumors in adults

    International Nuclear Information System (INIS)

    Jeremic, B.; Grujicic, D.; Jovanovic, D.; Djuric, L.; Mijatovic, L.

    1990-01-01

    This paper evaluates the role of radiation therapy in management of primary spinal cord tumors in adults. Records of 21 patients with primary spinal cord tumors treated with radiation therapy after surgery were retrospectively reviewed. Histologic examination showed two diffuse and 10 localized ependymomas, six low-grade gliomas, and three malignant gliomas. Surgery consisted of gross tumor resection in six patients, subtotal resection in three patients, and biopsy in 12 patients. Three patients also received chemotherapy. Radiation dose range from 45 to 55 Cy

  9. Care of post-traumatic spinal cord injury patients in India: An analysis

    Directory of Open Access Journals (Sweden)

    Pandey V

    2007-01-01

    Full Text Available Background: The spinal cord injured patients if congregated early in spinal units where better facilities and dedicated expert care exist the outcome of treatment and rehabilitation, can be improved. The objective of this study is to find out the various factors responsible for a delay in the presentation of spinal injury patients to the specialized spinal trauma units and to suggest steps to improve the quality of care of the spinal trauma patients in the Indian setup. Materials and Methods: Sixty patients of traumatic spinal cord injury admitted for rehabilitation between August 2005 and May 2006 were enrolled into the study and their data was analyzed. Results: Eighty-five per cent of the spinal cord injured patients were males and the mean age was 34 years (range 13-56 years. Twenty-nine (48.33% of the spinal injuries occurred due to fall from height. There was an average of 45 days (range 0-188 days of delay in presentation to a specialized spinal unit and most of the time the cause for the delay was unawareness on the part of patients and/or doctors regarding specialized spinal units. In 38 (62.5% cases the mode of transportation of the spinal cord injured patient to the first visited hospital was by their own conveyance and the attendants of the patients did not have any idea about precautions essential to prevent neurological deterioration. Seventeen (28.33% patients were given injection solumedrol with conservative treatment, 35 (60% patients were given only conservative treatment and seven patients were operated (11.66% upon at initially visited hospital. Of the seven patients operated five were fixed with posterior Harrington instrumentation (71.42% and two (28.57% were operated by short segment posterior pedicle screw fixation. None of the patients were subjected to physiotherapy-assisted transfers or wheel chair skills or even basic postural training, proper bladder/ bowel training program and sitting balance. Conclusion: Awareness

  10. SnoN facilitates axonal regeneration after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Jiun L Do

    Full Text Available Adult CNS neurons exhibit a reduced capacity for growth compared to developing neurons, due in part to downregulation of growth-associated genes as development is completed. We tested the hypothesis that SnoN, an embryonically regulated transcription factor that specifies growth of the axonal compartment, can enhance growth in injured adult neurons. In vitro, SnoN overexpression in dissociated adult DRG neuronal cultures significantly enhanced neurite outgrowth. Moreover, TGF-β1, a negative regulator of SnoN, inhibited neurite outgrowth, and SnoN over-expression overcame this inhibition. We then examined whether SnoN influenced axonal regeneration in vivo: indeed, expression of a mutant form of SnoN resistant to degradation significantly enhanced axonal regeneration following cervical spinal cord injury, despite peri-lesional upregulation of TGF-β1. Thus, a developmental mechanism that specifies extension of the axonal compartment also promotes axonal regeneration after adult CNS injury.

  11. MRI of the injured spinal cord of the thoracic and lumber spin

    International Nuclear Information System (INIS)

    Shimizu, Kenji; Satoh, Tetsurou; Hyodo, Hironori; Ohira, Nobuhiro; Moriai, Norio

    1991-01-01

    Magnetic resonance studies using a 1.5 Tesla superconductive magnet were performed on 23 patients with spinal cord injury of the thoracic and lumbar regions in their chronic stages. Our results were as follows. The MR images were found to well represent the spinal cord lesions except several cases of complex displacement of the spinal cord. The size and the degree of penetration of the MRI abnormalities well correlated with the spinal cord injury; those cases of large and penetrating MRI abnormalities were represented by complete paraplegia and those of small and non-penetrating abnormalities were those of imcomplete paraplegia. However, the neurological levels of the spinal cord injury in cases of complete paraplegia appeared higher than the spinal segments indicated by the MRI. This discrepancy was thought to be explained by a concomitant, additional nerve roots involvement along with the spinal cord injury. Incidentally, the MRI of the cone lesions did not seem to be reproducible presumably as the result of its too small sensitive volume. We also discussed the problem of MRI artifacts and effects from gross anatomical displacement of traumatic origin. (author)

  12. Predictors of Health-Related Quality-of-Life After Complex Adult Spinal Deformity Surgery

    DEFF Research Database (Denmark)

    Carreon, Leah Y.; Glassman, Steven D.; Shaffrey, Christopher I.

    2017-01-01

    , treatment effectiveness is assessed by the extent to which the procedure improves a patient's health-related quality of life (HRQOL). This is especially true in patients with complex adult spinal deformity. Methods The data set from the Scoli-Risk-1 study was queried for patients with complete 2-year SF-36......Study Design Longitudinal cohort. Objectives To identify variables that predict 2-year Short Form-36 Physical Composite Summary Score (SF-36PCS) and the Scoliosis Research Society-22R (SRS22-R) Total score after surgery for complex adult spinal deformity. Summary of Background Data Increasingly...... = .049) and type of neurologic complication (p = .068). Factors predictive of 2-year SRS-22R Total scores were maximum preoperative Cobb angle (p = .001) and the number of serious adverse events (p = .071). Conclusions Factors predictive of lower 2-year HRQOLs after surgery for complex adult spinal...

  13. The adult spinal cord injury without radiographic abnormalities syndrome: magnetic resonance imaging and clinical findings in adults with spinal cord injuries having normal radiographs and computed tomography studies.

    Science.gov (United States)

    Kasimatis, Georgios B; Panagiotopoulos, Elias; Megas, Panagiotis; Matzaroglou, Charalambos; Gliatis, John; Tyllianakis, Minos; Lambiris, Elias

    2008-07-01

    Spinal cord injury without radiographic abnormalities (SCIWORA) is thought to represent mostly a pediatric entity and its incidence in adults is rather underreported. Some authors have also proposed the term spinal cord injury without radiologic evidence of trauma, as more precisely describing the condition of adult SCIWORA in the setting of cervical spondylosis. The purpose of the present study was to evaluate adult patients with cervical spine injuries and radiological-clinical examination discrepancy, and to discuss their characteristics and current management. During a 16-year period, 166 patients with a cervical spine injury were admitted in our institution (Level I trauma center). Upper cervical spine injuries (occiput to C2, 54 patients) were treated mainly by a Halo vest, whereas lower cervical spine injuries (C3-T1, 112 patients) were treated surgically either with an anterior, or posterior procedure, or both. Seven of these 166 patients (4.2%) had a radiologic-clinical mismatch, i.e., they presented with frank spinal cord injury with no signs of trauma, and were included in the study. Magnetic resonance imaging was available for 6 of 7 patients, showing intramedullary signal changes in 5 of 6 patients with varying degrees of compression from the disc and/or the ligamentum flavum, whereas the remaining patient had only traumatic herniation of the intervertebral disc and ligamentum flavum bulging. Follow-up period was 6.4 years on average (1-10 years). This retrospective chart review provides information on adult patients with cervical spinal cord injuries whose radiographs and computed tomography studies were normal. It furthers reinforces the pathologic background of SCIWORA in an adult population, when evaluated by magnetic resonance imaging. Particularly for patients with cervical spondylosis, special attention should be paid with regard to vascular compromise by predisposing factors such as smoking or vascular disease, since they probably contribute in

  14. Macrophage activation and its role in repair and pathology after spinal cord injury.

    Science.gov (United States)

    Gensel, John C; Zhang, Bei

    2015-09-04

    The injured spinal cord does not heal properly. In contrast, tissue repair and functional recovery occur after skin or muscle injuries. The reason for this dichotomy in wound repair is unclear but inflammation, and specifically macrophage activation, likely plays a key role. Macrophages have the ability to promote the repair of injured tissue by regulating transitions through different phase of the healing response. In the current review we compare and contrast the healing and inflammatory responses between spinal cord injuries and tissues that undergo complete wound resolution. Through this comparison, we identify key macrophage phenotypes that are inaptly triggered or absent after spinal cord injury and discuss spinal cord stimuli that contribute to this maladaptive response. Sequential activation of classic, pro-inflammatory, M1 macrophages and alternatively activated, M2a, M2b, and M2c macrophages occurs during normal healing and facilitates transitions through the inflammatory, proliferative, and remodeling phases of repair. In contrast, in the injured spinal cord, pro-inflammatory macrophages potentiate a prolonged inflammatory phase and remodeling is not properly initiated. The desynchronized macrophage activation after spinal cord injury is reminiscent of the inflammation present in chronic, non-healing wounds. By refining the role macrophages play in spinal cord injury repair we bring to light important areas for future neuroinflammation and neurotrauma research. This article is part of a Special Issue entitled SI: Spinal cord injury. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Stephen J A Davies

    2011-03-01

    Full Text Available Repairing trauma to the central nervous system by replacement of glial support cells is an increasingly attractive therapeutic strategy. We have focused on the less-studied replacement of astrocytes, the major support cell in the central nervous system, by generating astrocytes from embryonic human glial precursor cells using two different astrocyte differentiation inducing factors. The resulting astrocytes differed in expression of multiple proteins thought to either promote or inhibit central nervous system homeostasis and regeneration. When transplanted into acute transection injuries of the adult rat spinal cord, astrocytes generated by exposing human glial precursor cells to bone morphogenetic protein promoted significant recovery of volitional foot placement, axonal growth and notably robust increases in neuronal survival in multiple spinal cord laminae. In marked contrast, human glial precursor cells and astrocytes generated from these cells by exposure to ciliary neurotrophic factor both failed to promote significant behavioral recovery or similarly robust neuronal survival and support of axon growth at sites of injury. Our studies thus demonstrate functional differences between human astrocyte populations and suggest that pre-differentiation of precursor cells into a specific astrocyte subtype is required to optimize astrocyte replacement therapies. To our knowledge, this study is the first to show functional differences in ability to promote repair of the injured adult central nervous system between two distinct subtypes of human astrocytes derived from a common fetal glial precursor population. These findings are consistent with our previous studies of transplanting specific subtypes of rodent glial precursor derived astrocytes into sites of spinal cord injury, and indicate a remarkable conservation from rat to human of functional differences between astrocyte subtypes. In addition, our studies provide a specific population of human

  16. Association of Neuromuscular Attributes With Performance-Based Mobility Among Community-Dwelling Older Adults With Symptomatic Lumbar Spinal Stenosis.

    Science.gov (United States)

    Schmidt, Catherine T; Ward, Rachel E; Suri, Pradeep; Kiely, Dan K; Ni, Pengsheng; Anderson, Dennis E; Bean, Jonathan F

    2017-07-01

    To identify differences in health factors, neuromuscular attributes, and performance-based mobility among community-dwelling older adults with symptomatic lumbar spinal stenosis; and to determine which neuromuscular attributes are associated with performance-based measures of mobility. Cross-sectional; secondary data analysis of a cohort study. Outpatient rehabilitation center. Community-dwelling adults aged ≥65 years with self-reported mobility limitations and symptomatic lumbar spinal stenosis (N=54). Not applicable. Short Physical Performance Battery score, habitual gait speed, and chair stand test. Symptomatic lumbar spinal stenosis was classified using self-reported symptoms of neurogenic claudication and imaging. Among 430 community-dwelling older adults, 54 (13%) met criteria for symptomatic lumbar spinal stenosis. Compared with participants without symptomatic lumbar spinal stenosis, those with symptomatic lumbar spinal stenosis had more comorbidities, higher body mass index, greater pain, and less balance confidence. Participants with symptomatic lumbar spinal stenosis had greater impairment in trunk extensor muscle endurance, leg strength, leg strength asymmetry, knee flexion range of motion (ROM), knee extension ROM, and ankle ROM compared with participants without symptomatic lumbar spinal stenosis. Five neuromuscular attributes were associated with performance-based mobility among participants with symptomatic lumbar spinal stenosis: trunk extensor muscle endurance, leg strength, leg strength asymmetry, knee flexion ROM, and knee extension ROM asymmetry. Community-dwelling older adults with self-reported mobility limitations and symptomatic lumbar spinal stenosis exhibit poorer health characteristics, greater neuromuscular impairment, and worse mobility when compared with those without symptomatic lumbar spinal stenosis. Poorer trunk extensor muscle endurance, leg strength, leg strength asymmetry, knee flexion ROM, and knee extension ROM asymmetry

  17. Electro-acupuncture promotes survival, differentiation of the bone marrow mesenchymal stem cells as well as functional recovery in the spinal cord-transected rats

    Science.gov (United States)

    Ding, Ying; Yan, Qing; Ruan, Jing-Wen; Zhang, Yan-Qing; Li, Wen-Jie; Zhang, Yu-Jiao; Li, Yan; Dong, Hongxin; Zeng, Yuan-Shan

    2009-01-01

    Background Bone marrow mesenchymal stem cells (MSCs) are one of the potential tools for treatment of the spinal cord injury; however, the survival and differentiation of MSCs in an injured spinal cord still need to be improved. In the present study, we investigated whether Governor Vessel electro-acupuncture (EA) could efficiently promote bone marrow mesenchymal stem cells (MSCs) survival and differentiation, axonal regeneration and finally, functional recovery in the transected spinal cord. Results The spinal cords of adult Sprague-Dawley (SD) rats were completely transected at T10, five experimental groups were performed: 1. sham operated control (Sham-control); 2. operated control (Op-control); 3. electro-acupuncture treatment (EA); 4. MSCs transplantation (MSCs); and 5. MSCs transplantation combined with electro-acupuncture (MSCs+EA). After 2-8 weeks of MSCs transplantation plus EA treatment, we found that the neurotrophin-3 (NT-3), cAMP level, the differentiation of MSCs, the 5-HT positive and CGRP positive nerve fibers in the lesion site and nearby tissue of injured spinal cord were significantly increased in the MSCs+EA group as compared to the group of the MSCs transplantation or the EA treated alone. Furthermore, behavioral test and spinal cord evoked potentials detection demonstrated a significantly functional recovery in the MSCs +EA group. Conclusion These results suggest that EA treatment may promote grafted MSCs survival and differentiation; MSCs transplantation combined with EA treatment could promote axonal regeneration and partial locomotor functional recovery in the transected spinal cord in rats and indicate a promising avenue of treatment of spinal cord injury. PMID:19374777

  18. A comparison of aphasic and non-brain-injured adults on a dichotic CV-syllable listening task.

    Science.gov (United States)

    Shanks, J; Ryan, W

    1976-06-01

    A dichotic CV-syllable listening task was administered to a group of eleven non-brain-injured adults and to a group of eleven adult aphasics. The results of this study may be summarized as follows: 1)The group of non-brain-injured adults showed a slight right ear advantage for dichotically presented CV-syllables. 2)In comparison with the control group the asphasic group showed a bilateral deficit in response to the dichotic CV-syllables, superimposed on a non-significant right ear advantage. 3) The asphasic group demonstrated a great deal of intersubject variability on the dichotic task with six aphasics showing a right ear preference for the stimuli. The non-brain-injured subjects performed more homogeneously on the task. 4) The two subgroups of aphasics, a right ear advantage group and a left ear advantage group, performed significantly different on the dichotic listening task. 5) Single correct data analysis proved valuable by deleting accuracy of report for an examination of trials in which there was true competition for the single left hemispheric speech processor. These results were analyzed in terms of a functional model of auditory processing. In view of this model, the bilateral deficit in dichotic performance of the asphasic group was accounted for by the presence of a lesion within the dominant left hemisphere, where the speech signals from both ears converge for final processing. The right ear advantage shown by one asphasic subgroup was explained by a lesion interfering with the corpus callosal pathways from the left hemisphere; the left ear advantage observed within the other subgroup was explained by a lesion in the area of the auditory processor of the left hemisphere.

  19. In vivo PET imaging of the neuroinflammatory response in rat spinal cord injury using the TSPO tracer [18F]GE-180 and effect of docosahexaenoic acid

    International Nuclear Information System (INIS)

    Tremoleda, J.L.; Thau-Zuchman, O.; Davies, M.; Vadivelu, K.C.; Yip, P.K.; Michael-Titus, A.T.; Foster, J.; Sosabowski, J.; Khan, I.; Trigg, W.

    2016-01-01

    Traumatic spinal cord injury (SCI) is a devastating condition which affects millions of people worldwide causing major disability and substantial socioeconomic burden. There are currently no effective treatments. Modulating the neuroinflammatory (NI) response after SCI has evolved as a major therapeutic strategy. PET can be used to detect the upregulation of the 18-kDa translocator protein (TSPO), a hallmark of activated microglia in the CNS. We investigated whether PET imaging using the novel TSPO tracer [ 18 F]GE-180 can be used as a clinically relevant biomarker for NI in a contusion SCI rat model, and we present data on the modulation of NI by the lipid docosahexaenoic acid (DHA). A total of 22 adult male Wistar rats were subjected to controlled spinal cord contusion at the T10 spinal cord level. Six non-injured and ten T10 laminectomy only (LAM) animals were used as controls. A subset of six SCI animals were treated with a single intravenous dose of 250 nmol/kg DHA (SCI-DHA group) 30 min after injury; a saline-injected group of six animals was used as an injection control. PET and CT imaging was carried out 7 days after injury using the [ 18 F]GE-180 radiotracer. After imaging, the animals were killed and the spinal cord dissected out for biodistribution and autoradiography studies. In vivo data were correlated with ex vivo immunohistochemistry for TSPO. In vivo dynamic PET imaging revealed an increase in tracer uptake in the spinal cord of the SCI animals compared with the non-injured and LAM animals from 35 min after injection (P < 0.0001; SCI vs. LAM vs. non-injured). Biodistribution and autoradiography studies confirmed the high affinity and specific [ 18 F]GE-180 binding in the injured spinal cord compared with the binding in the control groups. Furthermore, they also showed decreased tracer uptake in the T10 SCI area in relation to the non-injured remainder of the spinal cord in the SCI-DHA group compared with the SCI-saline group (P < 0.05), supporting

  20. Treatment of spinal fractures with paraplegia.

    Science.gov (United States)

    Riska, E B; Myllynen, P

    1981-01-01

    Of 206 patients with vertebral fractures in the thoraco-lumbar spine with spinal cord injuries, an antero-lateral decompression with stabilization of the injured segment of the vertebral column was undertaken in 56 cases. In all these cases there was a compression of the spinal cord from the front. 8 patients made a complete recovery, 31 a good recovery, and 6 were improved. In 8 patients no improvement was noted. 2 patients developed pressure sores later and 1 patient died one year after the operation of uraemia. 22 patients out of 55 got a normal function of the bladder and 25 patients out of 54 a normal function of the anal sphincter. 16 patients out of 17 made a complete or good recovery after removal of a displaced rotated vertebral bony fragment from the spinal canal, and 7 patients out of 9 with wedge shaped fractures. In our clinic today, in cases of vertebral fractures with neural involvement, reduction and internal fixation with Harrington rods and fusion of the injured segment is undertaken as soon as possible, also during the night. If narrowing of the neural canal and compression of the spinal cord are verified, a decompression operation with interbody fusion is undertaken during the next days.

  1. Expression of Lymphatic Markers in the Adult Rat Spinal Cord.

    Science.gov (United States)

    Kaser-Eichberger, Alexandra; Schroedl, Falk; Bieler, Lara; Trost, Andrea; Bogner, Barbara; Runge, Christian; Tempfer, Herbert; Zaunmair, Pia; Kreutzer, Christina; Traweger, Andreas; Reitsamer, Herbert A; Couillard-Despres, Sebastien

    2016-01-01

    Under physiological conditions, lymphatic vessels are thought to be absent from the central nervous system (CNS), although they are widely distributed within the rest of the body. Recent work in the eye, i.e., another organ regarded as alymphatic, revealed numerous cells expressing lymphatic markers. As the latter can be involved in the response to pathological conditions, we addressed the presence of cells expressing lymphatic markers within the spinal cord by immunohistochemistry. Spinal cord of young adult Fisher rats was scrutinized for the co-expression of the lymphatic markers PROX1 and LYVE-1 with the cell type markers Iba1, CD68, PGP9.5, OLIG2. Rat skin served as positive control for the lymphatic markers. PROX1-immunoreactivity was detected in many nuclei throughout the spinal cord white and gray matter. These nuclei showed no association with LYVE-1. Expression of LYVE-1 could only be detected in cells at the spinal cord surface and in cells closely associated with blood vessels. These cells were found to co-express Iba1, a macrophage and microglia marker. Further, double labeling experiments using CD68, another marker found in microglia and macrophages, also displayed co-localization in the Iba1+ cells located at the spinal cord surface and those apposed to blood vessels. On the other hand, PROX1-expressing cells found in the parenchyma were lacking Iba1 or PGP9.5, but a significant fraction of those cells showed co-expression of the oligodendrocyte lineage marker OLIG2. Intriguingly, following spinal cord injury, LYVE-1-expressing cells assembled and reorganized into putative pre-vessel structures. As expected, the rat skin used as positive controls revealed classical lymphatic vessels, displaying PROX1+ nuclei surrounded by LYVE-1-immunoreactivity. Classical lymphatics were not detected in adult rat spinal cord. Nevertheless, numerous cells expressing either LYVE-1 or PROX1 were identified. Based on their localization and overlapping expression with

  2. Functional expression of T-type Ca2+ channels in spinal motoneurons of the adult turtle.

    Directory of Open Access Journals (Sweden)

    Martha Canto-Bustos

    Full Text Available Voltage-gated Ca2+ (CaV channels are transmembrane proteins comprising three subfamilies named CaV1, CaV2 and CaV3. The CaV3 channel subfamily groups the low-voltage activated Ca2+ channels (LVA or T-type a significant role in regulating neuronal excitability. CaV3 channel activity may lead to the generation of complex patterns of action potential firing such as the postinhibitory rebound (PIR. In the adult spinal cord, these channels have been found in dorsal horn interneurons where they control physiological events near the resting potential and participate in determining excitability. In motoneurons, CaV3 channels have been found during development, but their functional expression has not yet been reported in adult animals. Here, we show evidence for the presence of CaV3 channel-mediated PIR in motoneurons of the adult turtle spinal cord. Our results indicate that Ni2+ and NNC55-0396, two antagonists of CaV3 channel activity, inhibited PIR in the adult turtle spinal cord. Molecular biology and biochemical assays revealed the expression of the CaV3.1 channel isotype and its localization in motoneurons. Together, these results provide evidence for the expression of CaV3.1 channels in the spinal cord of adult animals and show also that these channels may contribute to determine the excitability of motoneurons.

  3. Spinal cord regeneration by modulating bone marrow with neurotransmitters and Citicholine: Analysis at micromolecular level.

    Science.gov (United States)

    Paulose, Cheramadathukudiyil Skaria; John, Ponnezhathu Sebastian; Chinthu, Romeo; Akhilraj, Puthenveetil Raju; Anju, Thoppil Raveendran

    2017-04-01

    Spinal cord injury results in disruption of brain-spinal cord fibre connectivity, leading to progressive tissue damage at the site of injury and resultant paralysis of varying degrees. The current study investigated the role of autologous bone marrow modulated with neurotransmitters and neurotransmitter stimulating agent, Citicholine, in spinal cord of spinal cord injured rats. Radioreceptor assay using [3H] ligand was carried out to quantify muscarinic receptor. Gene expression studies were done using Real Time PCR analysis. Scatchard analysis of muscarinic M1 receptor showed significantly decreased B max (p neurotransmitters combination along with bone marrow or Citicholine with bone marrow can reverse the muscarinic receptor alterations in the spinal cord of spinal cord injured rats, which is a promising step towards a better therapeutic intervention for spinal cord injury because of the positive role of cholinergic system in regulation of both locomotor activity and synaptic plasticity. Copyright © 2017 Chang Gung University. Published by Elsevier B.V. All rights reserved.

  4. Output Properties of the Cortical Hindlimb Motor Area in Spinal Cord-Injured Rats.

    Science.gov (United States)

    Frost, Shawn B; Dunham, Caleb L; Barbay, Scott; Krizsan-Agbas, Dora; Winter, Michelle K; Guggenmos, David J; Nudo, Randolph J

    2015-11-01

    The purpose of this study was to examine neuronal activity levels in the hindlimb area of motor cortex following spinal cord injury (SCI) in rats and compare the results with measurements in normal rats. Fifteen male Fischer-344 rats received a 200 Kdyn contusion injury in the thoracic cord at level T9-T10. After a minimum of 4 weeks following SCI, intracortical microstimulation (ICMS) and single-unit recording techniques were used in both the forelimb and hindlimb motor areas (FLA, HLA) under ketamine anesthesia. Although movements could be evoked using ICMS in the forelimb area with relatively low current levels, no movements or electromyographical responses could be evoked from ICMS in the HLA in any of the injured rats. During the same procedure, electrophysiological recordings were obtained with a single-shank, 16-channel Michigan probe (Neuronexus) to monitor activity. Neural spikes were discriminated using principle component analysis. Neural activity (action potentials) was collected and digitized for a duration of 5 min. Despite the inability to evoke movement from stimulation of cortex, robust single-unit activity could be recorded reliably from hindlimb motor cortex in SCI rats. Activity in the motor cortex of SCI rats was significantly higher compared with uninjured rats, and increased in hindlimb and forelimb motor cortex by similar amounts. These results demonstrate that in a rat model of thoracic SCI, an increase in single-unit cortical activity can be reliably recorded for several weeks post-injury.

  5. Follow-up CT myelography of severe cervical spinal cord injury

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Keiichi; Onoda, Kimio; Kawashima, Yasuhiro; Muto, Atsushi; Kobayashi, Yoichi

    1987-11-01

    There are many reports describing gross anatomical and microscopical findings of severely injured cervical cords in autopsy of the acute and chronic state, but no morphological findings of a severe cervical spinal cord injury in a chronic state by follow-up CT myelography have been found in the literature so far. The sagittal and transverse diameters of the cervical spinal cord and subarachnoid space of 9 out of 14 severe cervical spinal cord injury patients were measured with CT myelography within 7.5 years after the tranuma and their size compared with a control group which was made up of 29 patients with slight radiculopathy due to cervical spondylosis and whiplash injuries. Injured cord levels were C4 4 cases, C5 4 cases and C6 1 case. Remarkable spinal cord atrophy was recogniged in the sagittal diameter from C1 to C7 and in the transverse diameter below C4 and narrowing of the cervical subarachnoid space in the sagittal diameter from C2 to C5. The significance level was set at 1 - 5 %. From these fingings, we have concluded that atrophy appeared not only in the injured segment but also the whole cervical cord after the trauma. There was less cord atrophy in a good functional prognosis than in a poor prognosis.

  6. Follow-up CT myelography of severe cervical spinal cord injury

    International Nuclear Information System (INIS)

    Okada, Keiichi; Onoda, Kimio; Kawashima, Yasuhiro; Muto, Atsushi; Kobayashi, Yoichi

    1987-01-01

    There are many reports describing gross anatomical and microscopical findings of severely injured cervical cords in autopsy of the acute and chronic state, but no morphological findings of a severe cervical spinal cord injury in a chronic state by follow-up CT myelography have been found in the literature so far. The sagittal and transverse diameters of the cervical spinal cord and subarachnoid space of 9 out of 14 severe cervical spinal cord injury patients were measured with CT myelography within 7.5 years after the tranuma and their size compared with a control group which was made up of 29 patients with slight radiculopathy due to cervical spondylosis and whiplash injuries. Injured cord levels were C4 4 cases, C5 4 cases and C6 1 case. Remarkable spinal cord atrophy was recogniged in the sagittal diameter from C1 to C7 and in the transverse diameter below C4 and narrowing of the cervical subarachnoid space in the sagittal diameter from C2 to C5. The significance level was set at 1 - 5 %. From these fingings, we have concluded that atrophy appeared not only in the injured segment but also the whole cervical cord after the trauma. There was less cord atrophy in a good functional prognosis than in a poor prognosis. (author)

  7. Evaluation of blood and serum markers in spinal cord injured patients with pressure sores.

    Science.gov (United States)

    Gurcay, Eda; Bal, Ajda; Gurcay, Ahmet G; Cakci, Aytul

    2009-03-01

    To evaluate blood and serum markers in traumatic spinal cord injured (SCI) patients, with and without pressure sores. This cross-sectional study was performed at the Ministry of Health Diskapi Yildirim Beyazit, and Numune Education and Research Hospitals, Ankara, Turkey, from 2006-2008. A total of 23 SCI patients with pressure sores (group I) and a control group of 25 SCI patients without pressure sores (group II) were evaluated. Characteristics of sores were examined with respect to duration, location, grade, tissue types, surface area, and exudate amount. Recorded laboratory parameters included erythrocyte sedimentation rates (ESR), C-reactive protein (CRP), hemoglobin (Hb), hematocrit (Htc), lymphocytes, white blood cells (WBC), red blood cells (RBC), serum iron, transferrin, total iron-binding capacity (TIBC), ferritin, total protein, albumin, vitamin B12, and zinc. The most common pressure sore location was the sacrum (38%). Compared to the control group, the patients with pressure sores showed anemia with reduced serum iron, transferrin, TIBC, and increased ferritin. They also had increased ESR, CRP, and WBC and reduced lymphocytes, total protein, albumin and zinc. Statistically significant correlations were found between CRP, Hb, Htc, lymphocytes, RBC, WBC, and serum protein levels, and grade of pressure sores. Clinicians should regularly screen patients with respect to blood and serum markers, in order to determine any risks for pressure sores, and they should perform immediate preventive measures based on the patient's condition.

  8. Adult-onset intradural spinal teratoma: report of 18 consecutive cases and outcomes in a single center.

    Science.gov (United States)

    Wan, Wei; Yang, Cheng; Yan, Wangjun; Liu, Tielong; Yang, Xinghai; Song, Dianwen; Xiao, Jianru

    2017-07-01

    Eighteen consecutive patients with adult-onset intradural spinal teratoma underwent surgical treatment in our center from 1998 to 2013. Teratoma is defined as a neoplasm composed of elements derived from three germ cell layers (ectoderm, endoderm and mesoderm). Intraspinal teratoma is extremely rare and accounts for 0.2-0.5% of all spinal cord tumors. Moreover, teratoma occurs primarily in neonates and young children. Adult-onset intradural spinal teratoma is even rare. The aim of this study was to discuss the clinical characteristics, diagnosis and therapeutic strategies of adult-onset intradural spinal teratoma. This retrospective study included 18 consecutive adult patients with intradural teratoma who were surgically treated in our center between 1998 and 2013. The clinical features, pathogenesis, diagnostic strategies and surgical outcomes were discussed. Neurological function outcomes were evaluated by the JOA scoring system. Of the 18 included patients, 4 patients received subtotal resection and the other 14 patients received total resection. All the 18 cases were diagnosed with mature teratoma. The mean follow-up period was 79.7 (median 60.5; range 27-208) months. Local recurrence occurred in two of the four patients who underwent subtotal resection and in no patient who underwent total resection. The neurologic status improved in 16 cases and remained unchanged in the other two patients. Adult-onset intradural spinal teratoma is extremely rare. To the best of our knowledge, this is the largest series of patients with this disease. Despite the slow-growth and indolent nature, radical resection remains the recommended treatment to reduce tumor recurrence.

  9. Symptom-Based Treatment of Neuropathic Pain in Spinal Cord-Injured Patients: A Randomized Crossover Clinical Trial.

    Science.gov (United States)

    Min, Kyunghoon; Oh, Yoongul; Lee, Sang-Hyuk; Ryu, Ju Seok

    2016-05-01

    The objective of this study was to identify the differences in medication effect according to pain characteristics in spinal cord-injured patients. This study is a prospective, randomized, crossover study. Fifty-five patients and 66 locations of neuropathic pain were included. Pain was classified into four spontaneous characteristics and three evoked pain characteristics. Oxcarbazepine (Na channel blocker) and pregabalin (calcium channel α2-δ ligand medication) were tried. Patients were divided into two groups: evoked pain present and evoked pain absent. Overall average visual analog scale was obtained. Oxcarbazepine was significantly more effective for patients without evoked pain than in those with it for electrical, burning, and pricking pain. The effect of pregabalin was not different regarding the presence or absence of evoked pain for all pain categories, except burning pain. In patients with evoked pain, pregabalin was shown to be significantly more effective for electrical pain, allodynia, and heat hyperalgesia than oxcarbazepine. In the evoked pain absent group, oxcarbazepine showed greater improvement than pregabalin but was not significant. In summary, the phenotype of neuropathic pain was associated with the efficacy of different pharmacologic treatments. Symptom-based treatment, therefore, can lead to more efficient analgesia.

  10. Resilience and the rehabilitation of adult spinal cord injury survivors: A qualitative systematic review.

    Science.gov (United States)

    Kornhaber, Rachel; Mclean, Loyola; Betihavas, Vasiliki; Cleary, Michelle

    2018-01-01

    To synthesize the qualitative research evidence that explored how survivors of adult spinal cord injury experience and make sense of resilience. Spinal cord injury is often a sudden and unexpected life-changing event requiring complex and long-term rehabilitation. The development of resilience is essential in determining how spinal cord injury survivors negotiate this injury and rehabilitation. A qualitative systematic review and thematic synthesis of the research evidence. CINAHL, PubMed, Embase, Scopus and PsycINFO were searched, no restriction dates were used. Methodological quality was assessed using the Critical Appraisal Skills Programme checklist. Thematic synthesis focused on how survivors of adult spinal cord injury experience and make sense of resilience. Six qualitative research articles reported the experiences of 84 spinal cord injury survivors. Themes identified were: uncertainty and regaining independence; prior experiences of resilience; adopting resilient thinking; and strengthening resilience through supports. Recovery and rehabilitation following spinal cord survivors is influenced by the individual's capacity for resilience. Resilience may be influenced by previous life experiences and enhanced by supportive nursing staff encouraging self-efficacy. Survivors identified the need for active involvement in decision-making about their care to enable a sense of regaining control of their lives. This has the potential to have a significant impact on their self-efficacy and in turn health outcomes. © 2017 John Wiley & Sons Ltd.

  11. Nestin- and doublecortin-positive cells reside in adult spinal cord meninges and participate in injury-induced parenchymal reaction.

    Science.gov (United States)

    Decimo, Ilaria; Bifari, Francesco; Rodriguez, Francisco Javier; Malpeli, Giorgio; Dolci, Sissi; Lavarini, Valentina; Pretto, Silvia; Vasquez, Sandra; Sciancalepore, Marina; Montalbano, Alberto; Berton, Valeria; Krampera, Mauro; Fumagalli, Guido

    2011-12-01

    Adult spinal cord has little regenerative potential, thus limiting patient recovery following injury. In this study, we describe a new population of cells resident in the adult rat spinal cord meninges that express the neural stem/precursor markers nestin and doublecortin. Furthermore, from dissociated meningeal tissue a neural stem cell population was cultured in vitro and subsequently shown to differentiate into functional neurons or mature oligodendrocytes. Proliferation rate and number of nestin- and doublecortin-positive cells increased in vivo in meninges following spinal cord injury. By using a lentivirus-labeling approach, we show that meningeal cells, including nestin- and doublecortin-positive cells, migrate in the spinal cord parenchyma and contribute to the glial scar formation. Our data emphasize the multiple roles of meninges in the reaction of the parenchyma to trauma and indicate for the first time that spinal cord meninges are potential niches harboring stem/precursor cells that can be activated by injury. Meninges may be considered as a new source of adult stem/precursor cells to be further tested for use in regenerative medicine applied to neurological disorders, including repair from spinal cord injury. Copyright © 2011 AlphaMed Press.

  12. Targeting Neurotrophins to Specific Populations of Neurons: NGF, BDNF, and NT-3 and Their Relevance for Treatment of Spinal Cord Injury

    Science.gov (United States)

    Keefe, Kathleen M.; Sheikh, Imran S.; Smith, George M.

    2017-01-01

    Neurotrophins are a family of proteins that regulate neuronal survival, synaptic function, and neurotransmitter release, and elicit the plasticity and growth of axons within the adult central and peripheral nervous system. Since the 1950s, these factors have been extensively studied in traumatic injury models. Here we review several members of the classical family of neurotrophins, the receptors they bind to, and their contribution to axonal regeneration and sprouting of sensory and motor pathways after spinal cord injury (SCI). We focus on nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3), and their effects on populations of neurons within diverse spinal tracts. Understanding the cellular targets of neurotrophins and the responsiveness of specific neuronal populations will allow for the most efficient treatment strategies in the injured spinal cord. PMID:28273811

  13. Targeting Neurotrophins to Specific Populations of Neurons: NGF, BDNF, and NT-3 and Their Relevance for Treatment of Spinal Cord Injury.

    Science.gov (United States)

    Keefe, Kathleen M; Sheikh, Imran S; Smith, George M

    2017-03-03

    Neurotrophins are a family of proteins that regulate neuronal survival, synaptic function, and neurotransmitter release, and elicit the plasticity and growth of axons within the adult central and peripheral nervous system. Since the 1950s, these factors have been extensively studied in traumatic injury models. Here we review several members of the classical family of neurotrophins, the receptors they bind to, and their contribution to axonal regeneration and sprouting of sensory and motor pathways after spinal cord injury (SCI). We focus on nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3), and their effects on populations of neurons within diverse spinal tracts. Understanding the cellular targets of neurotrophins and the responsiveness of specific neuronal populations will allow for the most efficient treatment strategies in the injured spinal cord.

  14. Pericytes Make Spinal Cord Breathless after Injury.

    Science.gov (United States)

    Almeida, Viviani M; Paiva, Ana E; Sena, Isadora F G; Mintz, Akiva; Magno, Luiz Alexandre V; Birbrair, Alexander

    2017-09-01

    Traumatic spinal cord injury is a devastating condition that leads to significant neurological deficits and reduced quality of life. Therapeutic interventions after spinal cord lesions are designed to address multiple aspects of the secondary damage. However, the lack of detailed knowledge about the cellular and molecular changes that occur after spinal cord injury restricts the design of effective treatments. Li and colleagues using a rat model of spinal cord injury and in vivo microscopy reveal that pericytes play a key role in the regulation of capillary tone and blood flow in the spinal cord below the site of the lesion. Strikingly, inhibition of specific proteins expressed by pericytes after spinal cord injury diminished hypoxia and improved motor function and locomotion of the injured rats. This work highlights a novel central cellular population that might be pharmacologically targeted in patients with spinal cord trauma. The emerging knowledge from this research may provide new approaches for the treatment of spinal cord injury.

  15. Lifestyle and health conditions of adults with spinal cord injury.

    Science.gov (United States)

    Xavier de França, Inacia Sátiro; Cruz Enders, Bertha; Silva Coura, Alexsandro; Pereira Cruz, Giovanna Karinny; da Silva Aragão, Jamilly; Carvalho de Oliveira, Déborah Raquel

    2014-01-01

    . To describe the lifestyle of adults with spinal cord injury and explore its relation with some health conditions. Cross sectional study, in which a questionnaire containing sociodemographic, habits and health conditions variables was used. Forty-seven people with spinal cord injury participated and answered the self-report questionnaire. The group under study was predominantly male (92%), under 40 years of age (47%), and had low educational level (76%). The most frequent risk factors related to the lifestyle were: smoking (28%), alcohol consumption (36%), coffee consumption (92%) and being physically inactive (64%). Association was found between having four or more risk factors related to lifestyle and the loss of appetite, as well as constipation. . The actual inadequate lifestyle is associated with the health conditions of patients, and the nursing team should pay special attention to the education and promotion of health related to people with spinal cord injury.

  16. Effect of electroacupuncture on the mRNA and protein expression of Rho-A and Rho-associated kinase II in spinal cord injury rats

    Directory of Open Access Journals (Sweden)

    You-jiang Min

    2017-01-01

    Full Text Available Electroacupuncture is beneficial for the recovery of spinal cord injury, but the underlying mechanism is unclear. The Rho/Rho-associated kinase (ROCK signaling pathway regulates the actin cytoskeleton by controlling the adhesive and migratory behaviors of cells that could inhibit neurite regrowth after neural injury and consequently hinder the recovery from spinal cord injury. Therefore, we hypothesized electroacupuncture could affect the Rho/ROCK signaling pathway to promote the recovery of spinal cord injury. In our experiments, the spinal cord injury in adult Sprague-Dawley rats was caused by an impact device. Those rats were subjected to electroacupuncture at Yaoyangguan (GV3, Dazhui (GV14, Zusanli (ST36 and Ciliao (BL32 and/or monosialoganglioside treatment. Behavioral scores revealed that the hindlimb motor functions improved with those treatments. Real-time quantitative polymerase chain reaction, fluorescence in situ hybridization and western blot assay showed that electroacupuncture suppressed the mRNA and protein expression of Rho-A and Rho-associated kinase II (ROCKII of injured spinal cord. Although monosialoganglioside promoted the recovery of hindlimb motor function, monosialoganglioside did not affect the expression of Rho-A and ROCKII. However, electroacupuncture combined with monosialoganglioside did not further improve the motor function or suppress the expression of Rho-A and ROCKII. Our data suggested that the electroacupuncture could specifically inhibit the activation of the Rho/ROCK signaling pathway thus partially contributing to the repair of injured spinal cord. Monosialoganglioside could promote the motor function but did not suppress expression of RhoA and ROCKII. There was no synergistic effect of electroacupuncture combined with monosialoganglioside.

  17. Severe street and mountain bicycling injuries in adults: a comparison of the incidence, risk factors and injury patterns over 14 years.

    Science.gov (United States)

    Roberts, Derek J; Ouellet, Jean-Francois; Sutherland, Francis R; Kirkpatrick, Andrew W; Lall, Rohan N; Ball, Chad G

    2013-06-01

    Street and mountain bicycling are popular recreational activities and prevalent modes of transportation with the potential for severe injury. The purpose of this investigation was to compare the incidence, risk factors and injury patterns among adults with severe street versus mountain bicycling injuries. We conducted a retrospective cohort study using the Southern Alberta Trauma Database of all adults who were severely injured (injury severity score [ISS] ≥ 12) while street or mountain bicycling between Apr. 1, 1995, and Mar. 31, 2009. Among 11 772 severely injured patients, 258 (2.2%) were injured (mean ISS 17, hospital stay 6 d, mortality 7%) while street (n = 209) or mountain bicycling (n = 49). Street cyclists were often injured after being struck by a motor vehicle, whereas mountain bikers were frequently injured after faulty jump attempts, bike tricks and falls (cliffs, roadsides, embankments). Mountain cyclists were admitted more often on weekends than weekdays (61.2% v. 45.0%, p = 0.040). Injury patterns were similar for both cohorts (all p > 0.05), with trauma to the head (67.4%), extremities (38.4%), chest (34.1%), face (26.0%) and abdomen (10.1%) being common. Spinal injuries, however, were more frequent among mountain cyclists (65.3% v. 41.1%, p = 0.003). Surgical intervention was required in 33.3% of patients (9.7% open reduction internal fixation, 7.8% spinal fixation, 7.0% craniotomy, 5.8% facial repair and 2.7% laparotomy). With the exception of spine injuries, severely injured cyclists display similar patterns of injury and comparable outcomes, regardless of style (street v. mountain). Helmets and thoracic protection should be advocated for injury prevention.

  18. Salvianolic acid B protects the myelin sheath around injured spinal cord axons

    Directory of Open Access Journals (Sweden)

    Zhe Zhu

    2016-01-01

    Full Text Available Salvianolic acid B, an active pharmaceutical compound present in Salvia miltiorrhiza, exerts a neuroprotective effect in animal models of brain and spinal cord injury. Salvianolic acid B can promote recovery of neurological function; however, its protective effect on the myelin sheath after spinal cord injury remains poorly understood. Thus, in this study, in vitro tests showed that salvianolic acid B contributed to oligodendrocyte precursor cell differentiation, and the most effective dose was 20 μg/mL. For in vivo investigation, rats with spinal cord injury were intraperitoneally injected with 20 mg/kg salvianolic acid B for 8 weeks. The amount of myelin sheath and the number of regenerating axons increased, neurological function recovered, and caspase-3 expression was decreased in the spinal cord of salvianolic acid B-treated animals compared with untreated control rats. These results indicate that salvianolic acid B can protect axons and the myelin sheath, and can promote the recovery of neurological function. Its mechanism of action is likely to be associated with inhibiting apoptosis and promoting the differentiation and maturation of oligodendrocyte precursor cells.

  19. Lifestyle and health conditions of adults with spinal cord injury

    Directory of Open Access Journals (Sweden)

    Inacia Sátiro Xavier de França

    2014-07-01

    Full Text Available Objective. To describe the lifestyle of adults with spinal cord injury and explore its relation with some health conditions. Methodology. Cross sectional study, in which a questionnaire containing sociodemographic, habits and health conditions variables was used. Forty-seven people with spinal cord injury participated and answered the self-report questionnaire. Results. The group under study was predominantly male (92%, under 40 years of age (47%, and had low educational level (76%. The most frequent risk factors related to the lifestyle were: smoking (28%, alcohol consumption (36%, coffee consumption (92% and being physically inactive (64%. Association was found between having four or more risk factors related to lifestyle and the loss of appetite, as well as constipation. Conclusion. The actual inadequate lifestyle is associated with the health conditions of patients, and the nursing team should pay special attention to the education and promotion of health related to people with spinal cord injury.

  20. Adult opossums (Didelphis virginiana) demonstrate near normal locomotion after spinal cord transection as neonates.

    Science.gov (United States)

    Wang, X M; Basso, D M; Terman, J R; Bresnahan, J C; Martin, G F

    1998-05-01

    When the thoracic spinal cord of the North American opossum (Didelphis virginiana) is transected on postnatal day (PD) 5, the site of injury becomes bridged by histologically recognizable spinal cord and axons which form major long tracts grow through the lesion. In the present study we asked whether opossums lesioned on PD5 have normal use of the hindlimbs as adults and, if so, whether that use is dependent upon axons which grow through the lesion site. The thoracic spinal cord was transected on PD5 and 6 months later, hindlimb function was evaluated using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. All animals supported their weight with the hindlimbs and used their hindlimbs normally during overground locomotion. In some cases, the spinal cord was retransected at the original lesion site or just caudal to it 6 months after the original transection and paralysis of the hindlimbs ensued. Surprisingly, however, these animals gradually recovered some ability to support their weight and to step with the hindlimbs. Similar recovery was not seen in animals transected only as adults. In order to verify that descending axons which grew through the lesion during development were still present in the adult animal, opossums subjected to transection of the thoracic cord on PD5 were reoperated and Fast blue was injected several segments caudal to the lesion. In all cases, neurons were labeled rostral to the lesion in each of the spinal and supraspinal nuclei labeled by comparable injections in unlesioned, age-matched controls. The results of orthograde tracing studies indicated that axons which grew through the lesion innervated areas that were appropriate for them. Copyright 1998 Academic Press.

  1. A novel first aid stretcher for immobilization and transportation of spine injured patients.

    Science.gov (United States)

    Liu, Yan-Sheng; Feng, Ya-Ping; Xie, Jia-Xin; Luo, Zhuo-Jing; Shen, Cai-Hong; Niu, Fang; Zou, Jian; Tang, Shao-Feng; Hao, Jiang; Xu, Jia-Xiang; Xiao, Li-Ping; Xu, Xiao-Ming; Zhu, Hui

    2012-01-01

    Effective immobilization and transportation are vital to the life-saving acute medical care needed when treating critically injured people. However, the most common types of stretchers used today are wrought with problems that can lead to further medical complications, difficulty in employment and rescue, and ineffective transitions to hospital treatment. Here we report a novel first aid stretcher called the "emergency carpet", which solves these problems with a unique design for spine injured patients. Polyurethane composite material, obtained by a novel process of manually mixing isocyanate and additives, can be poured into a specially designed fabric bag and allowed to harden to form a rigid human-shaped stretcher. The effectiveness of the emergency carpet was examined in the pre-hospital management of victims with spinal fractures. Additionally, it was tested on flat ground and complex terrain as well as in the sea and air. We demonstrated that the emergency carpet can be assembled and solidified on the scene in 5 minutes, providing effective immobilization to the entire injured body. With the protection of the emergency carpet, none of the 20 patients, who were finally confirmed to have spinal column fracture or dislocation, had any neurological deterioration during transportation. Furthermore, the carpet can be handled and transported by multiple means under differing conditions, without compromising immobilization. Finally, the emergency carpet allows the critically injured patient to receive multiple examinations such as X-ray, CT, and MRI without being removed from the carpet. Our results demonstrate that the emergency carpet has ideal capabilities for immobilization, extrication, and transportation of the spine injured patients. Compared with other stretchers, it allows for better mobility, effective immobilization, remarkable conformity to the body, and various means for transportation. The emergency carpet is promising for its intrinsic advantages in

  2. A novel first aid stretcher for immobilization and transportation of spine injured patients.

    Directory of Open Access Journals (Sweden)

    Yan-Sheng Liu

    Full Text Available Effective immobilization and transportation are vital to the life-saving acute medical care needed when treating critically injured people. However, the most common types of stretchers used today are wrought with problems that can lead to further medical complications, difficulty in employment and rescue, and ineffective transitions to hospital treatment. Here we report a novel first aid stretcher called the "emergency carpet", which solves these problems with a unique design for spine injured patients. Polyurethane composite material, obtained by a novel process of manually mixing isocyanate and additives, can be poured into a specially designed fabric bag and allowed to harden to form a rigid human-shaped stretcher. The effectiveness of the emergency carpet was examined in the pre-hospital management of victims with spinal fractures. Additionally, it was tested on flat ground and complex terrain as well as in the sea and air. We demonstrated that the emergency carpet can be assembled and solidified on the scene in 5 minutes, providing effective immobilization to the entire injured body. With the protection of the emergency carpet, none of the 20 patients, who were finally confirmed to have spinal column fracture or dislocation, had any neurological deterioration during transportation. Furthermore, the carpet can be handled and transported by multiple means under differing conditions, without compromising immobilization. Finally, the emergency carpet allows the critically injured patient to receive multiple examinations such as X-ray, CT, and MRI without being removed from the carpet. Our results demonstrate that the emergency carpet has ideal capabilities for immobilization, extrication, and transportation of the spine injured patients. Compared with other stretchers, it allows for better mobility, effective immobilization, remarkable conformity to the body, and various means for transportation. The emergency carpet is promising for its

  3. Regulation of Adult CNS Axonal Regeneration by the Post-transcriptional Regulator Cpeb1

    Directory of Open Access Journals (Sweden)

    Wilson Pak-Kin Lou

    2018-01-01

    Full Text Available Adult mammalian central nervous system (CNS neurons are unable to regenerate following axonal injury, leading to permanent functional impairments. Yet, the reasons underlying this regeneration failure are not fully understood. Here, we studied the transcriptome and translatome shortly after spinal cord injury. Profiling of the total and ribosome-bound RNA in injured and naïve spinal cords identified a substantial post-transcriptional regulation of gene expression. In particular, transcripts associated with nervous system development were down-regulated in the total RNA fraction while remaining stably loaded onto ribosomes. Interestingly, motif association analysis of post-transcriptionally regulated transcripts identified the cytoplasmic polyadenylation element (CPE as enriched in a subset of these transcripts that was more resistant to injury-induced reduction at the transcriptome level. Modulation of these transcripts by overexpression of the CPE binding protein, Cpeb1, in mouse and Drosophila CNS neurons promoted axonal regeneration following injury. Our study uncovered a global evolutionarily conserved post-transcriptional mechanism enhancing regeneration of injured CNS axons.

  4. Body and Corporality in adolescents and young adults with spinal cord injury.

    Science.gov (United States)

    Duarte Torres, Diana Milena; Torres Bolaños, Yuri Marcela; Moreno Fergusson, María Elisa

    2016-04-01

    To describe the meaning given by adolescents and young adults to the changes in their bodies and corporality after a spinal cord injury. Qualitative study based on symbolic interactionism in which 12 adolescents and young adults, who had suffered spinal cord injury 6 months or more before, participated. The information was recollected through a series of in-depth interviews and field journals. The guidelines proposed by Corbin and Strauss were followed for the process of codification and categorization of the data. Four categories were identified that describe the meanings given by participants to the changes in their bodies and corporality: Transformation of self-image, living with contradictions in the relationships with others, withstanding the burden of a disability and adapting to the new conditions. The results allow for the comprehension of the meanings that are given by the people who have suffered a spinal cord lesion to their situation. This will in turn open the possibility of offering these people a better individual nursing care that focuses more on the particular needs, so that both they and their families can be helped on their way to adaptation to the new situation.

  5. Targeting Neurotrophins to Specific Populations of Neurons: NGF, BDNF, and NT-3 and Their Relevance for Treatment of Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Kathleen M. Keefe

    2017-03-01

    Full Text Available Neurotrophins are a family of proteins that regulate neuronal survival, synaptic function, and neurotransmitter release, and elicit the plasticity and growth of axons within the adult central and peripheral nervous system. Since the 1950s, these factors have been extensively studied in traumatic injury models. Here we review several members of the classical family of neurotrophins, the receptors they bind to, and their contribution to axonal regeneration and sprouting of sensory and motor pathways after spinal cord injury (SCI. We focus on nerve growth factor (NGF, brain derived neurotrophic factor (BDNF, and neurotrophin-3 (NT-3, and their effects on populations of neurons within diverse spinal tracts. Understanding the cellular targets of neurotrophins and the responsiveness of specific neuronal populations will allow for the most efficient treatment strategies in the injured spinal cord.

  6. Self-Assembling Peptide Nanofiber Scaffold Enhanced with RhoA Inhibitor CT04 Improves Axonal Regrowth in the Transected Spinal Cord

    Directory of Open Access Journals (Sweden)

    Weiwei Zhang

    2012-01-01

    Full Text Available The present study was designed to explore the therapeutic potential of self-assembling peptide nanofiber scaffold (SAPNS delivered RhoA inhibitor to ameliorate the hostile microenvironment of injured spinal cord for axonal regeneration. After a transection was applied to the thoracic spinal cord of mice, the combination of SAPNS and CT04 (a cell permeable RhoA inhibitor, single SAPNS with vehicle, or saline was transplanted into the lesion cavity. Results showed that SAPNS+CT04 implants achieved the best therapeutic outcomes among treatment groups. The novel combination not only reconstructed the injured nerve gap but also elicited significant axonal regeneration and motor functional recovery. Additionally, the combination also effectively reduced the apoptosis and infiltration of activated macrophages in the injured spinal cord. Collectively, the present study demonstrated that SAPNS-based delivery of RhoA inhibitor CT04 presented a highly potential therapeutic strategy for spinal cord injury with reknitting lesion gap, attenuating secondary injury, and improving axonal regrowth.

  7. Self-Assembling Peptide Nanofiber Scaffold Enhanced with RhoA Inhibitor CT04 Improves Axonal Regrowth in the Transected Spinal Cord

    International Nuclear Information System (INIS)

    Weiwei, Z.; Xiaoduo, Z.; Zhongying, L.

    2012-01-01

    The present study was designed to explore the therapeutic potential of self-assembling peptide nano fiber scaffold (SAPNS) delivered RhoA inhibitor to ameliorate the hostile microenvironment of injured spinal cord for axonal regeneration. After a transection was applied to the thoracic spinal cord of mice, the combination of SAPNS and CT04 (a cell permeable RhoA inhibitor), single SAPNS with vehicle, or saline was transplanted into the lesion cavity. Results showed that SAPNS+CT04 implants achieved the best therapeutic outcomes among treatment groups. The novel combination not only reconstructed the injured nerve gap but also elicited significant axonal regeneration and motor functional recovery. Additionally, the combination also effectively reduced the apoptosis and infiltration of activated macrophages in the injured spinal cord. Collectively, the present study demonstrated that SAPNS-based delivery of RhoA inhibitor CT04 presented a highly potential therapeutic strategy for spinal cord injury with reknitting lesion gap, attenuating secondary injury, and improving axonal regrowth.

  8. Objective measures of motor dysfunction after compression spinal cord injury in adult rats: correlations with locomotor rating scores.

    Science.gov (United States)

    Semler, Joerg; Wellmann, Katharina; Wirth, Felicitas; Stein, Gregor; Angelova, Srebrina; Ashrafi, Mahak; Schempf, Greta; Ankerne, Janina; Ozsoy, Ozlem; Ozsoy, Umut; Schönau, Eckhard; Angelov, Doychin N; Irintchev, Andrey

    2011-07-01

    Precise assessment of motor deficits after traumatic spinal cord injury (SCI) in rodents is crucial for understanding the mechanisms of functional recovery and testing therapeutic approaches. Here we analyzed the applicability to a rat SCI model of an objective approach, the single-frame motion analysis, created and used for functional analysis in mice. Adult female Wistar rats were subjected to graded compression of the spinal cord. Recovery of locomotion was analyzed using video recordings of beam walking and inclined ladder climbing. Three out of four parameters used in mice appeared suitable: the foot-stepping angle (FSA) and the rump-height index (RHI), measured during beam walking, and for estimating paw placement and body weight support, respectively, and the number of correct ladder steps (CLS), assessing skilled limb movements. These parameters, similar to the Basso, Beattie, and Bresnahan (BBB) locomotor rating scores, correlated with lesion volume and showed significant differences between moderately and severely injured rats at 1-9 weeks after SCI. The beam parameters, but not CLS, correlated well with the BBB scores within ranges of poor and good locomotor abilities. FSA co-varied with RHI only in the severely impaired rats, while RHI and CLS were barely correlated. Our findings suggest that the numerical parameters estimate, as intended by design, predominantly different aspects of locomotion. The use of these objective measures combined with BBB rating provides a time- and cost-efficient opportunity for versatile and reliable functional evaluations in both severely and moderately impaired rats, combining clinical assessment with precise numerical measures.

  9. Transplanted Human Stem Cell-Derived Interneuron Precursors Mitigate Mouse Bladder Dysfunction and Central Neuropathic Pain after Spinal Cord Injury.

    Science.gov (United States)

    Fandel, Thomas M; Trivedi, Alpa; Nicholas, Cory R; Zhang, Haoqian; Chen, Jiadong; Martinez, Aida F; Noble-Haeusslein, Linda J; Kriegstein, Arnold R

    2016-10-06

    Neuropathic pain and bladder dysfunction represent significant quality-of-life issues for many spinal cord injury patients. Loss of GABAergic tone in the injured spinal cord may contribute to the emergence of these symptoms. Previous studies have shown that transplantation of rodent inhibitory interneuron precursors from the medial ganglionic eminence (MGE) enhances GABAergic signaling in the brain and spinal cord. Here we look at whether transplanted MGE-like cells derived from human embryonic stem cells (hESC-MGEs) can mitigate the pathological effects of spinal cord injury. We find that 6 months after transplantation into injured mouse spinal cords, hESC-MGEs differentiate into GABAergic neuron subtypes and receive synaptic inputs, suggesting functional integration into host spinal cord. Moreover, the transplanted animals show improved bladder function and mitigation of pain-related symptoms. Our results therefore suggest that this approach may be a valuable strategy for ameliorating the adverse effects of spinal cord injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Endogenous stem cell proliferation induced by intravenous hedgehog agonist administration after contusion in the adult rat spinal cord.

    Science.gov (United States)

    Bambakidis, Nicholas C; Horn, Eric M; Nakaji, Peter; Theodore, Nicholas; Bless, Elizabeth; Dellovade, Tammy; Ma, Chiyuan; Wang, Xukui; Preul, Mark C; Coons, Stephen W; Spetzler, Robert F; Sonntag, Volker K H

    2009-02-01

    Sonic hedgehog (Shh) is a glycoprotein molecule that upregulates the transcription factor Gli1. The Shh protein plays a critical role in the proliferation of endogenous neural precursor cells when directly injected into the spinal cord after a spinal cord injury in adult rodents. Small-molecule agonists of the hedgehog (Hh) pathway were used in an attempt to reproduce these findings through intravenous administration. The expression of Gli1 was measured in rat spinal cord after the intravenous administration of an Hh agonist. Ten adult rats received a moderate contusion and were treated with either an Hh agonist (10 mg/kg, intravenously) or vehicle (5 rodents per group) 1 hour and 4 days after injury. The rats were killed 5 days postinjury. Tissue samples were immediately placed in fixative. Samples were immunohistochemically stained for neural precursor cells, and these cells were counted. Systemic dosing with an Hh agonist significantly upregulated Gli1 expression in the spinal cord (p < 0.005). After spinal contusion, animals treated with the Hh agonist had significantly more nestin-positive neural precursor cells around the rim of the lesion cavity than in vehicle-treated controls (means +/- SDs, 46.9 +/- 12.9 vs 20.9 +/- 8.3 cells/hpf, respectively, p < 0.005). There was no significant difference in the area of white matter injury between the groups. An intravenous Hh agonist at doses that upregulate spinal cord Gli1 transcription also increases the population of neural precursor cells after spinal cord injury in adult rats. These data support previous findings based on injections of Shh protein directly into the spinal cord.

  11. Potent spinal parenchymal AAV9-mediated gene delivery by subpial injection in adult rats and pigs

    Directory of Open Access Journals (Sweden)

    Atsushi Miyanohara

    2016-01-01

    Full Text Available Effective in vivo use of adeno-associated virus (AAV-based vectors to achieve gene-specific silencing or upregulation in the central nervous system has been limited by the inability to provide more than limited deep parenchymal expression in adult animals using delivery routes with the most clinical relevance (intravenous or intrathecal. Here, we demonstrate that the spinal pia membrane represents the primary barrier limiting effective AAV9 penetration into the spinal parenchyma after intrathecal AAV9 delivery. We develop a novel subpial AAV9 delivery technique and AAV9-dextran formulation. We use these in adult rats and pigs to show (i potent spinal parenchymal transgene expression in white and gray matter including neurons, glial and endothelial cells after single bolus subpial AAV9 delivery; (ii delivery to almost all apparent descending motor axons throughout the length of the spinal cord after cervical or thoracic subpial AAV9 injection; (iii potent retrograde transgene expression in brain motor centers (motor cortex and brain stem; and (iv the relative safety of this approach by defining normal neurological function for up to 6 months after AAV9 delivery. Thus, subpial delivery of AAV9 enables gene-based therapies with a wide range of potential experimental and clinical utilizations in adult animals and human patients.

  12. Neurologic Outcomes of Complex Adult Spinal Deformity Surgery

    DEFF Research Database (Denmark)

    Lenke, Lawrence G; Fehlings, Michael G; Shaffrey, Christopher I

    2016-01-01

    STUDY DESIGN: Prospective, multicenter, international observational study. OBJECTIVE: To evaluate motor neurologic outcomes in patients undergoing surgery for complex adult spinal deformity (ASD). SUMMARY OF BACKGROUND DATA: The neurologic outcomes after surgical correction for ASD have been...... and 16.42% showed an improvement. At 6 months, 10.82% patients showed a decline in preoperative LEMS, 20.52% improvement, and 68.66% maintenance. This was a significant change compared with 6 weeks and at discharge. CONCLUSION: Although complex ASD surgery can restore neurologic function in patients...

  13. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Topic Resources Peer Counseling Blog About Media Donate Spinal Cord Injury Medical Expert Videos Topics menu Topics Spinal Cord Injury 101 Adult Injuries Spinal Cord Injury 101 ...

  14. A neonatal mouse spinal cord injury model for assessing post-injury adaptive plasticity and human stem cell integration.

    Directory of Open Access Journals (Sweden)

    Jean-Luc Boulland

    Full Text Available Despite limited regeneration capacity, partial injuries to the adult mammalian spinal cord can elicit variable degrees of functional recovery, mediated at least in part by reorganization of neuronal circuitry. Underlying mechanisms are believed to include synaptic plasticity and collateral sprouting of spared axons. Because plasticity is higher in young animals, we developed a spinal cord compression (SCC injury model in the neonatal mouse to gain insight into the potential for reorganization during early life. The model provides a platform for high-throughput assessment of functional synaptic connectivity that is also suitable for testing the functional integration of human stem and progenitor cell-derived neurons being considered for clinical cell replacement strategies. SCC was generated at T9-T11 and functional recovery was assessed using an integrated approach including video kinematics, histology, tract tracing, electrophysiology, and high-throughput optical recording of descending inputs to identified spinal neurons. Dramatic degeneration of axons and synaptic contacts was evident within 24 hours of SCC, and loss of neurons in the injured segment was evident for at least a month thereafter. Initial hindlimb paralysis was paralleled by a loss of descending inputs to lumbar motoneurons. Within 4 days of SCC and progressively thereafter, hindlimb motility began to be restored and descending inputs reappeared, but with examples of atypical synaptic connections indicating a reorganization of circuitry. One to two weeks after SCC, hindlimb motility approached sham control levels, and weight-bearing locomotion was virtually indistinguishable in SCC and sham control mice. Genetically labeled human fetal neural progenitor cells injected into the injured spinal cord survived for at least a month, integrated into the host tissue and began to differentiate morphologically. This integrative neonatal mouse model provides opportunities to explore early

  15. Differences in health, participation and life satisfaction outcomes in adults following paediatric- versus adult-sustained spinal cord injury

    NARCIS (Netherlands)

    Ma, J. K.; Post, M. W. M.; Gorter, J. W.; Ginis, K. A. Martin

    2016-01-01

    Study design: Cross-sectional. Objectives: To compare differences in self-reported health status, participation and life satisfaction outcomes between adults with a spinal cord injury (SCI) sustained during paediatric (P) versus adulthood (A) years. Setting: Ontario, Canada. Methods: Secondary

  16. Spinal Implant Density and Postoperative Lumbar Lordosis as Predictors for the Development of Proximal Junctional Kyphosis in Adult Spinal Deformity.

    Science.gov (United States)

    McClendon, Jamal; Smith, Timothy R; Sugrue, Patrick A; Thompson, Sara E; O'Shaughnessy, Brian A; Koski, Tyler R

    2016-11-01

    To evaluate spinal implant density and proximal junctional kyphosis (PJK) in adult spinal deformity (ASD). Consecutive patients with ASD receiving ≥5 level fusions were retrospectively analyzed between 2007 and 2010. ASD, elective fusions, minimum 2-year follow-up. age lordosis (LL) were predictors for PJK (P = 0.018 and 0.045, respectively). Controlling for age, BMI, and gender, postoperative LL (not implant density) continued to show significance in multivariate logistic regression model. PJK, although influenced by a multitude of factors, may be statistically related to implant density and LL. Copyright © 2016. Published by Elsevier Inc.

  17. Study Protocol- Lumbar Epidural Steroid Injections for Spinal Stenosis (LESS: a double-blind randomized controlled trial of epidural steroid injections for lumbar spinal stenosis among older adults

    Directory of Open Access Journals (Sweden)

    Friedly Janna L

    2012-03-01

    Full Text Available Abstract Background Lumbar spinal stenosis is one of the most common causes of low back pain among older adults and can cause significant disability. Despite its prevalence, treatment of spinal stenosis symptoms remains controversial. Epidural steroid injections are used with increasing frequency as a less invasive, potentially safer, and more cost-effective treatment than surgery. However, there is a lack of data to judge the effectiveness and safety of epidural steroid injections for spinal stenosis. We describe our prospective, double-blind, randomized controlled trial that tests the hypothesis that epidural injections with steroids plus local anesthetic are more effective than epidural injections of local anesthetic alone in improving pain and function among older adults with lumbar spinal stenosis. Methods We will recruit up to 400 patients with lumbar central canal spinal stenosis from at least 9 clinical sites over 2 years. Patients with spinal instability who require surgical fusion, a history of prior lumbar surgery, or prior epidural steroid injection within the past 6 months are excluded. Participants are randomly assigned to receive either ESI with local anesthetic or the control intervention (epidural injections with local anesthetic alone. Subjects receive up to 2 injections prior to the primary endpoint at 6 weeks, at which time they may choose to crossover to the other intervention. Participants complete validated, standardized measures of pain, functional disability, and health-related quality of life at baseline and at 3 weeks, 6 weeks, and 3, 6, and 12 months after randomization. The primary outcomes are Roland-Morris Disability Questionnaire and a numerical rating scale measure of pain intensity at 6 weeks. In order to better understand their safety, we also measure cortisol, HbA1c, fasting blood glucose, weight, and blood pressure at baseline, and at 3 and 6 weeks post-injection. We also obtain data on resource utilization

  18. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Topic Resources Peer Counseling Blog About Media Donate Spinal Cord Injury Medical Expert Videos Topics menu Topics Spinal Cord Injury 101 Adult Injuries Spinal Cord Injury 101 David ...

  19. Abundance of gap junctions at glutamatergic mixed synapses in adult Mosquitofish spinal cord neurons

    Directory of Open Access Journals (Sweden)

    Jose L Serrano-Velez

    2014-06-01

    Full Text Available Dye-coupling, whole-mount immunohistochemistry for gap junction channel protein connexin 35 (Cx35, and freeze-fracture replica immunogold labeling (FRIL reveal an abundance of electrical synapses/gap junctions at glutamatergic mixed synapses in the 14th spinal segment that innervates the adult male gonopodium of Western Mosquitofish, Gambusia affinis (Mosquitofish.To study gap junctions’ role in fast motor behavior, we used a minimally-invasive neural-tract-tracing technique to introduce gap junction-permeant or -impermeant dyes into deep muscles controlling the gonopodium of the adult male Mosquitofish, a teleost fish that rapidly transfers (complete in 50 of the 62 gap junctions at mixed synapses are in the 14th spinal segment.Our results support and extend studies showing gap junctions at mixed synapses in spinal cord segments involved in control of genital reflexes in rodents, and they suggest a link between mixed synapses and fast motor behavior. The findings provide a basis for studies of specific roles of spinal neurons in the generation/regulation of sex-specific behavior and for studies of gap junctions’ role in regulating fast motor behavior. Finally, the CoPA IN provides a novel candidate neuron for future studies of gap junctions and neural control of fast motor behaviors.

  20. Effects of polarization in low-level laser therapy of spinal cord injury in rats

    Science.gov (United States)

    Ando, Takahiro; Sato, Shunichi; Kobayashi, Hiroaki; Nawashiro, Hiroshi; Ashida, Hiroshi; Hamblin, Michael R.; Obara, Minoru

    2012-03-01

    Low-level laser therapy (LLLT) is a promising approach to treat the spinal cord injury (SCI). Since nerve fibers have optical anisotropy, propagation of light in the spinal tissue might be affected by its polarization direction. However, the effect of polarization on the efficacy of LLLT has not been elucidated. In the present study, we investigated the effect of polarization on the efficacy of near-infrared LLLT for SCI. Rat spinal cord was injured with a weight-drop device. The lesion site was irradiated with an 808-nm diode laser beam that was transmitted through a polarizing filter immediately after injury and daily for five consecutive days. The laser power at the injured spinal cord surface was 25 mW, and the dosage per day was 9.6 J/cm2 (spot diameter, 2 cm; irradiation duration, 1200 s). Functional recovery was assessed daily by an open-field test. The results showed that the functional scores of the SCI rats that were treated with 808-nm laser irradiation were significantly higher than those of the SCI alone group (Group 1) from day 5 after injury, regardless of the polarization direction. Importantly, as compared to the locomotive function of the SCI rats that were treated with the perpendicularly-polarized laser parallel to the spinal column (Group 2), that of the SCI rats that were irradiated with the linearly aligned polarization (Group 3) was significantly improved from day 10 after injury. In addition, the ATP contents in the injured spinal tissue of Group 3, which were measured immediately after laser irradiation, were moderately higher than those of Group 2. These observations are attributable to the deeper penetration of the parallelpolarized light in the anisotropic spinal tissue, suggesting that polarization direction significantly affects the efficacy of LLLT for SCI.

  1. Variable laterality of corticospinal tract axons that regenerate after spinal cord injury as a result of PTEN deletion or knock-down

    Science.gov (United States)

    Willenberg, Rafer; Zukor, Katherine; Liu, Kai; He, Zhigang; Steward, Oswald

    2016-01-01

    Corticospinal tract (CST) axons from one hemisphere normally extend and terminate predominantly in the contralateral spinal cord. We previously showed that deleting PTEN in the sensorimotor cortex enables CST axons to regenerate after spinal cord injury and that some regenerating axons extend along the “wrong” side. Here, we characterize the degree of specificity of regrowth in terms of laterality. PTEN was selectively deleted via cortical AAV-Cre injections in neonatal PTEN-floxed mice. As adults, mice received dorsal hemisection injuries at T12 or complete crush injuries at T9. CST axons from one hemisphere were traced by unilateral BDA injections in PTEN-deleted mice with spinal cord injury and in non-injured PTEN-floxed mice that had not received AAV-Cre. In non-injured mice, 97.9 ± 0.7% of BDA-labeled axons in white matter and 88.5 ± 1.0% of BDA-labeled axons in grey matter were contralateral to the cortex of origin. In contrast, laterality of CST axons that extended past a lesion due to PTEN deletion varied across animals. In some cases, regenerated axons extended predominantly on the ipsilateral side, in other cases, axons extended predominantly contralaterally, and in others, axons were similar in numbers on both sides. Similar results were seen in analyses of cases from previous studies using shRNA-mediated PTEN knock-down. These results indicate that CST axons that extend past a lesion due to PTEN deletion or knock-down do not maintain the contralateral rule of the non-injured CST, highlighting one aspect for how resultant circuitry from regenerating axons may differ from that of the uninjured CST. PMID:26878190

  2. Noncontiguous double-level unstable spinal injuries.

    Science.gov (United States)

    Takami, Masanari; Okada, Motohiro; Enyo, Yoshio; Iwasaki, Hiroshi; Yamada, Hiroshi; Yoshida, Munehito

    2017-01-01

    Noncontiguous double-level unstable spinal injuries (NDUSI) are uncommon and have not been well described. In this study, we aimed to better understand the patterns of NDUSI, in order to recommend proper diagnostic and treatment methods, as well as to raise awareness among traumatologists about the possibility of these uncommon injuries. A total of 710 consecutive patients with spine fractures were treated for >9 years since 2007 at a single regional trauma center. Of them, 18 patients with NDUSI were reviewed retrospectively. The incidence of NDUSI was 2.5 % of all spine fractures. In 17 of 18 patients (94.7 %), NDUSI was caused by a high-energy trauma. Nine patients (50.0 %) exhibited complete neurological deficit. Spinal cord injury occurred in the cranial injured region in all American Spinal Injury Association grade A cases. In one case, a second fracture was overlooked at the initial examination. NDUSI are common in cases of high-energy trauma and should be taken into consideration at the initial examination. A second fracture may be easily overlooked because of the high frequency of concomitant severe spinal cord injury in the cranial injured region and/or loss of consciousness due to associated injuries. To avoid overlooking injuries, full spine computed tomography is useful at the initial examination. Operative reduction and internal fixation with instrumentation through a posterior approach is recommendable for cases of NDUSI. In elderly patients, a very rapid stabilizing surgery should be planned before aspiration pneumonia occurs or the pulmonary condition worsens.

  3. Neuroprotective effect of rapamycin on spinal cord injury via activation of the Wnt/β-catenin signaling pathway

    Directory of Open Access Journals (Sweden)

    Kai Gao

    2015-01-01

    Full Text Available The Wnt/β-catenin signaling pathway plays a crucial role in neural development, axonal guidance, neuropathic pain remission and neuronal survival. In this study, we initially examined the effect of rapamycin on the Wnt/β-catenin signaling pathway after spinal cord injury, by intraperitoneally injecting spinal cord injured rats with rapamycin over 2 days. Western blot analysis and immunofluorescence staining were used to detect the expression levels of β-catenin protein, ca-spase-3 protein and brain-derived neurotrophic factor protein, components of the Wnt/β-catenin signaling pathway. Rapamycin increased the levels of β-catenin and brain-derived neurotrophic factor in the injured spinal cord, improved the pathological morphology at the injury site, reduced the loss of motor neurons, and promoted motor functional recovery in rats after spinal cord injury. Our experimental findings suggest that the neuroprotective effect of rapamycin intervention is mediated through activation of the Wnt/β-catenin signaling pathway after spinal cord injury.

  4. The Impact of Smoking and Smoking Cessation on Wound Healing in Spinal Cord-Injured Patients With Pressure Injuries: A Retrospective Comparison Cohort Study.

    Science.gov (United States)

    Lane, Cheryl A; Selleck, Cynthia; Chen, Yuying; Tang, Ying

    2016-01-01

    The purpose of this study was to evaluate the impact of implementing evidence-based guidelines on smoking cessation in persons with spinal cord injuries and pressure injuries. We also evaluated the impact of smoking on pressure injury healing in this population. The sample population included 158 spinal cord-injured patients with pressure injuries (29 females and 129 males). There were 83 in the control group and 75 in the intervention group, with a mean age of 44 years in both groups. The research setting was an outpatient wound clinic located in a large medical center in the southeastern United States. A retrospective chart review was completed. Data were reviewed 6 months before and 6 months after implementation of the US Department of Health and Human Services Clinical Practice Guidelines for Treating Tobacco Use and Dependence. We evaluated the number and size of wounds, achievement of smoking cessation, and demographic information. Forty-eight percent of the control group participants and 57% of the intervention group participants smoked cigarettes at baseline. Smoking cessation doubled with the use of the clinical practice guidelines (P = .03). Smokers presented with a greater number of pressure injuries than nonsmokers. They experienced a mean increase rather than reduction in wound size. Nearly half (45.5%) of the intervention group participants who desired to have surgery had it performed, compared with only 34.9% of the control group participants (P = .35). Our findings demonstrate a positive influence with use of clinical practice guidelines to help individuals stop smoking. Results also confirm findings of previous studies supporting the negative impact of smoking on pressure injury healing in persons with spinal cord injuries.

  5. Adult spinal deformity treated with minimally invasive surgery. Description of surgical technique, radiological results and literature review.

    Science.gov (United States)

    Domínguez, I; Luque, R; Noriega, M; Rey, J; Alía, J; Urda, A; Marco, F

    The prevalence of adult spinal deformity has been increasing exponentially over time. Surgery has been credited with good radiological and clinical results. The incidence of complications is high. MIS techniques provide good results with fewer complications. This is a retrospective study of 25 patients with an adult spinal deformity treated by MIS surgery, with a minimum follow-up of 6 months. Radiological improvement was SVA from 5 to 2cm, coronal Cobb angle from 31° to 6°, and lumbar lordosis from 18° to 38°. All of these parameters remained stable over time. We also present the complications that appeared in 4 patients (16%). Only one patient needed reoperation. We describe the technique used and review the references on the subject. We conclude that the MIS technique for treating adult spinal deformity has comparable results to those of the conventional techniques but with fewer complications. Copyright © 2017 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Low-energy extracorporeal shock wave therapy for promotion of vascular endothelial growth factor expression and angiogenesis and improvement of locomotor and sensory functions after spinal cord injury.

    Science.gov (United States)

    Yahata, Kenichiro; Kanno, Haruo; Ozawa, Hiroshi; Yamaya, Seiji; Tateda, Satoshi; Ito, Kenta; Shimokawa, Hiroaki; Itoi, Eiji

    2016-12-01

    OBJECTIVE Extracorporeal shock wave therapy (ESWT) is widely used to treat various human diseases. Low-energy ESWT increases expression of vascular endothelial growth factor (VEGF) in cultured endothelial cells. The VEGF stimulates not only endothelial cells to promote angiogenesis but also neural cells to induce neuroprotective effects. A previous study by these authors demonstrated that low-energy ESWT promoted expression of VEGF in damaged neural tissue and improved locomotor function after spinal cord injury (SCI). However, the neuroprotective mechanisms in the injured spinal cord produced by low-energy ESWT are still unknown. In the present study, the authors investigated the cell specificity of VEGF expression in injured spinal cords and angiogenesis induced by low-energy ESWT. They also examined the neuroprotective effects of low-energy ESWT on cell death, axonal damage, and white matter sparing as well as the therapeutic effect for improvement of sensory function following SCI. METHODS Adult female Sprague-Dawley rats were divided into the SCI group (SCI only) and SCI-SW group (low-energy ESWT applied after SCI). Thoracic SCI was produced using a New York University Impactor. Low-energy ESWT was applied to the injured spinal cord 3 times a week for 3 weeks after SCI. Locomotor function was evaluated using the Basso, Beattie, and Bresnahan open-field locomotor score for 42 days after SCI. Mechanical and thermal allodynia in the hindpaw were evaluated for 42 days. Double staining for VEGF and various cell-type markers (NeuN, GFAP, and Olig2) was performed at Day 7; TUNEL staining was also performed at Day 7. Immunohistochemical staining for CD31, α-SMA, and 5-HT was performed on spinal cord sections taken 42 days after SCI. Luxol fast blue staining was performed at Day 42. RESULTS Low-energy ESWT significantly improved not only locomotion but also mechanical and thermal allodynia following SCI. In the double staining, expression of VEGF was observed in Neu

  7. Cyclosporin A increases recovery after spinal cord injury but does not improve myelination by oligodendrocyte progenitor cell transplantation

    Directory of Open Access Journals (Sweden)

    Wang Feng-Chao

    2010-10-01

    Full Text Available Abstract Background Transplantation of oligodendrocyte precursor cells (OPCs is an attractive therapy for demyelinating diseases. Cyclosporin A (CsA is one of the foremost immunosuppressive agents and has widespread use in tissue and cell transplantation. However, whether CsA affects survival and differentiation of engrafted OPCs in vivo is unknown. In this study, the effect of CsA on morphological, functional and immunological aspects, as well as survival and differentiation of engrafted OPCs in injured spinal cord was explored. Results We transplanted green fluorescent protein (GFP expressed OPCs (GFP-OPCs into injured spinal cords of rats treated with or without CsA (10 mg/kg. Two weeks after cell transplantation, more GFP-positive cells were found in CsA-treated rats than that in vehicle-treated ones. However, the engrafted cells mostly differentiated into astrocytes, but not oligodendrocytes in both groups. In the CsA-treated group, a significant decrease in spinal cord lesion volume along with increase in spared myelin and neurons were found compared to the control group. Such histological improvement correlated well with an increase in behavioral recovery. Further study suggested that CsA treatment could inhibit infiltration of T cells and activation of resident microglia and/or macrophages derived from infiltrating monocytes in injured spinal cords, which contributes to the survival of engrafted OPCs and repair of spinal cord injury (SCI. Conclusions These results collectively indicate that CsA can promote the survival of engrafted OPCs in injured spinal cords, but has no effect on their differentiation. The engrafted cells mostly differentiated into astrocytes, but not oligodendrocytes. The beneficial effect of CsA on SCI and the survival of engrafted cells may be attributed to its neuroprotective effect.

  8. Bladder stones in catheterized spinal cord-injured patients in Nigeria

    African Journals Online (AJOL)

    Objective: The objective was to determine the incidence of bladder stones in patients with spinal cord injury (SCI) and to assess if catheter encrustation or positive urinary culture of Proteus mirabilis is predictive of bladder stones. Background: Bladder stones are common urological complication in those with SCI managed ...

  9. Therapeutic Effect of Platelet-Rich Plasma in Rat Spinal Cord Injuries

    Directory of Open Access Journals (Sweden)

    Nan-Fu Chen

    2018-04-01

    Full Text Available Platelet-rich plasma (PRP is prepared by centrifuging fresh blood in an anticoagulant state, and harvesting the platelet-rich portion or condensing platelets. Studies have consistently demonstrated that PRP concentrates are an abundant source of growth factors, such as platelet-derived growth factor (PDGF, transforming growth factor β (TGF-β, insulin-like growth factor 1 (IGF-1, and epithelial growth factor (EGF. The complex mechanisms underlying spinal cord injury (SCI diminish intrinsic repair and neuronal regeneration. Several studies have suggested that growth factor-promoted axonal regeneration can occur for an extended period after injury. More importantly, the delivery of exogenous growth factors contained in PRP, such as EGF, IGF-1, and TGF-β, has neurotrophic effects on central nervous system (CNS injuries and neurodegenerative diseases. However, only a few studies have investigated the effects of PRP on CNS injuries or neurodegenerative diseases. According to our review of relevant literature, no study has investigated the effect of intrathecal (i.t. PRP injection into the injured spinal cord and activation of intrinsic mechanisms. In the present study, we directly injected i.t. PRP into rat spinal cords and examined the effects of PRP on normal and injured spinal cords. In rats with normal spinal cords, PRP induced microglia and astrocyte activation and PDGF-B and ICAM-1 expression. In rats with SCIs, i.t. PRP enhanced the locomotor recovery and spared white matter, promoted angiogenesis and neuronal regeneration, and modulated blood vessel size. Furthermore, a sustained treatment (a bolus of PRP followed by a 1/3 dose of initial PRP concentration exerted more favorable therapeutic effects than a single dose of PRP. Our findings suggest by i.t. PRP stimulate angiogenesis, enhancing neuronal regeneration after SCI in rats. Although PRP induces minor inflammation in normal and injured spinal cords, it has many advantages. It is an

  10. Improving Survival and Promoting Respiratory Motor Function After Cervical Spinal Cord Injury

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0378 TITLE: Improving Survival and Promoting Respiratory Motor Function After Cervical Spinal Cord Injury PRINCIPAL...TITLE AND SUBTITLE CordCorInjury 5a. CONTRACT NUMBER Improvi g Survival and Promoting Respiratory Motor Function After Cervical Spinal Cord...care. However, despite these drastic interventions, the cervical injured patient is still susceptible to death due to respiratory complications

  11. Viral vector-mediated gene expression in olfactory ensheathing glia implants in the lesioned rat spinal cord

    NARCIS (Netherlands)

    Ruitenberg, Marc J; Plant, Giles W; Christensen, C L; Blits, B; Niclou, Simone P; Harvey, Alan R; Boer, G J; Verhaagen, J

    Implantation of olfactory ensheathing glia (OEG) is a promising strategy to augment long-distance regeneration in the injured spinal cord. In this study, implantation of OEG following unilateral hemisection of the dorsal cervical spinal cord was combined with ex vivo gene transfer techniques. We

  12. Adult-type myogenesis of the frog Xenopus laevis specifically suppressed by notochord cells but promoted by spinal cord cells in vitro.

    Science.gov (United States)

    Yamane, Hitomi; Ihara, Setsunosuke; Kuroda, Masaaki; Nishikawa, Akio

    2011-08-01

    Larval-to-adult myogenic conversion occurs in the dorsal muscle but not in the tail muscle during Xenopus laevis metamorphosis. To know the mechanism for tail-specific suppression of adult myogenesis, response character was compared between adult myogenic cells (Ad-cells) and larval tail myogenic cells (La-cells) to a Sonic hedgehog (Shh) inhibitor, notochord (Nc) cells, and spinal cord (SC) cells in vitro. Cyclopamine, an Shh inhibitor, suppressed the differentiation of cultured Ad (but not La) cells, suggesting the significance of Shh signaling in promoting adult myogenesis. To test the possibility that Shh-producing axial elements (notochord and spinal cord) regulate adult myogenesis, Ad-cells or La-cells were co-cultured with Nc or SC cells. The results showed that differentiation of Ad-cells were strongly inhibited by Nc cells but promoted by SC cells. If Ad-cells were "separately" co-cultured with Nc cells without direct cell-cell interactions, adult differentiation was not inhibited but rather promoted, suggesting that Nc cells have two roles, one is a short-range suppression and another is a long-range promotion for adult myogenesis. Immunohistochemical analysis showed both notochord and spinal cord express the N-terminal Shh fragment throughout metamorphosis. The "spinal cord-promotion" and long-range effect by Nc cells on adult myogenesis is thus involved in Shh signaling, while the signaling concerning the short-range "Nc suppression" will be determined by future studies. Interestingly, these effects, "Nc suppression" and "SC promotion" were not observed for La-cells. Situation where the spinal cord/notochord cross-sectional ratio is quite larger in tadpole trunk than in the tail seems to contribute to trunk-specific promotion and tail-specific suppression of adult myogenesis during Xenopus metamorphosis.

  13. Distal axotomy enhances retrograde presynaptic excitability onto injured pyramidal neurons via trans-synaptic signaling.

    Science.gov (United States)

    Nagendran, Tharkika; Larsen, Rylan S; Bigler, Rebecca L; Frost, Shawn B; Philpot, Benjamin D; Nudo, Randolph J; Taylor, Anne Marion

    2017-09-20

    Injury of CNS nerve tracts remodels circuitry through dendritic spine loss and hyper-excitability, thus influencing recovery. Due to the complexity of the CNS, a mechanistic understanding of injury-induced synaptic remodeling remains unclear. Using microfluidic chambers to separate and injure distal axons, we show that axotomy causes retrograde dendritic spine loss at directly injured pyramidal neurons followed by retrograde presynaptic hyper-excitability. These remodeling events require activity at the site of injury, axon-to-soma signaling, and transcription. Similarly, directly injured corticospinal neurons in vivo also exhibit a specific increase in spiking following axon injury. Axotomy-induced hyper-excitability of cultured neurons coincides with elimination of inhibitory inputs onto injured neurons, including those formed onto dendritic spines. Netrin-1 downregulation occurs following axon injury and exogenous netrin-1 applied after injury normalizes spine density, presynaptic excitability, and inhibitory inputs at injured neurons. Our findings show that intrinsic signaling within damaged neurons regulates synaptic remodeling and involves netrin-1 signaling.Spinal cord injury can induce synaptic reorganization and remodeling in the brain. Here the authors study how severed distal axons signal back to the cell body to induce hyperexcitability, loss of inhibition and enhanced presynaptic release through netrin-1.

  14. Gender differences in psychological adjustment among spinal cord ...

    African Journals Online (AJOL)

    In the present study gender differences in psychological adjustment of Spinal Cord Injured (SCI) patients was studied. The sample of 70 SCI patients (35 male and 35 female) was selected from the National Institute of Rehabilitation Medicine (NIRM) Islamabad, Bagh and Muzafrabad, (Azad & Jammu Kashmir AJK).

  15. Spinal-cord injuries in Australian footballers, 1960-1985.

    Science.gov (United States)

    Taylor, T K; Coolican, M R

    1987-08-03

    A review of 107 footballers who suffered a spinal-cord injury between 1960 and 1985 has been undertaken. Since 1977, the number of such injuries in Rugby Union, Rugby League and Australian Rules has increased, from an average of about two injuries a year before 1977 to over eight injuries a year since then. Rugby Union is clearly the most dangerous game, particularly for schoolboys; all of the injuries in schoolboy games for this code have occurred since 1977. This study has shown that collision at scrum engagement, and not at scrum collapse, is the way in which the majority of scrum injuries are sustained. These injuries are largely preventable, and suggestions for rule changes are made. Half the injured players recovered to Frankel grades D or E. The financial entitlements of those injured were grossly inadequate; this warrants action. A national register for spinal-cord injuries from football should be established to monitor the effects of desirable rule changes in Rugby Union and Rugby League.

  16. A Comprehensive Analysis of the SRS-Schwab Adult Spinal Deformity Classification and Confounding Variables

    DEFF Research Database (Denmark)

    Hallager, Dennis Winge; Hansen, Lars Valentin; Dragsted, Casper Rokkjær

    2016-01-01

    STUDY DESIGN: Cross-sectional analyses on a consecutive, prospective cohort. OBJECTIVE: To evaluate the ability of the Scoliosis Research Society (SRS)-Schwab Adult Spinal Deformity Classification to group patients by widely used health-related quality-of-life (HRQOL) scores and examine possible...... to confounding. However, age group and aetiology had individual significant effects. CONCLUSION: The SRS-Schwab sagittal modifiers reliably grouped patients graded 0 versus + / +  + according to the most widely used HRQOL scores and the effects of increasing grade level on odds for worse ODI scores remained...... confounding variables. SUMMARY OF BACKGROUND DATA: The SRS-Schwab Adult Spinal Deformity Classification includes sagittal modifiers considered important for HRQOL and the clinical impact of the classification has been validated in patients from the International Spine Study Group database; however, equivocal...

  17. Improved Neural Regeneration with Olfactory Ensheathing Cell Inoculated PLGA Scaffolds in Spinal Cord Injury Adult Rats

    Directory of Open Access Journals (Sweden)

    Changxing Wang

    2017-03-01

    Full Text Available Background/Aims: Every year, around the world, between 250000 and 500000 people suffer from spinal cord injury (SCI. This study investigated the potential for poly (lactic-co-glycolic acid (PLGA complex inoculated with olfactory ensheathing cells (OECs to treat spinal cord injury in a rat model. Methods: OECs were identified by immunofluorescence based on the nerve growth factor receptor (NGFR p75. The Basso, Beattie, and Bresnahan (BBB score, together with an inclined plane (IP test were used to detect functional recovery. Nissl staining along with the luxol fast blue (LFB staining were independently employed to illustrate morphological alterations. More so, immunofluorescence labeling of the glial fibrillary acidic protein (GFAP and the microtubule-associated protein-2 (MAP-2, representing astrocytes and neurons respectively, were investigated at time points of weeks 2 and 8 post-operation. Results: The findings showed enhanced locomotor recovery, axon myelination and better protected neurons post SCI when compared with either PLGA or untreated groups (P < 0.05. Conclusion: PLGA complexes inoculated with OECs improve locomotor functional recovery in transected spinal cord injured rat models, which is most likely due to the fact it is conducive to a relatively benevolent microenvironment, has nerve protective effects, as well as the ability to enhance remyelination, via a promotion of cell differentiation and inhibition of astrocyte formation.

  18. Left–right coordination from simple to extreme conditions during split‐belt locomotion in the chronic spinal adult cat

    Science.gov (United States)

    Desrochers, Étienne; Thibaudier, Yann; Hurteau, Marie‐France; Dambreville, Charline

    2016-01-01

    Key points Coordination between the left and right sides is essential for dynamic stability during locomotion.The immature or neonatal mammalian spinal cord can adjust to differences in speed between the left and right sides during split‐belt locomotion by taking more steps on the fast side.We show that the adult mammalian spinal cord can also adjust its output so that the fast side can take more steps.During split‐belt locomotion, only certain parts of the cycle are modified to adjust left–right coordination, primarily those associated with swing onset.When the fast limb takes more steps than the slow limb, strong left–right interactions persist.Therefore, the adult mammalian spinal cord has a remarkable adaptive capacity for left–right coordination, from simple to extreme conditions. Abstract Although left–right coordination is essential for locomotion, its control is poorly understood, particularly in adult mammals. To investigate the spinal control of left–right coordination, a spinal transection was performed in six adult cats that were then trained to recover hindlimb locomotion. Spinal cats performed tied‐belt locomotion from 0.1 to 1.0 m s−1 and split‐belt locomotion with low to high (1:1.25–10) slow/fast speed ratios. With the left hindlimb stepping at 0.1 m s−1 and the right hindlimb stepping from 0.2 to 1.0 m s−1, 1:1, 1:2, 1:3, 1:4 and 1:5 left–right step relationships could appear. The appearance of 1:2+ relationships was not linearly dependent on the difference in speed between the slow and fast belts. The last step taken by the fast hindlimb displayed longer cycle, stance and swing durations and increased extensor activity, as the slow limb transitioned to swing. During split‐belt locomotion with 1:1, 1:2 and 1:3 relationships, the timing of stance onset of the fast limb relative to the slow limb and placement of both limbs at contact were invariant with increasing slow/fast speed ratios. In contrast, the timing of

  19. {sup 18}F-FDG PET/CT evaluation of children and young adults with suspected spinal fusion hardware infection

    Energy Technology Data Exchange (ETDEWEB)

    Bagrosky, Brian M. [University of Colorado School of Medicine, Department of Pediatric Radiology, Children' s Hospital Colorado, 12123 E. 16th Ave., Box 125, Aurora, CO (United States); University of Colorado School of Medicine, Department of Radiology, Division of Nuclear Medicine, Aurora, CO (United States); Hayes, Kari L.; Fenton, Laura Z. [University of Colorado School of Medicine, Department of Pediatric Radiology, Children' s Hospital Colorado, 12123 E. 16th Ave., Box 125, Aurora, CO (United States); Koo, Phillip J. [University of Colorado School of Medicine, Department of Radiology, Division of Nuclear Medicine, Aurora, CO (United States)

    2013-08-15

    Evaluation of the child with spinal fusion hardware and concern for infection is challenging because of hardware artifact with standard imaging (CT and MRI) and difficult physical examination. Studies using {sup 18}F-FDG PET/CT combine the benefit of functional imaging with anatomical localization. To discuss a case series of children and young adults with spinal fusion hardware and clinical concern for hardware infection. These people underwent FDG PET/CT imaging to determine the site of infection. We performed a retrospective review of whole-body FDG PET/CT scans at a tertiary children's hospital from December 2009 to January 2012 in children and young adults with spinal hardware and suspected hardware infection. The PET/CT scan findings were correlated with pertinent clinical information including laboratory values of inflammatory markers, postoperative notes and pathology results to evaluate the diagnostic accuracy of FDG PET/CT. An exempt status for this retrospective review was approved by the Institution Review Board. Twenty-five FDG PET/CT scans were performed in 20 patients. Spinal fusion hardware infection was confirmed surgically and pathologically in six patients. The most common FDG PET/CT finding in patients with hardware infection was increased FDG uptake in the soft tissue and bone immediately adjacent to the posterior spinal fusion rods at multiple contiguous vertebral levels. Noninfectious hardware complications were diagnosed in ten patients and proved surgically in four. Alternative sources of infection were diagnosed by FDG PET/CT in seven patients (five with pneumonia, one with pyonephrosis and one with superficial wound infections). FDG PET/CT is helpful in evaluation of children and young adults with concern for spinal hardware infection. Noninfectious hardware complications and alternative sources of infection, including pneumonia and pyonephrosis, can be diagnosed. FDG PET/CT should be the first-line cross-sectional imaging study in

  20. Pregnancy in spinal cord-injured women, a cohort study of 37 pregnancies in 25 women.

    Science.gov (United States)

    Le Liepvre, H; Dinh, A; Idiard-Chamois, B; Chartier-Kastler, E; Phé, V; Even, A; Robain, G; Denys, P

    2017-02-01

    A retrospective observational study. To describe specificities of pregnancy in a traumatic spinal cord-injured (SCI) population managed by a coordinated medical care team involving physical medicine and rehabilitation (PMR) physicians, urologists, infectious diseases' physicians, obstetricians and anaesthesiologists. NeuroUrology Department in a University Hospital, France. All consecutive SCI pregnant women managed between 2001 and 2014 were included. A preconceptional consultation was proposed whenever possible. Obstetrical and urological outcomes, delivery mode and complications were reported. Overall, thirty-seven pregnancies in 25 women, of a mean age of 32±4 years, were included. Thirty-five children were born alive (three miscarriages, a twin pregnancy) without complications except for a case of neonatal respiratory distress in premature twins born at 33 weeks. The mean birth weight was 2979±599 g. Twenty-one (57%) pregnancies benefited from preconceptional care. A weekly oral cyclic antibiotic programme was prescribed in 28 (75%) pregnancies. The main complications during pregnancy included pyelonephritis (30%), lower urinary tract infections (UTI) (32%), pressure sores (8.8%) and prematurity (12% deliveries before 37 weeks, with only one delivery before 36 weeks). Two patients suffered from autonomic dysreflexia, one with serious complication (brain haematoma). Caesarean sections were performed for 68% of deliveries (23/34) to prevent syringomyelia deterioration (n=10), stress urinary incontinence aggravation (n=3) or for obstetrical reasons (n=7). Mothers' and infants' outcomes were satisfying after pregnancy in SCI women, but required many adjustments. Pregnancy must be prepared by a preconceptional consultation, and managed by a multidisciplinary team involving specialists of neurological disability and pregnancy.

  1. Mini-open spinal column shortening for the treatment of adult tethered cord syndrome.

    Science.gov (United States)

    Safaee, Michael M; Winkler, Ethan A; Chou, Dean

    2017-10-01

    Tethered cord syndrome (TCS) is a challenging entity characterized by adhesions at the caudal spinal cord that prevent upward movement during growth and result in stretching of the cord with a concomitant constellation of neurologic symptoms. Although growth in height stops in adulthood, some patients still develop progressive symptoms; many underwent detethering as a child or adolescent, resulting in significant scar tissue and re-tethering. Recent strategies have focused on spinal column shortening to reduce tension on the spinal cord without exposing the previous de-tethering site. Mini-open and minimally invasive approaches avoid the large dissection and exposure associated with traditional approaches and are associated with reduced blood loss, shorter hospital stay, and similar outcomes when compared to conventional open approaches. We describe a technique for mini-open spinal column shortening. Using intraoperative navigation pedicle screws were placed at T10, T11, L1, and L2. A mini-open 3-column "egg shell" decancellation osteotomy of T12 was performed through a transpedicular approach with preservation of the superior and inferior endplates. This procedure was performed on a 28year old male with recurrent TCS and neurogenic bladder. Postoperative imaging showed a reduction in spinal column length of 1.5cm and evidence of decreased tension on the spinal cord. At last follow-up he was recovering well with improved urinary function. Spinal column shortening for adult TCS can be safely achieved through a mini-open approach. Future studies should compare the efficacy of this technique to both traditional de-tethering and open spinal column shortening. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Hypobaric spinal anesthesia in the operative management of orthopedic emergencies in geriatric patients.

    Science.gov (United States)

    Sidi, A; Pollak, D; Floman, Y; Davidson, J T

    1984-07-01

    Hypobaric spinal anesthesia was administered to 40 patients undergoing lower limb surgery. Twenty-nine of the patients were debilitated geriatric patients who presented with orthopedic emergencies, in most cases a fractured hip. Hypobaric spinal anesthesia was found to be a simple and safe procedure that provided adequate analgesia. Due to its inherent nature, hypobaric spinal anesthesia does not necessitate positioning of the patient on the injured, painful side (unlike hyperbaric spinal or epidural anesthesia) and, therefore, facilitates a smooth and painless transfer of the patient to the operating table. Complications encountered were similar to those following hyperbaric anesthesia.

  3. Evaluation of Avulsion-Induced Neuropathology in Rat Spinal Cords with 18F-FDG Micro-PET/CT.

    Directory of Open Access Journals (Sweden)

    Ze-Min Ling

    Full Text Available Brachial plexus root avulsion (BPRA leads to dramatic motoneuron death and glial reactions in the corresponding spinal segments at the late stage of injury. To protect spinal motoneurons, assessment of the affected spinal segments should be done at an earlier stage of the injury. In this study, we employed 18F-FDG small-animal PET/CT to assess the severity of BPRA-induced cervical spinal cord injuries. Adult Sprague-Dawley rats were randomly treated and divided into three groups: Av+NS (brachial plexus root avulsion (Av treated with normal saline, Av+GM1 (treated with monosialoganglioside, and control. At time points of 3 day (d, 1 week (w, 2 w, 4 w and 8 w post-injury, 18F-FDG micro-PET/CT scans and neuropathology assessments of the injured spinal roots, as well as the spinal cord, were performed. The outcomes of the different treatments were compared. The results showed that BPRA induced local bleeding and typical Wallerian degeneration of the avulsed roots accompanied by 18F-FDG accumulations at the ipsilateral cervical intervertebral foramen. BPRA-induced astrocyte reactions and overexpression of neuronal nitric oxide synthase in the motoneurons correlated with higher 18F-FDG uptake in the ipsilateral cervical spinal cord during the first 2 w post-injury. The GM1 treatment reduced BPRA-induced astrocyte reactions and inhibited the de novo nNOS expressions in spinal motoneurons. The GM1 treatment also protected spinal motoneurons from avulsion within the first 4 w post-injury. The data from this study suggest that 18F-FDG PET/CT could be used to assess the severity of BPRA-induced primary and secondary injuries in the spinal cord. Furthermore, GM1 is an effective drug for reducing primary and secondary spinal cord injuries following BPRA.

  4. Ergonomics intervention on an alternative design of a spinal board.

    Science.gov (United States)

    Zadry, Hilma Raimona; Susanti, Lusi; Rahmayanti, Dina

    2017-09-01

    A spinal board is the evacuation tool of first aid to help the injured spinal cord. The existing spinal board has several weaknesses, both in terms of user comfort and the effectiveness and efficiency of the evacuation process. This study designs an ergonomic spinal board using the quality function deployment approach. A preliminary survey was conducted through direct observation and interviews with volunteers from the Indonesian Red Cross. Data gathered were translated into a questionnaire and answered by 47 participants in West Sumatra. The results indicate that the selection of materials, the application of strap systems as well as the addition of features are very important in designing an ergonomic spinal board. The data were used in designing an ergonomic spinal board. The use of anthropometric data ensures that this product can accommodate safety and comfort when immobilized, as well as the flexibility and speed of the rescue evacuation process.

  5. Effect of melatonin on the functional recovery from experimental traumatic compression of the spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Schiaveto-de-Souza, A. [Departamento de Morfofisiologia, Universidade Federal do Mato Grosso do Sul, Campo Grande, MS (Brazil); Silva, C.A. da [Departamento de Morfologia,Estomatologia e Fisiologia, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Defino, H.L.A. [Departamento de Orthopedia e Traumatologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Bel, E.A.Del [Departamento de Morfologia,Estomatologia e Fisiologia, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2013-04-12

    Spinal cord injury is an extremely severe condition with no available effective therapies. We examined the effect of melatonin on traumatic compression of the spinal cord. Sixty male adult Wistar rats were divided into three groups: sham-operated animals and animals with 35 and 50% spinal cord compression with a polycarbonate rod spacer. Each group was divided into two subgroups, each receiving an injection of vehicle or melatonin (2.5 mg/kg, intraperitoneal) 5 min prior to and 1, 2, 3, and 4 h after injury. Functional recovery was monitored weekly by the open-field test, the Basso, Beattie and Bresnahan locomotor scale and the inclined plane test. Histological changes of the spinal cord were examined 35 days after injury. Motor scores were progressively lower as spacer size increased according to the motor scale and inclined plane test evaluation at all times of assessment. The results of the two tests were correlated. The open-field test presented similar results with a less pronounced difference between the 35 and 50% compression groups. The injured groups presented functional recovery that was more evident in the first and second weeks. Animals receiving melatonin treatment presented more pronounced functional recovery than vehicle-treated animals as measured by the motor scale or inclined plane. NADPH-d histochemistry revealed integrity of the spinal cord thoracic segment in sham-operated animals and confirmed the severity of the lesion after spinal cord narrowing. The results obtained after experimental compression of the spinal cord support the hypothesis that melatonin may be considered for use in clinical practice because of its protective effect on the secondary wave of neuronal death following the primary wave after spinal cord injury.

  6. Effect of melatonin on the functional recovery from experimental traumatic compression of the spinal cord

    International Nuclear Information System (INIS)

    Schiaveto-de-Souza, A.; Silva, C.A. da; Defino, H.L.A.; Bel, E.A.Del

    2013-01-01

    Spinal cord injury is an extremely severe condition with no available effective therapies. We examined the effect of melatonin on traumatic compression of the spinal cord. Sixty male adult Wistar rats were divided into three groups: sham-operated animals and animals with 35 and 50% spinal cord compression with a polycarbonate rod spacer. Each group was divided into two subgroups, each receiving an injection of vehicle or melatonin (2.5 mg/kg, intraperitoneal) 5 min prior to and 1, 2, 3, and 4 h after injury. Functional recovery was monitored weekly by the open-field test, the Basso, Beattie and Bresnahan locomotor scale and the inclined plane test. Histological changes of the spinal cord were examined 35 days after injury. Motor scores were progressively lower as spacer size increased according to the motor scale and inclined plane test evaluation at all times of assessment. The results of the two tests were correlated. The open-field test presented similar results with a less pronounced difference between the 35 and 50% compression groups. The injured groups presented functional recovery that was more evident in the first and second weeks. Animals receiving melatonin treatment presented more pronounced functional recovery than vehicle-treated animals as measured by the motor scale or inclined plane. NADPH-d histochemistry revealed integrity of the spinal cord thoracic segment in sham-operated animals and confirmed the severity of the lesion after spinal cord narrowing. The results obtained after experimental compression of the spinal cord support the hypothesis that melatonin may be considered for use in clinical practice because of its protective effect on the secondary wave of neuronal death following the primary wave after spinal cord injury

  7. Spinal-Cord-Injured Individual's Experiences of Having a Partner

    DEFF Research Database (Denmark)

    Angel, Sanne

    2015-01-01

    Having a partner is a strong factor in adaptation to the new life situation with a spinal cord injury (SCI). Still, more knowledge in detail about the partner's influences according to the experiences of individuals with SCI could contribute to the understanding of the situation after an injury. ...... and allowed SCI individuals the ability to self-realize. This promoted feelings of profound gratitude but also dependency. Thus, the SCI individual benefitted from the partner's support mentally and physically, which enabled a life that would not otherwise be possible....

  8. Local vascular adaptations after hybrid training in spinal cord-injured subjects.

    NARCIS (Netherlands)

    Thijssen, D.H.J.; Heesterbeek, P.J.C.; Kuppevelt, D. van; Duysens, J.E.J.; Hopman, M.T.E.

    2005-01-01

    PURPOSE: Studies investigating vascular adaptations in non-exercised areas during whole body exercise training show conflicting results. Individuals with spinal cord injury (SCI) provide a unique model to examine vascular adaptations in active tissue vs adjacent inactive areas. The purpose of this

  9. Bladder cancer mortality after spinal cord injury over 4 decades.

    Science.gov (United States)

    Nahm, Laura S; Chen, Yuying; DeVivo, Michael J; Lloyd, L Keith

    2015-06-01

    We estimate bladder cancer mortality in people with spinal cord injury compared to the general population. Data and statistics were retrieved from the National Spinal Cord Injury Statistical Center and the National Center for Health Statistics. The mortality experience of the 45,486 patients with traumatic spinal cord injury treated at a Spinal Cord Injury Model System or Shriners Hospital was compared to the general population using a standardized mortality ratio. The standardized mortality ratio data were further stratified by age, gender, race, time since injury and injury severity. Our study included 566,532 person-years of followup between 1960 and 2009, identified 10,575 deaths and categorized 99 deaths from bladder cancer. The expected number of deaths from bladder cancer would have been 14.8 if patients with spinal cord injury had the same bladder cancer mortality as the general population. Thus, the standardized mortality ratio is 6.7 (95% CI 5.4-8.1). Increased mortality risk from bladder cancer was observed for various ages, races and genders, as well as for those injured for 10 or more years and with motor complete injuries. Bladder cancer mortality was not significantly increased for ventilator users, those with motor incomplete injuries or those injured less than 10 years. Individuals with a spinal cord injury can potentially live healthier and longer by reducing the incidence and mortality of bladder cancer. Study findings highlight the need to identify at risk groups and contributing factors for bladder cancer death, leading to the development of prevention, screening and management strategies. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. Weight-bearing locomotion in the developing opossum, Monodelphis domestica following spinal transection: remodeling of neuronal circuits caudal to lesion.

    Science.gov (United States)

    Wheaton, Benjamin J; Noor, Natassya M; Whish, Sophie C; Truettner, Jessie S; Dietrich, W Dalton; Zhang, Moses; Crack, Peter J; Dziegielewska, Katarzyna M; Saunders, Norman R

    2013-01-01

    Complete spinal transection in the mature nervous system is typically followed by minimal axonal repair, extensive motor paralysis and loss of sensory functions caudal to the injury. In contrast, the immature nervous system has greater capacity for repair, a phenomenon sometimes called the infant lesion effect. This study investigates spinal injuries early in development using the marsupial opossum Monodelphis domestica whose young are born very immature, allowing access to developmental stages only accessible in utero in eutherian mammals. Spinal cords of Monodelphis pups were completely transected in the lower thoracic region, T10, on postnatal-day (P)7 or P28 and the animals grew to adulthood. In P7-injured animals regrown supraspinal and propriospinal axons through the injury site were demonstrated using retrograde axonal labelling. These animals recovered near-normal coordinated overground locomotion, but with altered gait characteristics including foot placement phase lags. In P28-injured animals no axonal regrowth through the injury site could be demonstrated yet they were able to perform weight-supporting hindlimb stepping overground and on the treadmill. When placed in an environment of reduced sensory feedback (swimming) P7-injured animals swam using their hindlimbs, suggesting that the axons that grew across the lesion made functional connections; P28-injured animals swam using their forelimbs only, suggesting that their overground hindlimb movements were reflex-dependent and thus likely to be generated locally in the lumbar spinal cord. Modifications to propriospinal circuitry in P7- and P28-injured opossums were demonstrated by changes in the number of fluorescently labelled neurons detected in the lumbar cord following tracer studies and changes in the balance of excitatory, inhibitory and neuromodulatory neurotransmitter receptors' gene expression shown by qRT-PCR. These results are discussed in the context of studies indicating that although

  11. Weight-bearing locomotion in the developing opossum, Monodelphis domestica following spinal transection: remodeling of neuronal circuits caudal to lesion.

    Directory of Open Access Journals (Sweden)

    Benjamin J Wheaton

    Full Text Available Complete spinal transection in the mature nervous system is typically followed by minimal axonal repair, extensive motor paralysis and loss of sensory functions caudal to the injury. In contrast, the immature nervous system has greater capacity for repair, a phenomenon sometimes called the infant lesion effect. This study investigates spinal injuries early in development using the marsupial opossum Monodelphis domestica whose young are born very immature, allowing access to developmental stages only accessible in utero in eutherian mammals. Spinal cords of Monodelphis pups were completely transected in the lower thoracic region, T10, on postnatal-day (P7 or P28 and the animals grew to adulthood. In P7-injured animals regrown supraspinal and propriospinal axons through the injury site were demonstrated using retrograde axonal labelling. These animals recovered near-normal coordinated overground locomotion, but with altered gait characteristics including foot placement phase lags. In P28-injured animals no axonal regrowth through the injury site could be demonstrated yet they were able to perform weight-supporting hindlimb stepping overground and on the treadmill. When placed in an environment of reduced sensory feedback (swimming P7-injured animals swam using their hindlimbs, suggesting that the axons that grew across the lesion made functional connections; P28-injured animals swam using their forelimbs only, suggesting that their overground hindlimb movements were reflex-dependent and thus likely to be generated locally in the lumbar spinal cord. Modifications to propriospinal circuitry in P7- and P28-injured opossums were demonstrated by changes in the number of fluorescently labelled neurons detected in the lumbar cord following tracer studies and changes in the balance of excitatory, inhibitory and neuromodulatory neurotransmitter receptors' gene expression shown by qRT-PCR. These results are discussed in the context of studies indicating

  12. Steadiness of Spinal Regions during Single-Leg Standing in Older Adults with and without Chronic Low Back Pain.

    Directory of Open Access Journals (Sweden)

    Yi-Liang Kuo

    Full Text Available The aims of this study were to compare the steadiness index of spinal regions during single-leg standing in older adults with and without chronic low back pain (LBP and to correlate measurements of steadiness index with the performance of clinical balance tests. Thirteen community-dwelling older adults (aged 55 years or above with chronic LBP and 13 age- and gender-matched asymptomatic volunteers participated in this study. Data collection was conducted in a university research laboratory. Measurements were steadiness index of spinal regions (trunk, thoracic spine, lumbar spine, and pelvis during single-leg standing including relative holding time (RHT and relative standstill time (RST, and clinical balance tests (timed up and go test and 5-repetition sit to stand test. The LBP group had a statistically significantly smaller RHT than the control group, regardless of one leg stance on the painful or non-painful sides. The RSTs on the painful side leg in the LBP group were not statistically significantly different from the average RSTs of both legs in the control group; however, the RSTs on the non-painful side leg in the LBP group were statistically significantly smaller than those in the control group for the trunk, thoracic spine, and lumbar spine. No statistically significant intra-group differences were found in the RHTs and RSTs between the painful and non-painful side legs in the LBP group. Measurements of clinical balance tests also showed insignificant weak to moderate correlations with steadiness index. In conclusion, older adults with chronic LBP demonstrated decreased spinal steadiness not only in the symptomatic lumbar spine but also in the other spinal regions within the kinetic chain of the spine. When treating older adults with chronic LBP, clinicians may also need to examine their balance performance and spinal steadiness during balance challenging tests.

  13. Patient-focused goal planning process and outcome after spinal cord injury rehabilitation: quantitative and qualitative audit.

    Science.gov (United States)

    Byrnes, Michelle; Beilby, Janet; Ray, Patricia; McLennan, Renee; Ker, John; Schug, Stephan

    2012-12-01

    To evaluate the process and outcome of a multidisciplinary inpatient goal planning rehabilitation programme on physical, social and psychological functioning for patients with spinal cord injury. Clinical audit: quantitative and qualitative analyses. Specialist spinal injury unit, Perth, Australia. Consecutive series of 100 newly injured spinal cord injury inpatients. MAIN MEASURE(S): The Needs Assessment Checklist (NAC), patient-focused goal planning questionnaire and goal planning progress form. The clinical audit of 100 spinal cord injured patients revealed that 547 goal planning meetings were held with 8531 goals stipulated in total. Seventy-five per cent of the goals set at the first goal planning meeting were achieved by the second meeting and the rate of goal achievements at subsequent goal planning meetings dropped to 56%. Based on quantitative analysis of physical, social and psychological functioning, the 100 spinal cord injury patients improved significantly from baseline to discharge. Furthermore, qualitative analysis revealed benefits consistently reported by spinal cord injury patients of the goal planning rehabilitation programme in improvements to their physical, social and psychological adjustment to injury. The findings of this clinical audit underpin the need for patient-focused goal planning rehabilitation programmes which are tailored to the individual's needs and involve a comprehensive multidisciplinary team.

  14. Cerebral activation is correlated to regional atrophy of the spinal cord and functional motor disability in spinal cord injured individuals

    DEFF Research Database (Denmark)

    Lundell, Henrik; Christensen, Mark Schram; Barthélemy, Dorothy

    2011-01-01

    Recovery of function following lesions in the nervous system requires adaptive changes in surviving circuitries. Here we investigate whether changes in cerebral activation are correlated to spinal cord atrophy and recovery of functionality in individuals with incomplete spinal cord injury (SCI). 19...... hand and the functional ability of the SCI participants measured by the clinical motor score on the other. There was no significant correlation between activation in any other cerebral area and the motor score. Activation in ipsilateral somatosensory cortex (S1), M1 and PMC was negatively correlated...... to the width of the spinal cord in the left-right direction, where the corticospinal tract is located, but not in the antero-posterior direction. There was a tendency for a negative correlation between cerebral activation in ipsilateral S1, M1 and PMC and the amplitude of motor evoked potentials...

  15. Spinal endoscopy combined with selective CT myelography for dural closure of the spinal dural defect with superficial siderosis: technical note.

    Science.gov (United States)

    Arishima, Hidetaka; Higashino, Yoshifumi; Yamada, Shinsuke; Akazawa, Ayumi; Arai, Hiroshi; Tsunetoshi, Kenzo; Matsuda, Ken; Kodera, Toshiaki; Kitai, Ryuhei; Awara, Kousuke; Kikuta, Ken-Ichiro

    2018-01-01

    The authors describe a new procedure to detect the tiny dural hole in patients with superficial siderosis (SS) and CSF leakage using a coronary angioscope system for spinal endoscopy and selective CT myelography using a spinal drainage tube. Under fluoroscopy, surgeons inserted the coronary angioscope into the spinal subarachnoid space, similar to the procedure of spinal drainage, and slowly advanced it to the cervical spine. The angioscope clearly showed the small dural hole and injured arachnoid membrane. One week later, the spinal drainage tube was inserted, and the tip of the drainage tube was located just below the level of the dural defect found by the spinal endoscopic examination. This selective CT myelography clarifies the location of the dural defect. During surgery, the small dural hole could be easily located, and it was securely sutured. It is sometimes difficult to detect the actual location of the small dural hole even with thin-slice MRI or dynamic CT myelography in patients with SS. The use of a coronary angioscope for the spinal endoscopy combined with selective CT myelography may provide an effective examination to assess dural closure of the spinal dural defect with SS in cases without obvious dural defects on conventional imaging.

  16. Challenges in comprehensive management of spinal cord injury in India and in the Asian Spinal Cord network region: findings of a survey of experts, patients and consumers.

    Science.gov (United States)

    Chhabra, H S; Sharma, S; Arora, M

    2018-01-01

    Online survey. To understand the prevailing scenario of the comprehensive management of spinal cord injuries (SCI) in India and in the Asian Spinal Cord Network (ASCoN) region, especially with a view to document the challenges faced and its impact. Indian Spinal Injuries Centre. A questionnaire was designed which covered various aspects of SCI management. Patients, consumers (spinal injured patients discharged since at least 1 year) and experts in SCI management from different parts of India and the ASCoN region were approached to complete the survey. Sixty patients, 66 consumers and 34 experts completed the survey. Difference of opinion was noticed among the three groups. Disposable Nelaton catheters were used by 57% consumers and 47% patients. For reusable catheter, 31% experts recommended processing with soap and running water and 45% recommended clean cotton cloth bag for storage. Pre-hospital care and community inclusion pose the biggest challenges in management of SCI. More than 75% of SCI faced problems of access and mobility in the community. Awareness about SCI, illiteracy and inadequate patient education are the most important factors hindering pre- and in-hospital care. Inadequate physical as well as vocational rehabilitation and financial barriers are thought to be the major factors hindering integration of spinal injured into mainstream society. Strong family support helped in rehabilitation. Our study brought out that SCI in India and ASCoN region face numerous challenges that affect access to almost all aspects of comprehensive management of SCI.

  17. Spontaneous development of full weight-supported stepping after complete spinal cord transection in the neonatal opossum, Monodelphis domestica.

    Directory of Open Access Journals (Sweden)

    Benjamin J Wheaton

    Full Text Available Spinal cord trauma in the adult nervous system usually results in permanent loss of function below the injury level. The immature spinal cord has greater capacity for repair and can develop considerable functionality by adulthood. This study used the marsupial laboratory opossum Monodelphis domestica, which is born at a very early stage of neural development. Complete spinal cord transection was made in the lower-thoracic region of pups at postnatal-day 7 (P7 or P28, and the animals grew to adulthood. Injury at P7 resulted in a dense neuronal tissue bridge that connected the two ends of the cord; retrograde neuronal labelling indicated that supraspinal and propriospinal innervation spanned the injury site. This repair was associated with pronounced behavioural recovery, coordinated gait and an ability to use hindlimbs when swimming. Injury at P28 resulted in a cyst-like cavity encased in scar tissue forming at the injury site. Using retrograde labelling, no labelled brainstem or propriospinal neurons were found above the lesion, indicating that detectable neuronal connectivity had not spanned the injury site. However, these animals could use their hindlimbs to take weight-supporting steps but could not use their hindlimbs when swimming. White matter, demonstrated by Luxol Fast Blue staining, was present in the injury site of P7- but not P28-injured animals. Overall, these studies demonstrated that provided spinal injury occurs early in development, regrowth of supraspinal innervation is possible. This repair appears to lead to improved functional outcomes. At older ages, even without detectable axonal growth spanning the injury site, substantial development of locomotion was still possible. This outcome is discussed in conjunction with preliminary findings of differences in the local propriospinal circuits following spinal cord injury (demonstrated with fluororuby labelling, which may underlie the weight bearing locomotion observed in the

  18. Necrosulfonamide Attenuates Spinal Cord Injury via Necroptosis Inhibition.

    Science.gov (United States)

    Wang, Yongxiang; Wang, Jingcheng; Wang, Hua; Feng, Xinmin; Tao, Yuping; Yang, Jiandong; Cai, Jun

    2018-03-31

    Spinal cord injury (SCI) is a serious trauma without efficient treatment currently. Necroptosis can be blocked post injury by special inhibitors. This study is to investigate the effects, mechanism, and potential benefit of necrosulfonamide (NSA) for SCI therapy. Pathologic condition was detected using hematoxylin-eosin staining on injured spinal cord and other major organs. Necroptosis-related factors-RIP1, RIP3, and MLKL-were detected using Western blot. Detections on mitochondrial functions such as adenosine triphosphate generation and activities of superoxide dismutase and caspase-3 were also performed. Finally, ethologic performance was detected using a 21-point open-field locomotion test. Reduced lesions and protected neurons were found in the injured spinal cord after treatment with NSA using hematoxylin-eosin staining for pathologic detection. No obvious toxicity on rat liver, kidney, heart, and spleen was detected. Rather than RIP1 and RIP3, MLKL was significantly inhibited by the NSA using Western blot detection. Adenosine triphosphate generation was obviously decreased post injury but slightly increased after the NSA treatment, especially 24 hours post injury. No significant changes were found on activities of superoxide dismutase and caspase-3 after the treatment of NSA. Ethologic performance was significantly improved using a 21-point, open-field locomotion test. Our research indicates NSA attenuates the spinal cord injury via necroptosis inhibition. It might be a potential and safe chemical benefit for SCI therapy. To our knowledge, this is the first study on the effects of NSA as treatment of traumatic SCI. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Nerve growth factor delivery by ultrasound-mediated nanobubble destruction as a treatment for acute spinal cord injury in rats

    Science.gov (United States)

    Song, Zhaojun; Wang, Zhigang; Shen, Jieliang; Xu, Shengxi; Hu, Zhenming

    2017-01-01

    Background Spinal cord injuries (SCIs) can cause severe disability or death. Treatment options include surgical intervention, drug therapy, and stem cell transplantation. However, the efficacy of these methods for functional recovery remains unsatisfactory. Purpose This study was conducted to explore the effect of ultrasound (US)-mediated destruction of poly(lactic-co-glycolic acid) (PLGA) nanobubbles (NBs) expressing nerve growth factor (NGF) (NGF/PLGA NBs) on nerve regeneration in rats following SCI. Materials and methods Adult male Sprague Dawley rats were randomly divided into four treatment groups after Allen hit models of SCI were established. The groups were normal saline (NS) group, NGF and NBs group, NGF and US group, and NGF/PLGA NBs and US group. Histological changes after SCI were observed by hematoxylin and eosin staining. Neuron viability was determined by Nissl staining. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling staining was used to examine cell apoptosis. NGF gene and protein expressions were detected by quantitative reverse transcription polymerase chain reaction and Western blotting. Green fluorescent protein expression in the spinal cord was examined using an inverted fluorescence microscope. The recovery of neural function was determined using the Basso, Beattie, and Bresnahan test. Results NGF therapy using US-mediated NGF/PLGA NBs destruction significantly increased NGF expression, attenuated histological injury, decreased neuron loss, inhibited neuronal apoptosis in injured spinal cords, and increased BBB scores in rats with SCI. Conclusion US-mediated NGF/PLGA NBs destruction effectively transfects the NGF gene into target tissues and has a significant effect on the injured spinal cord. The combination of US irradiation and gene therapy through NGF/PLGA NBs holds great promise for the future of nanomedicine and the development of noninvasive treatment options for SCI and other diseases. PMID:28280337

  20. Prevention of urinary tract infection in six spinal cord-injured pregnant women who gave birth to seven children under a weekly oral cyclic antibiotic program.

    Science.gov (United States)

    Salomon, Jérôme; Schnitzler, Alexis; Ville, Yves; Laffont, Isabelle; Perronne, Christian; Denys, Pierre; Bernard, Louis

    2009-05-01

    Pregnancies in spinal cord-injured (SCI) patients present unique clinical challenges. Because of the neurogenic bladder and the use of intermittent catheterization, chronic bacteriuria and recurrent urinary tract infection (UTI) is common. During pregnancy the prevalence of UTI increases dramatically. Recurrent UTI requires multiple courses of antibiotics and increases the risks of abortion, prematurity, and low birth weight. A weekly oral cyclic antibiotic (WOCA) program was recently described for the prevention of UTI in SCI patients. To test the impact of WOCA in six SCI pregnant women (four paraplegic, two tetraplegic). This was a prospective observational study. WOCA consists of the alternate administration of one of two antibiotics once per week. We observed a significant reduction of UTI (6 UTI/patient/year before pregnancy to 0.4 during pregnancy and under WOCA; pUTI prophylaxis in SCI pregnant women.

  1. Development of spinal deformities in Atlantic salmon and Arctic charr fed diets supplemented with oxytetracycline

    International Nuclear Information System (INIS)

    Toften, H.; Jobling, M.

    1996-01-01

    Some individuals within populations of Atlantic salmon Salmo salar and Arctic charr Salvelinus alpinus fed diets supplemented with oxytetracycline (OTC) developed spinal deformations. Possible differences in feed intake and growth of spinally deformed fish relative to fish without any deformities were investigated. Amongst Atlantic salmon, 17% of the fish fed OTC-supplemented feed developed spinal fractures, whereas none of the fish receiving the basic feed did so. Despite deformation of the spinal column, the injured fish continued to feed and grow, but at lower rates than unaffected individuals. In contrast to Atlantic salmon, Arctic charr showed no signs of spinal fractures at any time during the 65-day experiment

  2. Development of spinal deformities in Atlantic salmon and Arctic charr fed diets supplemented with oxytetracycline

    Energy Technology Data Exchange (ETDEWEB)

    Toften, H.; Jobling, M. [Norwegian Institute of Fisheries and Aquaculture, N-9005 Tromsoe (Norway)

    1996-07-01

    Some individuals within populations of Atlantic salmon Salmo salar and Arctic charr Salvelinus alpinus fed diets supplemented with oxytetracycline (OTC) developed spinal deformations. Possible differences in feed intake and growth of spinally deformed fish relative to fish without any deformities were investigated. Amongst Atlantic salmon, 17% of the fish fed OTC-supplemented feed developed spinal fractures, whereas none of the fish receiving the basic feed did so. Despite deformation of the spinal column, the injured fish continued to feed and grow, but at lower rates than unaffected individuals. In contrast to Atlantic salmon, Arctic charr showed no signs of spinal fractures at any time during the 65-day experiment.

  3. Understanding physical activity in spinal cord injury rehabilitation: translating and communicating research through stories.

    Science.gov (United States)

    Smith, Brett; Papathomas, Anthony; Martin Ginis, Kathleen A; Latimer-Cheung, Amy E

    2013-01-01

    The purpose of this article is to develop an evidence-based resource for knowing and communicating the complexities involved for both males and females in implementing and sustaining a physically active lifestyle shortly after spinal cord injury (SCI). Synthesizing a set of qualitative and quantitative studies with over 500 spinal cord injured people, the article represents research utilizing the genre of ethnographic creative non-fiction. This genre of representation holds enormous potential for researchers in terms of disseminating their findings to diverse audiences beyond the academy, and having real impact. The ethnographic creative non-fictions show together for the first time the barriers, determinants, benefits, trajectories, emotions, fears, preferred methods and messengers for delivering important physical activity information to men and women with a SCI. The article contributes to knowledge by showing the embodied complexities involved when in rehabilitation for both males and females in implementing and sustaining a physically active lifestyle shortly after SCI. It also makes a contribution to practice by providing researchers, health care professionals and disability user-groups with a theory and evidence based resource to assist in informing, teaching and enabling people living with SCI to initiate and maintain a physically active lifestyle. Stories may be a highly effective tool to communicate with and to influence spinal cord injured people's activity. The findings of this research showed the many benefits and barriers to developing and sustaining a physically active lifestyle shortly after spinal cord injury. The preferred methods and messengers for delivering physical activity information as well as the activity types, intensities and durations of physical activity for men and women were also shown. Within rehabilitation, spinal cord injured people need to be offered accessible knowledge about how to implement and sustain a physically active

  4. Local injection of Lenti-Olig2 at lesion site promotes functional recovery of spinal cord injury in rats.

    Science.gov (United States)

    Tan, Bo-Tao; Jiang, Long; Liu, Li; Yin, Ying; Luo, Ze-Ru-Xin; Long, Zai-Yun; Li, Sen; Yu, Le-Hua; Wu, Ya-Min; Liu, Yuan

    2017-06-01

    Olig2 is one of the most critical factors during CNS development, which belongs to b-HLH transcription factor family. Previous reports have shown that Olig2 regulates the remyelination processes in CNS demyelination diseases models. However, the role of Olig2 in contusion spinal cord injury (SCI) and the possible therapeutic effects remain obscure. This study aims to investigate the effects of overexpression Olig2 by lentivirus on adult spinal cord injury rats. Lenti-Olig2 expression and control Lenti-eGFP vectors were prepared, and virus in a total of 5 μL (10 8 TU/mL) was locally injected into the injured spinal cord 1.5 mm rostral and caudal near the epicenter. Immunostaining, Western blot, electron microscopy, and CatWalk analyzes were employed to investigate the effects of Olig2 on spinal cord tissue repair and functional recovery. Injection of Lenti-Olig2 significantly increased the number of oligodendrocytes lineage cells and enhanced myelination after SCI. More importantly, the introduction of Olig2 greatly improved hindlimb locomotor performances. Other oligodendrocyte-related transcription factors, which were downregulated or upregulated after injury, were reversed by Olig2 induction. Our findings provided the evidence that overexpression Olig2 promotes myelination and locomotor recovery of contusion SCI, which gives us more understanding of Olig2 on spinal cord injury treatment. © 2017 John Wiley & Sons Ltd.

  5. Spinal Trauma is Never without Sin: A Tetraplegia Patient Presented Without any Symptoms

    OpenAIRE

    EFEOGLU, Melis; AKOGLU, Haldun; AKOGLU, Tayfun; EROGLU, Serkan Emre; ONUR, Ozge Ecmel; DENIZBASI, Arzu

    2016-01-01

    SUMMARY: Spinal cord injuries are amongst the most dangerous injuries, leading to high mortality and morbidity. Injured patients are occasionally faced with life-threatening complications and quality-of-life changing neurological deficits. Thoracic and cervical spinal segments are the most effected sites of injury and a wide range of complications including paraplegia, respiratory and cardiovascular compromise secondary to autonomic dysfunction or tetraplegia may ensue. We aim to draw attenti...

  6. Functional electrical stimulation-assisted walking for persons with incomplete spinal injuries

    DEFF Research Database (Denmark)

    Ladouceur, M.; Barbeau, H.

    2000-01-01

    This study investigated the changes in maximal overground walking speed (MOWS) that occurred during; walking training with a functional electrical stimulation (FES) orthosis by chronic spinal cord injured persons with incomplete motor function loss. The average walking: speed over a distance of 10...

  7. Imaging of infectious spinal disorders in children and adults

    Energy Technology Data Exchange (ETDEWEB)

    James, S.L.J. [Department of Radiology, Royal Orthopaedic Hospital, Birmingham B31 2AP (United Kingdom)]. E-mail: jamesslj@email.com; Davies, A.M. [Department of Radiology, Royal Orthopaedic Hospital, Birmingham B31 2AP (United Kingdom)]. E-mail: wendy.turner@roh.nhs.uk

    2006-04-15

    The aim of this review article is to outline the imaging of infectious disorders of the spine in adults and children. The clinical presentation, potential routes of infection and the pathogens commonly identified are discussed. The value of different imaging modalities in the diagnosis of spinal infection is presented including radiographic, CT, MR imaging and Nuclear Medicine including PET. The use of image guided techniques for diagnosis and subsequent treatment is briefly covered. The major differential diagnoses of infectious disorders of the spine are identified and contrasted with the typical findings in infection. The use of follow up imaging is evaluated.

  8. Local delivery of thyroid hormone enhances oligodendrogenesis and myelination after spinal cord injury

    Science.gov (United States)

    Shultz, Robert B.; Wang, Zhicheng; Nong, Jia; Zhang, Zhiling; Zhong, Yinghui

    2017-06-01

    Objective. Traumatic spinal cord injury (SCI) causes apoptosis of myelin-forming oligodendrocytes (OLs) and demyelination of surviving axons, resulting in conduction failure. Remyelination of surviving denuded axons provides a promising therapeutic target for spinal cord repair. While cell transplantation has demonstrated efficacy in promoting remyelination and functional recovery, the lack of ideal cell sources presents a major obstacle to clinical application. The adult spinal cord contains oligodendrocyte precursor cells and multipotent neural stem/progenitor cells that have the capacity to differentiate into mature, myelinating OLs. However, endogenous oligodendrogenesis and remyelination processes are limited by the upregulation of remyelination-inhibitory molecules in the post-injury microenvironment. Multiple growth factors/molecules have been shown to promote OL differentiation and myelination. Approach. In this study we screened these therapeutics and found that 3, 3‧, 5-triiodothyronine (T3) is the most effective in promoting oligodendrogenesis and OL maturation in vitro. However, systemic administration of T3 to achieve therapeutic doses in the injured spinal cord is likely to induce hyperthyroidism, resulting in serious side effects. Main results. In this study we developed a novel hydrogel-based drug delivery system for local delivery of T3 to the injury site without eliciting systemic toxicity. Significance. Using a clinically relevant cervical contusion injury model, we demonstrate that local delivery of T3 at doses comparable to safe human doses promoted new mature OL formation and myelination after SCI.

  9. Effect of melatonin on the functional recovery from experimental traumatic compression of the spinal cord

    Directory of Open Access Journals (Sweden)

    A. Schiaveto-de-Souza

    2013-12-01

    Full Text Available Spinal cord injury is an extremely severe condition with no available effective therapies. We examined the effect of melatonin on traumatic compression of the spinal cord. Sixty male adult Wistar rats were divided into three groups: sham-operated animals and animals with 35 and 50% spinal cord compression with a polycarbonate rod spacer. Each group was divided into two subgroups, each receiving an injection of vehicle or melatonin (2.5 mg/kg, intraperitoneal 5 min prior to and 1, 2, 3, and 4 h after injury. Functional recovery was monitored weekly by the open-field test, the Basso, Beattie and Bresnahan locomotor scale and the inclined plane test. Histological changes of the spinal cord were examined 35 days after injury. Motor scores were progressively lower as spacer size increased according to the motor scale and inclined plane test evaluation at all times of assessment. The results of the two tests were correlated. The open-field test presented similar results with a less pronounced difference between the 35 and 50% compression groups. The injured groups presented functional recovery that was more evident in the first and second weeks. Animals receiving melatonin treatment presented more pronounced functional recovery than vehicle-treated animals as measured by the motor scale or inclined plane. NADPH-d histochemistry revealed integrity of the spinal cord thoracic segment in sham-operated animals and confirmed the severity of the lesion after spinal cord narrowing. The results obtained after experimental compression of the spinal cord support the hypothesis that melatonin may be considered for use in clinical practice because of its protective effect on the secondary wave of neuronal death following the primary wave after spinal cord injury.

  10. The recovery of 5-HT transporter and 5-HT immunoreactivity in injured rat spinal cord.

    Science.gov (United States)

    Saruhashi, Yasuo; Matsusue, Yoshitaka; Fujimiya, Mineko

    2009-09-01

    Experimental spinal cord injury. To determine the role of serotonin (5-HT) and 5-HT transporter in recovery from spinal cord injury. We examined 5-HT and 5-HT transporter of spinal cord immunohistologically and assessed locomotor recovery after extradural compression at the thoracic (T8) spinal cord in 21 rats. Eighteen rats had laminectomy and spinal cord injury, while the remaining three rats received laminectomy only. All rats were evaluated every other day for 4 weeks, using a 0-14 point scale open field test. Extradural compression markedly reduced mean hindlimbs scores from 14 to 1.5 +/- 2.0 (mean +/- standard error of mean). The rats recovered apparently normal walking by 4 weeks. The animals were perfused with fixative 1-3 days, 1, 2 and 4 weeks (three rats in each) after a spinal cord injury. The 5-HT transporter immunohistological study revealed a marked reduction of 5-HT transporter-containing terminals by 1 day after injury. By 4 weeks after injury, 5-HT transporter immunoreactive terminals returned to the control level. The 5-HT immunohistological study revealed a reduction of 5-HT-containing terminals by 1 week after injury. By 4 weeks after injury, 5-HT immunoreactive fibers and terminals returned to the control level. We estimated the recovery of 5-HT transporter and 5-HT neural elements in lumbosacral ventral horn by ranking 5-HT transporter and 5-HT staining intensity and counting 5-HT and 5-HT transporter terminals. The return of 5-HT transporter and 5-HT immunoreactivity of the lumbosacral ventral horn correlated with locomotor recovery, while 5-HT transporter showed closer relationship with locomotor recovery than 5-HT. The presence of 5-HT transporter indicates that the 5-HT fibers certainly function. This study shows that return of the function of 5-HT fibers predict the time course and extent of locomotory recovery after thoracic spinal cord injury.

  11. Self-concept and sexuality of spinal cord injured women.

    Science.gov (United States)

    Fitting, M D; Salisbury, S; Davies, N H; Mayclin, D K

    1978-03-01

    Differences in perceived self-concept and sexual response before and after spinal cord injury were examined. Twenty-four women between the ages of 20 and 40 completed a questionnaire and participated in a brief taped interview. Most of the women viewed themselves as very or somewhat attractive and had been involved in a sexual relationship since injury. The majority viewed sexual relationships as very enjoyable, although many commented that changes in bowel and bladder function had inhibited sexual expression. The need for more effective sexual counseling was highlighted. A trend was noted for an interrelationship between sexuality and self-concept in adapting to acquired disability.

  12. Spinal Cord Preparation from Adult Red-eared Turtles for Electrophysiological Recordings during Motor Activity

    DEFF Research Database (Denmark)

    Petersen, Peter Christian Hvidberg; Berg, Rune W.

    2017-01-01

    systems using other animals. The high resistance to anoxia allows for investigation of the fully developed and adult spinal circuitry, as opposed to mammals, which are sensitive to anoxia and where using neonates are often required to remedy the problems. The turtle is mechanically stable and natural...

  13. Spontaneous recovery of locomotion induced by remaining fibers after spinal cord transection in adult rats.

    Science.gov (United States)

    You, Si-Wei; Chen, Bing-Yao; Liu, Hui-Ling; Lang, Bing; Xia, Jie-Lai; Jiao, Xi-Ying; Ju, Gong

    2003-01-01

    A major issue in analysis of experimental results after spinal cord injury is spontaneous functional recovery induced by remaining nerve fibers. The authors investigated the relationship between the degree of locomotor recovery and the percentage and location of the fibers that spared spinal cord transection. The spinal cords of 12 adult rats were transected at T9 with a razor blade, which often resulted in sparing of nerve fibers in the ventral spinal cord. The incompletely-transected animals were used to study the degree of spontaneous recovery of hindlimb locomotion, evaluated with the BBB rating scale, in correlation to the extent and location of the remaining fibers. Incomplete transection was found in the ventral spinal cord in 42% of the animals. The degree of locomotor recovery was highly correlated with the percentage of the remaining fibers in the ventral and ventrolateral funiculi. In one of the rats, 4.82% of remaining fibers in unilateral ventrolateral funiculus were able to sustain a certain recovery of locomotion. Less than 5% of remaining ventrolateral white matter is sufficient for an unequivocal motor recovery after incomplete spinal cord injury. Therefore, for studies with spinal cord transection, the completeness of sectioning should be carefully checked before any conclusion can be reached. The fact that the degree of locomotor recovery is correlated with the percentage of remaining fibers in the ventrolateral spinal cord, exclusive of most of the descending motor tracts, may imply an essential role of propriospinal connections in the initiation of spontaneous locomotor recovery.

  14. An ex vivo spinal cord injury model to study ependymal cells in adult mouse tissue.

    Science.gov (United States)

    Fernandez-Zafra, Teresa; Codeluppi, Simone; Uhlén, Per

    2017-08-15

    Traumatic spinal cord injury is characterized by an initial cell loss that is followed by a concerted cellular response in an attempt to restore the damaged tissue. Nevertheless, little is known about the signaling mechanisms governing the cellular response to injury. Here, we have established an adult ex vivo system that exhibits multiple hallmarks of spinal cord injury and allows the study of complex processes that are difficult to address using animal models. We have characterized the ependymal cell response to injury in this model system and found that ependymal cells can become activated, proliferate, migrate out of the central canal lining and differentiate in a manner resembling the in vivo situation. Moreover, we show that these cells respond to external adenosine triphosphate and exhibit spontaneous Ca 2+ activity, processes that may play a significant role in the regulation of their response to spinal cord injury. This model provides an attractive tool to deepen our understanding of the ependymal cell response after spinal cord injury, which may contribute to the development of new treatment options for spinal cord injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The lumbar lordosis index: a new ratio to detect spinal malalignment with a therapeutic impact for sagittal balance correction decisions in adult scoliosis surgery.

    Science.gov (United States)

    Boissière, Louis; Bourghli, Anouar; Vital, Jean-Marc; Gille, Olivier; Obeid, Ibrahim

    2013-06-01

    Sagittal malalignment is frequently observed in adult scoliosis. C7 plumb line, lumbar lordosis and pelvic tilt are the main factors to evaluate sagittal balance and the need of a vertebral osteotomy to correct it. We described a ratio: the lumbar lordosis index (ratio lumbar lordosis/pelvic incidence) (LLI) and analyzed its relationships with spinal malalignment and vertebral osteotomies. 53 consecutive patients with a surgical adult scoliosis had preoperative and postoperative full spine EOS radiographies to measure spino-pelvic parameters and LLI. The lack of lordosis was calculated after prediction of theoretical lumbar lordosis. Correlation analysis between the different parameters was performed. All parameters were correlated with spinal malalignment but LLI is the most correlated parameter (r = -0.978). It is also the best parameter in this study to predict the need of a spinal osteotomy (r = 1 if LLI <0.5). LLI is a statistically validated parameter for sagittal malalignment analysis. It can be used as a mathematical tool to detect spinal malalignment in adult scoliosis and guides the surgeon decision of realizing a vertebral osteotomy for adult scoliosis sagittal correction. It can be used as well for the interpretation of clinical series in adult scoliosis.

  16. X-ray phase-contrast computed tomography visualizes the microstructure and degradation profile of implanted biodegradable scaffolds after spinal cord injury

    Energy Technology Data Exchange (ETDEWEB)

    Takashima, Kenta, E-mail: takashima-k@med.tohoku.ac.jp [Tohoku University Graduate School of Medicine, Sendai (Japan); University of Tokyo, Tokyo (Japan); Hoshino, Masato; Uesugi, Kentaro; Yagi, Naoto [SPring-8, Hyogo (Japan); Matsuda, Shojiro [Gunze Limited, Shiga (Japan); Nakahira, Atsushi [Osaka Prefecture University, Osaka (Japan); Osumi, Noriko; Kohzuki, Masahiro [Tohoku University Graduate School of Medicine, Sendai (Japan); Onodera, Hiroshi [University of Tokyo, Tokyo (Japan)

    2015-01-01

    X-ray phase-contrast computed tomography imaging based on the Talbot grating interferometer is described, and the way it can visualize the polyglycolic acid scaffold, including its microfibres, after implantation into the injured spinal cord is shown. Tissue engineering strategies for spinal cord repair are a primary focus of translational medicine after spinal cord injury (SCI). Many tissue engineering strategies employ three-dimensional scaffolds, which are made of biodegradable materials and have microstructure incorporated with viable cells and bioactive molecules to promote new tissue generation and functional recovery after SCI. It is therefore important to develop an imaging system that visualizes both the microstructure of three-dimensional scaffolds and their degradation process after SCI. Here, X-ray phase-contrast computed tomography imaging based on the Talbot grating interferometer is described and it is shown how it can visualize the polyglycolic acid scaffold, including its microfibres, after implantation into the injured spinal cord. Furthermore, X-ray phase-contrast computed tomography images revealed that degradation occurred from the end to the centre of the braided scaffold in the 28 days after implantation into the injured spinal cord. The present report provides the first demonstration of an imaging technique that visualizes both the microstructure and degradation of biodegradable scaffolds in SCI research. X-ray phase-contrast imaging based on the Talbot grating interferometer is a versatile technique that can be used for a broad range of preclinical applications in tissue engineering strategies.

  17. Reaction to topical capsaicin in spinal cord injury patients with and without central pain

    DEFF Research Database (Denmark)

    Finnerup, Nanna Brix; Pedersen, Louise H.; Terkelsen, Astrid J.

    2007-01-01

    of a spinal cord injury which already is hyperexcitable, would cause enhanced responses in patients with central pain at the level of injury compared to patients without neuropathic pain and healthy controls. Touch, punctuate stimuli, cold stimuli and topical capsaicin was applied above, at, and below injury......Central neuropathic pain is a debilitating and frequent complication to spinal cord injury (SCI). Excitatory input from hyperexcitable cells around the injured grey matter zone is suggested to play a role for central neuropathic pain felt below the level of a spinal cord injury. Direct evidence...... at the level of injury. Keywords: Spinal cord injury; Neuropathic pain; Capsaicin; Neuronal hyperexcitability; Hyperalgesia; Blood flow...

  18. Prospective multicenter surveillance and risk factor analysis of deep surgical site infection after posterior thoracic and/or lumbar spinal surgery in adults.

    Science.gov (United States)

    Ogihara, Satoshi; Yamazaki, Takashi; Maruyama, Toru; Oka, Hiroyuki; Miyoshi, Kota; Azuma, Seiichi; Yamada, Takashi; Murakami, Motoaki; Kawamura, Naohiro; Hara, Nobuhiro; Terayama, Sei; Morii, Jiro; Kato, So; Tanaka, Sakae

    2015-01-01

    Surgical site infection is a serious and significant complication after spinal surgery and is associated with high morbidity rates, high healthcare costs and poor patient outcomes. Accurate identification of risk factors is essential for developing strategies to prevent devastating infections. The purpose of this study was to identify independent risk factors for surgical site infection among posterior thoracic and/or lumbar spinal surgery in adult patients using a prospective multicenter surveillance research method. From July 2010 to June 2012, we performed a prospective surveillance study in adult patients who had developed surgical site infection after undergoing thoracic and/or lumbar posterior spinal surgery at 11 participating hospitals. Detailed preoperative and operative patient characteristics were prospectively recorded using a standardized data collection format. Surgical site infection was based on the definition established by the Centers for Disease Control and Prevention. A total of 2,736 consecutive adult patients were enrolled, of which 24 (0.9%) developed postoperative deep surgical site infection. Multivariate regression analysis indicated four independent risk factors. Preoperative steroid therapy (P = 0.001), spinal trauma (P = 0.048) and gender (male) (P = 0.02) were statistically significant independent patient-related risk factors, whereas an operating time ≥3 h (P operating time ≥3 h were independent risk factors for deep surgical site infection after thoracic and/or lumbar spinal surgery in adult patients. Identification of these risk factors can be used to develop protocols aimed at decreasing the risk of surgical site infection.

  19. Anti-apoptotic effect of insulin in the control of cell death and neurologic deficit after acute spinal cord injury in rats.

    Science.gov (United States)

    Wu, Xing-Huo; Yang, Shu-Hua; Duan, De-Yu; Cheng, Heng-Hui; Bao, Yu-Ting; Zhang, Yukun

    2007-09-01

    Recent studies confirmed that the new cell survival signal pathway of Insulin-PI3K-Akt exerted cyto-protective actions involving anti-apoptosis. This study was undertaken to investigate the potential neuroprotective effects of insulin in the pathogenesis of spinal cord injury (SCI) and evaluate its therapeutic effects in adult rats. SCI was produced by extradural compression using modified Allen's stall with damage energy of 40 g-cm force. One group of rats was subjected to SCI in combination with the administration of recombinant human insulin dissolved in 50% glucose solution at the dose of 1 IU/kg day, for 7 days. At the same time, another group of rats was subjected to SCI in combination with the administration of an equal volume of sterile saline solution. Functional recovery was evaluated using open-field walking, inclined plane tests, and motor evoked potentials (MEPs) during the first 14 days post-trauma. Levels of protein for B-cell lymphoma/leukemia-2 gene (Bcl-2), Caspase-3, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were quantified in the injured spinal cord by Western blot analysis. Neuronal apoptosis was detected by TUNEL, and spinal cord blood flow (SCBF) was measured by laser-Doppler flowmetry (LDF). Ultimately, the data established the effectiveness of insulin treatment in improving neurologic recovery, increasing the expression of anti-apoptotic bcl-2 proteins, inhibiting caspase-3 expression decreasing neuronal apoptosis, reducing the expression of proinflammatory cytokines iNOS and COX-2, and ameliorating microcirculation of injured spinal cord after moderate contusive SCI in rats. In sum, this study reported the beneficial effects of insulin in the treatment of SCI, with the suggestion that insulin should be considered as a potential therapeutic agent.

  20. Delayed post-traumatic spinal cord infarction in an adult after minor head and neck trauma: a case report

    Directory of Open Access Journals (Sweden)

    Bartanusz Viktor

    2012-09-01

    Full Text Available Abstract Introduction Delayed post-traumatic spinal cord infarction is a devastating complication described in children. In adults, spinal cord ischemia after cardiovascular interventions, scoliosis correction, or profound hypotension has been reported in the literature. However, delayed spinal cord infarction after minor head trauma has not been described yet. Case presentation We report the case of a 45-year-old Hispanic man who had a minor head trauma. He was admitted to our hospital because of paresthesias in his hands and neck pain. A radiological workup showed cervical spinal canal stenosis and chronic cervical spondylotic myelopathy. Twelve hours after admission, our patient became unresponsive and, despite full resuscitation efforts, died. The autopsy revealed spinal cord necrosis involving the entire cervical spinal cord and upper thoracic region. Conclusions This case illustrates the extreme fragility of spinal cord hemodynamics in patients with chronic cervical spinal canal stenosis, in which any further perturbations, such as cervical hyperflexion related to a minor head injury, can have catastrophic consequences. Furthermore, the delayed onset of spinal cord infarction in this case shows that meticulous maintenance of blood pressure in the acute post-traumatic period is of paramount importance, even in patients with minimal post-traumatic symptoms.

  1. Geriatric-specific triage criteria are more sensitive than standard adult criteria in identifying need for trauma center care in injured older adults.

    Science.gov (United States)

    Ichwan, Brian; Darbha, Subrahmanyam; Shah, Manish N; Thompson, Laura; Evans, David C; Boulger, Creagh T; Caterino, Jeffrey M

    2015-01-01

    We evaluate the sensitivity of Ohio's 2009 emergency medical services (EMS) geriatric trauma triage criteria compared with the previous adult triage criteria in identifying need for trauma center care among older adults. We studied a retrospective cohort of injured patients aged 16 years or older in the 2006 to 2011 Ohio Trauma Registry. Patients aged 70 years or older were considered geriatric. We identified whether each patient met the geriatric and the adult triage criteria. The outcome measure was need for trauma center care, defined by surrogate markers: Injury Severity Score greater than 15, operating room in fewer than 48 hours, any ICU stay, and inhospital mortality. We calculated sensitivity and specificity of both triage criteria for both age groups. We included 101,577 patients; 33,379 (33%) were geriatric. Overall, 57% of patients met adult criteria and 68% met geriatric criteria. Using Injury Severity Score, for older adults geriatric criteria were more sensitive for need for trauma center care (93%; 95% confidence interval [CI] 92% to 93%) than adult criteria (61%; 95% CI 60% to 62%). Geriatric criteria decreased specificity in older adults from 61% (95% CI 61% to 62%) to 49% (95% CI 48% to 49%). Geriatric criteria in older adults (93% sensitivity, 49% specificity) performed similarly to the adult criteria in younger adults (sensitivity 87% and specificity 44%). Similar patterns were observed for other outcomes. Standard adult EMS triage guidelines provide poor sensitivity in older adults. Ohio's geriatric trauma triage guidelines significantly improve sensitivity in identifying Injury Severity Score and other surrogate markers of the need for trauma center care, with modest decreases in specificity for older adults. Copyright © 2014 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  2. Isolation of mineralizing Nestin+ Nkx6.1+ vascular muscular cells from the adult human spinal cord

    Directory of Open Access Journals (Sweden)

    Guillon Hélène

    2011-10-01

    Full Text Available Abstract Background The adult central nervous system (CNS contains different populations of immature cells that could possibly be used to repair brain and spinal cord lesions. The diversity and the properties of these cells in the human adult CNS remain to be fully explored. We previously isolated Nestin+ Sox2+ neural multipotential cells from the adult human spinal cord using the neurosphere method (i.e. non adherent conditions and defined medium. Results Here we report the isolation and long term propagation of another population of Nestin+ cells from this tissue using adherent culture conditions and serum. QPCR and immunofluorescence indicated that these cells had mesenchymal features as evidenced by the expression of Snai2 and Twist1 and lack of expression of neural markers such as Sox2, Olig2 or GFAP. Indeed, these cells expressed markers typical of smooth muscle vascular cells such as Calponin, Caldesmone and Acta2 (Smooth muscle actin. These cells could not differentiate into chondrocytes, adipocytes, neuronal and glial cells, however they readily mineralized when placed in osteogenic conditions. Further characterization allowed us to identify the Nkx6.1 transcription factor as a marker for these cells. Nkx6.1 was expressed in vivo by CNS vascular muscular cells located in the parenchyma and the meninges. Conclusion Smooth muscle cells expressing Nestin and Nkx6.1 is the main cell population derived from culturing human spinal cord cells in adherent conditions with serum. Mineralization of these cells in vitro could represent a valuable model for studying calcifications of CNS vessels which are observed in pathological situations or as part of the normal aging. In addition, long term propagation of these cells will allow the study of their interaction with other CNS cells and their implication in scar formation during spinal cord injury.

  3. Spinal Arachnoiditis as a Complication of Cryptococcal Meningoencephalitis in Non-HIV Previously Healthy Adults

    Science.gov (United States)

    Komori, Mika; Kosa, Peter; Khan, Omar; Hammoud, Dima A.; Rosen, Lindsey B.; Browne, Sarah K.; Lin, Yen-Chih; Romm, Elena; Ramaprasad, Charu; Fries, Bettina C.; Bennett, John E.; Bielekova, Bibiana; Williamson, Peter R.

    2017-01-01

    Background. Cryptococcus can cause meningoencephalitis (CM) among previously healthy non-HIV adults. Spinal arachnoiditis is under-recognized, since diagnosis is difficult with concomitant central nervous system (CNS) pathology. Methods. We describe 6 cases of spinal arachnoiditis among 26 consecutively recruited CM patients with normal CD4 counts who achieved microbiologic control. We performed detailed neurological exams, cerebrospinal fluid (CSF) immunophenotyping and biomarker analysis before and after adjunctive immunomodulatory intervention with high dose pulse corticosteroids, affording causal inference into pathophysiology. Results. All 6 exhibited severe lower motor neuron involvement in addition to cognitive changes and gait disturbances from meningoencephalitis. Spinal involvement was associated with asymmetric weakness and urinary retention. Diagnostic specificity was improved by MRI imaging which demonstrated lumbar spinal nerve root enhancement and clumping or lesions. Despite negative fungal cultures, CSF inflammatory biomarkers, sCD27 and sCD21, as well as the neuronal damage biomarker, neurofilament light chain (NFL), were elevated compared to healthy donor (HD) controls. Elevations in these biomarkers were associated with clinical symptoms and showed improvement with adjunctive high dose pulse corticosteroids. Conclusions. These data suggest that a post-infectious spinal arachnoiditis is an important complication of CM in previously healthy individuals, requiring heightened clinician awareness. Despite microbiological control, this syndrome causes significant pathology likely due to increased inflammation and may be amenable to suppressive therapeutics. PMID:28011613

  4. Firing patterns of spontaneously active motor units in spinal cord-injured subjects

    NARCIS (Netherlands)

    Zijdewind, Inge; Thomas, Christine K.

    Involuntary motor unit activity at low rates is common in hand muscles paralysed by spinal cord injury. Our aim was to describe these patterns of motor unit behaviour in relation to motoneurone and motor unit properties. Intramuscular electromyographic activity (EMG), surface EMG and force were

  5. The PPAR alpha agonist gemfibrozil is an ineffective treatment for spinal cord injured mice.

    Science.gov (United States)

    Almad, Akshata; Lash, A Todd; Wei, Ping; Lovett-Racke, Amy E; McTigue, Dana M

    2011-12-01

    Peroxisome Proliferator Activated Receptor (PPAR)-α is a key regulator of lipid metabolism and recent studies reveal it also regulates inflammation in several different disease models. Gemfibrozil, an agonist of PPAR-α, is a FDA approved drug for hyperlipidemia and has been shown to inhibit clinical signs in a rodent model of multiple sclerosis. Since many studies have shown improved outcome from spinal cord injury (SCI) by anti-inflammatory and neuroprotective agents, we tested the efficacy of oral gemfibrozil given before or after SCI for promoting tissue preservation and behavioral recovery after spinal contusion injury in mice. Unfortunately, the results were contrary to our hypothesis; in our first attempt, gemfibrozil treatment exacerbated locomotor deficits and increased tissue pathology after SCI. In subsequent experiments, the behavioral effects were not replicated but histological outcomes again were worse. We also tested the efficacy of a different PPAR-α agonist, fenofibrate, which also modulates immune responses and is beneficial in several neurodegenerative disease models. Fenofibrate treatment did not improve recovery, although there was a slight trend for a modest increase in histological tissue sparing. Based on our results, we conclude that PPAR-α agonists yield either no effect or worsen recovery from spinal cord injury, at least at the doses and the time points of drug delivery tested here. Further, patients sustaining spinal cord injury while taking gemfibrozil might be prone to exacerbated tissue damage. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Multisensory training for postural sway control in non-injured elderly ...

    African Journals Online (AJOL)

    Multisensory training for postural sway control in non-injured elderly females. ... Elderly adults demonstrate increased postural sway, which may ultimately lead to falls. ... Keywords: multisensory training, postural sway control, balance ability, ...

  7. Spinal column shortening for tethered cord syndrome associated with myelomeningocele, lumbosacral lipoma, and lipomyelomeningocele in children and young adults.

    Science.gov (United States)

    Aldave, Guillermo; Hansen, Daniel; Hwang, Steven W; Moreno, Amee; Briceño, Valentina; Jea, Andrew

    2017-06-01

    OBJECTIVE Tethered cord syndrome is the clinical manifestation of an abnormal stretch on the spinal cord, presumably causing mechanical injury, a compromised blood supply, and altered spinal cord metabolism. Tethered cord release is the standard treatment for tethered cord syndrome. However, direct untethering of the spinal cord carries potential risks, such as new neurological deficits from spinal cord injury, a CSF leak from opening the dura, and retethering of the spinal cord from normal scar formation after surgery. To avoid these risks, the authors applied spinal column shortening to children and transitional adults with primary and secondary tethered cord syndrome and report treatment outcomes. The authors' aim with this study was to determine the safety and efficacy of spinal column shortening for tethered cord syndrome by analyzing their experience with this surgical technique. METHODS The authors retrospectively reviewed the demographic and procedural data of children and young adults who had undergone spinal column shortening for primary or secondary tethered cord syndrome. RESULTS Seven patients with tethered cord syndrome caused by myelomeningocele, lipomyelomeningocele, and transitional spinal lipoma were treated with spinal column shortening. One patient with less than 24 months of follow-up was excluded from further analysis. There were 3 males and 4 females; the average age at the time was surgery was 16 years (range 8-30 years). Clinical presentations for our patients included pain (in 5 patients), weakness (in 4 patients), and bowel/bladder dysfunction (in 4 patients). Spinal column osteotomy was most commonly performed at the L-1 level, with fusion between T-12 and L-2 using a pedicle screw-rod construct. Pedicle subtraction osteotomy was performed in 6 patients, and vertebral column resection was performed in 1 patient. The average follow-up period was 31 months (range 26-37 months). Computed tomography-based radiographic outcomes showed solid

  8. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Science.gov (United States)

    Zhou, Ya-jing; Liu, Jian-min; Wei, Shu-ming; Zhang, Yun-hao; Qu, Zhen-hua; Chen, Shu-bo

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats. PMID:26487860

  9. CT study in primary low spinal fluid pressure syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Moritoshi; Okayama, Kenji; Kubo, Hiromasa; Watanabe, Hiromi; Endou, Riuko (Ohmiya Red Cross Hospital, Yono, Saitama (Japan))

    1991-02-01

    CT findings in primary low spinal fluid pressure syndrome were studied on the basis of 3 cases. Case 1 was a 43-year-old male with a complicated bilateral isodense subdural hematoma (SDH). Case 2 was a 45-year-old female with a complicated bilateral high dense SDH. Case 3 was a 36-year-old female discharged without any complications after spinal fluid pressure normalized. Slight downward displacement of the brain under low spinal fluid pressure was shown as the narrowing of a Sylvian fissures and infratentorial cisterns on CT. On the other hand, in this syndrome with a complicated bilateral isodense SDH, in addition to this finding, CT revealed distortion and narrowing of body lateral ventricles, which might be differential findings from this syndrome without complicated SDH. Under low spinal fluid pressure, bridging veins are more stretched by a downward displacement of the brain. And consequently they were easily injured and SDH was developed. (author).

  10. Complete Spinal Accessory Nerve Palsy From Carrying Climbing Gear.

    Science.gov (United States)

    Coulter, Jess M; Warme, Winston J

    2015-09-01

    We report an unusual case of spinal accessory nerve palsy sustained while transporting climbing gear. Spinal accessory nerve injury is commonly a result of iatrogenic surgical trauma during lymph node excision. This particular nerve is less frequently injured by blunt trauma. The case reported here results from compression of the spinal accessory nerve for a sustained period-that is, carrying a load over the shoulder using a single nylon rope for 2.5 hours. This highlights the importance of using proper load-carrying equipment to distribute weight over a greater surface area to avoid nerve compression in the posterior triangle of the neck. The signs and symptoms of spinal accessory nerve palsy and its etiology are discussed. This report is particularly relevant to individuals involved in mountaineering and rock climbing but can be extended to anyone carrying a load with a strap over one shoulder and across the body. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  11. Bone marrow stromal cells elicit tissue sparing after acute but not delayed transplantation into the contused adult rat thoracic spinal cord.

    NARCIS (Netherlands)

    Tewarie, R.D.; Hurtado, A.; Ritfeld, G.J.; Rahiem, S.T.; Wendell, D.F.; Barroso, M.M.; Grotenhuis, J.A.; Oudega, M.

    2009-01-01

    Bone marrow stromal cells (BMSC) transplanted into the contused spinal cord may support repair by improving tissue sparing. We injected allogeneic BMSC into the moderately contused adult rat thoracic spinal cord at 15 min (acute) and at 3, 7, and 21 days (delayed) post-injury and quantified tissue

  12. Surgical reconstruction of spinal cord circuit provides functional return in humans

    Directory of Open Access Journals (Sweden)

    Thomas Carlstedt

    2017-01-01

    Full Text Available This mini review describes the current surgical strategy for restoring function after traumatic spinal nerve root avulsion in brachial or lumbosacral plexus injury in man. As this lesion is a spinal cord or central nervous injury functional return depends on spinal cord nerve cell growth within the central nervous system. Basic science, clinical research and human application has demonstrated good and useful motor function after ventral root avulsion followed by spinal cord reimplantation. Recently, sensory return could be demonstrated following spinal cord surgery bypassing the injured primary sensory neuron. Experimental data showed that most of the recovery depended on new growth reinnervating peripheral receptors. Restored sensory function and the return of spinal reflex was demonstrated by electrophysiology and functional magnetic resonance imaging of human cortex. This spinal cord surgery is a unique treatment of central nervous system injury resulting in useful functional return. Further improvements will not depend on surgical improvements. Adjuvant therapy aiming at ameliorating the activity in retinoic acid elements in dorsal root ganglion neurons could be a new therapeutic avenue in restoring spinal cord circuits after nerve root avulsion injury.

  13. Dynamic oscillatory signatures of central neuropathic pain in spinal cord injury.

    Science.gov (United States)

    Vuckovic, Aleksandra; Hasan, Muhammad A; Fraser, Matthew; Conway, Bernard A; Nasseroleslami, Bahman; Allan, David B

    2014-06-01

    Central neuropathic pain (CNP) is believed to be accompanied by increased activation of the sensorimotor cortex. Our knowledge of this interaction is based mainly on functional magnetic resonance imaging studies, but there is little direct evidence on how these changes manifest in terms of dynamic neuronal activity. This study reports on the presence of transient electroencephalography (EEG)-based measures of brain activity during motor imagery in spinal cord-injured patients with CNP. We analyzed dynamic EEG responses during imaginary movements of arms and legs in 3 groups of 10 volunteers each, comprising able-bodied people, paraplegic patients with CNP (lower abdomen and legs), and paraplegic patients without CNP. Paraplegic patients with CNP had increased event-related desynchronization in the theta, alpha, and beta bands (16-24 Hz) during imagination of movement of both nonpainful (arms) and painful limbs (legs). Compared to patients with CNP, paraplegics with no pain showed a much reduced power in relaxed state and reduced event-related desynchronization during imagination of movement. Understanding these complex dynamic, frequency-specific activations in CNP in the absence of nociceptive stimuli could inform the design of interventional therapies for patients with CNP and possibly further understanding of the mechanisms involved. This study compares the EEG activity of spinal cord-injured patients with CNP to that of spinal cord-injured patients with no pain and also to that of able-bodied people. The study shows that the presence of CNP itself leads to frequency-specific EEG signatures that could be used to monitor CNP and inform neuromodulatory treatments of this type of pain. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.

  14. Electrical stimulation promotes regeneration of injured oculomotor nerves in dogs

    Directory of Open Access Journals (Sweden)

    Lei Du

    2016-01-01

    Full Text Available Functional recovery after oculomotor nerve injury is very poor. Electrical stimulation has been shown to promote regeneration of injured nerves. We hypothesized that electrical stimulation would improve the functional recovery of injured oculomotor nerves. Oculomotor nerve injury models were created by crushing the right oculomotor nerves of adult dogs. Stimulating electrodes were positioned in both proximal and distal locations of the lesion, and non-continuous rectangular, biphasic current pulses (0.7 V, 5 Hz were administered 1 hour daily for 2 consecutive weeks. Analysis of the results showed that electrophysiological and morphological recovery of the injured oculomotor nerve was enhanced, indicating that electrical stimulation improved neural regeneration. Thus, this therapy has the potential to promote the recovery of oculomotor nerve dysfunction.

  15. Conduction of impulses by axons regenerated in a Schwann cell graft in the transected adult rat thoracic spinal cord.

    Science.gov (United States)

    Pinzon, A; Calancie, B; Oudega, M; Noga, B R

    2001-06-01

    Central nervous system axons regenerate into a Schwann cell implant placed in the transected thoracic spinal cord of an adult rat. The present study was designed to test whether these regenerated axons are capable of conducting action potentials. Following the transection and removal of a 4- to 5-mm segment of the thoracic spinal cord (T8-T9), a polymer guidance channel filled with a mixture of adult rat Schwann cells and Matrigel was grafted into a 4- to 5-mm-long gap in the transected thoracic spinal cord. The two cut ends of the spinal cord were eased into the guidance channel openings. Transected control animals received a channel containing Matrigel only. Three months after implantation, electrophysiological studies were performed. Tungsten microelectrodes were used for monopolar stimulation of regenerated axons within the Schwann cell graft. Glass microelectrodes were used to record responses in the spinal cord rostral to the stimulation site. Evoked responses to electrical stimulation of the axon cable were found in two out of nine Schwann cell-grafted animals. These responses had approximate latencies in the range of those of myelinated axons. No responses were seen in any of the Matrigel-grafted animals. Histological analysis revealed that the two cases that showed evoked potentials had the largest number of myelinated axons present in the cable. This study demonstrates that axons regenerating through Schwann cell grafts in the complete transected spinal cord can produce measurable evoked responses following electrical stimulation. Copyright 2001 Wiley-Liss, Inc.

  16. Increased Cx32 expression in spinal cord TrkB oligodendrocytes following peripheral axon injury.

    Science.gov (United States)

    Coulibaly, Aminata P; Isaacson, Lori G

    2016-08-03

    Following injury to motor axons in the periphery, retrograde influences from the injury site lead to glial cell plasticity in the vicinity of the injured neurons. Following the transection of peripherally located preganglionic axons of the cervical sympathetic trunk (CST), a population of oligodendrocyte (OL) lineage cells expressing full length TrkB, the cognate receptor for brain derived neurotrophic factor (BDNF), is significantly increased in number in the spinal cord. Such robust plasticity in OL lineage cells in the spinal cord following peripheral axon transection led to the hypothesis that the gap junction communication protein connexin 32 (Cx32), which is specific to OL lineage cells, was influenced by the injury. Following CST transection, Cx32 expression in the spinal cord intermediolateral cell column (IML), the location of the parent cell bodies, was significantly increased. The increased Cx32 expression was localized specifically to TrkB OLs in the IML, rather than other cell types in the OL cell lineage, with the population of Cx32/TrkB cells increased by 59%. Cx32 expression in association with OPCs was significantly decreased at one week following the injury. The results of this study provide evidence that peripheral axon injury can differentially affect the gap junction protein expression in OL lineage cells in the adult rat spinal cord. We conclude that the retrograde influences originating from the peripheral injury site elicit dramatic changes in the CNS expression of Cx32, which in turn may mediate the plasticity of OL lineage cells observed in the spinal cord following peripheral axon injury. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Abdominal pain in long-term spinal cord injury

    DEFF Research Database (Denmark)

    Finnerup, Nanna Brix; Faaborg, Pia Møller; Krogh, Klaus

    2008-01-01

    Objectives:To describe the prevalence and character of chronic abdominal pain in a group of patients with long-term spinal cord injury (SCI) and to assess predictors of abdominal pain.Study design:Postal survey.Setting:Members of the Danish Paraplegic Association.Methods:We mailed a questionnaire...... to 284 members of the Danish Paraplegic Association who met the inclusion criteria (member for at least 10 years). The questionnaire contained questions about cause and level of spinal injury, colorectal function and pain/discomfort.Results:Seventy percent returned the questionnaire (133 men and 70 women....../discomfort. There was no relation of abdominal pain to other types of pain.Conclusion:Chronic pain located in the abdomen is frequent in patients with long-term SCI. The delayed onset following SCI and the relation to constipation suggest that constipation plays an important role for this type of pain in the spinal cord injured....

  18. Abdominal pain in long-term spinal cord injury

    DEFF Research Database (Denmark)

    Finnerup, Nanna Brix; Faaborg, Pia Møller; Krogh, Klaus

    2008-01-01

    Objectives:To describe the prevalence and character of chronic abdominal pain in a group of patients with long-term spinal cord injury (SCI) and to assess predictors of abdominal pain.Study design:Postal survey.Setting:Members of the Danish Paraplegic Association.Methods:We mailed a questionnaire....../discomfort. There was no relation of abdominal pain to other types of pain.Conclusion:Chronic pain located in the abdomen is frequent in patients with long-term SCI. The delayed onset following SCI and the relation to constipation suggest that constipation plays an important role for this type of pain in the spinal cord injured....... to 284 members of the Danish Paraplegic Association who met the inclusion criteria (member for at least 10 years). The questionnaire contained questions about cause and level of spinal injury, colorectal function and pain/discomfort.Results:Seventy percent returned the questionnaire (133 men and 70 women...

  19. Using Mixed Methods to Build Research Capacity within the Spinal Cord Injured Population of New Zealand

    Science.gov (United States)

    Sullivan, Martin; Derrett, Sarah; Paul, Charlotte; Beaver, Carolyn; Stace, Hilary

    2014-01-01

    In 2007, a 4-year longitudinal study of all people admitted to the two New Zealand spinal units commenced. It aims to (a) explore interrelationship(s) of body, self, and society for people with spinal cord injury (SCI) and (b) investigate how entitlement to rehabilitation and compensation through New Zealand's Accident Compensation Corporation…

  20. Spinal injuries in sports in the UK.

    OpenAIRE

    Silver, J R

    1993-01-01

    An analysis was made of 150 rugby, trampolining, gymnastics and horse-riding injuries between 1952 and 1985, resulting in severe spinal injury. The individual analyses of the separate sports had been published previously. There are common factors to all these sports. Of those injured 121 had cervical injuries often as a result of participation in sport by young impetuous people, and causes included: inadequate supervision; motivation to attempt tasks beyond their abilities; a mismatch between...

  1. Effects of the Post-Spinal Cord Injury Microenvironment on the Differentiation Capacity of Human Neural Stem Cells Derived from Induced Pluripotent Stem Cells.

    Science.gov (United States)

    López-Serrano, Clara; Torres-Espín, Abel; Hernández, Joaquim; Alvarez-Palomo, Ana B; Requena, Jordi; Gasull, Xavier; Edel, Michael J; Navarro, Xavier

    2016-10-01

    Spinal cord injury (SCI) causes loss of neural functions below the level of the lesion due to interruption of spinal pathways and secondary neurodegenerative processes. The transplant of neural stem cells (NSCs) is a promising approach for the repair of SCI. Reprogramming of adult somatic cells into induced pluripotent stem cells (iPSCs) is expected to provide an autologous source of iPSC-derived NSCs, avoiding the immune response as well as ethical issues. However, there is still limited information on the behavior and differentiation pattern of transplanted iPSC-derived NSCs within the damaged spinal cord. We transplanted iPSC-derived NSCs, obtained from adult human somatic cells, into rats at 0 or 7 days after SCI, and evaluated motor-evoked potentials and locomotion of the animals. We histologically analyzed engraftment, proliferation, and differentiation of the iPSC-derived NSCs and the spared tissue in the spinal cords at 7, 21, and 63 days posttransplant. Both transplanted groups showed a late decline in functional recovery compared to vehicle-injected groups. Histological analysis showed proliferation of transplanted cells within the tissue and that cells formed a mass. At the final time point, most grafted cells differentiated to neural and astroglial lineages, but not into oligodendrocytes, while some grafted cells remained undifferentiated and proliferative. The proinflammatory tissue microenviroment of the injured spinal cord induced proliferation of the grafted cells and, therefore, there are possible risks associated with iPSC-derived NSC transplantation. New approaches are needed to promote and guide cell differentiation, as well as reduce their tumorigenicity once the cells are transplanted at the lesion site.

  2. The mechanism of Naringin-enhanced remyelination after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Wei Rong

    2017-01-01

    Full Text Available Our previous study revealed that intragastric administration of naringin improved remyelination in rats with spinal cord injury and promoted the recovery of neurological function of the injured spinal cord. This study sought to reveal the mechanisms by which naringin improves oligodendrocyte precursor cell differentiation and maturation, and promotes remyelination. Spinal cord injury was induced in rats by the weight-drop method. Naringin was intragastrically administered daily (20, 40 mg/kg for 4 weeks after spinal cord injury induction. Behavioral assessment, histopathological staining, immunofluorescence spectroscopy, ultrastructural analysis and biochemical assays were employed. Naringin treatment remarkably mitigated demyelination in the white matter, increased the quality of myelinated nerve fibers and myelin sheath thickness, promoted oligodendrocyte precursor cell differentiation by upregulating the expression of NKx2.2 and 2′3′-cyclic nucleotide 3′-phosphodiesterase, and inhibited β-catenin expression and glycogen synthase kinase-3β (GSK-3β phosphorylation. These findings indicate that naringin treatment regulates oligodendrocyte precursor cell differentiation and promotes remyelination after spinal cord injury through the β-catenin/GSK-3β signaling pathway.

  3. Leisure time physical activity among older adults with long-term spinal cord injury.

    Science.gov (United States)

    Jörgensen, S; Martin Ginis, K A; Lexell, J

    2017-09-01

    Cross-sectional. To describe participation in leisure time physical activity (LTPA) (amount, intensity and type) among older adults with long-term spinal cord injury (SCI), and to investigate the associations with sociodemographics, injury characteristics and secondary health conditions (SHCs). Home settings in southern Sweden. Data from the Swedish Aging with Spinal Cord Injury Study (SASCIS). The physical activity recall assessment for people with SCI was used to assess LTPA among 84 men and 35 women (mean age 63.5 years, mean time since injury 24 years, injury levels C1-L5, American Spinal Injury Association Impairment Scale A-D). Associations were analyzed statistically using hierarchical multivariable regression. Twenty-nine percent reported no LTPA, whereas 53% performed moderate-to-heavy intensity LTPA. The mean minutes per day of total LTPA was 34.7 (±41.5, median 15, range 0-171.7) and of moderate-to-heavy LTPA 22.5 (±35.1, median 5.0, range 0-140.0). The most frequently performed activities were walking and wheeling. Sociodemographics, injury characteristics and SHCs (bowel-related and bladder-related problems, spasticity and pain) explained 10.6% and 13.4%, respectively, of the variance in total and moderate-to-heavy LTPA. Age and wheelchair use were significantly, negatively associated with total LTPA. Women, wheelchair users and employed participants performed significantly less moderate-to-heavy LTPA than men, those using walking devices/no mobility device and unemployed participants. Many older adults with long-term SCI do not reach the amount or intensity of LTPA needed to achieve fitness benefits. Research is needed on how to increase LTPA and to identify modifiable factors that could enhance their participation.

  4. Transplantation of oligodendrocyte precursors and sonic hedgehog results in improved function and white matter sparing in the spinal cords of adult rats after contusion.

    Science.gov (United States)

    Bambakidis, Nicholas C; Miller, Robert H

    2004-01-01

    A substantial cause of neurological disability in spinal cord injury is oligodendrocyte death leading to demyelination and axonal degeneration. Rescuing oligodendrocytes and preserving myelin is expected to result in significant improvement in functional outcome after spinal cord injury. Although previous investigators have used cellular transplantation of xenografted pluripotent embryonic stem cells and observed improved functional outcome, these transplants have required steroid administration and only a minority of these cells develop into oligodendrocytes. The objective of the present study was to determine whether allografts of oligodendrocyte precursors transplanted into an area of incomplete spinal cord contusion would improve behavioral and electrophysiological measures of spinal cord function. Additional treatment incorporated the use of the glycoprotein molecule Sonic hedgehog (Shh), which has been shown to play a critical role in oligodendroglial development and induce proliferation of endogenous neural precursors after spinal cord injury. Laboratory study. Moderate spinal cord contusion injury was produced in 39 adult rats at T9-T10. Ten animals died during the course of the study. Nine rats served as contusion controls (Group 1). Six rats were treated with oligodendrocyte precursor transplantation 5 days after injury (Group 2). The transplanted cells were isolated from newborn rat pups using immunopanning techniques. Another eight rats received an injection of recombinant Shh along with the oligodendrocyte precursors (Group 3), while six more rats were treated with Shh alone (Group 4). Eight additional rats received only T9 laminectomies to serve as noninjured controls (Group 0). Animals were followed for 28 days. After an initial complete hindlimb paralysis, rats of all groups receiving a contusive injury recovered substantial function within 1 week. By 28 days, rats in Groups 2 and 3 scored 4.7 and 5.8 points better on the Basso, Beattie, Bresnahan

  5. A method for unit recording in the lumbar spinal cord during locomotion of the conscious adult rat

    DEFF Research Database (Denmark)

    Berg, Rune W; Chen, Ming-Teh; Huang, Hsueh-Chen

    2009-01-01

    Extracellular recordings from single units in the brain, for example the neocortex, have proven feasible in moving, awake rats, but have not yet been possible in the spinal cord. Single-unit activity during locomotor-like activity in reduced preparations from adult cats and rats have provided...... valuable insights for the development of hypotheses about the organization of functional networks in the spinal cord. However, since reduced preparations could result in spurious conclusions, it is crucial to test these hypotheses in animals that are awake and behaving. Furthermore, unresolved issues...

  6. A bipedal mammalian model for spinal cord injury research: The tammar wallaby [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Norman R. Saunders

    2017-06-01

    Full Text Available Background: Most animal studies of spinal cord injury are conducted in quadrupeds, usually rodents. It is unclear to what extent functional results from such studies can be translated to bipedal species such as humans because bipedal and quadrupedal locomotion involve very different patterns of spinal control of muscle coordination. Bipedalism requires upright trunk stability and coordinated postural muscle control; it has been suggested that peripheral sensory input is less important in humans than quadrupeds for recovery of locomotion following spinal injury. Methods: We used an Australian macropod marsupial, the tammar wallaby (Macropus eugenii, because tammars exhibit an upright trunk posture, human-like alternating hindlimb movement when swimming and bipedal over-ground locomotion. Regulation of their muscle movements is more similar to humans than quadrupeds. At different postnatal (P days (P7–60 tammars received a complete mid-thoracic spinal cord transection. Morphological repair, as well as functional use of hind limbs, was studied up to the time of their pouch exit. Results: Growth of axons across the lesion restored supraspinal innervation in animals injured up to 3 weeks of age but not in animals injured after 6 weeks of age. At initial pouch exit (P180, the young injured at P7-21 were able to hop on their hind limbs similar to age-matched controls and to swim albeit with a different stroke. Those animals injured at P40-45 appeared to be incapable of normal use of hind limbs even while still in the pouch. Conclusions: Data indicate that the characteristic over-ground locomotion of tammars provides a model in which regrowth of supraspinal connections across the site of injury can be studied in a bipedal animal. Forelimb weight-bearing motion and peripheral sensory input appear not to compensate for lack of hindlimb control, as occurs in quadrupeds. Tammars may be a more appropriate model for studies of therapeutic interventions

  7. Spinal metastasis of medulloblastoma in adults: A case report

    Directory of Open Access Journals (Sweden)

    Živković Nenad

    2014-01-01

    Full Text Available Introduction. Medulloblastoma is a primitive neuro-ectodermal malignant tumor most commonly seen in childhood and rarely and uncommonly in adult age. Treatment consists of surgery followed by radiotherapy. In the case of a relapse there is no overall accepted treatment. Tumor metastasis can be seen along the neural axis, lymph nodes, soft tissues, bones and distant organs. Case Outline. In this paper we present a 45-year-old female patient with a thoraco-spinal extramedullary metastatic medulloblastoma and progressive neurological deterioration seen 11 months after the first operation and description of magnetic resonance and intraoperative finding. Conclusion. Although rare, the presence of metastasis is a poor prognostic factor. The treatment options for patients with metastases are limited and their prognosis continues to remain poor.

  8. Pressure ulcers from spinal immobilization in trauma patients: a systematic review.

    Science.gov (United States)

    Ham, Wietske; Schoonhoven, Lisette; Schuurmans, Marieke J; Leenen, Luke P H

    2014-04-01

    To protect the (possibly) injured spine, trauma patients are immobilized on backboard or vacuum mattress, with a cervical collar, lateral headblocks, and straps. Several studies identified pressure ulcer (PU) development from these devices. The aim of this literature study was to gain insight into the occurrence and development of PUs, the risk factors, and the possible interventions to prevent PUs related to spinal immobilization with devices in adult trauma patients. We systematically searched PubMed (MEDLINE), EMBASE, Cochrane, and CINAHL for the period 1970 to September 2011. Studies were included if participants were healthy volunteers under spinal immobilization or trauma patients under spinal immobilization until spine injuries were diagnosed or excluded. Outcomes of primary interest included occurrence, severity, and risk for PU development as well as prevention of PU development related to spinal immobilization devices. The results of included studies show an incidence of collar-related PUs ranging from 6.8% to 38%. Described locations are the occiput, chin, shoulders, and back. The severity of these PUs varies between Stages 1 and 3, and one study describes PUs requiring surgical debridement, indicating a Stage 4 PU. Described risk factors for PU development are high pressure and pain from immobilizing devices, the length of time in/on a device, intensive care unit admission, high Injury Severity Scores (ISSs), mechanical ventilation, and intracranial pressure monitoring. Preventive interventions for collar-related PUs include early replacement of the extrication collar and regular skin assessment, collar refit, and position change. The results from this systematic review show that immobilization with devices increases the risk for PU development. This risk is demonstrated in nine experimental studies with healthy volunteers and in four clinical studies. Systematic review, level III.

  9. Transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into rat spinal cord injuries does not cause harm.

    Science.gov (United States)

    Cloutier, Frank; Siegenthaler, Monica M; Nistor, Gabriel; Keirstead, Hans S

    2006-07-01

    Demyelination contributes to loss of function following spinal cord injury. We have shown previously that transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into adult rat 200 kD contusive spinal cord injury sites enhances remyelination and promotes recovery of motor function. Previous studies using oligodendrocyte lineage cells have noted a correlation between the presence of demyelinating pathology and the survival and migration rate of the transplanted cells. The present study compared the survival and migration of human embryonic stem cell-derived oligodendrocyte progenitors injected 7 days after a 200 or 50 kD contusive spinal cord injury, as well as the locomotor outcome of transplantation. Our findings indicate that a 200 kD spinal cord injury induces extensive demyelination, whereas a 50 kD spinal cord injury induces no detectable demyelination. Cells transplanted into the 200 kD injury group survived, migrated, and resulted in robust remyelination, replicating our previous studies. In contrast, cells transplanted into the 50 kD injury group survived, exhibited limited migration, and failed to induce remyelination as demyelination in this injury group was absent. Animals that received a 50 kD injury displayed only a transient decline in locomotor function as a result of the injury. Importantly, human embryonic stem cell-derived oligodendrocyte progenitor transplants into the 50 kD injury group did not cause a further decline in locomotion. Our studies highlight the importance of a demyelinating pathology as a prerequisite for the function of transplanted myelinogenic cells. In addition, our results indicate that transplantation of human embryonic stem cell-derived oligodendrocyte progenitor cells into the injured spinal cord is not associated with a decline in locomotor function.

  10. Sleep disordered breathing following spinal cord injury

    DEFF Research Database (Denmark)

    Biering-Sørensen, Fin; Jennum, Poul; Laub, Michael

    2009-01-01

    Individuals with spinal cord injury (SCI) commonly complain about difficulty in sleeping. Although various sleep disordered breathing definitions and indices are used that make comparisons between studies difficult, it seems evident that the frequency of sleep disorders is higher in individuals...... with SCI, especially with regard to obstructive sleep apnea. In addition, there is a correlation between the incidence of sleep disturbances and the spinal cord level injured, age, body mass index, neck circumference, abdominal girth, and use of sedating medications. Regulation of respiration is dependent...... on wakefulness and sleep. Thus, it is important to be aware of basic mechanisms in the regulation and control of sleep and awake states. Supine position decreases the vital capacity in tetraplegic individuals, and diminished responsiveness to Pa(CO)(2) may further decrease ventilatory reserve. There also may...

  11. A 3D nanofibrous hydrogel and collagen sponge scaffold promotes locomotor functional recovery, spinal repair, and neuronal regeneration after complete transection of the spinal cord in adult rats

    International Nuclear Information System (INIS)

    Kaneko, Ai; Matsushita, Akira; Sankai, Yoshiyuki

    2015-01-01

    Central nervous system neurons in adult mammals display limited regeneration after injury, and functional recovery is poor following complete transection (>4 mm gap) of a rat spinal cord. A novel combination scaffold composed of 3D nanofibrous hydrogel PuraMatrix and a honeycomb collagen sponge was used to promote spinal repair and locomotor functional recovery following complete transection of the spinal cord in rats. We transplanted this scaffold into 5 mm spinal cord gaps and assessed spinal repair and functional recovery using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. The BBB score of the scaffold-transplanted group was significantly higher than that of the PBS-injected control group from 24 d to 4 months after the operation (P < 0.001–0.01), reaching 6.0  ±  0.75 (mean ± SEM) in the transplant and 0.70  ±  0.46 in the control groups. Neuronal regeneration and spinal repair were examined histologically using Pan Neuronal Marker, glial fibrillary acidic protein, growth-associated protein 43, and DAPI. The scaffolds were well integrated into the spinal cords, filling the 5 mm gaps with higher numbers of regenerated and migrated neurons, astrocytes, and other cells than in the control group. Mature and immature neurons and astrocytes in the scaffolds became colocalized and aligned longitudinally over >2 mm, suggesting their differentiation, maturation, and function. The spinal cord NF200 content of the transplant group, analyzed by western blot, was more than twice that of the control group, supporting the histological results. Transplantation of this novel scaffold promoted functional recovery, spinal repair, and neuronal regeneration. (paper)

  12. Comparison of mesenchymal stem cells derived from fat, bone marrow, Wharton's jelly, and umbilical cord blood for treating spinal cord injuries in dogs.

    Science.gov (United States)

    Ryu, Hak-Hyun; Kang, Byung-Jae; Park, Sung-Su; Kim, Yongsun; Sung, Gyu-Jin; Woo, Heung-Myong; Kim, Wan Hee; Kweon, Oh-Kyeong

    2012-12-01

    Previous animal studies have shown that transplantation of mesenchymal stem cells (MSCs) into spinal cord lesions enhances axonal regeneration and promotes functional recovery. We isolated the MSCs derived from fat, bone marrow, Wharton's jelly and umbilical cord blood (UCB) positive for MSC markers and negative for hematopoietic cell markers. Their effects on the regeneration of injured canine spinal cords were compared. Spinal cord injury was induced by balloon catheter compression. Dogs with injured spinal cords were treated with only matrigel or matrigel mixed with each type of MSCs. Olby and modified Tarlov scores, immunohistochemistry, ELISA and Western blot analysis were used to evaluate the therapeutic effects. The different MSC groups showed significant improvements in locomotion at 8 weeks after transplantation (Pin the lesion site. Compared to the control, the lesion sizes were smaller, and fewer microglia and reactive astrocytes were found in the spinal cord epicenter of all MSC groups. Although there were no significant differences in functional recovery among the MSCs groups, UCB-derived MSCs (UCSCs) induced more nerve regeneration and anti-inflammation activity (Pin the spinal cord. Our data suggest that transplantation of MSCs promotes functional recovery after SCI. Furthermore, application of UCSCs led to more nerve regeneration, neuroprotection and less inflammation compared to other MSCs.

  13. Pediatric spinal infections

    Directory of Open Access Journals (Sweden)

    Raj Kumar

    2014-01-01

    Full Text Available The infections of the spinal axis in children are rare when compared with adults. They encompass a large spectrum of diseases ranging from relatively benign diskitis to spinal osteomyleitis and to the rapidly progressive, rare, and potentially devastating spinal epidural, subdural, and intramedullary spinal cord infections. We present a comprehensive review of the literature pertaining to these uncommon entities, in light of our experience from northern India. The most prevalent pediatric spinal infection in Indian scenario is tuberculosis, where an extradural involvement is more common than intradural. The craniovertebral junction is not an uncommon site of involvement in children of our milieu. The majority of pyogenic infections of pediatric spine are associated with congenital neuro-ectodermal defects such as congenital dermal sinus. The clinico-radiological findings of various spinal infections commonly overlap. Hence the endemicity of certain pathogens should be given due consideration, while considering the differential diagnosis. However, early suspicion, rapid diagnosis, and prompt treatment are the key factors in avoiding neurological morbidity and deformity in a growing child.

  14. Advances in the management of infertility in men with spinal cord injury

    Directory of Open Access Journals (Sweden)

    Emad Ibrahim

    2016-01-01

    Full Text Available Couples with a spinal cord injured male partner require assisted ejaculation techniques to collect semen that can then be further used in various assisted reproductive technology methods to achieve a pregnancy. The majority of men sustaining a spinal cord injury regardless of the cause or the level of injury cannot ejaculate during sexual intercourse. Only a small minority can ejaculate by masturbation. Penile vibratory stimulation and electroejaculation are the two most common methods used to retrieve sperm. Other techniques such as prostatic massage and the adjunct application of other medications can be used, but the results are inconsistent. Surgical sperm retrieval should be considered as a last resort if all other methods fail. Special attention must be paid to patients with T6 and rostral levels of injury due to the risk of autonomic dysreflexia resulting from stimulation below the level of injury. Bladder preparation should be performed before stimulation if retrograde ejaculation is anticipated. Erectile dysfunction is ubiquitous in the spinal cord injured population but is usually easily managed and does not pose a barrier to semen retrieval in these men. Semen analysis parameters of men with spinal cord injury are unique for this population regardless of the method of retrieval, generally presenting as normal sperm concentration but abnormally low sperm motility and viability. When sperm retrieval is desired in this population, emphasis should be placed on initially trying the simple methods of penile vibratory stimulation or electroejaculation before resorting to more advanced and invasive surgical procedures.

  15. Apolipoprotein E as a novel therapeutic neuroprotection target after traumatic spinal cord injury.

    Science.gov (United States)

    Cheng, Xiaoxin; Zheng, Yiyan; Bu, Ping; Qi, Xiangbei; Fan, Chunling; Li, Fengqiao; Kim, Dong H; Cao, Qilin

    2018-01-01

    Apolipoprotein E (apoE), a plasma lipoprotein well known for its important role in lipid and cholesterol metabolism, has also been implicated in many neurological diseases. In this study, we examined the effect of apoE on the pathophysiology of traumatic spinal cord injury (SCI). ApoE-deficient mutant (apoE -/- ) and wild-type mice received a T9 moderate contusion SCI and were evaluated using histological and behavioral analyses after injury. At 3days after injury, the permeability of spinal cord-blood-barrier, measured by extravasation of Evans blue dye, was significantly increased in apoE -/- mice compared to wild type. The inflammation and spared white matter was also significantly increased and decreased, respectively, in apoE -/- mice compared to the wild type ones. The apoptosis of both neurons and oligodendrocytes was also significantly increased in apoE -/- mice. At 42days after injury, the inflammation was still robust in the injured spinal cord in apoE -/- but not wild type mice. CD45+ leukocytes from peripheral blood persisted in the injured spinal cord of apoE -/- mice. The spared white matter was significantly decreased in apoE -/- mice compared to wild type ones. Locomotor function was significantly decreased in apoE -/- mice compared to wild type ones from week 1 to week 8 after contusion. Treatment of exogenous apoE mimetic peptides partially restored the permeability of spinal cord-blood-barrier in apoE -/- mice after SCI. Importantly, the exogenous apoE peptides decreased inflammation, increased spared white matter and promoted locomotor recovery in apoE -/- mice after SCI. Our results indicate that endogenous apoE plays important roles in maintaining the spinal cord-blood-barrier and decreasing inflammation and spinal cord tissue loss after SCI, suggesting its important neuroprotective function after SCI. Our results further suggest that exogenous apoE mimetic peptides could be a novel and promising neuroprotective reagent for SCI. Copyright

  16. Teaching Adult Rats Spinalized as Neonates to Walk Using Trunk Robotic Rehabilitation: Elements of Success, Failure, and Dependence.

    Science.gov (United States)

    Udoekwere, Ubong I; Oza, Chintan S; Giszter, Simon F

    2016-08-10

    Robot therapy promotes functional recovery after spinal cord injury (SCI) in animal and clinical studies. Trunk actions are important in adult rats spinalized as neonates (NTX rats) that walk autonomously. Quadrupedal robot rehabilitation was tested using an implanted orthosis at the pelvis. Trunk cortical reorganization follows such rehabilitation. Here, we test the functional outcomes of such training. Robot impedance control at the pelvis allowed hindlimb, trunk, and forelimb mechanical interactions. Rats gradually increased weight support. Rats showed significant improvement in hindlimb stepping ability, quadrupedal weight support, and all measures examined. Function in NTX rats both before and after training showed bimodal distributions, with "poor" and "high weight support" groupings. A total of 35% of rats initially classified as "poor" were able to increase their weight-supported step measures to a level considered "high weight support" after robot training, thus moving between weight support groups. Recovered function in these rats persisted on treadmill with the robot both actuated and nonactuated, but returned to pretraining levels if they were completely disconnected from the robot. Locomotor recovery in robot rehabilitation of NTX rats thus likely included context dependence and/or incorporation of models of robot mechanics that became essential parts of their learned strategy. Such learned dependence is likely a hurdle to autonomy to be overcome for many robot locomotor therapies. Notwithstanding these limitations, trunk-based quadrupedal robot rehabilitation helped the rats to visit mechanical states they would never have achieved alone, to learn novel coordinations, and to achieve major improvements in locomotor function. Neonatal spinal transected rats without any weight support can be taught weight support as adults by using robot rehabilitation at trunk. No adult control rats with neonatal spinal transections spontaneously achieve similar changes

  17. Intraoperative contrast-enhanced ultrasonography for microcirculatory evaluation in rhesus monkey with spinal cord injury.

    Science.gov (United States)

    Huang, Lin; Chen, Keng; Chen, Fu-Chao; Shen, Hui-Yong; Ye, Ji-Chao; Cai, Zhao-Peng; Lin, Xi

    2017-06-20

    This study tried to quantify spinal cord perfusion by using contrast-enhanced ultrasound (CEUS) in rhesus monkey models with acute spinal cord injury. Acute spinal cord perfusion after injury was detected by CEUS, coupling with conventional ultrasound (US) and Color Doppler US (CDFI). Time-intensity curves and perfusion parameters were obtained by autotracking contrast quantification (ACQ) software in the epicenter and adjacent regions of injury, respectively. Neurological and histological examinations were performed to confirm the severity of injury. US revealed spinal cords were hypoechoic and homogeneous, whereas dura maters, pia maters, and cerebral aqueducts were hyperechoic. After spinal cord contusion, the injured spinal cord was hyperechoic on US, and intramedullary vessels of adjacent region of injury were increased and dilated on CDFI. On CEUS hypoperfusion were found in the epicenter of injury, while hyperperfusion in its adjacent region. Quantitative analysis showed that peak intensity (PI) decreased in epicenters of injury but significantly increased in adjacent regions at all time points (p spinal cord injury in overall views and real-time.

  18. Early application of tail nerve electrical stimulation-induced walking training promotes locomotor recovery in rats with spinal cord injury.

    Science.gov (United States)

    Zhang, S-X; Huang, F; Gates, M; Shen, X; Holmberg, E G

    2016-11-01

    This is a randomized controlled prospective trial with two parallel groups. The objective of this study was to determine whether early application of tail nerve electrical stimulation (TANES)-induced walking training can improve the locomotor function. This study was conducted in SCS Research Center in Colorado, USA. A contusion injury to spinal cord T10 was produced using the New York University impactor device with a 25 -mm height setting in female, adult Long-Evans rats. Injured rats were randomly divided into two groups (n=12 per group). One group was subjected to TANES-induced walking training 2 weeks post injury, and the other group, as control, received no TANES-induced walking training. Restorations of behavior and conduction were assessed using the Basso, Beattie and Bresnahan open-field rating scale, horizontal ladder rung walking test and electrophysiological test (Hoffmann reflex). Early application of TANES-induced walking training significantly improved the recovery of locomotor function and benefited the restoration of Hoffmann reflex. TANES-induced walking training is a useful method to promote locomotor recovery in rats with spinal cord injury.

  19. Two-step production of monoamines in monoenzymatic cells in the spinal cord: a different control strategy of neurotransmitter supply?

    DEFF Research Database (Denmark)

    Zhang, Mengliang

    2016-01-01

    Monoamine neurotransmitters play an important role in the modulation of sensory, motor and autonomic functions in the spinal cord. Although traditionally it is believed that in mammalian spinal cord, monoamine neurotransmitters mainly originate from the brain, accumulating evidence indicates...... that especially when the spinal cord is injured, they can also be produced in the spinal cord. In this review, I will present evidence for a possible pathway for two-step synthesis of dopamine and serotonin in the spinal cord. Published data from different sources and unpublished data from my own ongoing projects...... that dopamine and serotonin could be synthesized sequentially in two monoenzymatic cells in the spinal cord via a TH-AADC and a TPH-AADC cascade respectively. The monoamines synthesized through this pathway may compensate for lost neurotransmitters following spinal cord injury and also may play specific roles...

  20. Anatomical Recruitment of Spinal V2a Interneurons into Phrenic Motor Circuitry after High Cervical Spinal Cord Injury.

    Science.gov (United States)

    Zholudeva, Lyandysha V; Karliner, Jordyn S; Dougherty, Kimberly J; Lane, Michael A

    2017-11-01

    More than half of all spinal cord injuries (SCIs) occur at the cervical level, often resulting in impaired respiration. Despite this devastating outcome, there is substantial evidence for endogenous neuroplasticity after cervical SCI. Spinal interneurons are widely recognized as being an essential anatomical component of this plasticity by contributing to novel neuronal pathways that can result in functional improvement. The identity of spinal interneurons involved with respiratory plasticity post-SCI, however, has remained largely unknown. Using a transgenic Chx10-eGFP mouse line (Strain 011391-UCD), the present study is the first to demonstrate the recruitment of excitatory interneurons into injured phrenic circuitry after a high cervical SCI. Diaphragm electromyography and anatomical analysis were used to confirm lesion-induced functional deficits and document extent of the lesion, respectively. Transneuronal tracing with pseudorabies virus (PRV) was used to identify interneurons within the phrenic circuitry. There was a robust increase in the number of PRV-labeled V2a interneurons ipsilateral to the C2 hemisection, demonstrating that significant numbers of these excitatory spinal interneurons were anatomically recruited into the phrenic motor pathway two weeks after injury, a time known to correspond with functional phrenic plasticity. Understanding this anatomical spinal plasticity and the neural substrates associated with functional compensation or recovery post-SCI in a controlled, experimental setting may help shed light onto possible cellular therapeutic candidates that can be targeted to enhance spontaneous recovery.

  1. Activation of Akt/FKHR in the medulla oblongata contributes to spontaneous respiratory recovery after incomplete spinal cord injury in adult rats.

    Science.gov (United States)

    Felix, M S; Bauer, S; Darlot, F; Muscatelli, F; Kastner, A; Gauthier, P; Matarazzo, V

    2014-09-01

    After incomplete spinal cord injury (SCI), patients and animals may exhibit some spontaneous functional recovery which can be partly attributed to remodeling of injured neural circuitry. This post-lesion plasticity implies spinal remodeling but increasing evidences suggest that supraspinal structures contribute also to the functional recovery. Here we tested the hypothesis that partial SCI may activate cell-signaling pathway(s) at the supraspinal level and that this molecular response may contribute to spontaneous recovery. With this aim, we used a rat model of partial cervical hemisection which injures the bulbospinal respiratory tract originating from the medulla oblongata of the brainstem but leads to a time-dependent spontaneous functional recovery of the paralyzed hemidiaphragm. We first demonstrate that after SCI the PI3K/Akt signaling pathway is activated in the medulla oblongata of the brainstem, resulting in an inactivation of its pro-apoptotic downstream target, forkhead transcription factor (FKHR/FOXO1A). Retrograde labeling of medullary premotoneurons including respiratory ones which project to phrenic motoneurons reveals an increased FKHR phosphorylation in their cell bodies together with an unchanged cell number. Medulla infusion of the PI3K inhibitor, LY294002, prevents the SCI-induced Akt and FKHR phosphorylations and activates one of its death-promoting downstream targets, Fas ligand. Quantitative EMG analyses of diaphragmatic contractility demonstrate that the inhibition of medulla PI3K/Akt signaling prevents spontaneous respiratory recovery normally observed after partial cervical SCI. Such inhibition does not however affect either baseline contractile frequency or the ventilatory reactivity under acute respiratory challenge. Together, these findings provide novel evidence of supraspinal cellular contribution to the spontaneous respiratory recovery after partial SCI. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. In-vivo spinal nerve sensing in MISS using Raman spectroscopy

    Science.gov (United States)

    Chen, Hao; Xu, Weiliang; Broderick, Neil

    2016-04-01

    In modern Minimally Invasive Spine Surgery (MISS), lack of visualization and haptic feedback information are the main obstacles. The spinal cord is a part of the central nervous system (CNS). It is a continuation of the brain stem, carries motor and sensory messages between CNS and the rest of body, and mediates numerous spinal reflexes. Spinal cord and spinal nerves are of great importance but vulnerable, once injured it may result in severe consequences to patients, e.g. paralysis. Raman Spectroscopy has been proved to be an effective and powerful tool in biological and biomedical applications as it works in a rapid, non-invasive and label-free way. It can provide molecular vibrational features of tissue samples and reflect content and proportion of protein, nucleic acids lipids etc. Due to the distinct chemical compositions spinal nerves have, we proposed that spinal nerves can be identified from other types of tissues by using Raman spectroscopy. Ex vivo experiments were first done on samples taken from swine backbones. Comparative spectral data of swine spinal cord, spinal nerves and adjacent tissues (i.e. membrane layer of the spinal cord, muscle, bone and fatty tissue) are obtained by a Raman micro-spectroscopic system and the peak assignment is done. Then the average spectra of all categories of samples are averaged and normalized to the same scale to see the difference against each other. The results verified the feasibility of spinal cord and spinal nerves identification by using Raman spectroscopy. Besides, a fiber-optic Raman sensing system including a miniature Raman sensor for future study is also introduced. This Raman sensor can be embedded into surgical tools for MISS.

  3. Ligament augmentation for prevention of proximal junctional kyphosis and proximal junctional failure in adult spinal deformity.

    Science.gov (United States)

    Safaee, Michael M; Deviren, Vedat; Dalle Ore, Cecilia; Scheer, Justin K; Lau, Darryl; Osorio, Joseph A; Nicholls, Fred; Ames, Christopher P

    2018-05-01

    OBJECTIVE Proximal junctional kyphosis (PJK) is a well-recognized, yet incompletely defined, complication of adult spinal deformity surgery. There is no standardized definition for PJK, but most studies describe PJK as an increase in the proximal junctional angle (PJA) of greater than 10°-20°. Ligament augmentation is a novel strategy for PJK reduction that provides strength to the upper instrumented vertebra (UIV) and adjacent segments while also reducing junctional stress at those levels. METHODS In this study, ligament augmentation was used in a consecutive series of adult spinal deformity patients at a single institution. Patient demographics, including age; sex; indication for surgery; revision surgery; surgical approach; and use of 3-column osteotomies, vertebroplasty, or hook fixation at the UIV, were collected. The PJA was measured preoperatively and at last follow-up using 36-inch radiographs. Data on change in PJA and need for revision surgery were collected. Univariate and multivariate analyses were performed to identify factors associated with change in PJA and proximal junctional failure (PJF), defined as PJK requiring surgical correction. RESULTS A total of 200 consecutive patients were included: 100 patients before implementation of ligament augmentation and 100 patients after implementation of this technique. The mean age of the ligament augmentation cohort was 66 years, and 67% of patients were women. Over half of these cases (51%) were revision surgeries, with 38% involving a combined anterior or lateral and posterior approach. The mean change in PJA was 6° in the ligament augmentation group compared with 14° in the control group (p historical cohort, ligament augmentation is associated with a significant decrease in PJK and PJF. These data support the implementation of ligament augmentation in surgery for adult spinal deformity, particularly in patients with a high risk of developing PJK and PJF.

  4. Relationship between Humor and Subjective Well-Being with regard to Mediating Role of Resilience in Caregivers of Patients with Spinal Injury

    Directory of Open Access Journals (Sweden)

    M. Abbasi

    2017-04-01

    Full Text Available Aims: Family members are the main components of the care system for injured spinal cord patients. Taking care of such patients is a tense responsibility. The purpose of this study was to investigate the relationship between humor and subjective well-being with regard to the mediating role of resilience in caregivers of patients with spinal cord injury. Instruments & Methods: In this descriptive-correlational study, 219 caregivers of spinal cord injured patients referred to Borna Scientific-Sport Institute in Isfahan in 2016 were selected using available sampling. Data were collected using Subjective Well-Being Scale (SWBS, Resilience Scale and Sense of Humor Questionnaire (SHQ. Data analysis was performed by Amos 18 software, using Structural Equation Modeling (SEM and Bootstrap test. Finding: Correlation between humor and resilience with subjective well-being was significant (p<0.001. The proposed model was good-fitting model (p<0.05. There was also a significant indirect relationship between humor and subjective well-being through resilience (β=0.22; p<0.006. Conclusion: Psychological resilience in relationship between humor and subjective well-being as mediator plays an important role in improving the psychological state of caregivers of patients with spinal cord injury.

  5. The pathologic mechanisms underlying lumbar distraction spinal cord injury in rabbits.

    Science.gov (United States)

    Wu, Di; Zheng, Chao; Wu, Ji; Xue, Jing; Huang, Rongrong; Wu, Di; Song, Yueming

    2017-11-01

    A reliable experimental rabbit model of distraction spinal cord injury (SCI) was established to successfully simulate gradable and replicable distraction SCI. However, further research is needed to elucidate the pathologic mechanisms underlying distraction SCI. The aim of this study was to investigate the pathologic mechanisms underlying lumbar distraction SCI in rabbits. This is an animal laboratory study. Using a self-designed spine distractor, the experimental animals were divided into a control group and 10%, 20%, and 30% distraction groups. Pathologic changes to the spinal cord microvessels in the early stage of distraction SCI were identified by perfusion of the spinal cord vasculature with ink, production of transparent specimens, observation by light microscopy, and observation of corrosion casts of the spinal cord microvascular architecture by scanning electron microscopy. Malondialdehyde (MDA) and superoxide dismutase (SOD) concentrations in the injured spinal cord tissue were measured after 8 hours. With an increasing degree and duration of distraction, the spinal cord microvessels were only partially filled and had the appearance of spasm until rupture and hemorrhage were observed. The MDA concentration increased and the SOD concentration decreased in the spinal cord tissue. Changes to the internal and external spinal cord vessels led to spinal cord ischemia, which is a primary pathologic mechanism of distraction SCI. Lipid peroxidation mediated by free radicals took part in secondary pathologic damage of distraction SCI. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Complete reorganization of the motor cortex of adult rats following long-term spinal cord injuries.

    Science.gov (United States)

    Tandon, Shashank; Kambi, Niranjan; Mohammed, Hisham; Jain, Neeraj

    2013-07-01

    Understanding brain reorganization following long-term spinal cord injuries is important for optimizing recoveries based on residual function as well as developing brain-controlled assistive devices. Although it has been shown that the motor cortex undergoes partial reorganization within a few weeks after peripheral and spinal cord injuries, it is not known if the motor cortex of rats is capable of large-scale reorganization after longer recovery periods. Here we determined the organization of the rat (Rattus norvegicus) motor cortex at 5 or more months after chronic lesions of the spinal cord at cervical levels using intracortical microstimulation. The results show that, in the rats with the lesions, stimulation of neurons in the de-efferented forelimb motor cortex no longer evokes movements of the forelimb. Instead, movements of the body parts in the adjacent representations, namely the whiskers and neck were evoked. In addition, at many sites, movements of the ipsilateral forelimb were observed at threshold currents. The extent of representations of the eye, jaw and tongue movements was unaltered by the lesion. Thus, large-scale reorganization of the motor cortex leads to complete filling-in of the de-efferented cortex by neighboring representations following long-term partial spinal cord injuries at cervical levels in adult rats. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. In vivo, noncontact, real-time, optical and spectroscopic assessment of the immediate local physiological response to spinal cord injury in a rat model

    Science.gov (United States)

    Fillioe, Seth; Bishop, Kyle Kelly; Jannini, Alexander Vincent Struck; Kim, Jon; McDonough, Ricky; Ortiz, Steve; Goodisman, Jerry; Hasenwinkel, Julie; Chaiken, J.

    2018-02-01

    We report a small study to test a methodology for real-time probing of chemical and physical changes in spinal cords in the immediate aftermath of a localized contusive injury. Raman spectroscopy, optical profilimetry and scanning NIR autofluorescence images were obtained simultaneously in vivo, within a 3 x 7 mm field, on spinal cords that had been surgically exposed between T9 and T10. The collected data was used alone and/or combined in a unique algorithm. A total of six rats were studied in two N=3 groups i.e. Injured and Control. A single 830 nm laser (100 μm round spot) was either 1) spatially scanned across the cord or 2) held at a specified location relative to the injury for a longer period of time to improve signal to noise in the Raman spectra. Line scans reveal photobleaching effects and surface profiles possibly allowing identification of the anterior median longitudinal artery. Analysis of the Raman spectra suggest that the tissues were equally hypoxic for both the control and injured animals i.e. a possible artifact of anesthesia and surgery. On the other hand, only injured cords display Raman features possibly indicating that extensive, localized protein phosphorylation occurs in minutes following spinal cord trauma.

  8. Motor unit firing rates during spasms in thenar muscles of spinal cord injured subjects

    NARCIS (Netherlands)

    Zijdewind, Inge; Bakels, Robert; Thomas, Christine K.

    2014-01-01

    Involuntary contractions of paralyzed muscles (spasms) commonly disrupt daily activities and rehabilitation after human spinal cord injury (SCI). Our aim was to examine the recruitment, firing rate modulation, and derecruitment of motor units that underlie spasms of thenar muscles after cervical

  9. Electroacupuncture at Dazhui (GV14 and Mingmen (GV4 protects against spinal cord injury: the role of the Wnt/β-catenin signaling pathway

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2016-01-01

    Full Text Available Electroacupuncture at Dazhui (GV14 and Mingmen (GV4 on the Governor Vessel has been shown to exhibit curative effects on spinal cord injury; however, the underlying mechanism remains poorly understood. In this study, we established rat models of spinal cord injury using a modified Allen's weight-drop method. Ninety-nine male Sprague-Dawley rats were randomly divided into three equal groups: sham (only laminectomy, SCI (induction of spinal cord injury at T10, and EA (induction of spinal cord injury at T10 and electroacupuncture intervention at GV14 and GV4 for 20 minutes once a day. Rats in the SCI and EA groups were further randomly divided into the following subgroups: 1-day (n = 11, 7-day (n = 11, and 14-day (n = 11. At 1, 7, and 14 days after electroacupuncture treatment, the Basso, Beattie and Bresnahan locomotor rating scale showed obvious improvement in rat hind limb locomotor function, hematoxylin-eosin staining showed that the histological change of injured spinal cord tissue was obviously alleviated, and immunohistochemistry and western blot analysis showed that Wnt1, Wnt3a, β-catenin immunoreactivity and protein expression in the injured spinal cord tissue were greatly increased compared with the sham and SCI groups. These findings suggest that electroacupuncture at GV14 and GV4 upregulates Wnt1, Wnt3a, and β-catenin expression in the Wnt/β-catenin signaling pathway, exhibiting neuroprotective effects against spinal cord injury.

  10. Evaluation of spinal cord vessels using multi-slice CT angiography

    International Nuclear Information System (INIS)

    Chen Shuang; Zhu Ruijiang; Feng Xiaoyuan

    2006-01-01

    Objective: To evaluate the value of Multi-slice spiral CT angiography for spinal cord vessels. Methods: 11 adult subjects with suspected of myelopathy were performed with Multi-slice spiral CT angiography, An iodine contrast agent was injected at 3.5 ml/s, for total 100 ml. The parameters were axial 16 slice mode, 0.625 mm slice thickness, 0.8 s rotation, delay time depending on smartprep(15-25 s), multi-phase scan. The coronal and sagittal MPR and SSD were generated on a workstation compared with spinal digital subtraction angiography (DSA) to analyze normal or abnormal spinal cord vessels. Results: Normal findings at spinal CTA and digital subtraction angiography in six adult normal subjects and spinal cord vascular malformations (1 intradural extramedullary AVF, 4 dural AVFs) in five cases, Recognizable intradural vessels corresponding to anterior median (midline) veins and/or anterior spinal arteries were show in six adult normal subjects. Abnormal intradural vessels were detected in all five spinal cord vascular malformation with CT angiography, in comparison with digital subtraction angiography these vessels were primarily enlarged veins of the coronal venous plexus on the cord surface, radiculomedullary-dural arteries could not be clearly shown in four dural AVF, only one anterior spinal artery was detected in one patient with intradural medullary AVF, which direct shunt between anterior spinal artery and perimedullary vein with tortuous draining vessel. Conclusion: Multi-slice CT angiography is able to visualize the normal or abnormal spinal cord vessels. It could be used as a noninvasive method to screen the spinal cord vascular disease. (authors)

  11. Depressive symptoms among older adults with long-term spinal cord injury: Associations with secondary health conditions, sense of coherence, coping strategies and physical activity

    Directory of Open Access Journals (Sweden)

    Sophie Jörgensen

    2017-07-01

    Full Text Available Objectives: To assess the presence of depressive symptoms among older adults with long-term spinal cord injury and investigate the association with sociodemographic and injury characteristics; and to determine how potentially modifiable factors, i.e. secondary health conditions, sense of coherence, coping strategies and leisure-time physical activity, are associated with depressive symptoms. Design: Cross-sectional study. Subjects: A total of 122 individuals (70% men, injury levels C1–L5, American Spinal Injury Association Impairment Scale A–D, mean age 63 years, mean time since injury 24 years. Methods: Data from the Swedish Aging with Spinal Cord Injury Study, collected using the Geriatric Depression Scale-15, the 13-item Sense of Coherence Scale, the Spinal Cord Lesion-related Coping Strategies Questionnaire and the Physical Activity Recall Assessment for people with Spinal Cord Injury. Associations were analysed using multivariable linear regression. Results: A total of 29% reported clinically relevant depressive symptoms and 5% reported probable depression. Sense of coherence, the coping strategy Acceptance, neuropathic pain and leisure-time physical activity explained 53% of the variance in depressive symptoms. Conclusion: Older adults with long-term spinal cord injury report a low presence of probable depression. Mental health may be supported through rehabilitation that strengthens the ability to understand and confront life stressors, promotes acceptance of the injury, provides pain management and encourages participation in leisure-time physical activity.

  12. Defining a core outcome set for adolescent and young adult patients with a spinal deformity

    DEFF Research Database (Denmark)

    de Kleuver, Marinus; Faraj, Sayf S A; Holewijn, Roderick M

    2017-01-01

    Background and purpose - Routine outcome measurement has been shown to improve performance in several fields of healthcare. National spine surgery registries have been initiated in 5 Nordic countries. However, there is no agreement on which outcomes are essential to measure for adolescent and young...... adult patients with a spinal deformity. The aim of this study was to develop a core outcome set (COS) that will facilitate benchmarking within and between the 5 countries of the Nordic Spinal Deformity Society (NSDS) and other registries worldwide. Material and methods - From August 2015 to September...... consensus rounds were held. Consensus was defined as agreement between at least 5 of the 7 representatives. Data were analyzed qualitatively and quantitatively. Results - Consensus was reached on the inclusion of 13 core outcome domains: "satisfaction with overall outcome of surgery", "satisfaction...

  13. The Adhesion Molecule-Characteristic HNK-1 Carbohydrate Contributes to Functional Recovery After Spinal Cord Injury in Adult Zebrafish.

    Science.gov (United States)

    Ma, Liping; Shen, Hui-Fan; Shen, Yan-Qin; Schachner, Melitta

    2017-07-01

    The human natural killer cell antigen-1 (HNK-1) is functionally important in development, synaptic activity, and regeneration after injury in the nervous system of several mammalian species. It contains a sulfated glucuronic acid which is carried by neural adhesion molecules and expressed in nonmammalian species, including zebrafish, which, as opposed to mammals, spontaneously regenerate after injury in the adult. To evaluate HNK-1's role in recovery of function after spinal cord injury (SCI) of adult zebrafish, we assessed the effects of the two HNK-1 synthesizing enzymes, glucuronyl transferase and HNK-1 sulfotransferase. Expression of these two enzymes was increased at the messenger RNA (mRNA) level 11 days after injury in the brainstem nuclei that are capable of regrowth of severed axons, namely, the nucleus of medial longitudinal fascicle and intermediate reticular formation, but not at earlier time points after SCI. mRNA levels of glucuronyl transferase and sulfotransferase were increased in neurons, not only of these nuclei but also in the spinal cord caudal to the injury site at 11 days. Mauthner neurons which are not capable of regeneration did not show increased levels of enzyme mRNAs after injury. Reducing protein levels of the enzymes by application of anti-sense morpholinos resulted in reduction of locomotor recovery for glucuronyl transferase, but not for HNK-1 sulfotransferase. The combined results indicate that HNK-1 is upregulated in expression only in those neurons that are intrinsically capable of regeneration and contributes to regeneration after spinal cord injury in adult zebrafish in the absence of its sulfate moiety.

  14. Panax ginseng Improves Functional Recovery after Contusive Spinal Cord Injury by Regulating the Inflammatory Response in Rats: An In Vivo Study

    Directory of Open Access Journals (Sweden)

    Young Ock Kim

    2015-01-01

    Full Text Available Spinal cord injury (SCI results in permanent loss of motor function below the injured site. Neuroinflammatory reaction following SCI can aggravate neural injury and functional impairment. Ginseng is well known to possess anti-inflammatory effects. The present study investigated the neuroprotective effects of Panax ginseng C.A. Mayer (P. ginseng after SCI. A spinal contusion was made at the T11-12 spinal cord in adult male Sprague-Dawley rats (n=47 using the NYU impactor. Motor function was assessed using the Basso-Beattie-Bresnahan (BBB score in P. ginseng (0.1, 0.5, 1, 3, and 5 mg/kg or vehicle (saline treated after SCI. We also assessed the protein expression of cyclooxygenase-2 (COX-2 and inducible nitric oxide synthase (iNOS at the lesion site by western blot and then measured the cavity area using luxol fast blue/cresyl violet staining. P. ginseng treated group in SCI showed a significant improvement in locomotor function after the injury. The protein expression of COX-2 and iNOS at the lesion site and the cavity area were decreased following SCI by P. ginseng treatment. These results suggest that P. ginseng may improve the recovery of motor function after SCI which provides neuroprotection by alleviating posttraumatic inflammatory responses.

  15. Primary Spinal OPC Culture System from Adult Zebrafish to Study Oligodendrocyte Differentiation In Vitro

    Directory of Open Access Journals (Sweden)

    Volker Kroehne

    2017-09-01

    Full Text Available Endogenous oligodendrocyte progenitor cells (OPCs are a promising target to improve functional recovery after spinal cord injury (SCI by remyelinating denuded, and therefore vulnerable, axons. Demyelination is the result of a primary insult and secondary injury, leading to conduction blocks and long-term degeneration of the axons, which subsequently can lead to the loss of their neurons. In response to SCI, dormant OPCs can be activated and subsequently start to proliferate and differentiate into mature myelinating oligodendrocytes (OLs. Therefore, researchers strive to control OPC responses, and utilize small molecule screening approaches in order to identify mechanisms of OPC activation, proliferation, migration and differentiation. In zebrafish, OPCs remyelinate axons of the optic tract after lysophosphatidylcholine (LPC-induced demyelination back to full thickness myelin sheaths. In contrast to zebrafish, mammalian OPCs are highly vulnerable to excitotoxic stress, a cause of secondary injury, and remyelination remains insufficient. Generally, injury induced remyelination leads to shorter internodes and thinner myelin sheaths in mammals. In this study, we show that myelin sheaths are lost early after a complete spinal transection injury, but are re-established within 14 days after lesion. We introduce a novel, easy-to-use, inexpensive and highly reproducible OPC culture system based on dormant spinal OPCs from adult zebrafish that enables in vitro analysis. Zebrafish OPCs are robust, can easily be purified with high viability and taken into cell culture. This method enables to examine why zebrafish OPCs remyelinate better than their mammalian counterparts, identify cell intrinsic responses, which could lead to pro-proliferating or pro-differentiating strategies, and to test small molecule approaches. In this methodology paper, we show efficient isolation of OPCs from adult zebrafish spinal cord and describe culture conditions that enable

  16. External validation of the adult spinal deformity (ASD) frailty index (ASD-FI).

    Science.gov (United States)

    Miller, Emily K; Vila-Casademunt, Alba; Neuman, Brian J; Sciubba, Daniel M; Kebaish, Khaled M; Smith, Justin S; Alanay, Ahmet; Acaroglu, Emre R; Kleinstück, Frank; Obeid, Ibrahim; Sánchez Pérez-Grueso, Francisco Javier; Carreon, Leah Y; Schwab, Frank J; Bess, Shay; Scheer, Justin K; Lafage, Virginie; Shaffrey, Christopher I; Pellisé, Ferran; Ames, Christopher P

    2018-03-30

    To assess the ability of the recently developed adult spinal deformity frailty index (ASD-FI) to predict odds of perioperative complications, odds of reoperation, and length of hospital stay after adult spinal deformity (ASD) surgery using a database other than the one used to create the index. We used the ASD-FI to calculate frailty scores for 266 ASD patients who had minimum postoperative follow-up of 2 years in the European Spine Study Group (ESSG) database. Patients were enrolled from 2012 through 2013. Using ASD-FI scores, we categorized patients as not frail (NF) ( 0.5 points). Multivariable logistic regression, adjusted for preoperative and surgical factors such as operative time and blood loss, was performed to determine the relationship between ASD-FI category and odds of major complications, odds of reoperation, and length of hospital stay. We categorized 135 patients (51%) as NF, 90 patients (34%) as frail, and 41 patients (15%) as SF. Overall mean ASD-FI score was 0.29 (range 0-0.8). The adjusted odds of experiencing a major intraoperative or postoperative complication (OR 4.5, 95% CI 2.0-10) or having a reoperation (OR 3.9, 95% CI 1.7-8.9) were higher for SF patients compared with NF patients. Mean hospital stay was 2.1 times longer (95% CI 1.8-2.4) for SF patients compared with NF patients. Greater patient frailty, as measured by the ASD-FI, is associated with longer hospital stays and greater odds of major complications and reoperation. These slides can be retrieved under Electronic Supplementary Material.

  17. Unique in vivo properties of olfactory ensheathing cells that may contribute to neural repair and protection following spinal cord injury

    Science.gov (United States)

    Kocsis, Jeffery D.; Lankford, Karen L.; Sasaki, Masanori; Radtke, Christine

    2009-01-01

    Olfactory ensheathing cells (OECs) are specialized glial cells that guide olfactory receptor axons from the nasal mucosa into the brain where they make synaptic contacts in the olfactory bulb. While a number of studies have demonstrated that in vivo transplantation of OECs into injured spinal cord results in improved functional outcome, precise cellular mechanisms underlying this improvement are not fully understood. Current thinking is that OECs can encourage axonal regeneration, provide trophic support for injured neurons and for angiogenesis, and remyelinate axons. However, Schwann cell (SC) transplantation also results in significant functional improvement in animal models of spinal cord injury. In culture SCs and OECs share a number of phenotypic properties such as expression of the low affinity NGF receptor (p75). An important area of research has been to distinguish potential differences in the in vivo behavior of OECs and SCs to determine if one cell type may offer greater advantage as a cellular therapeutic candidate. In this review we focus on several unique features of OECs when they are transplanted into the spinal cord. PMID:19429149

  18. Reduce, reuse, recycle - Developmental signals in spinal cord regeneration.

    Science.gov (United States)

    Cardozo, Marcos Julian; Mysiak, Karolina S; Becker, Thomas; Becker, Catherina G

    2017-12-01

    Anamniotes, fishes and amphibians, have the capacity to regenerate spinal cord tissue after injury, generating new neurons that mature and integrate into the spinal circuitry. Elucidating the molecular signals that promote this regeneration is a fundamental question in regeneration research. Model systems, such as salamanders and larval and adult zebrafish are used to analyse successful regeneration. This shows that many developmental signals, such as Notch, Hedgehog (Hh), Bone Morphogenetic Protein (BMP), Wnt, Fibroblast Growth Factor (FGF), Retinoic Acid (RA) and neurotransmitters are redeployed during regeneration and activate resident spinal progenitor cells. Here we compare the roles of these signals in spinal cord development and regeneration of the much larger and fully patterned adult spinal cord. Understanding how developmental signalling systems are reactivated in successfully regenerating species may ultimately lead to ways to reactivate similar systems in mammalian progenitor cells, which do not show neurogenesis after spinal injury. Copyright © 2017. Published by Elsevier Inc.

  19. Spinal cord injury: overview of experimental approaches used to restore locomotor activity.

    Science.gov (United States)

    Fakhoury, Marc

    2015-01-01

    Spinal cord injury affects more than 2.5 million people worldwide and can lead to paraplegia and quadriplegia. Anatomical discontinuity in the spinal cord results in disruption of the impulse conduction that causes temporary or permanent changes in the cord's normal functions. Although axonal regeneration is limited, damage to the spinal cord is often accompanied by spontaneous plasticity and axon regeneration that help improve sensory and motor skills. The recovery process depends mainly on synaptic plasticity in the preexisting circuits and on the formation of new pathways through collateral sprouting into neighboring denervated territories. However, spontaneous recovery after spinal cord injury can go on for several years, and the degree of recovery is very limited. Therefore, the development of new approaches that could accelerate the gain of motor function is of high priority to patients with damaged spinal cord. Although there are no fully restorative treatments for spinal injury, various rehabilitative approaches have been tested in animal models and have reached clinical trials. In this paper, a closer look will be given at the potential therapies that could facilitate axonal regeneration and improve locomotor recovery after injury to the spinal cord. This article highlights the application of several interventions including locomotor training, molecular and cellular treatments, and spinal cord stimulation in the field of rehabilitation research. Studies investigating therapeutic approaches in both animal models and individuals with injured spinal cords will be presented.

  20. Anaerobic power output and propulsion technique in spinal cord injured subjects during wheelchair ergometry

    NARCIS (Netherlands)

    Dallmeijer, A J; Kappe, Y J; Veeger, DirkJan (H. E. J.); Janssen, T W; van der Woude, L H

    1994-01-01

    In order to investigate the influence of the level of the spinal cord injury (SCI) on anaerobic or short-term power production and propulsion technique, 23 male SCI subjects performed a 30-second sprint test on a stationary wheelchair ergometer. Kinematic parameters were studied both inter- and

  1. Steadiness of Spinal Regions during Single-Leg Standing in Older Adults with and without Chronic Low Back Pain

    OpenAIRE

    Kuo, Yi-Liang; Huang, Kuo-Yuan; Chiang, Pei-Tzu; Lee, Pei-Yun; Tsai, Yi-Ju

    2015-01-01

    The aims of this study were to compare the steadiness index of spinal regions during single-leg standing in older adults with and without chronic low back pain (LBP) and to correlate measurements of steadiness index with the performance of clinical balance tests. Thirteen community-dwelling older adults (aged 55 years or above) with chronic LBP and 13 age- and gender-matched asymptomatic volunteers participated in this study. Data collection was conducted in a university research laboratory. ...

  2. Systematic reviews of physical and rehabilitation medicine Cochrane contents. Part 1. Disabilities due to spinal disorders and pain syndromes in adults.

    Science.gov (United States)

    Negrini, S; Imperio, G; Villafañe, J H; Negrini, F; Zaina, F

    2013-08-01

    This article is the first in a series presenting the strongest published evidence for physical and rehabilitation medicine (PRM) to date coming from the Cochrane Collaboration. The intent of the series is to stimulate ideas for reviews and research in neglected areas of PRM. To systematically review the rehabilitation contents of the Cochrane Collaboration on disabilities due to spinal disorders or pain syndromes in adults. The Cochrane Database of Systematic Reviews was searched at the end of June 2013 for articles relevant for PRM about disabilities resulting from spinal disorders or pain syndromes in adults. Retrieved papers were classified according to the PRM approach: active therapies, which require active participation by patients to achieve treatment goals, and passive treatments, which rely on the application of external forces. The quality of the reviews was checked against the AMSTAR checklist. Reviews on spinal disorders or pain syndromes were found in the Cochrane Back Group (CBG) and in the Pain, Palliative and Supportive Care Group (CPPSCG). Thirty-eight (42.8%) of 89 Cochrane reviews in the CBG and 7 (2.4%) of 293 Cochrane reviews in the CPPSCG were included. All were of high quality (range, 8-11 points out of 11 on the AMSTAR checklist). The contents of the reviews are given in detail. This review presents an overview of the current evidence for PRM in the treatment of disabilities due to spinal disorders or pain syndromes in adults. Within PRM there is ample space for research in the Cochrane Collaboration and for producing original studies (randomized controlled trials [RCTs]). To apply evidence-based clinical practice, clinicians must be familiar with the current best evidence.

  3. Affinity for, and localization of, PEG-functionalized silica nanoparticles to sites of damage in an ex vivo spinal cord injury model

    Directory of Open Access Journals (Sweden)

    Chen Bojun

    2012-09-01

    Full Text Available Abstract Background Traumatic spinal cord injury (SCI leads to serious neurological and functional deficits through a chain of pathophysiological events. At the molecular level, progressive damage is initially revealed by collapse of plasma membrane organization and integrity produced by breaches. Consequently, the loss of its role as a semi-permeable barrier that generally mediates the regulation and transport of ions and molecules eventually results in cell death. In previous studies, we have demonstrated the functional recovery of compromised plasma membranes can be induced by the application of the hydrophilic polymer polyethylene glycol (PEG after both spinal and brain trauma in adult rats and guinea pigs. Additionally, efforts have been directed towards a nanoparticle-based PEG application. The in vivo and ex vivo applications of PEG-decorated silica nanoparticles following CNS injury were able to effectively and efficiently enhance resealing of damaged cell membranes. Results The possibility for selectivity of tetramethyl rhodamine-dextran (TMR dye-doped, PEG-functionalized silica nanoparticles (TMR-PSiNPs to damaged spinal cord was evaluated using an ex vivo model of guinea pig SCI. Crushed and nearby undamaged spinal cord tissues exhibited an obvious difference in both the imbibement and accumulation of the TMR-PSiNPs, revealing selective labeling of compression-injured tissues. Conclusions These data show that appropriately functionalized nanoparticles can be an efficient means to both 1. carry drugs, and 2. apply membrane repair agents where they are needed in focally damaged nervous tissue.

  4. Diffusion tensor imaging of spinal cord parenchyma lesion in rat with chronic spinal cord injury.

    Science.gov (United States)

    Zhao, Can; Rao, Jia-Sheng; Pei, Xiao-Jiao; Lei, Jian-Feng; Wang, Zhan-Jing; Zhao, Wen; Wei, Rui-Han; Yang, Zhao-Yang; Li, Xiao-Guang

    2018-04-01

    Adequate evaluation of spinal cord parenchyma and accurate identification of injury range are considered two premises for the research and treatment of chronic spinal cord injury (SCI). Diffusion tensor imaging (DTI) provides information about water diffusion in spinal cord, and thus makes it possible to realize these premises. In this study, we conducted magnetic resonance imaging (MRI) for Wistar rats 84days after spinal cord contusion. DTI metrics including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) from different positions of the injured cord were collected, analyzed, and compared with the histological results and locomotor outcomes. Moreover, we performed fiber tractography, and examined the difference in cavity percentage obtained respectively via conventional MRI, DTI and histology. Results showed that the chronic SCI rats had the largest changes of all DTI metrics at the epicenter; the farther away from the epicenter, the smaller the variation. FA, AD and RD were all influenced by SCI in a greater space range than MD. The good consistency of FA values and histological results in specific regions evidenced FA's capability of reflecting Wallerian degeneration after SCI. DTI metrics at the epicenter in ventral funiculus also showed a close correlation with the BBB scores. Additionally, supported by the histological results, DTI enables a more accurate measurement of cavity percentage compared to the conventional MRI. DTI parameters might comprehensively reflect the post-SCI pathological status of spinal cord parenchyma at the epicenter and distal parts during the chronic stage, while showing good consistency with locomotor performance. DTI combined with tractography could intuitively display the distribution of spared fibers after SCI and accurately provide information such as cavity area. This may shed light on the research and treatment of chronic SCI. Copyright © 2017 Elsevier Inc. All rights

  5. Towards a miniaturized brain-machine-spinal cord interface (BMSI) for restoration of function after spinal cord injury.

    Science.gov (United States)

    Shahdoost, Shahab; Frost, Shawn; Van Acker, Gustaf; DeJong, Stacey; Dunham, Caleb; Barbay, Scott; Nudo, Randolph; Mohseni, Pedram

    2014-01-01

    Nearly 6 million people in the United States are currently living with paralysis in which 23% of the cases are related to spinal cord injury (SCI). Miniaturized closed-loop neural interfaces have the potential for restoring function and mobility lost to debilitating neural injuries such as SCI by leveraging recent advancements in bioelectronics and a better understanding of the processes that underlie functional and anatomical reorganization in an injured nervous system. This paper describes our current progress towards developing a miniaturized brain-machine-spinal cord interface (BMSI) that is envisioned to convert in real time the neural command signals recorded from the brain to electrical stimuli delivered to the spinal cord below the injury level. Specifically, the paper reports on a corticospinal interface integrated circuit (IC) as a core building block for such a BMSI that is capable of low-noise recording of extracellular neural spikes from the cerebral cortex as well as muscle activation using intraspinal microstimulation (ISMS) in a rat with contusion injury to the thoracic spinal cord. The paper further presents results from a neurobiological study conducted in both normal and SCI rats to investigate the effect of various ISMS parameters on movement thresholds in the rat hindlimb. Coupled with proper signal-processing algorithms in the future for the transformation between the cortically recorded data and ISMS parameters, such a BMSI has the potential to facilitate functional recovery after an SCI by re-establishing corticospinal communication channels lost due to the injury.

  6. Lumbar spinal mobility changes among adults with advancing age

    Directory of Open Access Journals (Sweden)

    Ismaila Adamu Saidu

    2011-01-01

    Conclusion : Using these data, we developed normative values of spinal mobility for each sex and age group. This study helps the clinicians to understand and correlate the restrictions of lumbar spinal mobility due to age and differentiate the limitations due to disease.

  7. Teriparatide versus low-dose bisphosphonates before and after surgery for adult spinal deformity in female Japanese patients with osteoporosis.

    Science.gov (United States)

    Seki, Shoji; Hirano, Norikazu; Kawaguchi, Yoshiharu; Nakano, Masato; Yasuda, Taketoshi; Suzuki, Kayo; Watanabe, Kenta; Makino, Hiroto; Kanamori, Masahiko; Kimura, Tomoatsu

    2017-08-01

    Complications of adult spinal deformity surgery are problematic in osteoporotic individuals. We compared outcomes between Japanese patients treated perioperatively with teriparatide vs. low-dose bisphosphonates. Fifty-eight osteoporotic adult Japanese female patients were enrolled and assigned to perioperative teriparatide (33 patients) and bisphosphonate (25 patients) groups in non-blinded fashion. Pre- and post-operative X-ray and computed tomography imaging were used to assess outcome, and rates were compared between the groups and according to age. Pain scores and Oswestry Disability Indices (ODI) were calculated before and 2 years after surgery. Adjacent vertebral fractures and implant failure, fusion failure, and poor pain and ODI outcomes were significantly more common in the bisphosphonates group than the teriparatide group. Perioperative administration of teriparatide is more effective than that of low-dose bisphosphonates in preventing complications and maintaining fusion rates in osteoporotic Japanese females with spinal deformities undergoing surgery.

  8. The role of timing in the treatment of spinal cord injury.

    Science.gov (United States)

    Saghazadeh, Amene; Rezaei, Nima

    2017-08-01

    Regeneration failure after primary spinal cord injury (SCI) leads to diverse clinical complications in a severity- and level of SCI-dependent manner. The cost of treating both of them (initial regeneration failure and following complications) would be prohibitive, particularly in less developed nations. The well-recognized circumstances arose from primary SCI include excitotoxicity and inflammation. SCI increases concentrations of extracellular amino acids (EAAs) in the severity-dependent manner and the maximum level of EAAs at the injury site will be reduced by distance from the injury site. Increased concentrations of EAAs and their signaling result in energy and metabolic changes and eventually neurotoxicity. Therefore EAAs play a crucial role in moving towards secondary stage of SCI. There is a close correspondence between severity of SCI and intensity of acute inflammatory response, which includes proinflammatory cytokines (IL-1β, TNF-α, and IL-6) and immune cells (neutrophils, microglia, and mast cells). The communication between microglia and astrocytes mediate formation of astroglial scar. The scar is thought to diminish the spread of inflammation and lesion volume, and on the other side poses an obstacle to achieving axon regeneration. Moreover, mast cells exert an anti-inflammatory role in the ground of injured spinal cord by degradation of proinflammatory mediators, while mast cells-derived histamine may cause excitotoxicity. Therefore research suggests a very double-sword remark about the work of inflammatory mediators in the injured spinal cord. Myelin associated inhibitors (MAIs) are among the growing list of extrinsic inhibitors of neuroregeneration in the injured-CNS. They function via NgR-dependent mechanisms. The time for intervention by NgR antagonists must be fixed according to the expression pattern of this receptor and its dependent MAIs after SCI. Altogether, experimental studies suggest potential benefits of combating EAAs, inflammatory

  9. Neuromuscular stimulation therapy after incomplete spinal cord injury promotes recovery of interlimb coordination during locomotion

    Science.gov (United States)

    Jung, R.; Belanger, A.; Kanchiku, T.; Fairchild, M.; Abbas, J. J.

    2009-10-01

    The mechanisms underlying the effects of neuromuscular electrical stimulation (NMES) induced repetitive limb movement therapy after incomplete spinal cord injury (iSCI) are unknown. This study establishes the capability of using therapeutic NMES in rodents with iSCI and evaluates its ability to promote recovery of interlimb control during locomotion. Ten adult female Long Evans rats received thoracic spinal contusion injuries (T9; 156 ± 9.52 Kdyne). 7 days post-recovery, 6/10 animals received NMES therapy for 15 min/day for 5 days, via electrodes implanted bilaterally into hip flexors and extensors. Six intact animals served as controls. Motor function was evaluated using the BBB locomotor scale for the first 6 days and on 14th day post-injury. 3D kinematic analysis of treadmill walking was performed on day 14 post-injury. Rodents receiving NMES therapy exhibited improved interlimb coordination in control of the hip joint, which was the specific NMES target. Symmetry indices improved significantly in the therapy group. Additionally, injured rodents receiving therapy more consistently displayed a high percentage of 1:1 coordinated steps, and more consistently achieved proper hindlimb touchdown timing. These results suggest that NMES techniques could provide an effective therapeutic tool for neuromotor treatment following iSCI.

  10. Neuropathic pain characteristics in patients from Curitiba (Brazil) with spinal cord injury.

    Science.gov (United States)

    Vall, Janaína; Costa, Carlos Mauricio de Castro; Santos, Terezinha de Jesus Teixeira; Costa, Samuel Bovy de Castro

    2011-02-01

    This was a descriptive cross-sectional study on patients with spinal cord injuries living in Curitiba, Paraná, Brazil. The aim was to evaluate the pain characteristics among such patients seen at referral care centers for spinal cord injury patients in Curitiba. A total of 109 adults with spinal cord injury in this city were evaluated regarding the presence of pain, especially neuropathic pain. Neuropathic pain was evaluated using the DN4 questionnaire, a universal instrument that has been translated and validated for Portuguese. A visual analog scale (VAS) was used to evaluate the intensity of pain. The prevalence of pain among these 109 patients was 31.2% (34 patients). The nociceptive pain presented was classified as musculoskeletal pain (nine patients), visceral pain (four patients) and mixed pain (one patient), thus totaling 14 patients (12.8%). Another 20 patients (18.3%) showed symptoms of neuropathic pain and fulfilled the criteria for neuropathic pain with scores greater than 4 out 10 in the DN4 questionnaire. Regarding the characteristics of the patients with neuropathic pain, most of them were male, younger than 40 years of age and paraplegic with incomplete lesions. They had become injured from 1 to more than 5 years earlier. The predominant etiology was gunshot wounds, and the intensity of their pain was high, with VAS scores greater than 5. This study partially corroborates other studies conducted on this subject. Studies of this type are important for understanding the profile of these patients, for the purpose of designing strategies for their rehabilitation, with a focus on the appropriate treatment and management of pain.

  11. Neuropathic pain characteristics in patients from Curitiba (Brazil with spinal cord injury

    Directory of Open Access Journals (Sweden)

    Janaína Vall

    2011-02-01

    Full Text Available This was a descriptive cross-sectional study on patients with spinal cord injuries living in Curitiba, Paraná, Brazil. The aim was to evaluate the pain characteristics among such patients seen at referral care centers for spinal cord injury patients in Curitiba. A total of 109 adults with spinal cord injury in this city were evaluated regarding the presence of pain, especially neuropathic pain. Neuropathic pain was evaluated using the DN4 questionnaire, a universal instrument that has been translated and validated for Portuguese. A visual analog scale (VAS was used to evaluate the intensity of pain. The prevalence of pain among these 109 patients was 31.2% (34 patients. The nociceptive pain presented was classified as musculoskeletal pain (nine patients, visceral pain (four patients and mixed pain (one patient, thus totaling 14 patients (12.8%. Another 20 patients (18.3% showed symptoms of neuropathic pain and fulfilled the criteria for neuropathic pain with scores greater than 4 out 10 in the DN4 questionnaire. Regarding the characteristics of the patients with neuropathic pain, most of them were male, younger than 40 years of age and paraplegic with incomplete lesions. They had become injured from 1 to more than 5 years earlier. The predominant etiology was gunshot wounds, and the intensity of their pain was high, with VAS scores greater than 5. This study partially corroborates other studies conducted on this subject. Studies of this type are important for understanding the profile of these patients, for the purpose of designing strategies for their rehabilitation, with a focus on the appropriate treatment and management of pain.

  12. Multishot diffusion-weighted MR imaging features in acute trauma of spinal cord

    International Nuclear Information System (INIS)

    Zhang, Jin Song; Huan, Yi

    2014-01-01

    To analyse diffusion-weighted MRI of acute spinal cord trauma and evaluate its diagnostic value. Conventional MRI and multishot, navigator-corrected DWI were performed in 20 patients with acute spinal cord trauma using 1.5-T MR within 72 h after the onset of trauma. Twenty cases were classified into four categories according to the characteristics of DWI: (1) Oedema type: ten cases presented with variable hyperintense areas within the spinal cord. There were significant differences in the apparent diffusion coefficients (ADCs) between lesions and unaffected regions (t = -7.621, P < 0.01). ADC values of lesions were markedly lower than those of normal areas. (2) Mixed type: six cases showed heterogeneously hyperintense areas due to a mixture of haemorrhage and oedema. (3) Haemorrhage type: two cases showed lesions as marked hypointensity due to intramedullary haemorrhage. (4) Compressed type (by epidural haemorrhage): one of the two cases showed an area of mild hyperintensity in the markedly compressed cord due to epidural haematoma. Muti-shot DWI of the spinal cord can help visualise and evaluate the injured spinal cord in the early stage, especially in distinguishing the cytotoxic oedema from vasogenic oedema. It can assist in detecting intramedullary haemorrhage and may have a potential role in the evaluation of compressed spinal cord. (orig.)

  13. Medication before and after a spinal cord lesion.

    Science.gov (United States)

    Jensen, E K; Biering-Sørensen, F

    2014-05-01

    To map the impact of spinal cord lesion (SCL) on medication. Registration of medication for 72 patients before SCL and at discharge from the Department for Spinal Cord Injuries. Department for Spinal Cord Injuries, East Denmark. The changes in medication for each Anatomical Therapeutic Chemical (ATC) Classification System group were registered for all patients, who were discharged from Department for Spinal Cord Injuries during 2010. The changes in medication per se were calculated for different parts of the population: non-traumatic, traumatic patients, men, women, paraplegia, tetraplegia, American Spinal Injury Association Impairment Scale (AIS) A, B or C, AIS D, age 0-45, 46-60 and 60+. In addition, comparisons of changes in medication were made between complementary parts of the population. The overall increase in medication after SCL was 3.29 times (Ppopulation, the increase was most constantly seen for the medicine in the groups 'Alimentary tract and metabolism' and 'Nervous system'. The highest overall increases were seen in patients with AIS A, B and C compared with AIS D (P<0.05). There was no difference between traumatic and non-traumatic SCL, men and women, and younger compared with older patients. SCL elicits a general massive need for medicine. The relative increase is most pronounced for the more severely injured (AIS A, B and C). The increase in medication may have implications for side effects and for the economy of all involved.

  14. Neuronal regeneration in injured rat spinal cord after human dental pulp derived neural crest stem cell transplantation.

    Science.gov (United States)

    Kabatas, S; Demir, C S; Civelek, E; Yilmaz, I; Kircelli, A; Yilmaz, C; Akyuva, Y; Karaoz, E

    2018-01-01

    This study aimed to analyze the effect of human Dental Pulp-Neural Crest Stem Cells (hDP-NCSCs) delivery on lesion site after spinal cord injury (SCI), and to observe the functional recovery after transplantation. Neural Crest Stem Cells (NCSCs) were isolated from human Dental Pulp (hDP). The experimental rat population was divided into four groups (n = 6/24). Their behavioral motility was scored regularly. After 4-weeks, rats were sacrificed, and their spinal cords were examined for Green Fluorescent Protein (GFP) labeled hDP-NCSCs by immunofluorescence (IF) staining. In early post-injury (p.i) period, the ultrastructure of spinal cord tissue was preserved in Group 4. The majority of cells forming the ependymal region around the central canal were found to be hDP-NCSCs. While the grey-and-white-matter around the ependymal region was composed of e.g. GFP cells, with astrocytic-like appearance. The scores showed significant motor recovery in hind limb functions in Group 4. However, no obvious change was observed in other groups. Cells e.g., mesenchymal (Vimentin+) which express GFP+ cells in the gray-and-white-matter around the ependymal region could indicate the potential to self-renewal and plasticity. Thus, transplantation of hDP-NCSCs might be an effective strategy to improve functional recovery following spinal cord trauma (Fig. 10, Ref. 32).

  15. Analysis of disability due to spinal trauma in Ukraine in 2012

    Directory of Open Access Journals (Sweden)

    A. V. Ipatov

    2013-12-01

    Full Text Available Entry. Disability due to injuries of the musculoskeletal system in the past two decades is on the third place behind cardiovascular disease and cancer. Key indicators of disability are grooved by Medical Expert Commission of Ukraine in the annual analytical and informational governmental references, but lack data on disability due to spinal cord injury they include. Purpose. Examining the status of disability due to spinal injuries and spinal cord in 2012 in Ukraine. Materials and methods. In a specially designed program for the first time studied the state of disability due to spinal cord injury centers based on medical and social assessment in 24 regions of Ukraine, the Autonomous Republic of Crimea, Kiev and Sevastopol in 2012. Results. The total number of recognized initially disabled due to spinal cord injury was 2637 people, or 0.7 per 10,000 adult population. Repeatedly recognized as disabled - 11783 man, or 3.1 per 10,000 adult population. When comparing the level recognized as disabled by regions noted that it is higher in the "industrial" regions (Dnepropetrovsk, Donetsk, Kharkov regions. Indicators of disability due to spinal cord injury in the Ivano-Frankovsk region, far superior to those in other areas. Conclusions. In 2012, in Ukraine the primary disability due to spinal cord injuries totaled 2,637 persons or 0.7 per 10,000 adult population. In 2012 in Ukraine again as disabled due to spinal cord injury were 11783 people or 3.1 per 10,000 of adult population.

  16. Spinal neuropeptide expression and neuropathic behavior in the acute and chronic phases after spinal cord injury: Effects of progesterone administration.

    Science.gov (United States)

    Coronel, María F; Villar, Marcelo J; Brumovsky, Pablo R; González, Susana L

    2017-02-01

    Patients with spinal cord injury (SCI) develop chronic pain that severely compromises their quality of life. We have previously reported that progesterone (PG), a neuroprotective steroid, could offer a promising therapeutic strategy for neuropathic pain. In the present study, we explored temporal changes in the expression of the neuropeptides galanin and tyrosine (NPY) and their receptors (GalR1 and GalR2; Y1R and Y2R, respectively) in the injured spinal cord and evaluated the impact of PG administration on both neuropeptide systems and neuropathic behavior. Male rats were subjected to spinal cord hemisection at T13 level, received daily subcutaneous injections of PG or vehicle, and were evaluated for signs of mechanical and thermal allodynia. Real time PCR was used to determine relative mRNA levels of neuropeptides and receptors, both in the acute (1day) and chronic (28days) phases after injury. A significant increase in Y1R and Y2R expression, as well as a significant downregulation in GalR2 mRNA levels, was observed 1day after SCI. Interestingly, PG early treatment prevented Y1R upregulation and resulted in lower NPY, Y2R and GalR1 mRNA levels. In the chronic phase, injured rats showed well-established mechanical and cold allodynia and significant increases in galanin, NPY, GalR1 and Y1R mRNAs, while maintaining reduced GalR2 expression. Animals receiving PG treatment showed basal expression levels of galanin, NPY, GalR1 and Y1R, and reduced Y2R mRNA levels. Also, and in line with previously published observations, PG-treated animals did not develop mechanical allodynia and showed reduced sensitivity to cold stimulation. Altogether, we show that SCI leads to considerable changes in the spinal expression of galanin, NPY and their associated receptors, and that early and sustained PG administration prevents them. Moreover, our data suggest the participation of galaninergic and NPYergic systems in the plastic changes associated with SCI-induced neuropathic pain

  17. Neurorehabilitation and neuroprosthetic technologies to regain motor function following spinal cord injury

    OpenAIRE

    van den Brand, Rubia

    2014-01-01

    Spinal cord injury (SCI) leads to a range of disabilities, including locomotor impairments that seriously diminish the patients’ quality of life. Strategies to promote functional recovery after severe SCI will undoubtedly include approaches to regenerate injured pathways. The present work pursues a less ambitious, but potentially more rapidly applicable approach to improve function after SCI by applying neurorehabilitation augmented with neuroprosthetic technologies. In an intact situation, t...

  18. Selective activation of microglia in spinal cord but not higher cortical regions following nerve injury in adult mouse

    Directory of Open Access Journals (Sweden)

    Shang Yuze

    2008-04-01

    Full Text Available Abstract Neuronal plasticity along the pathway for sensory transmission including the spinal cord and cortex plays an important role in chronic pain, including inflammatory and neuropathic pain. While recent studies indicate that microglia in the spinal cord are involved in neuropathic pain, a systematic study has not been performed in other regions of the central nervous system (CNS. In the present study, we used heterozygous Cx3cr1GFP/+mice to characterize the morphological phenotypes of microglia following common peroneal nerve (CPN ligation. We found that microglia showed a uniform distribution throughout the CNS, and peripheral nerve injury selectively activated microglia in the spinal cord dorsal horn and related ventral horn. In contrast, microglia was not activated in supraspinal regions of the CNS, including the anterior cingulate cortex (ACC, prefrontal cortex (PFC, primary and secondary somatosensory cortex (S1 and S2, insular cortex (IC, amygdala, hippocampus, periaqueductal gray (PAG and rostral ventromedial medulla (RVM. Our results provide strong evidence that nerve injury primarily activates microglia in the spinal cord of adult mice, and pain-related cortical plasticity is likely mediated by neurons.

  19. A Direct Comparison between Norepinephrine and Phenylephrine for Augmenting Spinal Cord Perfusion in a Porcine Model of Spinal Cord Injury.

    Science.gov (United States)

    Streijger, Femke; So, Kitty; Manouchehri, Neda; Gheorghe, Ana; Okon, Elena B; Chan, Ryan M; Ng, Benjamin; Shortt, Katelyn; Sekhon, Mypinder S; Griesdale, Donald E; Kwon, Brian K

    2018-03-28

    Current clinical guidelines recommend elevating the mean arterial blood pressure (MAP) to increase spinal cord perfusion in patients with acute spinal cord injury (SCI). This is typically achieved with vasopressors such as norepinephrine (NE) and phenylephrine (PE). These drugs differ in their pharmacological properties and potentially have different effects on spinal cord blood flow (SCBF), oxygenation (PO 2 ), and downstream metabolism after injury. Using a porcine model of thoracic SCI, we evaluated how these vasopressors influenced intraparenchymal SCBF, PO 2 , hydrostatic pressure, and metabolism within the spinal cord adjacent to the injury site. Yorkshire pigs underwent a contusion/compression SCI at T10 and were randomized to receive either NE or PE for MAP elevation of 20 mm Hg, or no MAP augmentation. Prior to injury, a combined SCBF/PO 2 sensor, a pressure sensor, and a microdialysis probe were inserted into the spinal cord adjacent to T10 at two locations: a "proximal" site and a "distal" site, 2 mm and 22 mm from the SCI, respectively. At the proximal site, NE and PE resulted in little improvement in SCBF during cord compression. Following decompression, NE resulted in increased SCBF and PO 2 , whereas decreased levels were observed for PE. However, both NE and PE were associated with a gradual decrease in the lactate to pyruvate (L/P) ratio after decompression. PE was associated with greater hemorrhage through the injury site than that in control animals. Combined, our results suggest that NE promotes better restoration of blood flow and oxygenation than PE in the traumatically injured spinal cord, thus providing a physiological rationale for selecting NE over PE in the hemodynamic management of acute SCI.

  20. Probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 may help downregulate TNF-Alpha, IL-6, IL-8, IL-10 and IL-12 (p70) in the neurogenic bladder of spinal cord injured patient with urinary tract infections: a two-case study.

    Science.gov (United States)

    Anukam, Kingsley C; Hayes, Keith; Summers, Kelly; Reid, Gregor

    2009-01-01

    The management of urinary tract infection (UTI) in individuals with spinal cord injury (SCI) continues to be of concern, due to complications that can occur. An emerging concept that is a common underlying pathophysiological process is involved, wherein pathogens causing UTI have a role in inflammatory progression. We hypothesized that members of the commensal flora, such as lactobacilli, may counter this reaction through anti-inflammatory mediation. This was assessed in a pilot two-patient study in which probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri were administered to one patient and placebo to another, both along with antibiotics to treat acute UTI. Urinary TNF-alpha was significantly downregulated (P = .015) in the patient who received the probiotic and who used intermittent catheterization compared with patient on placebo and using an indwelling catheter. The extent to which this alteration resulted in improved well-being in spinal cord injured patients remains to be determined in a larger study.

  1. Probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 May Help Downregulate TNF-Alpha, IL-6, IL-8, IL-10 and IL-12 (p70 in the Neurogenic Bladder of Spinal Cord Injured Patient with Urinary Tract Infections: A Two-Case Study

    Directory of Open Access Journals (Sweden)

    Kingsley C. Anukam

    2009-01-01

    Full Text Available The management of urinary tract infection (UTI in individuals with spinal cord injury (SCI continues to be of concern, due to complications that can occur. An emerging concept that is a common underlying pathophysiological process is involved, wherein pathogens causing UTI have a role in inflammatory progression. We hypothesized that members of the commensal flora, such as lactobacilli, may counter this reaction through anti-inflammatory mediation. This was assessed in a pilot two-patient study in which probiotic Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri were administered to one patient and placebo to another, both along with antibiotics to treat acute UTI. Urinary TNF-alpha was significantly downregulated (P=.015 in the patient who received the probiotic and who used intermittent catheterization compared with patient on placebo and using an indwelling catheter. The extent to which this alteration resulted in improved well-being in spinal cord injured patients remains to be determined in a larger study.

  2. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Living with SCI Personal Experiences by Topic Resources Peer ... Adult Injuries Spinal Cord Injury 101 David Chen, MD Preventing Pressure Sores Mary Zeigler, MS Transition from Hospital to ...

  3. An investigation into the functional outcomes of individuals with paraplegia, resulting from spinal cord injury, following discharge from a rehabilitation setting

    LENUS (Irish Health Repository)

    McNamara, Angela Dr.

    2005-01-01

    The purpose of this study was to investigate if changes occurred in the functional independence of spinal cord injured (SCI) patients, following discharge from a rehabilitation setting. The research was carried out on patients with a paraplegic injury, who underwent rehabilitation in the spinal injury unit of a Dublin based rehabilitation hospital. Eight male subjects residing in the Republic of Ireland were recruited to the study between October 2004 and May 2005.\\r\

  4. MOTOR UNIT FIRING RATES DURING SPASMS IN THENAR MUSCLES OF SPINAL CORD INJURED SUBJECTS

    Directory of Open Access Journals (Sweden)

    Inge eZijdewind

    2014-11-01

    Full Text Available Abstract Involuntary contractions of paralyzed muscles (spasms commonly disrupt daily activities and rehabilitation after human spinal cord injury. Our aim was to examine the recruitment, firing rate modulation, and derecruitment of motor units that underlie spasms of thenar muscles after cervical spinal cord injury. Intramuscular electromyographic activity (EMG, surface EMG, and force were recorded during thenar muscle spasms that occurred spontaneously or that were triggered by movement of a shoulder or leg. Most spasms were submaximal (mean: 39%, SD: 33 of the force evoked by median nerve stimulation at 50 Hz with strong relationships between EMG and force (R2>0.69. Unit recruitment occurred over a wide force range (0.2-103% of 50 Hz force. Significant unit rate modulation occurred during spasms (frequency at 25% maximal force: 8.8 Hz, 3.3 SD; at maximal force: 16.1 Hz, 4.1 SD. Mean recruitment frequency (7.1 Hz, 3.2 SD was significantly higher than derecruitment frequency (5.4 Hz, 2.4 SD. Coactive unit pairs that fired for more than 4 s showed high (R2>0.7, n=4 or low (R2:0.3-0.7, n=12 rate-rate correlations, and derecruitment reversals (21 pairs, 29%. Later recruited units had higher or lower maximal firing rates than lower threshold units. These discrepant data show that coactive motoneurons are driven by both common inputs and by synaptic inputs from different sources during muscle spasms. Further, thenar motoneurons can still fire at high rates in response to various peripheral inputs after spinal cord injury, supporting the idea that low maximal voluntary firing rates and forces in thenar muscles result from reduced descending drive.

  5. Curcumin Increase the Expression of Neural Stem/Progenitor Cells and Improves Functional Recovery after Spinal Cord Injury

    Science.gov (United States)

    Bang, Woo-Seok; Kim, Kyoung-Tae; Seo, Ye Jin; Cho, Dae-Chul; Sung, Joo-Kyung; Kim, Chi Heon

    2018-01-01

    Objective To investigates the effect of curcumin on proliferation of spinal cord neural stem/progenitor cells (SC-NSPCs) and functional outcome in a rat spinal cord injury (SCI) model. Methods Sixty adult male Sprague-Dawley rats were randomly and blindly allocated into three groups (sham control group; curcumin treated group after SCI; vehicle treated group after SCI). Functional recovery was evaluated by the Basso, Beattie, and Bresnahan (BBB) scale during 6 weeks after SCI. The expression of SC-NSPC proliferation and astrogliosis were analyzed by nestin/Bromodeoxyuridine (BrdU) and Glial fibrillary acidic protein (GFAP) staining. The injured spinal cord was then examined histologically, including quantification of cavitation. Results The BBB score of the SCI-curcumin group was better than that of SCI-vehicle group up to 14 days (p<0.05). The co-immunoreactivity of nestin/BrdU in the SCI-curcumin group was much higher than that of the SCI-vehicle group 1 week after surgery (p<0.05). The GFAP immunoreactivity of the SCI-curcumin group was remarkably lower than that of the SCI-vehicle group 4 weeks after surgery (p<0.05). The lesion cavity was significantly reduced in the curcumin group as compared to the control group (p<0.05). Conclusion These results indicate that curcumin could increase the expression of SC-NSPCs, and reduce the activity of reactive astrogliosis and lesion cavity. Consequently curcumin could improve the functional recovery after SCI via SC-NSPC properties. PMID:29354231

  6. Radiation effects in brain and spinal cord

    International Nuclear Information System (INIS)

    Franke, H.D.; Lierse, W.

    1978-01-01

    Radiation sensitivity of both the brain and spinal cord in prenatal and postnatal stages, in infancy and adult age is represented also in consideration of a combined treatment with methotrexate. In adults, application of important doses of high-energy radiation increases the risk of injurious effects to the central nervous system. If the spinal cord is involved, more than 60% of the radiolesions have a progredient course ending with death. The pathogenesis and disposing factors are referred to, and the incidence of radiation necrosis with regard to age and sex, the degrees of injury and their frequence within different ranges of dosage are analyzed on the basis of data from universal literature. An examination of 'tolerance doses' for the spinal cord is made by means of Strandquist-diagrams and of the Ellis-formula. The slopes of regression lines are reported for various 'degrees of response' in skin, brain and spinal cord following radiation therapy. In the Strandquist-diagram, slopes of regression lines are dependent on the 'degree of response', flattening if skin and spinal cord are affected by radiation in the same degree, necroses having the same slope for both the organs. (orig./MG) [de

  7. Nogo-A expression dynamically varies after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Jian-wei Wang

    2015-01-01

    Full Text Available The mechanism involved in neural regeneration after spinal cord injury is unclear. The myelin-derived protein Nogo-A, which is specific to the central nervous system, has been identified to negatively affect the cytoskeleton and growth program of axotomized neurons. Studies have shown that Nogo-A exerts immediate and chronic inhibitory effects on neurite outgrowth. In vivo, inhibitors of Nogo-A have been shown to lead to a marked enhancement of regenerative axon extension. We established a spinal cord injury model in rats using a free-falling weight drop device to subsequently investigate Nogo-A expression. Nogo-A mRNA and protein expression and immunoreactivity were detected in spinal cord tissue using real-time quantitative PCR, immunohistochemistry and western blot analysis. At 24 hours after spinal cord injury, Nogo-A protein and mRNA expression was low in the injured group compared with control and sham-operated groups. The levels then continued to drop further and were at their lowest at 3 days, rapidly rose to a peak after 7 days, and then gradually declined again after 14 days. These changes were observed at both the mRNA and protein level. The transient decrease observed early after injury followed by high levels for a few days indicates Nogo-A expression is time dependent. This may contribute to the lack of regeneration in the central nervous system after spinal cord injury. The dynamic variation of Nogo-A should be taken into account in the treatment of spinal cord injury.

  8. Depolarization and electrical stimulation enhance in vitro and in vivo sensory axon growth after spinal cord injury.

    Science.gov (United States)

    Goganau, Ioana; Sandner, Beatrice; Weidner, Norbert; Fouad, Karim; Blesch, Armin

    2018-02-01

    Activity dependent plasticity is a key mechanism for the central nervous system (CNS) to adapt to its environment. Whether neuronal activity also influences axonal regeneration in the injured CNS, and whether electrical stimulation (ES) can activate regenerative programs in the injured CNS remains incompletely understood. Using KCl-induced depolarization, in vivo ES followed by ex-vivo neurite growth assays and ES after spinal cord lesions and cell grafting, we aimed to identify parameters important for ES-enhanced neurite growth and axonal regeneration. Using cultures of sensory neurons, neurite growth was analyzed after KCl-induced depolarization for 1-72h. Increased neurite growth was detected after short-term stimulation and after longer stimulation if a sufficient delay between stimulation and growth measurements was provided. After in vivo ES (20Hz, 2× motor threshold, 0.2ms, 1h) of the intact sciatic nerve in adult Fischer344 rats, sensory neurons showed a 2-fold increase in in vitro neurite length one week later compared to sham animals, an effect not observed one day after ES. Longer ES (7h) and repeated ES (7days, 1h each) also increased growth by 56-67% one week later, but provided no additional benefit. In vivo growth of dorsal column sensory axons into a graft of bone marrow stromal cells 4weeks after a cervical spinal cord lesion was also enhanced with a single post-injury 1h ES of the intact sciatic nerve and was also observed after repeated ES without inducing pain-like behavior. While ES did not result in sensory functional recovery, our data indicate that ES has time-dependent influences on the regenerative capacity of sensory neurons and might further enhance axonal regeneration in combinatorial approaches after SCI. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Descriptions of Community by People with Spinal Cord Injuries: Concepts to Inform Community Integration and Community Rehabilitation

    Science.gov (United States)

    Kuipers, Pim; Kendall, Melissa B.; Amsters, Delena; Pershouse, Kiley; Schuurs, Sarita

    2011-01-01

    Effective measurement and optimization of re-entry into the community after injury depends on a degree of understanding of how those injured persons actually perceive their community. In light of the limited research about foundational concepts regarding community integration after spinal cord injury, this study investigated how a large number of…

  10. The Neuroprotective Effect of Puerarin in Acute Spinal Cord Injury Rats

    Directory of Open Access Journals (Sweden)

    Dapeng Zhang

    2016-08-01

    Full Text Available Background: Acute spinal cord injury (SCI leads to permanent disabilities. This study evaluated the neuroprotective effect of puerarin, a natural extract, in a rat model of SCI. Methods: Acute SCI models were established in rats using a modified Allen's method. Locomotor function was evaluated using the BBB test. The histological changes in the spinal cord were observed by H&E staining. Neuron survival and glial cells activation were evaluated by immunostaining. ELISA and realtime PCR were used to measure secretion and gene expression of cytokines. TUNEL staining was used to examine cell apoptosis and western blot analysis was used to detect protein expression. Results: Puerarin significantly increased BBB score in SCI rats, attenuated histological injury of spinal cord, decreased neuron loss, inhibited glial cells activation, alleviated inflammation, and inhibited cell apoptosis in the injured spinal cords. In addition, the downregulated PI3K and phospho-Akt protein expression were restored by puerarin. Conclusion: Puerarin accelerated locomotor function recovery and tissue repair of SCI rats, which is associated with its neuroprotection, glial cell activation suppression, anti-inflammatory and anti-apoptosis effects. These effects may be associated with the activation of PI3K/Akt signaling pathway.

  11. Novel aspects of spinal cord evoked potentials (SCEPs) in the evaluation of dorso-ventral and lateral mechanical impacts on the spinal cord

    Science.gov (United States)

    Rad, Iman; Kouhzaei, Sogolie; Mobasheri, Hamid; Saberi, Hooshang

    2015-02-01

    Objectives. The aim of the current study was to mimic mechanical impacts on the spinal cord by manifesting the effects of dorsoventral (DVMP) and lateral (LMP) mechanical pressure on neural activity to address points to be considered during surgery for different purposes, including spinal cord decompression. Approaches. Spinal cords of anesthetized rats were compressed at T13. Different characteristics of axons, including vulnerability, excitability, and conduction velocity (CV), in response to promptness, severity, and duration of pressure were assessed by spinal cord evoked potentials (SCEPs). Real-time SCEPs recorded at L4-5 revealed N1, N2, and N3 peaks that were used to represent the activity of injured sensory afferents, interneurons, and MN fibers. The averaged SCEP recordings were fitted by trust-region algorithm to find the equivalent Gaussian and polynomial equations. Main results. The pyramidal and extrapyramidal pathways possessed CVs of 3-11 and 16-80 m s-1, respectively. DVMP decreased the excitability of myelinated neural fibers in antidromic and orthodromic pathways. The excitability of fibers in extrapyramidal and pyramidal pathways of lateral corticospinal (LCS) and anterior corticospinal (ACS) tracts decreased following LMP. A significant drop in the amplitude of N3 and its conduction velocity (CV) revealed higher susceptibility of less-myelinated fibers to both DVMP and LMP. The best parametric fitting model for triplet healthy spinal cord CAP was a six-term Gaussian equation (G6) that fell into a five-term equation (G5) at the complete compression stage. Significance. The spinal cord is more susceptible to dorsoventral than lateral mechanical pressures, and this should be considered in spinal cord operations. SCEPs have shown promising capabilities for evaluating the severity of SCI and thus can be applied for diagnostic or prognostic intraoperative monitoring (IOM).

  12. Cytoarchitecture of the spinal cord of the postnatal (P4) mouse.

    Science.gov (United States)

    Sengul, Gulgun; Puchalski, Ralph B; Watson, Charles

    2012-05-01

    Interpretation of the new wealth of gene expression and molecular mechanisms in the developing mouse spinal cord requires an accurate anatomical base on which data can be mapped. Therefore, we have assembled a spinal cord atlas of the P4 mouse to facilitate direct comparison with the adult specimens and to contribute to studies of the development of the mouse spinal cord. This study presents the anatomy of the spinal cord of the P4 C57Bl/6J mouse using Nissl and acetyl cholinesterase-stained sections. It includes a detailed map of the laminar organization of selected spinal cord segments and a description of named cell groups of the spinal cord such as the central cervical (CeCv), lateral spinal nucleus, lateral cervical, and dorsal nuclei. The motor neuron groups have also been identified according to the muscle groups they are likely to supply. General features of Rexed's laminae of the P4 spinal cord showed similarities to that of the adult (P56). However, certain differences were observed with regard to the extent of laminae and location of certain cell groups, such as the dorsal nucleus having a more dispersed structure and a more ventral and medial position or the CeCv being located in the medial part of lamina 5 in contrast to the adult where it is located in lamina 7. Motor neuron pools appeared to be more tightly packed in the P4 spinal cord. The dorsal horn was relatively larger and there was more white matter in the P56 spinal cord. Copyright © 2012 Wiley Periodicals, Inc.

  13. Reaction to topical capsaicin in spinal cord injury patients with and without central pain

    DEFF Research Database (Denmark)

    Finnerup, Nanna Brix; Pedersen, Louise H.; Terkelsen, Astrid J.

    2007-01-01

    of a spinal cord injury which already is hyperexcitable, would cause enhanced responses in patients with central pain at the level of injury compared to patients without neuropathic pain and healthy controls. Touch, punctuate stimuli, cold stimuli and topical capsaicin was applied above, at, and below injury......Central neuropathic pain is a debilitating and frequent complication to spinal cord injury (SCI). Excitatory input from hyperexcitable cells around the injured grey matter zone is suggested to play a role for central neuropathic pain felt below the level of a spinal cord injury. Direct evidence...... for this hypothesis is difficult to obtain. Capsaicin, activating TRPV1 receptors on small sensory afferents, induces enhanced cellular activity in dorsal horn neurons and produces a central mediated area of secondary hyperalgesia. We hypothesized that sensory stimuli and capsaicin applied at and just above the level...

  14. Pre-Hospital Care Management of a Potential Spinal Cord Injured Patient: A Systematic Review of the Literature and Evidence-Based Guidelines

    Science.gov (United States)

    Ahn, Henry; Singh, Jeffrey; Nathens, Avery; MacDonald, Russell D.; Travers, Andrew; Tallon, John; Fehlings, Michael G.

    2011-01-01

    Abstract An interdisciplinary expert panel of medical and surgical specialists involved in the management of patients with potential spinal cord injuries (SCI) was assembled. Four key questions were created that were of significant interest. These were: (1) what is the optimal type and duration of pre-hospital spinal immobilization in patients with acute SCI?; (2) during airway manipulation in the pre-hospital setting, what is the ideal method of spinal immobilization?; (3) what is the impact of pre-hospital transport time to definitive care on the outcomes of patients with acute spinal cord injury?; and (4) what is the role of pre-hospital care providers in cervical spine clearance and immobilization? A systematic review utilizing multiple databases was performed to determine the current evidence about the specific questions, and each article was independently reviewed and assessed by two reviewers based on inclusion and exclusion criteria. Guidelines were then created related to the questions by a national Canadian expert panel using the Delphi method for reviewing the evidence-based guidelines about each question. Recommendations about the key questions included: the pre-hospital immobilization of patients using a cervical collar, head immobilization, and a spinal board; utilization of padded boards or inflatable bean bag boards to reduce pressure; transfer of patients off of spine boards as soon as feasible, including transfer of patients off spinal boards while awaiting transfer from one hospital institution to another hospital center for definitive care; inclusion of manual in-line cervical spine traction for airway management in patients requiring intubation in the pre-hospital setting; transport of patients with acute traumatic SCI to the definitive hospital center for care within 24 h of injury; and training of emergency medical personnel in the pre-hospital setting to apply criteria to clear patients of cervical spinal injuries, and immobilize patients

  15. Deconstructing Chronic Low Back Pain in the Older Adult-Step by Step Evidence and Expert-Based Recommendations for Evaluation and Treatment. Part VI: Lumbar Spinal Stenosis.

    Science.gov (United States)

    Fritz, Julie M; Rundell, Sean D; Dougherty, Paul; Gentili, Angela; Kochersberger, Gary; Morone, Natalia E; Naga Raja, Srinivasa; Rodriguez, Eric; Rossi, Michelle I; Shega, Joseph; Sowa, Gwendolyn; Weiner, Debra K

    2016-03-01

    . To present the sixth in a series of articles designed to deconstruct chronic low back pain (CLBP) in older adults. This article focuses on the evaluation and management of lumbar spinal stenosis (LSS), the most common condition for which older adults undergo spinal surgery. . The evaluation and treatment algorithm, a table articulating the rationale for the individual algorithm components, and stepped-care drug recommendations were developed using a modified Delphi approach. The Principal Investigator, a five-member content expert panel and a nine-member primary care panel were involved in the iterative development of these materials. The illustrative clinical case was taken from the clinical practice of a contributor's colleague (SR). . We present an algorithm and supportive materials to help guide the care of older adults with LSS, a condition that occurs not uncommonly in those with CLBP. The case illustrates the importance of function-focused management and a rational approach to conservative care. . Lumbar spinal stenosis exists not uncommonly in older adults with CLBP and management often can be accomplished without surgery. Treatment should address all conditions in addition to LSS contributing to pain and disability. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Electrophysiological characterization of activation state-dependent Ca(v)2 channel antagonist TROX-1 in spinal nerve injured rats.

    Science.gov (United States)

    Patel, R; Rutten, K; Valdor, M; Schiene, K; Wigge, S; Schunk, S; Damann, N; Christoph, T; Dickenson, A H

    2015-06-25

    Prialt, a synthetic version of Ca(v)2.2 antagonist ω-conotoxin MVIIA derived from Conus magus, is the first clinically approved voltage-gated calcium channel blocker for refractory chronic pain. However, due to the narrow therapeutic window and considerable side effects associated with systemic dosing, Prialt is only administered intrathecally. N-triazole oxindole (TROX-1) is a novel use-dependent and activation state-selective small-molecule inhibitor of Ca(v)2.1, 2.2 and 2.3 calcium channels designed to overcome the limitations of Prialt. We have examined the neurophysiological and behavioral effects of blocking calcium channels with TROX-1. In vitro, TROX-1, in contrast to state-independent antagonist Prialt, preferentially inhibits Ca(v)2.2 currents in rat dorsal root ganglia (DRG) neurons under depolarized conditions. In vivo electrophysiology was performed to record from deep dorsal horn lamina V/VI wide dynamic range neurons in non-sentient spinal nerve-ligated (SNL) and sham-operated rats. In SNL rats, spinal neurons exhibited reduced responses to innocuous and noxious punctate mechanical stimulation of the receptive field following subcutaneous administration of TROX-1, an effect that was absent in sham-operated animals. No effect was observed on neuronal responses evoked by dynamic brushing, heat or cold stimulation in SNL or sham rats. The wind-up response of spinal neurons following repeated electrical stimulation of the receptive field was also unaffected. Spinally applied TROX-1 dose dependently inhibited mechanically evoked neuronal responses in SNL but not sham-operated rats, consistent with behavioral observations. This study confirms the pathological state-dependent actions of TROX-1 through a likely spinal mechanism and reveals a modality selective change in calcium channel function following nerve injury. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Towards the development of an outcome instrument for spinal trauma: an international survey of spinal surgeons.

    Science.gov (United States)

    Oner, F Cumhur; Sadiqi, Said; Lehr, A Mechteld; Dvorak, Marcel F; Aarabi, Bizhan; Chapman, Jens R; Fehlings, Michael G; Kandziora, Frank; Rajasekaran, S; Vaccaro, Alexander R

    2015-01-15

    International web-based survey. To identify the most relevant aspects of human function and health status from the perspective of health care professionals involved in the treatment of spinal trauma patients. There is no universally accepted outcome instrument available that is specifically designed or validated for spinal trauma patients, contributing to controversies related to the optimal treatment and evaluation of many types of spinal injuries. Therefore, the AOSpine Knowledge Forum Trauma aims to develop such an instrument using the International Classification of Functioning, Disability, and Health (ICF) as its basis. Experts from the 5 AOSpine International world regions were asked to give their opinion on the relevance of a compilation of 143 ICF categories for spinal trauma patients on a 3-point scale: "not relevant," "probably relevant," or "definitely relevant." The responses were analyzed using frequency analysis. Possible differences in responses between the 5 world regions were analyzed with the Fisher exact test and descriptive statistics. Of the 895 invited AOSpine International members, 150 (16.8%) participated in this study. A total of 13 (9.1%) ICF categories were identified as definitely relevant by more than 80% of the participants. Most of these categories were related to the ICF component "activities and participation" (n = 8), followed by "body functions" (n = 4), and "body structures" (n = 1). Only some minor regional differences were observed in the pattern of answers. More than 80% of an international group of health care professionals experienced in the clinical care of adult spinal trauma patients indicated 13 of 143 ICF categories as definitely relevant to measure outcomes after spinal trauma. This study creates an evidence base to define a core set of ICF categories for outcome measurement in adult spinal trauma patients.

  18. Design and testing of a controlled electromagnetic spinal cord impactor for use in large animal models of acute traumatic spinal cord injury.

    Science.gov (United States)

    Petteys, Rory J; Spitz, Steven M; Syed, Hasan; Rice, R Andrew; Sarabia-Estrada, Rachel; Goodwin, C Rory; Sciubba, Daniel M; Freedman, Brett A

    2017-09-01

    Spinal cord injury (SCI) causes debilitating neurological dysfunction and has been observed in warfighters injured in IED blasts. Clinical benefit of SCI treatment remains elusive and better large animal models are needed to assess treatment options. Here, we describe a controlled electromagnetic spinal cord impactor for use in large animal models of SCI. A custom spinal cord impactor and platform were fabricated for large animals (e.g., pig, sheep, dog, etc.). Impacts were generated by a voice coil actuator; force and displacement were measured with a load cell and potentiometer respectively. Labview (National Instruments, Austin, TX) software was used to control the impact cycle and import force and displacement data. Software finite impulse response (FIR) filtering was employed for all input data. Silicon tubing was used a surrogate for spinal cord in order to test the device; repeated impacts were performed at 15, 25, and 40 Newtons. Repeated impacts demonstrated predictable results at each target force. The average duration of impact was 71.2 ±6.1ms. At a target force of 40N, the output force was 41.5 ±0.7N. With a target of 25N, the output force was 23.5 ±0.6N; a target of 15Newtons revealed an output force of 15.2 ±1.4N. The calculated acceleration range was 12.5-21.2m/s 2 . This custom spinal cord impactor reliably delivers precise impacts to the spinal cord and will be utilized in future research to study acute traumatic SCI in a large animal. Published by Elsevier Ltd.

  19. Secondary damage in the spinal cord after motor cortex injury in rats.

    Science.gov (United States)

    Weishaupt, Nina; Silasi, Gergely; Colbourne, Frederick; Fouad, Karim

    2010-08-01

    When neurons within the motor cortex are fatally injured, their axons, many of which project into the spinal cord, undergo wallerian degeneration. Pathological processes occurring downstream of the cortical damage have not been extensively studied. We created a focal forelimb motor cortex injury in rats and found that axons from cell bodies located in the hindlimb motor cortex (spared by the cortical injury) become secondarily damaged in the spinal cord. To assess axonal degeneration in the spinal cord, we quantified silver staining in the corticospinal tract (CST) at 1 week and 4 weeks after the injury. We found a significant increase in silver deposition at the thoracic spinal cord level at 4 weeks compared to 1 week post-injury. At both time points, no degenerating neurons could be found in the hindlimb motor cortex. In a separate experiment, we showed that direct injury of neurons within the hindlimb motor cortex caused marked silver deposition in the thoracic CST at 1 week post-injury, and declined thereafter. Therefore, delayed axonal degeneration in the thoracic spinal cord after a focal forelimb motor cortex injury is indicative of secondary damage at the spinal cord level. Furthermore, immunolabeling of spinal cord sections showed that a local inflammatory response dominated by partially activated Iba-1-positive microglia is mounted in the CST, a viable mechanism to cause the observed secondary degeneration of fibers. In conclusion, we demonstrate that following motor cortex injury, wallerian degeneration of axons in the spinal cord leads to secondary damage, which is likely mediated by inflammatory processes.

  20. Defining a core outcome set for adolescent and young adult patients with a spinal deformity.

    Science.gov (United States)

    de Kleuver, Marinus; Faraj, Sayf S A; Holewijn, Roderick M; Germscheid, Niccole M; Adobor, Raphael D; Andersen, Mikkel; Tropp, Hans; Dahl, Benny; Keskinen, Heli; Olai, Anders; Polly, David W; van Hooff, Miranda L; Haanstra, Tsjitske M

    2017-12-01

    Background and purpose - Routine outcome measurement has been shown to improve performance in several fields of healthcare. National spine surgery registries have been initiated in 5 Nordic countries. However, there is no agreement on which outcomes are essential to measure for adolescent and young adult patients with a spinal deformity. The aim of this study was to develop a core outcome set (COS) that will facilitate benchmarking within and between the 5 countries of the Nordic Spinal Deformity Society (NSDS) and other registries worldwide. Material and methods - From August 2015 to September 2016, 7 representatives (panelists) of the national spinal surgery registries from each of the NSDS countries participated in a modified Delphi study. With a systematic literature review as a basis and the International Classification of Functioning, Disability and Health framework as guidance, 4 consensus rounds were held. Consensus was defined as agreement between at least 5 of the 7 representatives. Data were analyzed qualitatively and quantitatively. Results - Consensus was reached on the inclusion of 13 core outcome domains: "satisfaction with overall outcome of surgery", "satisfaction with cosmetic result of surgery", "pain interference", physical functioning", "health-related quality of life", "recreation and leisure", "pulmonary fatigue", "change in deformity", "self-image", "pain intensity", "physical function", "complications", and "re-operation". Panelists agreed that the SRS-22r, EQ-5D, and a pulmonary fatigue questionnaire (yet to be developed) are the most appropriate set of patient-reported measurement instruments that cover these outcome domains. Interpretation - We have identified a COS for a large subgroup of spinal deformity patients for implementation and validation in the NSDS countries. This is the first study to further develop a COS in a global perspective.

  1. Systematic review of behavioral and educational interventions to prevent pressure ulcers in adults with spinal cord injury.

    Science.gov (United States)

    Cogan, Alison M; Blanchard, Jeanine; Garber, Susan L; Vigen, Cheryl Lp; Carlson, Mike; Clark, Florence A

    2017-07-01

    To investigate the efficacy of behavioral or educational interventions in preventing pressure ulcers in community-dwelling adults with spinal cord injury (SCI). Cochrane, Clinical Trials, PubMed, and Web of Science were searched in June 2016. The search combined related terms for pressure ulcers, spinal cord injury, and behavioral intervention. Each database was searched from its inception with no restrictions on year of publication. Inclusion criteria required that articles were (a) published in a peer-reviewed journal in English, (b) evaluated a behavioral or educational intervention for pressure ulcer prevention, (c) included community-dwelling adult participants aged 18 years and older with SCI, (d) measured pressure ulcer occurrence, recurrence, or skin breakdown as an outcome, and (e) had a minimum of 10 participants. All study designs were considered. Two reviewers independently screened titles and abstracts. Extracted information included study design, sample size, description of the intervention and control condition, pressure ulcer outcome measures, and corresponding results. The search strategy yielded 444 unique articles of which five met inclusion criteria. Three were randomized trials and two were quasi-experimental designs. A total of 513 participants were represented. The method of pressure ulcer or skin breakdown measurement varied widely among studies. Results on pressure ulcer outcomes were null in all studies. Considerable methodological problems with recruitment, intervention fidelity, and participant adherence were reported. At present, there is no positive evidence to support the efficacy of behavioral or educational interventions in preventing pressure ulcer occurrence in adults with SCI.

  2. Radiographic Predictors for Mechanical Failure After Adult Spinal Deformity Surgery

    DEFF Research Database (Denmark)

    Hallager, Dennis W; Karstensen, Sven; Bukhari, Naeem

    2017-01-01

    spinal deformity surgery range 12% to 37% in literature. Although the importance of spinal and spino-pelvic alignment is well documented for surgical outcome and ideal alignment has been proposed as sagittal vertical axis (SVA) lordosis (LL) = pelvic incidence ± 9...

  3. Employment of persons with spinal cord lesions injured more than 20 years ago

    DEFF Research Database (Denmark)

    Lidal, Ingeborg Beate; Hjeltnes, Nils; Røislien, Jo

    2009-01-01

    PURPOSE: The primary objective was to study factors influencing post-injury employment and withdrawal from work in persons who sustained traumatic spinal cord injury (SCI) more than 20 years ago. A secondary objective was to study life satisfaction in the same patients. METHOD: A cross...... before, and a history of pre-injury medical condition(s). Life satisfaction was better for currently employed participants. CONCLUSION: The study indicates a low employment-rate in persons with SCI, even several years after injury. From the results, we suggest more support, especially to persons of older...

  4. Co-ultramicronized palmitoylethanolamide/luteolin promotes neuronal regeneration after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Rosalia eCrupi

    2016-03-01

    Full Text Available Spinal cord injury (SCI stimulates activation of astrocytes and infiltration of immune cells at the lesion site; however, the mechanism that promotes the birth of new neurons is still under debate. Neuronal regeneration is restricted after spinal cord injury, but can be stimulated by experimental intervention. Previously we demonstrated that treatment co-ultramicronized palmitoylethanolamide and luteolin, namely co-ultraPEALut, reduced inflammation. The present study was designed to explore the neuroregenerative properties of co-ultra PEALut in an estabished murine model of SCI. A vascular clip was applied to the spinal cord dura at T5 to T8 to provoke injury. Mice were treated with co-ultraPEALut (1 mg/kg, intraperitoneally daily for 72 h after SCI. Co-ultraPEALut increased the numbers of both bromodeoxyuridine-positive nuclei and doublecortin-immunoreactive cells in the spinal cord of injured mice. To correlate neuronal development with synaptic plasticity a Golgi method was employed to analyze dendritic spine density. Co-ultraPEALut administration stimulated expression of the neurotrophic factors brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, nerve growth factor and neurotrophin-3. These findings show a prominent effect of co-ultraPEALut administration in the management of survival and differentiation of new neurons and spine maturation, and may represent a therapeutic treatment for spinal cord and other traumatic diseases.

  5. Involvement of TRPM2 in peripheral nerve injury-induced infiltration of peripheral immune cells into the spinal cord in mouse neuropathic pain model.

    Directory of Open Access Journals (Sweden)

    Kouichi Isami

    Full Text Available Recent evidence suggests that transient receptor potential melastatin 2 (TRPM2 expressed in immune cells plays an important role in immune and inflammatory responses. We recently reported that TRPM2 expressed in macrophages and spinal microglia contributes to the pathogenesis of inflammatory and neuropathic pain aggravating peripheral and central pronociceptive inflammatory responses in mice. To further elucidate the contribution of TRPM2 expressed by peripheral immune cells to neuropathic pain, we examined the development of peripheral nerve injury-induced neuropathic pain and the infiltration of immune cells (particularly macrophages into the injured nerve and spinal cord by using bone marrow (BM chimeric mice by crossing wildtype (WT and TRPM2-knockout (TRPM2-KO mice. Four types of BM chimeric mice were prepared, in which irradiated WT or TRPM2-KO recipient mice were transplanted with either WT-or TRPM2-KO donor mouse-derived green fluorescence protein-positive (GFP(+ BM cells (TRPM2(BM+/Rec+, TRPM2(BM-/Rec+, TRPM2(BM+/Rec-, and TRPM2(BM-/Rec- mice. Mechanical allodynia induced by partial sciatic nerve ligation observed in TRPM2(BM+/Rec+ mice was attenuated in TRPM2(BM-/Rec+, TRPM2(BM+/Rec-, and TRPM2(BM-/Rec- mice. The numbers of GFP(+ BM-derived cells and Iba1/GFP double-positive macrophages in the injured sciatic nerve did not differ among chimeric mice 14 days after the nerve injury. In the spinal cord, the number of GFP(+ BM-derived cells, particularly GFP/Iba1 double-positive macrophages, was significantly decreased in the three TRPM2-KO chimeric mouse groups compared with TRPM2(BM+/Rec+ mice. However, the numbers of GFP(-/Iba1(+ resident microglia did not differ among chimeric mice. These results suggest that TRPM2 plays an important role in the infiltration of peripheral immune cells, particularly macrophages, into the spinal cord, rather than the infiltration of peripheral immune cells into the injured nerves and activation of spinal

  6. 46-year-old man with a spinal cord mass.

    Science.gov (United States)

    Sanders, Mary Ann; Vitaz, Todd; Rosenblum, Marc; Plaga, Alexis R; Parker, Joseph C; Parker, John R

    2011-01-01

    Medulloblastoma accounts for only 1% of all adult CNS tumors. Likewise, recurrence of adult medulloblastoma greater than 20 years after initial diagnosis is extremely rare.We describe a case of adult medulloblastoma with late relapse of disease. The patient was 24 years old when first diagnosed and was treated with total tumor resection and craniospinal radiation. At the age of 45, an enhancing 1.3 cm intradural extramedullary spinal cord lesion at T5 was discovered on MRI. This was presumed to be recurrent medulloblastoma in the form of drop metastasis and the patient was treated with spinal radiation. Several months following treatment, at the age of 46, a follow-up MRI demonstrated an enhancing 1.4 cm intradural extramedullary spinal cord lesion at T7. The lesion was resected and histopathologic examination was most consistent with medulloblastoma, late drop metastasis. Although rare, adult medulloblastoma recurring 20 years after initial diagnosis should always be considered in the main differential diagnosis when working up CNS lesions at or outside the primary tumor site.

  7. Systemic and Local Cytokine Profile following Spinal Cord Injury in Rats: A Multiplex Analysis

    Directory of Open Access Journals (Sweden)

    Yana O. Mukhamedshina

    2017-10-01

    Full Text Available Our study of the changes in cytokine profile in blood serum and in the spinal cord after traumatic spinal cord injury (SCI has shown that an inflammatory reaction and immunological response are not limited to the CNS, but widespread. This fact was confirmed by changes detected in a cytokine profile in blood serum samples [MIP-1α, interleukin 1 (IL-1 α, IL-2, IL-5, IL-1β, MCP-1, RANTES]. There were also changes in the levels of MIP-1α, IL-1α, IL-2, IL-5, IL-18, GM-colony-stimulating factor, IL-17α, IFN-γ, IL-10, IL-13, MCP-1, and GRO KC CINC-1 in samples of the rat injured spinal cord. The results underscore the complex cytokine network imbalance exhibited after SCI and show significant changes in the concentrations of 14 cytokines/chemokines with different inflammatory and immunological activities.

  8. Presentation and outcome of traumatic spinal fractures

    Directory of Open Access Journals (Sweden)

    Ahmed El-Faramawy

    2012-01-01

    Full Text Available Background: Motor vehicle crashes and falls account for most of the spine fractures with subsequent serious disability. Aim: To define the incidence, causes, and outcome of spinal fractures. Materials and Methods: Data were collected retrospectively from trauma registry database of all traumatic spinal injuries admitted to the section of trauma surgery in Qatar from November 2007 to December 2009. Results: Among 3712 patients who were admitted to the section of trauma surgery, 442 (12% injured patients had spinal fractures with a mean age of 33.2 ± 12 years. The male to female ratio was 11.6:1. Motor vehicle crashes (36.5% and falls from height (19.3% were the leading causes of cervical injury (P = 0.001. The injury severity score ranged between 4 and 75. Nineteen percent of cases with cervical injury had thoracic injury as well (P = 0.04. Lumber injury was associated with thoracic injury in 27% of cases (P < 0.001. Combined thoracic and lumber injuries were associated with cervical injury in 33% of cases (P < 0.001. The total percent of injuries associated with neurological deficit was 5.4%. Fifty-three cases were managed surgically for spine fractures; 14 of them had associated neurological deficits. Overall mortalityrate was 5%. Conclusions: Spine fractures are not uncommon in Qatar. Cervical and thoracic spine injuries carry the highest incidence of associated neurological deficit and injuries at other spinal levels. Young males are the most exposed population that deserves more emphasis on injury prevention programs in the working sites and in enforcement of traffic laws.

  9. Imaging of extradural spinal lesions

    International Nuclear Information System (INIS)

    Ahlhelm, F.; Schulte-Altedorneburg, G.; Naumann, N.; Reith, W.; Nabhan, A.

    2006-01-01

    There is a wide variety of spinal extradural tumors. In addition to real neoplasms, degenerative diseases, congenital abnormalities and inflammatory disorders can be causes of extradural masses. Due to the bony boundary of the spinal canal, both benign as well as malignant masses can cause progressive neurological deficits including paraplegia. Most of the spinal tumors are benign (hemangioma of the vertebral body, degenerative diseases). In younger patients congenital abnormalities and primary tumors of the spine have to be considered, whereas in adults the list of differential diagnoses should include secondary malignancies such as metastases and lymphomas as well as metabolic disorders such as osteoporotic vertebral compression fracture and Paget's disease. Cross-sectional imaging techniques such as magnetic resonance imaging (MRI) and computed tomography (CT) of the spine often help to make a specific diagnosis of extradural spinal lesions and represent important tools for tumor staging and preoperative evaluation. (orig.) [de

  10. Repeated touch and needle-prick stimulation in the neonatal period increases the baseline mechanical sensitivity and postinjury hypersensitivity of adult spinal sensory neurons.

    Science.gov (United States)

    van den Hoogen, Nynke J; Patijn, Jacob; Tibboel, Dick; Joosten, Bert A; Fitzgerald, Maria; Kwok, Charlie H T

    2018-03-08

    Noxious stimulation at critical stages of development has long-term consequences on somatosensory processing in later life, but it is not known whether this developmental plasticity is restricted to nociceptive pathways. Here, we investigate the effect of repeated neonatal noxious or innocuous hind paw stimulation on adult spinal dorsal horn cutaneous mechanical sensitivity. Neonatal Sprague-Dawley rats of both sexes received 4 unilateral left hind paw needle pricks (NPs, n = 13) or 4 tactile (cotton swab touch) stimuli, per day (TC, n = 11) for the first 7 days of life. Control pups were left undisturbed (n = 17). When adult (6-8 weeks), lumbar wide-dynamic-range neuron activity in laminae III-V was recorded using in vivo extracellular single-unit electrophysiology. Spike activity evoked by cutaneous dynamic tactile (brush), pinch and punctate (von Frey hair) stimulation, and plantar receptive field areas were recorded, at baseline and 2 and 5 days after left plantar hind paw incision. Baseline brush receptive fields, von Frey hair, and pinch sensitivity were significantly enhanced in adult NP and TC animals compared with undisturbed controls, although effects were greatest in NP rats. After incision, injury sensitivity of adult wide-dynamic-range neurons to both noxious and dynamic tactile hypersensitivity was significantly greater in NP animals compared with TC and undisturbed controls. We conclude that both repeated touch and needle-prick stimulation in the neonatal period can alter adult spinal sensory neuron sensitivity to both innocuous and noxious mechanical stimulation. Thus, spinal sensory circuits underlying touch and pain processing are shaped by a range of early-life somatosensory experiences.This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  11. Biomaterials for Local, Controlled Drug Delivery to the Injured Spinal Cord

    Directory of Open Access Journals (Sweden)

    Alexis M. Ziemba

    2017-05-01

    Full Text Available Affecting approximately 17,000 new people each year, spinal cord injury (SCI is a devastating injury that leads to permanent paraplegia or tetraplegia. Current pharmacological approaches are limited in their ability to ameliorate this injury pathophysiology, as many are not delivered locally, for a sustained duration, or at the correct injury time point. With this review, we aim to communicate the importance of combinatorial biomaterial and pharmacological approaches that target certain aspects of the dynamically changing pathophysiology of SCI. After reviewing the pathophysiology timeline, we present experimental biomaterial approaches to provide local sustained doses of drug. In this review, we present studies using a variety of biomaterials, including hydrogels, particles, and fibers/conduits for drug delivery. Subsequently, we discuss how each may be manipulated to optimize drug release during a specific time frame following SCI. Developing polymer biomaterials that can effectively release drug to target specific aspects of SCI pathophysiology will result in more efficacious approaches leading to better regeneration and recovery following SCI.

  12. Case report on the clinical results of a combined cellular therapy for chronic spinal cord injured patients.

    Science.gov (United States)

    Moviglia, G A; Varela, G; Brizuela, J A; Moviglia Brandolino, M T; Farina, P; Etchegaray, G; Piccone, S; Hirsch, J; Martinez, G; Marino, S; Deffain, S; Coria, N; Gonzáles, A; Sztanko, M; Salas-Zamora, P; Previgliano, I; Aingel, V; Farias, J; Gaeta, C A; Saslavsky, J; Blasseti, N

    2009-06-01

    With the intention to ameliorate the clinical condition of patients with chronic spinal cord injury (SCI), a program that combines three cell therapies and an appropriate neurorehabilitation program were used to recreate and enhance the natural conditions of SCI repair. Vascularization recovery is approached by selective artery infusion of BMMNCs (bone marrow mononuclear cells) to the disrupted area. Eighteen days later, with the aim to restore the specific inflammatory activity, an i.v. infusion of spinal cord specific ETCs (effector T cells) is carried out. With the intention of supplying cellular components for the process of repair, an infusion of autologous neural stem cells (NSCs) through selective feeding artery infusion is carried out, followed by an appropriate neurorehabilitation program. A total of eight ASIA (American Spinal Injury Association) A patients (five with jeopardized brachial plexus and three without) received the treatment. No severe adverse events was observed in any of the receptor patients: five patients evolved from ASIA A to ASIA D and regained the ability to stand up and, with varying effectiveness, to walk; two patients remained in the same condition, but exhibited motor and sensitive improvements; and one patient could not be evaluated. These reports suggest that the biological characteristics of acute SCI may be recreated in a comprehensive, safe and effective manner.

  13. miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair.

    Science.gov (United States)

    Gaudet, Andrew D; Mandrekar-Colucci, Shweta; Hall, Jodie C E; Sweet, David R; Schmitt, Philipp J; Xu, Xinyang; Guan, Zhen; Mo, Xiaokui; Guerau-de-Arellano, Mireia; Popovich, Phillip G

    2016-08-10

    Axon regeneration after spinal cord injury (SCI) fails due to neuron-intrinsic mechanisms and extracellular barriers including inflammation. microRNA (miR)-155-5p is a small, noncoding RNA that negatively regulates mRNA translation. In macrophages, miR-155-5p is induced by inflammatory stimuli and elicits a response that could be toxic after SCI. miR-155 may also independently alter expression of genes that regulate axon growth in neurons. Here, we hypothesized that miR-155 deletion would simultaneously improve axon growth and reduce neuroinflammation after SCI by acting on both neurons and macrophages. New data show that miR-155 deletion attenuates inflammatory signaling in macrophages, reduces macrophage-mediated neuron toxicity, and increases macrophage-elicited axon growth by ∼40% relative to control conditions. In addition, miR-155 deletion increases spontaneous axon growth from neurons; adult miR-155 KO dorsal root ganglion (DRG) neurons extend 44% longer neurites than WT neurons. In vivo, miR-155 deletion augments conditioning lesion-induced intraneuronal expression of SPRR1A, a regeneration-associated gene; ∼50% more injured KO DRG neurons expressed SPRR1A versus WT neurons. After dorsal column SCI, miR-155 KO mouse spinal cord has reduced neuroinflammation and increased peripheral conditioning-lesion-enhanced axon regeneration beyond the epicenter. Finally, in a model of spinal contusion injury, miR-155 deletion improves locomotor function at postinjury times corresponding with the arrival and maximal appearance of activated intraspinal macrophages. In miR-155 KO mice, improved locomotor function is associated with smaller contusion lesions and decreased accumulation of inflammatory macrophages. Collectively, these data indicate that miR-155 is a novel therapeutic target capable of simultaneously overcoming neuron-intrinsic and neuron-extrinsic barriers to repair after SCI. Axon regeneration after spinal cord injury (SCI) fails due to neuron

  14. miR-155 Deletion in Mice Overcomes Neuron-Intrinsic and Neuron-Extrinsic Barriers to Spinal Cord Repair

    Science.gov (United States)

    Mandrekar-Colucci, Shweta; Hall, Jodie C.E.; Sweet, David R.; Schmitt, Philipp J.; Xu, Xinyang; Guan, Zhen; Mo, Xiaokui; Guerau-de-Arellano, Mireia

    2016-01-01

    Axon regeneration after spinal cord injury (SCI) fails due to neuron-intrinsic mechanisms and extracellular barriers including inflammation. microRNA (miR)-155–5p is a small, noncoding RNA that negatively regulates mRNA translation. In macrophages, miR-155-5p is induced by inflammatory stimuli and elicits a response that could be toxic after SCI. miR-155 may also independently alter expression of genes that regulate axon growth in neurons. Here, we hypothesized that miR-155 deletion would simultaneously improve axon growth and reduce neuroinflammation after SCI by acting on both neurons and macrophages. New data show that miR-155 deletion attenuates inflammatory signaling in macrophages, reduces macrophage-mediated neuron toxicity, and increases macrophage-elicited axon growth by ∼40% relative to control conditions. In addition, miR-155 deletion increases spontaneous axon growth from neurons; adult miR-155 KO dorsal root ganglion (DRG) neurons extend 44% longer neurites than WT neurons. In vivo, miR-155 deletion augments conditioning lesion-induced intraneuronal expression of SPRR1A, a regeneration-associated gene; ∼50% more injured KO DRG neurons expressed SPRR1A versus WT neurons. After dorsal column SCI, miR-155 KO mouse spinal cord has reduced neuroinflammation and increased peripheral conditioning-lesion-enhanced axon regeneration beyond the epicenter. Finally, in a model of spinal contusion injury, miR-155 deletion improves locomotor function at postinjury times corresponding with the arrival and maximal appearance of activated intraspinal macrophages. In miR-155 KO mice, improved locomotor function is associated with smaller contusion lesions and decreased accumulation of inflammatory macrophages. Collectively, these data indicate that miR-155 is a novel therapeutic target capable of simultaneously overcoming neuron-intrinsic and neuron-extrinsic barriers to repair after SCI. SIGNIFICANCE STATEMENT Axon regeneration after spinal cord injury (SCI) fails

  15. Karolinska institutet 200-year anniversary. Symposium on traumatic injuries in the nervous system: injuries to the spinal cord and peripheral nervous system - injuries and repair, pain problems, lesions to brachial plexus.

    Science.gov (United States)

    Sköld, Mattias K; Svensson, Mikael; Tsao, Jack; Hultgren, Thomas; Landegren, Thomas; Carlstedt, Thomas; Cullheim, Staffan

    2011-01-01

    The Karolinska Institutet 200-year anniversary symposium on injuries to the spinal cord and peripheral nervous system gathered expertise in the spinal cord, spinal nerve, and peripheral nerve injury field spanning from molecular prerequisites for nerve regeneration to clinical methods in nerve repair and rehabilitation. The topics presented at the meeting covered findings on adult neural stem cells that when transplanted to the hypoglossal nucleus in the rat could integrate with its host and promote neuron survival. Studies on vascularization after intraspinal replantation of ventral nerve roots and microarray studies in ventral root replantation as a tool for mapping of biological patterns typical for neuronal regeneration were discussed. Different immune molecules in neurons and glia and their very specific roles in synapse plasticity after injury were presented. Novel strategies in repair of injured peripheral nerves with ethyl-cyanoacrylate adhesive showed functional recovery comparable to that of conventional epineural sutures. Various aspects on surgical techniques which are available to improve function of the limb, once the nerve regeneration after brachial plexus lesions and repair has reached its limit were presented. Moreover, neurogenic pain after amputation and its treatment with mirror therapy were shown to be followed by dramatic decrease in phantom limb pain. Finally clinical experiences on surgical techniques to repair avulsed spinal nerve root and the motoric as well as sensoric regain of function were presented.

  16. Neuronal glycosylation differentials in normal, injured and chondroitinase-treated environments

    International Nuclear Information System (INIS)

    Kilcoyne, Michelle; Sharma, Shashank; McDevitt, Niamh; O’Leary, Claire; Joshi, Lokesh; McMahon, Siobhán S.

    2012-01-01

    Highlights: ► Carbohydrates are important in the CNS and ChABC has been used for spinal cord injury (SCI) treatment. ► Neuronal glycosylation in injury and after ChABC treatment is unknown. ► In silico mining verified that glyco-related genes were differentially regulated after SCI. ► In vitro model system revealed abnormal sialylation in an injured environment. ► The model indicated a return to normal neuronal glycosylation after ChABC treatment. -- Abstract: Glycosylation is found ubiquitously throughout the central nervous system (CNS). Chondroitin sulphate proteoglycans (CSPGs) are a group of molecules heavily substituted with glycosaminoglycans (GAGs) and are found in the extracellular matrix (ECM) and cell surfaces. Upon CNS injury, a glial scar is formed, which is inhibitory for axon regeneration. Several CSPGs are up-regulated within the glial scar, including NG2, and these CSPGs are key inhibitory molecules of axonal regeneration. Treatment with chondroitinase ABC (ChABC) can neutralise the inhibitory nature of NG2. A gene expression dataset was mined in silico to verify differentially regulated glycosylation-related genes in neurons after spinal cord injury and identify potential targets for further investigation. To establish the glycosylation differential of neurons that grow in a healthy, inhibitory and ChABC-treated environment, we established an indirect co-culture system where PC12 neurons were grown with primary astrocytes, Neu7 astrocytes (which overexpress NG2) and Neu7 astrocytes treated with ChABC. After 1, 4 and 8 days culture, lectin cytochemistry of the neurons was performed using five fluorescently-labelled lectins (ECA MAA, PNA, SNA-I and WFA). Usually α-(2,6)-linked sialylation scarcely occurs in the CNS but this motif was observed on the neurons in the injured environment only at day 8. Treatment with ChABC was successful in returning neuronal glycosylation to normal conditions at all timepoints for MAA, PNA and SNA-I staining

  17. Neuronal glycosylation differentials in normal, injured and chondroitinase-treated environments

    Energy Technology Data Exchange (ETDEWEB)

    Kilcoyne, Michelle; Sharma, Shashank [Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway (Ireland); McDevitt, Niamh; O' Leary, Claire [Anatomy, School of Medicine, National University of Ireland, Galway (Ireland); Joshi, Lokesh [Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway (Ireland); McMahon, Siobhan S., E-mail: siobhan.mcmahon@nuigalway.ie [Anatomy, School of Medicine, National University of Ireland, Galway (Ireland)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer Carbohydrates are important in the CNS and ChABC has been used for spinal cord injury (SCI) treatment. Black-Right-Pointing-Pointer Neuronal glycosylation in injury and after ChABC treatment is unknown. Black-Right-Pointing-Pointer In silico mining verified that glyco-related genes were differentially regulated after SCI. Black-Right-Pointing-Pointer In vitro model system revealed abnormal sialylation in an injured environment. Black-Right-Pointing-Pointer The model indicated a return to normal neuronal glycosylation after ChABC treatment. -- Abstract: Glycosylation is found ubiquitously throughout the central nervous system (CNS). Chondroitin sulphate proteoglycans (CSPGs) are a group of molecules heavily substituted with glycosaminoglycans (GAGs) and are found in the extracellular matrix (ECM) and cell surfaces. Upon CNS injury, a glial scar is formed, which is inhibitory for axon regeneration. Several CSPGs are up-regulated within the glial scar, including NG2, and these CSPGs are key inhibitory molecules of axonal regeneration. Treatment with chondroitinase ABC (ChABC) can neutralise the inhibitory nature of NG2. A gene expression dataset was mined in silico to verify differentially regulated glycosylation-related genes in neurons after spinal cord injury and identify potential targets for further investigation. To establish the glycosylation differential of neurons that grow in a healthy, inhibitory and ChABC-treated environment, we established an indirect co-culture system where PC12 neurons were grown with primary astrocytes, Neu7 astrocytes (which overexpress NG2) and Neu7 astrocytes treated with ChABC. After 1, 4 and 8 days culture, lectin cytochemistry of the neurons was performed using five fluorescently-labelled lectins (ECA MAA, PNA, SNA-I and WFA). Usually {alpha}-(2,6)-linked sialylation scarcely occurs in the CNS but this motif was observed on the neurons in the injured environment only at day 8. Treatment

  18. What is the potential of oligodendrocyte progenitor cells to successfully treat human spinal cord injury?

    Directory of Open Access Journals (Sweden)

    Yeung Trevor M

    2011-09-01

    Full Text Available Abstract Background Spinal cord injury is a serious and debilitating condition, affecting millions of people worldwide. Long seen as a permanent injury, recent advances in stem cell research have brought closer the possibility of repairing the spinal cord. One such approach involves injecting oligodendrocyte progenitor cells, derived from human embryonic stem cells, into the injured spinal cord in the hope that they will initiate repair. A phase I clinical trial of this therapy was started in mid 2010 and is currently underway. Discussion The theory underlying this approach is that these myelinating progenitors will phenotypically replace myelin lost during injury whilst helping to promote a repair environment in the lesion. However, the importance of demyelination in the pathogenesis of human spinal cord injury is a contentious issue and a body of literature suggests that it is only a minor factor in the overall injury process. Summary This review examines the validity of the theory underpinning the on-going clinical trial as well as analysing published data from animal models and finally discussing issues surrounding safety and purity in order to assess the potential of this approach to successfully treat acute human spinal cord injury.

  19. Regeneration of descending spinal axons after transection of the thoracic spinal cord during early development in the North American opossum, Didelphis virginiana.

    Science.gov (United States)

    Martin, G F; Terman, J R; Wang, X M

    2000-11-15

    Opossums are born in an immature, fetal-like state, making it possible to lesion their spinal cord early in development without intrauterine surgery. When the thoracic spinal cord of the North American opossum, Didelphis virginiana, is transected on postnatal day 5, and injections of Fast Blue (FB) are made caudal to the lesion site 30-40 days or 6 months later, neurons are labeled in all of the spinal and supraspinal areas that are labeled after comparable injections in age-matched, unlesioned controls. Double-labeling studies document that regeneration of cut axons contributes to growth of axons through the lesion site and behavioral studies show that animals lesioned on postnatal day 5 use their hindlimbs in normal appearing locomotion as adults. The critical period for developmental plasticity of descending spinal axons extends to postnatal day 26, although axons which grow through the lesion site become fewer in number and more restricted as to origin with increasing age. Animals lesioned between postnatal day 12 and 26 use the hindlimbs better than animals lesioned as adults, but hindlimb function is markedly abnormal and uncoordinated with that of the forelimbs. We conclude that restoration of anatomical continuity occurs after transection of the spinal cord in developing opossums, that descending axons grow through the lesion site, that regeneration of cut axons contributes to such growth, and that animals lesioned early enough in development have relatively normal motor function as adults.

  20. Overexpression of GDNF in the uninjured DRG exerts analgesic effects on neuropathic pain following segmental spinal nerve ligation in mice.

    Science.gov (United States)

    Takasu, Kumiko; Sakai, Atsushi; Hanawa, Hideki; Shimada, Takashi; Suzuki, Hidenori

    2011-11-01

    Glial cell line-derived neurotrophic factor (GDNF), a survival-promoting factor for a subset of nociceptive small-diameter neurons, has been shown to exert analgesic effects on neuropathic pain. However, its detailed mechanisms of action are still unknown. In the present study, we investigated the site-specific analgesic effects of GDNF in the neuropathic pain state using lentiviral vector-mediated GDNF overexpression in mice with left fifth lumbar (L5) spinal nerve ligation (SNL) as a neuropathic pain model. A lentiviral vector expressing both GDNF and enhanced green fluorescent protein (EGFP) was constructed and injected into the left dorsal spinal cord, uninjured fourth lumbar (L4) dorsal root ganglion (DRG), injured L5 DRG, or plantar skin of mice. In SNL mice, injection of the GDNF-EGFP-expressing lentivirus into the dorsal spinal cord or uninjured L4 DRG partially but significantly reduced the mechanical allodynia in association with an increase in GDNF protein expression in each virus injection site, whereas injection into the injured L5 DRG or plantar skin had no effects. These results suggest that GDNF exerts its analgesic effects in the neuropathic pain state by acting on the central terminals of uninjured DRG neurons and/or on the spinal cells targeted by the uninjured DRG neurons. This article shows that GDNF exerts its analgesic effects on neuropathic pain by acting on the central terminals of uninjured DRG neurons and/or on the spinal cells targeted by these neurons. Therefore, research focusing on these GDNF-dependent neurons in the uninjured DRG would provide a new strategy for treating neuropathic pain. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  1. Matrix Metalloproteinases as a Therapeutic Target to Improve Neurologic Recovery After Spinal Cord Injury

    Science.gov (United States)

    2014-10-01

    mice that served as baseline controls. Conducted 3D reconstruction of representative spinal cords from the moderately injured -vehicle and GM6001...Appendices 13 CONCLUSIONS In a preliminary study, GM6001 (dissolved in 4% carboxy methyl cellulose and delivered via intraperitoneal route) when given...exceeded that necessary to block MMP-9 in vitro. As some MMPs modulate the formation of a glial scar and axonal plasticity [4], their subacute/chronic

  2. Dynamics of intrinsic electrophysiological properties in spinal cord neurones

    DEFF Research Database (Denmark)

    Russo, R E; Hounsgaard, J

    1999-01-01

    The spinal cord is engaged in a wide variety of functions including generation of motor acts, coding of sensory information and autonomic control. The intrinsic electrophysiological properties of spinal neurones represent a fundamental building block of the spinal circuits executing these tasks. ....... Specialised, cell specific electrophysiological phenotypes gradually differentiate during development and are continuously adjusted in the adult animal by metabotropic synaptic interactions and activity-dependent plasticity to meet a broad range of functional demands....

  3. Measuring outcomes in adult spinal deformity surgery: a systematic review to identify current strengths, weaknesses and gaps in patient-reported outcome measures

    NARCIS (Netherlands)

    Faraj, S.S.; Hooff, M.L. Van; Holewijn, R.M.; Polly, D.W.; Haanstra, T.M.; Kleuver, M. de

    2017-01-01

    PURPOSE: Adult spinal deformity (ASD) causes severe disability, reduces overall quality of life, and results in a substantial societal burden of disease. As healthcare is becoming more value based, and to facilitate global benchmarking, it is critical to identify and standardize patient-reported

  4. Comparison of functional recovery of manual dexterity after unilateral spinal cord lesion or motor cortex lesion in adult macaque monkeys

    Directory of Open Access Journals (Sweden)

    Florence eHoogewoud

    2013-07-01

    Full Text Available In relation to mechanisms involved in functional recovery of manual dexterity from cervical cord injury or from motor cortical injury, our goal was to determine whether the movements that characterize post-lesion functional recovery are comparable to original movement patterns or do monkeys adopt distinct strategies to compensate the deficits depending on the type of lesion? To this aim, data derived from earlier studies, using a skilled finger task (the modified Brinkman board from which pellets are retrieved from vertical or horizontal slots, in spinal cord and motor cortex injured monkeys were analyzed and compared. Twelve adult macaque monkeys were subjected to a hemi-section of the cervical cord (n=6 or to a unilateral excitotoxic lesion of the hand representation in the primary motor cortex (n=6. In addition, in each subgroup, one half of monkeys (n=3 were treated for 30 days with a function blocking antibody against the neurite growth inhibitory protein Nogo-A, while the other half (n=3 represented control animals. The motor deficits, and the extent and time course of functional recovery were assessed.For some of the parameters investigated (wrist angle for horizontal slots and movement types distribution for vertical slots after cervical injury; movement types distribution for horizontal slots after motor cortex lesion, post-lesion restoration of the original movement patterns (true recovery led to a quantitatively better functional recovery. In the motor cortex lesion groups, pharmacological reversible inactivation experiments showed that the peri-lesion territory of the primary motor cortex or re-arranged, spared domain of the lesion zone, played a major role in the functional recovery, together with the ipsilesional intact premotor cortex.

  5. Karolinska Institutet 200-Year Anniversary. Symposium on Traumatic Injuries in the Nervous System: Injuries to the Spinal Cord and Peripheral Nervous System – Injuries and Repair, Pain Problems, Lesions to Brachial Plexus

    Science.gov (United States)

    Sköld, Mattias K.; Svensson, Mikael; Tsao, Jack; Hultgren, Thomas; Landegren, Thomas; Carlstedt, Thomas; Cullheim, Staffan

    2011-01-01

    The Karolinska Institutet 200-year anniversary symposium on injuries to the spinal cord and peripheral nervous system gathered expertise in the spinal cord, spinal nerve, and peripheral nerve injury field spanning from molecular prerequisites for nerve regeneration to clinical methods in nerve repair and rehabilitation. The topics presented at the meeting covered findings on adult neural stem cells that when transplanted to the hypoglossal nucleus in the rat could integrate with its host and promote neuron survival. Studies on vascularization after intraspinal replantation of ventral nerve roots and microarray studies in ventral root replantation as a tool for mapping of biological patterns typical for neuronal regeneration were discussed. Different immune molecules in neurons and glia and their very specific roles in synapse plasticity after injury were presented. Novel strategies in repair of injured peripheral nerves with ethyl-cyanoacrylate adhesive showed functional recovery comparable to that of conventional epineural sutures. Various aspects on surgical techniques which are available to improve function of the limb, once the nerve regeneration after brachial plexus lesions and repair has reached its limit were presented. Moreover, neurogenic pain after amputation and its treatment with mirror therapy were shown to be followed by dramatic decrease in phantom limb pain. Finally clinical experiences on surgical techniques to repair avulsed spinal nerve root and the motoric as well as sensoric regain of function were presented. PMID:21629875

  6. Engraftment, neuroglial transdifferentiation and behavioral recovery after complete spinal cord transection in rats.

    Science.gov (United States)

    Sabino, Luzzi; Maria, Crovace Alberto; Luca, Lacitignola; Valerio, Valentini; Edda, Francioso; Giacomo, Rossi; Gloria, Invernici; Juan, Galzio Renato; Antonio, Crovace

    2018-01-01

    Proof of the efficacy and safety of a xenogeneic mesenchymal stem cell (MSCs) transplant for spinal cord injury (SCI) may theoretically widen the spectrum of possible grafts for neuroregeneration. Twenty rats were submitted to complete spinal cord transection. Ovine bone marrow MSCs, retrovirally transfected with red fluorescent protein and not previously induced for neuroglial differentiation, were applied in 10 study rats (MSCG). Fibrin glue was injected in 10 control rats (FGG). All rats were evaluated on a weekly basis and scored using the Basso-Beattie-Bresnahan (BBB) locomotor scale for 10 weeks, when the collected data were statistically analyzed. The spinal cords were then harvested and analyzed with light microscopy, immunohistochemistry, and immunofluorescence. Ovine MSCs culture showed positivity for Nestin. MSCG had a significant and durable recovery of motor functions ( P <.001). Red fluorescence was found at the injury sites in MSCG. Positivity for Nestin, tubulin βIII, NG2 glia, neuron-specific enolase, vimentin, and 200 kD neurofilament were also found at the same sites. Xenogeneic ovine bone marrow MSCs proved capable of engrafting into the injured rat spinal cord. Transdifferentiation into a neuroglial phenotype was able to support partial functional recovery.

  7. Modified Ashworth scale and spasm frequency score in spinal cord injury

    DEFF Research Database (Denmark)

    Baunsgaard, C. B.; Nissen, U. V.; Christensen, K. B.

    2016-01-01

    .94 and inter-rater κweighted=0.93. Correlation between MAS and SFS showed non-significant correlation coefficients from-0.11 to 0.90. CONCLUSION: Reliability of MAS is highly affected by the weighting scheme. With a weighted-κ it was overall reliable and simple-κ overall unreliability. Repeated tests should......STUDY DESIGN: Intra- and inter-rater reliability study. OBJECTIVES: To assess intra- and inter-rater reliability of the Modified Ashworth Scale (MAS) and Spasm Frequency Score (SFS) in lower extremities in a population of spinal cord-injured persons, as well as correlations between the two scales....... SETTING: Clinic for Spinal Cord Injuries, Rigshospitalet, Hornbaek, Denmark. METHODS: Thirty-one persons participated in the study and were tested four times in total with MAS and SFS by three experienced raters. Cohen's kappa (κ), simple and quadratic weighted (nominal and ordinal scale level...

  8. Association between seeking oral health information online and knowledge in adults with spinal cord injury: A pilot study

    Science.gov (United States)

    Yuen, Hon K.; Azuero, Andres; London, Steven

    2011-01-01

    Objective To characterize adults with spinal cord injury (SCI) who seek oral health information online, and investigate whether seeking oral health information online is associated with oral health knowledge and behaviors. Methods An online oral health survey was posted on the South Carolina Spinal Cord Injury Association website. Respondents were 192 adult residents of the US ages 19–83 years who identified themselves as having SCI occurring at least 1 year before the survey date. Results About 12% (n = 23) of the respondents searched oral health information online in the past 12 months. Significant associations between the proportion of respondents who searched for oral health information online and socio-demographic and the proportion of respondents who engaged in various oral health behaviors were not detected. However, multivariable logistic regression indicated that respondents who searched oral health information online in the past 12 months have 3.4 times the odds of possessing adequate oral health knowledge compared to respondents who did not search oral health information online (adjusted odds ratio = 3.41, 95% confidence interval = 1.35, 8.62, P = 0.01). Conclusions Given the significant association between seeking oral health information online and adequate oral health knowledge, this study suggests that online oral health information may be a potential avenue for dental health professionals to supplement oral health education in adults with SCI. PMID:21903017

  9. Quantitative assessment of spinal cord injury using circularly polarized coherent anti-Stokes Raman scattering microscopy

    Science.gov (United States)

    Bae, Kideog; Zheng, Wei; Huang, Zhiwei

    2017-08-01

    We report the quantitative assessment of spinal cord injury using the circularly polarized coherent anti-Stokes Raman scattering (CP-CARS) technique together with Stokes parameters in the Poincaré sphere. The pump and Stokes excitation beams are circularly polarized to suppress both the linear polarization-dependent artifacts and the nonresonant background of tissue CARS imaging, enabling quantitative CP-CARS image analysis. This study shows that CP-CARS imaging uncovers significantly increased phase retardance of injured spinal cord tissue as compared to normal tissue, suggesting that CP-CARS is an appealing label-free imaging tool for determining the degree of tissue phase retardance, which could serve as a unique diagnostic parameter associated with nervous tissue injury.

  10. Dental Apical Papilla as Therapy for Spinal Cord Injury.

    Science.gov (United States)

    De Berdt, P; Vanacker, J; Ucakar, B; Elens, L; Diogenes, A; Leprince, J G; Deumens, R; des Rieux, A

    2015-11-01

    Stem cells of the apical papilla (SCAP) represent great promise regarding treatment of neural tissue damage, such as spinal cord injury (SCI). They derive from the neural crest, express numerous neurogenic markers, and mediate neurite outgrowth and axonal targeting. The goal of the present work was to investigate for the first time their potential to promote motor recovery after SCI in a rat hemisection model when delivered in their original stem cell niche-that is, by transplantation of the human apical papilla tissue itself into the lesion. Control groups consisted of animals subjected to laminectomy only (shams) and to lesion either untreated or injected with a fibrin hydrogel with or without human SCAP. Basso-Beattie-Bresnahan locomotor scores at 1 and 3 d postsurgery confirmed early functional decline in all SCI groups. This significant impairment was reversed, as seen in CatWalk analyses, after transplantation of apical papilla into the injured spinal cord wound, whereas the other groups demonstrated persistent functional impairment. Moreover, tactile allodynia did not develop as an unwanted side effect in any of the groups, even though the SCAP hydrogel group showed higher expression of the microglial marker Iba-1, which has been frequently associated with allodynia. Notably, the apical papilla transplant group presented with reduced Iba-1 expression level. Masson trichrome and human mitochondria staining showed the preservation of the apical papilla integrity and the presence of numerous human cells, while human cells could no longer be detected in the SCAP hydrogel group at the 6-wk postsurgery time point. Altogether, our data suggest that the transplantation of a human apical papilla at the lesion site improves gait in spinally injured rats and reduces glial reactivity. It also underlines the potential interest for the application of delivering SCAP in their original niche, as compared with use of a fibrin hydrogel. © International & American

  11. Development and regulation of response properties in spinal cord motoneurons

    DEFF Research Database (Denmark)

    Perrier, J F; Hounsgaard, J

    2000-01-01

    vertebrates in terms of both phylogeny and ontogeny. Spinal motoneurons in adults are remarkably similar in many respects ranging from the resting membrane potential to pacemaker properties. Apart from the axolotls, spinal motoneurons from all species investigated have latent intrinsic response properties...

  12. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury : An explorative study

    NARCIS (Netherlands)

    Fleerkotte, B.M.; Koopman, B.; Buurke, J.H.; Van Asseldonk, E.H.F.; Van der Kooij, H.; Rietman, J.S.

    2014-01-01

    Background There is increasing interest in the use of robotic gait-training devices in walking rehabilitation of incomplete spinal cord injured (iSCI) individuals. These devices provide promising opportunities to increase the intensity of training and reduce physical demands on therapists. Despite

  13. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: An explorative study

    NARCIS (Netherlands)

    Fleerkotte, B.M.; Koopman, Bram; Buurke, Jaap; van Asseldonk, Edwin H.F.; van der Kooij, Herman; Rietman, Johan Swanik

    2014-01-01

    Background There is increasing interest in the use of robotic gait-training devices in walking rehabilitation of incomplete spinal cord injured (iSCI) individuals. These devices provide promising opportunities to increase the intensity of training and reduce physical demands on therapists. Despite

  14. Peer mentoring of adults with spinal cord injury: a transformational leadership perspective.

    Science.gov (United States)

    Beauchamp, Mark R; Scarlett, Louisa J; Ruissen, Geralyn R; Connelly, Catherine E; McBride, Christopher B; Casemore, Sheila; Martin Ginis, Kathleen A

    2016-09-01

    Drawing from the tenets of transformational leadership theory, the purpose of this study was to examine the nature of effective peer mentoring of adults with a spinal cord injury (SCI) from the perspective of mentees. The study utilised a qualitative methodology (informed by a social constructionist approach), involving 15 adult mentees with a SCI (mean age = 47.2; mean time since injury = 14.5 years), in which data were obtained via semi-structured interviews. The results revealed that effective mentoring, as used by mentors with SCIs, closely aligns with the core components of transformational leadership. Specifically, all four dimensions of transformational leadership (idealised influence, inspirational motivation, individualised consideration and intellectual stimulation) as displayed by mentors with a SCI were evident in their interactions with mentees. Participants who perceived their mentors to use transformational leadership behaviours reported increases in motivation, self-confidence, hope and overall well-being, relatedness with their mentor, greater comfort/acceptance of their situation, a redefined sense of their limitations, as well as greater engagement in various life pursuits. Displays of transformational leadership by peer mentors (i.e. transformational mentoring) were reported by mentees to be associated with a range of adaptive psychological and behavioural outcomes. The results have the potential to inform the development and dissemination of peer mentor-based interventions and initiatives. Implications for Rehabilitation Within the context of spinal cord injury (SCI) rehabilitation, positive peer mentorship is reflected in mentors' use of transformational leadership behaviours (idealised influence, inspirational motivation, individualised consideration and intellectual stimulation). When SCI peer mentors use transformational leadership behaviours, mentees report a redefined sense of their limitations, and increased self-confidence, hope

  15. Ileus Following Adult Spinal Deformity Surgery.

    Science.gov (United States)

    Durand, Wesley M; Ruddell, Jack H; Eltorai, Adam E M; DePasse, J Mason; Daniels, Alan H

    2018-05-23

    Postoperative ileus (POI) is a common complication after spine surgery, with particularly high rates after adult spinal deformity surgery (ASD). Few investigations have been conducted, however, on predictors of POI following ASD. The objective of this investigation was to determine risk factors for POI in patients undergoing ASD. We also sought to determine the association between POI and in-hospital mortality, length of stay, and total charges. Data were obtained from the National/Nationwide Inpatient Sample, years 2010 - 2014. ASD patients aged ≥26 years-old were selected using ICD-9-CM codes. Multiple logistic and linear regression were utilized. In total, 59,410 patients were included in the analysis. 7.4% of patients experienced POI. On adjusted analysis, the following variables were associated with increased risk of POI: male sex (OR 1.43, CI 1.10 - 1.85), anterior surgical approach (OR 1.78, CI 1.22 - 2.60), 9+ levels fused (OR 1.84, CI 1.24 - 2.73), electrolyte disorders (OR 2.70, CI 2.15 - 3.39), and pathologic weight loss (OR 1.94, CI 1.08 - 3.46). POI was associated with significantly longer length of stay (+39%, CI 29% - 51%) and higher total charges (+23%, CI 14% - 31%). Risk factors for POI were identified. Patients suffering from ileus exhibited 2.9 days longer length of stay and ∼$80,000 higher total charges. These results may be applied clinically to identify patients at risk of POI and to consider addressing modifiable risk factors preoperatively. Future studies should be conducted with additional data to develop models capable of accurately predicting and preventing POI. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Prevention of deep venous thrombosis in patients with acute spinal cord injuries: use of rotating treatment tables

    International Nuclear Information System (INIS)

    Becker, D.M.; Gonzalez, M.; Gentili, A.; Eismont, F.; Green, B.A.

    1987-01-01

    A randomized clinical trial of 15 patients with acute spinal cord injuries was performed to test the hypothesis that rotating treatment tables prevent deep venous thrombosis in this population. Four of 5 control (nonrotated) patients developed distal and proximal thrombi, assessed by 125 I fibrinogen leg scans and impedance plethysmography. In comparison, only 1 of 10 treated (rotated) patients developed both distal and proximal thrombosis. These results suggest but do not prove that rotating treatment tables prevent the development of proximal deep venous thrombosis in spinal cord-injured patients. Larger clinical trials are needed to confirm this heretofore undocumented benefit of rotating treatment tables

  17. Therapeutic effects of neurotrophic factors in experimental spinal cord injury models

    Directory of Open Access Journals (Sweden)

    Enomoto M

    2016-03-01

    Full Text Available Mitsuhiro Enomoto1,21Department of Orthopaedic and Spinal Surgery, Graduate School, 2Hyperbaric Medical Center, Tokyo Medical and Dental University, Tokyo, JapanAbstract: Neurotrophic factors (NFs play important roles in regenerative medicine approaches to mitigate primary and secondary damage after spinal cord injury (SCI because their receptors are still present in the injured spinal cord even though the expression of the NFs themselves is decreased. Several reports have shown that NF administration increases regenerative signaling after SCI, particularly by stimulating axonal growth. However, few NFs cross the blood–brain barrier, and most of them show low stability and limited diffusion within the central nervous system. To overcome this problem, transplantation strategies using genetically modified NF-secreting Schwann cells, neural and glial progenitor cells, and mesenchymal stem cells have been applied to animal models of SCI. In particular, multifunctional NFs that bind to TrkB, TrkC, and p75NTR receptors have been discovered in the last decade and utilized in preclinical cell therapies for spinal cord repair. To achieve functional recovery after SCI, it is important to consider the different effects of each NF on axonal regeneration, and strategies should be established to specifically harness the multifunctional properties of NFs. This review provides an overview of multifunctional NFs combined with cell therapy in experimental SCI models and a proposal to implement their use as a clinically viable therapy.Keywords: spinal cord injury, neurotrophic factor, multineurotrophin, regeneration, cell transplantation

  18. Spinal trauma in children

    International Nuclear Information System (INIS)

    Roche, C.; Carty, H.

    2001-01-01

    Evaluation of the child with suspected spinal injury can be a difficult task for the radiologist. Added to the problems posed by lack of familiarity with the normal appearances of the paediatric spine is anxiety about missing a potentially significant injury resulting in neurological damage. Due to differences in anatomy and function, the pattern of injury in the paediatric spine is different from that in the adolescent or adult. Lack of appreciation of these differences may lead to over investigation and inappropriate treatment. This review attempts to clarify some of the problems frequently encountered. It is based on a review of the literature as well as personal experience. The normal appearances and variants of the spine in children, the mechanisms and patterns of injury are reviewed highlighting the differences between children and adults. Specific fractures, a practical scheme for the assessment of spinal radiographs in children, and the role of cross sectional imaging are discussed. (orig.)

  19. Phrenic motor outputs in response to bronchopulmonary C‐fibre activation following chronic cervical spinal cord injury

    Science.gov (United States)

    2016-01-01

    Key points Activation of bronchopulmonary C‐fibres, the main chemosensitive afferents in the lung, can induce pulmonary chemoreflexes to modulate respiratory activity.Following chronic cervical spinal cord injury, bronchopulmonary C‐fibre activation‐induced inhibition of phrenic activity was exaggerated.Supersensitivity of phrenic motor outputs to the inhibitory effect of bronchopulmonary C‐fibre activation is due to a shift of phrenic motoneuron types and slow recovery of phrenic motoneuron discharge in cervical spinal cord‐injured animals.These data suggest that activation of bronchopulmonary C‐fibres may retard phrenic output recovery following cervical spinal cord injury.The alteration of phenotype and discharge pattern of phrenic motoneuron enables us to understand the impact of spinal cord injury on spinal respiratory activity. Abstract Cervical spinal injury interrupts bulbospinal pathways and results in cessation of phrenic bursting ipsilateral to the lesion. The ipsilateral phrenic activity can partially recover over weeks to months following injury due to the activation of latent crossed spinal pathways and exhibits a greater capacity to increase activity during respiratory challenges than the contralateral phrenic nerve. However, whether the bilateral phrenic nerves demonstrate differential responses to respiratory inhibitory inputs is unclear. Accordingly, the present study examined bilateral phrenic bursting in response to capsaicin‐induced pulmonary chemoreflexes, a robust respiratory inhibitory stimulus. Bilateral phrenic nerve activity was recorded in anaesthetized and mechanically ventilated adult rats at 8–9 weeks after C2 hemisection (C2Hx) or C2 laminectomy. Intra‐jugular capsaicin (1.5 μg kg−1) injection was performed to activate the bronchopulmonary C‐fibres to evoke pulmonary chemoreflexes. The present results indicate that capsaicin‐induced prolongation of expiratory duration was significantly attenuated in C2Hx

  20. Phrenic motor outputs in response to bronchopulmonary C-fibre activation following chronic cervical spinal cord injury.

    Science.gov (United States)

    Lee, Kun-Ze

    2016-10-15

    Activation of bronchopulmonary C-fibres, the main chemosensitive afferents in the lung, can induce pulmonary chemoreflexes to modulate respiratory activity. Following chronic cervical spinal cord injury, bronchopulmonary C-fibre activation-induced inhibition of phrenic activity was exaggerated. Supersensitivity of phrenic motor outputs to the inhibitory effect of bronchopulmonary C-fibre activation is due to a shift of phrenic motoneuron types and slow recovery of phrenic motoneuron discharge in cervical spinal cord-injured animals. These data suggest that activation of bronchopulmonary C-fibres may retard phrenic output recovery following cervical spinal cord injury. The alteration of phenotype and discharge pattern of phrenic motoneuron enables us to understand the impact of spinal cord injury on spinal respiratory activity. Cervical spinal injury interrupts bulbospinal pathways and results in cessation of phrenic bursting ipsilateral to the lesion. The ipsilateral phrenic activity can partially recover over weeks to months following injury due to the activation of latent crossed spinal pathways and exhibits a greater capacity to increase activity during respiratory challenges than the contralateral phrenic nerve. However, whether the bilateral phrenic nerves demonstrate differential responses to respiratory inhibitory inputs is unclear. Accordingly, the present study examined bilateral phrenic bursting in response to capsaicin-induced pulmonary chemoreflexes, a robust respiratory inhibitory stimulus. Bilateral phrenic nerve activity was recorded in anaesthetized and mechanically ventilated adult rats at 8-9 weeks after C2 hemisection (C2Hx) or C2 laminectomy. Intra-jugular capsaicin (1.5 μg kg -1 ) injection was performed to activate the bronchopulmonary C-fibres to evoke pulmonary chemoreflexes. The present results indicate that capsaicin-induced prolongation of expiratory duration was significantly attenuated in C2Hx animals. However, ipsilateral phrenic

  1. A Comprehensive Analysis of the SRS-Schwab Adult Spinal Deformity Classification and Confounding Variables: A Prospective, Non-US Cross-sectional Study in 292 Patients.

    Science.gov (United States)

    Hallager, Dennis Winge; Hansen, Lars Valentin; Dragsted, Casper Rokkjær; Peytz, Nina; Gehrchen, Martin; Dahl, Benny

    2016-05-01

    Cross-sectional analyses on a consecutive, prospective cohort. To evaluate the ability of the Scoliosis Research Society (SRS)-Schwab Adult Spinal Deformity Classification to group patients by widely used health-related quality-of-life (HRQOL) scores and examine possible confounding variables. The SRS-Schwab Adult Spinal Deformity Classification includes sagittal modifiers considered important for HRQOL and the clinical impact of the classification has been validated in patients from the International Spine Study Group database; however, equivocal results were reported for the Pelvic Tilt modifier and potential confounding variables were not evaluated. Between March 2013 and May 2014, all adult spinal deformity patients from our outpatient clinic with sufficient radiographs were prospectively enrolled. Analyses of HRQOL variance and post hoc analyses were performed for each SRS-Schwab modifier. Age, history of spine surgery, and aetiology of spinal deformity were considered potential confounders and their influence on the association between SRS-Schwab modifiers and aggregated Oswestry Disability Index (ODI) scores was evaluated with multivariate proportional odds regressions. P values were adjusted for multiple testing. Two hundred ninety-two of 460 eligible patients were included for analyses. The SRS-Schwab Classification significantly discriminated HRQOL scores between normal and abnormal sagittal modifier classifications. Individual grade comparisons showed equivocal results; however, Pelvic Tilt grade + versus +  + did not discriminate patients according to any HRQOL score. All modifiers showed significant proportional odds for worse aggregated ODI scores with increasing grade levels and the effects were robust to confounding. However, age group and aetiology had individual significant effects. The SRS-Schwab sagittal modifiers reliably grouped patients graded 0 versus + / +  + according to the most widely used HRQOL scores and the

  2. Changes in rat spinal cord gene expression after inflammatory hyperalgesia of the joint and manual therapy.

    Science.gov (United States)

    Ruhlen, Rachel L; Singh, Vineet K; Pazdernik, Vanessa K; Towns, Lex C; Snider, Eric J; Sargentini, Neil J; Degenhardt, Brian F

    2014-10-01

    Mobilization of a joint affects local tissue directly but may also have other effects that are mediated through the central nervous system. To identify differential gene expression in the spinal cords of rats with or without inflammatory joint injury after manual therapy or no treatment. Rats were randomly assigned to 1 of 4 treatment groups: no injury and no touch (NI/NT), injury and no touch (I/NT), no injury and manual therapy (NI/MT), and injury and manual therapy (I/MT). We induced acute inflammatory joint injury in the rats by injecting carrageenan into an ankle. Rats in the no-injury groups did not receive carrageenan injection. One day after injury, rats received manual therapy to the knee of the injured limb. Rats in the no-touch groups were anesthetized without receiving manual therapy. Spinal cords were harvested 30 minutes after therapy or no touch, and spinal cord gene expression was analyzed by microarray for 3 comparisons: NI/NT vs I/NT, I/MT vs I/NT, and NI/NT vs NI/MT. Three rats were assigned to each group. Of 38,875 expressed sequence tags, 755 were differentially expressed in the NI/NT vs I/NT comparison. For the other comparisons, no expressed sequence tags were differentially expressed. Cluster analysis revealed that the differentially expressed sequence tags were over-represented in several categories, including ion homeostasis (enrichment score, 2.29), transmembrane (enrichment score, 1.55), and disulfide bond (enrichment score, 2.04). An inflammatory injury to the ankle of rats caused differential expression of genes in the spinal cord. Consistent with other studies, genes involved in ion transport were among those affected. However, manual therapy to the knees of injured limbs or to rats without injury did not alter gene expression in the spinal cord. Thus, evidence for central nervous system mediation of manual therapy was not observed. © 2014 The American Osteopathic Association.

  3. HYSTOMORPHOLOGIC CHANGES IN INJURED MENISCI IN CHILDREN

    Directory of Open Access Journals (Sweden)

    V. B. Bogatov

    2010-01-01

    Full Text Available The purpose of the work was studying histological changes in the injured menisci in children. The histological evaluation of injured menisci received during arthroscopy was performed. The prescription of injury varied from several days till 3 years. It was shown that injured fragment of the meniscus is viable up to 3 months since trauma. It was also obvious that active migration of the meniscus cells occur in the injured fragment and microvessels are seen in 50% of the meniscus tissues.

  4. Injured athletes' perceptions about social support.

    Science.gov (United States)

    Clement, Damien; Shannon, Vanessa R

    2011-11-01

    According to the buffering hypothesis, social support moderates the harmful effects of stress and, in turn, indirectly affects injured athletes' health and well-being. Previous research suggests that perceptions of social support influence athletes' psychological reactions, as well as their rehabilitation adherence, but additional research in this area is warranted. To examine injured athletes' perceptions regarding satisfaction, availability, and contribution for each of the 8 types of social support. Descriptive. Mid-Atlantic Division II and III institutions. 49 injured athletes. Social support was assessed using a modified version of the Social Support Survey. Injured athletes were significantly more satisfied with social support provided by athletic trainers (ATCs) than that provided by coaches and teammates. In addition, injured athletes reported that social support provided by ATCs contributed significantly more to their overall well-being. Athletes reported several significant differences regarding satisfaction and contribution to well-being among the 8 different types of social support. Injury, an unavoidable part of sport, is often accompanied by negative psychological reactions. This reaction may have a negative influence on an athlete's experience of injury and rehabilitation. Findings suggest that perceptions of social support provided by ATCs have the greatest influence on injured athletes' rehabilitation and well-being.

  5. Role of biomaterials in neurorestoration after spinal cord injuries

    Directory of Open Access Journals (Sweden)

    Ioana Stanescu

    2016-05-01

    Full Text Available Despite advances in knowledge and technology SCI remains one of the most severe and disabling disorders affecting young people. Spinal cord lesions result in permanent loss of motor, sensory and autonomic functions, causing an enormous impact on patient’s personal, social, familial and professional life. There is currently no effective treatment available to improve severe neurologic deficits and to decrease disability. Tissue-engineering techniques have developed a variety of scaffolds, made by biomaterials, used alone, incapsulated with cells or embedded with molecules, which are delivered to lesion site to achieve neural regeneration. Biomaterials may provide structural support and/or serve as a delivery vehicle for factors to arrest growth inhibition and promote axonal growth. Biomaterials acts like cell-carriers for the injury site, but also as reservoirs for growth factors or biomolecules. Hydrogels are a promising therapeutical strategy in spinal cord repair. Nano-fibers provide a three-dimensional network, which mimic closely the native extracellular matrix, thus offering a better support for cell attachment and proliferation than traditional micro-structure. New strategies like pharmacologic treatments, cell therapies, gene therapies and biomaterial tissue engineering should combine to increase their synergistic effect and to obtain the expected functional recovery in spinal cord injured patients

  6. [Description of the severely injured in the DRG system: is treatment of the severely injured still affordable?].

    Science.gov (United States)

    Mahlke, L; Lefering, R; Siebert, H; Windolf, J; Roeder, N; Franz, D

    2013-11-01

    Due to the heterogeneity of severely injured patients (multiple trauma) it is difficult to assign them to homogeneic diagnosis-related groups (DRG). In recent years this has led to a systematic underfunding in the German reimbursement system (G-DRG) for cases of multiply injured patients. This project aimed to improve the reimbursement by modifying the case allocation algorithms of multiply injured patients within the G-DRG system. A retrospective analysis of standardized G-DRG data according to §21 of the Hospital Reimbursement Act (§ 21 KHEntgG) including case-related cost data from 3,362 critically injured patients from 2007 and 2008 from 10 university hospitals and 7 large municipal hospitals was carried out. For 1,241 cases complementary detailed information was available from the trauma registry of the German Trauma Society to monitor the case allocation of multiply injured patients within the G-DRG system. Analysis of coding and grouping, performance of case allocation and the homogeneity of costs in the G-DRG versions 2008-2012 was carried out. The results showed systematic underfunding of trauma patients in the G-DRG version 2008 but adequate cost covering in the majority of cases with the G-DRG versions 2011 and 2012. Cost coverage was foundfor multiply injured patients from the clinical viewpoint who were identified as multiple trauma by the G-DRG system. Some of the overfunded trauma patients had high intensive care costs. Also there was underfunding for multiple injured patients not identified as such in the G-DRG system. Specific modifications of the G-DRG allocation structures could increase the appropriateness of reimbursement of multiply injured patients. Data-based analysis is an essential prerequisite for a constructive development of the G-DRG system and a necessary tool for the active participation of medical specialist societies.

  7. [Current status of thoracoscopic surgery for thoracic and lumbar spine. Part 2: treatment of the thoracic disc hernia, spinal deformities, spinal tumors, infections and miscellaneous].

    Science.gov (United States)

    Verdú-López, Francisco; Beisse, Rudolf

    2014-01-01

    Thoracoscopic surgery or video-assisted thoracic surgery (VATS) of the thoracic and lumbar spine has evolved greatly since it appeared less than 20 years ago. It is currently used in a large number of processes and injuries. The aim of this article, in its two parts, is to review the current status of VATS of the thoracic and lumbar spine in its entire spectrum. After reviewing the current literature, we developed each of the large groups of indications where VATS takes place, one by one. This second part reviews and discusses the management, treatment and specific thoracoscopic technique in thoracic disc herniation, spinal deformities, tumour pathology, infections of the spine and other possible indications for VATS. Thoracoscopic surgery is in many cases an alternative to conventional open surgery. The transdiaphragmatic approach has made endoscopic treatment of many thoracolumbar junction processes possible, thus widening the spectrum of therapeutic indications. These include the treatment of spinal deformities, spinal tumours, infections and other pathological processes, as well as the reconstruction of injured spinal segments and decompression of the spinal canal if lesion placement is favourable to antero-lateral approach. Good clinical results of thoracoscopic surgery are supported by growing experience reflected in a large number of articles. The degree of complications in thoracoscopic surgery is comparable to open surgery, with benefits in regard to morbidity of the approach and subsequent patient recovery. Copyright © 2012 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  8. Effectiveness of minocycline and FK506 alone and in combination on enhanced behavioral and biochemical recovery from spinal cord injury in rats.

    Science.gov (United States)

    Ahmad, Mohammad; Zakaria, Abdulrahim; Almutairi, Khalid M

    2016-06-01

    Injury to the spinal cord results in immediate physical damage (primary injury) followed by a prolonged posttraumatic inflammatory disorder (secondary injury). The present study aimed to investigate the neuroprotective effects of minocycline and FK506 (Tacrolimus) individually and in combination on recovery from experimental spinal cord injury (SCI). Young adult male rats were subjected to experimental SCI by weight compression method. Minocycline (50mg/kg) and FK506 (1mg/kg) were administered orally in combination and individually to the SCI group daily for three weeks. During these three weeks, the recovery was measured using behavioral motor parameters (including BBB, Tarlov and other scorings) every other day for 29days after SCI. Thereafter, the animals were sacrificed and the segment of the spinal cord centered at the injury site was removed for the histopathological studies as well as for biochemical analysis of monoamines such as 5-hydroxytryptamine (5-HT) and 5-hydroxy-indolacetic acid (5-HIAA) and some oxidative stress indices, such as thiobarbituric acid-reactive substances (TBARS), total glutathione (GSH) and myeloperoxidase (MPO). All behavioral results indicated that both drugs induced significant recovery from SCI with respect to time. The biochemical and histopathological results supported the behavioral findings, revealing significant recovery in the regeneration of the injured spinal tissues, the monoamine levels, and the oxidative stress indices. Overall, the effects of the tested drugs for SCI recovery were as follows: FK506+minocycline>minocycline>FK506 in all studied parameters. Thus, minocycline and FK506 may prove to be a potential therapy cocktail to treat acute SCI. However, further studies are warranted. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Expert medical testimony for your injured patients.

    Science.gov (United States)

    Lang, Gerald J

    2013-10-01

    Many injured patients sustain some type of loss. If someone else is responsible for the injury, the injured patient can pursue compensation for this loss. In the course of treating an injured patient, you may be asked to participate in the legal process to resolve such claims. The basic components of a personal injury claim are reviewed. An overview of the legal process will help clarify your role in the legal process. Enhanced understanding will allow you to provide important medical testimony for your injured patient.

  10. Activation of the Wnt/β-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice

    International Nuclear Information System (INIS)

    Chen, Yanchun; Guan, Yingjun; Liu, Huancai; Wu, Xin; Yu, Li; Wang, Shanshan; Zhao, Chunyan; Du, Hongmei; Wang, Xin

    2012-01-01

    Highlights: ► Wnt3a and Cyclin D1 were upregulated in the spinal cord of the ALS mice. ► β-catenin translocated from the cell membrane to the nucleus in the ALS mice. ► Wnt3a, β-catenin and Cyclin D1 co-localized for astrocytes were all increased. ► BrdU/Cyclin D1 double-positive cells were increased in the spinal cord of ALS mice. ► BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. -- Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive and fatal loss of motor neurons. In ALS, there is a significant cell proliferation in response to neurodegeneration; however, the exact molecular mechanisms of cell proliferation and differentiation are unclear. The Wnt signaling pathway has been shown to be involved in neurodegenerative processes. Wnt3a, β-catenin, and Cyclin D1 are three key signaling molecules of the Wnt/β-catenin signaling pathway. We determined the expression of Wnt3a, β-catenin, and Cyclin D1 in the adult spinal cord of SOD1 G93A ALS transgenic mice at different stages by RT-PCR, Western blot, and immunofluorescence labeling techniques. We found that the mRNA and protein of Wnt3a and Cyclin D1 in the spinal cord of the ALS mice were upregulated compared to those in wild-type mice. In addition, β-catenin translocated from the cell membrane to the nucleus and subsequently activated transcription of the target gene, Cyclin D1. BrdU and Cyclin D1 double-positive cells were increased in the spinal cord of these mice. Moreover, Wnt3a, β-catenin, and Cyclin D1 were also expressed in both neurons and astrocytes. The expression of Wnt3a, β-catenin or Cyclin D1 in mature GFAP + astrocytes increased. Moreover, BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. Our findings suggest that neurodegeneration activates the Wnt/β-catenin signaling pathway, which is associated with glial proliferation in the adult spinal cord of ALS transgenic mice. This

  11. Crosstalk between p38, Hsp25 and Akt in spinal motor neurons after sciatic nerve injury

    Science.gov (United States)

    Murashov, A. K.; Ul Haq, I.; Hill, C.; Park, E.; Smith, M.; Wang, X.; Wang, X.; Goldberg, D. J.; Wolgemuth, D. J.

    2001-01-01

    The p38 stress-activated protein kinase pathway is involved in regulation of phosphorylation of Hsp25, which in turn regulates actin filament dynamic in non-neuronal cells. We report that p38, Hsp25 and Akt signaling pathways were specifically activated in spinal motor neurons after sciatic nerve axotomy. The activation of the p38 kinase was required for induction of Hsp25 expression. Furthermore, Hsp25 formed a complex with Akt, a member of PI-3 kinase pathway that prevents neuronal cell death. Together, our observations implicate Hsp25 as a central player in a complex system of signaling that may both promote regeneration of nerve fibers and prevent neuronal cell death in the injured spinal cord.

  12. Implantable porous gelatin microspheres sustained release of bFGF and improved its neuroprotective effect on rats after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Li Lan

    Full Text Available In this study, porous gelatin microspheres (GMSs were constructed to improve the neuroprotective effect of basic fibroblast growth factor (bFGF on spinal cord injury. GMSs were prepared by a W/O emulsion template, followed by cross-linking, washing and drying. The particle sizes and surface porosity of the blank GMSs were carefully characterized by scan electronic microscopy. The blank GMSs have a mean particle size of 35μm and theirs surface was coarse and porous. bFGF was easily encapsulated inside the bulk GMSs through diffusion along the porous channel. 200μg of bFGF was completely encapsulated in 100mg of GMSs. The bFGF-loaded GMSs displayed a continuous drug release pattern without an obvious burst release over two weeks in vitro. Moreover, the therapeutic effects of bFGF-loaded GMSs were also evaluated in spinal cord injury rat model. After implantation of bFGF-loaded GMSs, the recovery of the motor function of SCI rats were evaluated by behavioral score and foot print experiment. The motor function of SCI rats treated with bFGF-loaded GMSs was more obvious than that treated with free bFGF solution (P<0.05. At the 28th days after treatment, rats were sacrificed and the injured spinal were removed for histopathological and apoptosis examination. Compared with treatment with free bFGF solution, treatment with bFGF-loaded GMSs resulted in a less necrosis, less infiltration of leukocytes, and a reduced the cavity ratio and less apoptotic cells in injured spinal(P<0.01, indicating its better therapeutic effect. Implantable porous GMSs may be a potential carrier to deliver bFGF for therapy of spinal cord injury.

  13. Spinal Cord Injury without Radiographic Abnormality (SCIWORA) – Clinical and Radiological Aspects

    International Nuclear Information System (INIS)

    Szwedowski, Dawid; Walecki, Jerzy

    2014-01-01

    The acronym SCIWORA (Spinal Cord Injury Without Radiographic Abnormality) was first developed and introduced by Pang and Wilberger who used it to define “clinical symptoms of traumatic myelopathy with no radiographic or computed tomographic features of spinal fracture or instability”. SCIWORA is a clinical-radiological condition that mostly affects children. SCIWORA lesions are found mainly in the cervical spine but can also be seen, although much less frequently, in the thoracic or lumbar spine. Based on reports from different authors, SCIWORA is responsible for 6 to 19% and 9% to 14% of spinal injuries in children and adults, respectively. Underlying degenerative changes, including spondylosis or spinal canal stenosis, are typically present in adult patients. The level of spinal cord injury corresponds to the location of these changes. With recent advances in neuroimaging techniques, especially in magnetic resonance imaging, and with increasing availability of MRI as a diagnostic tool, the overall detection rate of SCIWORA has significantly improved

  14. The impact of living in a care home on the health and wellbeing of spinal cord injured people.

    Science.gov (United States)

    Smith, Brett; Caddick, Nick

    2015-04-15

    In the UK, 20% of people with spinal cord injury (SCI) are discharged from rehabilitation into an elderly care home. Despite this, and knowledge that the home is central to health and wellbeing, little research has examined the impact of being in care homes on the health and wellbeing of people with SCI. The purpose of this study was to address this gap. Twenty adults who lived in care homes or had done so recently for over two years were interviewed in-depth. Qualitative data were analyzed using inductive thematic analysis. Analyses revealed that living in a care home environment severely damages quality of life, physical health and psychological wellbeing in the short and long-term. Reasons why quality of life, health, and wellbeing were damaged are identified. These included a lack of freedom, control, and flexibility, inability to participate in community life, inability to sustain relationships, safety problems, restricted participation in work and leisure time physical activity, lack of meaning, self-expression, and a future, loneliness, difficulties with the re-housing process, depression, and suicidal thoughts and actions. It is concluded that for people with SCI, the care home environment violates social dignity, is oppressive, and denies human rights. Implications for housing and health care policies are also offered.

  15. Intraspinal Pressure Monitoring in a Patient with Spinal Cord Injury Reveals Different Intradural Compartments: Injured Spinal Cord Pressure Evaluation (ISCoPE) Study.

    OpenAIRE

    Phang, I; Papadopoulos, MC

    2015-01-01

    BACKGROUND: We recently described a technique for monitoring intraspinal pressure (ISP) after traumatic spinal cord injury (TSCI). This is analogous to intracranial pressure monitoring after brain injury. We showed that, after severe TSCI, ISP at the injury site is elevated as the swollen cord is compressed against the dura. METHODS: In a patient with complete thoracic TSCI, we sequentially monitored subdural ISP above the injury, at the injury site, and below the injury intraoperatively. Pos...

  16. Spinal shape analysis in 1,020 healthy young adults aged from 19 to 30 years

    Directory of Open Access Journals (Sweden)

    Jakub Krejčí

    2016-03-01

    Full Text Available Background: A number of studies on diseased spine have been published; however, there is a relative paucity of studies investigating spine shape characteristics in healthy populations. Such characteristics are needed for diagnostics of spine disorders and assessment of changes in the spinal shape that may have been caused by influence of the modern life style or intensive sport activity. Objective: The aim of the study was to determine characteristics of the spine shape in a large sample of healthy young adults. Methods: Population cross-sectional study. A non-radiographic surface method (system DTP-3 was used for the assessment of spine shape in the sagittal and frontal planes. A total of 1,020 participants (440 men, 580 women took part in the study, their mean (± SD age was 21.8 ± 1.9 years (range 19.1-29.7 for men and 21.9 ± 1.8 years (range 19.3-29.7 for women. All data were checked for normality and are presented as means, standard deviations, ranges, skewness, and kurtosis. Differences between the sexes were assessed with the two-sample t-test. Results: The average sagittal spinal shape was C3 - 12.9° - C7 - 43.0° - T10 - 27.1° - L5 for men and C3 - 12.1° - C6 - 44.5° - T11 - 34.1° - L5 for women. Men showed a significantly smaller thoracic kyphosis and lumbar lordosis curvatures than women. The average curvature due to the lateral deviation in the frontal plane was 6.1° for both sexes, the curvature was larger than 10° in 9.1% of men and 8.8% of women. We found left lateral deviation in 72.5% of men and in 63.6% of women. Conclusions: The study provides characteristics of the spine shape in a large sample of healthy young adults. Such characteristics should be part and parcel of determining the cut-off level for physiological spinal shape. Based on the results of the study, we suggest a lateral deviation of 10° as the maximum for a curvature to be still considered non-pathological.

  17. Spinal cord stimulation attenuates temporal summation in patients with neuropathic pain.

    Science.gov (United States)

    Eisenberg, Elon; Burstein, Yulia; Suzan, Erica; Treister, Roi; Aviram, Joshua

    2015-03-01

    Evidence has shown that electrical stimulation at the dorsal columns attenuated the "wind-up" phenomenon in dorsal horn neurons in nerve-injured rats. This study was aimed to test the effect of spinal cord stimulation (SCS) on temporal summation (TS), the clinical correlate of the wind-up phenomenon in patients with radicular leg pain. Eighteen patients with SCS implants were tested both 30 minutes after SCS activation ("ON") and 2 hours after turning it off ("OFF"), in a random order. Temporal summation was evaluated in the most painful site in the affected leg and in the corresponding area in the contralateral leg by applying a tonic painful heat stimulus (46.5°C; 120 seconds) and simultaneous recording of the perceived heat pain intensity. Patients were also requested to report their clinical pain intensity (0-100 numerical pain scale) during SCS "ON" and "OFF". The Wilcoxon signed rank test was used in the comparisons between SCS "ON" and "OFF". Spinal cord stimulation activation significantly attenuated clinical pain intensity (from 66 ± 18 to 27 ± 31, P spinal cord neurons, is a possible mechanism underlying SCS analgesia in patients with neuropathic pain.

  18. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    Directory of Open Access Journals (Sweden)

    Feng Xue

    2015-01-01

    Full Text Available We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker and glial fibrillary acidic protein (glial cell marker at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvironment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.

  19. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    Science.gov (United States)

    Xue, Feng; Wu, Er-jun; Zhang, Pei-xun; Li-ya, A; Kou, Yu-hui; Yin, Xiao-feng; Han, Na

    2015-01-01

    We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker) and glial fibrillary acidic protein (glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvironment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury. PMID:25788929

  20. Inhibition of 2-arachydonoylgycerol degradation attenuates orofacial neuropathic pain in trigeminal nerve-injured mice.

    Science.gov (United States)

    Kamimura, Rantaro; Hossain, Mohammad Z; Unno, Shumpei; Ando, Hiroshi; Masuda, Yuji; Takahashi, Kojiro; Otake, Masanori; Saito, Isao; Kitagawa, Junichi

    2018-03-24

    Current therapeutics are not effective for orofacial neuropathic pain, and better options are needed. The present study used inferior orbital nerve (ION)-injured mice to investigate the effect of inhibiting monoacylglycerol lipase (MAGL), an enzyme that degrades the major endocannabinoid 2-arachydonoylgycerol (2-AG) in orofacial neuropathic pain. The head-withdrawal threshold to mechanical stimulation of the whisker pad was reduced on days 3, 5, and 7 after ION injury. Injection of JZL184, a selective inhibitor of MAGL, on day 7 after ION injury attenuated the reduction in head-withdrawal threshold at 2 h after administration. Moreover, the numbers of MAGL-immunoreactive neurons in the trigeminal subnucleus caudalis (Vc) and upper cervical spinal cord (C1-C2) were significantly greater in ION-injured mice than in sham-operated mice but were reduced after administration of JZL184. The increase in MAGL immunoreactivity suggests that increased 2-AG production is followed by rapid enzymatic degradation of 2-AG. JZL184 inhibited this degradation and thus increased 2-AG concentration in the brain, particularly in the Vc and C1-C2 regions, thus attenuating pain. Our findings suggest that inhibition of 2-AG degradation by MAGL inhibitors is a promising therapeutic option for treatment of orofacial neuropathic pain.

  1. Pre-differentiated GABAergic neural precursor transplants for alleviation of dysesthetic central pain following excitotoxic spinal cord injury

    Directory of Open Access Journals (Sweden)

    Jeung Woon eLee

    2012-05-01

    Full Text Available Intraspinal quisqualic acid (QUIS injury induce (i mechanical and thermal hyperalgesia, (ii progressive self-injurious overgrooming of the affected dermatome. The latter is thought to resemble painful dysesthesia observed in spinal cord injury (SCI patients. We have reported previously loss of endogenous GABA immunoreactive (IR cells in the superficial dorsal horn of QUIS rats 2 weeks post-injury. Further histological evaluation showed that GABA-, glycine-, and synaptic vesicular transporter VIAAT-IR persisted but were substantially decreased in the injured spinal cord. In this study, partially-differentiated GABA-IR embryonic neural precursor cells (NPCs were transplanted into the spinal cord of QUIS rats to reverse overgrooming by replenishing lost inhibitory circuitry. Rat E14 NPCs were predifferentiated in 0.1 ng/ml FGF-2 for 4 hrs prior to transplantation. In vitro immunocytochemistry of transplant cohort showed large population of GABA-IR NPCs that double labeled with nestin but few co-localized with NeuN, indicating partial maturation. Two weeks following QUIS lesion at T12-L1, and following the onset of overgrooming, NPCs were transplanted into the QUIS lesion sites; bovine adrenal fibroblast cells were used as control. Overgrooming was reduced in >55.5% of NPC grafted animals, with inverse relationship between the number of surviving GABA-IR cells and the size of overgrooming. Fibroblast-control animals showed a progressive worsening of overgrooming. At 3 weeks post-transplantation, numerous GABA-, nestin-, and GFAP-IR cells were present in the lesion site. Surviving grafted GABA-IR NPCs were NeuN+ and GFAP-. These results indicate that partially-differentiated NPCs survive and differentiate in vivo into neuronal cells following transplantation into an injured spinal cord. GABA-IR NPC transplants can restore lost dorsal horn inhibitory signaling and are useful in alleviating central pain following SCI.

  2. Multiplex array proteomics detects increased MMP-8 in CSF after spinal cord injury.

    Science.gov (United States)

    Light, Matthew; Minor, Kenneth H; DeWitt, Peter; Jasper, Kyle H; Davies, Stephen J A

    2012-06-11

    A variety of methods have been used to study inflammatory changes in the acutely injured spinal cord. Recently novel multiplex assays have been used in an attempt to overcome limitations in numbers of available targets studied in a single experiment. Other technical challenges in developing pre-clinical rodent models to investigate biomarkers in cerebrospinal fluid (CSF) include relatively small volumes of sample and low concentrations of target proteins. The primary objective of this study was to characterize the inflammatory profile present in CSF at a subacute time point in a clinically relevant rodent model of traumatic spinal cord injury (SCI). Our other aim was to test a microarray proteomics platform specifically for this application. A 34 cytokine sandwich ELISA microarray was used to study inflammatory changes in CSF samples taken 12 days post-cervical SCI in adult rats. The difference between the median foreground signal and the median background signal was measured. Bonferroni and Benjamini-Hochburg multiple testing corrections were applied to limit the False Discovery Rate (FDR), and a linear mixed model was used to account for repeated measures in the array. We report a novel subacute SCI biomarker, elevated levels of matrix metalloproteinase-8 protein in CSF, and discuss application of statistical models designed for multiplex testing. Major advantages of this assay over conventional methods include high-throughput format, good sensitivity, and reduced sample consumption. This method can be useful for creating comprehensive inflammatory profiles, and biomarkers can be used in the clinic to assess injury severity and to objectively grade response to therapy.

  3. Infections in the spinal cord-injured population: a systematic review.

    Science.gov (United States)

    Garcia-Arguello, L Y; O'Horo, J C; Farrell, A; Blakney, R; Sohail, M R; Evans, C T; Safdar, N

    2017-06-01

    Spinal cord injury (SCI) patients are an increasing population due to recent military conflicts. SCI patients are at an increased risk of infection, but the epidemiology management and prevention strategies for these infections are unclear. To review the incidence, microbiology and management of pneumonia, skin and soft tissue infections (SSTI), urinary tract infections (UTI) and bloodstream infections in the SCI population via literature review. With the assistance of an experienced medical librarian, we developed a search strategy for the Ovid MEDLINE database and then adapted it for the Ovid Embase, Scopus and Web of Science databases. The databases were searched from their inception to April 2014 with no restrictions on language or time period. Data were extracted using a standardized form. All studies were reviewed by two independent investigators. Forty-one studies reporting on the described infections were identified. UTIs were the most commonly identified infections, but studies failed to identify consistently effective preventive strategies. SSTIs were also common, and the best preventive strategies focused on decubitus ulcer prevention and skin decolonization protocols. Pneumonia management and course were not significantly different from the general population. Bloodstream infections were associated with delays in recognition, and were most often secondary to UTI, pneumonia or SSTI. There is a paucity of literature on consistently effective infection prevention strategies in SCI patients. Identification and implementation of evidence-based interventions that optimize prevention and management of infections in this patient population are needed.

  4. Are there endogenous stem cells in the spinal cord?

    Science.gov (United States)

    Ferrucci, Michela; Ryskalin, Larisa; Busceti, Carla L; Gaglione, Anderson; Biagioni, Francesca; Fornai, Francesco

    2017-12-01

    Neural progenitor cells (NPC) represent the stem-like niche of the central nervous system that maintains a regenerative potential also in the adult life. Despite NPC in the brain are well documented, the presence of NPC in the spinal cord has been controversial for a long time. This is due to a scarce activity of NPC within spinal cord, which also makes difficult their identification. The present review recapitulates the main experimental studies, which provided evidence for the occurrence of NPC within spinal cord, with a special emphasis on spinal cord injury and amyotrophic lateral sclerosis. By using experimental models, here we analyse the site-specificity, the phenotype and the main triggers of spinal cord NPC. Moreover, data are reported on the effect of specific neurogenic stimuli on these spinal cord NPC in an effort to comprehend the endogenous neurogenic potential of this stem cell niche.

  5. Deriving Dorsal Spinal Sensory Interneurons from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Sandeep Gupta

    2018-02-01

    Full Text Available Summary: Cellular replacement therapies for neurological conditions use human embryonic stem cell (hESC- or induced pluripotent stem cell (hiPSC-derived neurons to replace damaged or diseased populations of neurons. For the spinal cord, significant progress has been made generating the in-vitro-derived motor neurons required to restore coordinated movement. However, there is as yet no protocol to generate in-vitro-derived sensory interneurons (INs, which permit perception of the environment. Here, we report on the development of a directed differentiation protocol to derive sensory INs for both hESCs and hiPSCs. Two developmentally relevant factors, retinoic acid in combination with bone morphogenetic protein 4, can be used to generate three classes of sensory INs: the proprioceptive dI1s, the dI2s, and mechanosensory dI3s. Critical to this protocol is the competence state of the neural progenitors, which changes over time. This protocol will facilitate developing cellular replacement therapies to reestablish sensory connections in injured patients. : In this article, Gupta and colleagues describe a robust protocol to derive spinal dorsal sensory interneurons from human pluripotent stem cells using the sequential addition of RA and BMP4. They find that neural progenitors must be in the correct competence state to respond to RA/BMP4 as dorsalizing signals. This competence state changes over time and determines the efficiency of the protocol. Keywords: spinal cord, neurons, sensory interneurons, proprioception, mechanosensation, human embryonic stem cells, induced pluripotent stem cells, directed differentiation, primate spinal cord, mouse spinal cord

  6. Visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Rui-ping Zhang

    2015-01-01

    Full Text Available An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T 7-8 . Superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cord via the subarachnoid space. An outer magnetic field was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesenchymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunofluorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guidance. Our data confirm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic field guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively tracked in vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury.

  7. Alpha-2 agonist attenuates ischemic injury in spinal cord neurons.

    Science.gov (United States)

    Freeman, Kirsten A; Puskas, Ferenc; Bell, Marshall T; Mares, Joshua M; Foley, Lisa S; Weyant, Michael J; Cleveland, Joseph C; Fullerton, David A; Meng, Xianzhong; Herson, Paco S; Reece, T Brett

    2015-05-01

    Paraplegia secondary to spinal cord ischemia-reperfusion injury remains a devastating complication of thoracoabdominal aortic intervention. The complex interactions between injured neurons and activated leukocytes have limited the understanding of neuron-specific injury. We hypothesize that spinal cord neuron cell cultures subjected to oxygen-glucose deprivation (OGD) would simulate ischemia-reperfusion injury, which could be attenuated by specific alpha-2a agonism in an Akt-dependent fashion. Spinal cords from perinatal mice were harvested, and neurons cultured in vitro for 7-10 d. Cells were pretreated with 1 μM dexmedetomidine (Dex) and subjected to OGD in an anoxic chamber. Viability was determined by MTT assay. Deoxyuridine-triphosphate nick-end labeling staining and lactate dehydrogenase (LDH) assay were used for apoptosis and necrosis identification, respectively. Western blot was used for protein analysis. Vehicle control cells were only 59% viable after 1 h of OGD. Pretreatment with Dex significantly preserves neuronal viability with 88% viable (P control cells by 50% (P neuron cell culture, OGD mimics neuronal metabolic derangement responsible for paraplegia after aortic surgery. Dex preserves neuronal viability and decreases apoptosis in an Akt-dependent fashion. Dex demonstrates clinical promise for reducing the risk of paraplegia after high-risk aortic surgery. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Can PRP effectively treat injured tendons?

    Science.gov (United States)

    Wang, James H-C

    2014-01-01

    PRP is widely used to treat tendon and other tissue injuries in orthopaedics and sports medicine; however, the efficacy of PRP treatment on injured tendons is highly controversial. In this commentary, I reason that there are many PRP- and patient-related factors that influence the outcomes of PRP treatment on injured tendons. Therefore, more basic science studies are needed to understand the mechanism of PRP on injured tendons. Finally, I suggest that better understanding of the PRP action mechanism will lead to better use of PRP for the effective treatment of tendon injuries in clinics.

  9. Periodic modulation of repetitively elicited monosynaptic reflexes of the human lumbosacral spinal cord

    Science.gov (United States)

    Danner, Simon M.; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank; Minassian, Karen

    2015-01-01

    In individuals with motor-complete spinal cord injury, epidural stimulation of the lumbosacral spinal cord at 2 Hz evokes unmodulated reflexes in the lower limbs, while stimulation at 22–60 Hz can generate rhythmic burstlike activity. Here we elaborated on an output pattern emerging at transitional stimulation frequencies with consecutively elicited reflexes alternating between large and small. We analyzed responses concomitantly elicited in thigh and leg muscle groups bilaterally by epidural stimulation in eight motor-complete spinal cord-injured individuals. Periodic amplitude modulation of at least 20 successive responses occurred in 31.4% of all available data sets with stimulation frequency set at 5–26 Hz, with highest prevalence at 16 Hz. It could be evoked in a single muscle group only but was more strongly expressed and consistent when occurring in pairs of antagonists or in the same muscle group bilaterally. Latencies and waveforms of the modulated reflexes corresponded to those of the unmodulated, monosynaptic responses to 2-Hz stimulation. We suggest that the cyclical changes of reflex excitability resulted from the interaction of facilitatory and inhibitory mechanisms emerging after specific delays and with distinct durations, including postactivation depression, recurrent inhibition and facilitation, as well as reafferent feedback activation. The emergence of large responses within the patterns at a rate of 5.5/s or 8/s may further suggest the entrainment of spinal mechanisms as involved in clonus. The study demonstrates that the human lumbosacral spinal cord can organize a simple form of rhythmicity through the repetitive activation of spinal reflex circuits. PMID:25904708

  10. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury

    Directory of Open Access Journals (Sweden)

    Adam R Ferguson

    2012-10-01

    Full Text Available Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI. Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. The mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain pathways in the spinal cord may emerge with certain patterns of activity, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after spinal cord injury. We review these basic phenomena, discuss the cellular and molecular mechanisms, and discuss implications of these findings for improved rehabilitative therapies after spinal cord injury.

  11. Functional Brain Connectivity during Multiple Motor Imagery Tasks in Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Alkinoos Athanasiou

    2018-01-01

    Full Text Available Reciprocal communication of the central and peripheral nervous systems is compromised during spinal cord injury due to neurotrauma of ascending and descending pathways. Changes in brain organization after spinal cord injury have been associated with differences in prognosis. Changes in functional connectivity may also serve as injury biomarkers. Most studies on functional connectivity have focused on chronic complete injury or resting-state condition. In our study, ten right-handed patients with incomplete spinal cord injury and ten age- and gender-matched healthy controls performed multiple visual motor imagery tasks of upper extremities and walking under high-resolution electroencephalography recording. Directed transfer function was used to study connectivity at the cortical source space between sensorimotor nodes. Chronic disruption of reciprocal communication in incomplete injury could result in permanent significant decrease of connectivity in a subset of the sensorimotor network, regardless of positive or negative neurological outcome. Cingulate motor areas consistently contributed the larger outflow (right and received the higher inflow (left among all nodes, across all motor imagery categories, in both groups. Injured subjects had higher outflow from left cingulate than healthy subjects and higher inflow in right cingulate than healthy subjects. Alpha networks were less dense, showing less integration and more segregation than beta networks. Spinal cord injury patients showed signs of increased local processing as adaptive mechanism. This trial is registered with NCT02443558.

  12. Neuroimmune processes associated with Wallerian degeneration support neurotrophin-3-induced axonal sprouting in the injured spinal cord.

    Science.gov (United States)

    Chen, Qin; Shine, H David

    2013-10-01

    Lesions of the spinal cord cause two distinctive types of neuroimmune responses, a response at the lesion site that leads to additional tissue destruction and a more subtle response, termed Wallerian degeneration (WD), that occurs distal to the lesion site. We have evidence that the neuroimmune response associated with WD may support tissue repair. Previously, we found that overexpression of neurotrophin-3 (NT-3) induced axonal growth in the spinal cord after a unilateral corticospinal tract (CST) lesion, but only if the immune system was intact and activated. We reasoned that a neuroimmune response associated with WD was involved in this neuroplasticity. To test this, we compared NT-3-induced axonal sprouting in athymic nude rats that lack functional T cells with rats with functional T cells and in nude rats grafted with CD4(+) T cells or CD8(+) T cells. There was no sprouting in nude rats and in nude rats grafted with CD8(+) T cells. However, nude rats grafted with CD4(+) T cells mounted a sprouting response. To determine which CD4(+) subtype, type 1 T helper (Th1) or type 2 T helper (Th2) cells, was responsible, we grafted Th1 and Th2 cells into nude rats and tested whether they would support sprouting. Axonal sprouting was greater in rats grafted with Th2 cells, demonstrating that the Th2 subtype was responsible for supporting axonal sprouting. These data suggest that WD activates Th2 cells that, along with the direct effects of NT-3 on CST axons, act to support axonal sprouting in the lesioned spinal cord. Copyright © 2013 Wiley Periodicals, Inc.

  13. Biomechanical Evaluation of the MACSTL Internal Fixator for Thoracic Spinal Stabilisation

    Directory of Open Access Journals (Sweden)

    R. Veselý

    2008-01-01

    Full Text Available Unstable fractures of the thoracic spine in humans represent a serious social and economic issue. They may lead to persistent consequences and chronic disease. The anatomical and biomechanical characteristics of the thoracic spine are different from all the other spinal parts due to its higher mobility. The vertebrae of the chest area are less mobile, conferring a higher degree of rigidity to the spine. To destabilize this relatively rigid system, a considerable force is necessary. The treatment of unstable spinal fractures is solely surgical. The decompression of the spinal canal with reposition and stabilisation of the fracture is indicated urgently. This intervention is performed mostly from the posterior approach in the first phase. However, the anterior spinal column is the structure responsible for the stability of the spine. Therefore, the recent advances in spine surgery focus on this area of expertise. For this reason, we carried out a bio-mechanical study aimed at assessing the effectiveness of two surgical tactics used. The study consisted of comparative experiments performed by computer-aided device on segments of pig cadavers (n = 5. The experiment involved a comparison of segments of the thoracic spine under the following conditions: an anatomically intact segment, a spine segment with an artificially created anterior instability, and a segment with an applied internal fixator. The experiment compared the mechanical characteristics of these segments. The experiment has demonstrated that after application of the internal fixator used for stabilisation of the injured anterior spinal column at defined pre-loading of 200 N, the stability of damaged spinal segment in torsion increased twofold. It was also verified that sufficient stability can be ensured using the Modular Anterior Construct System (MACSTL implant for ventral stabilisation of thoracic spine unstable injuries. Endoscopic application of this implant represents an

  14. Cervical spinal cord injuries in patients with cervical spondylosis.

    Science.gov (United States)

    Regenbogen, V S; Rogers, L F; Atlas, S W; Kim, K S

    1986-02-01

    Eighty-eight patients over age 40 with traumatic cervical spinal cord injuries were clinically and radiographically evaluated, and comparison was made with 35 spinal cord injury patients under age 36. While most older patients sustained obvious bony and/or ligamentous damage commensurate with their neurologic findings, 25 (28%) of the 88 patients had no demonstrable bony abnormalities and 17 (20%) of the 88 patients had only minimal evidence of bony injury. Of particular interest are the patients with severe cord injuries, yet no bony abnormalities, who seem to form a distinct subgroup of the cervical spinal cord injury patient on the basis of radiographic and clinical features. Of these 25 patients, 24 (96%) had severe cervical spondylosis. Fourteen (56%) of the 25 patients were injured in falls, five (36%) of these 14 being of a seemingly trivial nature. Of the 42 patients with minimal or no demonstrable bony abnormalities, 33 (79%) were evaluated with plain tomography and no occult fractures or other significant pathology was demonstrated. Pantopaque myelography in 27 (64%) of the 42 cases revealed no extruded disk or other surgical lesion in any patient. In large measure, these injuries can be attributed to cervical spondylosis, which narrows the canal and makes the cord more susceptible to compression by the bulging ligamenta flava during hyperextension.

  15. Activation of the Wnt/{beta}-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanchun [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong (China); Guan, Yingjun, E-mail: guanyj@wfmc.edu.cn [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong (China); Liu, Huancai [Department of Orthopedic, Affiliated Hospital, Weifang Medical University, Weifang, Shandong (China); Wu, Xin; Yu, Li; Wang, Shanshan; Zhao, Chunyan; Du, Hongmei [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Wang, Xin, E-mail: xwang@rics.bwh.harvard.edu [Department of Neurosurgery, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Wnt3a and Cyclin D1 were upregulated in the spinal cord of the ALS mice. Black-Right-Pointing-Pointer {beta}-catenin translocated from the cell membrane to the nucleus in the ALS mice. Black-Right-Pointing-Pointer Wnt3a, {beta}-catenin and Cyclin D1 co-localized for astrocytes were all increased. Black-Right-Pointing-Pointer BrdU/Cyclin D1 double-positive cells were increased in the spinal cord of ALS mice. Black-Right-Pointing-Pointer BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. -- Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive and fatal loss of motor neurons. In ALS, there is a significant cell proliferation in response to neurodegeneration; however, the exact molecular mechanisms of cell proliferation and differentiation are unclear. The Wnt signaling pathway has been shown to be involved in neurodegenerative processes. Wnt3a, {beta}-catenin, and Cyclin D1 are three key signaling molecules of the Wnt/{beta}-catenin signaling pathway. We determined the expression of Wnt3a, {beta}-catenin, and Cyclin D1 in the adult spinal cord of SOD1{sup G93A} ALS transgenic mice at different stages by RT-PCR, Western blot, and immunofluorescence labeling techniques. We found that the mRNA and protein of Wnt3a and Cyclin D1 in the spinal cord of the ALS mice were upregulated compared to those in wild-type mice. In addition, {beta}-catenin translocated from the cell membrane to the nucleus and subsequently activated transcription of the target gene, Cyclin D1. BrdU and Cyclin D1 double-positive cells were increased in the spinal cord of these mice. Moreover, Wnt3a, {beta}-catenin, and Cyclin D1 were also expressed in both neurons and astrocytes. The expression of Wnt3a, {beta}-catenin or Cyclin D1 in mature GFAP{sup +} astrocytes increased. Moreover, BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. Our findings suggest that

  16. Development of a 3D matrix for modeling mammalian spinal cord injury in vitro

    Directory of Open Access Journals (Sweden)

    Juan Felipe Diaz Quiroz

    2016-01-01

    Full Text Available Spinal cord injury affects millions of people around the world, however, limited therapies are available to improve the quality of life of these patients. Spinal cord injury is usually modeled in rats and mice using contusion or complete transection models and this has led to a deeper understanding of the molecular and cellular complexities of the injury. However, it has not to date led to development of successful novel therapies, this is in part due to the complexity of the injury and the difficulty of deciphering the exact roles and interactions of different cells within this complex environment. Here we developed a collagen matrix that can be molded into the 3D tubular shape with a lumen and can hence support cell interactions in a similar architecture to a spinal cord. We show that astrocytes can be successfully grown on this matrix in vitro and when injured, the cells respond as they do in vivo and undergo reactive gliosis, one of the steps that lead to formation of a glial scar, the main barrier to spinal cord regeneration. In the future, this system can be used to quickly assess the effect of drugs on glial scar protein activity or to perform live imaging of labeled cells after exposure to drugs.

  17. Residual cognitive disability after completion of inpatient rehabilitation among injured children.

    Science.gov (United States)

    Zonfrillo, Mark R; Durbin, Dennis R; Winston, Flaura K; Zhang, Xuemei; Stineman, Margaret G

    2014-01-01

    To determine the prevalence and nature of residual cognitive disability after inpatient rehabilitation for children aged 7-18 years with traumatic injuries. This retrospective cohort study included children aged 7-18 years in the Uniform Data System for Medical Rehabilitation who underwent inpatient rehabilitation for traumatic injuries in 523 facilities from 2002-2011. Traumatic injuries were identified by standardized Medicare Inpatient Rehabilitation Facility-Patient Assessment Instrument codes. Cognitive outcomes were measured by the Functional Independence Measure instrument. A validated, categorical staging system derived from responses to the items in the cognitive domain of the functional independence measure was used and consisted of clinically relevant levels of cognitive achievement from stage 1 (total cognitive disability) to stage 7 (completely independent cognitive function). There were 13,798 injured children who completed inpatient rehabilitation during the 10-year period. On admission to inpatient rehabilitation, patients with traumatic brain injury (TBI) had more cognitive disability (median stage 2) than those with spinal cord injury or other injuries (median stage 5). Cognitive functioning improved for all patients, but children with TBI still tended to have significant residual cognitive disability (median stage on discharge, 4). Injured children gained cognitive functionality throughout inpatient rehabilitation. Those with TBI had more severe cognitive disability on admission and more residual disability on discharge. This is important not only for patient and family expectation setting but also for resource and service planning, as discharge from inpatient rehabilitation is a critical milestone for reintegration into society for children with serious injury. Copyright © 2014 Mosby, Inc. All rights reserved.

  18. Kinematic analysis of the gait of adult sheep during treadmill locomotion: Parameter values, allowable total error, and potential for use in evaluating spinal cord injury.

    Science.gov (United States)

    Safayi, Sina; Jeffery, Nick D; Shivapour, Sara K; Zamanighomi, Mahdi; Zylstra, Tyler J; Bratsch-Prince, Joshua; Wilson, Saul; Reddy, Chandan G; Fredericks, Douglas C; Gillies, George T; Howard, Matthew A

    2015-11-15

    We are developing a novel intradural spinal cord (SC) stimulator designed to improve the treatment of intractable pain and the sequelae of SC injury. In-vivo ovine models of neuropathic pain and moderate SC injury are being implemented for pre-clinical evaluations of this device, to be carried out via gait analysis before and after induction of the relevant condition. We extend previous studies on other quadrupeds to extract the three-dimensional kinematics of the limbs over the gait cycle of sheep walking on a treadmill. Quantitative measures of thoracic and pelvic limb movements were obtained from 17 animals. We calculated the total-error values to define the analytical performance of our motion capture system for these kinematic variables. The post- vs. pre-injury time delay between contralateral thoracic and pelvic-limb steps for normal and SC-injured sheep increased by ~24s over 100 steps. The pelvic limb hoof velocity during swing phase decreased, while range of pelvic hoof elevation and distance between lateral pelvic hoof placements increased after SC injury. The kinematics measures in a single SC-injured sheep can be objectively defined as changed from the corresponding pre-injury values, implying utility of this method to assess new neuromodulation strategies for specific deficits exhibited by an individual. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Magnetic resonance imaging features of the spinal cord in pediatric multiple sclerosis: a preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Verhey, Leonard H. [Hospital for Sick Children, Neuroscience and Mental Health, Toronto, ON (Canada); University of Toronto, Institute of Medical Science, Faculty of Medicine, Toronto, ON (Canada); Branson, Helen M.; Shroff, Manohar [Hospital for Sick Children, Department of Diagnostic Imaging (Neuroradiology), Toronto, ON (Canada); University of Toronto, Department of Medical Imaging, Toronto, ON (Canada); Makhija, Monica [Hospital for Sick Children, Neuroscience and Mental Health, Toronto, ON (Canada); Banwell, Brenda [Hospital for Sick Children, Neuroscience and Mental Health, Toronto, ON (Canada); University of Toronto, Institute of Medical Science, Faculty of Medicine, Toronto, ON (Canada); University of Toronto, Department of Pediatrics (Neurology), Toronto, ON (Canada)

    2010-12-15

    Spinal cord lesions in adults with multiple sclerosis (MS) are thought to contribute to disability. The magnetic resonance imaging (MRI) appearance and clinical correlates of spinal cord lesions in children with MS have not been reported. T1-weighted pre- and post-gadolinium and T2-weighted TSE/FSE spine MR images of 36 children (age, 14.3 {+-} 3.3) with relapsing-remitting MS (annualized relapse rate, 0.7; disease duration, 7.5 {+-} 3.3 years) were analyzed for total lesion count, lesion location and length, intramedullary extent, and gadolinium enhancement. Clinical, demographic, laboratory, and MRI data were correlated. Lesions preferentially involved the cervical region, were predominantly focal, and involved only a portion of the transverse cord diameter. However, ten of 36 patients demonstrated longitudinally extensive lesions. Children with the highest clinical relapse rate also tended to have more spinal cord lesions and were more likely to accrue new lesions on serial spinal scans. These preliminary data suggest that MS lesions of the spinal cord in children are radiographically similar to that of adult-onset MS - supporting a common biology of pediatric- and adult-onset disease. However, children with relapsing-remitting MS can also develop longitudinally extensive lesions, suggesting that such lesions may be less specific for diseases such as neuromyelitis optica in pediatric patients. All patients recovered well from spinal cord attacks, and the presence of spinal cord lesions in the first few years of disease did not correlate with physical disability. Measures of spinal cord atrophy and longer periods of observation are required to determine the impact of spinal cord involvement in pediatric-onset MS. (orig.)

  20. Magnetic resonance imaging features of the spinal cord in pediatric multiple sclerosis: a preliminary study

    International Nuclear Information System (INIS)

    Verhey, Leonard H.; Branson, Helen M.; Shroff, Manohar; Makhija, Monica; Banwell, Brenda

    2010-01-01

    Spinal cord lesions in adults with multiple sclerosis (MS) are thought to contribute to disability. The magnetic resonance imaging (MRI) appearance and clinical correlates of spinal cord lesions in children with MS have not been reported. T1-weighted pre- and post-gadolinium and T2-weighted TSE/FSE spine MR images of 36 children (age, 14.3 ± 3.3) with relapsing-remitting MS (annualized relapse rate, 0.7; disease duration, 7.5 ± 3.3 years) were analyzed for total lesion count, lesion location and length, intramedullary extent, and gadolinium enhancement. Clinical, demographic, laboratory, and MRI data were correlated. Lesions preferentially involved the cervical region, were predominantly focal, and involved only a portion of the transverse cord diameter. However, ten of 36 patients demonstrated longitudinally extensive lesions. Children with the highest clinical relapse rate also tended to have more spinal cord lesions and were more likely to accrue new lesions on serial spinal scans. These preliminary data suggest that MS lesions of the spinal cord in children are radiographically similar to that of adult-onset MS - supporting a common biology of pediatric- and adult-onset disease. However, children with relapsing-remitting MS can also develop longitudinally extensive lesions, suggesting that such lesions may be less specific for diseases such as neuromyelitis optica in pediatric patients. All patients recovered well from spinal cord attacks, and the presence of spinal cord lesions in the first few years of disease did not correlate with physical disability. Measures of spinal cord atrophy and longer periods of observation are required to determine the impact of spinal cord involvement in pediatric-onset MS. (orig.)

  1. Cortical control of intraspinal microstimulation: Toward a new approach for restoration of function after spinal cord injury.

    Science.gov (United States)

    Shahdoost, Shahab; Frost, Shawn; Dunham, Caleb; DeJong, Stacey; Barbay, Scott; Nudo, Randolph; Mohseni, Pedram

    2015-08-01

    Approximately 6 million people in the United States are currently living with paralysis in which 23% of the cases are related to spinal cord injury (SCI). Miniaturized closed-loop neural interfaces have the potential for restoring function and mobility lost to debilitating neural injuries such as SCI by leveraging recent advancements in bioelectronics and a better understanding of the processes that underlie functional and anatomical reorganization in an injured nervous system. This paper describes our current progress toward developing a miniaturized brain-machine-spinal cord interface (BMSI) that converts in real time the neural command signals recorded from the cortical motor regions to electrical stimuli delivered to the spinal cord below the injury level. Using a combination of custom integrated circuit (IC) technology for corticospinal interfacing and field-programmable gate array (FPGA)-based technology for embedded signal processing, we demonstrate proof-of-concept of distinct muscle pattern activation via intraspinal microstimulation (ISMS) controlled in real time by intracortical neural spikes in an anesthetized laboratory rat.

  2. Nigerian Journal of Medicine - Vol 16, No 4 (2007)

    African Journals Online (AJOL)

    Comparative analysis of urethral catheterization versus suprapubic cytostomy in management of neurogenic bladder in spinal injured patients · EMAIL FULL TEXT ... The trend of HIV infection in Kano, Nigeria-A-Seven-Year study of Adult attendees of Aminu Kanu Teaching Hospital · EMAIL FULL TEXT EMAIL FULL TEXT

  3. Changes in spinal alignment.

    Science.gov (United States)

    Veintemillas Aráiz, M T; Beltrán Salazar, V P; Rivera Valladares, L; Marín Aznar, A; Melloni Ribas, P; Valls Pascual, R

    2016-04-01

    Spinal misalignments are a common reason for consultation at primary care centers and specialized departments. Misalignment has diverse causes and is influenced by multiple factors: in adolescence, the most frequent misalignment is scoliosis, which is idiopathic in 80% of cases and normally asymptomatic. In adults, the most common cause is degenerative. It is important to know the natural history and to detect factors that might predict progression. The correct diagnosis of spinal deformities requires specific imaging studies. The degree of deformity determines the type of treatment. The aim is to prevent progression of the deformity and to recover the flexibility and balance of the body. Copyright © 2016 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  4. Anti-Inflammatory Mechanism of Neural Stem Cell Transplantation in Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Zhijian Cheng

    2016-08-01

    Full Text Available Neural stem cell (NSC transplantation has been proposed to promote functional recovery after spinal cord injury. However, a detailed understanding of the mechanisms of how NSCs exert their therapeutic plasticity is lacking. We transplanted mouse NSCs into the injured spinal cord seven days after SCI, and the Basso Mouse Scale (BMS score was performed to assess locomotor function. The anti-inflammatory effects of NSC transplantation was analyzed by immunofluorescence staining of neutrophil and macrophages and the detection of mRNA levels of tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, interleukin-6 (IL-6 and interleukin-12 (IL-12. Furthermore, bone marrow-derived macrophages (BMDMs were co-cultured with NSCs and followed by analyzing the mRNA levels of inducible nitric oxide synthase (iNOS, TNF-α, IL-1β, IL-6 and IL-10 with quantitative real-time PCR. The production of TNF-α and IL-1β by BMDMs was examined using the enzyme-linked immunosorbent assay (ELISA. Transplanted NSCs had significantly increased BMS scores (p < 0.05. Histological results showed that the grafted NSCs migrated from the injection site toward the injured area. NSCs transplantation significantly reduced the number of neutrophils and iNOS+/Mac-2+ cells at the epicenter of the injured area (p < 0.05. Meanwhile, mRNA levels of TNF-α, IL-1β, IL-6 and IL-12 in the NSCs transplantation group were significantly decreased compared to the control group. Furthermore, NSCs inhibited the iNOS expression of BMDMs and the release of inflammatory factors by macrophages in vitro (p < 0.05. These results suggest that NSC transplantation could modulate SCI-induced inflammatory responses and enhance neurological function after SCI via reducing M1 macrophage activation and infiltrating neutrophils. Thus, this study provides a new insight into the mechanisms responsible for the anti-inflammatory effect of NSC transplantation after SCI.

  5. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury

    Science.gov (United States)

    Ferguson, Adam R.; Huie, J. Russell; Crown, Eric D.; Baumbauer, Kyle M.; Hook, Michelle A.; Garraway, Sandra M.; Lee, Kuan H.; Hoy, Kevin C.; Grau, James W.

    2012-01-01

    Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI). Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. A mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain) pathways in the spinal cord may emerge in response to various noxious inputs, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord below the level of SCI. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Prior work from our group has shown that stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after SCI. We review these basic phenomena, how these findings relate to the broader spinal plasticity literature, discuss the cellular and molecular mechanisms, and finally discuss implications of these and other findings for improved rehabilitative therapies after SCI. PMID

  6. The cranial-spinal junction in medulloblastoma: does it matter?

    International Nuclear Information System (INIS)

    Narayana, Ashwatha; Jeswani, Sam; Paulino, Arnold C.

    1999-01-01

    Purpose: Late effects of treatment in children and young adults with medulloblastoma can be influenced by the technique employed in radiating the craniospinal axis. The purpose of this study is to determine whether the placement of the cranial-spinal junction has an impact on dose to the cervical spinal cord and surrounding organs. Methods and Materials: Five patients underwent computed tomography (CT) simulation in the prone position for craniospinal irradiation. A dose of 36 Gy was prescribed to the entire neuraxis. The doses to the cervical spinal cord and surrounding organs were calculated using a cranial-spinal junction at the C1-C2 vertebral interspace (high junction) or at the lowest point in the neck, with exclusion of the shoulders in the lateral cranial fields (low junction).The volume of critical organs at risk, as well as dose to these structures using the cranial and spinal field(s) were outlined and calculated using the CMS FOCUS 3-dimensional treatment planning system. Results: The average dose to the cervical spinal cord was 11.9% higher than the prescribed dose with the low junction, and 6.7% higher with the high junction. However, doses to the thyroid gland, mandible, pharynx, and larynx were increased by an average of 29.6%, 75.8%, 70.6%, and 227.7%, respectively, by the use of the high junction compared to the low junction. Conclusion: A higher dose to the cervical spinal cord can be minimized by using a high junction. However, this would be at the cost of substantially increased doses to surrounding organs such as the thyroid gland, mandible, pharynx, and larynx. This can be critical in children and young adults, where hypothyroidism, mandibular hypoplasia, and development of second malignancies may be a late sequela of radiation therapy

  7. Evaluation of Purinergic Mechanism for the Treatment of Voiding Dysfunction: A Study in Conscious Spinal Cord-injured Rats

    Directory of Open Access Journals (Sweden)

    Shing-Hwa Lu

    2007-10-01

    Conclusion: These results indicate that purinergic mechanisms, presumably involving P2X3 or P2X2/3 receptors on bladder C-fiber afferent nerves, play an important role in the detrusor hyperreflexia that occurs after spinal cord injury in rats.

  8. GABA, not glycine, mediates inhibition of latent respiratory motor pathways after spinal cord injury

    OpenAIRE

    Zimmer, M. Beth; Goshgarian, Harry G.

    2006-01-01

    Previous work has shown that latent respiratory motor pathways known as crossed phrenic pathways are inhibited via a spinal inhibitory process; however, the underlying mechanisms remain unknown. The present study investigated whether spinal GABA-A and/or glycine receptors are involved in the inhibition of the crossed phrenic pathways after a C2 spinal cord hemisection injury. Under ketamine/xylazine anesthesia, adult, female, Sprague Dawley rats were hemisected at the C2 spinal cord level. Fo...

  9. Low-energy extracorporeal shock wave therapy promotes vascular endothelial growth factor expression and improves locomotor recovery after spinal cord injury.

    Science.gov (United States)

    Yamaya, Seiji; Ozawa, Hiroshi; Kanno, Haruo; Kishimoto, Koshi N; Sekiguchi, Akira; Tateda, Satoshi; Yahata, Kenichiro; Ito, Kenta; Shimokawa, Hiroaki; Itoi, Eiji

    2014-12-01

    Extracorporeal shock wave therapy (ESWT) is widely used for the clinical treatment of various human diseases. Recent studies have demonstrated that low-energy ESWT upregulates the expression of vascular endothelial growth factor (VEGF) and promotes angiogenesis and functional recovery in myocardial infarction and peripheral artery disease. Many previous reports suggested that VEGF produces a neuroprotective effect to reduce secondary neural tissue damage after spinal cord injury (SCI). The purpose of the present study was to investigate whether low-energy ESWT promotes VEGF expression and neuroprotection and improves locomotor recovery after SCI. Sixty adult female Sprague-Dawley rats were randomly divided into 4 groups: sham group (laminectomy only), sham-SW group (low-energy ESWT applied after laminectomy), SCI group (SCI only), and SCI-SW group (low-energy ESWT applied after SCI). Thoracic spinal cord contusion injury was inflicted using an impactor. Low-energy ESWT was applied to the injured spinal cord 3 times a week for 3 weeks. Locomotor function was evaluated using the Basso, Beattie, and Bresnahan (BBB) Scale (open field locomotor score) at different time points over 42 days after SCI. Hematoxylin and eosin staining was performed to assess neural tissue damage in the spinal cord. Neuronal loss was investigated by immunostaining for NeuN. The mRNA expressions of VEGF and its receptor, Flt-1, in the spinal cord were assessed using real-time polymerase chain reaction. Immunostaining for VEGF was performed to evaluate VEGF protein expression in the spinal cord. In both the sham and sham-SW groups, no animals showed locomotor impairment on BBB scoring. Histological analysis of H & E and NeuN stainings in the sham-SW group confirmed that no neural tissue damage was induced by the low-energy ESWT. Importantly, animals in the SCI-SW group demonstrated significantly better locomotor improvement than those in the SCI group at 7, 35, and 42 days after injury (p

  10. Voltage-gated sodium channel expression in mouse DRG after SNI leads to re-evaluation of projections of injured fibers.

    Science.gov (United States)

    Laedermann, Cédric J; Pertin, Marie; Suter, Marc R; Decosterd, Isabelle

    2014-03-11

    Dysregulation of voltage-gated sodium channels (Na(v)s) is believed to play a major role in nerve fiber hyperexcitability associated with neuropathic pain. A complete transcriptional characterization of the different isoforms of Na(v)s under normal and pathological conditions had never been performed on mice, despite their widespread use in pain research. Na(v)s mRNA levels in mouse dorsal root ganglia (DRG) were studied in the spared nerve injury (SNI) and spinal nerve ligation (SNL) models of neuropathic pain. In the SNI model, injured and non-injured neurons were intermingled in lumbar DRG, which were pooled to increase the tissue available for experiments. A strong downregulation was observed for every Na(v)s isoform expressed except for Na(v)1.2; even Na(v)1.3, known to be upregulated in rat neuropathic pain models, was lower in the SNI mouse model. This suggests differences between these two species. In the SNL model, where the cell bodies of injured and non-injured fibers are anatomically separated between different DRG, most Na(v)s were observed to be downregulated in the L5 DRG receiving axotomized fibers. Transcription was then investigated independently in the L3, L4 and L5 DRG in the SNI model, and an important downregulation of many Na(v)s isoforms was observed in the L3 DRG, suggesting the presence of numerous injured neurons there after SNI. Consequently, the proportion of axotomized neurons in the L3, L4 and L5 DRG after SNI was characterized by studying the expression of activating transcription factor 3 (ATF3). Using this marker of nerve injury confirmed that most injured fibers find their cell bodies in the L3 and L4 DRG after SNI in C57BL/6 J mice; this contrasts with their L4 and L5 DRG localization in rats. The spared sural nerve, through which pain hypersensitivity is measured in behavioral studies, mostly projects into the L4 and L5 DRG. The complex regulation of Na(v)s, together with the anatomical rostral shift of the DRG harboring injured

  11. Multiplex array proteomics detects increased MMP-8 in CSF after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Light Matthew

    2012-06-01

    Full Text Available Abstract Introduction A variety of methods have been used to study inflammatory changes in the acutely injured spinal cord. Recently novel multiplex assays have been used in an attempt to overcome limitations in numbers of available targets studied in a single experiment. Other technical challenges in developing pre-clinical rodent models to investigate biomarkers in cerebrospinal fluid (CSF include relatively small volumes of sample and low concentrations of target proteins. The primary objective of this study was to characterize the inflammatory profile present in CSF at a subacute time point in a clinically relevant rodent model of traumatic spinal cord injury (SCI. Our other aim was to test a microarray proteomics platform specifically for this application. Methods A 34 cytokine sandwich ELISA microarray was used to study inflammatory changes in CSF samples taken 12 days post-cervical SCI in adult rats. The difference between the median foreground signal and the median background signal was measured. Bonferroni and Benjamini-Hochburg multiple testing corrections were applied to limit the False Discovery Rate (FDR, and a linear mixed model was used to account for repeated measures in the array. Results We report a novel subacute SCI biomarker, elevated levels of matrix metalloproteinase-8 protein in CSF, and discuss application of statistical models designed for multiplex testing. Conclusions Major advantages of this assay over conventional methods include high-throughput format, good sensitivity, and reduced sample consumption. This method can be useful for creating comprehensive inflammatory profiles, and biomarkers can be used in the clinic to assess injury severity and to objectively grade response to therapy.

  12. A study of burden of care and its correlates among family members supporting relatives and loved ones with traumatic spinal cord injuries.

    Science.gov (United States)

    Castellano-Tejedor, Carmina; Lusilla-Palacios, Pilar

    2017-07-01

    To understand and describe in a sample of caregivers of persons with spinal cord injury, their burden of care, resilience and life satisfaction and to explore the relationship between these variables. Cross-sectional design. One Spinal Cord Injury Acute Inpatient Unit from a general hospital. Seventy-five relatives of persons with spinal cord injuries (84% women) with a mean age of 48.55 ( SD = 12.55) years. None. Demographics (neurological loss and severity according to the American Spinal Injury Association criteria), the Zarit Burden Interview, the Resilience Scale and the Life Satisfaction Checklist. All caregivers experienced feelings of different intensities of burden (52% mild-to-moderate, 43% moderate-to-severe and 5% severe), and none of them expressed little or no burden at the assessment moment. Caregivers' main worries were "dependence" and "the future of the injured." Resilience was medium-to-high (mean = 141.93, SD = 23.44) for the whole sample with just a minority of them revealing low (15%) or very low resilience (7%). The highest scores were obtained in relation to "caregivers' independence" and "meaning of their lives." Life satisfaction scores were medium-to-high (mean = 36.6, SD = 6). These scores were not related to demographics or the severity of the injury. Zarit Burden Interview scores were negatively correlated to Resilience Scale ( r = -.370, P = .001) and Life Satisfaction Checklist scores ( r = -.412, P resilient and satisfied caregivers experienced lower burden. Burden is moderate-to-high and mainly related to uncertainty about the future, caregivers' insecurity with caregiving and dependence of the injured.

  13. [The influence of metabolic disturbances present in diabetes mellitus type I on vestibulo-spinal reflexes in children and young adults].

    Science.gov (United States)

    Gawron, Wojciech; Pośpiech, Lucyna; Orendorz-Fraczkowska, Krystyna; Noczyńska, Anna

    2002-01-01

    Diabetic neuropathy encompasses various disturbances concerning somatic and autonomic nervous system and has significant impact on prognosis and course of diabetes mellitus. The aim of the work is an evaluation of vestibulo-spinal reflexes in children and young adults suffering from diabetes mellitus type 1. Material--95 children and young adults aged from 6 to 28 years with diabetes mellitus type 1 diagnosed. The control group consisted of 44 otoneurologically healthy subjects aged from 6 to 28 years. After detailed medical history collection and physical ENT examination stato-posturography was performed in each case. Posturographer PE 62 Model 04 was applied in the studies. Static posturography as well as dynamic one (one leg standing test) was performed in each case. 6 patients belonging to diabetic group complained about vertigo or dizziness. There were worse stabilograms parameters in diabetic group in comparison to control one, statistically significant in younger children. There were better stabilogram parameters in diabetic patients with longer history of the disease. The parameters analysed were significantly worse in the subgroup with not compensated diabetes. The parameters were slightly better in relation to the presence of hypoglycaemic incidents. No apparent differences in stabilograms parameters were present in relation to the presence of diabetic complications. Diabetes mellitus type 1 with slight or without complications does not have significant influence on vestibulo-spinal reflexes and posture stability of the patients. Balance organ disturbances in diabetes mellitus type 1 in children and young adults despite their presence have subclinical course. Perhaps one should consider monitoring of those disturbances in the course of the disease.

  14. Dedifferentiation of intrinsic response properties of motoneurons in organotypic cultures of the spinal cord of the adult turtle

    DEFF Research Database (Denmark)

    Perrier, J.F.; Noraberg, J.; Simon, M.

    2000-01-01

    Explant cultures from the spinal cord of adult turtles were established and used to study the sensitivity of the intrinsic response properties of motoneurons to the changes in connectivity and milieu imposed by isolation in culture. Transverse sections 700 microm thick were explanted on cover slips...... the ability to fire repetitively. By the second week in culture, a fraction of motoneurons displayed fast and slow transient outward rectification and low-threshold calcium spikes, features not seen in turtle motoneurons in acute slices. On the other hand, properties mediated by L-type Ca2+ channels...

  15. Thoracic rat spinal cord contusion injury induces remote spinal gliogenesis but not neurogenesis or gliogenesis in the brain.

    Directory of Open Access Journals (Sweden)

    Steffen Franz

    Full Text Available After spinal cord injury, transected axons fail to regenerate, yet significant, spontaneous functional improvement can be observed over time. Distinct central nervous system regions retain the capacity to generate new neurons and glia from an endogenous pool of progenitor cells and to compensate neural cell loss following certain lesions. The aim of the present study was to investigate whether endogenous cell replacement (neurogenesis or gliogenesis in the brain (subventricular zone, SVZ; corpus callosum, CC; hippocampus, HC; and motor cortex, MC or cervical spinal cord might represent a structural correlate for spontaneous locomotor recovery after a thoracic spinal cord injury. Adult Fischer 344 rats received severe contusion injuries (200 kDyn of the mid-thoracic spinal cord using an Infinite Horizon Impactor. Uninjured rats served as controls. From 4 to 14 days post-injury, both groups received injections of bromodeoxyuridine (BrdU to label dividing cells. Over the course of six weeks post-injury, spontaneous recovery of locomotor function occurred. Survival of newly generated cells was unaltered in the SVZ, HC, CC, and the MC. Neurogenesis, as determined by identification and quantification of doublecortin immunoreactive neuroblasts or BrdU/neuronal nuclear antigen double positive newly generated neurons, was not present in non-neurogenic regions (MC, CC, and cervical spinal cord and unaltered in neurogenic regions (dentate gyrus and SVZ of the brain. The lack of neuronal replacement in the brain and spinal cord after spinal cord injury precludes any relevance for spontaneous recovery of locomotor function. Gliogenesis was increased in the cervical spinal cord remote from the injury site, however, is unlikely to contribute to functional improvement.

  16. The nature and impact of stigma towards injured workers.

    Science.gov (United States)

    Kirsh, Bonnie; Slack, Tesha; King, Carole Anne

    2012-06-01

    Many injured workers experience high levels of stigma and discrimination, which compound their physical injuries and cause social and psychological harm. Despite a growing awareness of the prevalence of such stigma, there is little research that focuses on the sources, nature and consequences of stigma with respect to the lives of injured workers. The purpose of this paper is to advance knowledge related to stigma towards injured workers, specifically to explain the nature and processes of stigma and their influence on injured workers' lives. Using a constructivist grounded theory approach, data from focus groups (n = 28 participants) and individual interviews (n = 18) were analyzed to discern how stigma is exhibited and perpetuated, and its impact on the lives of injured workers. The study culminated in a preliminary theoretical framework that delineates the key components of the manifestations and impacts of stigma that includes stereotypes, unethical practices and maltreatment negatively affecting work, relationships and the mental health of injured workers. The development of sound conceptualizations in this area can advance our understanding of stigma processes and provide a framework for anti-stigma efforts. The findings have implications for public education, workplace interventions and services for injured workers.

  17. Analyzer-based imaging of spinal fusion in an animal model

    International Nuclear Information System (INIS)

    Kelly, M E; Beavis, R C; Allen, L A; Fiorella, David; Schueltke, E; Juurlink, B H; Chapman, L D; Zhong, Z

    2008-01-01

    Analyzer-based imaging (ABI) utilizes synchrotron radiation sources to create collimated monochromatic x-rays. In addition to x-ray absorption, this technique uses refraction and scatter rejection to create images. ABI provides dramatically improved contrast over standard imaging techniques. Twenty-one adult male Wistar rats were divided into four experimental groups to undergo the following interventions: (1) non-injured control, (2) decortication alone, (3) decortication with iliac crest bone grafting and (4) decortication with iliac crest bone grafting and interspinous wiring. Surgical procedures were performed at the L5-6 level. Animals were killed at 2, 4 and 6 weeks after the intervention and the spine muscle blocks were excised. Specimens were assessed for the presence of fusion by (1) manual testing, (2) conventional absorption radiography and (3) ABI. ABI showed no evidence of bone fusion in groups 1 and 2 and showed solid or possibly solid fusion in subjects from groups 3 and 4 at 6 weeks. Metal artifacts were not present in any of the ABI images. Conventional absorption radiographs did not provide diagnostic quality imaging of either the graft material or fusion masses in any of the specimens in any of the groups. Synchrotron-based ABI represents a novel imaging technique which can be used to assess spinal fusion in a small animal model. ABI produces superior image quality when compared to conventional radiographs

  18. Analyzer-based imaging of spinal fusion in an animal model

    Science.gov (United States)

    Kelly, M. E.; Beavis, R. C.; Fiorella, David; Schültke, E.; Allen, L. A.; Juurlink, B. H.; Zhong, Z.; Chapman, L. D.

    2008-05-01

    Analyzer-based imaging (ABI) utilizes synchrotron radiation sources to create collimated monochromatic x-rays. In addition to x-ray absorption, this technique uses refraction and scatter rejection to create images. ABI provides dramatically improved contrast over standard imaging techniques. Twenty-one adult male Wistar rats were divided into four experimental groups to undergo the following interventions: (1) non-injured control, (2) decortication alone, (3) decortication with iliac crest bone grafting and (4) decortication with iliac crest bone grafting and interspinous wiring. Surgical procedures were performed at the L5-6 level. Animals were killed at 2, 4 and 6 weeks after the intervention and the spine muscle blocks were excised. Specimens were assessed for the presence of fusion by (1) manual testing, (2) conventional absorption radiography and (3) ABI. ABI showed no evidence of bone fusion in groups 1 and 2 and showed solid or possibly solid fusion in subjects from groups 3 and 4 at 6 weeks. Metal artifacts were not present in any of the ABI images. Conventional absorption radiographs did not provide diagnostic quality imaging of either the graft material or fusion masses in any of the specimens in any of the groups. Synchrotron-based ABI represents a novel imaging technique which can be used to assess spinal fusion in a small animal model. ABI produces superior image quality when compared to conventional radiographs.

  19. The Anti-Inflammatory Compound Curcumin Enhances Locomotor and Sensory Recovery after Spinal Cord Injury in Rats by Immunomodulation

    Science.gov (United States)

    Machova Urdzikova, Lucia; Karova, Kristyna; Ruzicka, Jiri; Kloudova, Anna; Shannon, Craig; Dubisova, Jana; Murali, Raj; Kubinova, Sarka; Sykova, Eva; Jhanwar-Uniyal, Meena; Jendelova, Pavla

    2015-01-01

    Well known for its anti-oxidative and anti-inflammation properties, curcumin is a polyphenol found in the rhizome of Curcuma longa. In this study, we evaluated the effects of curcumin on behavioral recovery, glial scar formation, tissue preservation, axonal sprouting, and inflammation after spinal cord injury (SCI) in male Wistar rats. The rats were randomized into two groups following a balloon compression injury at the level of T9–T10 of the spinal cord, namely vehicle- or curcumin-treated. Curcumin was applied locally on the surface of the injured spinal cord immediately following injury and then given intraperitoneally daily; the control rats were treated with vehicle in the same manner. Curcumin treatment improved behavioral recovery within the first week following SCI as evidenced by improved Basso, Beattie, and Bresnahan (BBB) test and plantar scores, representing locomotor and sensory performance, respectively. Furthermore, curcumin treatment decreased glial scar formation by decreasing the levels of MIP1α, IL-2, and RANTES production and by decreasing NF-κB activity. These results, therefore, demonstrate that curcumin has a profound anti-inflammatory therapeutic potential in the treatment of spinal cord injury, especially when given immediately after the injury. PMID:26729105

  20. GLT1 overexpression reverses established neuropathic pain-related behavior and attenuates chronic dorsal horn neuron activation following cervical spinal cord injury.

    Science.gov (United States)

    Falnikar, Aditi; Hala, Tamara J; Poulsen, David J; Lepore, Angelo C

    2016-03-01

    Development of neuropathic pain occurs in a major portion of traumatic spinal cord injury (SCI) patients, resulting in debilitating and often long-term physical and psychological burdens. Following SCI, chronic dysregulation of extracellular glutamate homeostasis has been shown to play a key role in persistent central hyperexcitability of superficial dorsal horn neurons that mediate pain neurotransmission, leading to various forms of neuropathic pain. Astrocytes express the major CNS glutamate transporter, GLT1, which is responsible for the vast majority of functional glutamate uptake, particularly in the spinal cord. In our unilateral cervical contusion model of mouse SCI that is associated with ipsilateral forepaw heat hypersensitivity (a form of chronic at-level neuropathic pain-related behavior), we previously reported significant and long-lasting reductions in GLT1 expression and functional GLT1-mediated glutamate uptake in cervical spinal cord dorsal horn. To therapeutically address GLT1 dysfunction following cervical contusion SCI, we injected an adeno-associated virus type 8 (AAV8)-Gfa2 vector into the superficial dorsal horn to increase GLT1 expression selectively in astrocytes. Compared to both contusion-only animals and injured mice that received AAV8-eGFP control injection, AAV8-GLT1 delivery increased GLT1 protein expression in astrocytes of the injured cervical spinal cord dorsal horn, resulting in a significant and persistent reversal of already-established heat hypersensitivity. Furthermore, AAV8-GLT1 injection significantly reduced expression of the transcription factor and marker of persistently increased neuronal activation, ΔFosB, in superficial dorsal horn neurons. These results demonstrate that focal restoration of GLT1 expression in the superficial dorsal horn is a promising target for treating chronic neuropathic pain following SCI. © 2015 Wiley Periodicals, Inc.

  1. Does Motor Development in Infancy Predict Spinal Pain in Later Childhood?

    DEFF Research Database (Denmark)

    Kamper, Steven J; Williams, Christopher M; Hestbaek, Lise

    2017-01-01

    Study Design Longitudinal cohort study. Background Spinal pain is responsible for a huge personal and societal burden but the aetiology remains unclear. Deficits in motor control have been implicated with spinal pain in adults, and delayed motor development is associated with a range of health...... a child first sits or walks without support does not influence the likelihood that they will experience spinal pain in later childhood. Level of Evidence Etiology 2b. J Orthop Sports Phys Ther, Epub 15 Sep 2017. doi:10.2519/jospt.2017.7484....

  2. A computed tomographic anatomical study of the upper sacrum. Application for a user guide of pelvic fixation with iliosacral screws in adult spinal deformity.

    Science.gov (United States)

    Dubory, Arnaud; Bouloussa, Houssam; Riouallon, Guillaume; Wolff, Stéphane

    2017-12-01

    Widely used in traumatic pelvic ring fractures, the iliosacral (IS) screw technique for spino-pelvic fixation remains anecdotal in adult spinal deformity. The objective of this study was to assess anatomical variability of the adult upper sacrum and to provide a user guide of spino-pelvic fixation with IS screws in adult spinal deformity. Anatomical variability of the upper sacrum according to age, gender, height and weight was sought on 30 consecutive pelvic CT-scans. Thus, a user guide of spino-pelvic fixation with IS screws was modeled and assessed on ten CT-scans as described below. Two invariable landmarks usable during the surgical procedure were defined: point A (corresponding to the connector binding the IS screw to the spinal rod), equidistant from the first posterior sacral hole and the base of the S1 articular facet and 10 mm-embedded into the sacrum; point B (corresponding to the tip of the IS screw) located at the junction of the anterior third and middle third of the sacral endplate in the sagittal plane and at the middle of the endplate in the coronal plane. Point C corresponded to the intersection between the A-B direction and the external facet of the iliac wing. Three-dimensional reconstructions modeling the IS screw optimal direction according to the A-B-C straight line were assessed. Age had no effect on the anatomy of the upper sacrum. The distance between the base of the S1 superior articular facet and the top of the first posterior sacral hole was correlated with weight (r = 0.6; 95% CI [0.6-0.9]); p guide of spinopelvic fixation with IS screws seems to be reliable and reproducible independently of age, gender and morphologic characteristics but needs clinical assessment. Level IV.

  3. Natural IgM antibodies that bind neoepitopes exposed as a result of spinal cord injury , drive secondary injury by activating complement.

    Science.gov (United States)

    Narang, Aarti; Qiao, Fei; Atkinson, Carl; Zhu, Hong; Yang, Xiaofeng; Kulik, Liudmila; Holers, V Michael; Tomlinson, Stephen

    2017-06-19

    Natural IgM antibodies (Abs) function as innate immune sensors of injury via recognition of neoepitopes expressed on damaged cells, although how this recognition systems function following spinal cord injury (SCI) exposes various neoepitopes and their precise nature remains largely unknown. Here, we investigated the role of two natural IgM monoclonal Abs (mAbs), B4 and C2, that recognize post-ischemic neoepitopes following ischemia and reperfusion in other tissues. Identification of post-SCI expressed neoepitopes was examined using previously characterized monoclonal Abs (B4 and C2 mAbs). The role of post-SCI neoepitopes and their recognition by natural IgM Abs in propagating secondary injury was examined in Ab-deficient Rag1-/- or wild type C57BL/6 mice using Ab reconstitution experiments and neoepitope-targeted therapeutic studies, respectively. Administration of B4 or C2 mAb following murine SCI increased lesion size and worsened functional outcome in otherwise protected Ab-deficient Rag1-/- mice. Injury correlated with colocalized deposition of IgM and C3d in injured spinal cords from both mAb reconstituted Rag1-/- mice and untreated wild-type mice. Depletion of peritoneal B1 B cells, a source of natural Abs, reduced circulating levels of IgM with B4 (annexin-IV) and C2 (subset of phospholipids) reactivity, reduced IgM and complement deposition in the spinal cord, and protected against SCI. We therefore investigated whether the B4 neoepitope represents a therapeutic target for complement inhibition. B4-Crry, a fusion protein consisting of a single-chain Ab derived from B4 mAb, linked to the complement inhibitor Crry, significantly protected against SCI. B4-Crry exhibited a dual function in that it inhibited both the binding of pathogenic IgM and blocked complement activation in the spinal cord. This study identifies important neoepitopes expressed within the spinal cord after injury. These neoepitopes are recognized by clonally specific natural IgM Abs that

  4. Spinal osteomyelitis caused by Proteus mirabilis in a child

    NARCIS (Netherlands)

    deWeerd, W; Kimpen, JLL; Miedema, CJ

    Osteomyelitis due to Proteus mirabilis is rare. Spinal osteomyelitis caused by this organism has only been described in adults. This is the first paediatric case of P. mirabilis vertebral osteomyelitis.

  5. Use of Autologous Mesenchymal Stem Cells Derived from Bone Marrow for the Treatment of Naturally Injured Spinal Cord in Dogs

    Directory of Open Access Journals (Sweden)

    Euler Moraes Penha

    2014-01-01

    Full Text Available The use of stem cells in injury repair has been extensively investigated. Here, we examined the therapeutic effects of autologous bone marrow mesenchymal stem cells (MSC transplantation in four dogs with natural traumatic spinal cord injuries. MSC were cultured in vitro, and proliferation rate and cell viability were evaluated. Cell suspensions were prepared and surgically administered into the spinal cord. The animals were clinically evaluated and examined by nuclear magnetic resonance. Ten days after the surgical procedure and MSC transplantation, we observed a progressive recovery of the panniculus reflex and diminished superficial and deep pain response, although there were still low proprioceptive reflexes in addition to a hyperreflex in the ataxic hind limb movement responses. Each dog demonstrated an improvement in these gains over time. Conscious reflex recovery occurred simultaneously with moderate improvement in intestine and urinary bladder functions in two of the four dogs. By the 18th month of clinical monitoring, we observed a remarkable clinical amelioration accompanied by improved movement, in three of the four dogs. However, no clinical gain was associated with alterations in magnetic resonance imaging. Our results indicate that MSC are potential candidates for the stem cell therapy following spinal cord injury.

  6. Astrocyte sigma-1 receptors modulate connexin 43 expression leading to the induction of below-level mechanical allodynia in spinal cord injured mice.

    Science.gov (United States)

    Choi, Sheu-Ran; Roh, Dae-Hyun; Yoon, Seo-Yeon; Kwon, Soon-Gu; Choi, Hoon-Seong; Han, Ho-Jae; Beitz, Alvin J; Lee, Jang-Hern

    2016-12-01

    We have previously shown using a spinal cord injury (SCI) model that gap junctions contribute to the early spread of astrocyte activation in the lumbar spinal cord and that this astrocyte communication plays critical role in the induction of central neuropathic pain. Sigma-1 receptors (Sig-1Rs) have been implicated in spinal astrocyte activation and the development of peripheral neuropathic pain, yet their contribution to central neuropathic pain remains unknown. Thus, we investigated whether SCI upregulates spinal Sig-1Rs, which in turn increase the expression of the astrocytic gap junction protein, connexin 43 (Cx43) leading to the induction of central neuropathic pain. A thoracic spinal cord hemisection significantly increased both astrocyte activation and Cx43 expression in lumbar dorsal horn. Sig-1Rs were also increased in lumbar dorsal horn astrocytes, but not neurons or microglia. Intrathecal injection of an astrocyte metabolic inhibitor (fluorocitrate); a gap junction/hemichannel blocker (carbenoxolone); or a Cx43 mimetic peptide ( 43 Gap26) significantly reduced SCI-induced bilateral below-level mechanical allodynia. Blockade of Sig-1Rs with BD1047 during the induction phase of pain significantly suppressed the SCI-induced development of mechanical allodynia, astrocyte activation, increased expression of Cx43 in both total and membrane levels, and increased association of Cx43 with Sig-1R. However, SCI did not change the expression of oligodendrocyte (Cx32) or neuronal (Cx36) gap junction proteins. These findings demonstrate that SCI activates astrocyte Sig-1Rs leading to increases in the expression of the gap junction protein, Cx43 and astrocyte activation in the lumbar dorsal horn, and ultimately contribute to the induction of bilateral below-level mechanical allodynia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Bioinformatic Analysis of Potential Biomarkers for Spinal Cord Injured Patients With Intractable Neuropathic Pain.

    Science.gov (United States)

    Wang, Yimin; Ye, Fang; Huang, Chanyan; Xue, Faling; Li, Yingyuan; Gao, Shaowei; Qiu, Zeting; Li, Si; Chen, Qinchang; Zhou, Huaqiang; Song, Yiyan; Huang, Wenqi; Tan, Wulin; Wang, Zhongxing

    2018-03-15

    Neuropathic pain is one of the common complications after spinal cord injury (SCI), affecting patients' life quality. The molecular mechanism for neuropathic pain after SCI is still unclear. We aimed to discover potential genes and MicroRNAs(miRNAs) related to neuropathic pain by bioinformatics method. Microarray data of GSE69901 were obtained from Gene Expression Omnibus (GEO) database. Peripheral blood samples from patients with or without neuropathic pain after spinal cord injury (SCI) were collected. 12 samples with neuropathic pain and 13 samples without pain as control were included in the downloaded microarray. Differentially expressed genes (DEGs) between neuropathic pain group and control group were detected using GEO2R online tool. Functional enrichment analysis of DEGs was performed using DAVID database. Protein-protein interaction (PPI) network was constructed from STRING database. MiRNAs targeting these DEGs were obtained from miRNet database. A merged miRNA-DEG network was constructed and analyzed with Cytoscape software. Total 1134 DEGs were identified between patients with or without neuropathic pain(case and control) and 454 biological processes were enriched. We identified 4 targeted miRNAs, including mir-204-5p, mir-519d-3p, mir-20b-5p, mir-6838-5p, which may be the potential biomarker for SCI patients. Protein modification and regulation biological process of central nervous system may be a risk factor of in SCI patients. Certain genes and miRNAs may be potential biomarkers for the prediction of and potential targets for prevention and treatment of neuropathic pain after SCI.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http

  8. Retrospective analysis of spinal trauma in patients with ankylosing spondylitis: a descriptive study in Indian population.

    Science.gov (United States)

    Mahajan, R; Chhabra, H S; Srivastava, A; Venkatesh, R; Kanagaraju, V; Kaul, R; Tandon, V; Nanda, A; Sangondimath, G; Patel, N

    2015-05-01

    This study aims to understand the demographics, mode of trauma, hospital stay, complications, neurological improvement, mortality and expenditure incurred by Indian patients with spinal trauma and ankylosing spondylitis (AS). Retrospective analysis of the patient data admitted to a tertiary referral hospital from 2008 to 2013 with the diagnosis of AS and spinal trauma was carried out. The variables studied were demographics, mode of trauma, neurological status, neurological improvement, involved vertebral level, duration of hospital stay, comorbid factors, expenditure and complications during the stay. Forty-six patients with diagnosis of AS with spine trauma were admitted over the last 5 years with a total of 52 fractures. All were male patients; 58.6% had injury because of trivial trauma and 78.2% patients presented with neurological injury. C5 C6, C6 C7, C7 D1 and D12 were the most common injured level. Fractures through intervertebral disc were most common in cervical spine. Of the patients, 52.7% had shown neurological improvement of at least grade 1(AIS). Mean expenditure of patient admitted with spinal cord injury (SCI) with AS is 7957 USD (United States dollar), which is around five times the per capita income in India (as per year 2013). Males with AS are much more prone to spinal fractures than females and its incidence may be higher than previously reported. Domestic falls are the most common mechanism of spinal trauma in this population. High velocity injuries are associated with complete SCI. The study reinforces the need for development of subsidized spinal care services for SCI management.

  9. Gene Expression Profiling in the Injured Spinal Cord of Trachemys scripta elegans: An Amniote with Self-Repair Capabilities

    Science.gov (United States)

    Valentin-Kahan, Adrián; García-Tejedor, Gabriela B.; Robello, Carlos; Trujillo-Cenóz, Omar; Russo, Raúl E.; Alvarez-Valin, Fernando

    2017-01-01

    Slider turtles are the only known amniotes with self-repair mechanisms of the spinal cord that lead to substantial functional recovery. Their strategic phylogenetic position makes them a relevant model to investigate the peculiar genetic programs that allow anatomical reconnection in some vertebrate groups but are absent in others. Here, we analyze the gene expression profile of the response to spinal cord injury (SCI) in the turtle Trachemys scripta elegans. We found that this response comprises more than 1000 genes affecting diverse functions: reaction to ischemic insult, extracellular matrix re-organization, cell proliferation and death, immune response, and inflammation. Genes related to synapses and cholesterol biosynthesis are down-regulated. The analysis of the evolutionary distribution of these genes shows that almost all are present in most vertebrates. Additionally, we failed to find genes that were exclusive of regenerating taxa. The comparison of expression patterns among species shows that the response to SCI in the turtle is more similar to that of mice and non-regenerative Xenopus than to Xenopus during its regenerative stage. This observation, along with the lack of conserved “regeneration genes” and the current accepted phylogenetic placement of turtles (sister group of crocodilians and birds), indicates that the ability of spinal cord self-repair of turtles does not represent the retention of an ancestral vertebrate character. Instead, our results suggest that turtles developed this capability from a non-regenerative ancestor (i.e., a lineage specific innovation) that was achieved by re-organizing gene expression patterns on an essentially non-regenerative genetic background. Among the genes activated by SCI exclusively in turtles, those related to anoxia tolerance, extracellular matrix remodeling, and axonal regrowth are good candidates to underlie functional recovery. PMID:28223917

  10. Gene Expression Profiling in the Injured Spinal Cord of Trachemys scripta elegans: An Amniote with Self-Repair Capabilities.

    Science.gov (United States)

    Valentin-Kahan, Adrián; García-Tejedor, Gabriela B; Robello, Carlos; Trujillo-Cenóz, Omar; Russo, Raúl E; Alvarez-Valin, Fernando

    2017-01-01

    Slider turtles are the only known amniotes with self-repair mechanisms of the spinal cord that lead to substantial functional recovery. Their strategic phylogenetic position makes them a relevant model to investigate the peculiar genetic programs that allow anatomical reconnection in some vertebrate groups but are absent in others. Here, we analyze the gene expression profile of the response to spinal cord injury (SCI) in the turtle Trachemys scripta elegans . We found that this response comprises more than 1000 genes affecting diverse functions: reaction to ischemic insult, extracellular matrix re-organization, cell proliferation and death, immune response, and inflammation. Genes related to synapses and cholesterol biosynthesis are down-regulated. The analysis of the evolutionary distribution of these genes shows that almost all are present in most vertebrates. Additionally, we failed to find genes that were exclusive of regenerating taxa. The comparison of expression patterns among species shows that the response to SCI in the turtle is more similar to that of mice and non-regenerative Xenopus than to Xenopus during its regenerative stage. This observation, along with the lack of conserved "regeneration genes" and the current accepted phylogenetic placement of turtles (sister group of crocodilians and birds), indicates that the ability of spinal cord self-repair of turtles does not represent the retention of an ancestral vertebrate character. Instead, our results suggest that turtles developed this capability from a non-regenerative ancestor (i.e., a lineage specific innovation) that was achieved by re-organizing gene expression patterns on an essentially non-regenerative genetic background. Among the genes activated by SCI exclusively in turtles, those related to anoxia tolerance, extracellular matrix remodeling, and axonal regrowth are good candidates to underlie functional recovery.

  11. Development and regulation of response properties in spinal cord motoneurons

    DEFF Research Database (Denmark)

    Perrier, J F; Hounsgaard, J

    2000-01-01

    The intrinsic response properties of spinal motoneurons determine how converging premotor neuronal input is translated into the final motor command transmitted to muscles. From the patchy data available it seems that these properties and their underlying currents are highly conserved in terrestrial...... vertebrates in terms of both phylogeny and ontogeny. Spinal motoneurons in adults are remarkably similar in many respects ranging from the resting membrane potential to pacemaker properties. Apart from the axolotls, spinal motoneurons from all species investigated have latent intrinsic response properties...... mediated by L-type Ca2+ channels. This mature phenotype is reached gradually during development through phases in which A-type potassium channels and T-type calcium channels are transiently expressed. The intrinsic response properties of mature spinal motoneurons are subject to short-term adjustments via...

  12. Spinal cord hemisection facilitates aromatic L-amino acid decarboxylase cells to produce serotonin in the subchronic but not the chronic phase

    DEFF Research Database (Denmark)

    Azam, Bushra; Wienecke, Jacob; Jensen, Dennis Bo

    2015-01-01

    12) were used with a postoperation interval at 5 days or 60 days. Using immunohistochemistry, first, we observed a significant reduction in the density of 5-HT-immunoreactive fibers in the spinal cord below the lesion on the injured side for both groups. Second, we found that the AADC cells were...... similarly expressed on both injured and uninjured sides in both groups. Third, increased production of 5-HT in AADC cells following 5-HTP was seen in 5-day but not in 60-day postinjury group. These results suggest that plastic changes of the 5-HT system might happen primarily in the subchronic phase...... and for longer period its function could be compensated by plastic changes of other intrinsic and/or supraspinal modulation systems....

  13. Stem cell-derived neurotrophic support for the neuromuscular junction in spinal muscular atrophy.

    Science.gov (United States)

    Wyatt, Tanya J; Keirstead, Hans S

    2010-11-01

    Spinal muscular atrophy (SMA) is a neurodegenerative disease characterized by specific degeneration of α-motor neurons in the spinal cord. The use of cell transplantation to restore lost function through cell replacement or prevent further degeneration of motor neurons and synapses through neurotrophic support heralds tremendous hope in the SMA field. Much research has been carried out in the last decade on the use of embryonic stem cells in cell replacement strategies for various neurodegenerative diseases. Cell replacement is contingent on the ability of transplanted cells to integrate and form new functional connections with host cells. In the case of SMA, cell replacement is a tall order in that axons of transplanted cells would be required to grow over long distances from the spinal cord through growth-averse terrain to synapse with muscles in the periphery. The efficacy of neurotrophic support is contingent on the ability of transplanted cells to secrete neurotrophins appropriate for degenerating motor neurons in the spinal cord or development/stability of the neuromuscular junction (NMJ) in the periphery. The reader will gain an understanding of the potential of neurotrophins to promote development of the NMJ in a diseased or injured environment. Neurotrophins play a major role in NMJ development and thus may be a key factor in the pathogenesis of NMJs in SMA. Further research into the signaling mechanisms involved in NMJ maturation may identify additional mechanisms by which transplanted cells may be of therapeutic benefit.

  14. Regenerating the injured kidney with human umbilical cord mesenchymal stem cell-derived exosomes

    OpenAIRE

    Dorronsoro, Akaitz; Robbins, Paul D

    2013-01-01

    Transplantation of adult stem cells is being used to facilitate repair or regeneration of damaged or diseased tissues. However, in many cases, the therapeutic effects of the injected stem cells are mediated by factors secreted by stem cells and not by differentiation of the transplanted stem cells. Recent reports have identified a class of microvesicles, termed exosomes, released by stem cells that are able to confer therapeutic effects on injured renal and cardiac tissue. In this issue of St...

  15. Iohexol in investigations of the spinal canal. Multicentre study

    International Nuclear Information System (INIS)

    Bories, J.

    1988-01-01

    The author presents the results of a multicentric study of Iohexol in investigation of the spinal canal undertaken at the request of Winthrop Laboratories in 32 Radiological departments. The study involved 329 adults of both sexes. It confirmed the excellent quality of results obtained with this preparation in the literature and its excellent tolerance. On the basis of these results Iohexol may be considered to be definitely one of the best currently available preparations for investigation of the spinal canal [fr

  16. Effects of core instability strength training on trunk muscle strength, spinal mobility, dynamic balance and functional mobility in older adults.

    Science.gov (United States)

    Granacher, Urs; Lacroix, Andre; Muehlbauer, Thomas; Roettger, Katrin; Gollhofer, Albert

    2013-01-01

    Age-related postural misalignment, balance deficits and strength/power losses are associated with impaired functional mobility and an increased risk of falling in seniors. Core instability strength training (CIT) involves exercises that are challenging for both trunk muscles and postural control and may thus have the potential to induce benefits in trunk muscle strength, spinal mobility and balance performance. The objective was to investigate the effects of CIT on measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility in seniors. Thirty-two older adults were randomly assigned to an intervention group (INT; n = 16, aged 70.8 ± 4.1 years) that conducted a 9-week progressive CIT or to a control group (n = 16, aged 70.2 ± 4.5 years). Maximal isometric strength of the trunk flexors/extensors/lateral flexors (right, left)/rotators (right, left) as well as of spinal mobility in the sagittal and the coronal plane was measured before and after the intervention program. Dynamic balance (i.e. walking 10 m on an optoelectric walkway, the Functional Reach test) and functional mobility (Timed Up and Go test) were additionally tested. Program compliance was excellent with participants of the INT group completing 92% of the training sessions. Significant group × test interactions were found for the maximal isometric strength of the trunk flexors (34%, p training-related improvements were found for spinal mobility in the sagittal (11%, p velocity (9%, p velocity (31%, p training regimen could be used as an adjunct or even alternative to traditional balance and/or resistance training. Copyright © 2012 S. Karger AG, Basel.

  17. Vestibular lesion-induced developmental plasticity in spinal locomotor networks during Xenopus laevis metamorphosis.

    Science.gov (United States)

    Beyeler, Anna; Rao, Guillaume; Ladepeche, Laurent; Jacques, André; Simmers, John; Le Ray, Didier

    2013-01-01

    During frog metamorphosis, the vestibular sensory system remains unchanged, while spinal motor networks undergo a massive restructuring associated with the transition from the larval to adult biomechanical system. We investigated in Xenopus laevis the impact of a pre- (tadpole stage) or post-metamorphosis (juvenile stage) unilateral labyrinthectomy (UL) on young adult swimming performance and underlying spinal locomotor circuitry. The acute disruptive effects on locomotion were similar in both tadpoles and juvenile frogs. However, animals that had metamorphosed with a preceding UL expressed restored swimming behavior at the juvenile stage, whereas animals lesioned after metamorphosis never recovered. Whilst kinematic and electrophysiological analyses of the propulsive system showed no significant differences in either juvenile group, a 3D biomechanical simulation suggested that an asymmetry in the dynamic control of posture during swimming could account for the behavioral restoration observed in animals that had been labyrinthectomized before metamorphosis. This hypothesis was subsequently supported by in vivo electromyography during free swimming and in vitro recordings from isolated brainstem/spinal cord preparations. Specifically, animals lesioned prior to metamorphosis at the larval stage exhibited an asymmetrical propulsion/posture coupling as a post-metamorphic young adult. This developmental alteration was accompanied by an ipsilesional decrease in propriospinal coordination that is normally established in strict left-right symmetry during metamorphosis in order to synchronize dorsal trunk muscle contractions with bilateral hindlimb extensions in the swimming adult. Our data thus suggest that a disequilibrium in descending vestibulospinal information during Xenopus metamorphosis leads to an altered assembly of adult spinal locomotor circuitry. This in turn enables an adaptive compensation for the dynamic postural asymmetry induced by the vestibular imbalance

  18. Regenerative Potential of Ependymal Cells for Spinal Cord Injuries Over Time

    Directory of Open Access Journals (Sweden)

    Xiaofei Li

    2016-11-01

    Full Text Available Stem cells have a high therapeutic potential for the treatment of spinal cord injury (SCI. We have shown previously that endogenous stem cell potential is confined to ependymal cells in the adult spinal cord which could be targeted for non-invasive SCI therapy. However, ependymal cells are an understudied cell population. Taking advantage of transgenic lines, we characterize the appearance and potential of ependymal cells during development. We show that spinal cord stem cell potential in vitro is contained within these cells by birth. Moreover, juvenile cultures generate more neurospheres and more oligodendrocytes than adult ones. Interestingly, juvenile ependymal cells in vivo contribute to glial scar formation after severe but not mild SCI, due to a more effective sealing of the lesion by other glial cells. This study highlights the importance of the age-dependent potential of stem cells and post-SCI environment in order to utilize ependymal cell's regenerative potential.

  19. Optimizing Filter-Probe Diffusion Weighting in the Rat Spinal Cord for Human Translation

    Directory of Open Access Journals (Sweden)

    Matthew D. Budde

    2017-12-01

    . Overall, the results and optimizations describe a protocol that mitigates several difficulties with DTI of the spinal cord. Detection of acute axonal damage in the injured or diseased spinal cord will benefit the optimized filter-probe diffusion MRI protocol outlined here.

  20. Transplanted Peripheral Blood Stem Cells Mobilized by Granulocyte Colony-Stimulating Factor Promoted Hindlimb Functional Recovery After Spinal Cord Injury in Mice.

    Science.gov (United States)

    Takahashi, Hiroshi; Koda, Masao; Hashimoto, Masayuki; Furuya, Takeo; Sakuma, Tsuyoshi; Kato, Kei; Okawa, Akihiko; Inada, Taigo; Kamiya, Koshiro; Ota, Mitsutoshi; Maki, Satoshi; Takahashi, Kazuhisa; Yamazaki, Masashi; Mannoji, Chikato

    2016-01-01

    Granulocyte colony-stimulating factor (G-CSF) mobilizes peripheral blood stem cells (PBSCs) derived from bone marrow. We hypothesized that intraspinal transplantation of PBSCs mobilized by G-CSF could promote functional recovery after spinal cord injury. Spinal cords of adult nonobese diabetes/severe immunodeficiency mice were injured using an Infinite Horizon impactor (60 kdyn). One week after the injury, 3.0 µl of G-CSF-mobilized human mononuclear cells (MNCs; 0.5 × 10(5)/µl), G-CSF-mobilized human CD34-positive PBSCs (CD34; 0.5 × 10(5)/µl), or normal saline was injected to the lesion epicenter. We performed immunohistochemistry. Locomotor recovery was assessed by Basso Mouse Scale. The number of transplanted human cells decreased according to the time course. The CD31-positive area was significantly larger in the MNC and CD34 groups compared with the vehicle group. The number of serotonin-positive fibers was significantly larger in the MNC and CD34 groups than in the vehicle group. Immunohistochemistry revealed that the number of apoptotic oligodendrocytes was significantly smaller in cell-transplanted groups, and the areas of demyelination in the MNC- and CD34-transplanted mice were smaller than that in the vehicle group, indicating that cell transplantation suppressed oligodendrocyte apoptosis and demyelination. Both the MNC and CD34 groups showed significantly better hindlimb functional recovery compared with the vehicle group. There was no significant difference between the two types of transplanted cells. Intraspinal transplantation of G-CSF-mobilized MNCs or CD34-positive cells promoted angiogenesis, serotonergic fiber regeneration/sparing, and preservation of myelin, resulting in improved hindlimb function after spinal cord injury in comparison with vehicle-treated control mice. Transplantation of G-CSF-mobilized PBSCs has advantages for treatment of spinal cord injury in the ethical and immunological viewpoints, although further exploration

  1. Clinical assessment, design and performance testing of mobile shower commodes for adults with spinal cord injury: an exploratory review.

    Science.gov (United States)

    Friesen, Emma; Theodoros, Deborah; Russell, Trevor

    2013-07-01

    The purpose of this article is to explore evidence concerning clinical assessment, design and performance testing of mobile shower commodes used by adults with spinal cord injury (SCI). Searches of electronic databases, conference proceedings and key journals were undertaken with no restriction on language or study design. Keywords included spinal cord injury, lesion, sanichair, sanitary chair, shower chair, bowel chair and commode. A total of 20 publications were included in this review. Common approaches to clinical assessments were questionnaires and observational analysis to assess bowel care routines, function and skin integrity. Design features addressed access for bowel care, postural support, transfers, stability, use in wet environments and skin integrity. Objective performance measures addressed requirements for static stability, backward-sloping seat angles, arm supports and seat materials. Evidence reviewed was of low methodological quality and lacking in validated instruments to guide clinical practice. Further high-quality research is needed to identify bathing, showering and personal hygiene tasks affecting mobile shower commodes use and to develop validated clinical assessment tools. Performance testing to published standards is also needed.

  2. Tail nerve electrical stimulation induces body weight-supported stepping in rats with spinal cord injury.

    Science.gov (United States)

    Zhang, Shu-Xin; Huang, Fengfa; Gates, Mary; White, Jason; Holmberg, Eric G

    2010-03-30

    Walking or stepping has been considered the result from the activation of the central pattern generator (CPG). In most patients with spinal cord injury (SCI) the CPG is undamaged. To date, there are no noninvasive approaches for activating the CPG. Recently we developed a noninvasive technique, tail nerve electrical stimulation (TANES), which can induce positive hind limb movement of SCI rats. The purpose of this study is to introduce the novel technique and examine the effect of TANES on CPG activation. A 25 mm contusion injury was produced at spinal cord T10 of female, adult Long-Evans rats by using the NYU impactor device. Rats received TANES ( approximately 40 mA at 4 kHz) 7 weeks after injury. During TANES all injured rats demonstrated active body weight-supported stepping of hind limbs with left-right alternation and occasional front-hind coordination, resulting in significant, temporary increase in BBB scores (p<0.01). However, there is no response to TANES from rats with L2 transection, consistent with other reports that the CPG may be located at L1-2. S1 transection negatively implies the key role of TANES in CPG activation. The TANES not only renders paralyzed rats with a technique-induced ability to walk via activating CPG, but also is likely to be used for locomotor training. It has more beneficial effects for physical training over other training paradigms including treadmill training and invasive functional electrical stimulation. Therefore the TANES may have considerable potential for achieving improvement of functional recovery in animal models and a similar method may be suggested for human study. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  3. Magnetic resonance imaging of spinal cord injury

    International Nuclear Information System (INIS)

    Shakudo, Miyuki; Inoue, Yuichi; Fukuda, Teruo

    1988-01-01

    Forty-three MR examinations of 30 patients with spinal cord injuries were retrospectively reviewed to evaluate MR findings of the injured cord and to correlate them with the time interval from the day of spinal cord injury. There were 18 cysts, 8 ''myelomalacias'', 2 cord atrophies, one intramedullary hematoma and two transections. In one patient, ''myelomalacia'' became a cyst on the follow-up study. Large cysts of more than 6 vertebral segments were found in 7 patients, all of whom had had trauma more than 5 years prior to examination. Small cysts of less than half a vertebral height were seen in 5 patients, all of whom were studied 3 to 6 months after the injury. Intermediate cysts were seen in 7 patients who had sustained trauma more than a year before. In a majority (13/14 scans) of ''myelomalacia'', the time interval from injury until examination was only 2 weeks to 6 months. Of the 14 patients who showed post-traumatic progressive myelopathy, seven had large cysts. It is known that intramedullary hematoma becomes a cyst, and that post-traumatic myelomalacia probably results in a cyst in animal studies. Our clinical study seems to support a strong causal relation between myelomalacia and post-traumatic cysts. Since post-traumatic progressive myelopathy with a cyst is surgically treatable, follow-up MR imaging is preferable in cases with myelomalacia. (author)

  4. Irregular Firing and High-Conductance States in Spinal Motoneurons during Scratching and Swimming

    DEFF Research Database (Denmark)

    Guzulaitis, Robertas; Hounsgaard, Jorn; Alaburda, Aidas

    2016-01-01

    UNLABELLED: Intense synaptic transmission during scratch network activity increases conductance and induces irregular firing in spinal motoneurons. It is not known whether this high-conductance state is a select feature for scratching or a property that goes with spinal motor network activity...... in general. Here we compare conductance and firing patterns in spinal motoneurons during network activity for scratching and swimming in an ex vivo carapace-spinal cord preparation from adult turtles (Trachemys scripta elegans). The pattern and relative engagement of motoneurons are distinctly different...... in scratching and swimming. Nevertheless, we found increased synaptic fluctuations in membrane potential, irregular firing, and increased conductance in spinal motoneurons during scratch and swim network activity. Our finding indicates that intense synaptic activation of motoneurons is a general feature...

  5. Sialic acid accelerates the electrophoretic velocity of injured dorsal root ganglion neurons

    Directory of Open Access Journals (Sweden)

    Chen-xu Li

    2015-01-01

    Full Text Available Peripheral nerve injury has been shown to result in ectopic spontaneous discharges on soma and injured sites of sensory neurons, thereby inducing neuropathic pain. With the increase of membrane proteins on soma and injured site neurons, the negatively charged sialic acids bind to the external domains of membrane proteins, resulting in an increase of this charge. We therefore speculate that the electrophoretic velocity of injured neurons may be faster than non-injured neurons. The present study established rat models of neuropathic pain via chronic constriction injury. Results of the cell electrophoresis test revealed that the electrophoretic velocity of injured neuronal cells was faster than that of non-injured (control cells. We then treated cells with divalent cations of Ca 2+ and organic compounds with positive charges, polylysine to counteract the negatively charged sialic acids, or neuraminidase to specifically remove sialic acids from the membrane surface of injured neurons. All three treatments significantly reduced the electrophoretic velocity of injured neuronal cells. These findings suggest that enhanced sialic acids on injured neurons may accelerate the electrophoretic velocity of injured neurons.

  6. Methylprednisolone for acute spinal cord injury: an increasingly philosophical debate.

    Science.gov (United States)

    Bowers, Christian A; Kundu, Bornali; Hawryluk, Gregory W J

    2016-06-01

    Following publication of NASCIS II, methylprednisolone sodium succinate (MPSS) was hailed as a breakthrough for patients with acute spinal cord injury (SCI). MPSS use for SCI has since become very controversial and it is our opinion that additional evidence is unlikely to break the stalemate amongst clinicians. Patient opinion has the potential to break this stalemate and we review our recent findings which reported that spinal cord injured patients informed of the risks and benefits of MPSS reported a preference for MPSS administration. We discuss the implications of the current MPSS debate on translational research and seek to address some misconceptions which have evolved. As science has failed to resolve the MPSS debate we argue that the debate is an increasingly philosophical one. We question whether SCI might be viewed as a serious condition like cancer where serious side effects of therapeutics are tolerated even when benefits may be small. We also draw attention to the similarity between the side effects of MPSS and isotretinoin which is prescribed for the cosmetic disorder acne vulgaris. Ultimately we question how patient autonomy should be weighed in the context of current SCI guidelines and MPSS's status as a historical standard of care.

  7. Survival and cause of death after traumatic spinal cord injury. A long-term epidemiological survey from Denmark

    DEFF Research Database (Denmark)

    Hartkopp, A; Brønnum-Hansen, Henrik; Seidenschnur, A M

    1997-01-01

    Life expectancy among individuals with spinal cord injuries (SCI) has remained lower than in the normal population, even with optimal medical management. But significant improvement has been achieved, as will be illustrated in this retrospective study of an unselected group of traumatic survivors...... treatment and were rehabilitated at the centre for Spinal Cord Injured in Hornbaek, Denmark. At the end of the follow-up, 31st December 1992, 236 (197 men and 39 women) had died. The commonest causes of death were lung diseases, particularly pneumonia; suicide; and ischaemic heart disease. Among...... and pneumonia. A significant decrease in the overall mortality was observed from the first (1953-1973) to the second half of the observation period (1972-1992). Similarly the survival curves for both men and women demonstrate that the gap in survival probability between the normal population and the SCI has...

  8. Pattern of sports- and recreation-related spinal cord injuries in Beijing.

    Science.gov (United States)

    Ye, C; Sun, T; Li, J; Zhang, F

    2009-12-01

    Retrospective study. To determine the characteristics of sports- and recreation-related (SR-related) spinal cord injuries (SCIs) in Beijing. Beijing, China. A review of the complete medical records of 57 consecutive SR-related SCI patients referred to four general hospitals and two rehabilitation institutions was carried out. Patients were injured between 1993 and 2006. The variables studied included demography, sports and recreation characteristics, diagnoses and outcome. There were 44 males and 13 females with a ratio of 3.3:1. The mean age was 24.49+/-11.92 years. In 37 patients (64.9%), water sports was the single most commont cause. Of them, injury because of diving was seen in 34, which constituted 59.6% of the total. Other types of sports and recreation accounted for 35.1%. Level of cord lesion was cervical in 89.5% and thoracic in 10.5% of the injured. The lesion of C4 alone constituted 45.6% of the total. The ratio of complete to incomplete lesion was 1.2:1. In all, two patients died, and one with an injury at the C4 level recovered completely. Of the other 54 survivals, 48 (89%) remained tetraplegic and six remained paraplegic (11%). The main underlying cause was the lack of safety awareness, safety regulations and their implementation. SR-related SCI was most commonly seen among young male adults, predominantly as a result of diving accidents. There was a significant increase in sports injuries, other than those caused by diving, in later years. Successful prevention programs of other countries are being adopted in Beijing in recent years, hence an improvement in safety is expected in the years to come. This work was sponsored by Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality(2007) and Funding Project for Science and Technology Development of Beijing Municipality(km200710029003).

  9. Bone Marrow Mesenchymal Stem-Cell Transplantation Promotes Functional Improvement Associated with CNTF-STAT3 Activation after Hemi-Sectioned Spinal Cord Injury in Tree Shrews

    Directory of Open Access Journals (Sweden)

    Liu-Lin Xiong

    2017-06-01

    Full Text Available Hemi-sectioned spinal cord injury (hSCI can lead to spastic paralysis on the injured side, as well as flaccid paralysis on the contralateral side, which can negatively affect a patient’s daily life. Stem-cell therapy may offer an effective treatment option for individuals with hSCI. To examine the role of bone marrow mesenchymal stem cells (BMSCs transplantation on hSCI and explore related mechanisms in the tree shrews, here, we created a model of hSCI by inducing injury at the tenth thoracic vertebra (T10. Hoechst 33342-labeled BMSCs derived from adult tree shrews were isolated, cultured, and implanted into the spinal cord around the injury site at 9 days after injury. The isolated BMSCs were able to survive, proliferate and release a variety of neurotrophic factors (NTFs both in vitro and in vivo. At 28 days after injury, compared with the sham group, the hSCI group displayed scar formation and dramatic elevations in the mean interleukin 1 beta (IL-1β density and cell apoptosis level, whereas the expression of signal transducer and activator of transcription 3 (STAT3 and ciliary neurotrophic factor (CNTF mRNA was reduced. Following BMSC transplantation, motoneurons extent of shrinkage were reduced and the animals’ Basso, Beattie, and Bresnahan (BBB locomotion scale scores were significantly higher at 21 and 28 days after injury when compared with the injured group. Moreover, the hSCI-induced elevations in scar formation, IL-1β, and cell apoptosis were reduced by BMSC transplantation to levels that were close to those of the sham group. Corresponding elevations in the expression of STAT3 and CNTF mRNA were observed in the hSCI + BMSCs group, and the levels were not significantly different from those observed in the sham group. Together, our results support that grafted BMSCs can significantly improve locomotor function in tree shrews subjected to hSCI and that this improvement is associated with the upregulation of CNTF and STAT3

  10. Repair of spinal cord injury by implantation of bFGF-incorporated HEMA-MOETACL hydrogel in rats

    Science.gov (United States)

    Chen, Bo; He, Jianyu; Yang, Hao; Zhang, Qian; Zhang, Lingling; Zhang, Xian; Xie, En; Liu, Cuicui; Zhang, Rui; Wang, Yi; Huang, Linhong; Hao, Dingjun

    2015-03-01

    There is no effective strategy for the treatment of spinal cord injury (SCI). An appropriate combination of hydrogel materials and neurotrophic factor therapy is currently thought to be a promising approach. In this study, we performed experiments to evaluate the synergic effect of implanting hydroxyl ethyl methacrylate [2-(methacryloyloxy)ethyl] trimethylammonium chloride (HEMA-MOETACL) hydrogel incorporated with basic fibroblast growth factor (bFGF) into the site of surgically induced SCI. Prior to implantation, the combined hydrogel was surrounded by an acellular vascular matrix. Sprague-Dawley rats underwent complete spinal cord transection at the T-9 level, followed by implantation of bFGF/HEMA-MOETACL 5 days after transection surgery. Our results showed that the bFGF/HEMA-MOETACL transplant provided a scaffold for the ingrowth of regenerating tissue eight weeks after implantation. Furthermore, this newly designed implant promoted both nerve tissue regeneration and functional recovery following SCI. These results indicate that HEMA-MOETACL hydrogel is a promising scaffold for intrathecal, localized and sustained delivery of bFGF to the injured spinal cord and provide evidence for the possibility that this approach may have clinical applications in the treatment of SCI.

  11. Protective effect of bone marrow mesenchymal stem cells combined with erythropoietin therapy on spinal cord injury rat model

    Directory of Open Access Journals (Sweden)

    Peng Xie

    2016-01-01

    Full Text Available Objective: To study the protective effect of bone marrow mesenchymal stem cells combined with erythropoietin therapy on spinal cord injury rat model. Methods: SD rats were selected as experimental animals, spinal cord injury rat model was built by striking spinal cord with Hatteras Instruments PCI3000, and model rats were divided into control group, bone marrow mesenchymal stem cells (BMSCs group, erythropoietin (EPO group and BMSCs combined with EPO group according to different treatment methods. Then number of apoptotic cells in spinal cord tissue, contents of neural markers and neurotrophic factors as well as expression of apoptosis and injury molecules was detected. Results: Number of apoptotic cells as well as mRNA contents of Caspase-3 and c-fos of BMSCs group, EPO group and BMSCs+EPO group was lower than those of control group, and number of apoptotic cells as well as mRNA contents of Caspase-3 and c-fos of BMSCs+EPO group were lower than those of BMSCs group and EPO group; mRNA contents of NF-200 and MBP as well as protein contents of NGF and BDNF in spinal cord tissue of BMSCs group, EPO group and BMSCs+EPO group were higher than those of control group, and mRNA contents of NF-200 and MBP as well as protein contents of NGF and BDNF in spinal cord tissue of BMSCs+EPO group were higher than those of BMSCs group and EPO group. Conclusions: Bone marrow mesenchymal stem cells combined with erythropoietin therapy can inhibit cell apoptosis in the injured spinal cord tissue, increase neurotrophic factor levels and inhibit apoptosis and injury molecule expression; it has protective effect on spinal cord injury.

  12. Prevalence and psychometric screening for the detection of major depressive disorder and post-traumatic stress disorder in adults injured in a motor vehicle crash who are engaged in compensation.

    Science.gov (United States)

    Guest, Rebecca; Tran, Yvonne; Gopinath, Bamini; Cameron, Ian D; Craig, Ashley

    2018-02-21

    Physical injury and psychological disorder following a motor vehicle crash (MVC) is a public health concern. The objective of this research was to determine rates of major depressive disorder (MDD) and post-traumatic stress disorder (PTSD) in adults with MVC-related injury engaged in compensation, and to determine the capacity (e.g. sensitivity and specificity) of two psychometric scales for estimating the presence of MDD and PTSD. Participants included 109 adults with MVC-related injury engaged in compensation during 2015 to 2017, in Sydney, Australia. The mean time from MVC to baseline assessment was 11 weeks. Comprehensive assessment was conducted at baseline, and the Depression Anxiety Stress Scales (DASS-21) and the Impact of Event Scale-Revised (IES-R) were administered to determine probable MDD and PTSD. An online psychiatric interview, based on Diagnostic and Statistical Manual for Mental Disorders (DSM-5), was used to diagnose actual MDD and PTSD, acknowledged as gold standard diagnostic criteria. One-way multivariate analyses of variance established criterion validity of the DASS-21 and IES-R, and sensitivity and specificity analyses were conducted to determine the most sensitive cut-off points for detecting probable MDD and PTSD. Substantial rates of MDD (53.2%) and PTSD (19.3%) were found. The DASS-21 and IES-R were shown to have excellent criterion validity for detecting MDD and PTSD in injured participants. A range of cut-off points were investigated and shown to have acceptable sensitivity and specificity for detecting MDD and PTSD in an injured population engaged in compensation. The preferred cut-off points based on this study are: to detect MDD, a DASS-21 total score of 30 and/or a DASS-21 depression score of 10; to detect PTSD, IES-R scores of 33-40 and/or a DASS-21 anxiety score of 7-8. Major psychological disorder is prevalent following a MVC. Results suggest the DASS-21 and IES-R are suitable for use in clinical/compensation settings to

  13. Salmon and human thrombin differentially regulate radicular pain, glial-induced inflammation and spinal neuronal excitability through protease-activated receptor-1.

    Directory of Open Access Journals (Sweden)

    Jenell R Smith

    Full Text Available Chronic neck pain is a major problem with common causes including disc herniation and spondylosis that compress the spinal nerve roots. Cervical nerve root compression in the rat produces sustained behavioral hypersensitivity, due in part to the early upregulation of pro-inflammatory cytokines, the sustained hyperexcitability of neurons in the spinal cord and degeneration in the injured nerve root. Through its activation of the protease-activated receptor-1 (PAR1, mammalian thrombin can enhance pain and inflammation; yet at lower concentrations it is also capable of transiently attenuating pain which suggests that PAR1 activation rate may affect pain maintenance. Interestingly, salmon-derived fibrin, which contains salmon thrombin, attenuates nerve root-induced pain and inflammation, but the mechanisms of action leading to its analgesia are unknown. This study evaluates the effects of salmon thrombin on nerve root-mediated pain, axonal degeneration in the root, spinal neuronal hyperexcitability and inflammation compared to its human counterpart in the context of their enzymatic capabilities towards coagulation substrates and PAR1. Salmon thrombin significantly reduces behavioral sensitivity, preserves neuronal myelination, reduces macrophage infiltration in the injured nerve root and significantly decreases spinal neuronal hyperexcitability after painful root compression in the rat; whereas human thrombin has no effect. Unlike salmon thrombin, human thrombin upregulates the transcription of IL-1β and TNF-α and the secretion of IL-6 by cortical cultures. Salmon and human thrombins cleave human fibrinogen-derived peptides and form clots with fibrinogen with similar enzymatic activities, but salmon thrombin retains a higher enzymatic activity towards coagulation substrates in the presence of antithrombin III and hirudin compared to human thrombin. Conversely, salmon thrombin activates a PAR1-derived peptide more weakly than human thrombin. These

  14. Nursing care of the thermally injured patient.

    Science.gov (United States)

    Elfving, U

    1980-01-01

    Team work is required in the treatment of the thermally injured patient--nursing staff being part of the team. The nurses are with the patient for 24 hours a day and they have to understand the objectives of all other members of the team involved in the treatment as well as thoroughly mastering their own work. For the nursing staff the care of the thermally injured patient is a challenge. The work demands strong motivation and interest--it includes at times painful treatment, isolation and also constant alertness. It is important that the nursing staff is given continuous training so that they are able to give the required care efficiently and to keep up active interest. Practical work is the best way of getting aquainted with the complex forms of treatment of the thermally injured patient. It also lessens the fear of a badly burned patient. Nursing care of the thermally injured patient consists of good basic care, local attention and active observation. The basic care consists of basic hygiene, diet, observation of the patient's psychological condition, giving emotional support, encouraging initiative physiotherapy and postural treatment.

  15. Evaluation of the thin agar layer method for the recovery of pressure-injured and heat-injured Listeria monocytogenes.

    Science.gov (United States)

    Lavieri, Nicolas A; Sebranek, Joseph G; Cordray, Joseph C; Dickson, James S; Jung, Stephanie; Manu, David K; Mendonça, Aubrey F; Brehm-Stecher, Byron F; Stock, Joseph; Stalder, Kenneth J

    2014-05-01

    A sublethally injured bacterial cell has been defined as a cell that survives a stress such as heating, freezing, acid treatment, or other antimicrobial intervention but can repair the cellular damage exerted by the stressor and later regain its original ability to grow. Consequently, sublethally injured cells are not likely to be included in conventional enumeration procedures, which could result in unrealistically low counts unless efforts are made to encourage recovery of the injured cells before enumeration. The objective of this study was to evaluate the use of the thin agar layer (TAL) method for the recovery of pressure-injured and heat-injured Listeria monocytogenes in a tryptic soy broth with 0.6% yeast extract system. Pressure injury consisted of treatment of a culture of mixed L. monocytogenes strains with high hydrostatic pressure at 400 or 600 MPa for 1 s, 2 min, 4 min, or 6 min at a process temperature of 12±2 °C. Heat injury consisted of treatment of a culture of mixed L. monocytogenes strains at 60±1 °C for 3, 6, or 9 min. Growth media were tryptic soy agar (TSA) with 0.6% yeast extract, modified Oxford medium (MOX), and TAL, which consisted of a 7-ml layer of TSA overlaid onto solidified MOX. Counts of viable L. monocytogenes on TAL were higher than those on MOX in the heat-injury experiment but not in the pressure-injury experiment. Therefore, the effectiveness of the TAL method may be specific to the type of injury applied to the microorganism and should be investigated in a variety of cellular injury scenarios.

  16. Axonal regeneration in zebrafish spinal cord

    Science.gov (United States)

    Hui, Subhra Prakash

    2018-01-01

    Abstract In the present review we discuss two interrelated events—axonal damage and repair—known to occur after spinal cord injury (SCI) in the zebrafish. Adult zebrafish are capable of regenerating axonal tracts and can restore full functionality after SCI. Unlike fish, axon regeneration in the adult mammalian central nervous system is extremely limited. As a consequence of an injury there is very little repair of disengaged axons and therefore functional deficit persists after SCI in adult mammals. In contrast, peripheral nervous system axons readily regenerate following injury and hence allow functional recovery both in mammals and fish. A better mechanistic understanding of these three scenarios could provide a more comprehensive insight into the success or failure of axonal regeneration after SCI. This review summarizes the present understanding of the cellular and molecular basis of axonal regeneration, in both the peripheral nervous system and the central nervous system, and large scale gene expression analysis is used to focus on different events during regeneration. The discovery and identification of genes involved in zebrafish spinal cord regeneration and subsequent functional experimentation will provide more insight into the endogenous mechanism of myelination and remyelination. Furthermore, precise knowledge of the mechanism underlying the extraordinary axonal regeneration process in zebrafish will also allow us to unravel the potential therapeutic strategies to be implemented for enhancing regrowth and remyelination of axons in mammals. PMID:29721326

  17. Adaptation of a ladder beam walking task to assess locomotor recovery in mice following spinal cord injury

    Science.gov (United States)

    Cummings, Brian J.; Engesser-Cesar, Christie; Anderson, Aileen J.

    2007-01-01

    Locomotor impairments after spinal cord injury (SCI) are often assessed using open-field rating scales. These tasks have the advantage of spanning the range from complete paralysis to normal walking; however, they lack sensitivity at specific levels of recovery. Additionally, most supplemental assessments were developed in rats, not mice. For example, the horizontal ladder beam has been used to measure recovery in the rat after SCI. This parametric task results in a videotaped archival record of the event, is easily administered, and is unambiguously scored. Although a ladder beam apparatus for mice is available, its use in the assessment of recovery in SCI mice is rare, possibly because normative data for uninjured mice and the type of step misplacements injured mice exhibit is lacking. We report the development of a modified ladder beam instrument and scoring system to measure hindlimb recovery in vertebral T9 contusion spinal cord injured mice. The mouse ladder beam allows for the use of standard parametric statistical tests to assess locomotor recovery. Ladder beam performance is consistent across four strains of mice, there are no sex differences, and inter-rater reliability between observers is high. The ladder beam score is proportional to injury severity and can be used to easily separate mice capable of weight-supported stance up to mice with consistent forelimb to hindlimb coordination. Critically, horizontal ladder beam testing discriminates between mice that score identically in terms of stepping frequency in open-field testing. PMID:17197044

  18. Adaptation of a ladder beam walking task to assess locomotor recovery in mice following spinal cord injury.

    Science.gov (United States)

    Cummings, Brian J; Engesser-Cesar, Christie; Cadena, Gilbert; Anderson, Aileen J

    2007-02-27

    Locomotor impairments after spinal cord injury (SCI) are often assessed using open-field rating scales. These tasks have the advantage of spanning the range from complete paralysis to normal walking; however, they lack sensitivity at specific levels of recovery. Additionally, most supplemental assessments were developed in rats, not mice. For example, the horizontal ladder beam has been used to measure recovery in the rat after SCI. This parametric task results in a videotaped archival record of the event, is easily administered, and is unambiguously scored. Although a ladder beam apparatus for mice is available, its use in the assessment of recovery in SCI mice is rare, possibly because normative data for uninjured mice and the type of step misplacements injured mice exhibit is lacking. We report the development of a modified ladder beam instrument and scoring system to measure hindlimb recovery in vertebral T9 contusion spinal cord injured mice. The mouse ladder beam allows for the use of standard parametric statistical tests to assess locomotor recovery. Ladder beam performance is consistent across four strains of mice, there are no sex differences, and inter-rater reliability between observers is high. The ladder beam score is proportional to injury severity and can be used to easily separate mice capable of weight-supported stance up to mice with consistent forelimb to hindlimb coordination. Critically, horizontal ladder beam testing discriminates between mice that score identically in terms of stepping frequency in open-field testing.

  19. Diffusion tensor imaging of the cervical spinal cord in healthy adult population: normative values and measurement reproducibility at 3T MRI.

    Science.gov (United States)

    Brander, Antti; Koskinen, Eerika; Luoto, Teemu M; Hakulinen, Ullamari; Helminen, Mika; Savilahti, Sirpa; Ryymin, Pertti; Dastidar, Prasun; Ohman, Juha

    2014-05-01

    Compared to diffusion tensor imaging (DTI) of the brain, there is a paucity of reports addressing the applicability of DTI in the evaluation of the spinal cord. Most normative data of cervical spinal cord DTI consist of relatively small and arbitrarily collected populations. Comprehensive normative data are necessary for clinical decision-making. To establish normal values for cervical spinal cord DTI metrics with region of interest (ROI)- and fiber tractography (FT)-based measurements and to assess the reproducibility of both measurement methods. Forty healthy adults underwent cervical spinal cord 3T MRI. Sagittal and axial conventional T2 sequences and DTI in the axial plane were performed. Whole cord fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were determined at different cervical levels from C2 to C7 using the ROI method. DTI metrics (FA, axial, and radial diffusivities based on eigenvalues λ1, λ2, and λ3, and ADC) of the lateral and posterior funicles were measured at C3 level. FA and ADC of the whole cord and the lateral and posterior funicles were also measured using quantitative tractography. Intra- and inter-observer variation of the measurement methods were assessed. Whole cord FA values decreased and ADC values increased in the rostral to caudal direction from C2 to C7. Between the individual white matter funicles no statistically significant difference for FA or ADC values was found. Both axial diffusivity and radial diffusivity of both lateral funicles differed significantly from those of the posterior funicle. Neither gender nor age correlated with any of the DTI metrics. Intra-observer variation of the measurements for whole cord FA and ADC showed almost perfect agreement with both ROI and tractography-based measurements. There was more variation in measurements of individual columns. Inter-observer agreement varied from moderate to strong for whole cord FA and ADC. Both ROI- and FT-based measurements are applicable

  20. Transient activation of Wnt/β-catenin signaling reporter in fibrotic scar formation after compression spinal cord injury in adult mice.

    Science.gov (United States)

    Yamagami, Takashi; Pleasure, David E; Lam, Kit S; Zhou, Chengji J

    2018-02-19

    After traumatic spinal cord injury (SCI), a scar may form with a fibrotic core (fibrotic scar) and surrounding reactive astrocytes (glial scar) at the lesion site. The scar tissue is considered a major obstacle preventing regeneration both as a physical barrier and as a source for secretion of inhibitors of axonal regeneration. Understanding the mechanism of scar formation and how to control it may lead to effective SCI therapies. Using a compression-SCI model on adult transgenic mice, we demonstrate that the canonical Wnt/β-catenin signaling reporter TOPgal (TCF/Lef1-lacZ) positive cells appeared at the lesion site by 5 days, peaked on 7 days, and diminished by 14 days post injury. Using various representative cell lineage markers, we demonstrate that, these transiently TOPgal positive cells are a group of Fibronectin(+);GFAP(-) fibroblast-like cells in the core scar region. Some of them are proliferative. These results indicate that Wnt/β-catenin signaling may play a key role in fibrotic scar formation after traumatic spinal cord injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Severe spinal stenosis in an adult achondroplastic dwarf – case report

    Directory of Open Access Journals (Sweden)

    B. Iliescu1, S. Gaivas1, C. Apetrei1, I. Poeată1,2

    2010-11-01

    Full Text Available Achondroplasia is the most commonform of human short-limbed dwarfism andis one of a spectrum of diseases caused bymutations in the FGFR3 gene.Achondroplasia is estimated to occur in 1 in10,000–30,000 live births4,7. The disease isautosomal dominant, but 80% of patientshave new mutations. It is commonlyassociated with several neurologicalconditions such as hydrocephalus,cervicomedullary compression, cervical orthoracic cord compression, and lumbarspinal compression due to bone stenosisalong the neuraxis. We report a case withsevere spinal stenosis at the lumbar andthoracic levels, with minimal involvementof the cervical spine with late neurologicalonset in an adult patient withachondroplasia. Neurological andradiological findings and surgicalprocedures are discussed. The patient wasadmitted with profound spastic lowerparaparesis and urinary incontinence. In thefirst operation we performed lumbardecompression and the patient improvedand on the fifth day she was able to take ashort walk. 3 months after the first surgerywe intervened on the thoracic spine with amulti-level decompression which allowedfor further neurological improvement,continued in a specialized medical facility.The case stands out as the clinical picturewas dominated by the lumbar stenosis(although both lumbar and thoracicstenosis were severe at the time ofpresentation with a late onset and sparingof the cervical spine.

  2. Cost Effectiveness of Field Trauma Triage among Injured Adults Served by Emergency Medical Services

    Science.gov (United States)

    Newgard, Craig D; Yang, Zhuo; Nishijima, Daniel; McConnell, K John; Trent, Stacy; Holmes, James F; Daya, Mohamud; Mann, N Clay; Hsia, Renee Y; Rea, Tom; Wang, N Ewen; Staudenmayer, Kristan; Delgado, M Kit

    2016-01-01

    Background The American College of Surgeons Committee on Trauma sets national targets for the accuracy of field trauma triage at ≥ 95% sensitivity and ≥ 65% specificity, yet the cost-effectiveness of realizing these goals is unknown. We evaluated the cost-effectiveness of current field trauma triage practices compared to triage strategies consistent with the national targets. Study Design This was a cost-effectiveness analysis using data from 79,937 injured adults transported by 48 emergency medical services (EMS) agencies to 105 trauma and non-trauma hospitals in 6 regions of the Western U.S. from 2006 through 2008. Incremental differences in survival, quality adjusted life years (QALYs), costs, and the incremental cost-effectiveness ratio (ICER; costs per QALY gained) were estimated for each triage strategy over a 1-year and lifetime horizon using a decision analytic Markov model. We considered an ICER threshold of less than $100,000 to be cost-effective. Results For these 6 regions, a high sensitivity triage strategy consistent with national trauma policy (sensitivity 98.6%, specificity 17.1%) would cost $1,317,333 per QALY gained, while current triage practices (sensitivity 87.2%, specificity 64.0%) cost $88,000 per QALY gained compared to a moderate sensitivity strategy (sensitivity 71.2%, specificity 66.5%). Refining EMS transport patterns by triage status improved cost-effectiveness. At the trauma system level, a high-sensitivity triage strategy would save 3.7 additional lives per year at a 1-year cost of $8.78 million, while a moderate sensitivity approach would cost 5.2 additional lives and save $781,616 each year. Conclusions A high-sensitivity approach to field triage consistent with national trauma policy is not cost effective. The most cost effective approach to field triage appears closely tied to triage specificity and adherence to triage-based EMS transport practices. PMID:27178369

  3. Distinguishing active from passive components of ankle plantar flexor stiffness in stroke, spinal cord injury and multiple sclerosis

    DEFF Research Database (Denmark)

    Lorentzen, Jakob; Grey, Michael James; Crone, Clarissa

    2010-01-01

    to distinguish the contribution of active reflex mechanisms from passive muscle properties to ankle joint stiffness in 31 healthy, 10 stroke, 30 multiple sclerosis and 16 spinal cord injured participants. The results were compared to routine clinical evaluation of spasticity. METHODS: A computer...... (Ashworth score1) showed normal reflex torque without normalization. With normalization this was only the case in 11 participants. Increased reflex mediated stiffness was detected in only 64% participants during clinical examination. CONCLUSION: The findings confirm that the clinical diagnosis of spasticity...

  4. PROFILE OF SPINAL CORD TRAUMA VICTIMS TREATED AT A REFERENCE UNIT IN SÃO PAULO

    OpenAIRE

    ARAUJO, ALEX OLIVEIRA DE; FERRONATO, DANILO DE SOUZA; ROCHA, IVAN DIAS DA; MARCON, RAPHAEL MARTUS; CRISTANTE, ALEXANDRE FOGAÇA; BARROS FILHO, TARCÍSIO ELOY PESSOA DE

    2018-01-01

    ABSTRACT Introduction: Spinal cord trauma (SCT) is an important cause of morbidity and mortality around the world. It affects different age groups, especially young adults who are victims of high-energy trauma. The most effective way to reduce the incidence of spinal cord trauma and its consequences is through preventive campaigns and control and surveillance measures through public agencies. The objective of this study is to outline the epidemiological profile of patients with spinal cord t...

  5. The minimally invasive spinal deformity surgery algorithm: a reproducible rational framework for decision making in minimally invasive spinal deformity surgery.

    Science.gov (United States)

    Mummaneni, Praveen V; Shaffrey, Christopher I; Lenke, Lawrence G; Park, Paul; Wang, Michael Y; La Marca, Frank; Smith, Justin S; Mundis, Gregory M; Okonkwo, David O; Moal, Bertrand; Fessler, Richard G; Anand, Neel; Uribe, Juan S; Kanter, Adam S; Akbarnia, Behrooz; Fu, Kai-Ming G

    2014-05-01

    Minimally invasive surgery (MIS) is an alternative to open deformity surgery for the treatment of patients with adult spinal deformity. However, at this time MIS techniques are not as versatile as open deformity techniques, and MIS techniques have been reported to result in suboptimal sagittal plane correction or pseudarthrosis when used for severe deformities. The minimally invasive spinal deformity surgery (MISDEF) algorithm was created to provide a framework for rational decision making for surgeons who are considering MIS versus open spine surgery. A team of experienced spinal deformity surgeons developed the MISDEF algorithm that incorporates a patient's preoperative radiographic parameters and leads to one of 3 general plans ranging from MIS direct or indirect decompression to open deformity surgery with osteotomies. The authors surveyed fellowship-trained spine surgeons experienced with spinal deformity surgery to validate the algorithm using a set of 20 cases to establish interobserver reliability. They then resurveyed the same surgeons 2 months later with the same cases presented in a different sequence to establish intraobserver reliability. Responses were collected and tabulated. Fleiss' analysis was performed using MATLAB software. Over a 3-month period, 11 surgeons completed the surveys. Responses for MISDEF algorithm case review demonstrated an interobserver kappa of 0.58 for the first round of surveys and an interobserver kappa of 0.69 for the second round of surveys, consistent with substantial agreement. In at least 10 cases there was perfect agreement between the reviewing surgeons. The mean intraobserver kappa for the 2 surveys was 0.86 ± 0.15 (± SD) and ranged from 0.62 to 1. The use of the MISDEF algorithm provides consistent and straightforward guidance for surgeons who are considering either an MIS or an open approach for the treatment of patients with adult spinal deformity. The MISDEF algorithm was found to have substantial inter- and

  6. Development of an evidence-informed leisure time physical activity resource for adults with spinal cord injury: the SCI Get Fit Toolkit.

    Science.gov (United States)

    Arbour-Nicitopoulos, K P; Martin Ginis, K A; Latimer-Cheung, A E; Bourne, C; Campbell, D; Cappe, S; Ginis, S; Hicks, A L; Pomerleau, P; Smith, K

    2013-06-01

    To systematically develop an evidence-informed leisure time physical activity (LTPA) resource for adults with spinal cord injury (SCI). Canada. The Appraisal of Guidelines, Research and Evaluation (AGREE) II protocol was used to develop a toolkit to teach and encourage adults with SCI how to make smart and informed choices about being physically active. A multidisciplinary expert panel appraised the evidence and generated specific recommendations for the content of the toolkit. Pilot testing was conducted to refine the toolkit's presentation. Recommendations emanating from the consultation process were that the toolkit be a brief, evidence-based resource that contains images of adults with tetraplegia and paraplegia, and links to more detailed online information. The content of the toolkit should include the physical activity guidelines (PAGs) for adults with SCI, activities tailored to manual and power chair users, the benefits of LTPA, and strategies to overcome common LTPA barriers for adults with SCI. The inclusion of action plans and safety tips was also recommended. These recommendations have resulted in the development of an evidence-informed LTPA resource to assist adults with SCI in meeting the PAGs. This toolkit will have important implications for consumers, health care professionals and policy makers for encouraging LTPA in the SCI community.

  7. Understanding Quality of Life in Adults with Spinal Cord Injury Via SCI-Related Needs and Secondary Complications.

    Science.gov (United States)

    Sweet, Shane N; Noreau, Luc; Leblond, Jean; Dumont, Frédéric S

    2014-01-01

    Understanding the factors that can predict greater quality of life (QoL) is important for adults with spinal cord injury (SCI), given that they report lower levels of QoL than the general population. To build a conceptual model linking SCI-related needs, secondary complications, and QoL in adults with SCI. Prior to testing the conceptual model, we aimed to develop and evaluate the factor structure for both SCI-related needs and secondary complications. Individuals with a traumatic SCI (N = 1,137) responded to an online survey measuring 13 SCI-related needs, 13 secondary complications, and the Life Satisfaction Questionnaire to assess QoL. The SCI-related needs and secondary complications were conceptualized into factors, tested with a confirmatory factor analysis, and subsequently evaluated in a structural equation model to predict QoL. The confirmatory factor analysis supported a 2-factor model for SCI related needs, χ(2)(61, N = 1,137) = 250.40, P SCI-related needs (β = -.22 and -.20, P SCI-related needs of individuals with SCI and preventing or managing secondary complications are essential to their QoL.

  8. Aging causes a reorganization of cortical and spinal control of posture

    Directory of Open Access Journals (Sweden)

    Selma ePapegaaij

    2014-03-01

    Full Text Available Classical studies in animal preparations suggest a strong role for spinal control of posture. In young adults it is now established that the cerebral cortex contributes to postural control of unperturbed and perturbed standing. The age-related degeneration and accompanying functional changes in the brain, reported so far mainly in conjunction with simple manual motor tasks, may also affect the mechanisms that control complex motor tasks involving posture. This review outlines the age-related structural and functional changes at spinal and cortical levels and provides a mechanistic analysis of how such changes may be linked to the behaviorally manifest postural deficits in old adults. The emerging picture is that the age-related reorganization in motor control during voluntary tasks, characterized by differential modulation of spinal reflexes, greater cortical activation and cortical disinhibition, is also present during postural tasks. We discuss the possibility that this reorganization underlies the increased coactivation and dual task interference reported in elderly. Finally, we propose a model for future studies to unravel the structure-function-behavior relations in postural control and aging.

  9. Bimanual reach to grasp movements after cervical spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Laura Britten

    Full Text Available Injury to the cervical spinal cord results in bilateral deficits in arm/hand function reducing functional independence and quality of life. To date little research has been undertaken to investigate control strategies of arm/hand movements following cervical spinal cord injury (cSCI. This study aimed to investigate unimanual and bimanual coordination in patients with acute cSCI using 3D kinematic analysis as they performed naturalistic reach to grasp actions with one hand, or with both hands together (symmetrical task, and compare this to the movement patterns of uninjured younger and older adults. Eighteen adults with a cSCI (mean 61.61 years with lesions at C4-C8, with an American Spinal Injury Association (ASIA grade B to D and 16 uninjured younger adults (mean 23.68 years and sixteen uninjured older adults (mean 70.92 years were recruited. Participants with a cSCI produced reach-to-grasp actions which took longer, were slower, and had longer deceleration phases than uninjured participants. These differences were exacerbated during bimanual reach-to-grasp tasks. Maximal grasp aperture was no different between groups, but reached earlier by people with cSCI. Participants with a cSCI were less synchronous than younger and older adults but all groups used the deceleration phase for error correction to end the movement in a synchronous fashion. Overall, this study suggests that after cSCI a level of bimanual coordination is retained. While there seems to be a greater reliance on feedback to produce both the reach to grasp, we observed minimal disruption of the more impaired limb on the less impaired limb. This suggests that bimanual movements should be integrated into therapy.

  10. Improved axonal regeneration of transected spinal cord mediated by multichannel collagen conduits functionalized with neurotrophin-3 gene.

    Science.gov (United States)

    Yao, L; Daly, W; Newland, B; Yao, S; Wang, W; Chen, B K K; Madigan, N; Windebank, A; Pandit, A

    2013-12-01

    Functionalized biomaterial scaffolds targeted at improving axonal regeneration by enhancing guided axonal growth provide a promising approach for the repair of spinal cord injury. Collagen neural conduits provide structural guidance for neural tissue regeneration, and in this study it is shown that these conduits can also act as a reservoir for sustained gene delivery. Either a G-luciferase marker gene or a neurotrophin-3-encoding gene, complexed to a non-viral, cyclized, PEGylated transfection vector, was loaded within a multichannel collagen conduit. The complexed genes were then released in a controlled fashion using a dual release system both in vitro and in vivo. For evaluation of their biological performance, the loaded conduits were implanted into the completely transected rat thoracic spinal cord (T8-T10). Aligned axon regeneration through the channels of conduits was observed one month post-surgery. The conduits delivering neurotrophin-3 polyplexes resulted in significantly increased neurotrophin-3 levels in the surrounding tissue and a statistically higher number of regenerated axons versus the control conduits (P<0.05). This study suggests that collagen neural conduits delivering a highly effective non-viral therapeutic gene may hold promise for repair of the injured spinal cord.

  11. SPINAL CORD- A CADAVERIC STUDY

    Directory of Open Access Journals (Sweden)

    Vijayamma K. N

    2018-01-01

    Full Text Available BACKGROUND Spinal cord is situated within the vertebral canal extending from the lower end of the medulla oblongata at the upper border of first cervical vertebra. In early foetal life, it extends throughout the length of the vertebral canal, and at the time of birth, it reaches the level of third lumbar vertebra. In adult, it ends at the lower border of first lumbar vertebra and thereafter continued as filum terminale, which gets attached to tip of coccyx. Spinal cord is covered by three protective membranes called spinal meninges, diameter, arachnoid and pia mater. The diameter and arachnoid mater extent up to second sacral vertebra and the pia mater forms filum terminale and extend at the tip of coccyx. MATERIALS AND METHODS Forty spinal cord cadaveric specimen were studied by dissection method after exposing the vertebral canal. The roots of spinal nerve were sectioned on both sides and the cord is released along with its coverings. The dura and arachnoid mater were incised longitudinally and the subarachnoid space, blood vessels, nerve roots, ligament denticulata, cervical and lumbar enlargements were observed. The blood vessels including radicular arteries were also studied photographed. RESULTS The spinal cord is a highly vascular structure situated within the vertebral canal, covered by diameter, arachnoid mater and pia mater. Spinal dura is thicker anteriorly than posteriorly. The pia mater forms linea splendens, which extend along the whole length of the cord in front of the anterior median fissure. The average length of the cord is 38 cm. The length and breadth of cervical enlargement was more compared to lumbar enlargement. The number of rootlets in both dorsal and ventral roots accounts more in cervical compared to other regions of the cord. The ligament denticulata is a thin transparent bands of pia mater attached on either sides of the cord between the dorsal and ventral roots of spinal nerves. The tooth like extensions are well

  12. Management of Spinal Deformities and Evidence of Treatment Effectiveness

    Science.gov (United States)

    Bettany-Saltikov, Josette; Turnbull, Deborah; Ng, Shu Yan; Webb, Richard

    2017-01-01

    Introduction: The review evaluates the up-to-date evidence for the treatment of spinal deformities, including scoliosis and hyperkyphosis in adolescents and adults. Material and Methods: The PubMed database was searched for review articles, prospective controlled trials and randomized controlled trials related to the treatment of spinal deformities. Articles on syndromic scoliosis were excluded and so were the articles on hyperkyphosis of the spine with causes other than Scheuermann’s disease and osteoporosis. Articles on conservative and surgical treatments of idiopathic scoliosis, adult scoliosis and hyperkyphosis were also included. For retrospective papers, only studies with a follow up period exceeding 10 years were included. Results: The review showed that early-onset idiopathic scoliosis has a worse outcome than late-onset idiopathic scoliosis, which is rather benign. Patients with AIS function well as adults; they have no more health problems when compared to patients without scoliosis, other than a slight increase in back pain and aesthetic concern. Conservative treatment of adolescent idiopathic scoliosis (AIS) using physiotherapeutic scoliosis-specific exercises (PSSE), specifically PSSR and rigid bracing was supported by level I evidence. Yet to date, there is no high quality evidence (RCT`s) demonstrating that surgical treatment is superior to conservative treatment for the management of AIS. For adult scoliosis, there are only a few studies on the effectiveness of PSSEs and a conclusion cannot as yet be drawn. For hyperkyphosis, there is no high-quality evidence for physiotherapy, bracing or surgery for the treatment of adolescents and adults. However, bracing has been found to reduce thoracic hyperkyphosis, ranging from 55 to 80° in adolescents. In patients over the age of 60, bracing improves the balance score, and reduces spinal deformity and pain. Surgery is indicated in adolescents and adults in the presence of progression of kyphosis

  13. Lentiviral-mediated expression of polysialic acid in spinal cord and conditioning lesion promote regeneration of sensory axons into spinal cord

    NARCIS (Netherlands)

    Zhang, Yi; Zhang, Xinyu; Wu, Dongsheng; Verhaagen, J.; Richardson, Peter M; Yeh, John; Bo, Xuenong

    2007-01-01

    In adult mammals, sensory axons that regenerate in the dorsal root are unable to grow across the dorsal root entry zone (DREZ) into the spinal cord. In this study we examined whether, by inducing expression of polysialic acid (PSA) (a large carbohydrate attached to molecules on the cell surface), in

  14. [Maximal exercise in spinal cord injured subjects: effects of an antigravity suit].

    Science.gov (United States)

    Bazzi-Grossin, C; Bonnin, P; Bailliart, O; Bazzi, H; Kedra, A W; Martineaud, J P

    1996-01-01

    Paraplegics have low aerobic capacity because of the spinal cord injury. Their functional muscle mass is reduced and usually untrained. They have to use upperbody muscles for displacements and daily activities. Sympathic nervous system injury is responsible of vasomotricity disturbances in leg vessels and possible abdominal vessels, proportionally to level injury. If cord injury level is higher than T5, then sympathic cardiac efferences may be damaged. Underbody muscles atrophy and vasomotricity disturbances contribute to phlebostasis. This stasis may decrease venous return, preload and stroke volume (Starling). To maintain appropriate cardiac output, tachycardia is necessary, especially during exercise. Low stroke volume, all the more since it is associated with cardio-acceleration disturbances, may reduce cardiac output reserve, and so constitutes a limiting factor for adaptation to exercise. The aim of this study was to verify if use of an underlesional pressure suit may increase cardiac output reserve because of lower venous stasis, and increase performance. We studied 10 able-bodied and 14 traumatic paraplegic subjects. Able-bodied subjects were 37 +/- 6 years old, wellbeing, not especially trained with upperbody muscles: there were 2 women and 8 men. Paraplegics were 27 +/- 7 years old, wellbeing except paraplegia, five of them practiced sport regularly (athletism or basket for disabled), and the others just daily propelled their wheelchair; there were 5 women and 9 men. For 8 of them, cord injury levels were located below T7, between T1 and T6 for the others. The age disability varied from 6 months to 2 years for 9 of them, it was approximately five years for 4 of them, and 20 years for one. We used a maximal triangular arm crank exercise with an electro-magnetic ergocycle Gauthier frame. After five minutes warm up, it was proceeded in one minute successive stages until maximal oxygen consumption is raised. VO2, VCO2, RER were measured by direct method with

  15. An ovine model of spinal cord injury.

    Science.gov (United States)

    Wilson, Saul; Abode-Iyamah, Kingsley O; Miller, John W; Reddy, Chandan G; Safayi, Sina; Fredericks, Douglas C; Jeffery, Nicholas D; DeVries-Watson, Nicole A; Shivapour, Sara K; Viljoen, Stephanus; Dalm, Brian D; Gibson-Corley, Katherine N; Johnson, Michael D; Gillies, George T; Howard, Matthew A

    2017-05-01

    To develop a large animal model of spinal cord injury (SCI), for use in translational studies of spinal cord stimulation (SCS) in the treatment of spasticity. We seek to establish thresholds for the SCS parameters associated with reduction of post-SCI spasticity in the pelvic limbs, with implications for patients. The weight-drop method was used to create a moderate SCI in adult sheep, leading to mild spasticity in the pelvic limbs. Electrodes for electromyography (EMG) and an epidural spinal cord stimulator were then implanted. Behavioral and electrophysiological data were taken during treadmill ambulation in six animals, and in one animal with and without SCS at 0.1, 0.3, 0.5, and 0.9 V. All surgical procedures were carried out at the University of Iowa. The gait measurements were made at Iowa State University. Nine adult female sheep were used in these institutionally approved protocols. Six of them were trained in treadmill ambulation prior to SCI surgeries, and underwent gait analysis pre- and post-SCI. Stretch reflex and H-reflex measurements were also made in conscious animals. Gait analysis revealed repeatable quantitative differences in 20% of the key kinematic parameters of the sheep, pre- and post-SCI. Hock joint angular velocity increased toward the normal pre-injury baseline in the animal with SCS at 0.9 V. The ovine model is workable as a large animal surrogate suitable for translational studies of novel SCS therapies aimed at relieving spasticity in patients with SCI.

  16. Survival and differentiation of human embryonic stem cell-derived neural precursors grafted spinally in spinal ischemia-injured rats or in naive immunosuppressed minipigs: a qualitative and quantitative study

    Czech Academy of Sciences Publication Activity Database

    Kakinohana, O.; Juhásová, Jana; Juhás, Štefan; Motlík, Jan; Platoshyn, O.; Galik, J.; Hefferan, M. P.; Yuan, S. H.; Vidal, J. G.; Carson, C. T.; Van Gorp, S.; Goldberg, D.; Leerink, M.; Lazar, P.; Maršala, S.; Miyanohara, A.; Keshavarzi, S.; Ciacci, J. D.; Maršala, M.

    2012-01-01

    Roč. 21, č. 12 (2012), s. 2603-2619 ISSN 0963-6897 R&D Projects: GA MŠk 1M0538; GA TA ČR TA01011466 Institutional research plan: CEZ:AV0Z50450515 Keywords : spinal cord ischemia * human embryonic stem (ES) cells * neuronal precursors (NPCs) Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.422, year: 2012

  17. Differentiation of different mixed Listeria strains and also acid-injured, heat-injured, and repaired cells of Listeria monocytogenes using fourier transform infrared spectroscopy.

    Science.gov (United States)

    Nyarko, Esmond; Donnelly, Catherine

    2015-03-01

    Fourier transform infrared (FT-IR) spectroscopy was used to differentiate mixed strains of Listeria monocytogenes and mixed strains of L. monocytogenes and Listeria innocua. FT-IR spectroscopy was also applied to investigate the hypothesis that heat-injured and acid-injured cells would return to their original physiological integrity following repair. Thin smears of cells on infrared slides were prepared from cultures for mixed strains of L. monocytogenes, mixed strains of L. monocytogenes and L. innocua, and each individual strain. Heat-injured and acid-injured cells were prepared by exposing harvested cells of L. monocytogenes strain R2-764 to a temperature of 56 ± 0.2°C for 10 min or lactic acid at pH 3 for 60 min, respectively. Cellular repair involved incubating aliquots of acid-injured and heat-injured cells separately in Trypticase soy broth supplemented with 0.6% yeast extract for 22 to 24 h; bacterial thin smears on infrared slides were prepared for each treatment. Spectral collection was done using 250 scans at a resolution of 4 cm(-1) in the mid-infrared wavelength region. Application of multivariate discriminant analysis to the wavelength region from 1,800 to 900 cm(-1) separated the individual L. monocytogenes strains. Mixed strains of L. monocytogenes and L. monocytogenes cocultured with L. innocua were successfully differentiated from the individual strains when the discriminant analysis was applied. Different mixed strains of L. monocytogenes were also successfully separated when the discriminant analysis was applied. A data set for injury and repair analysis resulted in the separation of acid-injured, heat-injured, and intact cells; repaired cells clustered closer to intact cells when the discriminant analysis (1,800 to 600 cm(-1)) was applied. FT-IR spectroscopy can be used for the rapid source tracking of L. monocytogenes strains because it can differentiate between different mixed strains and individual strains of the pathogen.

  18. MRI Findings of Juvenile Xanthogranuloma of the Spinal Cord: A Case Report

    International Nuclear Information System (INIS)

    Kim, Se Young; Park, Hee Jin; Lee, So Yeon; Chung, Eun Chul; Park, Hae Won; Kook, Shin Ho; Rho, Myung Ho; Goo, Ji Hye

    2013-01-01

    Juvenile xanthogranuloma (JXG) is a proliferative histiocytic disorder experienced during childhood and adolescents. JXG commonly presents as a solitary cutaneous lesion. Despite the term 'juvenile', development of the disease during adulthood is possible, although spinal JXG is extremely rare in adults. We describe a 67-year-old female patient who presented with an intradural-extramedullary (IDEM) tumor of the spinal cord. Magnetic resonance imaging (MRI) findings indicative of JXG of the spinal cord were seen, which was then confirmed pathologically. A lumbar spinal MRI with contrast enhancement showed an oval-shaped, well-defined IDEM tumor at the L1 level. This tumor had mixed signal intensity on the T1-weighted image and high signal intensity on the T2-weighted image. Central homogenous enhancement was observed after contrast administration.

  19. Beneficial Effects of Melatonin Combined with Exercise on Endogenous Neural Stem/Progenitor Cells Proliferation after Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Youngjeon Lee

    2014-01-01

    Full Text Available Endogenous neural stem/progenitor cells (eNSPCs proliferate and differentiate into neurons and glial cells after spinal cord injury (SCI. We have previously shown that melatonin (MT plus exercise (Ex had a synergistic effect on functional recovery after SCI. Thus, we hypothesized that combined therapy including melatonin and exercise might exert a beneficial effect on eNSPCs after SCI. Melatonin was administered twice a day and exercise was performed on a treadmill for 15 min, six days per week for 3 weeks after SCI. Immunohistochemistry and RT-PCR analysis were used to determine cell population for late response, in conjunction with histological examination and motor function test. There was marked improvement in hindlimb function in SCI+MT+Ex group at day 14 and 21 after injury, as documented by the reduced size of the spinal lesion and a higher density of dendritic spines and axons; such functional improvements were associated with increased numbers of BrdU-positive cells. Furthermore, MAP2 was increased in the injured thoracic segment, while GFAP was increased in the cervical segment, along with elevated numbers of BrdU-positive nestin-expressing eNSPCs in the SCI+MT+Ex group. The dendritic spine density was augmented markedly in SCI+MT and SCI+MT+Ex groups.These results suggest a synergistic effect of SCI+MT+Ex might create a microenvironment to facilitate proliferation of eNSPCs to effectively replace injured cells and to improve regeneration in SCI.

  20. Cerebrospinal fluid volume depletion in chronic whiplash-associated disorders from motor vehicle-related spinal injuries

    International Nuclear Information System (INIS)

    Takeshita, Iwao; Ohta, Masaru; Samoto, Ken; Hamamura, Takeshi; Watanabe, Hideyuki

    2007-01-01

    To evaluate cerebrospinal fluid (CSF) volume depletion in chronic cases of whiplash-associated disorders, 111 In radioisotope (RI) cisternography, brain magnetic resonance imaging (MRI) and lumbar MR myelography were consecutively conducted on 460 individuals with chronic whiplash-associated disorders resulting from motor vehicle collision (Group A, n=225) and other traumatic injuries (Group B, n=57), spontaneous intracranial hypotension syndromes and other miscellaneous disorders (Group C, n=155), iatrogenic intracranial hypotension syndrome (Group D, n=11), and communicating hydrocephalus (Group E, n=12). Movement of intrathecally administered RI via a lumbar puncture was sequentially scanned at 1, 2 or 3, 5 and 24 hours. A whole body neuroaxis scanned figure showing high spinal parathecal activity at any time was considered to be a CSF leak, if small enough meningeal diverticula evidenced by MR myelography were present. Retention rate (%) of intrathecal RI for each scan was calculated using the formula: (whole body count-urinary bladder count)/whole body count (cpm) at 1 h x 100. All CSF leaks, although having single to multiple poles, were located in the spinal canal. CSF leakage was observed in 99/225 (44%), 24/57 (42%), 61/155 (39%), 9/11 (82%), and 4/12 (33%), in Groups A, B, C, D and E respectively. All CSF leakages was involved with the lumbar spine in Group A, although 20 cases extended to mid-thoracic levels. In Group A, spinal vertebrae were concomitantly injured in 7 cases (1 cervical spine dislocation, 1 cervical spine fracture, 2 thoracic and 1 lumbar compression fracture (s), and 2 lumbar disc hernia). CSF leakage for 2 cervical spine injuries was not at the injured site but at the lumbar spinal canal. CSF leakage limited to the lumbar spine involved 22 and 43 cases in groups B and C, respectively. Of all CSF leaks, 24 h retention rates less than 30% accounted for 90% of cases. In Group A, early CSF excretion and less than a 30% retention rate at 24

  1. Tranexamic acid use in severely injured civilian patients and the effects on outcomes: a prospective cohort study.

    Science.gov (United States)

    Cole, Elaine; Davenport, Ross; Willett, Keith; Brohi, Karim

    2015-02-01

    To characterize the relationship between tranexamic acid (TXA) use and patient outcomes in a severely injured civilian cohort, and to determine any differential effect between patients who presented with and without shock. TXA has demonstrated survival benefits in trauma patients in an international randomized control trial and the military setting. The uptake of TXA into civilian major hemorrhage protocols (MHPs) has been variable. The evidence gap in mature civilian trauma systems is limiting the widespread use of TXA and its potential benefits on survival. Prospective cohort study of severely injured adult patients (Injury severity score > 15) admitted to a civilian trauma system during the adoption phase of TXA into the hospital's MHP. Outcomes measured were mortality, multiple organ failure (MOF), venous thromboembolism, infection, stroke, ventilator-free days (VFD), and length of stay. Patients receiving TXA (n = 160, 42%) were more severely injured, shocked, and coagulopathic on arrival. TXA was not independently associated with any change in outcome for either the overall or nonshocked cohorts. In multivariate analysis, TXA was independently associated with a reduction in MOF [odds ratio (OR) = 0.27, confidence interval (CI): 0.10-0.73, P = 0.01] and was protective for adjusted all-cause mortality (OR = 0.16 CI: 0.03-0.86, P = 0.03) in shocked patients. TXA as part of a major hemorrhage protocol within a mature civilian trauma system provides outcome benefits specifically for severely injured shocked patients.

  2. Subdural Thoracolumbar Spine Hematoma after Spinal Anesthesia: A Rare Occurrence and Literature Review of Spinal Hematomas after Spinal Anesthesia.

    Science.gov (United States)

    Maddali, Prasanthi; Walker, Blake; Fisahn, Christian; Page, Jeni; Diaz, Vicki; Zwillman, Michael E; Oskouian, Rod J; Tubbs, R Shane; Moisi, Marc

    2017-02-16

    Spinal hematomas are a rare but serious complication of spinal epidural anesthesia and are typically seen in the epidural space; however, they have been documented in the subdural space. Spinal subdural hematomas likely exist within a traumatically induced space within the dural border cell layer, rather than an anatomical subdural space. Spinal subdural hematomas present a dangerous clinical situation as they have the potential to cause significant compression of neural elements and can be easily mistaken for spinal epidural hematomas. Ultrasound can be an effective modality to diagnose subdural hematoma when no epidural blood is visualized. We have reviewed the literature and present a full literature review and a case presentation of an 82-year-old male who developed a thoracolumbar spinal subdural hematoma after spinal epidural anesthesia. Anticoagulant therapy is an important predisposing risk factor for spinal epidural hematomas and likely also predispose to spinal subdural hematomas. It is important to consider spinal subdural hematomas in addition to spinal epidural hematomas in patients who develop weakness after spinal epidural anesthesia, especially in patients who have received anticoagulation.

  3. Spinal cord contusion.

    Science.gov (United States)

    Ju, Gong; Wang, Jian; Wang, Yazhou; Zhao, Xianghui

    2014-04-15

    Spinal cord injury is a major cause of disability with devastating neurological outcomes and limited therapeutic opportunities, even though there are thousands of publications on spinal cord injury annually. There are two major types of spinal cord injury, transaction of the spinal cord and spinal cord contusion. Both can theoretically be treated, but there is no well documented treatment in human being. As for spinal cord contusion, we have developed an operation with fabulous result.

  4. Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells

    Science.gov (United States)

    Chernoff, Ellen A. G.; Sato, Kazuna; Salfity, Hai V. N.; Sarria, Deborah A.; Belecky-Adams, Teri

    2018-01-01

    The differentiated state of spinal cord ependymal cells in regeneration-competent amphibians varies between a constitutively active state in what is essentially a developing organism, the tadpole of the frog Xenopus laevis, and a quiescent, activatable state in a slowly growing adult salamander Ambystoma mexicanum, the Axolotl. Ependymal cells are epithelial in intact spinal cord of all vertebrates. After transection, body region ependymal epithelium in both Xenopus and the Axolotl disorganizes for regenerative outgrowth (gap replacement). Injury-reactive ependymal cells serve as a stem/progenitor cell population in regeneration and reconstruct the central canal. Expression patterns of mRNA and protein for the stem/progenitor cell-maintenance Notch signaling pathway mRNA-binding protein Musashi (msi) change with life stage and regeneration competence. Msi-1 is missing (immunohistochemistry), or at very low levels (polymerase chain reaction, PCR), in both intact regeneration-competent adult Axolotl cord and intact non-regeneration-competent Xenopus tadpole (Nieuwkoop and Faber stage 62+, NF 62+). The critical correlation for successful regeneration is msi-1 expression/upregulation after injury in the ependymal outgrowth and stump-region ependymal cells. msi-1 and msi-2 isoforms were cloned for the Axolotl as well as previously unknown isoforms of Xenopus msi-2. Intact Xenopus spinal cord ependymal cells show a loss of msi-1 expression between regeneration-competent (NF 50–53) and non-regenerating stages (NF 62+) and in post-metamorphosis froglets, while msi-2 displays a lower molecular weight isoform in non-regenerating cord. In the Axolotl, embryos and juveniles maintain Msi-1 expression in the intact cord. In the adult Axolotl, Msi-1 is absent, but upregulates after injury. Msi-2 levels are more variable among Axolotl life stages: rising between late tailbud embryos and juveniles and decreasing in adult cord. Cultures of regeneration-competent Xenopus tadpole

  5. Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells

    Directory of Open Access Journals (Sweden)

    Ellen A. G. Chernoff

    2018-02-01

    Full Text Available The differentiated state of spinal cord ependymal cells in regeneration-competent amphibians varies between a constitutively active state in what is essentially a developing organism, the tadpole of the frog Xenopus laevis, and a quiescent, activatable state in a slowly growing adult salamander Ambystoma mexicanum, the Axolotl. Ependymal cells are epithelial in intact spinal cord of all vertebrates. After transection, body region ependymal epithelium in both Xenopus and the Axolotl disorganizes for regenerative outgrowth (gap replacement. Injury-reactive ependymal cells serve as a stem/progenitor cell population in regeneration and reconstruct the central canal. Expression patterns of mRNA and protein for the stem/progenitor cell-maintenance Notch signaling pathway mRNA-binding protein Musashi (msi change with life stage and regeneration competence. Msi-1 is missing (immunohistochemistry, or at very low levels (polymerase chain reaction, PCR, in both intact regeneration-competent adult Axolotl cord and intact non-regeneration-competent Xenopus tadpole (Nieuwkoop and Faber stage 62+, NF 62+. The critical correlation for successful regeneration is msi-1 expression/upregulation after injury in the ependymal outgrowth and stump-region ependymal cells. msi-1 and msi-2 isoforms were cloned for the Axolotl as well as previously unknown isoforms of Xenopus msi-2. Intact Xenopus spinal cord ependymal cells show a loss of msi-1 expression between regeneration-competent (NF 50–53 and non-regenerating stages (NF 62+ and in post-metamorphosis froglets, while msi-2 displays a lower molecular weight isoform in non-regenerating cord. In the Axolotl, embryos and juveniles maintain Msi-1 expression in the intact cord. In the adult Axolotl, Msi-1 is absent, but upregulates after injury. Msi-2 levels are more variable among Axolotl life stages: rising between late tailbud embryos and juveniles and decreasing in adult cord. Cultures of regeneration

  6. Improving the Work Potential of Brain-Injured Adolescents and Young Adults: A Model for Evaluation and Individualized Training.

    Science.gov (United States)

    Deaton, Ann V.; And Others

    1987-01-01

    A work program is described that was designed for the brain-injured population. The program addresses cognitive abilities that may be affected by brain injury (orientation, attention, memory, sequencing and problem solving) and possible socioemotional changes (disinhibition, anger control, frustration tolerance, and emotional ability). Case…

  7. Subject-specific regional measures of water diffusion are associated with impairment in chronic spinal cord injury.

    Science.gov (United States)

    Choe, Ann S; Sadowsky, Cristina L; Smith, Seth A; van Zijl, Peter C M; Pekar, James J; Belegu, Visar

    2017-08-01

    We aimed to identify non-invasive imaging parameters that can serve as biomarkers for the integrity of the spinal cord, which is paramount to neurological function. Diffusion tensor imaging (DTI) indices are sensitive to axonal and myelin damage, and have strong potential to serve as such biomarkers. However, averaging DTI indices over large regions of interest (ROIs), a common approach to analyzing the images of injured spinal cord, leads to loss of subject-specific information. We investigated if DTI-tractography-driven, subject-specific demarcation approach can yield measures that are more specific to impairment. In 18 individuals with chronic spinal cord injury (SCI), subject-specific demarcation of the injury region was performed using DTI tractography, which yielded three regions relative to injury (RRI; regions superior to, at, and below injury epicenter). DTI indices averaged over each RRI were correlated with measures of residual motor and sensory function, obtained using the International Standard of Neurological Classification for Spinal Cord Injury (ISNCSCI). Total ISNCSCI score (ISNCSCI-tot; sum of ISNCSCI motor and sensory scores) was significantly (p injury epicenter (IRRI), the degree of which exceeded that of those measured from the entire cervical cord-suggesting contribution from Wallerian degeneration. DTI tractography-driven, subject-specific injury demarcation approach provided measures that were more specific to impairment. Notably, DTI indices obtained from the IRRI region showed the highest specificity to impairment, demonstrating their strong potential as biomarkers for the SCI severity.

  8. Effects of exercise on fitness and health of adults with spinal cord injury: A systematic review.

    Science.gov (United States)

    van der Scheer, Jan W; Martin Ginis, Kathleen A; Ditor, David S; Goosey-Tolfrey, Victoria L; Hicks, Audrey L; West, Christopher R; Wolfe, Dalton L

    2017-08-15

    To synthesize and appraise research testing the effects of exercise interventions on fitness, cardiometabolic health, and bone health among adults with spinal cord injury (SCI). Electronic databases were searched (1980-2016). Included studies employed exercise interventions for a period ≥2 weeks, involved adults with acute or chronic SCI, and measured fitness (cardiorespiratory fitness, power output, or muscle strength), cardiometabolic health (body composition or cardiovascular risk factors), or bone health outcomes. Evidence was synthesized and appraised using Grading of Recommendations Assessment, Development, and Evaluation (GRADE). A total of 211 studies met the inclusion criteria (22 acute, 189 chronic). For chronic SCI, GRADE confidence ratings were moderate to high for evidence showing exercise can improve all of the reviewed outcomes except bone health. For acute SCI, GRADE ratings were very low for all outcomes. For chronic SCI, there was low to moderate confidence in the evidence showing that 2-3 sessions/week of upper body aerobic exercise at a moderate to vigorous intensity for 20-40 minutes, plus upper body strength exercise (3 sets of 10 repetitions at 50%-80% 1-repetition maximum for all large muscle groups), can improve cardiorespiratory fitness, power output, and muscle strength. For chronic SCI, there was low to moderate confidence in the evidence showing that 3-5 sessions per week of upper body aerobic exercise at a moderate to vigorous intensity for 20-44 minutes can improve cardiorespiratory fitness, muscle strength, body composition, and cardiovascular risk. Exercise improves fitness and cardiometabolic health of adults with chronic SCI. The evidence on effective exercise types, frequencies, intensities, and durations should be used to formulate exercise guidelines for adults with SCI. © 2017 American Academy of Neurology.

  9. Clinical and stereoradiographic analysis of adult spinal deformity with and without rotatory subluxation.

    Science.gov (United States)

    Ferrero, E; Lafage, R; Challier, V; Diebo, B; Guigui, P; Mazda, K; Schwab, F; Skalli, W; Lafage, V

    2015-09-01

    In degenerative adult spinal deformity (ASD), sagittal malalignment and rotatory subluxation (RS) correlate with clinical symptomatology. RS is defined as axial rotation with lateral listhesis. Stereoradiography, recently developed for medical applications, provides full-body standing radiographs and 3D reconstruction of the spine, with low radiation dose. 3D stereoradiography improves analysis of RS and of its relations with transverse plane and spinopelvic parameters and clinical impact. One hundred and thirty adults with lumbar ASD and full-spine EOS® radiographs (EOS Imaging, Paris, France) were included. Spinopelvic sagittal parameters and lateral listhesis in the coronal plane were measured. The transverse plane study parameters were: apical axial vertebral rotation (apex AVR), axial intervertebral rotation (AIR) and torsion index (TI). Two groups were compared: with RS (lateral listhesis>5mm) and without RS (without lateral listhesis exceeding 5mm: non-RS). Correlations between radiologic and clinical data were assessed. RS patients were significantly older, with larger Cobb angle (37.4° vs. 26.6°, P=0.0001), more severe sagittal deformity, and greater apex AVR and TI (respectively: 22.9° vs. 11.3°, P10° without visible RS on 2D radiographs. RS patients reported significantly more frequent low back pain and radiculalgia. In this EOS® study, ASD patients with RS had greater coronal curvature and sagittal and transverse deformity, as well as greater pain. Further transverse plane analysis could allow earlier diagnosis and prognosis to guide management. 4, retrospective study. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Nuclear magnetic imaging for MTRA. Spinal canal and spinal cord

    International Nuclear Information System (INIS)

    Fritzsch, Dominik; Hoffmann, Karl-Titus

    2011-01-01

    The booklet covers the following topics: (1) Clinical indications for NMR imaging of spinal cord and spinal canal; (2) Methodic requirements: magnets and coils, image processing, contrast media: (3) Examination technology: examination conditions, sequences, examination protocols; (4) Disease pattern and indications: diseases of the myelin, the spinal nerves and the spinal canal (infections, tumors, injuries, ischemia and bleedings, malformations); diseases of the spinal cord and the intervertebral disks (degenerative changes, infections, injuries, tumors, malformations).

  11. Spontaneous axonal regeneration in rodent spinal cord after ischemic injury

    DEFF Research Database (Denmark)

    von Euler, Mia; Janson, A M; Larsen, Jytte Overgaard

    2002-01-01

    cells, while other fibers were unmyelinated. Immunohistochemistry demonstrated that some of the regenerated fibers were tyrosine hydroxylase- or serotonin-immunoreactive, indicating a central origin. These findings suggest that there is a considerable amount of spontaneous regeneration after spinal cord......Here we present evidence for spontaneous and long-lasting regeneration of CNS axons after spinal cord lesions in adult rats. The length of 200 kD neurofilament (NF)-immunolabeled axons was estimated after photochemically induced ischemic spinal cord lesions using a stereological tool. The total...... length of all NF-immunolabeled axons within the lesion cavities was increased 6- to 10-fold at 5, 10, and 15 wk post-lesion compared with 1 wk post-surgery. In ultrastructural studies we found the putatively regenerating axons within the lesion to be associated either with oligodendrocytes or Schwann...

  12. Synaptically evoked glutamate transporter currents in Spinal Dorsal Horn Astrocytes

    Directory of Open Access Journals (Sweden)

    Dougherty Patrick M

    2009-07-01

    Full Text Available Abstract Background Removing and sequestering synaptically released glutamate from the extracellular space is carried out by specific plasma membrane transporters that are primarily located in astrocytes. Glial glutamate transporter function can be monitored by recording the currents that are produced by co-transportation of Na+ ions with the uptake of glutamate. The goal of this study was to characterize glutamate transporter function in astrocytes of the spinal cord dorsal horn in real time by recording synaptically evoked glutamate transporter currents. Results Whole-cell patch clamp recordings were obtained from astrocytes in the spinal substantia gelatinosa (SG area in spinal slices of young adult rats. Glutamate transporter currents were evoked in these cells by electrical stimulation at the spinal dorsal root entry zone in the presence of bicuculline, strychnine, DNQX and D-AP5. Transporter currents were abolished when synaptic transmission was blocked by TTX or Cd2+. Pharmacological studies identified two subtypes of glutamate transporters in spinal astrocytes, GLAST and GLT-1. Glutamate transporter currents were graded with stimulus intensity, reaching peak responses at 4 to 5 times activation threshold, but were reduced following low-frequency (0.1 – 1 Hz repetitive stimulation. Conclusion These results suggest that glutamate transporters of spinal astrocytes could be activated by synaptic activation, and recording glutamate transporter currents may provide a means of examining the real time physiological responses of glial cells in spinal sensory processing, sensitization, hyperalgesia and chronic pain.

  13. Thresholds and Tolerance of Physical Pain Among Young Adults Who Self-Injure

    Directory of Open Access Journals (Sweden)

    Katrina McCoy

    2010-01-01

    Full Text Available Prevalence rates of nonsuicidal self-injury among college students range from 17% to 38%. Research indicates that individuals with borderline personality disorder who self-injure sometimes report an absence of pain during self-injury. Furthermore, self-injury in the absence of pain has been associated with more frequent suicide attempts. The present study examined pain thresholds and tolerance among 44 college students (11 who engaged in self-injury and 33 who did not. Pain thresholds and tolerance were measured using an algometer pressure device that was used to produce pain in previous laboratory research. Participants who engaged in self-injury had a higher pain tolerance than those who did not. In addition, participants who engaged in self-injury rated the pain as less intense than participants who did not. ANCOVAs revealed that depression was associated with pain rating and pain tolerance.

  14. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation Pediatric Spinal ... Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal Cord Injury Rehabilitation Pediatric Spinal ...

  15. Spinal Cord Injury 101

    Medline Plus

    Full Text Available ... Animated Spinal Cord Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal ... Animated Spinal Cord Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal ...

  16. Pressure Ulcers in Trauma Patients with Preventive Spinal Immobilization : Incidence, characteristics and risk factors

    NARCIS (Netherlands)

    Ham, H.W.

    2016-01-01

    Introduction To protect the (possibly) injured spine, trauma patients are immobilized on a backboard, with an extrication collar, lateral headblocks, and straps. Although pressure ulcers are typically associated with older adults and chronic illness, of all patients in a hospital environment,

  17. Direct to Operating Room Trauma Resuscitation Decreases Mortality Among Severely Injured Children.

    Science.gov (United States)

    Wieck, Minna M; Cunningham, Aaron J; Behrens, Brandon; Ohm, Erika T; Maxwell, Bryan G; Hamilton, Nicholas A; Adams, M Christopher; Cole, Frederick J; Jafri, Mubeen A

    2018-03-16

    Expediting evaluation and intervention for severely injured patients has remained a mainstay of advanced trauma care. One technique, direct to operating room (DOR) resuscitation, for selective adult patients has demonstrated decreased mortality. We sought to investigate the application of this protocol in children. All DOR pediatric patients from 2009-2016 at a pediatric Level I Trauma Center were identified. DOR criteria included penetrating injury, chest injuries, amputations, significant blood loss, cardiopulmonary resuscitation, and surgeon discretion. Demographics, injury patterns, interventions, and outcomes were analyzed. Observed mortality was compared to expected mortality, calculated using Trauma Injury Severity Score (TRISS) methodology, with two-tailed t-tests and a p-value 15, 33% had GCS≤8, and 9% were hypotensive. The most commonly injured body regions were external (66%), head (34%), chest (30%), and abdomen (27%). Sixty-seven patients (82%) required emergent procedural intervention, most commonly wound exploration/repair (35%), central venous access (22%), tube thoracostomy (19%) and laparotomy (18%). Predictors of intervention were ISS>15 (odds ratio=14, p=0.013) and GCS<9 (odds ratio=8.5, p=0.044). The survival rate to discharge for DOR patients was 84% compared with an expected survival of 79% (TRISS) (p=0.4). The greatest improvement relative to expected mortality was seen in the subgroup with penetrating trauma (84.5% vs. 74.4%, p=0.002). A selective policy of resuscitating the most severely injured children in the operating room can decrease mortality. Patients suffering penetrating trauma with the highest ISS and diminished GCS have the greatest benefit. Trauma centers with appropriate resources should evaluate implementing similar policies. Level II. Diagnostic tests or criteria.

  18. Intrinsic and Extrinsic Contributions to Seated Balance in the Sagittal and Coronal Planes: Implications for Trunk Control After Spinal Cord Injury.

    Science.gov (United States)

    Audu, Musa L; Triolo, Ronald J

    2015-08-01

    The contributions of intrinsic (passive) and extrinsic (active) properties of the human trunk, in terms of the simultaneous actions about the hip and spinal joints, to the control of sagittal and coronal seated balance were examined. Able-bodied (ABD) and spinal-cord-injured (SCI) volunteers sat on a moving platform which underwent small amplitude perturbations in the anterior-posterior (AP) and medial-lateral (ML) directions while changes to trunk orientation were measured. A linear parametric model that related platform movement to trunk angle was fit to the experimental data by identifying model parameters in the time domain. The results showed that spinal cord injury leads to a systematic reduction in the extrinsic characteristics, while most of the intrinsic characteristics were rarely affected. In both SCI and ABD individuals, passive characteristics alone were not enough to maintain seated balance. Passive stiffness in the ML direction was almost 3 times that in the AP direction, making more extrinsic mechanisms necessary for balance in the latter direction. Proportional and derivative terms of the extrinsic model made the largest contribution to the overall output from the active system, implying that a simple proportional plus derivative (PD) controller structure will suffice for restoring seated balance after spinal cord injury.

  19. Firing patterns of spontaneously active motor units in spinal cord-injured subjects.

    Science.gov (United States)

    Zijdewind, Inge; Thomas, Christine K

    2012-04-01

    Involuntary motor unit activity at low rates is common in hand muscles paralysed by spinal cord injury. Our aim was to describe these patterns of motor unit behaviour in relation to motoneurone and motor unit properties. Intramuscular electromyographic activity (EMG), surface EMG and force were recorded for 30 min from thenar muscles of nine men with chronic cervical SCI. Motor units fired for sustained periods (>10 min) at regular (coefficient of variation ≤ 0.15, CV, n =19 units) or irregular intervals (CV>0.15, n =14). Regularly firing units started and stopped firing independently suggesting that intrinsic motoneurone properties were important for recruitment and derecruitment. Recruitment (3.6 Hz, SD 1.2), maximal (10.2 Hz, SD 2.3, range: 7.5-15.4 Hz) and derecruitment frequencies were low (3.3 Hz, SD 1.6), as were firing rate increases after recruitment (~20 intervals in 3 s). Once active, firing often covaried, promoting the idea that units received common inputs.Half of the regularly firing units showed a very slow decline (>40 s) in discharge before derecruitment and had interspike intervals longer than their estimated after hyperpolarisation potential (AHP) duration (estimated by death rate and breakpoint analyses). The other units were derecruited more abruptly and had shorter estimated AHP durations. Overall, regularly firing units had longer estimated AHP durations and were weaker than irregularly firing units, suggesting they were lower threshold units. Sustained firing of units at regular rates may reflect activation of persistent inward currents, visible here in the absence of voluntary drive, whereas irregularly firing units may only respond to synaptic noise.

  20. What Is Being Trained? How Divergent Forms of Plasticity Compete To Shape Locomotor Recovery after Spinal Cord Injury.

    Science.gov (United States)

    Huie, J Russell; Morioka, Kazuhito; Haefeli, Jenny; Ferguson, Adam R

    2017-05-15

    Spinal cord injury (SCI) is a devastating syndrome that produces dysfunction in motor and sensory systems, manifesting as chronic paralysis, sensory changes, and pain disorders. The multi-faceted and heterogeneous nature of SCI has made effective rehabilitative strategies challenging. Work over the last 40 years has aimed to overcome these obstacles by harnessing the intrinsic plasticity of the spinal cord to improve functional locomotor recovery. Intensive training after SCI facilitates lower extremity function and has shown promise as a tool for retraining the spinal cord by engaging innate locomotor circuitry in the lumbar cord. As new training paradigms evolve, the importance of appropriate afferent input has emerged as a requirement for adaptive plasticity. The integration of kinematic, sensory, and loading force information must be closely monitored and carefully manipulated to optimize training outcomes. Inappropriate peripheral input may produce lasting maladaptive sensory and motor effects, such as central pain and spasticity. Thus, it is important to closely consider the type of afferent input the injured spinal cord receives. Here we review preclinical and clinical input parameters fostering adaptive plasticity, as well as those producing maladaptive plasticity that may undermine neurorehabilitative efforts. We differentiate between passive (hindlimb unloading [HU], limb immobilization) and active (peripheral nociception) forms of aberrant input. Furthermore, we discuss the timing of initiating exposure to afferent input after SCI for promoting functional locomotor recovery. We conclude by presenting a candidate rapid synaptic mechanism for maladaptive plasticity after SCI, offering a pharmacological target for restoring the capacity for adaptive spinal plasticity in real time.

  1. Exploring factors facilitating adults with spinal cord injury rejoining the workforce: a pilot study.

    Science.gov (United States)

    Wilbanks, Susan R; Ivankova, Nataliya V

    2015-01-01

    Return-to-work (RTW) rates after spinal cord injury (SCI) in the USA are very low and are continuing to decline. Previous research has attempted to identify factors facilitating RTW; however, the phenomenon of RTW involves many personal factors and predicting RTW success remains difficult. The purpose of this pilot study was to explore the factors facilitating adults with SCI rejoining the workforce in an urban area in order to identify items that may be emphasized in the rehabilitation process. The study was completed using qualitative methods. Four adults who had acquired a traumatic SCI in adulthood and were currently employed participated. Their experiences in RTW after injury were collected via semi-structured interviews and photography of assistive devices. The most common facilitating factor was motivation, with family and rehabilitation professionals serving as extrinsic motivators. Other facilitators were resources and perceived benefits. Motivation and resources were important facilitators, including rehabilitation professional's personal influence and therapies, and resource assistance from state agencies. The results indicate that practitioners can play an important role in influencing RTW, and resources from state agencies are helpful when individuals know how to access and utilize them. Assistive technology supports successful return to work after SCI. Motivation strongly influences return to work after SCI and can be influenced by rehabilitation professionals, family and community members. Patients should be well informed about how to access assistance programs such as vocational rehabilitation.

  2. The circulation of the cerebrospinal fluid (CSF) in the spinal canal

    Science.gov (United States)

    Sanchez, Antonio L.; Martinez-Bazan, Carlos; Lasheras, Juan C.

    2016-11-01

    Cerebrospinal Fluid (CSF) is secreted in the choroid plexus in the lateral sinuses of the brain and fills the subarachnoid space bathing the external surfaces of the brain and the spinal canal. Absence of CSF circulation has been shown to impede its physiological function that includes, among others, supplying nutrients to neuronal and glial cells and removing the waste products of cellular metabolism. Radionuclide scanning images published by Di Chiro in 1964 showed upward migration of particle tracers from the lumbar region of the spinal canal, thereby suggesting the presence of an active bulk circulation responsible for bringing fresh CSF into the spinal canal and returning a portion of it to the cranial vault. However, the existence of this slow moving bulk circulation in the spinal canal has been a subject of dispute for the last 50 years. To date, there has been no physical explanation for the mechanism responsible for the establishment of such a bulk motion. We present a perturbation analysis of the flow in an idealized model of the spinal canal and show how steady streaming could be responsible for the establishment of such a circulation. The results of this analysis are compared to flow measurements conducted on in-vitro models of the spinal canal of adult humans.

  3. Injury, disability and quality of life after the 2009 earthquake in Padang, Indonesia: a prospective cohort study of adult survivors

    Directory of Open Access Journals (Sweden)

    Mondastri K. Sudaryo

    2012-05-01

    Full Text Available Background: On 30 September 2009, a 7.6 magnitude earthquake severely hit the coast of Padang city in West Sumatra, Indonesia leaving about 1,117 people dead and injuring another 3,515. Health consequences such as physical injury, co-morbidity, disability and quality of life over time are seldom reported among survivors after earthquakes. Objectives: To investigate the associations between injury, disability and quality of life amongst adult survivors in Padang city after the 2009 earthquake.Design/Methods: A prospective cohort study was conducted to compare adult injured (184 and adult non-injured (93 subjects over a 6-month period. Data on physical injury, co-morbidities, disability and quality of life were collected through interviews and measured quantitatively in three phases, i.e. at baseline, end of 3 and 6 months. Results: Disability scores were consistently and significantly higher among injured subjects compared to non-injured, even when adjusted for co-morbidities (i.e. acute symptoms and chronic diseases. The highest disability score amongst injured subjects was attributed to ‘feeling discomfort/pain’. Quality of life attribute (QLA scores, were significantly lower amongst injured people as compared to those non-injured even when adjusted for co-morbidities. The lowest QLA item score amongst the injured was ‘pain, depression and anxiety’. Significant and consistent negative correlations were found between disability and QLA scores in both the injured and non-injured groups. Conclusion: Physical injury is significantly correlated with both higher disability and lower quality of life, while disability has significant negative correlation with quality of life. The findings suggest that, through disability, injury may contribute to decreased quality of life. It is therefore recommended to promptly and adequately treat injuries after disasters to prevent any potential for disability and hence restore quality of life.

  4. Epidemiology of Pediatric Traumatic Spinal Cord Injury in a Population-Based Cohort, 1998-2012.

    Science.gov (United States)

    Saunders, Lee L; Selassie, Anbesaw; Cao, Yue; Zebracki, Kathy; Vogel, Lawrence C

    2015-01-01

    Traumatic spinal cord injury (SCI) that occurs in children and adolescents who are still developing represents a different challenge than SCI in adults. However, information on the epidemiology and incidence of SCI in a population-based cohort is lacking. To describe the epidemiology of pediatric SCI in a population-based cohort in the United States and to assess trend in incidence over a 15-year period (1998-2012). Children and adolescents (0-21 years) with SCI were identified through the South Carolina SCI Surveillance Registry using hospital discharge records from 1998 to 2012. Overall age-adjusted incidence rates were calculated for each year, and incidence rates were stratified by age, gender, and race. The overall age-adjusted incidence rate was 26.9 per million population, and there was a trend (P = .0583) toward decreasing incidence of pediatric SCI. When stratified by race, there was a significant decrease in incidence among Whites(P = .0052) but not among non-Whites. Younger participants were more likely to be female, to be injured through sports, and to be more likely to have concomitant traumatic brain injury. Since 1998, the proportion of older pediatric patients (16-22 years) with SCI has increased, as has the proportion of non-White patients. Although there was an overall trend toward decreasing incidence in this population-based cohort, when stratified by race, this trend only occurred in the White population.

  5. Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity.

    Directory of Open Access Journals (Sweden)

    Yoshiomi Kobayashi

    Full Text Available Murine and human iPSC-NS/PCs (induced pluripotent stem cell-derived neural stem/progenitor cells promote functional recovery following transplantation into the injured spinal cord in rodents. However, for clinical applicability, it is critical to obtain proof of the concept regarding the efficacy of grafted human iPSC-NS/PCs (hiPSC-NS/PCs for the repair of spinal cord injury (SCI in a non-human primate model. This study used a pre-evaluated "safe" hiPSC-NS/PC clone and an adult common marmoset (Callithrix jacchus model of contusive SCI. SCI was induced at the fifth cervical level (C5, followed by transplantation of hiPSC-NS/PCs at 9 days after injury. Behavioral analyses were performed from the time of the initial injury until 12 weeks after SCI. Grafted hiPSC-NS/PCs survived and differentiated into all three neural lineages. Furthermore, transplantation of hiPSC-NS/PCs enhanced axonal sparing/regrowth and angiogenesis, and prevented the demyelination after SCI compared with that in vehicle control animals. Notably, no tumor formation occurred for at least 12 weeks after transplantation. Quantitative RT-PCR showed that mRNA expression levels of human neurotrophic factors were significantly higher in cultured hiPSC-NS/PCs than in human dermal fibroblasts (hDFs. Finally, behavioral tests showed that hiPSC-NS/PCs promoted functional recovery after SCI in the common marmoset. Taken together, these results indicate that pre-evaluated safe hiPSC-NS/PCs are a potential source of cells for the treatment of SCI in the clinic.

  6. A pilot study on the use of cerebrospinal fluid cell-free DNA in intramedullary spinal ependymoma.

    Science.gov (United States)

    Connolly, Ian David; Li, Yingmei; Pan, Wenying; Johnson, Eli; You, Linya; Vogel, Hannes; Ratliff, John; Hayden Gephart, Melanie

    2017-10-01

    Cerebrospinal fluid (CSF) represents a promising source of cell-free DNA (cfDNA) for tumors of the central nervous system. A CSF-based liquid biopsy may obviate the need for riskier tissue biopsies and serve as a means for monitoring tumor recurrence or response to therapy. Spinal ependymomas most commonly occur in adults, and aggressive resection must be delicately balanced with the risk of injury to adjacent normal tissue. In patients with subtotal resection, recurrence commonly occurs. A CSF-based liquid biopsy matched to the patient's spinal ependymoma mutation profile has potential to be more sensitive then surveillance MRI, but the utility has not been well characterized for tumors of the spinal cord. In this study, we collected matched blood, tumor, and CSF samples from three adult patients with WHO grade II intramedullary spinal ependymoma. We performed whole exome sequencing on matched tumor and normal DNA to design Droplet Digital™ PCR (ddPCR) probes for tumor and wild-type mutations. We then interrogated CSF samples for tumor-derived cfDNA by performing ddPCR on extracted cfDNA. Tumor cfDNA was not reliably detected in the CSF of our cohort. Anatomic sequestration and low grade of intramedullary spinal cord tumors likely limits the role of CSF liquid biopsy.

  7. A Fab fragment directed against the neural cell adhesion molecule L1 enhances functional recovery after injury of the adult mouse spinal cord.

    Science.gov (United States)

    Loers, Gabriele; Cui, Yi-Fang; Neumaier, Irmgard; Schachner, Melitta; Skerra, Arne

    2014-06-15

    Lack of permissive mechanisms and abundance of inhibitory molecules in the lesioned central nervous system of adult mammals contribute to the failure of functional recovery, which leads to severe disabilities in motor functions or pain. Previous studies have indicated that the neural cell adhesion molecule L1 constitutes a viable target to promote regeneration. In the present study, we describe the cloning, functional expression in Escherichia coli cells and purification of a recombinant αL1 Fab fragment that binds to L1 with comparable activity as the function-triggering monoclonal antibody 557.B6 and induces neurite outgrowth and neuronal survival in cultured neurons, despite its monovalent function. Infusion of αL1 Fab into the lesioned spinal cord of mice enhanced functional recovery after thoracic spinal cord compression injury. αL1 Fab treatment resulted in reduced scar volume, enhanced number of tyrosine hydroxylase-positive axons and increased linear density of VGLUT1 (vesicular glutamate transporter 1) on motoneurons. Furthermore, the number and soma size of ChAT (choline acetyltransferase)-positive motoneurons and the linear density of ChAT-positive boutons on motoneurons as well as parvalbumin-positive interneurons in the lumbar spinal cord were elevated. Stimulation of endogenous L1 by application of the αL1 Fab opens new avenues for recombinant antibody technology, offering prospects for therapeutic applications after traumatic nervous system lesions.

  8. Assessment of the Cross-Sectional Areas of the Psoas Major and Multifidus Muscles in Patients With Adult Spinal Deformity: A Case-Control Study.

    Science.gov (United States)

    Banno, Tomohiro; Yamato, Yu; Hasegawa, Tomohiko; Kobayashi, Sho; Togawa, Daisuke; Oe, Shin; Mihara, Yuki; Kurosu, Kenta; Yamamoto, Naoto; Matsuyama, Yukihiro

    2017-08-01

    This is a case-control study. The present study aimed to compare the cross-sectional areas of the psoas major and multifidus muscles between elderly patients with adult spinal deformity (ASD) and age-matched and body weight-matched controls, and to evaluate the associations between the cross-sectional areas of these muscles and the severity of spinal deformity. The study included 49 female kyphosis patients with mild scoliosis (Cobb angle muscles were calculated using preoperative L4/L5 axial computed tomography images. In group D, the following spinopelvic parameters were assessed: sagittal vertical axis, pelvic tilt, pelvic incidence, lumbar lordosis, and thoracic kyphosis. The relationships between the muscle cross-sectional areas and spinopelvic parameters were evaluated. The cross-sectional area of the multifidus muscle was lower in group D than in group C. However, the cross-sectional area of the psoas major muscle was not different between the 2 groups. In multiple regression analysis, the cross-sectional area of the multifidus muscle was significantly associated with all spinopelvic parameters. The cross-sectional area of the multifidus muscle might be lower in elderly patients with ASD than in controls. In the elderly population, the severity of sagittal spinal deformity might be correlated with the cross-sectional area of the multifidus muscle. Therefore, muscle imbalances between the flexors and extensors of the spine could participate in the pathology of ASD.

  9. Overreaching in coordination dynamics therapy in an athlete with a spinal cord injury.

    Science.gov (United States)

    Schalow, G; Vaher, I; Jaigma, P

    2008-03-01

    A motocross athlete suffered a clinically complete spinal cord injury (SCI) during competition. Although MRIs (magnetic resonance imaging) showed a complete spinal cord injury at the Thoracic 11/12 levels, surface EMG recordings indicated the survival of few tract fibres across the injury site. Six weeks after the accident the subject began intensive Coordination Dynamics Therapy (CDT) at an up-to-date therapy centre. The subject trained at his physical limits to induce structural and functional repair. Exercising at variable loads between 20 and 200N (on a special CDT and recording device) generated periods of overreaching and super-compensation. By plotting coordination dynamics values (kinesiology), including high-load exertion (200N) and hysteresis curves, periods of overreaching and super-compensation were made graphically visible. It was found that symmetrical improvements of central nervous system (CNS) functioning occurred during overreaching. Improvements in spinal cord functioning were achieved throughout one year of CDT in this chronically injured subject with an almost anatomically complete SCI. It is discussed that the measuring of CNS functions by means of recording coordination dynamics is a powerful and non-invasive tool ideal for exact quantitative and qualitative measurements of improvement (or change) in CNS functioning. Such diagnostics may be of particular importance in sport during training and before competition. Also, coordination dynamics might be used to measure the effects of prolonged exposure to reduced gravitational conditions on CNS functions, such as faced by astronauts.

  10. Role of Melatonin in Traumatic Brain Injury and Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Mehar Naseem

    2014-01-01

    Full Text Available Brain and spinal cord are implicated in incidences of two of the most severe injuries of central nervous system (CNS. Traumatic brain injury (TBI is a devastating neurological deficit involving primary and secondary injury cascades. The primary and secondary mechanisms include complex consequences of activation of proinflammatory cytokines, cerebral edema, upregulation of NF-κβ, disruption of blood-brain barrier (BBB, and oxidative stress. Spinal cord injury (SCI includes primary and secondary injury cascades. Primary injury leads to secondary injury in which generation of free radicals and oxidative or nitrative damage play an important pathophysiological role. The indoleamine melatonin is a hormone secreted or synthesized by pineal gland in the brain which helps to regulate sleep and wake cycle. Melatonin has been shown to be a versatile hormone having antioxidative, antiapoptotic, neuroprotective, and anti-inflammatory properties. It has a special characteristic of crossing BBB. Melatonin has neuroprotective role in the injured part of the CNS after TBI and SCI. A number of studies have successfully shown its therapeutic value as a neuroprotective agent in the treatment of neurodegenerative diseases. Here in this review we have compiled the literature supporting consequences of CNS injuries, TBI and SCI, and the protective role of melatonin in it.

  11. The Brain and Spinal Injury Center score: a novel, simple, and reproducible method for assessing the severity of acute cervical spinal cord injury with axial T2-weighted MRI findings.

    Science.gov (United States)

    Talbott, Jason F; Whetstone, William D; Readdy, William J; Ferguson, Adam R; Bresnahan, Jacqueline C; Saigal, Rajiv; Hawryluk, Gregory W J; Beattie, Michael S; Mabray, Marc C; Pan, Jonathan Z; Manley, Geoffrey T; Dhall, Sanjay S

    2015-10-01

    Previous studies that have evaluated the prognostic value of abnormal changes in signals on T2-weighted MRI scans of an injured spinal cord have focused on the longitudinal extent of this signal abnormality in the sagittal plane. Although the transverse extent of injury and the degree of spared spinal cord white matter have been shown to be important for predicting outcomes in preclinical animal models of spinal cord injury (SCI), surprisingly little is known about the prognostic value of altered T2 relaxivity in humans in the axial plane. The authors undertook a retrospective chart review of 60 patients who met the inclusion criteria of this study and presented to the authors' Level I trauma center with an acute blunt traumatic cervical SCI. Within 48 hours of admission, all patients underwent MRI examination, which included axial and sagittal T2 images. Neurological symptoms, evaluated with the grades according to the American Spinal Injury Association (ASIA) Impairment Scale (AIS), at the time of admission and at hospital discharge were correlated with MRI findings. Five distinct patterns of intramedullary spinal cord T2 signal abnormality were defined in the axial plane at the injury epicenter. These patterns were assigned ordinal values ranging from 0 to 4, referred to as the Brain and Spinal Injury Center (BASIC) scores, which encompassed the spectrum of SCI severity. The BASIC score strongly correlated with neurological symptoms at the time of both hospital admission and discharge. It also distinguished patients initially presenting with complete injury who improved by at least one AIS grade by the time of discharge from those whose injury did not improve. The authors' proposed score was rapid to apply and showed excellent interrater reliability. The authors describe a novel 5-point ordinal MRI score for classifying acute SCIs on the basis of axial T2-weighted imaging. The proposed BASIC score stratifies the SCIs according to the extent of transverse T2

  12. Hyperbaric Versus Isobaric Bupivacaine for Spinal Anesthesia: Systematic Review and Meta-analysis for Adult Patients Undergoing Noncesarean Delivery Surgery.

    Science.gov (United States)

    Uppal, Vishal; Retter, Susanne; Shanthanna, Harsha; Prabhakar, Christopher; McKeen, Dolores M

    2017-11-01

    It is widely believed that the choice between isobaric bupivacaine and hyperbaric bupivacaine formulations alters the block characteristics for the conduct of surgery under spinal anesthesia. The aim of this study was to systematically review the comparative evidence regarding the effectiveness and safety of the 2 formulations when used for spinal anesthesia for adult noncesarean delivery surgery. Key electronic databases were searched for randomized controlled trials, excluding cesarean delivery surgeries under spinal anesthesia, without any language or date restrictions. The primary outcome measure for this review was the failure of spinal anesthesia. Two independent reviewers selected the studies and extracted the data. Results were expressed as relative risk (RR) or mean differences (MDs) with 95% confidence intervals (CIs). Seven hundred fifty-one studies were identified between 1946 and 2016. After screening, there were 16 randomized controlled clinical trials, including 724 participants, that provided data for the meta-analysis. The methodological reporting of most studies was poor, and appropriate judgment of their individual risk of bias elements was not possible. There was no difference between the 2 drugs regarding the need for conversion to general anesthesia (RR, 0.60; 95% CI, 0.08-4.41; P = .62; I = 0%), incidence of hypotension (RR, 1.15; 95% CI, 0.69-1.92; P = .58; I = 0%), nausea/vomiting (RR, 0.29; 95% CI, 0.06-1.32; P = .11; I = 7%), or onset of sensory block (MD = 1.7 minutes; 95% CI, -3.5 to 0.1; P = .07; I = 0%). The onset of motor block (MD = 4.6 minutes; 95% CI, 7.5-1.7; P = .002; I = 78%) was significantly faster with hyperbaric bupivacaine. Conversely, the duration of motor (MD = 45.2 minutes; 95% CI, 66.3-24.2; P bupivacaine. Both hyperbaric bupivacaine and isobaric bupivacaine provided effective anesthesia with no difference in the failure rate or adverse effects. The hyperbaric formulation allows for a relatively rapid motor block onset

  13. Relationship between anthropometric measures and sagittal spinal curvatures in adult male handball players

    Directory of Open Access Journals (Sweden)

    Ameer Mariam Abdul-Moneem

    2017-12-01

    Full Text Available Purpose. Increasing anthropometric measures bring considerable spinal loads during sports practice, which inversely affects the adaptation abilities of the spinal structures; this in turn influences the spinal curvatures. The study was conducted to explore the relationship between anthropometric measures and sagittal spinal curvatures in handball players. Method. The total of 83 male handball players were divided into 2 groups, depending on their body height: group 1 (age, 23.62 ± 2.07 years consisted of 40 handball players with height above average, group 2 (age, 24.63 ± 2.58 years consisted of 43 handball players with height below average. The thoracic and lumbar curvatures and trunk height were measured with the Formetric III 4D spine and posture analysis system. Results. The thoracic kyphosis of group 1 was significantly higher than that of group 2 (p = 0.038, without a significant difference in lumbar lordosis (p = 0.312, and significant difference in the coefficient of compensation between thoracic kyphosis and lumbar lordosis (p = 0.026. Group 1 showed strong positive correlation between body height and kyphotic angle (r = 0.897, and moderate positive correlation with lordosis angle (r = 0.496. In group 2, there was weak positive correlation with kyphotic angle (r = 0.381, and weak negative correlation with lumbar lordosis angle (r = -0.355. Conclusions. Increasing body height of handball players is associated with bigger kyphotic and lordotic angles. Owing to frequent sagittal asymmetric overloading of the spine during handball training, exercises that help maintain good posture and correct the thoracic kyphosis are required, especially for taller players.

  14. Cellular therapy after spinal cord injury using neural progenitor cells

    NARCIS (Netherlands)

    Vroemen, Maurice

    2006-01-01

    In this thesis, the possibilities and limitations of cell-based therapies after spinal cord injury are explored. Particularly, the potential of adult derived neural progenitor cell (NPC) grafts to function as a permissive substrate for axonal regeneration was investigated. It was found that syngenic

  15. Spinal Cord Injury 101

    Medline Plus

    Full Text Available menu Understanding Spinal Cord Injury What is a Spinal Cord Injury Levels of Injury and What They Mean Animated Spinal Cord Injury Chart Spinal Cord Injury Facts and Figures Care and Treatment After SCI Spinal ...

  16. Clinical Significance of Incidental Focal 18F-FDG Uptake in the Spinal Cord of Patients with Cancer.

    Science.gov (United States)

    Lim, Chae Hong; Hyun, Seung Hyup; Moon, Seung Hwan; Cho, Young Seok; Choe, Yearn Seong; Lee, Kyung-Han; Kim, Byung-Tae; Choi, Joon Young

    2017-09-01

    We investigated the incidence, location, and clinical significance of focal 18 F-FDG uptake of the spinal cord in patients with cancer. We reviewed the medical records of 22,937 consecutive adult patients with known or suspicious malignancy who underwent 18 F-FDG PET/CT. PET/CT scans with incidental focal spinal cord uptake were selected and retrospectively reviewed to determine the presence, location, number, and maximum standardized uptake value (SUV max ) of any focal hypermetabolic lesions of the spinal cord. In subjects with focal spinal uptake, clinical characteristics and clinical follow-up results, including follow-up PET/CT, were reviewed. Incidental focal spinal cord uptake was observed in 69 of 22,937 adult patients (incidence = 0.3%; M:F = 31:38; age, 55.8 ± 14.7 years). Seventy-eight focal hypermetabolic lesions on spinal cord in the PET/CT scans of the 69 study subjects were analyzed. The most common sites of focal spinal cord uptake were the T12 vertebra (47/78; 60.3%) and L1 vertebra (20/78; 25.6%). Multifocal cord uptake was found in 8 of 69 patients (11.6%). The average SUV max for cord uptake was 2.5 ± 0.5 (range, 1.4∼3.9). There was no clinical or imaging evidence of abnormalities in the spinal cord, both at the time of PET/CT and during clinical follow-up. Although incidental focal 18 F-FDG uptake of the spinal cord is rare in patients with cancer, it may be physiological or benign, but it should not be considered as malignant involvement. Common sites for the uptake were in the T12 and L1 spine levels.

  17. Spinal sagittal imbalance in patients with lumbar disc herniation: its spinopelvic characteristics, strength changes of the spinal musculature and natural history after lumbar discectomy.

    Science.gov (United States)

    Liang, Chen; Sun, Jianmin; Cui, Xingang; Jiang, Zhensong; Zhang, Wen; Li, Tao

    2016-07-22

    Spinal sagittal imbalance is a widely acknowledged problem, but there is insufficient knowledge regarding its occurrence. In some patients with lumbar disc herniation (LDH), their symptom is similar to spinal sagittal imbalance. The aim of this study is to illustrate the spinopelvic sagittal characteristics and identity the role of spinal musculature in the mechanism of sagittal imbalance in patients with LDH. Twenty-five adults with spinal sagittal imbalance who initially came to our clinic for treatment of LDH, followed by posterior discectomy were reviewed. The horizontal distance between C7 plumb line-sagittal vertical axis (C7PL-SVA) greater than 5 cm anteriorly with forward bending posture is considered as spinal sagittal imbalance. Radiographic parameters including thoracic kyphotic angle (TK), lumbar lordotic angle (LL), pelvic tilting angle (PT), sacral slope angle (SS) and an electromyography(EMG) index 'the largest recruitment order' were recorded and compared. All patients restored coronal and sagittal balance immediately after lumbar discectomy. The mean C7PL-SVA and trunk shift value decreased from (11.6 ± 6.6 cm, and 2.9 ± 6.1 cm) preoperatively to (-0.5 ± 2.6 cm and 0.2 ± 0.5 cm) postoperatively, while preoperative LL and SS increased from (25.3° ± 14.0° and 25.6° ± 9.5°) to (42.4° ± 10.2° and 30.4° ± 8.7°) after surgery (P imbalance caused by LDH is one type of compensatory sagittal imbalance. Compensatory mechanism of spinal sagittal imbalance mainly includes a loss of lumbar lordosis, an increase of thoracic kyphosis and pelvis tilt. Spinal musculature plays an important role in spinal sagittal imbalance in patients with LDH.

  18. Matrix metalloproteinases and left ventricular function and structure in spinal cord injured subjects.

    Science.gov (United States)

    Schreiber, Roberto; Paim, Layde R; de Rossi, Guilherme; Matos-Souza, José R; Costa E Silva, Anselmo de A; Souza, Cristiane M; Borges, Mariane; Azevedo, Eliza R; Alonso, Karina C; Gorla, José I; Cliquet, Alberto; Nadruz, Wilson

    2014-11-01

    Subjects with spinal cord injury (SCI) exhibit impaired left ventricular (LV) diastolic function, which has been reported to be attenuated by regular physical activity. This study investigated the relationship between circulating matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) and echocardiographic parameters in SCI subjects and the role of physical activity in this regard. Forty-two men with SCI [19 sedentary (S-SCI) and 23 physically-active (PA-SCI)] were evaluated by clinical, anthropometric, laboratory, and echocardiographic analysis. Plasmatic pro-MMP-2, MMP-2, MMP-8, pro-MMP-9, MMP-9, TIMP-1 and TIMP-2 levels were determined by enzyme-linked immunosorbent assay and zymography. PA-SCI subjects presented lower pro-MMP-2 and pro-MMP-2/TIMP-2 levels and improved markers of LV diastolic function (lower E/Em and higher Em and E/A values) than S-SCI ones. Bivariate analysis showed that pro-MMP-2 correlated inversely with Em and directly with E/Em, while MMP-9 correlated directly with LV mass index and LV end-diastolic diameter in the whole sample. Following multiple regression analysis, pro-MMP-2, but not physical activity, remained associated with Em, while MMP-9 was associated with LV mass index in the whole sample. These findings suggest differing roles for MMPs in LV structure and function regulation and an interaction among pro-MMP-2, diastolic function and physical activity in SCI subjects. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells

    Science.gov (United States)

    2012-01-01

    Background In contrast to mammals, amphibians, such as adult urodeles (for example, newts) and anuran larvae (for example, Xenopus) can regenerate their spinal cord after injury. However, the cellular and molecular mechanisms involved in this process are still poorly understood. Results Here, we report that tail amputation results in a global increase of Sox2 levels and proliferation of Sox2+ cells. Overexpression of a dominant negative form of Sox2 diminished proliferation of spinal cord resident cells affecting tail regeneration after amputation, suggesting that spinal cord regeneration is crucial for the whole process. After spinal cord transection, Sox2+ cells are found in the ablation gap forming aggregates. Furthermore, Sox2 levels correlated with regenerative capabilities during metamorphosis, observing a decrease in Sox2 levels at non-regenerative stages. Conclusions Sox2+ cells contribute to the regeneration of spinal cord after tail amputation and transection. Sox2 levels decreases during metamorphosis concomitantly with the lost of regenerative capabilities. Our results lead to a working hypothesis in which spinal cord damage activates proliferation and/or migration of Sox2+ cells, thus allowing regeneration of the spinal cord after tail amputation or reconstitution of the ependymal epithelium after spinal cord transection. PMID:22537391

  20. Bonobos apparently search for a lost member injured by a snare.

    Science.gov (United States)

    Tokuyama, Nahoko; Emikey, Besao; Bafike, Batuafe; Isolumbo, Batuafe; Iyokango, Bahanande; Mulavwa, Mbangi N; Furuichi, Takeshi

    2012-07-01

    This is the first report to demonstrate that a large mixed-sex party of bonobos travelled a long distance to return to the location of a snare apparently to search for a member that had been caught in it. An adult male was caught in a metallic snare in a swamp forest at Wamba, Luo Scientific Reserve, Democratic Republic of the Congo. After he escaped from the snare by breaking a sapling to which the snare was attached, other members of his party assisted him by unfastening the snare from lianas in which it was caught and licked his wound and tried to remove the snare from his fingers. In the late afternoon, they left him in the place where he was stuck in the liana and travelled to the dry forest where they usually spend the night. The next morning, they travelled back 1.8 km to revisit the location of the injured male. When they confirmed that he was no longer there, they returned to the dry forest to forage. This was unlike the usual ranging patterns of the party, suggesting that the bonobos travelled with the specific intention of searching for this injured individual who had been left behind. The incident described in this report likely occurred because bonobos usually range in a large mixed-sex party and try to maintain group cohesion as much as possible.