WorldWideScience

Sample records for injection moulded microfluidic

  1. Characterization and analysis of sub-micron surface roughness of injection moulded microfluidic systems using White Light Interferometry

    DEFF Research Database (Denmark)

    Tosello, Guido; Marinello, Francesco; Hansen, Hans Nørgaard

    2009-01-01

    Surface topography is of great importance in polymer micro fluidics, therefore the replication capability of the process and the surface quality of the tool has to be suitably optimized. In this paper, optical profilometry (white light interferometry, WLI) is implemented for topographical...... characterization of polymer surfaces. In particular the study considers replication performance of injection moulding applied for the realization of microfluidic systems for blood analysis. Parts were produced by means of a series of statistically designed injection moulding experiments. Three process parameters...

  2. An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics.

    Science.gov (United States)

    Szydzik, C; Gavela, A F; Herranz, S; Roccisano, J; Knoerzer, M; Thurgood, P; Khoshmanesh, K; Mitchell, A; Lechuga, L M

    2017-08-08

    A primary limitation preventing practical implementation of photonic biosensors within point-of-care platforms is their integration with fluidic automation subsystems. For most diagnostic applications, photonic biosensors require complex fluid handling protocols; this is especially prominent in the case of competitive immunoassays, commonly used for detection of low-concentration, low-molecular weight biomarkers. For this reason, complex automated microfluidic systems are needed to realise the full point-of-care potential of photonic biosensors. To fulfil this requirement, we propose an on-chip valve-based microfluidic automation module, capable of automating such complex fluid handling. This module is realised through application of a PDMS injection moulding fabrication technique, recently described in our previous work, which enables practical fabrication of normally closed pneumatically actuated elastomeric valves. In this work, these valves are configured to achieve multiplexed reagent addressing for an on-chip diaphragm pump, providing the sample and reagent processing capabilities required for automation of cyclic competitive immunoassays. Application of this technique simplifies fabrication and introduces the potential for mass production, bringing point-of-care integration of complex automated microfluidics into the realm of practicality. This module is integrated with a highly sensitive, label-free bimodal waveguide photonic biosensor, and is demonstrated in the context of a proof-of-concept biosensing assay, detecting the low-molecular weight antibiotic tetracycline.

  3. Fabrication and modelling of injection moulded all-polymer capillary microvalves for passive microfluidic control

    International Nuclear Information System (INIS)

    Kistrup, Kasper; Østergaard, Peter Friis; Taboryski, Rafael; Wolff, Anders; Hansen, Mikkel Fougt; Haugshøj, Kenneth Brian; Poulsen, Carl Esben

    2014-01-01

    Rapid prototyping is desirable when developing products. One example of such a product is all-polymer, passive flow controlled lab-on-a-chip systems that are preferential when developing low-cost disposable chips for point-of-care use. In this paper we investigate the following aspects of going from rapid prototyping to pilot (mass) production. (1) Fabrication of an all-polymer microfluidic system using a rapid prototyped master insert for injection moulding and ultrasonic welding, including a systematic experimental characterisation of chip featured geometric capillary microvalve test structures. (2) Numerical modelling of the microvalve burst pressures. Numerical modelling of burst pressures is challenging due to its non-equilibrium nature. We have implemented and tested the level-set method modified with a damped driving term and show that the introduction of the damping term leads to numerically robust results with limited computational demands and a low number of iterations. Numerical and simplified analytical results are validated against the experimental results. We find that injection moulding and ultrasonic welding are effective for chip production and that the experimental burst pressures could be estimated with an average accuracy of 5% using the presented numerical model. (paper)

  4. Fabrication and modelling of injection moulded all-polymer capillary microvalves for passive microfluidic control

    DEFF Research Database (Denmark)

    Kistrup, Kasper; Poulsen, Carl Esben; Østergaard, Peter Friis

    2014-01-01

    Rapid prototyping is desirable when developing products. One example of such a product is all-polymer, passive flow controlled lab-on-a-chip systems that are preferential when developing low-cost disposable chips for point-of-care use. In this paper we investigate the following aspects of going...... from rapid prototyping to pilot (mass) production. (1) Fabrication of an all-polymer microfluidic system using a rapid prototyped master insert for injection moulding and ultrasonic welding, including a systematic experimental characterisation of chip featured geometric capillary microvalve test...... structures. (2) Numerical modelling of the microvalve burst pressures. Numerical modelling of burst pressures is challenging due to its non-equilibrium nature. We have implemented and tested the level-set method modified with a damped driving term and show that the introduction of the damping term leads...

  5. High-Throughput Fabrication of Nanocone Substrates through Polymer Injection Moulding For SERS Analysis in Microfluidic Systems

    DEFF Research Database (Denmark)

    Viehrig, Marlitt; Matteucci, Marco; Thilsted, Anil H.

    analysis. Metal-capped silicon nanopillars, fabricated through a maskless ion etch, are state-of-the-art for on-chip SERS substrates. A dense cluster of high aspect ratio polymer nanocones was achieved by using high-throughput polymer injection moulding over a large area replicating a silicon nanopillar...... structure. Gold-capped polymer nanocones display similar SERS sensitivity as silicon nanopillars, while being easily integrable into a microfluidic chips....

  6. Injection moulding antireflective nanostructures

    DEFF Research Database (Denmark)

    Christiansen, Alexander Bruun; Clausen, Jeppe Sandvik; Mortensen, N. Asger

    2014-01-01

    We present a method for injection moulding antireflective nanostructures on large areas, for high volume production. Nanostructured black silicon masters were fabricated by mask-less reactive ion etching, and electroplated with nickel. The nickel shim was antistiction coated and used in an inject......We present a method for injection moulding antireflective nanostructures on large areas, for high volume production. Nanostructured black silicon masters were fabricated by mask-less reactive ion etching, and electroplated with nickel. The nickel shim was antistiction coated and used...

  7. Injection moulding antireflective nanostructures

    DEFF Research Database (Denmark)

    Christiansen, Alexander Bruun; Clausen, Jeppe Sandvik; Mortensen, N. Asger

    We present a method for injection moulding antireflective nanostructures on large areas, for high volume production. Nanostructured black silicon masters were fabricated by mask-less reactive ion etching, and electroplated with nickel. The nickel shim was antistiction coated and used in an inject......We present a method for injection moulding antireflective nanostructures on large areas, for high volume production. Nanostructured black silicon masters were fabricated by mask-less reactive ion etching, and electroplated with nickel. The nickel shim was antistiction coated and used...

  8. Demoulding force in micro-injection moulding

    DEFF Research Database (Denmark)

    Griffiths, C.A.; Dimov, S.S.; Scholz, S.

    2012-01-01

    The paper reports an experimental study that investigates part demoulding behavior in micro injection moulding (MIM) with a focus on the effects of pressure (P) and temperature (T) on the demoulding forces. Demoulding of a microfluidics part is conducted and the four processing parameters of melt...... temperature (Tb), mould temperature (Tm), holding pressure (Ph) and injection speed (Vi) are analysed. The result using different combinations of process parameters were used to identify the best processing conditions in regards to demoulding forces when moulding micro parts....

  9. A microfluidic control system with re-usable micropump/valve actuator and injection moulded disposable polymer lab-on-a-slide

    DEFF Research Database (Denmark)

    Bu, Minqiang; Perch-Nielsen, Ivan R.; Yi, Sun

    2011-01-01

    A microfluidic control system consisting of micropump/valves with a re-usable pneumatic actuator and a disposable polymer lab-on-a-slide is presented. The lab-on-a-slide was fabricated using low cost methods, such as injection moulding of TOPAS® cyclic olefin copolymer (COC) slide, lamination...... of different layers of polymer, and ultrasonic welding of TOPAS® lid to the slide. The re-usable pneumatic actuator not only simplifies the design of the lab-on-a-slide and reduces the fabrication cost, but also reduces the possibility of cross contamination during replacement of the disposable lab...

  10. Micro Injection Moulding

    DEFF Research Database (Denmark)

    Kjær, Erik Michael; Johansen, Bjørn B.; Sørensen, Hans H.

    2000-01-01

    Microstructures were created in SiO2 wafers using RIE and KOH etching. The mould inserts was manufactured by Ni electroplating the wafers. Different types of microstructures were made in the mould; rows of quadratic columns, rows of pyramids and of pyramid stumps. The structures (from the SiO2...

  11. Development of injection moulded, ultrasonically welded immiscible phase filtration devices

    DEFF Research Database (Denmark)

    Kistrup, Kasper

    for ultrasonic welding, suitable for microfluidic systems. A methodology has been established where energy directors can be quickly added to existing mould inserts, using laser micromachining. The produced device was performance tested by isolating methicillin-resistant Staphylococcus aureus from bovine whole....... The device appliesmagnetic bead-based solid-phase extraction for nucleic acid extraction from biological samples, using the immiscible phase filtration (IPF) approach. Device development has employed injection moulding for part fabrication and ultrasonic welding for bonding. Rapid prototyping...

  12. Characterization and analysis of micro channels and sub-micron surface roughness of injection moulded microfluidic systems using optical metrology

    DEFF Research Database (Denmark)

    Tosello, Guido; Marinello, Francesco; Hansen, Hans Nørgaard

    2012-01-01

    measuring machine and a white light interferometer respectively. The effect of the dimensional scale range on the micro/nano features replication was evaluated and it was found to be the dominant parameter if compared with the effect of the other process-related parameters investigated (melt and mould...

  13. Characterization and analysis of micro channels and sub-micron surface roughness of injection moulded microfluidic systems using optical metrology

    DEFF Research Database (Denmark)

    Tosello, Guido; Marinello, Francesco; Hansen, Hans Nørgaard

    2009-01-01

    measuring machine and a white light interferometer respectively. The effect of the dimensional scale range on the micro/nano features replication was evaluated and it was found to be the dominant parameter if compared with the effect of the other process-related parameters investigated (melt and mould...

  14. Characterisation of demoulding parameters in micro‑injection moulding

    DEFF Research Database (Denmark)

    Griffiths, C.A.; Tosello, Guido; Dimov, S.S.

    2015-01-01

    on the process factors that affect parts’ quality. Using a Cyclic Olefin Copolyme (COC) microfluidics demonstrator, the demoulding performance was studied as a function of four process parameters (melt temperature, mould temperature, holding pressure and injection speed), employing the design of experiment...

  15. Examination of injection moulded thermoplastic maize starch

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available This paper focuses on the effect of the different injection moulding parameters and storing methods on injection moulded thermoplastic maize starch (TPS. The glycerol and water plasticized starch was processed in a twin screw extruder and then with an injection moulding machine to produce TPS dumbbell specimens. Different injection moulding set-ups and storing conditions were used to analyse the effects on the properties of thermoplastic starch. Investigated parameters were injection moulding pressure, holding pressure, and for the storage: storage at 50% relative humidity, and under ambient conditions. After processing the mechanical and shrinkage properties of the manufactured TPS were determined as a function of the ageing time. While conditioning, the characteristics of the TPS changed from a soft material to a rigid material. Although this main behaviour remained, the different injection moulding parameters changed the characteristics of TPS. Scanning electron microscope observations revealed the changes in the material on ageing.

  16. Computational design of mould sprue for injection moulding thermoplastics

    Directory of Open Access Journals (Sweden)

    Muralidhar Lakkanna

    2016-01-01

    Full Text Available To injection mould polymers, designing mould is a key task involving several critical decisions with direct implications to yield quality, productivity and frugality. One prominent decision among them is specifying sprue-bush conduit expansion as it significantly influences overall injection moulding; abstruseness anguish in its design criteria deceives direct determination. Intuitively designers decide it wisely and then exasperate by optimising or manipulating processing parameters. To overwhelm that anomaly this research aims at proposing an ideal design criteria holistically for all polymeric materials also tend as a functional assessment metric towards perfection i.e., criteria to specify sprue conduit size before mould development. Accordingly, a priori analytical criterion was deduced quantitatively as expansion ratio from ubiquitous empirical relationships specifically a.k.a an exclusive expansion angle imperatively configured for injectant properties. Its computational intelligence advantage was leveraged to augment functionality of perfectly injecting into an impression gap, while synchronising both injector capacity and desired moulding features. For comprehensiveness, it was continuously sensitised over infinite scale as an explicit factor dependent on in-situ spatio-temporal injectant state perplexity with discrete slope and altitude for each polymeric character. In which congregant ranges of apparent viscosity and shear thinning index were conceived to characteristically assort most thermoplastics. Thereon results accorded aggressive conduit expansion widening for viscous incrust, while a very aggressive narrowing for shear thinning encrust; among them apparent viscosity had relative dominance. This important rationale would certainly form a priori design basis as well diagnose filling issues causing several defects. Like this the proposed generic design criteria, being simple would immensely benefit mould designers besides serve

  17. Two Component Injection Moulding for Moulded Interconnect Devices

    DEFF Research Database (Denmark)

    Islam, Aminul

    component (2k) injection moulding is one of the most industrially adaptive processes. However, the use of two component injection moulding for MID fabrication, with circuit patterns in sub-millimeter range, is still a big challenge. This book searches for the technical difficulties associated...... with the process and makes attempts to overcome those challenges. In search of suitable polymer materials for MID applications, potential materials are characterized in terms of polymer-polymer bond strength, polymer-polymer interface quality and selective metallization. The experimental results find the factors...... which can effectively control the quality of 2k moulded parts and metallized MIDs. This book presents documented knowledge about MID process chains, 2k moulding and selective metallization which can be valuable source of information for both academic and industrial users....

  18. Surface Micro Topography Replication in Injection Moulding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Hansen, Hans Nørgaard; Kjær, Erik Michael

    2005-01-01

    The surface micro topography of injection moulded plastic parts can be important for aesthetical and technical reasons. The quality of replication of mould surface topography onto the plastic surface depends among other factors on the process conditions. A study of this relationship has been...... carried out with rough EDM (electrical discharge machining) mould surfaces, a PS grade, and by applying established three-dimensional topography parameters. Significant quantitative relationships between process parameters and topography parameters were established. It further appeared that replication...

  19. Two component micro injection moulding for moulded interconnect devices

    DEFF Research Database (Denmark)

    Islam, Aminul

    2008-01-01

    Moulded interconnect devices (MIDs) contain huge possibilities for many applications in micro electro-mechanical-systems because of their capability of reducing the number of components, process steps and finally in miniaturization of the product. Among the available MID process chains, two...... component injection moulding is one of the most industrially adaptive processes. However, the use of two component injection moulding for MID fabrication, with circuit patterns in the sub-millimeter range, is still a big challenge at the present state of technology. The scope of the current Ph.D. project...... and a reasonable adhesion between them. • Selective metallization of the two component plastic part (coating one polymer with metal and leaving the other one uncoated) To overcome these two main issues in MID fabrication for micro applications, the current Ph.D. project explores the technical difficulties...

  20. Surface Microstructure Replication in Injection Moulding

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard; Arlø, Uffe Rolf

    2005-01-01

    topography is transcribed onto the plastic part through complex mechanisms. This replication however, is not perfect, and the replication quality depends on the plastic material properties, the topography itself, and the process conditions. This paper describes and discusses an investigation of injection...... moulding of surface microstructures. Emphasis is put on the ability to replicate surface microstructures under normal injection moulding conditions, notably with low cost materials at low mould temperatures. The replication of surface microstructures in injection moulding has been explored...... for Polypropylene at low mould temperatures. The process conditions were varied over the recommended process window for the material. The geometry of the obtained structures was analyzed. Evidence suggests that step height replication quality depends linearly on structure width in a certain range. Further...

  1. Injection moulding for macro and micro products

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul

    used for macro products but with the ages it is going deep into the micro areas having machine and process improvements. Extensive research work on injection moulding is going on all over the world. New ideas are flowing into the machines, materials and processes. The technology has made significant......The purpose of the literature survey is to investigate the injection moulding technology in the macro and micro areas from the basic to the state-of-the-art recent technology. Injection moulding is a versatile production process for the manufacturing of plastic parts and the process is extensively...

  2. Cavity Pressure Behaviour in Micro Injection Moulding

    DEFF Research Database (Denmark)

    Griffiths, C.A.; Dimov, S.S.; Scholz, S.

    2010-01-01

    as well as with the filling of the cavity by the polymer melt. In this paper, two parameters derived from cavity pressure over time (i.e. pressure work). The influence of four µIM parameters (melt temperature, mould temperature, injection speed, aand packing pressure) on the two pressure-related outputs...... has been investigated by moulding a micro fluidic component on three different polymers (PP, ABS, PC) using the design of experiment approach. Similar trends such as the effects of a higher injection speed in decreasing the pressure work and of a lower temperature in decreasing pressure rate have been......Process monitoring of micro injection moulding (µIM) is of crusial importance to analyse the effect of different parameter settings on the process and to assess its quality. Quality factors related to cavity pressure can provide useful information directly connected with the dyanmics of the process...

  3. Micro-powder injection moulding of tungsten

    International Nuclear Information System (INIS)

    Zeep, B.

    2007-12-01

    For He-cooled Divertors as integral components of future fusion power plants, about 300000 complex shaped tungsten components are to be fabricated. Tungsten is the favoured material because of its excellent properties (high melting point, high hardness, high sputtering resistance, high thermal conductivity). However, the material's properties cause major problems for large scale production of complex shaped components. Due to the resistance of tungsten to mechanical machining, new fabrication technologies have to be developed. Powder injection moulding as a well established shaping technology for a large scale production of complex or even micro structured parts might be a suitable method to produce tungsten components for fusion applications but is not yet commercially available. The present thesis is dealing with the development of a powder injection moulding process for micro structured tungsten components. To develop a suitable feedstock, the powder particle properties, the binder formulation and the solid load were optimised. To meet the requirements for a replication of micro patterned cavities, a special target was to define the smallest powder particle size applicable for micro-powder injection moulding. To investigate the injection moulding performance of the developed feedstocks, experiments were successfully carried out applying diverse cavities with structural details in micro dimension. For debinding of the green bodies, a combination of solvent debinding and thermal debinding has been adopted for injection moulded tungsten components. To develop a suitable debinding strategy, a variation of the solvent debinding time, the heating rate and the binder formulation was performed. For investigating the thermal consolidation behaviour of tungsten components, sinter experiments were carried out applying tungsten powders suitable for micro-powder injection moulding. First mechanical tests of the sintered samples showed promising material properties such as a

  4. Surface micro topography replication in injection moulding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf

    Thermoplastic injection moulding is a widely used industrial process that involves surface generation by replication. The surface topography of injection moulded plastic parts can be important for aesthetical or technical reasons. With the emergence of microengineering and nanotechnology additional...... importance of surface topography follows. In general the replication is not perfect and the topography of the plastic part differs from the inverse topography of the mould cavity. It is desirable to be able to control the degree of replication perfection or replication quality. This requires an understanding...... of the physical mechanisms of replication. Such understanding can lead to improved process design and facilitate in-line process quality control with respect to surface properties. The purpose of the project is to identify critical factors that affect topography replication quality and to obtain an understanding...

  5. Process Condition Monitoring of Micro Moulding Using a Two-plunger Micro Injection Moulding Machine

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Guerrier, Patrick

    2010-01-01

    The influence of micro injection moulding (µIM) process parameters (melt and mould temperature, piston injection speed and stoke length) on the injection pressure was investigated using Design of Experiments. Direct piston injection pressure measurements were performed and data collected using...... a micro injection moulding machine equipped with a two-pluger injection unit. Miniaturized dog-bone shaped speciments on polyoxymethylene (POM) were moulded over a wide range of processing cpnditions in order to characterize the process and assess its capability. Experimental results obtained under...

  6. Warpage analysis in injection moulding process

    Science.gov (United States)

    Hidayah, M. H. N.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.

    2017-09-01

    This study was concentrated on the effects of process parameters in plastic injection moulding process towards warpage problem by using Autodesk Moldflow Insight (AMI) software for the simulation. In this study, plastic dispenser of dental floss has been analysed with thermoplastic material of Polypropylene (PP) used as the moulded material and details properties of 80 Tonne Nessei NEX 1000 injection moulding machine also has been used in this study. The variable parameters of the process are packing pressure, packing time, melt temperature and cooling time. Minimization of warpage obtained from the optimization and analysis data from the Design Expert software. Integration of Response Surface Methodology (RSM), Center Composite Design (CCD) with polynomial models that has been obtained from Design of Experiment (DOE) is the method used in this study. The results show that packing pressure is the main factor that will contribute to the formation of warpage in x-axis and y-axis. While in z-axis, the main factor is melt temperature and packing time is the less significant among the four parameters in x, y and z-axes. From optimal processing parameter, the value of warpage in x, y and z-axis have been optimised by 21.60%, 26.45% and 24.53%, respectively.

  7. Injection moulding of optical functional micro structures using laser structured, PVD-coated mould inserts

    Energy Technology Data Exchange (ETDEWEB)

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Schäfer, C., E-mail: weber@ikv-aachen.de [Institute of Plastics Processing (IKV) at RWTH Aachen University (Germany); Bobzin, K.; Bagcivan, N.; Brögelmann, T.; Theiß, S.; Münstermann, T. [Surface Engineering Institute (IOT), RWTH Aachen University, Aachen (Germany); Steger, M. [Fraunhofer Institute for Laser Technology (ILT), Aachen (Germany)

    2015-05-22

    Micro structured optical plastics components are intensively used i. e. in consumer electronics, for optical sensors in metrology, innovative LED-lighting or laser technology. Injection moulding has proven to be successful for the large-scale production of those parts. However, the production of those parts still causes difficulties due to challenges in the moulding and demoulding of plastics parts created with laser structured mould inserts. A complete moulding of the structures often leads to increased demoulding forces, which then cause a breaking of the structures and a clogging of the mould. An innovative approach is to combine PVD-coated (physical vapour deposition), laser structured inserts and a variothermal moulding process to create functional mic8iüro structures in a one-step process. Therefore, a PVD-coating is applied after the laser structuring process in order to improve the wear resistance and the anti-adhesive properties against the plastics melt. In a series of moulding trials with polycarbonate (PC) and polymethylmethacrylate (PMMA) using different coated moulds, the mould temperature during injection was varied in the range of the glass transition and the melt temperature of the polymers. Subsequently, the surface topography of the moulded parts is evaluated by digital 3D laser-scanning microscopy. The influence of the moulding parameters and the coating of the mould insert on the moulding accuracy and the demoulding behaviour are being analysed. It is shown that micro structures created by ultra-short pulse laser ablation can be successfully replicated in a variothermal moulding process. Due to the mould coating, significant improvements could be achieved in producing micro structured optical plastics components.

  8. Compression and Injection Moulding of Nano-Structured Polymer Surfaces

    DEFF Research Database (Denmark)

    Pranov, Henrik; Rasmussen, Henrik Koblitz

    2006-01-01

    In our research we investigate the non-isothermal replication of complex nano and micro surface structures in injection and compression moulding.......In our research we investigate the non-isothermal replication of complex nano and micro surface structures in injection and compression moulding....

  9. Optimization of injection moulding process parameters in the ...

    African Journals Online (AJOL)

    In this study, optimal injection moulding conditions for minimum shrinkage during moulding of High Density Polyethylene (HDPE) were obtained by Taguchi method. The result showed that melting temperature of 190OC, injection pressure of 55 MPa, refilling pressure of 85 MPa and cooling time of 11 seconds gave ...

  10. Improving the accuracy of micro injection moulding process simulations

    DEFF Research Database (Denmark)

    Marhöfer, David Maximilian; Tosello, Guido; Islam, Aminul

    and are therefore limited in the capability of modelling the polymer flow in micro cavities. Hence, new strategies for comprehensive simulation models which provide more precise results open up new opportunities and will be discussed. Modelling and meshing recommendations are presented, leading to a multi......Process simulations in micro injection moulding aim at the optimization and support of the design of the mould, mould inserts, the plastic product, and the process. Nevertheless, dedicated software packages for micro injection moulding are not available. They are developed for macro plastic parts...

  11. Assessment methods of injection moulded nano-patterned surfaces

    DEFF Research Database (Denmark)

    Menotti, S.; Bisacco, G.; Hansen, H. N.

    2014-01-01

    algorithm for feature recognition. To compare the methods, the mould insert and a number of replicated nano-patterned surfaces, injection moulded with an induction heating aid, were measured on nominally identical locations by means of an atomic force microscope mounted on a manual CMM....

  12. Bond strength of two component injection moulded MID

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2006-01-01

    Most products of the future will require industrially adapted, cost effective production processes and on this issue two-component (2K) injection moulding is a potential candidate for MID manufacturing. MID based on 2k injection moulded plastic part with selectively metallised circuit tracks allows...... the two different plastic materials in the MID structure require good bonding between them. This paper finds suitable combinations of materials for MIDs from both bond strength and metallisation view-point. Plastic parts were made by two-shot injection moulding and the effects of some important process...... the integration of electrical and mechanical functionalities in a real 3D structure. If 2k injection moulding is applied with two polymers, of which one is plateable and the other is not, it will be possible to make 3D electrical structures directly on the component. To be applicable in the real engineering field...

  13. Optimization of Injection Moulding Process Parameters in the ...

    African Journals Online (AJOL)

    ADOWIE PERE

    https://www.ajol.info/index.php/jasem ... Cooling time was found to be the factor with most significant effect on ... Keywords: High Density Polyethylene (HDPE), Injection Moulding, Process .... value of shrinkage behavior is expected to be.

  14. Yield stress distribution in injection-moulded glassy polymers

    NARCIS (Netherlands)

    Verbeeten, W.M.H.; Kanters, M.J.W.; Engels, T.A.P.; Govaert, L.E.

    2015-01-01

    A methodology for structural analysis simulations is presented that incorporates the distribution of mechanical propertiesalong the geometrical dimensions of injection-moulded amorphous polymer products. It is based on a previously developedmodelling approach, where the thermomechanical history

  15. Development and characterisation of injection moulded, all-polypropylene composites

    Directory of Open Access Journals (Sweden)

    A. Kmetty

    2013-02-01

    Full Text Available In this work, all-polypropylene composites (all-PP composites were manufactured by injection moulding. Prior to injection moulding, pre-impregnated pellets were prepared by a three-step process (filament winding, compression moulding and pelletizing. A highly oriented polypropylene multifilament was used as the reinforcement material, and a random polypropylene copolymer (with ethylene was used as the matrix material. Plaque specimens were injection moulded from the pellets with either a film gate or a fan gate. The compression moulded sheets and injection moulding plaques were characterised by shrinkage tests, static tensile tests, dynamic mechanical analysis and falling weight impact tests; the fibre distribution and fibre/matrix adhesion were analysed with light microscopy and scanning electron microscopy. The results showed that with increasing fibre content, both the yield stress and the perforation energy significantly increased. Of the two types of gates used, the fan gate caused the mechanical properties of the plaque specimens to become more homogeneous (i.e., the differences in behaviour parallel and perpendicular to the flow direction became negligible.

  16. Replication of micro structured surface by injection moulding of PEEK

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; Sørensen, Søren

    A micro-structured Ni insert was investigated for PEEK injection moulding. The micro features are circular holes 4 μm in diameter and 2 μm deep, with a 2 μm edge-to-edge distance. 6000 moulding cycles was operated. Half of the insert was coated by 200nm CrN. PEEK parts produced by the coated side...

  17. Free-form nanostructured tools for plastic injection moulding

    DEFF Research Database (Denmark)

    Kafka, Jan; Sonne, Mads Rostgaard; Lam, Yee Cheong

    realized and successfully transferred to plastic parts during injection moulding.As an example, we present theory and results regarding the imprint of pillar nanostructures on a semi-spherical mold surface, followed by injection molding of the same. The deformation of the flexible stamp is characterized...... by measurement of inter-pillar distance on various points on the sphere, and compared to predictions provided by a geometrical model. Moulded plastic parts show good replication of the pillar structure.There are various practical advantages to the new process: the application of the coating is possible on both...

  18. C-stop production by micro injection moulding

    DEFF Research Database (Denmark)

    Islam, Aminul

    of engineering micro product which integrate many features like beam snapfit, annular snapfit, hinge connection, filter grid, house, lid etc in a single product. All the features are in micro dimensional scale and manufactured by single step of injection moulding. This presentation will cover industrial...

  19. The computation of properties of injection-moulded products

    NARCIS (Netherlands)

    Douven, L.F.A.; Baaijens, F.P.T.; Meijer, H.E.H.

    1995-01-01

    Injection moulding is a flexible production technique for the manufacture of complex shaped, thin walled polymer products that require minimal finishing. During processing, the polymer experiences a complex deformation and temperature history that affects the final properties of the product. In a

  20. Injection Moulding of Plastic Parts with Surface Microstructures

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Hansen, Hans Nørgaard; Kjær, Erik Michael

    2003-01-01

    structures with heights of 9 µm and aspect ratios from 0.2 to 1. For topographical characterisation a confocal laser scanning microscope was used. The injection moulding process conditions were varied over the recommended process window for the material, and the process was analysed using commercial...

  1. Quality of topographical micro replication in injection moulding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Hansen, Hans Nørgaard; Bariani, Paolo

    2003-01-01

    The quality of tool-to-part rough surface topography replication in injection moulding has been investigated. Quantitative descriptors suitable for detecting process conditions induced topography changes have been identified using a statistical criterion. The experimental work is based on a tool ...

  2. Binder Development for Metal Injection Moulding: A CSIR Perspective

    CSIR Research Space (South Africa)

    Machaka, R

    2014-05-01

    Full Text Available The paper reviews the CSIR’s progress and challenges concerning the development of a wax-based binder system suitable for metal injection moulding (MIM). It reports on a consolidation study wherein different widely used wax-based feedstock...

  3. Process Optimization for Injection Moulding of Passive Microwave Components

    DEFF Research Database (Denmark)

    Scholz, Steffen G.; Mueller, Tobias; Santos Machado, Leonardo

    2016-01-01

    The demand for micro components has increased during the last decade following the overall trend towards miniaturization. Injection moulding is the favoured technique for the mass manufacturing of micro components or larger parts with micro-structured areas due to its ability to cost effectively ...... algorithm for modelling, the influence of different moulding parameters on the final part quality was assessed. Firstly a process model and secondly a quality model has been calculated. The results shows that part quality can be controlled by monitoring characteristic numbers....

  4. Gas-assisted injection moulding: adding two components and moveable inserts

    NARCIS (Netherlands)

    Neerincx, P.E.; Meijer, H.E.H.

    2009-01-01

    Gas assisted injection moulding (GAIM) is a technique that is successfully used for compensating shrinkage during injection moulding of thick walled but still accurate products with low levels of internal stresses and frozen-in orientation. In this study the authors apply GAIM in moulding 28 mm

  5. Inner centering in parting line area of injection mould using side locks

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Hansen, Hans Nørgaard

    2017-01-01

    Injection moulding is characterized by high precision requirements. In particular, the demands regarding the mould plates alignment are in order of few micro meters. This research introduces a methodology to measure the misalignment in injection moulding. Eddy current sensors are used in the system...

  6. Quality control of injection moulded micro mechanical parts

    DEFF Research Database (Denmark)

    Gasparin, Stefania; Tosello, Guido; Hansen, Hans Nørgaard

    2009-01-01

    Quality control of micro components is an increasing challenge. Smaller mechanical parts are characterized by smaller tolerance to be verified. This paper focuses on the dimensional verification of micro injection moulded components selected from an industrial application. These parts are measured...... using an Optical Coordinate Measuring Machine (OCMM), which guarantees fast surface scans suitable for in line quality control. The uncertainty assessment of the measurements is calculated following the substitution method. To investigate the influence parameters in optical coordinate metrology two...

  7. Low pressure powder injection moulding of stainless steel powders

    Energy Technology Data Exchange (ETDEWEB)

    Zampieron, J.V.; Soares, J.P.; Mathias, F.; Rossi, J.L. [Powder Processing Center CCP, Inst. de Pesquisas Energeticas e Nucleares, Sao Paulo, SP (Brazil); Filho, F.A. [IPEN, Inst. de Pesquisas Energeticas e Nucleares, Cidade Univ., Sao Paulo, SP (Brazil)

    2001-07-01

    Low-pressure powder injection moulding was used to obtain AISI 316L stainless steel parts. A rheological study was undertaken using gas-atomised powders and binders. The binders used were based on carnauba wax, paraffin, low density polyethylene and microcrystalline wax. The metal powders were characterised in terms of morphology, particle size distribution and specific surface area. These results were correlated to the rheological behaviour. The mixture was injected in the shape of square bar specimens to evaluate the performance of the injection process in the green state, and after sintering. The parameters such as injection pressure, viscosity and temperature were analysed for process optimisation. The binders were thermally removed in low vacuum with the assistance of alumina powders. Debinding and sintering were performed in a single step. This procedure shortened considerably the debinding and sintering time. (orig.)

  8. PROTVINO: Mass-production of scintillator tiles by injection moulding

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The technique of the segmented sandwich-calorimeters with wavelength-shifting readout, especially its large-scale application in big detectors, requires enormous quantities of a cheap scintillator tiles of moderate dimensions (20 x 20 cm 2 ). Initial trials carried out in the Institute for High Energy Physics (IHEP), Protvino, Russia almost ten years ago showed that manufacturing such scintillator tiles was possible using an ordinary commercially-available granulated optical polystyrene, an existing technology of plastic dyeing, and a well-known process of the injection moulding, used to produce plastic goods (like buttons!)

  9. Decreasing the Functioning Consumptions of Plastics Injection Moulding Machines

    Science.gov (United States)

    Vasilache, V.; Vasilache, M.; Vasilache, A.

    2017-06-01

    A share of about 75% in the cost of a plastic moulded part is held by the energy consumption of the injection machine. It is the heating system of the plasticising unit which is responsible for the energophague character of the process. The transfer rate from the heating elements to the plasticising cylinder depends hardly on the geometry of the system. A new heating system is designed, replacing the classical systems which are applied on the exterior of the cylinder with an “engrooved system”. Proposed heating system leads to decreasing of energy consumption up to 30 % and maintenance costs up to 10 %. A supplementary possibility to decrease the maintenance costs is to modify the geometry of the injection torpedo. The proposed geometry eliminates the possibility of any breaking or gripping related to the injection torpedo.

  10. Additive manufacturing for the production of inserts for micro injection moulding

    DEFF Research Database (Denmark)

    Mischkot, Michael; Hansen, Hans Nørgaard; Pedersen, David Bue

    2015-01-01

    The production of inserts for micro injection moulding using additive manufacturing technology has the potential to greatly improve the efficiency of pilot production and reduce overall time to market. In this work, Digital Light Processing (DLP) was used to produce micro injection moulding inserts...

  11. On the performance of micro injection moulding process simulations of TPE micro rings

    DEFF Research Database (Denmark)

    Baruffi, Federico; Calaon, Matteo; Tosello, Guido

    , a case study based on the micro injection moulding process of thermoplastic elastomer (TPE) micro rings (volume: 1.5 mm3, mass: 2.2 mg) for sensors application is treated. Injection moulding process simulations using Autodesk Moldflow Insight 2016® were applied with the aim of accomplishing two main...

  12. Improved Processing of Titanium Alloys by Metal Injection Moulding

    International Nuclear Information System (INIS)

    Sidambe, A T; Figueroa, I A; Todd, I; Hamilton, H

    2011-01-01

    The commercially pure (CP-Ti) and Ti6Al4V (Ti-64) powders with powder size of sub 45-micron were mixed with a water soluble binder consisting of a major fraction of Polyethylene Glycol (PEG), a minor fraction of Polymethylmethacrylate (PMMA) and some stearic acid as surfactant. The pelletised mix was injection-moulded into standard tensile bar specimens and then subjected solvent debinding by water leaching and thermal debinding in an argon atmosphere. The titanium compacts were then subjected to sintering studies using the Taguchi method. The results of the oxygen impurity levels of the sintered parts are presented in this paper. Titanium parts conforming to Grade 2 requirements were achieved for CP-Ti whilst those conforming to Grade 5 were achieved for Ti-64.

  13. GTE blade injection moulding modeling and verification of models during process approbation

    Science.gov (United States)

    Stepanenko, I. S.; Khaimovich, A. I.

    2017-02-01

    The simulation model for filling the mould was developed using Moldex3D, and it was experimentally verified in order to perform further optimization calculations of the moulding process conditions. The method described in the article allows adjusting the finite-element model by minimizing the airfoil profile difference between the design and experimental melt motion front due to the differentiated change of power supplied to heating elements, which heat the injection mould in simulation. As a result of calibrating the injection mould for the gas-turbine engine blade, the mean difference between the design melt motion profile and the experimental airfoil profile of no more than 4% was achieved.

  14. Effects of moulding and environmental conditions on the mechanical and surface properties of injection moulded santoprene rubber

    DEFF Research Database (Denmark)

    Islam, Aminul; Ruby, Tobias M.; Jessen, Rikke L.

    the electronics inside from environmental hazards. The sealing ring is injection moulded in Santoprene-a thermoplastic vulcanizate consisting of Polypropelene and highly vulcanized EPDM rubber. The scope of the project was therefore to investigate the properties of Santoprene and make an immediate evaluation...

  15. Exercise in injection moulding: Predicting the non-uniform shrinkage from PVT data

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Eriksson, Torbjörn Gerhard

    Injection moulding is a widely spread technique for producing plastic parts of many kinds, for example bowls, chairs, coverings for mobile phones etc. The basic principle of injection moulding is to inject molten plastic into a closed, cooled mould (i. e. tool), where it solidifies to give......) is manufactured using two types of commercial plastics (Polypropylene (PP) and Polycarbonate (PC)). Pressure transducers measure the pressure in the mould during the injection and the solidification. The temperature is measured by inserting a thermometer in the plastic melt. The difference in dimensions between...... the product. The product is recovered by opening the mould to release it. The quality of the product is highly dependent on tool design, process parameters such as pressure and temperature and which type of polymer that is used. Here, a plastic bar with four indentions (in the form of parallel lines...

  16. Replication of Micro pillars by PEEK injection moulding with CrN coated Ni tool

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; Sørensen, Søren

    2015-01-01

    A micro-structured nickel insert was investigatedfor polyether ether ketone (PEEK) injection moulding. Themicro-features were circular holes 4 μm in diameter and2 μm deep, with a 2-μm edge-to-edge distance. Six thousand moulding cycles were operated. Half of the insert was coatedby approximately...

  17. High Accuracy Three-dimensional Simulation of Micro Injection Moulded Parts

    DEFF Research Database (Denmark)

    Tosello, Guido; Costa, F. S.; Hansen, Hans Nørgaard

    2011-01-01

    Micro injection moulding (μIM) is the key replication technology for high precision manufacturing of polymer micro products. Data analysis and simulations on micro-moulding experiments have been conducted during the present validation study. Detailed information about the μIM process was gathered...

  18. Replication of microstructures on three-dimensional geometries by injection moulding of liquid silicone rubber

    DEFF Research Database (Denmark)

    Zhang, Yang; Mischkot, Michael; Hansen, Hans Nørgaard

    2015-01-01

    In this paper, liquid silicon rubber (LSR) parts with micro pillars are studied. The LSR parts were produced by injection moulding and are used as anchoring device for electrode implants inside humans. Micro-structures with specific dimension on implant surfaces can reduce encapsulation...... by the human body, thereby improving implant performance. This paper presents a method of applying micro structure on 3D parts. A Ni-plate with micro holes on the surface was cut into inserts and stuck in a cavity for injection moulding. 1000 injection moulding cycles were performed. Key dimensions...

  19. Two-component micro injection moulding for hearing aid applications

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Marhöfer, David Maximilian

    2012-01-01

    . The moulding machine was a state-of-the-art 2k micro machine from DESMA. The fabricated micro part was a socket house integrated with a sealing ring for the receiver-in-canal hearing instrument. The test performed on the demonstrator showed the potential of the 2k moulding technology to be able to solve some...

  20. Surface wear of TiN coated nickel tool during the injection moulding of polymer micro Fresnel lenses

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Gasparin, Stefania

    2012-01-01

    Limited tool life of nickel mould inserts represents an issue for the mass-production of polymer optics with complex micro three-dimensional geometries by injection moulding. TiN coating was applied to a nickel insert for the injection moulding of polycarbonate micro Fresnel lenses. Surface wear...

  1. Evaluation of optical functional surfaces on the injection moulding insert by micro milling process

    DEFF Research Database (Denmark)

    Li, Dongya; Davoudinejad, Ali; Zhang, Yang

    2017-01-01

    This study presents the optimization of micro milling process for manufacturing injection moulding inserts with an optical functionalsurface. The objective is the optimal surface functionality. Micro ridges were used as the microstructures to realize the function to generate contrast between...

  2. Transcription of Small Surface Structures in Injection Moulding - An Experimental Study

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Kjær, Erik Michael

    2000-01-01

    The ability to replicate the surface roughness from mold wall to the plastic part in injection moldning has many functional and cosmetic important implications from medical use to designer products. Generally the understanding of surface transcription i.e the the replication of the surface...... structure from the mould to plastic part, also relates to micro injection moulding and moulding of parts with specific micro structures on the surface such as optical parts. The present study concerns transcription of surface roughness as a function of process parameters. The study is carried out...

  3. Replication quality assessment and uncertainty evaluation of a polymer precision injection moulded component

    DEFF Research Database (Denmark)

    Baruffi, Federico; Calaon, Matteo; Tosello, Guido

    2017-01-01

    Precision injection moulding holds a central role in manufacturing as only replication process currently capable of accurately producing complex shaped polymer parts integrating micrometric features on a mass scale production. In this scenario, a study on the replication quality of a polymer...... injection moulded precision component for telecommunication applications is presented. The effects of the process parameters on the component dimensional variation have been investigated using a statistical approach. Replication fidelity of produced parts has been assessed using a focus variation microscope...... with sub-micrometric resolution. Measurement uncertainty has then been evaluated, according to the GUM considering contributions from different process settings combinations and mould geometries. The analysis showed that the injection moulding manufacturing process and the utilized measurement chain...

  4. Rheological and thermal analysis of the filling stage of injection moulding

    Directory of Open Access Journals (Sweden)

    A. Szucs

    2012-08-01

    Full Text Available Flow conditions are different in the cavity of the injection mould from the capillary flow of a laboratory rheological instrument. An injection moulding slit die rheometer (Rheo-mould was designed with a series of slit and orifice dies. Four pressure sensors were built in the stationary side of the mould, therefore the pressure could be measured at four different places. A changeable slit die insert was designed in the moving side. The shear stress and the shear rate can be calculated from the pressure gradient and from the flow rate of the melt, respectively. Flow curves of low density polyethylene were determined using Bagley, Rabinowitsch and Mooney corrections. The results were compared to the flow curves determined by Göttfert and Haake capillary equipments. It was found that the agreement between the methods is excellent.

  5. Influence of the recycled material percentage on the rheological behaviour of HDPE for injection moulding process.

    Science.gov (United States)

    Javierre, C; Clavería, I; Ponz, L; Aísa, J; Fernández, A

    2007-01-01

    The amount of polymer material wasted during thermoplastic injection moulding is very high. It comes from both the feed system of the part, and parts necessary to set up the mould, as well as the scrap generated along the process due to quality problems. The residues are managed through polymer recycling that allows reuse of the materials in the manufacturing injection process. Recycling mills convert the parts into small pieces that are used as feed material for injection, by mixing the recycled feedstock in different percentages with raw material. This mixture of both raw and recycled material modifies material properties according to the percentage of recycled material introduced. Some of the properties affected by this modification are those related to rheologic behaviour, which strongly conditions the future injection moulding process. This paper analyzes the rheologic behaviour of material with different percentages of recycled material by means of a capillary rheometer, and evaluates the influence of the corresponding viscosity curves obtained on the injection moulding process, where small variations of parameters related to rheological behaviour, such as pressure or clamping force, can be critical to the viability and cost of the parts manufactured by injection moulding.

  6. Micro-MID Manufacturing By Two-Shot Injection Moulding

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2008-01-01

    a specific MID process chain is used for micro products, many technical challenges are encountered which would not be problems for macro scale products. This paper investigates on a specific MID process chain (two shot moulding) and discusses the technical difficulties associated with the production process...

  7. Closed-Loop Tension Control System for Injection Moulding Machine

    African Journals Online (AJOL)

    When the mould unit is full, this drive keeps transporting filament materials without proper control. This project developed a closed loop feedback tension control system and it is to replace servo motor drive system for the transportation of filament and it demonstrated a new technological advancement and the theory of ...

  8. Air Flow and Gassing Potential in Micro-injection Moulding

    DEFF Research Database (Denmark)

    Griffithsa, C.A.; Dimova, S.S.; Scholz, S.

    2011-01-01

    valuable information about the process dynamics and also about the filling of a cavity by a polymer melt. In this paper, a novel experimental set-up is proposed to monitor maximum air flow and air flow work as an integral of the air flow over time by employing a MEMS gas sensor mounted inside the mould...

  9. Optimisation of warpage on plastic injection moulding part using response surface methodology (RSM) and genetic algorithm method (GA)

    Science.gov (United States)

    Miza, A. T. N. A.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.

    2017-09-01

    In this study, Computer Aided Engineering was used for injection moulding simulation. The method of Design of experiment (DOE) was utilize according to the Latin Square orthogonal array. The relationship between the injection moulding parameters and warpage were identify based on the experimental data that used. Response Surface Methodology (RSM) was used as to validate the model accuracy. Then, the RSM and GA method were combine as to examine the optimum injection moulding process parameter. Therefore the optimisation of injection moulding is largely improve and the result shown an increasing accuracy and also reliability. The propose method by combining RSM and GA method also contribute in minimising the warpage from occur.

  10. Effect of process parameters on flow length and flash formation in injection moulding of high aspect ratio polymeric micro features

    DEFF Research Database (Denmark)

    Eladl, Abdelkhalik; Mostafa, Rania; Islam, Aminul

    2018-01-01

    This paper reports an investigation of the effects of process parameters on the quality characteristics of polymeric parts produced by micro injection moulding (µIM) with two different materials. Four injection moulding process parameters (injection velocity, holding pressure, melt temperature an...

  11. Gate design in injection molding of microfluidic components using process simulations

    DEFF Research Database (Denmark)

    Marhöfer, David Maximilian; Tosello, Guido; Islam, Aminul

    2015-01-01

    to moulding process window, polymer flow, and part quality. This finally led to an optimization of the design and the realization as actual steel mold. Additionally, the simulation results were critically discussed and possible improvements and limitations of the gained results and the deployed software......Process simulations are an effective design and optimization tool in conventional as well as micro injection molding (μIM). They can be applied to optimize and assist the design of the micro part, the mold, the micro cavity and the μIM process. Available simulation software is however developed...... for macroscopic plastic parts. By using the correct implementation and careful modelling though, it can also be applied to micro parts. In the present work, process simulations were applied to a microfluidic distributor and a microfluidic mixer of which features were in the 100 μm dimensional range. The meshing...

  12. Micro injection moulding process optimization of an ultra-small POM three-dimensional component

    DEFF Research Database (Denmark)

    Baruffi, Federico; Calaon, Matteo; Tosello, Guido

    Replication-based manufacturing processes are a cost effective method for producing complex and net-shaped components [1]. Micro injection moulding has a prominent place among them for its capability of accurately and precisely produce micro plastic parts in large production scale [2], [3......]. In this study, the optimization of the micro injection moulding process of an ultra-small (volume: 0.07 mm3; mass: 0.1 mg) three-dimensional Polyoxymethylene (POM) micro component for medical applications (see Figure 1) is presented. Preliminary experiments highlighted the need for venting channels in order...... with respect to design specifications, the flash areal size was utilized as quality indicator. A design of the experiments approach was carried out in order to study the effects of melt temperature, mould temperature, holding pressure and injection speed. For this task, a two-level full factorial design...

  13. Influence of tribological additives on friction and impact performance of injection moulded polyacetal

    DEFF Research Database (Denmark)

    Laursen, Jens Lolle; Sivebæk, Ion Marius; Christoffersen, L.W.

    2009-01-01

    Tribological additives are used to improve frictional properties of injection moulded thermoplastics. The additives might however also affect the mechanical properties of the material. The influence of processing conditions on both frictional and mechanical properties is highly relevant in the de......Tribological additives are used to improve frictional properties of injection moulded thermoplastics. The additives might however also affect the mechanical properties of the material. The influence of processing conditions on both frictional and mechanical properties is highly relevant...... in the development of tribologically modified grades. In the present study we investigate how two commonly used tribological additives, polydimethylsiloxane and polytetrafluoroethylene, affect friction and impact properties of polyacetal (polyoxymethylene). A new injection mould provides test specimens for both...

  14. THE WEAR OF INJECTION MOULD FUNCTIONAL PARTS IN CONTACT WITH POLYMER COMPOSITES

    Directory of Open Access Journals (Sweden)

    Janette Brezinová

    2009-02-01

    Full Text Available The paper deals with the evaluation of material wear of injection moulds made of aluminium alloy Alumec 89 and copper alloy Moldmax HH in friction couples with plastomer materials with various filler contents. The friction relations in injection moulding were simulated in an adhesion dry wear test using an Amsler machine, with an area contact of the friction couple materials. The wear intensity was evaluated by determination of friction coefficient and relative wearing by the mass loss. Surface morphology changes of evaluated alloys after wear and the thermal conditions in particular friction couples were analysed simultaneously.

  15. Induction Heating System Applied to Injection Moulding of Micro and Nano Structures

    DEFF Research Database (Denmark)

    Menotti, Stefano

    The present Ph.D. thesis contains a study concerning induction heating system applied to injection moulding of micro and nano structures. The overall process chain was considered and investigated during the project including part design, simulation, conventional and non-conventional tooling...... part. In fact one of the main problems in micro injection moulding is the premature freezing of the polymer flow inside the cavity and often is not possible to obtain a full replica of the nano/micro structures embed on the surfaces. Some other defects that can be avoided with the use of an additional...

  16. Simulation and Validation of Injection-Compression Filling Stage of Liquid Moulding with Fast Curing Resins

    Science.gov (United States)

    Martin, Ffion A.; Warrior, Nicholas A.; Simacek, Pavel; Advani, Suresh; Hughes, Adrian; Darlington, Roger; Senan, Eissa

    2018-03-01

    Very short manufacture cycle times are required if continuous carbon fibre and epoxy composite components are to be economically viable solutions for high volume composite production for the automotive industry. Here, a manufacturing process variant of resin transfer moulding (RTM), targets a reduction of in-mould manufacture time by reducing the time to inject and cure components. The process involves two stages; resin injection followed by compression. A flow simulation methodology using an RTM solver for the process has been developed. This paper compares the simulation prediction to experiments performed using industrial equipment. The issues encountered during the manufacturing are included in the simulation and their sensitivity to the process is explored.

  17. Economic trade-offs of additive manufacturing integration in injection moulding process chain

    DEFF Research Database (Denmark)

    Charalambis, Alessandro; Kerbache, Laoucine; Tosello, Guido

    2017-01-01

    Additive Manufacturing has emerged as an innovative set of novel technologies capable of replacing established manufacturing processes due to fabrication of highly complex parts and its continuous improvements of efficiency and cost effectiveness. This study is based on the idea that through...... the creation of synergies between additive and conventional manufacturing technologies it is possible to achieve greater cost advantages and operational benefits than by substituting injection moulding with additive manufacturing. The analysis presented explores the cost advantages that can be secured when...... additive manufacturing is used to support the fabrication of mould inserts for the product development phase of the injection moulding process chain. This study shows that fabrication of soft tooling by mean of AM is economically convenient with a cost reduction between 80% and 90%. Break-even points...

  18. ALGORITHMS FOR THE PROGRAMMING OF FOOTWEAR SOLES MOULDS ON WORKING POSTS OF INJECTION MACHINES

    Directory of Open Access Journals (Sweden)

    LUCA Cornelia

    2014-05-01

    Full Text Available The moulds stock necessary for realization in rhythmically conditions, a certain volume of footwear soles depends on some criterions such as: the range of soles for footwear volume daily realized, the sizes structure of those soles for footwear and, respectively, the sizes tally, the technological cycle for an used mould depending on the equipment efficiency, the provide necessity of spare moulds, the using and fixing conditions etc. From the efficiency point of view, the equipments may have two working posts, or more working posts (always, an even number, as 6, 12, 24, 40 posts. Footwear soles manufacturing takes into account the percentage distribution of the size numbers of the size series. When o portative assembly is used for the manufacturing of the footwear soles using the injection with “n” working posts, it is very important an optimum distribution of the working posts. The disadvantages of these equipments are the situations of the no equilibrium programming of the moulds, so that, in one time, some working posts spread out of the work. The paper presents some practical and theoretical solutions for moulds stock programming in portative assembly for footwear soles injection, so that an optimum equilibrium degree of the working posts will obtain

  19. Performance Evaluation of a Software Engineering Tool for Automated Design of Cooling Systems in Injection Moulding

    DEFF Research Database (Denmark)

    Jauregui-Becker, Juan M.; Tosello, Guido; van Houten, Fred J.A.M.

    2013-01-01

    This paper presents a software tool for automating the design of cooling systems for injection moulding and a validation of its performance. Cooling system designs were automatically generated by the proposed software tool and by applying a best practice tool engineering design approach. The two...

  20. Micro Engineering: Experiments conducted on the use of polymeric materials in micro injection moulding

    DEFF Research Database (Denmark)

    Griffiths, Christian; Tosello, Guido; Nestler, Joerg

    2008-01-01

    To advance micro injection moulding it is necessary to study systematically the factors affecting process and tooling reliability. This paper reviews the main findings of Cardiff Universities 4M and SEMOFS research in this field. In particular, the factors affecting the manufacturability of micro...

  1. Simultaneous Replication of both Refractive and Diffractive Optical Components using Electroformed Tools and Injection Moulding

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Christensen, Thomas R.

    2003-01-01

    This research project has demonstrated that with carefully selected processes it is possible to fabricate tools for injection moulding of both diffractive and refractive optical components. The fabrication procedure is based on an aluminium disc on which selected optical components (gratings and ...

  2. Modelling the deformation of nickel foil during manufacturing of nanostructures on injection moulding tool inserts

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard; Cech, Jiri; Pranov, H.

    2016-01-01

    In the present work, a manufacturing process for transferring nanostructures from a glass wafer, to a double-curvedinsert for injection moulding is demonstrated. A nanostructure consisting of sinusoidal cross-gratings with a period of 426 nm issuccessfully transferred to hemispheres on an aluminium...

  3. A new approach for the validation of filling simulations in micro injection moulding

    DEFF Research Database (Denmark)

    Gava, Alberto; Tosello, Guido; Lucchetta, Giovanni

    2007-01-01

    In manufacturing polymer micro products, numerical simulations are used with the same purposes as in conventional injection moulding, mainly the optimization of micro components design, the optimization of process parameters and the decrease of production costs. Dedicated simulations softwares fail...... to be improved. The main objective of this work is to evaluate whether the present numerical codes are suitable to characterize melt flow patterns in a micro cavity. In order to test the accuracy of the software, real and simulated experiments were performed and used to investigate the filling of a micro moulded...

  4. Two-component injection moulding simulation of ABS-POM micro structured surfaces

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Islam, Aminul

    2013-01-01

    Multi-component micro injection moulding (μIM) processes such as two-component (2k) μIM are the key technologies for the mass fabrication of multi-material micro products. 2k-μIM experiments involving a miniaturized test component with micro features in the sub-mm dimensional range and moulding...... a pair of thermoplastic materials (ABS and POM) were conducted. Three dimensional process simulations based on the finite element method have been performed to explore the capability of predicting filling pattern shape at component-level and surface micro feature-level in a polymer/polymer overmoulding...

  5. Fast prototyping of injection molded polymer microfluidic chips

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Selmeczi, David; Larsen, Niels Bent

    2010-01-01

    We present fast prototyping of injection molding tools by the definition of microfluidic structures in a light-curable epoxy (SU-8) directly on planar nickel mold inserts. Optimized prototype mold structures could withstand injection molding of more than 300 replicas in cyclic olefin copolymer (COC...

  6. Advancements on the simulation of the micro injection moulding process

    DEFF Research Database (Denmark)

    Marhöfer, David Maximilian; Tosello, Guido; Hansen, Hans Nørgaard

    2013-01-01

    injection molding, because they are developed for macro plastic parts and they are therefore limited in the capability of modeling the polymer flow in micro cavities properly. However, new opportunities for improved accuracy have opened up due to current developments of the simulation technology. Hence, new......Process simulations are applied in micro injection molding with the same purpose as in conventional injection molding: aiming at optimization and support of the design of mold, inserts, plastic products, and the process itself. Available software packages are however not well suited for micro...

  7. Two component injection moulding: an interface quality and bond strength dilemma

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2008-01-01

    on quality parameters of the two component parts. Most engineering applications of two component injection moulding calls for high bond strength between the two polymers, on the other hand a sharp and well-defined interface between the two polymers are required for applications like selective metallization...... of polymers, parts for micro applications and also for the aesthetic purpose of the final product. The investigation presented in this paper indicates a dilemma between obtaining reasonably good bond strength and at the same time keeping the interface quality suitable for applications. The required process...... conditions for a sharp and well-defined interface are exactly the opposite of what is congenial for higher bond strength. So in the production of two component injection moulded parts, there is a compromise to make between the interface quality and the bond strength of the two polymers. Also the injection...

  8. Study of process parameters effect on the filling phase of micro injection moulding using weld lines as flow markers

    DEFF Research Database (Denmark)

    Tosello, Guido; Gava, Alberto; Hansen, Hans Nørgaard

    2010-01-01

    , the relationships between the filling pattern and the different process parameter settings have to be established. In this paper, a novel approach based on the use of weld lines as flow markers to trace the development of the flow front during the filling is proposed. The effects on the filling stage of process......Micro-injection moulding (micro-moulding) is a process which enables the mass production of polymer microproducts. In order to produce high-quality injection moulded micro-parts, a crucial aspect to be fully understood and optimised is the filling of the cavity by the molten polymer. As a result...... manufactured by micro-electrodischarge machining. A commercially available polystyrene grade polymer has been moulded using a high-speed injection moulding machine. The design of experiment technique was employed to determine the effect of the process parameters on the filling phase of the micro...

  9. Characterization and analysis of weld lines on micro-injection moulded parts using atomic force microscopy (AFM)

    DEFF Research Database (Denmark)

    Tosello, Guido; Gava, Alberto; Hansen, Hans Nørgaard

    2009-01-01

    In recent years plastic moulding techniques, such as injection moulding, have been developed to fulfil the needs of micro-components fabrication. Micro-injection moulding (SLIM) is the process which enables the mass production of polymer micro-systems such as micro-mechanical parts, micro...... the two original flows will generate and a weld line is formed on the surface of the micro-moulded part. This phenomenon has to be avoided or at least reduced, since in the weld line area the mechanical properties are poorer than in the bulk part, creating strength problems on the final part. Although...... injection moulding parameters on the weld lines' dimensions is presented, using an atomic force microscope (AFM). Depth and width of weld lines were chosen as parameters to be optimized....

  10. Development of Metal/Polymer Mixtures Dedicated to Macro and Micro powder Injection Moulding : Experiments and Simulations

    International Nuclear Information System (INIS)

    Quinard, C.; Barriere, T.; Gelin, J. C.; Song, J. P.; Cheng, Z. Q.; Liu, B. S.

    2007-01-01

    Important research tasks at ENSMM/LMA are concerned for the development of mixtures of fine powders associated to polymer binders dedicated to the powder injection moulding (PIM) and to the powder injection micro-moulding (μPIM) in accordance with many works already carried out with different feedstock suppliers dedicated to the macro-components. These research tasks are completed with the simulations of injection and sintering for solid state diffusion for to validate the mumerical models

  11. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Kistrup, Kasper, E-mail: kkis@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Skotte Sørensen, Karen, E-mail: karen@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Center for Integrated Point of Care Technologies (CiPoC), DELTA, Venlighedsvej 4, DK-2870 Hørsholm (Denmark); Wolff, Anders, E-mail: anders.wolff@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Fougt Hansen, Mikkel, E-mail: mikkel.hansen@nanotech.dtu.dk [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark)

    2015-04-15

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/µg and 1.72(14) nL/µg were found for Milli-Q water and lysis-binding buffer, respectively. - Highlights: • We present an all-polymer mass producible passive filled microfluidic chip system. • Rapid system fabrication is obtained by injection moulding and ultrasonic welding. • The system is made for single-use nucleic acid extraction using magnetic beads. • We systematically map compatibility of the chip system with various surfactants. • We quantify the volume carry-over of magnetic beads in water and 0.1% triton-X solution.

  12. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    International Nuclear Information System (INIS)

    Kistrup, Kasper; Skotte Sørensen, Karen; Wolff, Anders; Fougt Hansen, Mikkel

    2015-01-01

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/µg and 1.72(14) nL/µg were found for Milli-Q water and lysis-binding buffer, respectively. - Highlights: • We present an all-polymer mass producible passive filled microfluidic chip system. • Rapid system fabrication is obtained by injection moulding and ultrasonic welding. • The system is made for single-use nucleic acid extraction using magnetic beads. • We systematically map compatibility of the chip system with various surfactants. • We quantify the volume carry-over of magnetic beads in water and 0.1% triton-X solution

  13. Effects of carbon fibres on the life cycle assessment of additively manufactured injection moulding inserts for rapid prototyping

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Bey, Niki; Mischkot, Michael

    2017-01-01

    properties and lifetime. The additively manufactured inserts are compared to the standard materials steel, aluminium and brass. The investigated part of the production and prototyping phase considers the insert itself, the moulded part, and resulting waste material of the injection moulding process....

  14. Effect of Process Parameters on Flow Length and Flash Formation in Injection Moulding of High Aspect Ratio Polymeric Micro Features

    Directory of Open Access Journals (Sweden)

    Abdelkhalik Eladl

    2018-01-01

    Full Text Available This paper reports an investigation of the effects of process parameters on the quality characteristics of polymeric parts produced by micro injection moulding (μIM with two different materials. Four injection moulding process parameters (injection velocity, holding pressure, melt temperature and mould temperature were investigated using Polypropylene (PP and Acrylonitrile Butadiene Styrene (ABS. Three key characteristics of the mouldings were evaluated with respect to process settings and the material employed: part mass, flow length and flash formation. The experimentation employs a test part with four micro fingers with different aspect ratios (from 21 up to 150 and was carried out according to the Design of Experiments (DOE statistical technique. The results show that holding pressure and injection velocity are the most influential parameters on part mass with a direct effect for both materials. Both parameters have a similar effect on flow length for both PP and ABS at all aspect ratios and have higher effects as the feature thickness decreased below 300 μm. The study shows that for the investigated materials the injection speed and packing pressure were the most influential parameters for increasing the amount of flash formation, with relative effects consistent for both materials. Higher melt and mould temperatures settings were less influential parameters for increasing the flash amount when moulding with both materials. Of the two investigated materials, PP was the one exhibiting more flash formation as compared with ABS, when corresponding injection moulding parameters settings for both materials were considered.

  15. Effect of processing conditions on shrinkage in injection moulding

    NARCIS (Netherlands)

    Jansen, K.M.B.; van Dijk, D.J.; Husselman, M.H.

    1998-01-01

    A systematic study on the effect of processing conditions on mold shrinkage was undertaken for seven common thermoplastic polymers. It turned out that the holding pressure was always the key parameter. The effect of the melt temperature is slightly less important. Injection velocity and mold

  16. Injection Moulding Simulation and Experimental Validation of Hearing Aid Shells

    DEFF Research Database (Denmark)

    Islam, Aminul; Li, Xiaoliu

    and warpage were taken as the main comparison criteria. Different parameter settings in Moldex3D were investigated to find their influence on the accuracy of the simulation. Results showed that the injection molding process prediction from the simulation was relatively precise when the nozzle geometry...

  17. Comparison of conventional Injection Mould Inserts to Additively Manufactured Inserts using Life Cycle Assessment

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Bey, Niki; Mischkot, Michael

    2016-01-01

    Polymer Additive Manufacturing can be used to produce soft tooling inserts for injection moulding. Compared to conventional tooling, the energy and time consumption during production are significantly lower. As the life time of such inserts is significantly shorter than the life time of traditional...... of their potential environmental impact and yield throughout the development and pilot phase. Insert geometry is particularly advantageous for pilot production and small production sizes. In this research, Life Cycle Assessment is used to compare the environmental impact of soft tooling by Additive Manufacturing...... (using Digital Light Processing) and three traditional methods for the manufacture of inserts (milling of brass, steel, and aluminium) for injection moulds during the pre-production phase....

  18. Injection moulding of plastic parts with laser textured surfaces with optical applications

    Science.gov (United States)

    Pina-Estany, J.; García-Granada, A. A.; Corull-Massana, E.

    2018-05-01

    The purpose of this work is to manufacture micro and nanotextured surfaces on plastic injection moulds with the aim of replicating them and obtaining plastic parts with optical applications. Different patterns are manufactured with nanosecond and femtosecond lasers in order to obtain three different optical applications: (i) homogeneous light diffusion (ii) 1D light directionality and (iii) 2D light directionality. Induction heating is used in the injections in order to improve the textures degree of replication. The steel mould and the plastic parts are analyzed with a confocal/focus variation microscope and with a surface roughness tester. A mock-up and a luminance camera are used to evaluate the homogeneity and luminance of the homogeneous light diffusion application in comparison with the current industrial solutions.

  19. Modelling injection moulding machines for micro manufacture applications through functional analysis

    DEFF Research Database (Denmark)

    Fantoni, G.; Tosello, Guido; Gabelloni, D.

    2012-01-01

    The paper presents the analysis of an injection moulding machine using functional analysis to identify both its critical components and possible working problems when such a machine is employed for the production of polymer-based micro products. The step-by-step procedure starts from the study...... of the process phases of a machine and then it employs functional analysis to decompose the phases and attributes functions to part features. Part features are subsequently analyzed to understand the causal chains bringing either to the desired behaviour or to failures to avoid. The assessment of the design...... solution is finally performed by gathering quantitative data from experiments. The case study investigates the design motivations and functional drivers of a micro injection moulding machine. The analysis allows identifying the correlations between failures and advantages with the design of the machine...

  20. Micro injection moulding process validation for high precision manufacture of thermoplastic elastomer micro suspension rings

    DEFF Research Database (Denmark)

    Calaon, M.; Tosello, G.; Elsborg Hansen, R.

    Micro injection moulding (μIM) is one of the most suitable micro manufacturing processes for flexible mass-production of multi-material functional micro components. The technology was employed in this research used to produce thermoplastic elastomer (TPE) micro suspension rings identified...... main μIM process parameters (melt temperature, injection speed, packing pressure) using the Design of Experiment statistical technique. Measurements results demonstrated the importance of calibrating mould´s master geometries to ensure correct part production and effective quality conformance...... on the frequency in order to improve the signal quality and assure acoustic reproduction fidelity. Production quality of the TPE rings drastically influence the product functionality. In the present study, a procedure for μIM TPE micro rings production optimization has been established. The procedure entail using...

  1. Computation of Thermal Development in Injection Mould Filling, based on the Distance Model

    OpenAIRE

    Andersson, Per-Åke

    2002-01-01

    The heat transfer in the filling phase of injection moulding is studied, based on Gunnar Aronsson’s distance model for flow expansion ([Aronsson], 1996). The choice of a thermoplastic materials model is motivated by general physical properties, admitting temperature and pressure dependence. Two-phase, per-phase-incompressible, power-law fluids are considered. The shear rate expression takes into account pseudo-radial flow from a point inlet. Instead of using a finite element (FEM) solver for ...

  2. The Use of Particulate Injection Moulding for Fabrication of Sports and Leisure Equipment from Titanium Metals

    Directory of Open Access Journals (Sweden)

    Paul D. Ewart

    2018-02-01

    Full Text Available Advanced materials such as metal alloys, carbon fibre composites and engineered polymers have improved athlete performances in all sporting applications. Advances in manufacturing has enabled increases in design complexity and the ability to rapidly prototype bespoke products using additive manufacturing also known as 3D printing. Another recent fabrication method widely used by medical, electronics and armaments manufacturers is particulate injection moulding. This process uses exact quantities of the required material, in powder form, minimising resource and energy requirements in comparison to conventional manufacturing techniques. The process utilises injection moulding techniques and tooling methods developed and used in the plastics industry. It can produce highly complex component geometries with excellent repeatability and reduced cost where volume manufacturing is required. This is especially important when considering materials such as titanium that are not only expensive in comparison to other metals but are difficult to process by regular machining and fabrication methods. This work presents a review of titanium use in the sporting sector with a focus on sporting devices and equipment. It also proposes that the sports engineering sector could increase performance and enable improvements in safety by switching to design methods appropriate to processing via the particulate injection moulding route.

  3. Integrating measuring uncertainty of tactile and optical coordinate measuring machines in the process capability assessment of micro injection moulding

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Gasparin, Stefania

    2010-01-01

    Process capability of micro injection moulding was investigated in this paper by calculating the Cp and Cpk statistics. Uncertainty of both optical and tactile measuring systems employed in the quality control of micro injection moulded products was assessed and compared with the specified...... tolerances. Limits in terms of manufacturing process capability as well as of suitability of such measuring systems when employed for micro production inspection were quantitatively determined....

  4. Utilizing of inner porous structure in injection moulds for application of special cooling method

    International Nuclear Information System (INIS)

    Seidl, M; Bobek, J; Habr, J; Běhálek, L; Šafka, J; Nováková, I

    2016-01-01

    The article is focused on impact evaluation of controlled inner structure of production tools and new cooling method on regulation of thermal processes for injection moulding technology. The mould inserts with porous structure were cooled by means of liquid CO 2 which is very progressive cooling method and enables very fast and intensive heat transfer among the plastic product, the production tool and cooling medium. The inserts were created using rapid prototype technology (DLSM) and they had a bi-component structure consisting of thin compact surface layer and defined porous inner structure of open cell character where liquid CO 2 was flowing through. This analyse includes the evaluation of cooling efficiency for different inner structures and different time profiles for dosing of liquid CO 2 into the porous structure. The thermal processes were monitored using thermocouples and IR thermal analyse of product surface and experimental device. Intensive heat removal influenced also the final structure and the shape and dimensional accuracy of the moulded parts that were made of semi-crystalline polymer. The range of final impacts of using intensive cooling method on the plastic parts was defined by DSC and dimensional analyses. (paper)

  5. Cycle time improvement for plastic injection moulding process by sub groove modification in conformal cooling channel

    Science.gov (United States)

    Kamarudin, K.; Wahab, M. S.; Batcha, M. F. M.; Shayfull, Z.; Raus, A. A.; Ahmed, Aqeel

    2017-09-01

    Mould designers have been struggling for the improvement of the cooling system performance, despite the fact that the cooling system complexity is physically limited by the fabrication capability of the conventional tooling methods. However, the growth of Solid Free Form Technology (SFF) allow the mould designer to develop more than just a regular conformal cooling channel. Numerous researchers demonstrate that conformal cooling channel was tremendously given significant result in the improvement of productivity and quality in the plastic injection moulding process. This paper presents the research work that applies the passive enhancement method in square shape cooling channel to enhance the efficiency of cooling performance by adding the sub groove to the cooling channel itself. Previous design that uses square shape cooling channel was improved by adding various numbers of sub groove to meet the best sub groove design that able reduced the cooling time. The effect of sub groove design on cooling time was investigated by Autodesk Modlflow Insight software. The simulation results showed that the various sub groove designs give different values to ejection time. The Design 7 showed the lowest value of ejection time with 24.3% increment. The addition of sub groove significantly increased a coolant velocity and a rate of heat transfer from molten plastic to coolant.

  6. High accuracy and precision micro injection moulding of thermoplastic elastomers micro ring production

    DEFF Research Database (Denmark)

    Calaon, Matteo; Tosello, Guido; Elsborg, René

    2016-01-01

    The mass-replication nature of the process calls for fast monitoring of process parameters and product geometrical characteristics. In this direction, the present study addresses the possibility to develop a micro manufacturing platform for micro assembly injection moulding with real-time process....../product monitoring and metrology. The study represent a new concept yet to be developed with great potential for high precision mass-manufacturing of highly functional 3D multi-material (i.e. including metal/soft polymer) micro components. The activities related to HINMICO project objectives proves the importance...

  7. Laser confocal microscope noise evaluation on injection compression moulded (ICM) transparent polymer Fresnel lenses

    DEFF Research Database (Denmark)

    Loaldi, D.; Calaon, Matteo; Quagliotti, Danilo

    , on an injection compression moulded (ICM) Fresnel lens, is defined. A set of two different objectives is considered, i.e. a standard series (SO), against a long working distance one (LWD); two different magnifications objectives, 50x and 100x and the use or not of a dark environment. The noise evaluation...... are measuring working distance, objective magnification and room lighting. The result confirms a strong difference of noise, using the considered objectives. The most interesting result is that the performance of SO 50x objective is better than LWD 100x....

  8. Polyolefin backbone substitution in binders for low temperature powder injection moulding feedstocks.

    Science.gov (United States)

    Hausnerova, Berenika; Kuritka, Ivo; Bleyan, Davit

    2014-02-27

    This paper reports the substitution of polyolefin backbone binder components with low melting temperature carnauba wax for powder injection moulding applications. The effect of various binder compositions of Al₂O₃ feedstock on thermal degradation parameters is investigated by thermogravimetric analysis. Within the experimental framework 29 original feedstock compositions were prepared and the superiority of carnauba wax over the polyethylene binder backbone was demonstrated in compositions containing polyethylene glycol as the initial opening agent and governing the proper mechanism of the degradation process. Moreover, the replacement of synthetic polymer by the natural wax contributes to an increase of environmental sustainability of modern industrial technologies.

  9. Polyolefin Backbone Substitution in Binders for Low Temperature Powder Injection Moulding Feedstocks

    Directory of Open Access Journals (Sweden)

    Berenika Hausnerova

    2014-02-01

    Full Text Available This paper reports the substitution of polyolefin backbone binder components with low melting temperature carnauba wax for powder injection moulding applications. The effect of various binder compositions of Al2O3 feedstock on thermal degradation parameters is investigated by thermogravimetric analysis. Within the experimental framework 29 original feedstock compositions were prepared and the superiority of carnauba wax over the polyethylene binder backbone was demonstrated in compositions containing polyethylene glycol as the initial opening agent and governing the proper mechanism of the degradation process. Moreover, the replacement of synthetic polymer by the natural wax contributes to an increase of environmental sustainability of modern industrial technologies.

  10. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    DEFF Research Database (Denmark)

    Kistrup, Kasper; Sørensen, Karen Skotte; Wolff, Anders

    2014-01-01

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible......-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/µg and 1.72(14) nL/µg were found for Milli-Q water and lysis...

  11. Acupuncture Injection Combined with Electrokinetic Injection for Polydimethylsiloxane Microfluidic Devices

    Directory of Open Access Journals (Sweden)

    Ji Won Ha

    2017-01-01

    Full Text Available We recently reported acupuncture sample injection that leads to reproducible injection of nL-scale sample segments into a polydimethylsiloxane (PDMS microchannel for microchip capillary electrophoresis. The advantages of the acupuncture injection in microchip capillary electrophoresis include capability of minimizing sample loss and voltage control hardware and capability of introducing sample plugs into any desired position of a microchannel. However, the challenge in the previous study was to achieve reproducible, pL-scale sample injections into PDMS microchannels. In the present study, we introduce an acupuncture injection technique combined with electrokinetic injection (AICEI technique to inject pL-scale sample segments for microchip capillary electrophoresis. We carried out the capillary zone electrophoresis (CZE separation of FITC and fluorescein, and the mixture of 10 μM FITC and 10 μM fluorescein was separated completely by using the AICEI method.

  12. Investigation of Plasma Treatment on Micro-Injection Moulded Microneedle for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Karthik Nair

    2015-10-01

    Full Text Available Plasma technology has been widely used to increase the surface energy of the polymer surfaces for many industrial applications; in particular to increase in wettability. The present work was carried out to investigate how surface modification using plasma treatment modifies the surface energy of micro-injection moulded microneedles and its influence on drug delivery. Microneedles of polyether ether ketone and polycarbonate and have been manufactured using micro-injection moulding and samples from each production batch have been subsequently subjected to a range of plasma treatment. These samples were coated with bovine serum albumin to study the protein adsorption on these treated polymer surfaces. Sample surfaces structures, before and after treatment, were studied using atomic force microscope and surface energies have been obtained using contact angle measurement and calculated using the Owens-Wendt theory. Adsorption performance of bovine serum albumin and release kinetics for each sample set was assessed using a Franz diffusion cell. Results indicate that plasma treatment significantly increases the surface energy and roughness of the microneedles resulting in better adsorption and release of BSA.

  13. Paraffin wax removal from metal injection moulded cocrmo alloy compact by solvent debinding process

    Science.gov (United States)

    Dandang, N. A. N.; Harun, W. S. W.; Khalil, N. Z.; Ahmad, A. H.; Romlay, F. R. M.; Johari, N. A.

    2017-10-01

    One of the most crucial and time consuming phase in metal injection moulding (MIM) process is “debinding”. These days, in metal injection moulding process, they had recounted that first debinding practice was depend on thermal binder degradation, which demanding more than 200 hours for complete removal of binder. Fortunately, these days world had introduced multi-stage debinding techniques to simplified the debinding time process. This research study variables for solvent debinding which are temperature and soaking time for samples made by MIM CoCrMo powder. Since wax as the key principal in the binder origination, paraffin wax will be removed together with stearic acid from the green bodies. Then, debinding process is conducted at 50, 60 and 70°C for 30-240 minutes. It is carried out in n-heptane solution. Percentage weight loss of the binder were measured. Lastly, scanning electron microscope (SEM) analysis and visual inspection were observed for the surface of brown compact. From the results, samples debound at 70°C exhibited a significant amount of binder loss; nevertheless, sample collapse, brittle surface and cracks were detected. But, at 60°C temperature and time of 4 hours proven finest results as it shows sufficient binder loss, nonappearance of surface cracks and easy to handle. Overall, binder loss is directly related to solvent debinding temperature and time.

  14. Weld line optimization on thermoplastic elastomer micro injection moulded components using 3D focus variation optical microscopy

    DEFF Research Database (Denmark)

    Hasnaes, F.B.; Elsborg, R.; Tosello, G.

    2015-01-01

    The presented study investigates weld line depth development across a micro suspension ring. A focus variation microscope was used to obtain 3D images of the weld line area. Suspension rings produced with different micro injection moulding process parameters were examined to identify the correlat......The presented study investigates weld line depth development across a micro suspension ring. A focus variation microscope was used to obtain 3D images of the weld line area. Suspension rings produced with different micro injection moulding process parameters were examined to identify...

  15. Experimental investigation on shrinkage and surface replication of injection moulded ceramic parts

    DEFF Research Database (Denmark)

    Islam, Aminul; Giannekas, Nikolaos; Marhöfer, David Maximilian

    2014-01-01

    Ceramic moulded parts are increasingly being used in advanced components and devices due to their unprecedented material and performance attributes. The surface finish, replication quality and material shrinkage are of immense importance for moulded ceramic parts intended for precision applications....... The current paper presents a thorough investigation on the process of ceramic moulding where it systematically characterizes the surface replication and shrinkage behaviours of precision moulded ceramic components. The test parts are moulded from Catamold TZP-A which is Y2O3-stabilised ZrO2 having widespread...... distribution for the moulded ceramic parts is presented....

  16. Assessment of sub-mm features replication capability in injection moulding using a multi-cavity tool produced by additive manufacturing

    DEFF Research Database (Denmark)

    Davoudinejad, A.; Charalambis, A.; Zhang, Y.

    This research investigates the effect of injection moulding process parameters on photopolymer mould inserts produced with the Digital Light Processing (DLP) additive manufacturing (AM) method. The main motivation of applying AM to produce mould inserts, is the potential of reducing lead time...... and manufacturing cost, as well as achieving a more flexible manufacturing method in case of non-mass produced products such as prototypes. In this research moulds inserts of 20 x 20 x 2.7 mm with mould cavities as small as 5 x 4 mm in dimensions are tested. The parts are analyzed and evaluated by the measurements...

  17. Injection moulded microneedle sensor for real-time wireless pH monitoring.

    Science.gov (United States)

    Mirza, Khalid B; Zuliani, Claudio; Hou, Benjamin; Ng, Fu Siong; Peters, Nicholas S; Toumazou, Christofer

    2017-07-01

    This paper describes the development of an array of individually addressable pH sensitive microneedles using injection moulding and their integration within a portable device for real-time wireless recording of pH distributions in biological samples. The fabricated microneedles are subjected to gold patterning followed by electrodeposition of iridium oxide to sensitize them to 0.07 units of pH change. Miniaturised electronics suitable for the sensors readout, analog-to-digital conversion and wireless transmission of the potentiometric data are embodied within the device, enabling it to measure real-time pH of soft biological samples such as muscles. In this paper, real-time recording of the cardiac pH distribution, during ischemia followed by reperfusion cycles in cardiac muscles of male Wistar rats has been demonstrated by using the microneedle array.

  18. Quality control and process capability assessment for injection-moulded micro mechanical parts

    DEFF Research Database (Denmark)

    Gasparin, Stefania; Tosello, Guido; Hansen, Hans Nørgaard

    2013-01-01

    Quality control of micro components is an increasing challenge. Smaller mechanical parts are characterized by smaller tolerance to be verified. This paper focuses on the dimensional verification of micro injection-moulded components selected from an industrial application. These parts are measured...... using an optical coordinate measuring machine, which guarantees fast surface scans suitable for inline quality control. The uncertainty assessment of the measurements is calculated and three analyses are carried out and discussed in order to investigate the influence parameters in optical coordinate...... metrology. The estimation of the total variability of the optical measurements and the instrument repeatability are reported; moreover, the measurement system capability is evaluated according to the measurement system capability indices Cg and Cgk....

  19. On the use of titanium hydride for powder injection moulding of titanium-based alloys

    International Nuclear Information System (INIS)

    Carrenoo-Morelli, E.; Bidaux, J.-E.

    2009-01-01

    Full text: Titanium and titanium-based alloys are excellent materials for a number of engineering applications because of their high strength, lightweight, good corrosion resistance, non magnetic characteristic and biocompatibility. The current processing steps are usually costly, and there is a growing demand for net-shape solutions for manufacturing parts of increasing complexity. Powder injection moulding is becoming a competitive alternative, thanks to the advances in production of good quality base-powders, binders and sintering facilities. Titanium hydride powders, have the attractiveness of being less reactive than fine titanium powders, easier to handle, and cheaper. This paper summarizes recent advances on PIM of titanium and titanium alloys from TiH2 powders, including shape-memory NiTi alloys. (author)

  20. An image-based method for objectively assessing injection moulded plastic quality

    DEFF Research Database (Denmark)

    Hannemose, Morten; Nielsen, Jannik Boll; Zsíros, László

    2017-01-01

    In high volume productions based on casting processes, like high-pressure die casting (HPDC) or injection moulding, there is a wide range of variables that affect the end quality of produced parts. These variables include production parameters (temperature, pressure, mixture), and external factors...... (humidity, temperature, etc.). With this many variables it is a challenge to maintain a stable output quality, wherefore massive amounts of resources are spent on quality assurance (QA) of produced parts. Currently, this QA is done manually through visual inspection. We demonstrate how a multispectral...... imaging system can be used to automatically rate the quality of a produced part using an autocorrelation and a Fourier-based method. These methods are compared with human rankings and achieve good correlations on a variety of samples....

  1. Micro-Injection Moulding In-Line Quality Assurance Based on Product and Process Fingerprints

    DEFF Research Database (Denmark)

    Baruffi, Federico; Calaon, Matteo; Tosello, Guido

    2018-01-01

    significant dimensional features of the micro part were measured using a focus variation microscope. Their dependency on the variation of µIM process parameters was studied with a Design of Experiments (DoE) statistical approach. A correlation study allowed the identification of the product fingerprint, i...... of the study showed that the dimensional quality of the micro component could be effectively controlled in-line by combining the two fingerprints, thus opening the door for future µIM in-line process optimization and quality assessment.......Micro-injection moulding (μIM) is a replication-based process enabling the cost-effective production of complex and net-shaped miniaturized plastic components. The micro-scaled size of such parts poses great challenges in assessing their dimensional quality and often leads to time...

  2. Modeling of Cooling Channels of Injection Mould using Functionally Graded Material

    International Nuclear Information System (INIS)

    Shin, Ki Hoon

    2011-01-01

    The cycle time in injection moulding greatly depends on the cooling time of the plastic part that is controlled by cooling channels. Cooling channels are required to facilitate the heat transfer rate from the die to the coolant without reducing the strength of the die. Employing layered manufacturing techniques (LMT), a die embedding conformal cooling channels can be fabricated directly while conventional cooling channels are usually made of straight drilled hole. Meanwhile, H13 tool steel is widely used as the die material because of its high thermal resistance and dimensional stability. However, H13 with a low thermal conductivity is not efficient for certain part geometries. In this context, the use of functionally graded materials (FGMs) between H13 and copper may circumvent a tradeoff between the strength and the heat transfer rate. This paper presents a method for modeling of conformal cooling channels made of FGMs

  3. Microfluidic model experiments on the injectability of monoclonal antibody solutions

    Science.gov (United States)

    Duchene, Charles; Filipe, Vasco; Nakach, Mostafa; Huille, Sylvain; Lindner, Anke

    2017-11-01

    Autoinjection devices that allow patients to self-administer medicine are becoming used more frequently; however, this advance comes with an increased need for precision in the injection process. The rare occurrence of protein aggregates in solutions of monoclonal antibodies constitutes a threat to the reliability of such devices. Here we study the flow of protein solutions containing aggregates in microfluidic model systems, mimicking injection devices, to gain fundamental understanding of the catastrophic clogging of constrictions of given size. We form aggregates by mechanically shaking or heating antibody solutions and then inject these solutions into microfluidic channels with varying types of constrictions. Geometrical clogging occurs when aggregates reach the size of the constriction and can in some cases be undone by increasing the applied pressure. We perform systematic experiments varying the relative aggregate size and the flow rate or applied pressure. The mechanical deformation of aggregates during their passage through constrictions is investigated to gain a better understanding of the clogging and unclogging mechanisms.

  4. Investigation of process parameters influence on flash formation in injection moulding of polymer micro features through design of experiments

    DEFF Research Database (Denmark)

    Eladl, Abdelkhalik; Tosello, Guido; Mostafa, Rania

    Micro injection moulding is one of the key technologies for micro manufacture due to its mass-production capability and relatively low component cost. Flash defects are among the most critical issues in the replication of micro features and constitute a manufacturing constrain in applying injecti...

  5. The influence of particle size distribution on the properties of metal-injection-moulded 17-4 PH stainless steel

    CSIR Research Space (South Africa)

    Seerane, Mandy

    2016-10-01

    Full Text Available Metal injection moulding (MIM) is a near-net-shaping powder metallurgy technique suitable for the cost-effective mass production of small and complex components. In this paper, the effects of the metal powder particle size on the final properties...

  6. Modelling the deformations during the manufacturing of nanostructures on non-planar surfaces for injection moulding tool inserts

    DEFF Research Database (Denmark)

    Sonne, M. R.; Cech, J.; Pranov, H.

    2016-01-01

    This paper presents a new manufacturing process for transferring nanostructures from a glass wafer to a curved aluminium insert for polymer injection moulding. A nanostructure consisting of sinusoidal cross-gratings with a period of 426 nm is successfully transferred to hemispheres with different...

  7. Examining the influence of injection speed and mould temperature on the tensile strength of polypropylene and ABS

    DEFF Research Database (Denmark)

    Aarøe, Esben Raahede; Blaimschein, Karl Stephan; Deker, Lasse

    This report is the final task of course “41738 Experimental Plastics Technology” in the three weeks period of June 2009 at DTU, IPL. The aim of this project has been to investigate the ultimate tensile strength behaviour of two different polymers, with different structural composition, by varying...... the injection speed and the mold temperature independently while keeping all other process parameters fixed. In addition the scaling from production of large to small geometries has been investigated by doing two parallel productions and test setups of respectively injection moulded and micro injection moulded...... specimens. After production and tensile testing the specimens were examined with a microscope to underpin conclusions from the tensile test data. It was experienced that the injection speed in general increased the the tensile strength by orienting the polymeric-chains lengthwise in the specimens and thus...

  8. Experimental investigation of the factors influencing the polymer-polymer bond strength during two component injection moulding

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2007-01-01

    Two component injection moulding is a commercially important manufacturing process and a key technology for Moulded Interconnect Devices (MIDs). Many fascinating applications of two component or multi component polymer parts are restricted due to the weak interfacial adhesion of the polymers...... effectively control the adhesion between two polymers. The effects of environmental conditions on the bond strength after moulding are also investigated. The material selections and environmental conditions were chosen based on the suitability of MID production, but the results and discussion presented....... A thorough understanding of the factors that influence the bond strength of polymers is necessary for multi component polymer processing. This paper investigates the effects of the process and material parameters on the bond strength of two component polymer parts and identifies the factors which can...

  9. Yttria coating on quartz mould inner surface for fabrication of metal fuel slug using injection casting process

    International Nuclear Information System (INIS)

    Vinod, A.V.; Hemanth Kumar, S.; Manivannan, A.; Muralidaran, P.; Anthonysamy, S.; Sudha, R.

    2016-01-01

    Quartz moulds are used for casting metal alloy of U-Zr slugs by injection casting process. Ceramic (Y_2O_3) coating on inner surface of the quartz mould is provided to avoid silica contamination in the fuel slugs during casting. Experiments were carried out to standardise the coating process and optimising various parameters such as particle size of Y_2O_3, choice of suitable binder, method for application of coating, drying and sintering at high temperature to ensure uniformity and strength of coating. Required Coating thickness of ∼40 μm was achieved on a quartz mould of inner diameter of 4.98±0.01mm. Experimental procedure for coating on inner surface of the quartz tubes using yttrium oxide is described in this work. (author)

  10. Study of injection moulded long glass fibre-reinforced polypropylene and the effect on the fibre length and orientation distribution

    Science.gov (United States)

    Parveeen, B.; Caton-Rose, P.; Costa, F.; Jin, X.; Hine, P.

    2014-05-01

    Long glass fibre (LGF) composites are extensively used in manufacturing to produce components with enhanced mechanical properties. Long fibres with length 12 to 25mm are added to a thermoplastic matrix. However severe fibre breakage can occur in the injection moulding process resulting in shorter fibre length distribution (FLD). The majority of this breakage occurs due to the melt experiencing extreme shear stress during the preparation and injection stage. Care should be taken to ensure that the longer fibres make it through the injection moulding process without their length being significantly degraded. This study is based on commercial 12 mm long glass-fibre reinforced polypropylene (PP) and short glass fibre Nylon. Due to the semi-flexiable behaviour of long glass fibres, the fibre orientation distribution (FOD) will differ from the orientation distribution of short glass fibre in an injection molded part. In order to investigate the effect the change in fibre length has on the fibre orientation distribution or vice versa, FOD data was measured using the 2D section image analyser. The overall purpose of the research is to show how the orientation distribution chnages in an injection moulded centre gated disc and end gated plaque geometry and to compare this data against fibre orientation predictions obtained from Autodesk Moldflow Simulation Insight.

  11. Mechanical properties test and microstructure analysis of polyoxymethylene (POM) micro injection moulded standard parts

    DEFF Research Database (Denmark)

    Tosello, Guido; Lucchetta, Giovanni; Hansen, Hans Nørgaard

    2009-01-01

    to factorial plans, in which the factors of interest were mould temperature, melt temperature and dimensional range of the specimen (i.e. macro and micro parts). Micro structure analysis was performed by means of plastography techniques and revealed that high mould and melt temperatures resulted on a thin skin...

  12. Report on best practice for improved μ-IM injection moulding simulation

    DEFF Research Database (Denmark)

    Tosello, Guido; Costa, Franco; Hansen, Hans Nørgaard

    2010-01-01

    Data analysis and simulations on micro-moulding experiments have been conducted. Micro moulding simulations have been executed taking into account actual processing conditions implementation in the software. Numerous aspects of the simulation set-up have been considered in order to improve the si...

  13. Micro Injection Moulding High Accuracy Three-Dimensional Simulations and Process Control

    DEFF Research Database (Denmark)

    Tosello, Guido; Costa, F.S.; Hansen, Hans Nørgaard

    2011-01-01

    Data analysis and simulations of micro‐moulding experiments have been conducted. Micro moulding simulations have been executed by implementing in the software the actual processing conditions. Various aspects of the simulation set‐up have been considered in order to improve the simulation accurac...

  14. High Power Picosecond Laser Surface Micro-texturing of H13 Tool Steel and Pattern Replication onto ABS Plastics via Injection Moulding

    Science.gov (United States)

    Otanocha, Omonigho B.; Li, Lin; Zhong, Shan; Liu, Zhu

    2016-03-01

    H13 tool steels are often used as dies and moulds for injection moulding of plastic components. Certain injection moulded components require micro-patterns on their surfaces in order to modify the physical properties of the components or for better mould release to reduce mould contamination. With these applications it is necessary to study micro-patterning to moulds and to ensure effective pattern transfer and replication onto the plastic component during moulding. In this paper, we report an investigation into high average powered (100 W) picosecond laser interactions with H13 tool steel during surface micro-patterning (texturing) and the subsequent pattern replication on ABS plastic material through injection moulding. Design of experiments and statistical modelling were used to understand the influences of laser pulse repetition rate, laser fluence, scanning velocity, and number of scans on the depth of cut, kerf width and heat affected zones (HAZ) size. The characteristics of the surface patterns are analysed. The process parameter interactions and significance of process parameters on the processing quality and efficiency are characterised. An optimum operating window is recommended. The transferred geometry is compared with the patterns generated on the dies. A discussion is made to explain the characteristics of laser texturing and pattern replication on plastics.

  15. LIMITED RUN PRODUCTION USING ALUMIDE® TOOLING FOR THE PLASTIC INJECTION MOULDING PROCESS#1

    Directory of Open Access Journals (Sweden)

    J. Combrinck

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Existing techniques for the production of conventional steel tooling for plastic injection moulding are expensive and time-consuming. As a result, many new products often do not advance beyond the prototype stage. This paper describes an investigation into the possibility of using laser sintered Alumide® (an aluminium-filled nylon material in a novel alternative process for producing hybrid rapid tooling tools. Initial experiments performed by researchers at the Central University of Technology have shown excellent results. An Alumide® tool can be manufactured in a shorter time and at a significantly lower cost than the same size direct metal laser sintered tool.

    AFRIKAANSE OPSOMMING: Bestaande tegnieke vir die vervaardiging van konvensionele staal gietstukke vir die plastiek spuit-giet proses is duur en tydrowend. Die gevolg hiervan is dat baie nuwe produkte nie verder as die prototipe stadium vorder nie. Hierdie artikel ondersoek die moontlikheid om laser gesinterde Alumide® (aluminium gevulde nylon materiaal in ’n nuwe benadering as ’n alternatiewe proses vir die vervaardiging van snel hibried-gietvorms te gebruik. Aanvanklike eksperimente uitgevoer deur navorsers aan die Sentrale Universiteit vir Tegnologie het uitstekende resultate gelewer. ’n Alumide® gietvorm kan vinniger en goedkoper vervaardig word as dieselfde grootte direk metaal gesinterde gietvorm.

  16. Ultrasound based monitoring of the injection moulding process - Methods, applications and limitations

    International Nuclear Information System (INIS)

    Praher, B.; Straka, K.; Usanovic, J.; Steinbichler, G.

    2014-01-01

    We developed novel non-invasive ultrasound based systems for the measurement of temperature distributions in the screw-ante chamber, the detection of unmelted granules and for the monitoring of the plasticizing process along the screw channel. The temperature of the polymer melt stored in the screw ante-chamber after the plasticization should be homogeneous. However, in reality the polymer melt in the screw ante-chamber is not homogeneous. Due to the fact the sound velocity in a polymer melt is temperature depending, we developed a tomography system using the measured transit times of ultrasonic pulses along different sound paths for calculating the temperature distribution in radial direction of a polymer melt in the screw ante-chamber of an injection moulding machine. For the detection of unmelted granules in the polymer melt we implemented an ultrasound transmission measurement. By analyzing the attenuation of the received pulses it is possible to detect unwanted inclusions. For the monitoring of the plasticizing process in the channels of the screw an ultrasonic pulse is transmitted into the barrel. By analyzing the reflected pulses it is possible to estimate solid bed and melt regions in the screw channel. The proposed systems were tested for accuracy and validity by simulations and test measurements

  17. Debinding behaviour of a water soluble PEG/PMMA binder for Ti metal injection moulding

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gang [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand); Cao, Peng, E-mail: p.cao@auckland.ac.nz [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand); Wen, Guian [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand); Edmonds, Neil [School of Chemical Science, The University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand)

    2013-05-15

    Polyethylene glycol (PEG) has been becoming a common component in the design of water soluble binder systems for metal injection moulding. Similar to solvent debinding, PEG can be leached out by water and the mechanism of debinding was proposed in the literature with somehow misleading information about the debinding mechanism, particularly about the formation of PEG gel. This work investigates the debinding behaviours of a PEG-based binder in titanium compacts. Titanium powder is formulated with PEG, poly(methyl methacrylate) (PMMA) and stearic acid (SA) to formulate titanium feedstock. To determine the debinding kinetics, the PEG removal percentages are measured at three different temperatures and for various specimen thicknesses. A mathematic model based on diffusion-controlled debinding process is established. The evolution of porous microstructure during the water debinding process is observed using scanning electron microscopy. Based on these observations, a water debinding mechanism for titanium alloy compacts formulated with PEG-based binders is proposed. - Highlights: ► The water-debinding behaviours of the PEG binder system were investigated. ► PEG dissolution and transportation, and the pore structure development. ► A water debinding mechanism of PEG-based binders is proposed. ► Incorrect explanation of PEG gelling in the literature is corrected. ► Correction/modification made as per the reviewers' comments and suggestions.

  18. Molecular orientation of individual LCP particles in injection-moulded PPS/LCP blends

    Directory of Open Access Journals (Sweden)

    Kestenbach H.-J.

    2003-01-01

    Full Text Available Polarized light microscopy was used to investigate the presence of preferred molecular orientation in the LCP phase of PPS/LCP blends after injection moulding. Normal birefringence effects appeared to be complicated by artifacts due to sample preparation and by the complex nature of polarized light transmission through a multicomponent sample. It was found, however, that, during low-temperature cutting of optically transparent thin sections on a standard microtome, individual LCP particles could be separated from the PPS matrix, and their birefringence analyzed separately. Preferred orientation was detected only in LCP fibrils which dominated in skin regions, but not in droplet-shaped particles which had formed in core regions. Quantitative measurements indicated that the molecular orientation of the fibrils increased linearly with their length-to-diameter aspect ratios which ranged from 15 to 50. Even for the highest aspect ratios, however, the degree of orientation was always less than that which could easily be introduced into pure LCP thin-film samples by manual shearing.

  19. In vitro bioactivity of micro metal injection moulded stainless steel with defined surface features

    Directory of Open Access Journals (Sweden)

    C Brose

    2012-05-01

    Full Text Available Micrometre- and nanometre-scale surface structuring with ordered topography features may dramatically enhance orthopaedic implant integration. In this study we utilised a previously optimised micron metal injection moulding (µ-MIM process to produce medical grade stainless steel surfaces bearing micrometre scale, protruding, hemispheres of controlled dimensions and spatial distribution. Additionally, the structured surfaces were characterised by the presence of submicrometre surface roughness resulting from metal grain boundary formation. Following cytocompatibility (cytotoxicity evaluation using 3T3 mouse fibroblast cell line, the effect on primary human cell functionality was assessed focusing on cell attachment, shape and cytoskeleton conformation. In this respect, and by day 7 in culture, significant increase in focal adhesion size was associated with the microstructured surfaces compared to the planar control. The morphological conformation of the seeded cells, as revealed by fluorescence cytoskeleton labelling, also appeared to be guided in the vertical dimension between the hemisphere bodies. Quantitative evaluation of this guidance took place using live cytoplasm fluorescence labelling and image morphometry analysis utilising both, compactness and elongation shape descriptors. Significant increase in cell compactness was associated with the hemisphere arrays indicating collective increase in focused cell attachment to the hemisphere bodies across the entire cell population. Micrometre-scale hemisphere array patterns have therefore influenced cell attachment and conformation. Such influence may potentially aid in enhancing key cellular events such as, for example, neo-osteogenesis on implanted orthopaedic surfaces.

  20. Development of crayfish bio-based plastic materials processed by small-scale injection moulding.

    Science.gov (United States)

    Felix, Manuel; Romero, Alberto; Cordobes, Felipe; Guerrero, Antonio

    2015-03-15

    Protein has been investigated as a source for biodegradable polymeric materials. This work evaluates the development of plastic materials based on crayfish and glycerol blends, processed by injection moulding, as a fully biodegradable alternative to conventional polymer-based plastics. The effect of different additives, namely sodium sulfite or bisulfite as reducing agents, urea as denaturing agent and L-cysteine as cross-linking agent, is also analysed. The incorporation of any additive always yields an increase in energy efficiency at the mixing stage, but its effect on the mechanical properties of the bioplastics is not so clear, and even dampened. The additive developing a greater effect is L-cysteine, showing higher Young's modulus values and exhibiting a remnant thermosetting potential. Thus, processing at higher temperature yields a remarkable increase in extensibility. This work illustrates the feasibility of crayfish-based green biodegradable plastics, thereby contributing to the search for potential value-added applications for this by-product. © 2014 Society of Chemical Industry.

  1. Debinding and Sintering of an Injection-Moulded Hypereutectic Al–Si Alloy

    Directory of Open Access Journals (Sweden)

    Jiaqi Ni

    2018-05-01

    Full Text Available Hypereutectic Al–Si (20 wt.% alloy parts were fabricated by employing a powder injection moulding (PIM technique with a developed multi-component binder system composed of high-density polyethylene (35 wt.%, carnauba wax (62 wt.% and stearic acid (3 wt.%. The feedstocks contained 83 wt.% metal powders. The debinding process was carried out by a combination of solvent extraction and thermal decomposition. The effects of solvent debinding variables such as kind of solvents, debinding temperatures and time, and the bulk surface area to volume ratios on the debinding process were investigated. Thermal debinding and the subsequent sintering process were carried out in a heating sequence under a nitrogen atmosphere. The influences of sintering temperature and sintering time on the mechanical properties and structure were considered. Under the optimal sintering condition, sintering at 550 °C for 3 h, the final sintering parts were free of distortion and exhibited good mechanical properties. Relative sintered density, Brinell hardness, and tensile strength were ~95.5%, 58 HBW and ~154, respectively.

  2. Debinding and Sintering of an Injection-Moulded Hypereutectic Al⁻Si Alloy.

    Science.gov (United States)

    Ni, Jiaqi; Yu, Muhuo; Han, Keqing

    2018-05-16

    Hypereutectic Al⁻Si (20 wt.%) alloy parts were fabricated by employing a powder injection moulding (PIM) technique with a developed multi-component binder system composed of high-density polyethylene (35 wt.%), carnauba wax (62 wt.%) and stearic acid (3 wt.%). The feedstocks contained 83 wt.% metal powders. The debinding process was carried out by a combination of solvent extraction and thermal decomposition. The effects of solvent debinding variables such as kind of solvents, debinding temperatures and time, and the bulk surface area to volume ratios on the debinding process were investigated. Thermal debinding and the subsequent sintering process were carried out in a heating sequence under a nitrogen atmosphere. The influences of sintering temperature and sintering time on the mechanical properties and structure were considered. Under the optimal sintering condition, sintering at 550 °C for 3 h, the final sintering parts were free of distortion and exhibited good mechanical properties. Relative sintered density, Brinell hardness, and tensile strength were ~95.5%, 58 HBW and ~154, respectively.

  3. Debinding behaviour of a water soluble PEG/PMMA binder for Ti metal injection moulding

    International Nuclear Information System (INIS)

    Chen, Gang; Cao, Peng; Wen, Guian; Edmonds, Neil

    2013-01-01

    Polyethylene glycol (PEG) has been becoming a common component in the design of water soluble binder systems for metal injection moulding. Similar to solvent debinding, PEG can be leached out by water and the mechanism of debinding was proposed in the literature with somehow misleading information about the debinding mechanism, particularly about the formation of PEG gel. This work investigates the debinding behaviours of a PEG-based binder in titanium compacts. Titanium powder is formulated with PEG, poly(methyl methacrylate) (PMMA) and stearic acid (SA) to formulate titanium feedstock. To determine the debinding kinetics, the PEG removal percentages are measured at three different temperatures and for various specimen thicknesses. A mathematic model based on diffusion-controlled debinding process is established. The evolution of porous microstructure during the water debinding process is observed using scanning electron microscopy. Based on these observations, a water debinding mechanism for titanium alloy compacts formulated with PEG-based binders is proposed. - Highlights: ► The water-debinding behaviours of the PEG binder system were investigated. ► PEG dissolution and transportation, and the pore structure development. ► A water debinding mechanism of PEG-based binders is proposed. ► Incorrect explanation of PEG gelling in the literature is corrected. ► Correction/modification made as per the reviewers' comments and suggestions

  4. Ultrasound based monitoring of the injection moulding process - Methods, applications and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Praher, B., E-mail: bernhard.praher@jku.at, E-mail: klaus.straka@jku.at, E-mail: jesenka.usanovic@jku.at, E-mail: georg.steinbichler@jku.at; Straka, K., E-mail: bernhard.praher@jku.at, E-mail: klaus.straka@jku.at, E-mail: jesenka.usanovic@jku.at, E-mail: georg.steinbichler@jku.at; Usanovic, J., E-mail: bernhard.praher@jku.at, E-mail: klaus.straka@jku.at, E-mail: jesenka.usanovic@jku.at, E-mail: georg.steinbichler@jku.at; Steinbichler, G., E-mail: bernhard.praher@jku.at, E-mail: klaus.straka@jku.at, E-mail: jesenka.usanovic@jku.at, E-mail: georg.steinbichler@jku.at [Institute of Polymer Injection Moulding and Process Automation, Johannes Kepler University Linz (Austria)

    2014-05-15

    We developed novel non-invasive ultrasound based systems for the measurement of temperature distributions in the screw-ante chamber, the detection of unmelted granules and for the monitoring of the plasticizing process along the screw channel. The temperature of the polymer melt stored in the screw ante-chamber after the plasticization should be homogeneous. However, in reality the polymer melt in the screw ante-chamber is not homogeneous. Due to the fact the sound velocity in a polymer melt is temperature depending, we developed a tomography system using the measured transit times of ultrasonic pulses along different sound paths for calculating the temperature distribution in radial direction of a polymer melt in the screw ante-chamber of an injection moulding machine. For the detection of unmelted granules in the polymer melt we implemented an ultrasound transmission measurement. By analyzing the attenuation of the received pulses it is possible to detect unwanted inclusions. For the monitoring of the plasticizing process in the channels of the screw an ultrasonic pulse is transmitted into the barrel. By analyzing the reflected pulses it is possible to estimate solid bed and melt regions in the screw channel. The proposed systems were tested for accuracy and validity by simulations and test measurements.

  5. The Optimisation of Processing Condition for Injected Mould Polypropylene-Nanoclay-Gigantochloa Scortechinii based on Melt Flow Index

    Science.gov (United States)

    Othman, M. H.; Rosli, M. S.; Hasan, S.; Amin, A. M.; Hashim, M. Y.; Marwah, O. M. F.; Amin, S. Y. M.

    2018-03-01

    The fundamental knowledge of flow behaviour is essential in producing various plastic parts injection moulding process. Moreover, the adaptation of advanced polymer-nanocomposites such as polypropylene-nanoclay with natural fibres, for instance Gigantochloa Scortechinii may boost up the mechanical properties of the parts. Therefore, this project was proposed with the objective to optimise the processing condition of injected mould polypropylene-nanoclay-Gigantochloa Scortechini fibres based on the flow behaviour, which was melt flow index. At first, Gigantochloa Scortechinii fibres have to be preheated at temperature 120°C and then mixed with polypropylene, maleic anhydride modified polypropylene oligomers (PPgMA) and nanoclay by using Brabender Plastograph machine. Next, forms of pellets were produced from the samples by using Granulator machine for use in the injection moulding process. The design of experiments that was used in the injection moulding process was Taguchi Method Orthogonal Array -L934. Melt Flow Index (MF) was selected as the response. Based on the results, the value of MFI increased when the fiber content increase from 0% to 3%, which was 17.78 g/10min to 22.07 g/10min and decreased from 3% to 6%, which was 22.07 g/10min to 20.05 g/10min and 3%, which gives the highest value of MFI. Based on the signal to ratio analysis, the most influential parameter that affects the value of MFI was the melt temperature. The optimum parameter for 3% were 170°C melt temperature, 35% packing pressure, 30% screw speed and 3 second filling time.

  6. Experimental investigation of the factors influencing the polymer-polymer bond strength during two-component injection moulding

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Bondo, Martin

    2010-01-01

    Two-component injection moulding is a commercially important manufacturing process and a key technology for combining different material properties in a single plastic product. It is also one of most industrially adaptive process chain for manufacturing so-called moulded interconnect devices (MIDs......). Many fascinating applications of two-component or multi-component polymer parts are restricted due to the weak interfacial adhesion of the polymers. A thorough understanding of the factors that influence the bond strength of polymers is necessary for multi-component polymer processing. This paper...... investigates the effects of the process conditions and geometrical factors on the bond strength of two-component polymer parts and identifies the factors which can effectively control the adhesion between two polymers. The effects of environmental conditions on the bond strength are also investigated...

  7. Microstructure, surface topography and mechanical properties of slip cast and powder injection moulded microspecimens made of zirconia

    International Nuclear Information System (INIS)

    Auhorn, M.; Kasanicka, B.; Beck, T.; Schulze, V.; Loehe, D.

    2003-01-01

    Investigations on ceramic microspecimens made of Y 2 O 3 -stabilized ZrO 2 produced by slip casting or micro powder injection moulding are introduced. During the production of the microspecimens, feedstocks and sintering conditions were varied. Differently moulded specimens were examined with respect to their microstructure and surface topography using light microscopy, scanning electron microscopy (SEM) and confocal white light microscopy. Additionally, the mechanical characteristics were investigated by three-point bending tests using a micro universal testing device. The statistical analysis was realised by means of the Weibull theory and interpreted by the aid of SEM images of fracture surfaces. This research allowed to understand correlations between different feedstocks used, process parameters like the sintering conditions applied and the resulting characteristics as well as material properties of the microspecimens. These results could be used to improve the production process. (orig.)

  8. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    Science.gov (United States)

    Kistrup, Kasper; Skotte Sørensen, Karen; Wolff, Anders; Fougt Hansen, Mikkel

    2015-04-01

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/μg and 1.72(14) nL/μg were found for Milli-Q water and lysis-binding buffer, respectively.

  9. A new approach for the validation of filling simulations in micro injection moulding

    DEFF Research Database (Denmark)

    Gava, Alberto; Tosello, Guido; Lucchetta, Giovanni

    2007-01-01

    to be improved. The main objective of this work is to evaluate whether the present numerical codes are suitable to characterize melt flow patterns in a micro cavity. In order to test the accuracy of the software, real and simulated experiments were performed and used to investigate the filling of a micro moulded...

  10. INFLUENCE OF REGRIND ON PROPERTIES OF PLASTICS PRODUCED BY INJECTION MOULDING

    Directory of Open Access Journals (Sweden)

    Ľudmila Dulebová

    2011-07-01

    Full Text Available The contribution deals with the evaluation of results of selected mechanical tests. Materials Crastin® PBT (with 30 % glass fibre and Celanex® 2004-2 PBT (without filler were used at tests with various percentage of added regrind into basic material. The mechanical properties were obtained by tensile test and Shore hardness test. Utilization of regrind at the production of new moulded parts is important from aspect of reduction plastics waste and pollution abatement of environment.

  11. Physical characterisation of particles and rheological of a heterogeneous system used in low-pressure injection moulding

    International Nuclear Information System (INIS)

    Zampieron, Joao Vicente

    2002-01-01

    The powder injection moulding process is a recent technology, which offers as advantages a high production of complex geometry metal parts, with low cost, where secondary operations of machinery are unnecessary. The main of this thesis was centered on a coarse powders feedstock injection. The process begins with the composition of the mass, that is the combination of metal powders with organic binders. The following steps succeed injection in moulds, debinding, sintering and, if necessary, cleaning. For the formulation of the feedstock it is indispensable the characterisation of the powders. This is little mentioned in the open literature and brings up controversy among authors. At first, a series of powders characterisations of AISI 316 L stainless steel (below 25 μm) was adopted. The next step was to characterise the rheological behaviour of the feedstock using different rheological apparatus, so as to find the most appropriate equipment to the low-pressure powder injection molding process. The mass has to present a favourable rheological behaviour, which is low viscosity. The results of the physical characterisation were correlated among themselves and with the rheological characterisation. This was undertaken with the purpose of finding agreement among their values. Finally, the possibility of injection of water and gas atomised stainless steel coarse powders feedstock was studied. This presents as main advantage, the reduction of costs for the process. According to the literature, only powders with size below 25 μm are possible to be injected. Hence, starting from the physical characterisation of particles and rheological characterisation of the feedstock, the formulation of an appropriate mass was found for the coarse powders. These coarse powders were characterised by particles below 45 μm. In this case it was necessary to alter drastically the feedstock composition, using high amounts of wax, which lead to unstable rheological conditions. But, it was

  12. Tool path planning of hole-making operations in ejector plate of injection mould using modified shuffled frog leaping algorithm

    Directory of Open Access Journals (Sweden)

    Amol M. Dalavi

    2016-07-01

    Full Text Available Optimization of hole-making operations in manufacturing industry plays a vital role. Tool travel and tool switch planning are the two major issues in hole-making operations. Many industrial applications such as moulds, dies, engine block, automotive parts etc. requires machining of large number of holes. Large number of machining operations like drilling, enlargement or tapping/reaming are required to achieve the final size of individual hole, which gives rise to number of possible sequences to complete hole-making operations on the part depending upon the location of hole and tool sequence to be followed. It is necessary to find the optimal sequence of operations which minimizes the total processing cost of hole-making operations. In this work, therefore an attempt is made to reduce the total processing cost of hole-making operations by applying relatively new optimization algorithms known as shuffled frog leaping algorithm and proposed modified shuffled frog leaping algorithm for the determination of optimal sequence of hole-making operations. An industrial application example of ejector plate of injection mould is considered in this work to demonstrate the proposed approach. The obtained results by the shuffled frog leaping algorithm and proposed modified shuffled frog leaping algorithm are compared with each other. It is seen from the obtained results that the results of proposed modified shuffled frog leaping algorithm are superior to those obtained using shuffled frog leaping algorithm.

  13. Investigation of the powder loading of gas-atomized Ti6Al4V powder using an ‘in-house’ binder for metal injection moulding

    CSIR Research Space (South Africa)

    Seerane, MN

    2013-10-01

    Full Text Available Powder loading is one of the most critical factors in metal injection moulding (MIM) technology. It largely determines the success or failure of the subsequent MIM processes. A gas-atomized Ti6Al4V powder was investigated to determine an optimum...

  14. Fabrication and characterization of injection molded multi level nano and microfluidic systems

    DEFF Research Database (Denmark)

    Matteucci, Marco; Christiansen, Thomas Lehrmann; Tanzi, Simone

    2013-01-01

    We here present a method for fabrication of multi-level all-polymer chips by means of silicon dry etching, electroplating and injection molding. This method was used for successful fabrication of microfluidic chips for applications in the fields of electrochemistry, cell trapping and DNA elongati...

  15. Process Factors Influence on Cavity Pressure Behavior in Microinjection Moulding

    DEFF Research Database (Denmark)

    Griffiths, C. A.; Dimov, S. S.; Scholz, S.

    2011-01-01

    about the filling behavior of different polymer melts. In this paper, a pressure sensor mounted inside a tool cavity was employed to analyse maximum cavity pressure, pressure increase rate during filling and pressure work. The influence of four mu IM parameters, melt temperature, mould temperature......Process monitoring of microinjection moulding (mu IM) is of crucial importance when analysing the effect of different parameter settings on the process and then in assessing its quality. Quality factors related to cavity pressure can provide valuable information about the process dynamics and also......, injection speed, and packing pressure on these three pressure-related process parameters was investigated. A design of experiment study was conducted by moulding a test part, a microfluidic component, in three different polymer materials, PP, ABS, and PC. The results show a similar process behavior for all...

  16. All-polymer microfluidic systems for droplet based sample analysis

    DEFF Research Database (Denmark)

    Poulsen, Carl Esben

    In this PhD project, I pursued to develop an all-polymer injection moulded microfluidic platform with integrated droplet based single cell interrogation. To allow for a proper ”one device - one experiment” methodology and to ensure a high relevancy to non-academic settings, the systems presented ...

  17. Design of conformal cooling for plastic injection moulding by heat transfer simulation

    Directory of Open Access Journals (Sweden)

    Sabrina Marques

    2015-12-01

    Full Text Available The cooling channels of a mold for plastic injection have to be as close as possible to the part geometry in order to ensure fast and homogeneous cooling. However, conventional methods to manufacture cooling channels (drilling can only produce linear holes. Selective laser melting (SLM is an additive manufacturing technique capable to manufacture complex cooling channels (known as conformal cooling. Nevertheless, because of the high costs of SLM the benefits of conformal collings are still not clear. The current work investigates two designs of conformal coolings: i parallel circuit; ii serial circuit. Both coolings are evaluated against to traditional cooling circuits (linear channels by CAE simulation to produce parts of polypropylene. The results show that if the conformal cooling is not properly designed it cannot provide reasonable results. The deformation of the product can be reduced significantly after injection but the cycle time reduced not more than 6%.

  18. A MILP for multi-machine injection moulding sequencing in the scope of C2NET Project

    Directory of Open Access Journals (Sweden)

    Beatriz Andrés

    2018-01-01

    Full Text Available The goal of C2NET European H2020 Funded Project is the creation of cloud-enabled tools for supporting the SMEs supply network optimization of manufacturing and logistic assets based on collaborative demand, production and delivery plans. In the scope of C2NET Project, and particularly in the Optimisation module (C2NET OPT, this paper proposes a novel holistic mixed integer linear programing (MILP model to optimise the injection sequencing in a multi-machine case. The results of the MILP will support the production planner decision-making process in the calculation of (i moulds setup in certain machines, and (ii the amount of products to produce in order to minimise the setup, inventory, and backorders costs. The designed MILP takes part of the algorithms repository created in C2NET European Funded Project to solve realistic industry planning problems. The MILP is verified in realistic data considering three data sets with different sizes, in order to test it’s the computation efficiency.

  19. PEM fuel cells with injection moulded bipolar plates of highly filled graphite compounds; PEM-Brennstoffzellen mit spritzgegossenen Bipolarplatten aus hochgefuelltem Graphit-Compound

    Energy Technology Data Exchange (ETDEWEB)

    Kreuz, Can

    2008-04-11

    This work concerns with the injection moulding of highly filled graphite compounds to bipolar plates for PEM fuel cells in a power output range between 100 - 500 Watts. A particular focus is laid on the combination of the three multidisciplinary scopes like material development, production technology and component development / design. The results of the work are specified by the process-oriented characterisation of the developed and manufactured bipolar plates as well as their application in a functioning fuel cell. (orig.)

  20. Improvement of replication fidelity in injection moulding of nano structures using an induction heating system

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano

    2014-01-01

    In today’s industry, applications involving surface pattering with sub-μm scale structures have shown a high interest. The replication of these structures by injection molding leads to special requirements for the mold in order to ensure proper replication and an acceptable cycle time. A tool ins...... quantitatively characterized by atomic force microscopy comparing the measurement in the nickel insert with the corresponding polymer nano-features. The experimental results show that the use of the induction heating system is an efficient way to improve the pattern replication....

  1. Chopped basalt fibres: A new perspective in reinforcing poly(lactic acid to produce injection moulded engineering composites from renewable and natural resources

    Directory of Open Access Journals (Sweden)

    P. Tamas

    2013-02-01

    Full Text Available This paper focuses on the reinforcing of Poly(lactic acid with chopped basalt fibres by using silane treated and untreated basalt fibres. Composite materials with 5–10–15–20–30–40 wt% basalt fibre contents were prepared from silane sized basalt fibres using extrusion, and injection moulding, while composites with 5–10–15 wt% basalt fibre contents were also prepared by using untreated basalt fibres as control. The properties of the injection moulded composites were extensively examined by using quasi-static (tensile, three-point bending and dynamic mechanical tests (notched and unnotched Charpy impact tests, dynamic mechanical analysis (DMA, differential scanning calorimetry (DSC, heat deflection temperature (HDT analysis, dimensional stability test, as well as melt flow index (MFI analysis and scanning electron microscopic (SEM observations. It was found that silane treated chopped basalt fibres are much more effective in reinforcing Poly(lactic acid than natural fibres; although basalt fibres are not biodegradable but they are still considered as natural (can be found in nature in the form of volcanic rocks and biologically inert. It is demonstrated in this paper that by using basalt fibre reinforcement, a renewable and natural resource based composite can be produced by injection moulding with excellent mechanical properties suitable even for engineering applications. Finally it was shown that by using adequate drying of the materials, composites with higher mechanical properties can be achieved compared to literature data.

  2. Gate Design in Injection Molding of Microfluidic Components Using Process Simulations

    DEFF Research Database (Denmark)

    Marhöfer, David Maximilian; Tosello, Guido; Islam, Aminul

    2016-01-01

    Just as in conventional injection molding of plastics, process simulationsare an effective and interesting tool in the area of microinjection molding. They can be applied in order to optimize and assist the design of the microplastic part, the mold, and the actual process. Available simulation...... software is however actually made for macroscopic injection molding. By means of the correct implementation and careful modeling strategy though, it can also be applied to microplastic parts, as it is shown in the present work. Process simulations were applied to two microfluidic devices (amicrofluidic...

  3. Assembly injection moulding joins metal and thermoplastics; Montagespritzgiessen verbindet Metall und Thermoplast

    Energy Technology Data Exchange (ETDEWEB)

    Drummer, Dietmar; Meister, Steve [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Kunststofftechnik; Reichart, Marc [HBW Gubesch Kunststoff Engineering GmbH, Wilhelmsdorf (Germany)

    2010-03-08

    Automotive safety restraint system components increasingly use flexible styrenic and olefinic TPEs. With continued evolution in automotive interior design and performance requirements, demands on material technology are concomitantly rising. A growing trend towards molded in color solutions with low gloss aesthetics require TPE materials with ery low gloss, improved scratch resistance, and low temperature ductility. Innovations utilizing Teknor Apex's compounding technology have enabled the development of low gloss styrenic elastomers for airbag door applications that provide an optimized combination of low temperature performance, surface aesthetics (low gloss and improved scratch resistance), and ease of processing. This paper highlights the salient features of these new compounds and the effect of injection molding condition on the gloss at the surface of the cover.

  4. Continuous-Flow Production of Injectable Liposomes via a Microfluidic Approach

    Science.gov (United States)

    Zizzari, Alessandra; Bianco, Monica; Perrone, Elisabetta; Amato, Francesco; Maruccio, Giuseppe; Rendina, Filippo; Arima, Valentina

    2017-01-01

    Injectable liposomes are characterized by a suitable size and unique lipid mixtures, which require time-consuming and nonstraightforward production processes. The complexity of the manufacturing methods may affect liposome solubility, the phase transition temperatures of the membranes, the average particle size, and the associated particle size distribution, with a possible impact on the drug encapsulation and release. By leveraging the precise steady-state control over the mixing of miscible liquids and a highly efficient heat transfer, microfluidic technology has proved to be an effective and direct methodology to produce liposomes. This approach results particularly efficient in reducing the number of the sizing steps, when compared to standard industrial methods. Here, Microfluidic Hydrodynamic Focusing chips were produced and used to form liposomes upon tuning experimental parameters such as lipids concentration and Flow-Rate-Ratios (FRRs). Although modelling evidenced the dependence of the laminar flow on the geometric constraints and the FRR conditions, for the specific formulation investigated in this study, the lipids concentration was identified as the primary factor influencing the size of the liposomes and their polydispersity index. This was attributed to a predominance of the bending elasticity modulus over the vesiculation index in the lipid mixture used. Eventually, liposomes of injectable size were produced using microfluidic one-pot synthesis in continuous flow. PMID:29232873

  5. Continuous-Flow Production of Injectable Liposomes via a Microfluidic Approach

    Directory of Open Access Journals (Sweden)

    Alessandra Zizzari

    2017-12-01

    Full Text Available Injectable liposomes are characterized by a suitable size and unique lipid mixtures, which require time-consuming and nonstraightforward production processes. The complexity of the manufacturing methods may affect liposome solubility, the phase transition temperatures of the membranes, the average particle size, and the associated particle size distribution, with a possible impact on the drug encapsulation and release. By leveraging the precise steady-state control over the mixing of miscible liquids and a highly efficient heat transfer, microfluidic technology has proved to be an effective and direct methodology to produce liposomes. This approach results particularly efficient in reducing the number of the sizing steps, when compared to standard industrial methods. Here, Microfluidic Hydrodynamic Focusing chips were produced and used to form liposomes upon tuning experimental parameters such as lipids concentration and Flow-Rate-Ratios (FRRs. Although modelling evidenced the dependence of the laminar flow on the geometric constraints and the FRR conditions, for the specific formulation investigated in this study, the lipids concentration was identified as the primary factor influencing the size of the liposomes and their polydispersity index. This was attributed to a predominance of the bending elasticity modulus over the vesiculation index in the lipid mixture used. Eventually, liposomes of injectable size were produced using microfluidic one-pot synthesis in continuous flow.

  6. In situ ZnO-PVA nanocomposite coated microfluidic chips for biosensing

    Science.gov (United States)

    Habouti, Salah; Kunstmann-Olsen, Casper; Hoyland, James D.; Rubahn, Horst-Günter; Es-Souni, Mohammed

    2014-05-01

    Microfluidic chips with integrated fluid and optical connectors have been generated via a simple PDMS master-mould technique. In situ coating using a Zinc oxide polyvinylalcohol based sol-gel method results in ultrathin nanocomposite layers on the fluid channels, which makes them strongly hydrophilic and minimizes auto contamination of the chips by injected fluorescent biomarkers.

  7. New processing route for ZrSiO{sub 4} by powder injection moulding using an eco-friendly binder system

    Energy Technology Data Exchange (ETDEWEB)

    Abajo, C.; Jimenez-Morales, A.; Torralba, J. M.

    2015-10-01

    New processing route has been developed for zircon based on powder injection moulding (PIM). Raw zircon powders, obtained from mineral sands, have been processed using a new water soluble binder system composed of PEG and CAB. Water solvent debinding stage has been studied in depth. On one hand, influence of some debinding parameters (temperature, debinding rate, additives and the use of climate chamber) has been tested. On the other hand, new binder systems were tested and compared with previous studied ones. The full PIM process has been carried out. Mixing, injection molding, solvent and thermal debinding and finally sintering, have been performed with the optimal binder system composition. Homogeneity along the process has been assessed by thermo-gravimetric analysis and by density measurements. After sintering, dimensional variation, density and fracture surface obtained after flexural strength test, have been analyzed. A competitive flexural strength has been achieved for injected zircon samples. (Author)

  8. AAO-CNTs electrode on microfluidic flow injection system for rapid iodide sensing.

    Science.gov (United States)

    Phokharatkul, Ditsayut; Karuwan, Chanpen; Lomas, Tanom; Nacapricha, Duangjai; Wisitsoraat, Anurat; Tuantranont, Adisorn

    2011-06-15

    In this work, carbon nanotubes (CNTs) nanoarrays in anodized aluminum oxide (AAO-CNTs) nanopore is integrated on a microfluidic flow injection system for in-channel electrochemical detection of iodide. The device was fabricated from PDMS (polydimethylsiloxane) microchannel bonded on glass substrates that contains three-electrode electrochemical system, including AAO-CNTs as a working electrode, silver as a reference electrode and platinum as an auxiliary electrode. Aluminum, stainless steel catalyst, silver and platinum layers were sputtered on the glass substrate through shadow masks. Aluminum layer was then anodized by two-step anodization process to form nanopore template. CNTs were then grown in AAO template by thermal chemical vapor deposition. The amperometric detection of iodide was performed in 500-μm-wide and 100-μm-deep microchannels on the microfluidic chip. The influences of flow rate, injection volume and detection potential on the current response were optimized. From experimental results, AAO-CNTs electrode on chip offers higher sensitivity and wider dynamic range than CNTs electrode with no AAO template. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Exploiting an automated microfluidic hydrodynamic sequential injection system for determination of phosphate.

    Science.gov (United States)

    Khongpet, Wanpen; Pencharee, Somkid; Puangpila, Chanida; Kradtap Hartwell, Supaporn; Lapanantnoppakhun, Somchai; Jakmunee, Jaroon

    2018-01-15

    A microfluidic hydrodynamic sequential injection (μHSI) spectrophotometric system was designed and fabricated. The system was built by laser engraving a manifold pattern on an acrylic block and sealing with another flat acrylic plate to form a microfluidic channel platform. The platform was incorporated with small solenoid valves to obtain a portable setup for programmable control of the liquid flow into the channel according to the HSI principle. The system was demonstrated for the determination of phosphate using a molybdenum blue method. An ascorbic acid, standard or sample, and acidic molybdate solutions were sequentially aspirated to fill the channel forming a stack zone before flowing to the detector. Under the optimum condition, a linear calibration graph in the range of 0.1-6mg P L -1 was obtained. The detection limit was 0.1mgL -1 . The system is compact (5.0mm thick, 80mm wide × 140mm long), durable, portable, cost-effective, and consumes little amount of chemicals (83μL each of molybdate and ascorbic acid, 133μL of the sample solution and 1.7mL of water carrier/run). It was applied for the determination of phosphate content in extracted soil samples. The percent recoveries of the analysis were obtained in the range of 91.2-107.3. The results obtained agreed well with those of the batch spectrophotometric method. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Moulding of Sub-micrometer Surface Structures

    DEFF Research Database (Denmark)

    Pranov, Henrik; Rasmussen, Henrik K.; Larsen, Niels Bent

    2006-01-01

    The experiments strongly suggest that the possibility to injection mould sub-micrometer surface structures in polymers mainly relates to the forces originating from the adhesive energy between polymer and shim.......The experiments strongly suggest that the possibility to injection mould sub-micrometer surface structures in polymers mainly relates to the forces originating from the adhesive energy between polymer and shim....

  11. Effect of injection angle, density ratio, and viscosity on droplet formation in a microfluidic T-junction

    Directory of Open Access Journals (Sweden)

    Mohammad Yaghoub Abdollahzadeh Jamalabadi

    2017-07-01

    Full Text Available The T-junction microchannel device makes available a sharp edge to form micro-droplets from bio-material solutions. This article investigates the effects of injection angle, flow rate ratio, density ratio, viscosity ratio, contact angle, and slip length in the process of formation of uniform droplets in microfluidic T-junctions. The governing equations were solved by the commercial software. The results show that contact angle, slip length, and injection angles near the perpendicular and parallel conditions have an increasing effect on the diameter of generated droplets, while flow rate, density and viscosity ratios, and other injection angles had a decreasing effect on the diameter. Keywords: Microfluidics, Droplet formation, Flow rate ratio, Density ratio

  12. Fast cholesterol detection using flow injection microfluidic device with functionalized carbon nanotubes based electrochemical sensor.

    Science.gov (United States)

    Wisitsoraat, A; Sritongkham, P; Karuwan, C; Phokharatkul, D; Maturos, T; Tuantranont, A

    2010-12-15

    This work reports a new cholesterol detection scheme using functionalized carbon nanotube (CNT) electrode in a polydimethylsiloxane/glass based flow injection microfluidic chip. CNTs working, silver reference and platinum counter electrode layers were fabricated on the chip by sputtering and low temperature chemical vapor deposition methods. Cholesterol oxidase prepared in polyvinyl alcohol solution was immobilized on CNTs by in-channel flow technique. Cholesterol analysis based on flow injection chronoamperometric measurement was performed in 150-μm-wide and 150-μm-deep microchannels. Fast and sensitive real-time detection was achieved with high throughput of more than 60 samples per hour and small sample volume of 15 μl. The cholesterol sensor had a linear detection range between 50 and 400 mg/dl. In addition, low cross-sensitivities toward glucose, ascorbic acid, acetaminophen and uric acid were confirmed. The proposed system is promising for clinical diagnostics of cholesterol with high speed real-time detection capability, very low sample consumption, high sensitivity, low interference and good stability. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Laser ablation and injection moulding as techniques for producing micro channels compatible with Small Angle X-Ray Scattering

    DEFF Research Database (Denmark)

    Haider, R.; Marmiroli, B.; Gavalas, I.

    2018-01-01

    Microfluidic mixing is an important means for in-situ sample preparation and handling while Small Angle X-Ray Scattering (SAXS) is a proven tool for characterising (macro-)molecular structures. In combination those two techniques enable investigations of fast reactions with high time resolution......, the requirement for low scattering especially limits the techniques suitable for producing the mixer, as the fabrication process can induce molecular orientations and stresses that can adversely influence the scattering signal. Not only is it important to find a production method that results in a device with low...

  14. Micromilling of hardened tool steel for mould making applications

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2005-01-01

    geometries as those characterizing injection moulding moulds. The realization of the micromilling process in connection with hardened tool steel as workpiece material is particularly challenging. The low strength of the miniaturized end mills implies reduction and accurate control of the chip load which...... wear. This paper presents the micromilling process applied to the manufacturing of micro injection moulding moulds in hardened tool steel, presenting experimental evidence and possible solutions to the above-mentioned issues....

  15. Design, microfabrication, and characterization of a moulded PDMS/SU-8 inkjet dispenser for a Lab-on-a-Printer platform technology with disposable microfluidic chip.

    Science.gov (United States)

    Bsoul, Anas; Pan, Sheng; Cretu, Edmond; Stoeber, Boris; Walus, Konrad

    2016-08-16

    In this paper, we present a disposable inkjet dispenser platform technology and demonstrate the Lab-on-a-Printer concept, an extension of the ubiquitous Lab-on-a-Chip concept, whereby microfluidic modules are directly integrated into the printhead. The concept is demonstrated here through the integration of an inkjet dispenser and a microfluidic mixer enabling control over droplet composition from a single nozzle in real-time during printing. The inkjet dispenser is based on a modular design platform that enables the low-cost microfluidic component and the more expensive actuation unit to be easily separated, allowing for the optional disposal of the former and reuse of the latter. To limit satellite droplet formation, a hydrophobic-coated and tapered micronozzle was microfabricated and integrated with the fluidics to realize the dispenser. The microfabricated devices generated droplets with diameters ranging from 150-220 μm, depending mainly on the orifice diameter, with printing rates up to 8000 droplets per second. The inkjet dispenser is capable of dispensing materials with a viscosity up to ∼19 mPa s. As a demonstration of the inkjet dispenser function and application, we have printed type I collagen seeded with human liver carcinoma cells (cell line HepG2), to form patterned biological structures.

  16. Development of micropump-actuated negative pressure pinched injection for parallel electrophoresis on array microfluidic chip.

    Science.gov (United States)

    Li, Bowei; Jiang, Lei; Xie, Hua; Gao, Yan; Qin, Jianhua; Lin, Bingcheng

    2009-09-01

    A micropump-actuated negative pressure pinched injection method is developed for parallel electrophoresis on a multi-channel LIF detection system. The system has a home-made device that could individually control 16-port solenoid valves and a high-voltage power supply. The laser beam is excitated and distributes to the array separation channels for detection. The hybrid Glass-PDMS microfluidic chip comprises two common reservoirs, four separation channels coupled to their respective pneumatic micropumps and two reference channels. Due to use of pressure as a driving force, the proposed method has no sample bias effect for separation. There is only one high-voltage supply needed for separation without relying on the number of channels, which is significant for high-throughput analysis, and the time for sample loading is shortened to 1 s. In addition, the integrated micropumps can provide the versatile interface for coupling with other function units to satisfy the complicated demands. The performance is verified by separation of DNA marker and Hepatitis B virus DNA samples. And this method is also expected to show the potential throughput for the DNA analysis in the field of disease diagnosis.

  17. Fabrication of nuclear fuel by powder injection moulding: Study of the binders systems and the de-binding of feedstock containing actinide powder

    International Nuclear Information System (INIS)

    Bricout, J.

    2012-01-01

    Powder Injection Moulding (PIM) is identified as an innovative process for the nuclear fuel fabrication. Technological breakthrough compared to the current process of powder metallurgy, the impact of actinide powder's specificities on the different steps of PIM is performed. Alumina powders simulating actinide powder have been implemented with a reference binders system. Thermal and rheological studies show the injectability and the de-binding of feedstocks with adequate solid loading (≥50 %vol), thanks to the de-agglomeration during the mixing step, which allow to obtain net shape fuel pellet. Specific surface area of powders, acting as a key role in behaviour's feedstocks, has been integrated in analysis models of viscosity prediction according to the shear rate. Also conducted studies on uranium oxide powder show that the selected binders systems, which have a compatible rheological behaviour with PIM process, impact the de-agglomeration of powder and final microstructure of the fuel pellet, consistent with the results obtained on alumina powders. Independent behaviour of binders and uranium oxide powder, showing no adverse chemical reaction against the PIM process, show a residual mass of carbon of about 150 ppm after sintering. Binders system using polystyrene, resistant to radiolysis phenomena and loadable more than 50 %(vol) of actinide powder, shows the promising potential of PIM process for the fuel fabrication. (author) [fr

  18. Improving the Wear Resistance of Moulds for the Injection of Glass Fibre–Reinforced Plastics Using PVD Coatings: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Francisco Silva

    2017-02-01

    Full Text Available It is well known that injection of glass fibre–reinforced plastics (GFRP causes abrasive wear in moulds’ cavities and runners. Physical vapour deposition (PVD coatings are intensively used to improve the wear resistance of different tools, also being one of the most promising ways to increase the moulds’ lifespan, mainly when used with plastics strongly reinforced with glass fibres. This work compares four different thin, hard coatings obtained using the PVD magnetron sputtering process: TiAlN, TiAlSiN, CrN/TiAlCrSiN and CrN/CrCN/DLC. The first two are monolayer coatings while the last ones are nanostructured and consist of multilayer systems. In order to carry out the corresponding tribological characterization, two different approaches were selected: A laboratorial method, using micro-abrasion wear tests based on a ball-cratering configuration, and an industrial mode, analysing the wear resistance of the coated samples when inserted in a plastic injection mould. As expected, the wear phenomena are not equivalent and the results between micro-abrasion and industrial tests are not similar due to the different means used to promote the abrasion. The best wear resistance performance in the laboratorial wear tests was attained by the TiAlN monolayer coating while the best performance in the industrial wear tests was obtained by the CrN/TiAlCrSiN nanostructured multilayer coating.

  19. Influence of 1D and 2D Carbon Fillers and Their Functionalisation on Crystallisation and Thermomechanical Properties of Injection Moulded Nylon 6,6 Nanocomposites

    Directory of Open Access Journals (Sweden)

    Fabiola Navarro-Pardo

    2014-01-01

    Full Text Available Carbon nanotubes (CNTs and graphene were used as reinforcing fillers in nylon 6,6 in order to obtain nanocomposites by using an injection moulding process. The two differently structured nanofillers were used in their pristine or reduced form, after oxidation treatment and after amino functionalisation. Three low nanofiller contents were employed. Crystallisation behaviour and perfection of nylon 6,6 crystals were determined by differential scanning calorimetry and wide angle X-ray diffraction, respectively. Crystallinity was slightly enhanced in most samples as the content of the nanofillers was increased. The dimensionality of the materials was found to provide different interfaces and therefore different features in the nylon 6,6 crystal growth resulting in improved crystal perfection. Dynamical, mechanical analysis showed the maximum increases provided by the two nanostructures correspond to the addition of 0.1 wt.% amino functionalised CNTs, enhancing in 30% the storage modulus and the incorporation of 0.5 wt.% of graphene oxide caused an increase of 44% in this property. The latter also provided better thermal stability when compared to pure nylon 6,6 under inert conditions. The superior properties of graphene nanocomposites were attributed to the larger surface area of the two-dimensional graphene compared to the one-dimensional CNTs.

  20. Mould Design and Material selection for Film Insert Moulding of Direct Methanol Fuel Cell Packaging

    DEFF Research Database (Denmark)

    Wöhner, Timo; Senkbeil, S.; Olesen, T. L.

    2015-01-01

    This paper presents the mould design for an injection moulding (IM) process for the production of a methanol container for the use in small, passive Direct Methanol Fuel Cell (DMFC) systems, which are intended to be used in behind-the-ear hearing aid systems. One of the crucial properties...... for the production of containers with different venting area and location of the venting holes and the use of different membrane thicknesses by using the same mould. Mould design and material selection are presented....

  1. Influence of binder system and temperature on rheological properties of water atomized 316L powder injection moulding feedstocks

    Directory of Open Access Journals (Sweden)

    Uğur GÖKMEN

    2016-02-01

    Full Text Available In order to obtain a proper powder injection molding the rheological behavior of feedstocks should be known. To determine the binder effect on the rheological behavior of 316L stainless steel powders feedstock two different feedstock were prepared. In the current experiments water atomized 316L stainless steel powders (-20 µm were used. Two types of binders, one of which is mainly paraffin wax can be dissolved in heptane and the other Polietilenglikol (PEG based and can be dissolved in water, were used. Polypropylene was used as binder and steric acid was used as lubricant for both binder systems as skeleton binder. Dry binder system were mixed for 30 min in a three dimensional Turbola. Capillary rheometer was used to characterize the rheological properties of feed stocks at 150-200 °C and a pressures of 0.165-2.069 MPa. Powder loading capacity of PEG and PW based feed stocks were found to be %55 and %61 respectively. The lowest viscosity of PEG and PW based feed stocks were found to be 304.707 Pa.s and 48.857 Pa.s respectively.Keywords: PIM, Binder, Rheological properties

  2. Fabrication of an Amperometric Flow-Injection Microfluidic Biosensor Based on Laccase for In Situ Determination of Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Juan C. Gonzalez-Rivera

    2015-01-01

    Full Text Available We aim to develop an in situ microfluidic biosensor based on laccase from Trametes pubescens with flow-injection and amperometry as the transducer method. The enzyme was directly immobilized by potential step chronoamperometry, and the immobilization was studied using cyclic voltammetry and electrochemical impedance spectroscopy. The electrode response by amperometry was probed using ABTS and syringaldazine. A shift of interfacial electron transfer resistance and the electron transfer rate constant from 18.1 kΩ to 3.9 MΩ and 4.6 × 10−2 cm s−1 to 2.1 × 10−4 cm s−1, respectively, evidenced that laccase was immobilized on the electrode by the proposed method. We established the optimum operating conditions of temperature (55°C, pH (4.5, injection flow rate (200 µL min−1, and applied potential (0.4 V. Finally, the microfluidic biosensor showed better lower limit of detection (0.149 µM and sensitivity (0.2341 nA µM−1 for ABTS than previous laccase-based biosensors and the in situ operation capacity.

  3. Laser ablated micropillar energy directors for ultrasonic welding of microfluidic systems

    International Nuclear Information System (INIS)

    Poulsen, Carl Esben; Kistrup, Kasper; Andersen, Nis Korsgaard; Taboryski, Rafael; Hansen, Mikkel Fougt; Wolff, Anders

    2016-01-01

    We present a new type of energy director (ED) for ultrasonic welding of microfluidic systems. These micropillar EDs are based on the replication of cone like protrusion structures introduced using a pico-second laser and may therefore be added to any mould surface accessible to a pico-second laser beam. The technology is demonstrated on an injection moulded microfluidic device featuring high-aspect ratio ( h   ×   w   =  2000 μ m  ×  550 μ m) and free-standing channel walls, where bonding is achieved with no detectable channel deformation. The bonding strength is similar to conventional EDs and the fabricated system can withstand pressures of over 9.5 bar. (technical note)

  4. Effects of fixed orthodontic treatment using conventional (two-piece) versus metal injection moulding brackets on hair nickel and chromium levels: a double-blind randomized clinical trial.

    Science.gov (United States)

    Khaneh Masjedi, Mashallah; Haghighat Jahromi, Nima; Niknam, Ozra; Hormozi, Elham; Rakhshan, Vahid

    2017-02-01

    Although nickel and chromium are known as allergen and cytotoxic orthodontic metals, very few and controversial studies have assessed the effect of orthodontic treatment on their systemic levels especially those reflected by their best biomarker of exposure, hair. Additionally, metal injection moulding (MIM) brackets are not studied, and there is no study on systemic ion changes following their usage. In this double-blind randomized clinical trial, scalp hair samples of 24 female and 22 male fixed orthodontic patients [as two groups of conventional (two-piece) versus MIM brackets, n = 23×2] were collected before treatment and 6 months later. Randomization was carried out using a computer-generated random number table. The patients, laboratory expert, and author responsible for analyses were blinded of the bracket allocations. Hair nickel and chromium levels were measured using atomic absorption spectrophotometry. The effects of treatment, bracket types, gender, and age on hair ions were analysed statistically (α = 0.05, β ≤ 0.02). In both groups combined (n = 46), nickel increased from 0.1600±0.0890 µg/g dry hair mass (pre-treatment) to 0.3199±0.1706 (6th month). Chromium increased from 0.1657±0.0884 to 0.3066±0.1362 µg/g. Both of these increases were significant (paired t-test, P = 0.0000). Bracket types, age, and gender had no significant influence on ion levels (P > 0.05). ANCOVA indicated different patterns of chromium increases in different genders (P = 0.033) and ages (P = 0.056). Sample size determination should have accounted for the grouping as well. Hair nickel and chromium levels might increase about 185-200% after 6 months. They might not be affected by bracket types. Gender and age might not influence the baseline or 6th-month levels of both metals. Gender might however interact with orthodontic treatment, only in the case of chromium. The research is registered offline (thesis) and online (IR.AJUMS.REC.1394.516). The protocol was pre

  5. Impact of CO2 injection protocol on fluid-solid reactivity: high-pressure and temperature microfluidic experiments in limestone

    Science.gov (United States)

    Jimenez-Martinez, Joaquin; Porter, Mark; Carey, James; Guthrie, George; Viswanathan, Hari

    2017-04-01

    Geological sequestration of CO2 has been proposed in the last decades as a technology to reduce greenhouse gas emissions to the atmosphere and mitigate the global climate change. However, some questions such as the impact of the protocol of CO2 injection on the fluid-solid reactivity remain open. In our experiments, two different protocols of injection are compared at the same conditions (8.4 MPa and 45 C, and constant flow rate 0.06 ml/min): i) single phase injection, i.e., CO2-saturated brine; and ii) simultaneous injection of CO2-saturated brine and scCO2. For that purpose, we combine a unique high-pressure/temperature microfluidics experimental system, which allows reproducing geological reservoir conditions in geo-material substrates (i.e., limestone, Cisco Formation, Texas, US) and high resolution optical profilometry. Single and multiphase flow through etched fracture networks were optically recorded with a microscope, while processes of dissolution-precipitation in the etched channels were quantified by comparison of the initial and final topology of the limestone micromodels. Changes in hydraulic conductivity were quantified from pressure difference along the micromodel. The simultaneous injection of CO2-saturated brine and scCO2, reduced the brine-limestone contact area and also created a highly heterogeneous velocity field (i.e., low velocities regions or stagnation zones, and high velocity regions or preferential paths), reducing rock dissolution and enhancing calcite precipitation. The results illustrate the contrasting effects of single and multiphase flow on chemical reactivity and suggest that multiphase flow by isolating parts of the flow system can enhance CO2 mineralization.

  6. Best practice strategies for validation of micro moulding process simulation

    DEFF Research Database (Denmark)

    Costa, Franco; Tosello, Guido; Whiteside, Ben

    2009-01-01

    are the optimization of the moulding process and of the tool using simulation techniques. Therefore, in polymer micro manufacturing technology, software simulation tools adapted from conventional injection moulding can provide useful assistance for the optimization of moulding tools, mould inserts, micro component...... are discussed. Recommendations regarding sampling rate, meshing quality, filling analysis methods (micro short shots, flow visualization) and machine geometry modelling are given on the basis of the comparison between simulated and experimental results within the two considered study cases.......Simulation programs in polymer micro replication technology are used for the same reasons as in conventional injection moulding. To avoid the risks of costly re-engineering, the moulding process is simulated before starting the actual manufacturing process. Important economic factors...

  7. Developments in the implantation of moulding tools

    International Nuclear Information System (INIS)

    Dearnaley, G.; Delves, B.G.

    1983-01-01

    The process of surface hardening by the ion implantation of nitrogen has proved to be remarkably effective for the treatment of moulds, and indeed the whole range of screws, nozzles, sprue bushes, etc., as well as dies for injection moulding or extrusion of filled plastics. Implantation equipment, based upon our designs, is now available commercially. Corrosion and pitting of moulds can be reduced by a new ionic treatment known as ion beam mixing. A thin coating of protective material, such as chromium on silicon, is bombarded with ions so as to mix or key it to the mould surface. Alternatively, hydrocarbon vapour can be cracked on to the metal surface to form a tenacious and protective carbon film. Industrial applications for this novel process are now being sought. (author)

  8. Precision moulding of polymer micro components

    DEFF Research Database (Denmark)

    Tosello, Guido

    2008-01-01

    The present research work contains a study concerning polymer micro components manufacturing by means of the micro injection moulding (µIM) process. The overall process chain was considered and investigated during the project, including part design and simulation, tooling, process analysis, part...... optimization, quality control, multi-material solutions. A series of experimental investigations were carried out on the influence of the main µIM process factors on the polymer melt flow within micro cavities. These investigations were conducted on a conventional injection moulding machine adapted...... to the production of micro polymer components, as well as on a micro injection moulding machine. A new approach based on coordinate optical measurement of flow markers was developed during the project for the characterization of the melt flow. In-line pressure measurements were also performed to characterize...

  9. Electrokinetic gated injection-based microfluidic system for quantitative analysis of hydrogen peroxide in individual HepG2 cells.

    Science.gov (United States)

    Zhang, Xinyuan; Li, Qingling; Chen, Zhenzhen; Li, Hongmin; Xu, Kehua; Zhang, Lisheng; Tang, Bo

    2011-03-21

    A microfluidic system to determine hydrogen peroxide (H(2)O(2)) in individual HepG2 cells based on the electrokinetic gated injection was developed for the first time. A home-synthesized fluorescent probe, bis(p-methylbenzenesulfonate)dichlorofluorescein (FS), was employed to label intracellular H(2)O(2) in the intact cells. On a simple cross microchip, multiple single-cell operations, including single cell injection, cytolysis, electrophoresis separation and detection of H(2)O(2), were automatically carried out within 60 s using the electrokinetic gated injection and laser-induced fluorescence detection (LIFD). The performance of the method was evaluated under the optimal conditions. The linear calibration curve was over a range of 4.39-610 amol (R(2)=0.9994). The detection limit was 0.55 amol or 9.0×10(-10) M (S/N=3). The relative standard deviations (RSDs, n=6) of migration time and peak area were 1.4% and 4.8%, respectively. With the use of this method, the average content of H(2)O(2) in single HepG2 cells was found to be 16.09±9.84 amol (n=15). Separation efficiencies in excess of 17,000 theoretical plates for the cells were achieved. These results demonstrated that the efficient integration and automation of these single-cell operations enabled the sensitive, reproducible, and quantitative examination of intracellular H(2)O(2) at single-cell level. Owing to the advantages of simple microchip structure, controllable single-cell manipulation and ease in building, this platform provides a universal way to automatically determine other intracellular constituents within single cells. This journal is © The Royal Society of Chemistry 2011

  10. Physical characterisation of particles and rheological of a heterogeneous system used in low-pressure injection moulding; Caracterizacao fisica de particulas e reologica de um sistema heterogeneo utilizado em moldagem de pos por injecao a baixa pressao

    Energy Technology Data Exchange (ETDEWEB)

    Zampieron, Joao Vicente

    2002-07-01

    The powder injection moulding process is a recent technology, which offers as advantages a high production of complex geometry metal parts, with low cost, where secondary operations of machinery are unnecessary. The main of this thesis was centered on a coarse powders feedstock injection. The process begins with the composition of the mass, that is the combination of metal powders with organic binders. The following steps succeed injection in moulds, debinding, sintering and, if necessary, cleaning. For the formulation of the feedstock it is indispensable the characterisation of the powders. This is little mentioned in the open literature and brings up controversy among authors. At first, a series of powders characterisations of AISI 316 L stainless steel (below 25 {mu}m) was adopted. The next step was to characterise the rheological behaviour of the feedstock using different rheological apparatus, so as to find the most appropriate equipment to the low-pressure powder injection molding process. The mass has to present a favourable rheological behaviour, which is low viscosity. The results of the physical characterisation were correlated among themselves and with the rheological characterisation. This was undertaken with the purpose of finding agreement among their values. Finally, the possibility of injection of water and gas atomised stainless steel coarse powders feedstock was studied. This presents as main advantage, the reduction of costs for the process. According to the literature, only powders with size below 25 {mu}m are possible to be injected. Hence, starting from the physical characterisation of particles and rheological characterisation of the feedstock, the formulation of an appropriate mass was found for the coarse powders. These coarse powders were characterised by particles below 45 {mu}m. In this case it was necessary to alter drastically the feedstock composition, using high amounts of wax, which lead to unstable rheological conditions. But, it

  11. Moulds in food spoilage

    DEFF Research Database (Denmark)

    Filtenborg, Ole; Frisvad, Jens Christian; Thrane, Ulf

    1996-01-01

    There is an increasing knowledge and understanding of the role played by moulds in food spoilage. Especially the discovery of mycotoxin production in foods has highligh-ted the importance of moulds in food quality. It is, however, only within the last 5-10 years that major progresses have been made...... the associated or critical funga and has been shown to consist of less than 10 species. In this paper the associated funga is described for the following foods: Citrus and pomaceous fruits, potato and yam tubers, onions, rye, wheat, rye bread, cheese and fermented sausages and whenever possible the selective...

  12. Flow injection microfluidic device with on-line fluorescent derivatization for the determination of Cr(III) and Cr(VI) in water samples after solid phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Guilong [Key Laboratory of Eco-Environment of Three Gorges Region of Ministry of Education, Chongqing University, Chongqing, 400045 (China); Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084 (China); He, Qiang, E-mail: heqiang0980@163.com [Key Laboratory of Eco-Environment of Three Gorges Region of Ministry of Education, Chongqing University, Chongqing, 400045 (China); Lu, Ying [Department of Mathematics and Physics, Armed Police College, Chengdu, 610213 (China); Huang, Jing [Research Center for Advanced Computation, College of Science, Xihua University, Chengdu, 610039 (China); Lin, Jin-Ming, E-mail: jmlin@mail.tsinghua.edu.cn [Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, 100084 (China)

    2017-02-22

    In this paper, a rapid and simple method using magnetic multi-walled carbon nanotubes (MWCNTS), as a solid-phase extraction (SPE) sorbent, was successfully developed for extraction and preconcentration trace amounts of Cr(III) in water samples. The synthesized magnetic-MWCNTs nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). A rhodamine derivative (R1) was synthesized and characterized as a highly selective and sensitive fluorescent derivatizing agent for Cr(III). After SPE procedure, Cr(III) analysis was performed by flow injection microfluidic chip with on-line fluorescent derivatization and laser-induced fluorescence (LIF) spectroscopy detection. The parameters, which affected the efficiency of the developed method were investigated and optimized. Under the optimized conditions, the method exhibited a linear dynamic range of 0–10.0 nM, with a detection limit of 0.094 nM and an enrichment factor of 38. Furthermore, real water samples were analyzed and good recoveries were obtained from 91.0 to 101.6%. - Graphical abstract: Flow injection microfluidic device with on-line fluorescent derivatization and detection coupled to LIF. - Highlights: • A highly selective and sensitive derivatizing reagent for Cr(III) was synthesized and characterized. • The magnetic-MWCNTs nanocomposite as a SPE sorbent was successfully synthesized and characterized. • A new portable detection system was developed for microfluidic chip FIA platform.

  13. Injection Moulding Pilot Production: Performance Assessment of Tooling Process Chains Based on Tool Inserts Made from Brass and A 3d Printed Photopolymer

    DEFF Research Database (Denmark)

    Mischkot, Michael; Tosello, Guido; Nielsen, Daniel K. Y.

    2017-01-01

    -cavity mold. The inserts as well as selected injection molded parts were analyzed with an optical 3D micro-coordinate measuring machine. It was found that additive manufacturing technology can lead to a significantly more cost effective pilot production, both in terms of development time and investment. DLP...

  14. Best practice strategies for validation of micro moulding process simulation

    DEFF Research Database (Denmark)

    Costa, Franco; Tosello, Guido; Whiteside, Ben

    2009-01-01

    The use of simulation for injection moulding design is a powerful tool which can be used up-front to avoid costly tooling modifications and reduce the number of mould trials. However, the accuracy of the simulation results depends on many component technologies and information, some of which can...... be easily controlled or known by the simulation analyst and others which are not easily known. For this reason, experimental validation studies are an important tool for establishing best practice methodologies for use during analysis set up on all future design projects. During the validation studies......, detailed information about the moulding process is gathered and used to establish these methodologies. Whereas in routine design projects, these methodologies are then relied on to provide efficient but reliable working practices. Data analysis and simulations on preliminary micro-moulding experiments have...

  15. Microfluidic production of bioactive fibrin micro-beads embedded in crosslinked collagen used as an injectable bulking agent for urinary incontinence treatment.

    Science.gov (United States)

    Vardar, E; Larsson, H M; Allazetta, S; Engelhardt, E M; Pinnagoda, K; Vythilingam, G; Hubbell, J A; Lutolf, M P; Frey, P

    2018-02-01

    Endoscopic injection of bulking agents has been widely used to treat urinary incontinence, often due to urethral sphincter complex insufficiency. The aim of the study was to develop a novel injectable bioactive collagen-fibrin bulking agent restoring long-term continence by functional muscle tissue regeneration. Fibrin micro-beads were engineered using a droplet microfluidic system. They had an average diameter of 140 μm and recombinant fibrin-binding insulin-like growth factor-1 (α 2 PI 1-8 -MMP-IGF-1) was covalently conjugated to the beads. A plasmin fibrin degradation assay showed that 72.5% of the initial amount of α 2 PI 1-8 -MMP-IGF-1 loaded into the micro-beads was retained within the fibrin micro-beads. In vitro, the growth factor modified fibrin micro-beads enhanced cell attachment and the migration of human urinary tract smooth muscle cells, however, no change of the cellular metabolic activity was seen. These bioactive micro-beads were mixed with genipin-crosslinked homogenized collagen, acting as a carrier. The collagen concentration, the degree of crosslinking, and the mechanical behavior of this bioactive collagen-fibrin injectable were comparable to reference samples. This novel injectable showed no burst release of the growth factor, had a positive effect on cell behavior and may therefore induce smooth muscle regeneration in vivo, necessary for the functional treatment of stress and other urinary incontinences. Urinary incontinence is involuntary urine leakage, resulting from a deficient function of the sphincter muscle complex. Yet there is no functional cure for this devastating condition using current treatment options. Applied physical and surgical therapies have limited success. In this study, a novel bioactive injectable bulking agent, triggering new muscle regeneration at the injection site, has been evaluated. This injectable consists of cross-linked collagen and fibrin micro-beads, functionalized with bound insulin-like growth factor

  16. Challenges of titanium metal injection moulding

    CSIR Research Space (South Africa)

    Benson, JM

    2007-11-01

    Full Text Available Titanium has fired the imagination of engineers and designers for decades by its ‘ideal’ combination of high strength, low density and good corrosion resistance. However, its application has unfortunately been limited to those niche markets where...

  17. Nanostructures for all-polymer microfluidic systems

    DEFF Research Database (Denmark)

    Matschuk, Maria; Bruus, Henrik; Larsen, Niels Bent

    2010-01-01

    antistiction coating was found to improve the replication fidelity (shape and depth) of nanoscale features substantially. Arrays of holes of 50 nm diameter/35 nm depth and 100 nm/100 nm diameter, respectively, were mass-produced in cyclic olefin copolymer (Topas 5013) by injection molding. Polymer microfluidic...... channel chip parts resulted from a separate injection molding process. The microfluidic chip part and the nanostructured chip part were successfully bonded to form a sealed microfluidic system using air plasma assisted thermal bonding....

  18. Effects of holding pressure and process temperatures on the mechanical properties of moulded metallic parts

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Esteves, N.M.

    2013-01-01

    Metal injection moulding is gaining more and more importance over the time and needs more research to be done to understand the sensitivity of process to different process parameters. The current paper makes an attempt to better understand the effects of holding pressure and process temperatures...... on the moulded metallic parts. Stainless steel 316L is used in the investigation to produce the specimen by metal injection moulding (MIM) and multiple analyses were carried out on samples produced with different combinations of holding pressure, mould temperature and melt temperature. Finally, the parts were...... characterized to investigate mechanical properties like density, ultimate tensile strength, shrinkage etc. The results are discussed in the paper. The main conclusion from this study is unlike plastic moulding, the tensile properties of MIM parts doesn’t vary based on the flow direction of the melt, and tensile...

  19. Accurate characterisation of post moulding shrinkage of polymer parts

    DEFF Research Database (Denmark)

    Neves, L. C.; De Chiffre, L.; González-Madruga, D.

    2015-01-01

    The work deals with experimental determination of the shrinkage of polymer parts after injection moulding. A fixture for length measurements on 8 parts at the same time was designed and manufactured in Invar, mounted with 8 electronic gauges, and provided with 3 temperature sensors. The fixture w...

  20. Two-component microinjection moulding for MID fabrication

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2010-01-01

    Moulded interconnect devices (MIDs) are plastic substrates with electrical infrastructure. The fabrication of MIDs is usually based on injection moulding, and different process chains may be identified from this starting point. The use of MIDs has been driven primarily by the automotive sector......, but recently, the medical sector seems more and more interested. In particular, the possibility of miniaturisation of three-dimensional components with electrical infrastructure is attractive. The present paper describes possible manufacturing routes and challenges of miniaturised MIDs based on two...

  1. Microfluidic electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2012-08-21

    Microfluidics, a field that has been well-established for several decades, has seen extensive applications in the areas of biology, chemistry, and medicine. However, it might be very hard to imagine how such soft microfluidic devices would be used in other areas, such as electronics, in which stiff, solid metals, insulators, and semiconductors have previously dominated. Very recently, things have radically changed. Taking advantage of native properties of microfluidics, advances in microfluidics-based electronics have shown great potential in numerous new appealing applications, e.g. bio-inspired devices, body-worn healthcare and medical sensing systems, and ergonomic units, in which conventional rigid, bulky electronics are facing insurmountable obstacles to fulfil the demand on comfortable user experience. Not only would the birth of microfluidic electronics contribute to both the microfluidics and electronics fields, but it may also shape the future of our daily life. Nevertheless, microfluidic electronics are still at a very early stage, and significant efforts in research and development are needed to advance this emerging field. The intention of this article is to review recent research outcomes in the field of microfluidic electronics, and address current technical challenges and issues. The outlook of future development in microfluidic electronic devices and systems, as well as new fabrication techniques, is also discussed. Moreover, the authors would like to inspire both the microfluidics and electronics communities to further exploit this newly-established field.

  2. A stone mould from Klinovac

    Directory of Open Access Journals (Sweden)

    Bulatović Aleksandar

    2002-01-01

    Full Text Available A two-piece stone mould that reached the National Museum at Vranje in 1966 had been recovered from a depth of about one meter at the site known as Tri Kruške (Three Pear-trees, the village of Klinovac. The site is situated on a river terrace on the right bank of the Krševica River some 15 kilometers south of Vranje. The mould was carved out of metamorphic rock from the class of schist, more exactly, of greenschist (with chlorite and mica as its constituent minerals that is widespread in the area, which geologically belongs to the upper (Vlasina complex of the Serbian-Macedonian mass. The mould was intended for casting four kinds of bronze weapons: three chisels and a winged axe. More sensitive as dating evidence, the winged axe (Ärmchenbeil may be broadly dated to the last three centuries of the second millennium BC. The type is geographically related with the Aegean, while its northernmost findspot so far is Pobit Kamak in northern Bulgaria. The chisels cast in this mould do not have direct analogies, although many hoards of similar tools have been registered in Croatia, Romania and Central Europe. Apparently the mould was made by a local workshop and from the locally available raw material. The possible activity of local workshops in the above mentioned period has already been presumed by scholars, and the Klinovac mould constitutes yet another corroboration of the hypothesis. Nevertheless its Aegean origin should not be ruled out completely, because cultural contacts between the Late Bronze Age population inhabiting the region and their southern neighbours seem quite certain, as evidenced by Mycenaean pottery discovered on the site of Resulja at Lučani near Bujanovac.

  3. Mould thermal monitoring: a window on the mould

    Energy Technology Data Exchange (ETDEWEB)

    Normanton, A.S.; Hewitt, P.N.; Hunter, N.S.; Scoones, D.; Harris, B.

    2004-07-01

    Corus R, D and T at Teesside Technology Centre has developed over a number of years a mould thermal monitoring (MTM) system based on an array of thermocouples in the mould copper plates. The system is installed on the Corus slab casters in the UK, on slab casters at Outokumpu (UK), Sidmar (Belgium) and Kosice (Slovakia) and, at the time of the 4th European Continuous Casting Conference, was also on the medium thickness slab caster at Tuscaloosa (USA), which was sold to Nucor in 2004. The MTM system was also under development on the thin slab caster at Trico (USA) before plant closure (subsequently bought by Nucor), and aspects are currently being developed on the Corus DSP (direct sheet plant) thin slab caster at IJmuiden (The Netherlands). While a prime function is detection and prevention of sticker type breakouts, the MTM system allows real time assessment of thermal conditions, provides a valuable input for online grading and, most important, enables modifications to mould powder practices to be assessed. The present paper briefly outlines recent developments to the MTM system and presents examples of the use of the system to assist mould powder developments. (author)

  4. Mould growth on building materials

    DEFF Research Database (Denmark)

    Fog Nielsen, K.

    Mould growth in buildings is associated with adverse health effects among the occupants of the building. However actual growth only occurs in damp and water-damaged materials, and is an increasing problem in Denmark, due to less robust constructions, inadequate maintenance, and too little...

  5. Assessing the stretch-blow moulding FE simulation of PET over a large process window

    Science.gov (United States)

    Nixon, J.; Menary, G. H.; Yan, S.

    2017-10-01

    Injection stretch blow moulding has been extensively researched for numerous years and is a well-established method of forming thin-walled containers. This paper is concerned with validating the finite element analysis of the stretch-blow-moulding (SBM) process in an effort to progress the development of injection stretch blow moulding of poly(ethylene terephthalate). Extensive data was obtained experimentally over a wide process window accounting for material temperature, air flow rate and stretch-rod speed while capturing cavity pressure, stretch-rod reaction force, in-mould contact timing and material thickness distribution. This data was then used to assess the accuracy of the correlating FE simulation constructed using ABAQUS/Explicit solver and an appropriate user-defined viscoelastic material subroutine. Results reveal that the simulation was able to pick up the general trends of how the pressure, reaction force and in-mould contact timings vary with the variation in preform temperature and air flow rate. Trends in material thickness were also accurately predicted over the length of the bottle relative to the process conditions. The knowledge gained from these analyses provides insight into the mechanisms of bottle formation, subsequently improving the blow moulding simulation and potentially providing a reduction in production costs.

  6. Scanning probe lithography for nanoimprinting mould fabrication

    International Nuclear Information System (INIS)

    Luo Gang; Xie Guoyong; Zhang Yongyi; Zhang Guoming; Zhang Yingying; Carlberg, Patrick; Zhu Tao; Liu Zhongfan

    2006-01-01

    We propose a rational fabrication method for nanoimprinting moulds by scanning probe lithography. By wet chemical etching, different kinds of moulds are realized on Si(110) and Si(100) surfaces according to the Si crystalline orientation. The structures have line widths of about 200 nm with a high aspect ratio. By reactive ion etching, moulds with patterns free from the limitation of Si crystalline orientation are also obtained. With closed-loop scan control of a scanning probe microscope, the length of patterned lines is more than 100 μm by integrating several steps of patterning. The fabrication process is optimized in order to produce a mould pattern with a line width about 10 nm. The structures on the mould are further duplicated into PMMA resists through the nanoimprinting process. The method of combining scanning probe lithography with wet chemical etching or reactive ion etching (RIE) provides a resistless route for the fabrication of nanoimprinting moulds

  7. Sealing of polymer micro-structures by over-moulding

    DEFF Research Database (Denmark)

    Vingaard, Mathias; Christiansen, Jesper de Claville

    2012-01-01

    A concept for sealing of polymer micro-structures by over-moulding with polystyrene was devised and investigated by both experiments and simulations. The depth to which the melt filled the structure, i.e. a groove in the surface of the insert, before solidification was compared with results from...... simulations by computational fluid dynamics software. In both experiments and simulations, there was clearly an increase of filling depth with groove width and, especially for wide grooves, with injection temperature. In the simulations, changes in prescribed heat transfer coefficient had the largest effect...... on filling depth in the narrowest grooves. Around the experimental groove widths, there was good agreement between experiments and simulations. It was concluded that sealing by over-moulding is feasible if the depth/width ratio of the structure is large enough which in this paper is larger than six, i.e. up...

  8. "Artificial micro organs"--a microfluidic device for dielectrophoretic assembly of liver sinusoids.

    Science.gov (United States)

    Schütte, Julia; Hagmeyer, Britta; Holzner, Felix; Kubon, Massimo; Werner, Simon; Freudigmann, Christian; Benz, Karin; Böttger, Jan; Gebhardt, Rolf; Becker, Holger; Stelzle, Martin

    2011-06-01

    In order to study possible toxic side effects of potential drug compounds in vitro a reliable test system is needed. Predicting liver toxicity presents a major challenge of particular importance as liver cells grown in a cell culture suffer from a rapid loss of their liver specific functions. Therefore we are developing a new microfluidic test system for liver toxicity. This test system is based on an organ-like liver 3D co-culture of hepatocytes and endothelial cells. We devised a microfluidic chip featuring cell culture chambers with integrated electrodes for the assembly of liver sinusoids by dielectrophoresis. Fluid channels enable an organ-like perfusion with culture media and test compounds. Different chamber designs were studied and optimized with regard to dielectrophoretic force distribution, hydrodynamic flow profile, and cell trapping rate using numeric simulations. Based on simulation results a microchip was injection-moulded from COP. This chip allowed the assembly of viable hepatocytes and endothelial cells in a sinusoid-like fashion.

  9. Preparation of nanoparticles by continuous-flow microfluidics

    International Nuclear Information System (INIS)

    Jahn, Andreas; Reiner, Joseph E.; Vreeland, Wyatt N.; DeVoe, Don L.; Locascio, Laurie E.; Gaitan, Michael

    2008-01-01

    We review a variety of micro- and nanoparticle formulations produced with microfluidic methods. A diverse variety of approaches to generate microscale and nanoscale particles has been reported. Here we emphasize the use of microfluidics, specifically microfluidic systems that operate in a continuous flow mode, thereby allowing continuous generation of desired particle formulations. The generation of semiconductor quantum dots, metal colloids, emulsions, and liposomes is considered. To emphasize the potential benefits of the continuous-flow microfluidic methodology for nanoparticle generation, preliminary data on the size distribution of liposomes formed using the microfluidic approach is compared to the traditional bulk alcohol injection method.

  10. Dynamic Double Curvature Mould System

    DEFF Research Database (Denmark)

    Jepsen, Christian Raun; Kristensen, Mathias Kræmmergaard; Kirkegaard, Poul Henning

    2011-01-01

    The present paper describes a concept for a reconfigurable mould surface which is designed to fit the needs of contemporary architecture. The core of the concept presented is a dynamic surface manipulated into a given shape using a digital signal created directly from the CAD drawing of the design....... This happens fast, automatic and without production of waste, and the manipulated surface is fair and robust, eliminating the need for additional, manual treatment. Limitations to the possibilities of the flexible form are limited curvature and limited level of detail, making it especially suited for larger...

  11. Theoretical microfluidics

    DEFF Research Database (Denmark)

    Bruus, Henrik

    Microfluidics is a young and rapidly expanding scientific discipline, which deals with fluids and solutions in miniaturized systems, the so-called lab-on-a-chip systems. It has applications in chemical engineering, pharmaceutics, biotechnology and medicine. As the lab-on-a-chip systems grow...

  12. A proper strategy for combating mould.

    Science.gov (United States)

    Cheong, Cedric

    2014-02-01

    managing director of Mycologia & Mould Worx, MSc, B.(Env. Sci.), TAE40110, examines the topic of mould exposure in healthcare facilities, and the associated duty of care for hospital facility managers and engineers. The article, published here in slightly adapted form, also focuses on the need for additional training of key personnel on the risks associated with exposure to environmental microbial contamination.

  13. Moulds and indoor air quality - a man-made problem

    International Nuclear Information System (INIS)

    Langvad, Finn

    2002-01-01

    In the 1970s and 1980s, many house owners in Norway, in order to save energy, insulated their houses by injecting torn-up mineral wool into the entire cavity of the wall. This made the house warmer to live in, but it also created serious condensation problems followed by rot and mould. The extensive use of gypsum boards is also alarming. If gypsum becomes really wet because of a water leakage, it becomes a ticking bomb from the micro-biologic point of view as it provides growth conditions for some of the most dangerous indoor mould fungi known, the Stachybotrys chart arum. The article discusses the danger of this fungus and surveys some of the ways that mould affect human health. There is at present no definition of a normal number of fungus spores per unit volume of air. But the following principles can be taken as guidelines: (1) The concentration of spores indoor must be lower than outdoors. Otherwise extra spores have been generated in the house. (2) The species composition of the air must be approximately the same indoors and outdoors

  14. Laser ablated micropillar energy directors for ultrasonic welding of microfluidic systems

    DEFF Research Database (Denmark)

    Poulsen, Carl Esben; Kistrup, Kasper; Andersen, Nis Korsgaard

    2016-01-01

    We present a new type of energy director (ED) for ultrasonic welding of microfluidic systems. These micropillar EDs are based on the replication of cone like protrusion structures introduced using a pico-second laser and may therefore be added to any mould surface accessible to a pico-second laser...

  15. In situ ZnO-PVA nanocomposite coated microfluidic chips for biosensing

    DEFF Research Database (Denmark)

    Habouti, S.; Kunstmann-Olsen, C.; Hoyland, J. D.

    2014-01-01

    Microfluidic chips with integrated fluid and optical connectors have been generated via a simple PDMS master-mould technique. In situ coating using a Zinc oxide polyvinylalcohol based sol-gel method results in ultrathin nanocomposite layers on the fluid channels, which makes them strongly...

  16. Microfluidic Device

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)

    2017-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  17. Measurement of micro moulded parts by Computed Tomography and comparison to optical and tactile techniques

    DEFF Research Database (Denmark)

    Yagüe, J.A.; Tosello, Guido; Carmignato, S

    2011-01-01

    This paper focuses on dimensional verification of two micro-injection moulded components, selected from actual industrial productions, using CT metrological tools. In addition to CT scanning, also a tactile Coordinate Measuring Machine (CMM) with sub-micrometer uncertainty and an Optical Coordinate...... Measuring Machine (OCMM) allowing fast measurements suitable for in-line quality control were employed as validation instruments. The experimental work carried out and the analysis of the results provide valuable conclusions about the advantages and drawbacks of using CT metrology in comparison with CMM...... and OCMM when these techniques are employed for quality control of micro moulded parts....

  18. A capability study of micro moulding for nano fluidic system manufacture

    DEFF Research Database (Denmark)

    Calaon, Matteo; Hansen, Hans Nørgaard; Tosello, Guido

    2013-01-01

    With the present paper the authors analysed process capability of ultra-precision moulding used for producing nano crosses with the same critical channels dimensions of a nano fluidic system for optical mapping of genomic length DNA. The process variation focused on product tolerances is quantified...... through AFM measurements. Uncertainty assessment of measurements on polymer objects is described and quality control results of sub-micro injection moulded crosses are shown in respect of the tolerance range specified by the end user as limit value for functional design....

  19. Real-time isothermal RNA amplification of toxic marine microalgae using preserved reagents on an integrated microfluidic platform.

    Science.gov (United States)

    Tsaloglou, Maria-Nefeli; Laouenan, Florian; Loukas, Christos-Moritz; Monsalve, Lisandro Gabriel; Thanner, Christine; Morgan, Hywel; Ruano-López, Jesus M; Mowlem, Matthew C

    2013-01-21

    Quantitation of specific RNA sequences is a useful technique in marine biology that can elucidate cell abundance, speciation and viability, especially for early detection of harmful algal blooms. We are thus developing an integrated microfluidic system for cell concentration and lysis, RNA extraction/purification and quantitative RNA detection for environmental applications. The portable system is based on a microfluidic cartridge, or "lab-card", using a low-cost injection moulded device, with a laminated lid. Here we present real-time isothermal RNA amplification using reagent master-mixes preserved on-chip in a gel at 4 °C for up to eight months. We demonstrate quantitation by reference to an internal control in a competitive assay with 500 cell equivalents of the toxic microalga Karenia brevis. Annealing of primers, amplification at 41 °C and real-time fluorescence detection of the internal control and target using sequence-specific molecular beacons were all performed on-chip.

  20. Dilatometric examination of moulds with plaster binder

    Directory of Open Access Journals (Sweden)

    M. Nadolski

    2011-01-01

    Full Text Available Investigations concerning thermal expansion of moulding materials with plaster binder have been performed for two mixture compositionsof Authors’ own design, as well as for the material used in jewellery industry under the Prima-Cast trade name, and for ThermoMold 1200moulding material. The results of dilatometric examinations of these materials, carried out within the temperature range from about 20°Cto 650°C by means of the DA-3 automatic dilatometer, have been compared. An analysis of this comparison has revealed that it is thematrix composition which is decisive for the magnitude of dimensional changes of moulds, and that applying components which do notexhibit polymorphic transformations reduces dimensional changes of a mould during its thermal treatment.

  1. Microfluidic interconnects

    Science.gov (United States)

    Benett, William J.; Krulevitch, Peter A.

    2001-01-01

    A miniature connector for introducing microliter quantities of solutions into microfabricated fluidic devices. The fluidic connector, for example, joins standard high pressure liquid chromatography (HPLC) tubing to 1 mm diameter holes in silicon or glass, enabling ml-sized volumes of sample solutions to be merged with .mu.l-sized devices. The connector has many features, including ease of connect and disconnect; a small footprint which enables numerous connectors to be located in a small area; low dead volume; helium leak-tight; and tubing does not twist during connection. Thus the connector enables easy and effective change of microfluidic devices and introduction of different solutions in the devices.

  2. Warpage optimisation on the moulded part with straight-drilled and conformal cooling channels using response surface methodology (RSM) and glowworm swarm optimisation (GSO)

    Science.gov (United States)

    Hazwan, M. H. M.; Shayfull, Z.; Sharif, S.; Nasir, S. M.; Zainal, N.

    2017-09-01

    In injection moulding process, quality and productivity are notably important and must be controlled for each product type produced. Quality is measured as the extent of warpage of moulded parts while productivity is measured as a duration of moulding cycle time. To control the quality, many researchers have introduced various of optimisation approaches which have been proven enhanced the quality of the moulded part produced. In order to improve the productivity of injection moulding process, some of researches have proposed the application of conformal cooling channels which have been proven reduced the duration of moulding cycle time. Therefore, this paper presents an application of alternative optimisation approach which is Response Surface Methodology (RSM) with Glowworm Swarm Optimisation (GSO) on the moulded part with straight-drilled and conformal cooling channels mould. This study examined the warpage condition of the moulded parts before and after optimisation work applied for both cooling channels. A front panel housing have been selected as a specimen and the performance of proposed optimisation approach have been analysed on the conventional straight-drilled cooling channels compared to the Milled Groove Square Shape (MGSS) conformal cooling channels by simulation analysis using Autodesk Moldflow Insight (AMI) 2013. Based on the results, melt temperature is the most significant factor contribute to the warpage condition and warpage have optimised by 39.1% after optimisation for straight-drilled cooling channels and cooling time is the most significant factor contribute to the warpage condition and warpage have optimised by 38.7% after optimisation for MGSS conformal cooling channels. In addition, the finding shows that the application of optimisation work on the conformal cooling channels offers the better quality and productivity of the moulded part produced.

  3. Development tendencies of moulding and core sands

    Directory of Open Access Journals (Sweden)

    Stanislaw M. Dobosz1

    2011-11-01

    Full Text Available Further development of the technology for making moulding and core sands will be strictly limited by tough requirements due to protection of the natural environment. These tendencies are becoming more and more tense, so that we will reach a point when even processes, that from technological point of view fulfill high requirements of the foundry industry, must be replaced by more ecologically-friendly solutions. Hence, technologies using synthetic resins as binding materials will be limited. This paper presents some predictable development tendencies of moulding and core sands. The increasing role of inorganic substances will be noticed, including silicate binders with significantly improved properties, such as improved knock-out property or higher reclamation strength. Other interesting solutions might also be moulding sands bonded by geo-polymers and phosphate binders or salts and also binders based on degradable biopolymers. These tendencies and the usefulness of these binders are put forward in this paper.

  4. Microfluidic sieve valves

    Science.gov (United States)

    Quake, Stephen R; Marcus, Joshua S; Hansen, Carl L

    2015-01-13

    Sieve valves for use in microfluidic device are provided. The valves are useful for impeding the flow of particles, such as chromatography beads or cells, in a microfluidic channel while allowing liquid solution to pass through the valve. The valves find particular use in making microfluidic chromatography modules.

  5. Microfluidic Dye Lasers

    DEFF Research Database (Denmark)

    Kristensen, Anders; Balslev, Søren; Gersborg-Hansen, Morten

    2006-01-01

    A technology for miniaturized, polymer based lasers, suitable for integration with planar waveguides and microfluidic networks is presented. The microfluidic dye laser device consists of a microfluidic channel with an embedded optical resonator. The devices are fabricated in a thin polymer film...

  6. Anti-stiction coating of PDMS moulds for rapid microchannel fabrication by double replica moulding

    DEFF Research Database (Denmark)

    Zhuang, Guisheng; Kutter, Jörg Peter

    2011-01-01

    ), which resulted in an anti-stiction layer for the improved release after PDMS casting. The deposition of FDTS on an O2 plasma-activated surface of PDMS produced a reproducible and well-performing anti-stiction monolayer of fluorocarbon, and we used the FDTS-coated moulds as micro-masters for rapid......In this paper, we report a simple and precise method to rapidly replicate master structures for fast microchannel fabrication by double replica moulding of polydimethylsiloxane (PDMS). A PDMS mould was surface-treated by vapour phase deposition of 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS...

  7. MouldingSandDB – a modern database storing moulding sands properties research results

    Directory of Open Access Journals (Sweden)

    J. Jakubski

    2011-01-01

    Full Text Available The complexity of foundry processes requires the use of modern, advanced IT tools for optimization, storage and analysis of t echnicaldata. Properties of moulding and core sands that are collected in research laboratories, manufacturers, and finally in the foundries, are not in use later on. It seems important to create a database that will allow to use the results stored, along with the possibility of searching according to set criteria, adjusted to casting practice. This paper presents part of the database named „MouldingSandDB”, which allows to collect and search data for synthetic moulding sands.

  8. Biodegradable materials as binders for IVth generation moulding sands

    OpenAIRE

    K. Major-Gabry

    2015-01-01

    This paper focuses on the possibility of using the biodegradable materials as binders (or parts of binders?compositions) for foundry moulding and core sands. Results showed that there is a great possibility of using available biodegradable materials as foundry moulding sand binders. Using biodegradable materials as partial content of new binders, or additives to moulding sands may not only decrease the toxicity and increase reclamation ability of tested moulding sands, but also accelerate the...

  9. Determination of thermal conductivity in foundry mould mixtures

    Directory of Open Access Journals (Sweden)

    G. Solenički

    2010-01-01

    Full Text Available For a thorough understanding of the behaviour of foundry mould mixtures, a good knowledge of thermal properties of mould materials is needed. Laboratory determination of thermal conductivity of mould mixtures enables a better control over scabbing defects which are a major problem in green sand mould mixtures. A special instrument has been designed for that purpose and it is described in this work.

  10. Mould insert fabrication of a single-mode fibre connector alignment structure optimized by justified partial metallization

    International Nuclear Information System (INIS)

    Wissmann, Markus; Barié, Nicole; Guttmann, Markus; Schneider, Marc; Kolew, Alexander; Besser, Heino; Pfleging, Wilhelm; Hofmann, Andreas; Van Erps, Jürgen; Beri, Stefano; Watté, Jan

    2015-01-01

    For mass production of multiscale-optical components, microstructured moulding tools are needed. Metal tools are used for hot embossing or injection moulding of microcomponents made of a thermoplastic polymer. Microstructures with extremely tight specifications, e.g. low side wall roughness and high aspect ratios are generally made by lithographic procedures such as x-ray lithography or deep proton writing. However, these processes are unsuitable for low-cost mass production. An alternative manufacturing method of moulding tools has been developed at the Karlsruhe Institute of Technology (KIT). This article describes a mould insert fabrication and a new replication process for self-centring fibre alignment structures for low loss field installable single-mode fibre connectors, developed and fabricated by the Vrije Universiteit Brussel (VUB) in collaboration with TE Connectivity. These components are to be used in fibre-to-the-home networks and support the deployment and maintenance of fibre optic links. The special feature of this particular fibre connector is a self-centring fibre alignment, achieved by means of a through hole with deflectable cantilevers acting as micro-springs. The particular challenge is the electroforming of through holes with a centre hole diameter smaller than 125 µm. The fibre connector structure is prototyped by deep proton writing in polymethylmethacrylate and used as a sacrificial part. Using joining, physical vapour deposition and electroforming technology, a negative copy of the prototyped connector is transferred into nickel to be used as a moulding tool. The benefits of this replication technique are a rapid and economical fabrication of moulding tools with high-precision microstructures and a long tool life. With these moulding tools low-cost mass production is possible. We present the manufacturing chain we have established. Each individual manufacturing step of the mould insert fabrication will be shown in this report. The

  11. Mycotoxigenic and proteolytic potential of moulds associated with ...

    African Journals Online (AJOL)

    Among the 33 moulds isolated from 20 samples of wood-smoked Chlamydoselachus anguincus (shark-fish) 20 isolates were capable of producing metabolites toxic to fertile Hubbard Golden Comet (Niger chick) eggs. Aspergillus and Pencillium isolates were the predominant moulds. Other toxigenic moulds isolated were ...

  12. ELECTROCHEMICAL TECHNOLOGIES FOR OBTAINING MOULDS FOR SOLES OF SHOES

    Directory of Open Access Journals (Sweden)

    Cornelia LUCA

    2013-05-01

    Full Text Available The paper presents contributions in the designing of some electrochemical technologiesfor the manufacturing of the moulds used in the footwear soles obtaining. There are presented a fewmethods for the moulds obtaining, using electro-deposit processes. There are presented thetechnological phases of the obtaining process of the electrolytes and electrodes preparing and thetechnological stages of the moulds manufacturing.

  13. Tactile and visual perception of injection moulded plastic parts

    DEFF Research Database (Denmark)

    Jensen, Jacob Tobias; Akbas, Erkan; Madsen, Mads

    In today’s world the technical development have reached high levels in many products. This means that the technical specifications are not as high a competition factor as it has been. Therefore the visual appeal (aesthetics) and tactile perception (ergonomics) have become much more important in t...... in a number of ways including measuring of surface roughness, contact angle, gloss measurement and human perception....

  14. Micro powder-injection moulding of metals and ceramics

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Development of micro-MIM/-CIM was started at Forschungszen- ... of microsystems products not only possesses a respectable market poten- .... We gratefully acknowledge the financial support of the Deutsche Forschungsgemeinschaft.

  15. Injection moulding and selective metallisation technologies for polymer Microsystems

    DEFF Research Database (Denmark)

    Tenchine, L.; Gout, S.; Dessors, S.

    2016-01-01

    The present paper describes how developing and optimizing high-throughput integrated technologies for theproduction of miniaturised multi-material and multi-functional components at industrial scale. Based on 2 industrialdemonstrators (a band diplexer and a micro aeraulic device), the paper shows...

  16. Micro powder-injection moulding of metals and ceramics

    Indian Academy of Sciences (India)

    Development of micro-MIM/-CIM was started at Forschungszentrum Karlsruhe with the aim of creating a process suitable for a wide range of materials as well as for medium-scale and large-scale production of micro components. Using enhanced machine technology and special tempering procedures, this process enables ...

  17. Integrated microfluidic probe station.

    Science.gov (United States)

    Perrault, C M; Qasaimeh, M A; Brastaviceanu, T; Anderson, K; Kabakibo, Y; Juncker, D

    2010-11-01

    The microfluidic probe (MFP) consists of a flat, blunt tip with two apertures for the injection and reaspiration of a microjet into a solution--thus hydrodynamically confining the microjet--and is operated atop an inverted microscope that enables live imaging. By scanning across a surface, the microjet can be used for surface processing with the capability of both depositing and removing material; as it operates under immersed conditions, sensitive biological materials and living cells can be processed. During scanning, the MFP is kept immobile and centered over the objective of the inverted microscope, a few micrometers above a substrate that is displaced by moving the microscope stage and that is flushed continuously with the microjet. For consistent and reproducible surface processing, the gap between the MFP and the substrate, the MFP's alignment, the scanning speed, the injection and aspiration flow rates, and the image capture need all to be controlled and synchronized. Here, we present an automated MFP station that integrates all of these functionalities and automates the key operational parameters. A custom software program is used to control an independent motorized Z stage for adjusting the gap, a motorized microscope stage for scanning the substrate, up to 16 syringe pumps for injecting and aspirating fluids, and an inverted fluorescence microscope equipped with a charge-coupled device camera. The parallelism between the MFP and the substrate is adjusted using manual goniometer at the beginning of the experiment. The alignment of the injection and aspiration apertures along the scanning axis is performed using a newly designed MFP screw holder. We illustrate the integrated MFP station by the programmed, automated patterning of fluorescently labeled biotin on a streptavidin-coated surface.

  18. Investigation of the pressure generated in the mould cavity during polyurethane integral skin foam moulding

    Directory of Open Access Journals (Sweden)

    2008-07-01

    Full Text Available An industrial scale measuring system was set up to investigate the pressure arising in the mould cavity during polyurethane integral skin foaming. The system is able to measure the pressure arising in the mould cavity and the pressure distribution using a piezoresistive pressure sensor. The pressure distribution was measured at 18 points along the mould surface at constant production parameters. Then six production parameters, which affect the pressure, were investigated in detail with the Taguchi method of experimental design. The results of the design were processed by ANOVA (analysis of variance. Three major influencing parameters were estimated by regression analysis. Finally an equation was developed to give a good estimation to the pressure arising in the mould cavity.

  19. Effect of pressure in mould on the mould cavity filling in Lost Foam process

    Directory of Open Access Journals (Sweden)

    T. Pacyniak

    2010-10-01

    Full Text Available In this study, the analysis of the influence of the pressure in mould on manufacture process of castings by the Lost Foam method wasintroduced. In particular, numerical simulation results of effect of pressure in mould on pouring rate, gas gap pressure and gas gap sizewere analyzed. For simulating investigations of the Lost Foam process introduced mathematical model of the process was used. In thismodel in detail was described and derived equation relating to the changes of the gas pressure in the gas gap. The mathematical description uses the equation of gas state and the equation of Darcy’s rate of filtration. Presented studies indicated, that with decrease of pressure in mould the pouring rate increased and the gas pressure in gas gap and gas gap size decreased. For pressures in mould from the range of 20÷100 kPa, pouring rates achieved values from 30÷3 cm/s respectively.

  20. Geometric accuracy of wax bade models manufactured in silicon moulds

    Directory of Open Access Journals (Sweden)

    G. Budzik

    2010-01-01

    Full Text Available The article presents the test results of the geometric accuracy of wax blade models manufactured in silicon moulds in the Rapid Tooling process, with the application of the Vacuum Casting technology. In batch production casting waxes are designed for the manufacture of models and components of model sets through injection into a metal die. The objective of the tests was to determine the possibility of using traditional wax for the production of casting models in the rapid prototyping process. Blade models made of five types of casting wax were measured. The definition of the geometric accuracy of wax blade models makes it possible to introduce individual modifications aimed at improving their shape in order to increase the dimensional accuracy of blade models manufactured in the rapid prototyping process.

  1. Wood Flour Moulding Technology: Implications for Technical ...

    African Journals Online (AJOL)

    User

    2011-04-19

    Apr 19, 2011 ... be waste product from saw mills, wood working plants or produced from selected dry wood by .... Stop watch-used to indicate the exact time the mould has remained in the press before wood .... There is abundance of saw dust the source of which is the ... Madison, Wisconsin: Wiley Interscience. Usoro, H. S. ...

  2. Flexible Mould for Precast Concrete Elements

    DEFF Research Database (Denmark)

    Jepsen, Christian Raun; Kristensen, Mathias Kræmmergaard; Kirkegaard, Poul Henning

    2010-01-01

    The present paper describes the development of a digitally controlled mou Id that forms a double curved and fair surface directly from the digital CAD model. The primary motivation for the development of the mould is to reduce the cost of constructing double curved, cast elements for architecture...

  3. Wood Flour Moulding Technology: Implications for Technical ...

    African Journals Online (AJOL)

    The intent of this article is to demonstrate how wood waste called sawdust or wood flour can be transformed by plastic moulding machine into items of economic value. Wood flour is wood reduced to very fine particle form. It can be waste product from saw mills, wood working plants or produced from selected dry wood by ...

  4. Digital Microfluidics Sample Analyzer

    Science.gov (United States)

    Pollack, Michael G.; Srinivasan, Vijay; Eckhardt, Allen; Paik, Philip Y.; Sudarsan, Arjun; Shenderov, Alex; Hua, Zhishan; Pamula, Vamsee K.

    2010-01-01

    Three innovations address the needs of the medical world with regard to microfluidic manipulation and testing of physiological samples in ways that can benefit point-of-care needs for patients such as premature infants, for which drawing of blood for continuous tests can be life-threatening in their own right, and for expedited results. A chip with sample injection elements, reservoirs (and waste), droplet formation structures, fluidic pathways, mixing areas, and optical detection sites, was fabricated to test the various components of the microfluidic platform, both individually and in integrated fashion. The droplet control system permits a user to control droplet microactuator system functions, such as droplet operations and detector operations. Also, the programming system allows a user to develop software routines for controlling droplet microactuator system functions, such as droplet operations and detector operations. A chip is incorporated into the system with a controller, a detector, input and output devices, and software. A novel filler fluid formulation is used for the transport of droplets with high protein concentrations. Novel assemblies for detection of photons from an on-chip droplet are present, as well as novel systems for conducting various assays, such as immunoassays and PCR (polymerase chain reaction). The lab-on-a-chip (a.k.a., lab-on-a-printed-circuit board) processes physiological samples and comprises a system for automated, multi-analyte measurements using sub-microliter samples of human serum. The invention also relates to a diagnostic chip and system including the chip that performs many of the routine operations of a central labbased chemistry analyzer, integrating, for example, colorimetric assays (e.g., for proteins), chemiluminescence/fluorescence assays (e.g., for enzymes, electrolytes, and gases), and/or conductometric assays (e.g., for hematocrit on plasma and whole blood) on a single chip platform.

  5. The influence of particle size distribution on the properties of metalinjection-moulded 17-4 PH stainless steel

    CSIR Research Space (South Africa)

    Seerane, Mandy

    2016-10-01

    Full Text Available Metal injection moulding (MIM) is a near-net-shaping powder metallurgy technique suitable for the cost-effective mass production of small and complex components. In this paper, the effects of the metal powder particle size on the final properties...

  6. Mathematical model of the metal mould surface temperature optimization

    Energy Technology Data Exchange (ETDEWEB)

    Mlynek, Jaroslav, E-mail: jaroslav.mlynek@tul.cz; Knobloch, Roman, E-mail: roman.knobloch@tul.cz [Department of Mathematics, FP Technical University of Liberec, Studentska 2, 461 17 Liberec, The Czech Republic (Czech Republic); Srb, Radek, E-mail: radek.srb@tul.cz [Institute of Mechatronics and Computer Engineering Technical University of Liberec, Studentska 2, 461 17 Liberec, The Czech Republic (Czech Republic)

    2015-11-30

    The article is focused on the problem of generating a uniform temperature field on the inner surface of shell metal moulds. Such moulds are used e.g. in the automotive industry for artificial leather production. To produce artificial leather with uniform surface structure and colour shade the temperature on the inner surface of the mould has to be as homogeneous as possible. The heating of the mould is realized by infrared heaters located above the outer mould surface. The conceived mathematical model allows us to optimize the locations of infrared heaters over the mould, so that approximately uniform heat radiation intensity is generated. A version of differential evolution algorithm programmed in Matlab development environment was created by the authors for the optimization process. For temperate calculations software system ANSYS was used. A practical example of optimization of heaters locations and calculation of the temperature of the mould is included at the end of the article.

  7. Mathematical model of the metal mould surface temperature optimization

    International Nuclear Information System (INIS)

    Mlynek, Jaroslav; Knobloch, Roman; Srb, Radek

    2015-01-01

    The article is focused on the problem of generating a uniform temperature field on the inner surface of shell metal moulds. Such moulds are used e.g. in the automotive industry for artificial leather production. To produce artificial leather with uniform surface structure and colour shade the temperature on the inner surface of the mould has to be as homogeneous as possible. The heating of the mould is realized by infrared heaters located above the outer mould surface. The conceived mathematical model allows us to optimize the locations of infrared heaters over the mould, so that approximately uniform heat radiation intensity is generated. A version of differential evolution algorithm programmed in Matlab development environment was created by the authors for the optimization process. For temperate calculations software system ANSYS was used. A practical example of optimization of heaters locations and calculation of the temperature of the mould is included at the end of the article

  8. Microfluidics as a tool for micro-manipulation

    CSIR Research Space (South Africa)

    Potgieter, S

    2008-10-01

    Full Text Available , exists (Xia & Whitesides, 1998). PDMS (Dow Corning Sylgard 184) will be poured into the moulds and cured to create the flow channels. Channel dimensions in the order of 100 µm deep and 100 µm wide will be used initially. To visualise particle.... DUFFY, D.C., MCDONALD, J.C., SCHUELLER, O.J.A., WHITESIDES, G.M. “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane)”, Analytical Chemistry, 70, pp. 4974 – 4984, 1998. LIU, L., CAO, W., WU, J., WEN, W., CHANG, D.C., SHENG, P...

  9. The effect of internal mould water spray cooling on rotationally moulded polyethylene parts

    Science.gov (United States)

    McCourt, Mark P.; Kearns, Mark P.; Martin, Peter J.

    2018-05-01

    The conventional method of cooling during the rotational moulding process is through the use of forced air. During the cooling phase of a typical rotomoulding cycle, large volumes of high velocity room temperature air are forced across the outside of the rotating rotomoulding tool to encourage cooling of the metal mould and molten polymer. Since no cooling is applied to the inside of the mould, the inner surface of the polymer (polyethylene) cools more slowly and will have a tendency to be more crystalline and the polyethylene will have a higher density in this region. The side that cools more quickly (in contact with the inside mould wall) will be less crystalline, and will therefore have a lower density. The major consequence of this difference in crystallinity will be a buildup of internal stresses producing warpage and excessive shrinkage of the part with subsequent increased levels of scrap. Therefore excessive cooling on the outside of the mould should be avoided. One consequence of this effect is that the cooling time for a standard rotationally moulded part can be quite long and this has an effect on the overall economics of the process in terms of part manufacture. A number of devices are currently on the market to enhance the cooling of rotational moulding by introducing a water spray to the inside of the rotomoulding during cooling. This paper reports on one such device 'Rotocooler' which during a series of initial industrial trials has been shown to reduce the cycletime by approximately 12 to 16%, with minimal effect on the mechanical properties, leading to a part which has less warpage and shrinkage than a conventionally cooled part.

  10. Rapid manufacturing for microfluidics

    CSIR Research Space (South Africa)

    Land, K

    2012-10-01

    Full Text Available for microfluidics K. LAND, S. HUGO, M MBANJWA, L FOURIE CSIR Materials Science and Manufacturing P O Box 395, Pretoria 0001, SOUTH AFRICA Email: kland@csir.co.za INTRODUCTION Microfluidics refers to the manipulation of very small volumes of fluid.... Microfluidics is at the forefront of developing solutions for drug discovery, diagnostics (from glucose tests to malaria and TB testing) and environmental diagnostics (E-coli monitoring of drinking water). In order to quickly implement new designs, a rapid...

  11. Commercialization of microfluidic devices.

    Science.gov (United States)

    Volpatti, Lisa R; Yetisen, Ali K

    2014-07-01

    Microfluidic devices offer automation and high-throughput screening, and operate at low volumes of consumables. Although microfluidics has the potential to reduce turnaround times and costs for analytical devices, particularly in medical, veterinary, and environmental sciences, this enabling technology has had limited diffusion into consumer products. This article analyzes the microfluidics market, identifies issues, and highlights successful commercialization strategies. Addressing niche markets and establishing compatibility with existing workflows will accelerate market penetration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  13. [Invasive mould disease in haematological patients].

    Science.gov (United States)

    Ruiz-Camps, Isabel; Jarque, Isidro

    2014-01-01

    Invasive mould infections (IMI) are a persistent problem with high morbidity and mortality rates among patients receiving chemotherapy for hematological malignancies and hematopoietic stem cell transplant recipients. Management of IMI in this setting has become increasingly complex with the advent of new antifungal agents and diagnostic tests, which have resulted in different therapeutic strategies (prophylactic, empirical, pre-emptive, and directed). A proper assessment of the individual risk for IMI appears to be critical in order to use the best prophylactic and therapeutic approach and increase the survival rates. Among the available antifungal drugs, the most frequently used in the hematologic patient are fluconazole, mould-active azoles (itraconazole, posaconazole and voriconazole), candins (anidulafungin, caspofungin and micafungin), and lipid formulations of amphotericin B. Specific recommendations for their use, and criteria for selecting the antifungal agents are discussed in this paper. Copyright © 2014. Published by Elsevier Espana.

  14. Optical two-beam traps in microfluidic systems

    DEFF Research Database (Denmark)

    Berg-Sørensen, Kirstine

    2016-01-01

    An attractive solution for optical trapping and stretching by means of two counterpropagating laser beams is to embed waveguides or optical fibers in a microfluidic system. The microfluidic system can be constructed in different materials, ranging from soft polymers that may easily be cast...... written waveguides and in an injection molded polymer chip with grooves for optical fibers. (C) 2016 The Japan Society of Applied Physics....

  15. Microfluidics for chemical processing

    NARCIS (Netherlands)

    Gardeniers, Johannes G.E.

    2006-01-01

    Microfluidic systems, and more specifically, microfluidic chips, have a number of features that make them particularly useful for the study of chemical reactions on-line. The present paper will discuss two examples, the study of fluidic behaviour at high pressures and the excitation and detection of

  16. A characteristic of design solutions for flask moulding lines

    OpenAIRE

    Fedoryszyn, A.

    2007-01-01

    Moulding machines used in manufacture of moulds from synthetic bentonite sands constitute basic equipment of mechanised stands, work centres, and production lines. In the present article, a short characteristic of this equipment was given, basing on the generally accepted criteria of classification taking into consideration novel design solutions and principles of cooperation between individual sub-assemblies. Moulding equipment offered by domestic producers was described with emphasis put on...

  17. Conditions for mould growth on typical interior surfaces

    DEFF Research Database (Denmark)

    Møller, Eva B.; Andersen, Birgitte; Rode, Carsten

    2017-01-01

    Prediction of the risk for mould growth is an important parameter for the analysis and design of the hygrothermal performance of building constructions. However, in practice the mould growth does not always follow the predicted behavior described by the mould growth models. This is often explained...... by uncertainty in the real conditions of exposure. In this study, laboratory experiments were designed to determine mould growth at controlled transient climate compared to growth at constant climate. The experiment included three building materials with four different surface treatments. The samples were...

  18. Presence of moulds and mycotoxins in spices

    Directory of Open Access Journals (Sweden)

    Karan Dragica D.

    2005-01-01

    Full Text Available In this paper there are presented the results of mycologic and mycotoxicologic analysis of seven spices which are being used for production of meat products. Using standard mycologic methods, in all the tested samples, we noticed a presence of moulds. By quality and quantity, most represented are genera: Aspergillus and Penicillium. With smaller occurrence there are presented genera: Rhizopus, Mucor, Paecylomyces and Absydia. Mycotoxins - ochratoxin, aflatoxins and zearalenon, are detected in samples of ground white pepper, ginger, cloves and ground caraway.

  19. Sampling And Identifying Of Mould In The Library Building

    Directory of Open Access Journals (Sweden)

    Abdul Wahab Suriani Ngah

    2016-01-01

    Full Text Available Despite the growing concern over mould and fungi infestations on library building, little has been reported in the literature on the development of an objective tool and criteria for measuring and characterising the mould and fungi. In this paper, an objective based approach to mould and fungi growth assessment using various sampling techniques and its identification using microscopic observation are proposed. This study involved three library buildings of Higher Institution Educational in Malaysia for data collection purpose and study of mould growth. The mould sampling of three libraries was collected using Coriolis air sampler, settling plate air sampling using Malt Extract Agar (MEA, IAQ MOLD Alexeter IAQ-Pro Asp/Pen® Test and swab sampling techniques. The IAQ MOLD Alexeter IAQ-Pro Asp/Pen® Test and traditional method technique identified various mould species immediately on the site, and the microscopic observation identifies common types of the mould such as Aspergillus, Penicillium and Stachybotrys’s. The sample size and particular characteristics of each library will result in the mould growth pattern and finding.

  20. Advances in precision machining and moulding technology bring design opportunities.

    Science.gov (United States)

    Glendening, Paul

    2008-09-01

    Machining of materials for medical applications has moved to a new level of precision. In parallel with this, moulding technology has improved through the increased use of sensors in moulds, enhanced design simulation and processes such as micromoulding. This article examines the opportunities offered by these developments and includes examples of mass produced parts that demonstrate the new capabilities useful to product designers.

  1. Characterization of moulds associated with processed garri stored ...

    African Journals Online (AJOL)

    Characterization of moulds associated with processed white and yellow garri stored at ambient temperature for 40 days was investigated. The moulds isolated from white garri (%) were: Aspergillus spp 35.3, Penicillium spp 23.53, Fusarium spp 2.94, Mucor spp 17.65, Alternaria spp 5.88, Cladosporium sp 2.94 and ...

  2. Modeling and Optimization of Phenol Formaldehyde Resin Sand Mould System

    Directory of Open Access Journals (Sweden)

    Chate G. R.

    2017-06-01

    Full Text Available Chemical bonded resin sand mould system has high dimensional accuracy, surface finish and sand mould properties compared to green sand mould system. The mould cavity prepared under chemical bonded sand mould system must produce sufficient permeability and hardness to withstand sand drop while pouring molten metal through ladle. The demand for improved values of permeability and mould hardness depends on systematic study and analysis of influencing variables namely grain fineness number, setting time, percent of resin and hardener. Try-error experiment methods and analysis were considered impractical in actual foundry practice due to the associated cost. Experimental matrices of central composite design allow conducting minimum experiments that provide complete insight of the process. Statistical significance of influencing variables and their interaction were determined to control the process. Analysis of variance (ANOVA test was conducted to validate the model statistically. Mathematical equation was derived separately for mould hardness and permeability, which are expressed as a non-linear function of input variables based on the collected experimental input-output data. The developed model prediction accuracy for practical usefulness was tested with 10 random experimental conditions. The decision variables for higher mould hardness and permeability were determined using desirability function approach. The prediction results were found to be consistent with experimental values.

  3. Investigation of field temperature in moulds of foamed plaster

    Directory of Open Access Journals (Sweden)

    M. Pawlak

    2007-12-01

    Full Text Available Plaster moulds used in precision foundry are characterized by a very low permeability which, in the case of classic plaster moulds, equals to about 0,01÷0,02 m2/(MPa·s. One of the most effective methods for increasing the permeability is a foaming treatment. Another characteristic feature of plaster is its very good insulating power which has influence on the process of solidification and cooling of a cast and also on a knock-out property. This insulating power is a function of thermophysical properties of plaster which, in turn, depend mainly on the mineralogical composition of the mould material, its bulk density as well as on the temperature of the pouring alloy. In the case of a foamed plaster mould an increase of the degree of foaming increases its porosity which causes a change in its thermophysical properties, thereby increasing susceptibility of the mass to overheating. The susceptibility of the plaster layer surrounding the cast to overheating is favorable because it makes it easier to knock-out of the cast by immersing the hot mould in cold water. Thermal and phase tensions that are created during this process cause fast destruction of plaster. This paper describes our investigations aimed at the determination of the dependence of the mould temperature field on the time of the cast stay in the mould, as recorded in a process of an unsteady heat flow. The determined data were planned to be used for estimation of the technological properties of the plaster mould. The tests were carried out using the plaster α-Supraduro and Alkanol XC (foaming agent. The test mould had a diameter of Ø 120 mm with centrally situated mould cavity of Ø 30 mm. Plaster moulds with a degree of foaming 20; 32,5 and 45% and comparatively from non-foaming plaster were tested and their temperatures were measured at the distance x=2; 9; 21; 25;27; 30 mm from the mould cavity within 25 min. Analysis of the results leads to the conclusion, that the highest

  4. Bond strength investigation of two shot moulded polymer

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul

    This report on the project “Bond strength investigation of two shot moulded polymers” has been submitted for fulfilling the requirements for the course “Experimental Plastic Technology – 42234” at IPL-DTU. Two shot moulding is a classic manufacturing process to combine two different polymers...... in a single product and it is getting more and more importance day by day. One of the biggest challenges of two shot moulding is to achieve a reasonably good bonding between two polymers. The purpose of this project is to investigate the effects of different process, material and machine parameters...... on the bond strength of two shot moulded polymers. For the experiments two engineering polymers (PS and ABS) were used. After all the experimental work, several parameters were found which could effectively control the bond strength of two shot moulded polymers. This report also presents different aspects...

  5. Advances in Physarum machines sensing and computing with Slime mould

    CERN Document Server

    2016-01-01

    This book is devoted to Slime mould Physarum polycephalum, which is a large single cell capable for distributed sensing, concurrent information processing, parallel computation and decentralized actuation. The ease of culturing and experimenting with Physarum makes this slime mould an ideal substrate for real-world implementations of unconventional sensing and computing devices The book is a treatise of theoretical and experimental laboratory studies on sensing and computing properties of slime mould, and on the development of mathematical and logical theories of Physarum behavior. It is shown how to make logical gates and circuits, electronic devices (memristors, diodes, transistors, wires, chemical and tactile sensors) with the slime mould. The book demonstrates how to modify properties of Physarum computing circuits with functional nano-particles and polymers, to interface the slime mould with field-programmable arrays, and to use Physarum as a controller of microbial fuel cells. A unique multi-agent model...

  6. Cell manipulation in microfluidics

    International Nuclear Information System (INIS)

    Yun, Hoyoung; Kim, Kisoo; Lee, Won Gu

    2013-01-01

    Recent advances in the lab-on-a-chip field in association with nano/microfluidics have been made for new applications and functionalities to the fields of molecular biology, genetic analysis and proteomics, enabling the expansion of the cell biology field. Specifically, microfluidics has provided promising tools for enhancing cell biological research, since it has the ability to precisely control the cellular environment, to easily mimic heterogeneous cellular environment by multiplexing, and to analyze sub-cellular information by high-contents screening assays at the single-cell level. Various cell manipulation techniques in microfluidics have been developed in accordance with specific objectives and applications. In this review, we examine the latest achievements of cell manipulation techniques in microfluidics by categorizing externally applied forces for manipulation: (i) optical, (ii) magnetic, (iii) electrical, (iv) mechanical and (v) other manipulations. We furthermore focus on history where the manipulation techniques originate and also discuss future perspectives with key examples where available. (topical review)

  7. Microfluidic chemical reaction circuits

    Science.gov (United States)

    Lee, Chung-cheng [Irvine, CA; Sui, Guodong [Los Angeles, CA; Elizarov, Arkadij [Valley Village, CA; Kolb, Hartmuth C [Playa del Rey, CA; Huang, Jiang [San Jose, CA; Heath, James R [South Pasadena, CA; Phelps, Michael E [Los Angeles, CA; Quake, Stephen R [Stanford, CA; Tseng, Hsian-rong [Los Angeles, CA; Wyatt, Paul [Tipperary, IE; Daridon, Antoine [Mont-Sur-Rolle, CH

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  8. An easy-to-use microfluidic interconnection system to create quick and reversibly interfaced simple microfluidic devices

    DEFF Research Database (Denmark)

    Pfreundt, Andrea; Andersen, Karsten Brandt; Dimaki, Maria

    2015-01-01

    The presented microfluidic interconnection system provides an alternative for the individual interfacing of simple microfluidic devices fabricated in polymers such as polymethylmethacrylate, polycarbonate and cyclic olefin polymer. A modification of the device inlet enables the direct attachment...... pressures above 250 psi and therefore supports applications with high flow rates or highly viscous fluids. The ease of incorporation, configuration, fabrication and use make this interconnection system ideal for the rapid prototyping of simple microfluidic devices or other integrated systems that require...... microfluidic interfaces. It provides a valuable addition to the toolbox of individual and small arrays of connectors suitable for micromachined or template-based injection molded devices since it does not require protruding, threaded or glued modifications on the inlet and avoids bulky and expensive fittings....

  9. Simulation of Air Entrapment and Resin Curing During Manufacturing of Composite Cab Front by Resin Transfer Moulding Process

    Directory of Open Access Journals (Sweden)

    Kuppusamy Raghu Raja Pandiyan

    2017-09-01

    Full Text Available Mould filling and subsequent curing are the significant processing stages involved in the production of a composite component through Resin Transfer Moulding (RTM fabrication technique. Dry spot formation and air entrapment during filling stage caused by improper design of filling conditions and locations that lead to undesired filling patterns resulting in defective RTM parts. Proper placement of inlet ports and exit vents as well as by adjustment of filling conditions can alleviate the problems during the mould filling stage. The temperature profile used to polymerize the resin must be carefully chosen to reduce the cure time. Instead of trial and error methods that are expensive, time consuming, and non-optimal, we propose a simulation-based optimization strategy for a composite cab front component to reduce the air entrapment and cure stage optimization. In order to be effective, the optimization strategy requires an accurate simulation of the process utilizing submodels to describe the raw material characteristics. Cure reaction kinetics and chemo-rheology were the submodels developed empirically for an unsaturated polyester resin using experimental data. The simulations were performed using commercial software PAM RTM 2008, developed by ESI Technologies. Simulation results show that the use of increase in injection pressure at the inlet filling conditions greatly reduce the air entrapped. For the cab front, the alteration of injection pressure with proper timing of vent opening reduced the air entrapped during mould filling stage. Similarly, the curing simulation results show that the use of higher mould temperatures effectively decreases the cure time as expected.

  10. CAE applications in a thermoforming mould design

    International Nuclear Information System (INIS)

    Marjuki, AR; Mohd Ghazali, FA; Ismail, N M; Sulaiman, S; Mohd Khairuddin, I; Majeed, Anwar P P A; Jaafar, AA; Basri, S; Mustapha, F

    2016-01-01

    Preparation of honeycomb layer is a critical step for successful fabrications of thermoformed based sandwiched structures. This paper deals with an initial investigation on the rapid manufacturing process of corrugated sheet with 120° dihedral angles. Time history of local displacements and thickness, assuming viscous dominated material model for a 1mm thick thermoformable material, was computed by using ANSYS ® Polyflow solver. The quality of formed surfaces was evaluated for selection of mould geometry and assessment of two common variants of thermoforming process. Inadequate mesh refinement of a membrane elements produces satisfactorily detailing and incomplete forming. A perfectly uniform material distribution was predicted using drape forming process. However, the geometrical properties of vacuum formed part are poorly distributed and difficult to control with increasing inflation volumes. Details of the discrepancies and the contributions of the CAE tool to complement traditional trial and error methodology in the process and design development are discussed. (paper)

  11. Application of microwaves for incinerating waste shell moulds and cores

    Directory of Open Access Journals (Sweden)

    K. Granat

    2008-08-01

    Full Text Available In the paper, investigation results of microwave heating application for incinerating waste shell moulds and cores made of moulding sands with thermosetting resins are presented. It was found that waste shell cores or shell moulds left after casting, separated from moulding sand, can be effectively incinerated. It was evidenced that microwave heating allows effective control of this process and its results. Incineration of waste moulds and cores made of commercial grades of resin-coated moulding sand using microwave heating was found to be an effective way of their utilisation. It was determined that the optimum burning time of these wastes (except those insufficiently disintegrated and not mixed with an activating agent is maximum 240 s at the used magnetron power of 650 W. It was noticed that proper disintegration of the wastes and use of suitable additives to intensify the microwave heating process guarantee significant reduction of the process time and its full stabilisation. Application of microwave heating for incinerating waste shell moulds and cores ensure substantial and measurable economic profits due to shorter process time and lower energy consumption.

  12. The Compositions: Biodegradable Material - Typical Resin, as Moulding Sands’ Binders

    Directory of Open Access Journals (Sweden)

    Major-Gabryś K.

    2015-03-01

    Full Text Available The paper presents possibility of using biodegradable materials as parts of moulding sands’ binders based on commonly used in foundry practice resins. The authors focus on thermal destruction of binding materials and thermal deformation of moulding sands with tested materials. All the research is conducted for the biodegradable material and two typical resins separately. The point of the article is to show if tested materials are compatible from thermal destruction and thermal deformation points of view. It was proved that tested materials characterized with similar thermal destruction but thermal deformation of moulding sands with those binders was different.

  13. Galactomyces geotrichum - moulds from dairy products with high biotechnological potential.

    Science.gov (United States)

    Grygier, Anna; Myszka, Kamila; Rudzińska, Magdalena

    2017-01-01

    The article reviews the properties of the Galactomyces geotrichum species, the mould that is most important for the dairy industry. G. geotrichum mould has been isolated from milk, cheeses and alcoholic beverage. Its presence in food products makes it possible to obtain a characteristic aroma and taste, which corresponds to the needs and preferences of consumers. G. geotrichum plays an important role in ecology, where the mould is employed for the degradation of various hazardous substances and wastewater treatment. It has also been found to have potential for biofuel production. In addition to this, G. geotrichum can be applicable in two further major areas: agriculture and health protection.

  14. Imprinted and injection-molded nano-structured optical surfaces

    DEFF Research Database (Denmark)

    Christiansen, Alexander Bruun; Højlund-Nielsen, Emil; Clausen, Jeppe Sandvik

    2013-01-01

    . In this paper, nanostructured polymer surfaces suitable for up-scalable polymer replication methods, such as imprinting/embossing and injection-molding, are discussed. The limiting case of injection-moulding compatible designs is investigated. Anti-reflective polymer surfaces are realized by replication...

  15. Magic with moulds: Meiotic and mitotic crossing over in Neurospora ...

    Indian Academy of Sciences (India)

    2006-02-16

    Feb 16, 2006 ... Home; Journals; Journal of Biosciences; Volume 31; Issue 1. Commentary: Magic with moulds: Meiotic and mitotic crossing over in Neurospora inversions and duplications. Durgadas P Kasbekar. Volume 31 Issue 1 March 2006 pp 3-4 ...

  16. Comparison of test methods for mould growth in buildings

    DEFF Research Database (Denmark)

    Bonderup, Sirid; Gunnarsen, Lars Bo; Knudsen, Sofie Marie

    2016-01-01

    renovation needs. This is of importance when hidden surface testing would require destructive measures and subsequent renovation. After identifying available methods on the Danish market for assessing mould growth in dwellings, a case study was conducted to test the usefulness of the methods in four......The purpose of this work is to compare a range of test methods and kits for assessing whether a building structure is infested by mould fungi. A further purpose of this work is to evaluate whether air-based methods for sampling fungal emissions provide information qualifying decisions concerning...... methods measure different aspects relating to mould growth and vary in selectivity and precision. The two types of air samples indicated low levels of mould growth, even where the results of the other methods indicated high to moderate growth. With methods based on culture and DNA testing some differences...

  17. Are motorways rational from slime mould's point of view?

    NARCIS (Netherlands)

    Adamatzky, A.; Akl, S.; Alonso-Sanz, R.; van Dessel, W.; Ibrahim, Z.; Ilachinski, A.; Jones, J.; Kayem, A.V.D.M.; Martínez, G.J.; de Oliveira, P.; Prokopenko, M.; Schubert, T.; Sloot, P.; Strano, E.; Yang, X.-S.

    2013-01-01

    We analyse the results of our experimental laboratory approximation of motorway networks with slime mould Physarum polycephalum. Motorway networks of 14 geographical areas are considered: Australia, Africa, Belgium, Brazil, Canada, China, Germany, Iberia, Italy, Malaysia, Mexico, the Netherlands, UK

  18. Sharp tipped plastic hollow microneedle array by microinjection moulding

    Science.gov (United States)

    Yung, K. L.; Xu, Yan; Kang, Chunlei; Liu, H.; Tam, K. F.; Ko, S. M.; Kwan, F. Y.; Lee, Thomas M. H.

    2012-01-01

    A method of producing sharp tipped plastic hollow microneedle arrays using microinjection moulding is presented in this paper. Unlike traditional approaches, three mould inserts were used to create the sharp tips of the microneedles. Mould inserts with low surface roughness were fabricated using a picosecond laser machine. Sharp tipped plastic hollow microneedles 500 µm in height were fabricated using a microinjection moulding machine developed by the authors’ group. In addition, the strength of the microneedle was studied by simulation and penetration experiments. Results show that the microneedles can penetrate into skin, delivering liquid successfully without any breakage or severe deformation. Techniques presented in this paper can be used to fabricate sharp tipped plastic hollow microneedle arrays massively with low cost.

  19. Sharp tipped plastic hollow microneedle array by microinjection moulding

    International Nuclear Information System (INIS)

    Yung, K L; Xu, Yan; Kang, Chunlei; Liu, H; Tam, K F; Ko, S M; Kwan, F Y; Lee, Thomas M H

    2012-01-01

    A method of producing sharp tipped plastic hollow microneedle arrays using microinjection moulding is presented in this paper. Unlike traditional approaches, three mould inserts were used to create the sharp tips of the microneedles. Mould inserts with low surface roughness were fabricated using a picosecond laser machine. Sharp tipped plastic hollow microneedles 500 µm in height were fabricated using a microinjection moulding machine developed by the authors’ group. In addition, the strength of the microneedle was studied by simulation and penetration experiments. Results show that the microneedles can penetrate into skin, delivering liquid successfully without any breakage or severe deformation. Techniques presented in this paper can be used to fabricate sharp tipped plastic hollow microneedle arrays massively with low cost. (paper)

  20. Transcription of Small Surface Structures in Injection Molding - an Experimental Study

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Kjær, Erik Michael

    2001-01-01

    The ability to replicate the surface roughness from mold wall to the plastic part in injection moldning has many functional and cosmetic important implications from medical use to designer products. Generally the understanding of surface transcription i.e the the replication of the surface...... structure from the mould to plastic part, also relates to micro injection moulding and moulding of parts with specific micro structures on the surface such as optical parts. The present study concerns transcription of surface roughness as a function of process parameters. The study is carried out...

  1. The microfluidic probe: operation and use for localized surface processing.

    Science.gov (United States)

    Perrault, Cecile M; Qasaimeh, Mohammad A; Juncker, David

    2009-06-04

    Microfluidic devices allow assays to be performed using minute amounts of sample and have recently been used to control the microenvironment of cells. Microfluidics is commonly associated with closed microchannels which limit their use to samples that can be introduced, and cultured in the case of cells, within a confined volume. On the other hand, micropipetting system have been used to locally perfuse cells and surfaces, notably using push-pull setups where one pipette acts as source and the other one as sink, but the confinement of the flow is difficult in three dimensions. Furthermore, pipettes are fragile and difficult to position and hence are used in static configuration only. The microfluidic probe (MFP) circumvents the constraints imposed by the construction of closed microfluidic channels and instead of enclosing the sample into the microfluidic system, the microfluidic flow can be directly delivered onto the sample, and scanned across the sample, using the MFP. . The injection and aspiration openings are located within a few tens of micrometers of one another so that a microjet injected into the gap is confined by the hydrodynamic forces of the surrounding liquid and entirely aspirated back into the other opening. The microjet can be flushed across the substrate surface and provides a precise tool for localized deposition/delivery of reagents which can be used over large areas by scanning the probe across the surface. In this video we present the microfluidic probe (MFP). We explain in detail how to assemble the MFP, mount it atop an inverted microscope, and align it relative to the substrate surface, and finally show how to use it to process a substrate surface immersed in a buffer.

  2. Direct integration of MEMS, dielectric pumping and cell manipulation with reversibly bonded gecko adhesive microfluidics

    International Nuclear Information System (INIS)

    Warnat, S; King, H; Hubbard, T; Wasay, A; Sameoto, D

    2016-01-01

    We present an approach to form a microfluidic environment on top of MEMS dies using reversibly bonded microfluidics. The reversible polymeric microfluidics moulds bond to the MEMS die using a gecko-inspired gasket architecture. In this study the formed microchannels are demonstrated in conjunction with a MEMS mechanical single cell testing environment for BioMEMS applications. A reversible microfluidics placement technique with an x - y and rotational accuracy of  ±2 µ m and 1° respectively on a MEMS die was developed. No leaks were observed during pneumatic pumping of common cell media (PBS, sorbitol, water, seawater) through the fluidic channels. Thermal chevron actuators were successful operated inside this fluidic environment and a performance deviation of ∼15% was measured compared to an open MEMS configuration. Latex micro-spheres were pumped using traveling wave di-electrophoresis and compared to an open (no-microfluidics) configuration with velocities of 24 µ m s −1 and 20 µ m s −1 . (technical note)

  3. Measuring autogenous strain of concrete with corrugated moulds

    DEFF Research Database (Denmark)

    Tian, Qian; Jensen, Ole Mejlhede

    2008-01-01

    A reliable technique to quantify autogenous strain is a prerequisite to numerical modeling in stress calculations for high performance concrete. The introducing of a special kind of corrugated tube mould helps to transforming volume strain measurement into liner strain measurement in horizontal...... direction for fluid concrete, which not only realizes the continuous monitoring of the autogenous shrinkage since casting, but also effectively eliminates the disturbance resulting from gravity, temperature variation and mould restraint on measuring results. Based on this measuring technique, this paper...

  4. Methods for integrating a functional component into a microfluidic device

    Science.gov (United States)

    Simmons, Blake; Domeier, Linda; Woo, Noble; Shepodd, Timothy; Renzi, Ronald F.

    2014-08-19

    Injection molding is used to form microfluidic devices with integrated functional components. One or more functional components are placed in a mold cavity, which is then closed. Molten thermoplastic resin is injected into the mold and then cooled, thereby forming a solid substrate including the functional component(s). The solid substrate including the functional component(s) is then bonded to a second substrate, which may include microchannels or other features.

  5. Microfluidic Flame Barrier

    Science.gov (United States)

    Mungas, Gregory S. (Inventor); Fisher, David J. (Inventor); Mungas, Christopher (Inventor)

    2013-01-01

    Propellants flow through specialized mechanical hardware that is designed for effective and safe ignition and sustained combustion of the propellants. By integrating a micro-fluidic porous media element between a propellant feed source and the combustion chamber, an effective and reliable propellant injector head may be implemented that is capable of withstanding transient combustion and detonation waves that commonly occur during an ignition event. The micro-fluidic porous media element is of specified porosity or porosity gradient selected to be appropriate for a given propellant. Additionally the propellant injector head design integrates a spark ignition mechanism that withstands extremely hot running conditions without noticeable spark mechanism degradation.

  6. Report on converging insert moulding with µ-IM

    DEFF Research Database (Denmark)

    Islam, Aminul

    moulding with µ-IM  Task 5.2.1 and COTECH demonstrator: guide line for 5PRC production based on the concept of Task 5.2.1 Information and results provided by this deliverable will be directly used for one of the COTECH demonstrators production which will call for convergent insert moulding with µ......Task 5.2.1 deals with the technical feasibility of converging the state-of-the-art µ IM process with insert moulding to offer a wide range of multi-material µ components. The main objective of this deliverable is to summarize state-of-the-art information and to make the guideline needed...... for the convergence. In particular the following aspects are summed up in the deliverable:  Need for converging insert moulding with µ-IM  Objectives and expected outcome from task 5.2.1  State-of-the-art micro insert moulding and different scenario of micro insert moulding  Challenges ahead of converging insert...

  7. A microfluidic timer for timed valving and pumping in centrifugal microfluidics.

    Science.gov (United States)

    Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-03-21

    Accurate timing of microfluidic operations is essential for the automation of complex laboratory workflows, in particular for the supply of sample and reagents. Here we present a new unit operation for timed valving and pumping in centrifugal microfluidics. It is based on temporary storage of pneumatic energy and time delayed sudden release of said energy. The timer is loaded at a relatively higher spinning frequency. The countdown is started by reducing to a relatively lower release frequency, at which the timer is released after a pre-defined delay time. We demonstrate timing for 1) the sequential release of 4 liquids at times of 2.7 s ± 0.2 s, 14.0 s ± 0.5 s, 43.4 s ± 1.0 s and 133.8 s ± 2.3 s, 2) timed valving of typical assay reagents (contact angles 36-78°, viscosities 0.9-5.6 mPa s) and 3) on demand valving of liquids from 4 inlet chambers in any user defined sequence controlled by the spinning protocol. The microfluidic timer is compatible to all wetting properties and viscosities of common assay reagents and does neither require assistive equipment, nor coatings. It can be monolithically integrated into a microfluidic test carrier and is compatible to scalable fabrication technologies such as thermoforming or injection molding.

  8. Thermally induced atomic diffusion at the interface between release agent coating and mould substrate in a glass moulding press

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Jun; Fukase, Yasushi [Toshiba Machine Co., Ltd, Ooka 2068-3, Numazu-Shi, Shizuoka-Ken, 410-8510 (Japan); Yan Jiwang; Zhou Tianfeng; Kuriyagawa, Tsunemoto, E-mail: yanjw@pm.mech.tohoku.ac.jp [Department of Mechanical Systems and Design, Graduate School of Engineering, Tohoku University, Aoba 6-6-01, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2011-06-01

    In a glass moulding press (GMP) for refractive/diffractive hybrid lenses, to improve the service life of nickel-phosphorus (Ni-P) plated moulds, it is necessary to control the diffusion of constituent elements from the mould into the release agent coating. In this study, diffusion phenomena of constituents of Ni-P plating are investigated for two types of release agent coatings, iridium-platinum (Ir-Pt) and iridium-rhenium (Ir-Re), by cross-sectional observation, compositional analysis and stress measurements. The results show that Ni atoms in the plating layer flow from regions of compressive stress to regions of tensile stress. In the case of the Ir-Pt coated mould, the diffusion of Ni is promoted from the grain boundaries between the Ni and Ni{sub 3}P phases in the plating towards the surface of the Ir-Pt coating. However, in the Ir-Re coated mould, the diffusion of Ni is suppressed because the diffusion coefficient of Ni in the Ir-Re alloy is smaller than that in the Ir-Pt alloy, although the stress state is similar in both cases. By controlling the diffusion of Ni atoms, the use of Ir-Re alloy as a release agent coating for Ni-P plated moulds is expected to lead to a high degree of durability.

  9. Numerical Optimization in Microfluidics

    DEFF Research Database (Denmark)

    Jensen, Kristian Ejlebjærg

    2017-01-01

    Numerical modelling can illuminate the working mechanism and limitations of microfluidic devices. Such insights are useful in their own right, but one can take advantage of numerical modelling in a systematic way using numerical optimization. In this chapter we will discuss when and how numerical...... optimization is best used....

  10. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...... by that enzyme...

  11. Microfluidics for medical applications

    NARCIS (Netherlands)

    van den Berg, Albert; van den Berg, A.; Segerink, L.I.; Segerink, Loes Irene; Unknown, [Unknown

    2015-01-01

    Lab-on-a-chip devices for point of care diagnostics have been present in clinics for several years now. Alongside their continual development, research is underway to bring the organs and tissue on-a-chip to the patient, amongst other medical applications of microfluidics. This book provides the

  12. Chemistry in Microfluidic Channels

    Science.gov (United States)

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  13. Microfluidic isotachophoresis: A review

    Czech Academy of Sciences Publication Activity Database

    Smejkal, P.; Bottenus, D.; Breadmore, M. C.; Guijt, R. M.; Ivory, C. F.; Foret, František; Macka, M.

    2013-01-01

    Roč. 34, č. 11 (2013), s. 1493-1509 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GAP301/11/2055 Institutional support: RVO:68081715 Keywords : chip * isotachophoresis * microfluidics * miniaturization Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.161, year: 2013

  14. CONTRIBUTIONS TO DIVERSIFY SOLES MOULDS THAT FORMS DIRECTLY ON FACES SHOES

    Directory of Open Access Journals (Sweden)

    IONESCU Cozmin

    2015-05-01

    Full Text Available The classical moulds which are currently used for forming the soles directly on the uppers, allow obtaining one sole model. One mould for each foot is made, and at least one mould for each size number in the size number series. To manufacture one single sole model in the sizes series an average set of 16 moulds are needed. Changing the model implies the entire production of a new set of moulds. Therefore, a large diversification of the soles requires the manufacturing a quantity of moulds sets equal with the quantity of sole models. In this paper are presented solutions to obtain more cavity shapes in the same mould, through the use of modular interchangeable pieces. The moulds with versatile cavities have the same functional characteristics as the moulds with unique cavities, are usable on the same type of machines and can be used independently or together with the classical moulds. A brief analysis on the technological processes for manufacturing moulds with versatile cavities reveals a significant lowering of the manufacturing time for moulds in which will be obtained other sole models. This is due to the fact that some of the mould parts are reused. In conclusion, the producers that chose this type of moulds can launch on the market new models in a shorter time and at lower prices.

  15. Multi-scale optical metrology for the quality control of polymer microfluidic systems

    DEFF Research Database (Denmark)

    Tosello, Guido; Marinello, Francesco; Hansen, Hans Nørgaard

    2009-01-01

    Micro injection moulding is a replication technology enabling large scale production of polymer-based micro products. To this respect, optical measuring technologies were selected to perform the quality control of a polymer micro-component: an optical coordinate measuring machine (CMM) and a white...

  16. PREFACE: Nano- and microfluidics Nano- and microfluidics

    Science.gov (United States)

    Jacobs, Karin

    2011-05-01

    The field of nano- and microfluidics emerged at the end of the 1990s parallel to the demand for smaller and smaller containers and channels for chemical, biochemical and medical applications such as blood and DNS analysis [1], gene sequencing or proteomics [2, 3]. Since then, new journals and conferences have been launched and meanwhile, about two decades later, a variety of microfluidic applications are on the market. Briefly, 'the small flow becomes mainstream' [4]. Nevertheless, research in nano- and microfluidics is more than downsizing the spatial dimensions. For liquids on the nanoscale, surface and interface phenomena grow in importance and may even dominate the behavior in some systems. The studies collected in this special issue all concentrate on these type of systems and were part ot the priority programme SPP1164 'Nano- and Microfluidics' of the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG). The priority programme was initiated in 2002 by Hendrik Kuhlmann and myself and was launched in 2004. Friction between a moving liquid and a solid wall may, for instance, play an important role so that the usual assumption of a no-slip boundary condition is no longer valid. Likewise, the dynamic deformations of soft objects like polymers, vesicles or capsules in flow arise from the subtle interplay between the (visco-)elasticity of the object and the viscous stresses in the surrounding fluid and, potentially, the presence of structures confining the flow like channels. Consequently, new theories were developed ( see articles in this issue by Münch and Wagner, Falk and Mecke, Bonthuis et al, Finken et al, Almenar and Rauscher, Straube) and experiments were set up to unambiguously demonstrate deviations from bulk, or 'macro', behavior (see articles in this issue by Wolff et al, Vinogradova and Belyaev, Hahn et al, Seemann et al, Grüner and Huber, Müller-Buschbaum et al, Gutsche et al, Braunmüller et al, Laube et al, Brücker, Nottebrock et al

  17. A microfluidic sub-critical water extraction instrument

    Science.gov (United States)

    Sherrit, Stewart; Noell, Aaron C.; Fisher, Anita; Lee, Mike C.; Takano, Nobuyuki; Bao, Xiaoqi; Kutzer, Thomas C.; Grunthaner, Frank

    2017-11-01

    This article discusses a microfluidic subcritical water extraction (SCWE) chip for autonomous extraction of amino acids from astrobiologically interesting samples. The microfluidic instrument is composed of three major components. These include a mixing chamber where the soil sample is mixed and agitated with the solvent (water), a subcritical water extraction chamber where the sample is sealed with a freeze valve at the chip inlet after a vapor bubble is injected into the inlet channels to ensure the pressure in the chip is in equilibrium with the vapor pressure and the slurry is then heated to ≤200 °C in the SCWE chamber, and a filter or settling chamber where the slurry is pumped to after extraction. The extraction yield of the microfluidic SCWE chip process ranged from 50% compared to acid hydrolysis and 80%-100% compared to a benchtop microwave SCWE for low biomass samples.

  18. Influence of the reclamation method of spent moulding sands on the possibility of creating favourable conditions for gases flow in a mould

    Directory of Open Access Journals (Sweden)

    Łucarz M.

    2017-03-01

    Full Text Available The results of investigations concerning the influence of the applied sand matrix (fresh sand, reclaim on the properties of moulding sands used for production of large dimensional castings (ingot moulds, ladles, are presented in the hereby paper. The performed investigations were aimed at determining the influence of various reclamation methods of spent moulding sands on the quality of the obtained reclaimed material. Moulding sands were prepared on the fresh quartz matrix as well as on sand matrices obtained after various reclamation methods. The selected moulding sand parameters were tested (strength, permeability, grindability, ignition losses, pH reactions. It can be stated, on the basis of the performed investigations, that the kind of the applied moulding sand matrix is of an essential meaning from the point of view of creating conditions minimising formation of large amounts of gases and their directional migration in a casting mould.

  19. The first report on mushroom green mould disease in Croatia.

    Science.gov (United States)

    Hatvani, Lóránt; Sabolić, Petra; Kocsubé, Sándor; Kredics, László; Czifra, Dorina; Vágvölgyi, Csaba; Kaliterna, Joško; Ivić, Dario; Đermić, Edyta; Kosalec, Ivan

    2012-12-01

    Green mould disease, caused by Trichoderma species, is a severe problem for mushroom growers worldwide, including Croatia. Trichoderma strains were isolated from green mould-affected Agaricus bisporus (button or common mushroom) compost and Pleurotus ostreatus (oyster mushroom) substrate samples collected from Croatian mushroom farms. The causal agents of green mould disease in the oyster mushroom were T. pleurotum and T. pleuroticola, similar to other countries. At the same time, the pathogen of A. bisporus was exclusively the species T. harzianum, which is different from earlier findings and indicates that the range of mushroom pathogens is widening. The temperature profiles of the isolates and their hosts overlapped, thus no range was found that would allow optimal growth of the mushrooms without mould contamination. Ferulic acid and certain phenolic compounds, such as thymol showed remarkable fungistatic effect on the Trichoderma isolates, but inhibited the host mushrooms as well. However, commercial fungicides prochloraz and carbendazim were effective agents for pest management. This is the first report on green mould disease of cultivated mushrooms in Croatia.

  20. Microfluidic device, and related methods

    Science.gov (United States)

    Wong, Eric W. (Inventor)

    2010-01-01

    A method of making a microfluidic device is provided. The method features patterning a permeable wall on a substrate, and surrounding the permeable wall with a solid, non-permeable boundary structure to establish a microfluidic channel having a cross-sectional dimension less than 5,000 microns and a cross-sectional area at least partially filled with the permeable wall so that fluid flowing through the microfluidic channel at least partially passes through the permeable wall.

  1. PLC and SCADA based automation of injection casting process for casting of uranium-zirconium blanket fuel slugs for metallic fuel fabrication

    International Nuclear Information System (INIS)

    Yathish Kumar, G.; Jagadeeschandran, J.; Avvaru, Prafulla Kumar; Yadaw, Abhishek Kumar; Lavakumar, R.; Prabhu, T.V.; Muralidharan, P.; Anthonysamy, S.

    2016-01-01

    Fabrication of metallic (U-6wt.%Zr) slugs involves melting of binary alloy under vacuum and injection casting into quartz moulds at high pressure. Injection casting system housed inside glove box comprises of high vacuum, induction melting, high pressure control, motion control, mould preheating, chamber cooling, crucible handling and glove box pressure control systems. The technology development for process automation of injection casting system and process optimisation for fabrication of metallic (U-6%Zr) slugs is outlined in this paper. (author)

  2. Methods of making microfluidic devices

    KAUST Repository

    Buttner, Ulrich

    2017-06-01

    Microfluidics has advanced in terms of designs and structures, however, fabrication methods are either time consuming or expensive to produce, in terms of the facilities and equipment needed. A fast and economically viable method is provided to allow, for example, research groups to have access to microfluidic fabrication. Unlike most fabrication methods, a method is provided to fabricate a microfluidic device in one step. In an embodiment, a resolution of 50 micrometers was achieved by using maskless high-resolution digital light projection (MDLP). Bonding and channel fabrication of complex or simple structures can be rapidly incorporated to fabricate the microfluidic devices.

  3. 2k micro moulding for MID fabrication

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Jørgensen, Martin Bondo

    2009-01-01

    Molded Interconnect Devices (MIDs) are plastic substrates with electrical infrastructure. The fabrication of MIDs is usually based on injection molding and different process chains may be identified from this starting point. The use of MIDs has been driven primarily by the automotive sector......, but recently the medical sector seems more and more interested. In particular, the possibility of miniaturization of 3D components with electrical infrastructure is attractive. The paper describes possible manufacturing routes and challenges of miniaturized MIDs based on two component injection molding...

  4. The Microfluidic Jukebox

    Science.gov (United States)

    Tan, Say Hwa; Maes, Florine; Semin, Benoît; Vrignon, Jérémy; Baret, Jean-Christophe

    2014-04-01

    Music is a form of art interweaving people of all walks of life. Through subtle changes in frequencies, a succession of musical notes forms a melody which is capable of mesmerizing the minds of people. With the advances in technology, we are now able to generate music electronically without relying solely on physical instruments. Here, we demonstrate a musical interpretation of droplet-based microfluidics as a form of novel electronic musical instruments. Using the interplay of electric field and hydrodynamics in microfluidic devices, well controlled frequency patterns corresponding to musical tracks are generated in real time. This high-speed modulation of droplet frequency (and therefore of droplet sizes) may also provide solutions that reconciles high-throughput droplet production and the control of individual droplet at production which is needed for many biochemical or material synthesis applications.

  5. Microfluidic redox battery.

    Science.gov (United States)

    Lee, Jin Wook; Goulet, Marc-Antoni; Kjeang, Erik

    2013-07-07

    A miniaturized microfluidic battery is proposed, which is the first membraneless redox battery demonstrated to date. This unique concept capitalizes on dual-pass flow-through porous electrodes combined with stratified, co-laminar flow to generate electrical power on-chip. The fluidic design is symmetric to allow for both charging and discharging operations in forward, reverse, and recirculation modes. The proof-of-concept device fabricated using low-cost materials integrated in a microfluidic chip is shown to produce competitive power levels when operated on a vanadium redox electrolyte. A complete charge/discharge cycle is performed to demonstrate its operation as a rechargeable battery, which is an important step towards providing sustainable power to lab-on-a-chip and microelectronic applications.

  6. Potentially pathogenic, pathogenic, and allergenic moulds in the urban soils

    Directory of Open Access Journals (Sweden)

    Đukić Dragutin A.

    2011-01-01

    Full Text Available The dynamics of soil mould populations that can compromise the human immune system was evaluated in experimental plots located at different distances (100, 300, 500, 700 and 900 m from the main source of pollution - the Podgorica Aluminum Plant. Soil samples were collected in July and October 2008 from three different plot zones at a depth of 0-10 cm. The count of potentially pathogenic, keratinolytic and allergenic (melaninogenic moulds was assessed, which can significantly contribute to both diagnosis and prophylaxis. The count of medically important moulds was higher in the urban soil than in the unpolluted (control soil. Their count decreased with increasing distance from the main pollution source (PAP. Their abundance in the soil was considerably higher in autumn than in spring.

  7. Normalization in Lie algebras via mould calculus and applications

    Science.gov (United States)

    Paul, Thierry; Sauzin, David

    2017-11-01

    We establish Écalle's mould calculus in an abstract Lie-theoretic setting and use it to solve a normalization problem, which covers several formal normal form problems in the theory of dynamical systems. The mould formalism allows us to reduce the Lie-theoretic problem to a mould equation, the solutions of which are remarkably explicit and can be fully described by means of a gauge transformation group. The dynamical applications include the construction of Poincaré-Dulac formal normal forms for a vector field around an equilibrium point, a formal infinite-order multiphase averaging procedure for vector fields with fast angular variables (Hamiltonian or not), or the construction of Birkhoff normal forms both in classical and quantum situations. As a by-product we obtain, in the case of harmonic oscillators, the convergence of the quantum Birkhoff form to the classical one, without any Diophantine hypothesis on the frequencies of the unperturbed Hamiltonians.

  8. Microfluidic Biochip Design

    Science.gov (United States)

    Panzarella, Charles

    2004-01-01

    As humans prepare for the exploration of our solar system, there is a growing need for miniaturized medical and environmental diagnostic devices for use on spacecrafts, especially during long-duration space missions where size and power requirements are critical. In recent years, the biochip (or Lab-on-a- Chip) has emerged as a technology that might be able to satisfy this need. In generic terms, a biochip is a miniaturized microfluidic device analogous to the electronic microchip that ushered in the digital age. It consists of tiny microfluidic channels, pumps and valves that transport small amounts of sample fluids to biosensors that can perform a variety of tests on those fluids in near real time. It has the obvious advantages of being small, lightweight, requiring less sample fluids and reagents and being more sensitive and efficient than larger devices currently in use. Some of the desired space-based applications would be to provide smaller, more robust devices for analyzing blood, saliva and urine and for testing water and food supplies for the presence of harmful contaminants and microorganisms. Our group has undertaken the goal of adapting as well as improving upon current biochip technology for use in long-duration microgravity environments. In addition to developing computational models of the microfluidic channels, valves and pumps that form the basis of every biochip, we are also trying to identify potential problems that could arise in reduced gravity and develop solutions to these problems. One such problem is due to the prevalence of bubbly sample fluids in microgravity. A bubble trapped in a microfluidic channel could be detrimental to the operation of a biochip. Therefore, the process of bubble formation in microgravity needs to be studied, and a model of this process has been developed and used to understand how bubbles develop and move through biochip components. It is clear that some type of bubble filter would be necessary in Space, and

  9. Evaluation of Injection Molding Process Parameters for Manufacturing Polyethylene Terephthalate

    Directory of Open Access Journals (Sweden)

    Marwah O.M.F.

    2017-01-01

    Full Text Available Quality control is an important aspect in manufacturing process. The quality of product in injection moulding is influenced by injection moulding process parameter. In this study, the effect of injection moulding parameter on defects quantity of PET preform was investigated. Optimizing the parameter of injection moulding process is critical to enhance productivity where parameters must operate at an optimum level for an acceptable performance. Design of Experiment (DOE by factorial design approach was used to find an optimum parameter setting and reduce the defects. In this case study, Minitab 17 software was used to analyses the data. The selected input parameters were mould hot runner temperature, water cooling chiller temperature 1 and water cooling chiller temperature 2. Meanwhile, the output for the process was defects quantity of the preform. The relationship between input and output of the process was analyzed using regression method and Analysis of Variance (ANOVA. In order to interpolate the experiment data, mathematical modeling was used which consists of different types of regression equation. Next, from the model, 95% confidence level (p-value was considered and the significant parameter was figured out. This study involved a collaboration with a preform injection moulding company which was Nilai Legasi Plastik Sdn Bhd. The collaboration enabled the researchers to collect the data and also help the company to improve the quality of its production. The results of the study showed that the optimum parameter setting that could reduce the defect quantity of preform was MHR= 88°C, CT1= 24°C and CT2= 27°C. The comparison defect quantity analysis between current companies setting with the optimum setting showed improvement by 21% reduction of defect quantity at the optimum setting. Finally, from the optimization plot, the validation error between the prediction value and experiment was 1.72%. The result proved that quality of products

  10. A Simple Opto-Fluidic Switch Detecting Liquid Filling in Polymer-Based Microfluidic Systems

    DEFF Research Database (Denmark)

    Bundgaard, Frederik; Geschke, Oliver; Zengerle, R

    2007-01-01

    A novel detection scheme for detection of liquid levels and bubbles in microfluidic systems, using the principle of total internal reflection (TIR) is presented. A laser beam impinges on the side walls of a channel which are inclined at 45deg. In an unfilled channel of such a "V-groove", TIR defl...... of the microfluidic channels. The machining of the V-groves can seamlessly be integrated into common polymer microfabrication schemes such as injection molding....

  11. Droplet based microfluidics

    International Nuclear Information System (INIS)

    Seemann, Ralf; Brinkmann, Martin; Pfohl, Thomas; Herminghaus, Stephan

    2012-01-01

    Droplet based microfluidics is a rapidly growing interdisciplinary field of research combining soft matter physics, biochemistry and microsystems engineering. Its applications range from fast analytical systems or the synthesis of advanced materials to protein crystallization and biological assays for living cells. Precise control of droplet volumes and reliable manipulation of individual droplets such as coalescence, mixing of their contents, and sorting in combination with fast analysis tools allow us to perform chemical reactions inside the droplets under defined conditions. In this paper, we will review available drop generation and manipulation techniques. The main focus of this review is not to be comprehensive and explain all techniques in great detail but to identify and shed light on similarities and underlying physical principles. Since geometry and wetting properties of the microfluidic channels are crucial factors for droplet generation, we also briefly describe typical device fabrication methods in droplet based microfluidics. Examples of applications and reaction schemes which rely on the discussed manipulation techniques are also presented, such as the fabrication of special materials and biophysical experiments.

  12. A Microfluidic Cell Concentrator

    Science.gov (United States)

    Warrick, Jay; Casavant, Ben; Frisk, Megan; Beebe, David

    2010-01-01

    Cell concentration via centrifugation is a ubiquitous step in many cell culture procedures. At the macroscale, centrifugation suffers from a number of limitations particularly when dealing with small numbers of cells (e.g., less than 50,000). On the other hand, typical microscale methods for cell concentration can affect cell physiology and bias readouts of cell behavior and function. In this paper, we present a microfluidic concentrator device that utilizes the effects of gravity to allow cells to gently settle out of a suspension into a collection region without the use of specific adhesion ligands. Dimensional analysis was performed to compare different device designs and was verified with flow modeling to optimize operational parameters. We are able to concentrate low-density cell suspensions in a microfluidic chamber, achieving a cell loss of only 1.1 ± 0.6% (SD, n=7) with no observed loss during a subsequent cell staining protocol which incorporates ~36 complete device volume replacements. This method provides a much needed interface between rare cell samples and microfluidic culture assays. PMID:20843010

  13. Microfluidics with fluid walls.

    Science.gov (United States)

    Walsh, Edmond J; Feuerborn, Alexander; Wheeler, James H R; Tan, Ann Na; Durham, William M; Foster, Kevin R; Cook, Peter R

    2017-10-10

    Microfluidics has great potential, but the complexity of fabricating and operating devices has limited its use. Here we describe a method - Freestyle Fluidics - that overcomes many key limitations. In this method, liquids are confined by fluid (not solid) walls. Aqueous circuits with any 2D shape are printed in seconds on plastic or glass Petri dishes; then, interfacial forces pin liquids to substrates, and overlaying an immiscible liquid prevents evaporation. Confining fluid walls are pliant and resilient; they self-heal when liquids are pipetted through them. We drive flow through a wide range of circuits passively by manipulating surface tension and hydrostatic pressure, and actively using external pumps. Finally, we validate the technology with two challenging applications - triggering an inflammatory response in human cells and chemotaxis in bacterial biofilms. This approach provides a powerful and versatile alternative to traditional microfluidics.The complexity of fabricating and operating microfluidic devices limits their use. Walsh et al. describe a method in which circuits are printed as quickly and simply as writing with a pen, and liquids in them are confined by fluid instead of solid walls.

  14. Optimisation of multi-layer rotationally moulded foamed structures

    Science.gov (United States)

    Pritchard, A. J.; McCourt, M. P.; Kearns, M. P.; Martin, P. J.; Cunningham, E.

    2018-05-01

    Multi-layer skin-foam and skin-foam-skin sandwich constructions are of increasing interest in the rotational moulding process for two reasons. Firstly, multi-layer constructions can improve the thermal insulation properties of a part. Secondly, foamed polyethylene sandwiched between solid polyethylene skins can increase the mechanical properties of rotationally moulded structural components, in particular increasing flexural properties and impact strength (IS). The processing of multiple layers of polyethylene and polyethylene foam presents unique challenges such as the control of chemical blowing agent decomposition temperature, and the optimisation of cooling rates to prevent destruction of the foam core; therefore, precise temperature control is paramount to success. Long cooling cycle times are associated with the creation of multi-layer foam parts due to their insulative nature; consequently, often making the costs of production prohibitive. Devices such as Rotocooler®, a rapid internal mould water spray cooling system, have been shown to have the potential to significantly decrease cooling times in rotational moulding. It is essential to monitor and control such devices to minimise the warpage associated with the rapid cooling of a moulding from only one side. The work presented here demonstrates the use of threaded thermocouples to monitor the polymer melt in multi-layer sandwich constructions, in order to analyse the cooling cycle of multi-layer foamed structures. A series of polyethylene skin-foam test mouldings were produced, and the effect of cooling medium on foam characteristics, mechanical properties, and process cycle time were investigated. Cooling cycle time reductions of 45%, 26%, and 29% were found for increasing (1%, 2%, and 3%) chemical blowing agent (CBA) amount when using internal water cooling technology from ˜123°C compared with forced air cooling (FAC). Subsequently, a reduction of IS for the same skin-foam parts was found to be 1%, 4

  15. Microfluidic desalination : capacitive deionization on chip for microfluidic sample preparation

    NARCIS (Netherlands)

    Roelofs, Susan Helena

    2015-01-01

    The main aim of the work described in this thesis is to implement the desalination technique capacitive deionization (CDI) on a microfluidic chip to improve the reproducibility in the analysis of biological samples for drug development. Secondly, microfluidic CDI allows for the in situ study of ion

  16. Microfluidics of soft granular gels

    Science.gov (United States)

    Nixon, Ryan; Bhattacharjee, Tapomoy; Sawyer, W. Gregory; Angelini, Thomas E.

    Microfluidic methods for encapsulating cells and particles typically involve drop making with two immiscible fluids. The main materials constraint in this approach is surface tension, creating inherent instability between the two fluids. We can eliminate this instability by using miscible inner and outer phases. This is achieved by using granular micro gels which are chemically miscible but physically do not mix. These microgels are yield stress materials, so they flow as solid plugs far from shear gradients, and fluidize where gradients are generated - near an injection nozzle for example. We have found that tuning the yield stress of the material by varying polymer concentration, device performance can be controlled. The solid like behavior of the gel allows us to produces infinitely stable jets that maintain their integrity and configuration over long distances and times. These properties can be combined and manipulated to produce discrete particulate bunches of an inner phase, flowing inside of an outer phase, well enough even to print a Morse code message suspended within flow chambers about a millimeter in diameter moving at millimeters a second.

  17. The estimation of harmfulness for environment of moulding sand with biopolymer binder based on polylactide

    Directory of Open Access Journals (Sweden)

    K. Major-Gabryś

    2011-01-01

    Full Text Available The article takes into consideration technological and ecological aspects of IV generation moulding sands. Investigations concerning anapplication of biopolymer materials as binders for moulding sands are presented in the paper. These investigations are the continuation ofexaminations related to applications of various biopolymers as binding agents and to the properties of the moulding sands with biopolymerbinders. In the paper there are the researches concerning analyzing gases emitted from moulding sands during heating.

  18. Flow Dynamics of green sand in the DISAMATIC moulding process using Discrete element method (DEM)

    DEFF Research Database (Denmark)

    Hovad, Emil; Larsen, P.; Walther, Jens Honore

    2015-01-01

    casting process. Depending on the actual casting geometry the mould can be geometrically quite complex involving e.g. shadowing effects and this is directly reflected in the sand flow during the moulding process. In the present work a mould chamber with “ribs” at the walls is chosen as a baseline geometry...

  19. Double-curved precast concrete elements : Research into technical viability of the flexible mould method

    NARCIS (Netherlands)

    Schipper, H.R.

    2015-01-01

    The production of precast, concrete elements with complex, double-curved geometry is expensive due to the high costcosts of the necessary moulds and the limited possibilities for mould reuse. Currently, CNC-milled foam moulds are the solution applied mostly in projects, offering good aesthetic

  20. Emission of organic compounds from mould and core binders used for casting iron, aluminium and bronze in sand moulds

    DEFF Research Database (Denmark)

    Tiedje, Niels Skat; Crepaz, Rudolf; Eggert, Torben

    2010-01-01

    compositions were tested. A test method that provides uniform test conditions is described. The method can be used as general test method to analyse off gasses from binders. Moulds containing a standard size casting were produced and the amount and type of organic compounds resulting from thermal degradation...... of binders was monitored when cast iron, bronze and aluminium was poured in the moulds. Binder degradation was measured by collecting off gasses in a specially designed ventilation hood at a constant flow rate. Samples were taken from the ventilation system and analysed for hydrocarbons and CO content...

  1. MICROFLUIDIC COMPONENT CAPABLE OF SELF-SEALING

    DEFF Research Database (Denmark)

    2009-01-01

    A microfluidic component (100) for building a microfluidic system is provided. The microfluidic component (100) can be mounted on a microf luidic breadboard (202) in a manner that allows it to be connected to other microfluidic components (204, 206) without the requirement of additional devices....... The microfluidic component (100) comprises at least one flexible tube piece (102) for transporting a fluid. The microfluidic component (100) also comprises means for applying and maintaining pressure (104) between the flexible tube piece (102) and a tube piece (208, 210) housed in another microfluidic component...

  2. Inhibition of growth and mycotoxins formation in moulds by marine ...

    African Journals Online (AJOL)

    ... extracts (chloroform, hexane and methanol) had no activity on the microbial growth. Mycotoxins formation in Aspergillus flavus was inhibited by the ethanolic extracts at the concentration of 5%. Key Words: Algae, antimicrobial, minimal inhibitory concentration, moulds. African Journal of Biotechnology Vol.3(1) 2004: 71-75 ...

  3. Evaluation of wettability of binders used in moulding sands

    Directory of Open Access Journals (Sweden)

    Hutera B.

    2007-01-01

    Full Text Available Binders used in moulding sand have the differential properties. One of the main parameters influencing on moulding sand properties is wettability of the sand grain by binding material. In the article some problems concerned with wettability evaluation have been presented and the importance of this parameter for quantity description of process occurring in system: binder- sand grain has been mentioned. The procedure of wetting angle measurement and operation of prototype apparatus for wettability investigation of different binders used in moulding sand have been described, as well as the results of wetting angle measurement for different binders at different conditions. The addition of little amount of proper diluent to binder results in the state of equilibrium reached almost immediately. Such addition can also reduce the value of equilibrium contact angle. The uniform distribution of binder on the surface of the sand grains and reducing of the required mixing time can be obtained. It has also a positive effect on the moulding sand strength.

  4. Effect of increased manganese addition and mould type on the ...

    Indian Academy of Sciences (India)

    Administrator

    Effect of increased manganese addition and mould type on the slurry erosion characteristics of .... slurry erosion data in the form of bar diagrams for 5M24 and 10M24 ... being bigger in size with higher austenite retention and the attendant ...

  5. Wood working: planing and moulding in the last frontier

    Science.gov (United States)

    David Nicholls

    2007-01-01

    Planing and moulding is an important step in the value-added manufacture of wood products, and recent advances in Alaska have been noteworthy. Just a few years ago, most planing occurred on simple shop planers, producing lumber for retail sale or for wood working uses such as cabinet stock. Currently there are at least 26 planers and 13 moulders in-production at...

  6. Exploring Value-Added Options - Opportunities in Mouldings and Millwork

    Science.gov (United States)

    Bob Smith; Philip A. Araman

    1997-01-01

    The millwork industry, which includes manufacture of doors, windows, stair parts, blinds, mouldings, picture frame material, and assorted trim, can be a lucrative value-added opportunity for sawmills. Those entering the value-added millwork market often find that it is a great opportunity to generate greater profits from upper grades and utility species, such as yellow...

  7. Immunological and biochemical characterization of extracellular polysaccharides of mucoralean moulds

    NARCIS (Netherlands)

    Ruiter, de G.A.

    1993-01-01

    In this thesis the characterization is described of the antigenic determinants (epitopes) of the extracellular polysaccharides (EPSs) from moulds belonging to the order of Mucorales. Detailed knowledge of the structure of these epitopes allows for further development of a new generation of

  8. On the epoxy moulding compound aging effect on package reliability

    NARCIS (Netherlands)

    Noijen, S.P.M.; Engelen, R.A.B.; Martens, J.; Opran, A.; Sluis, van der O.

    2009-01-01

    Most semi-conductor devices are encapsulated by epoxy moulding compound (EMC) material. Even after curing at the prescribed temperature and time in accordance with the supplier's curing specifications often the product is not yet 100% fully cured. As a consequence, the curing process of a product

  9. Mucoraceous moulds involved in the commercial fermentation of Sufu Pehtze

    NARCIS (Netherlands)

    Han, B.; Kuijpers, F.A.; Thanh, N.V.; Nout, M.J.R.

    2004-01-01

    Sufu is a fermented cheese-like soybean product in China and Vietnam, obtained by fungal solid-state fermentation of soybean curd (tofu), which results in moulded tofu or 'pehtze'. The final product sufu is obtained by maturing pehtze in a brine containing alcohol and salt during a period of several

  10. Evolution of Surface Texture and Cracks During Injection Molding of Fiber-Reinforced, Additively-Manufactured, Injection Molding Inserts

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Mischkot, Michael; Pedersen, David Bue

    2016-01-01

    This paper investigates the lifetime and surfacedeterioration of additively-manufactured, injection-moulding inserts. The inserts were produced using digital light processing and were reinforcedwith oriented short carbon fibers. Theinserts were used during injection molding oflow-density polyethy......This paper investigates the lifetime and surfacedeterioration of additively-manufactured, injection-moulding inserts. The inserts were produced using digital light processing and were reinforcedwith oriented short carbon fibers. Theinserts were used during injection molding oflow......-density polyethylene until their failure. The molded products were used to analyse the development of the surface roughness and wear. By enhancing the lifetime of injection-molding inserts,this work contributes to the establishment of additively manufactured inserts in pilot production....

  11. Microfluidic Cell Culture Device

    Science.gov (United States)

    Takayama, Shuichi (Inventor); Cabrera, Lourdes Marcella (Inventor); Heo, Yun Seok (Inventor); Smith, Gary Daniel (Inventor)

    2014-01-01

    Microfluidic devices for cell culturing and methods for using the same are disclosed. One device includes a substrate and membrane. The substrate includes a reservoir in fluid communication with a passage. A bio-compatible fluid may be added to the reservoir and passage. The reservoir is configured to receive and retain at least a portion of a cell mass. The membrane acts as a barrier to evaporation of the bio-compatible fluid from the passage. A cover fluid may be added to cover the bio-compatible fluid to prevent evaporation of the bio-compatible fluid.

  12. Microfluidic Scintillation Detectors

    CERN Multimedia

    Microfluidic scintillation detectors are devices of recent introduction for the detection of high energy particles, developed within the EP-DT group at CERN. Most of the interest for such technology comes from the use of liquid scintillators, which entails the possibility of changing the active material in the detector, leading to an increased radiation resistance. This feature, together with the high spatial resolution and low thickness deriving from the microfabrication techniques used to manufacture such devices, is desirable not only in instrumentation for high energy physics experiments but also in medical detectors such as beam monitors for hadron therapy.

  13. Spatial manipulation with microfluidics

    Directory of Open Access Journals (Sweden)

    Benjamin eLin

    2015-04-01

    Full Text Available Biochemical gradients convey information through space, time, and concentration, and are ultimately capable of spatially resolving distinct cellular phenotypes, such as differentiation, proliferation, and migration. How these gradients develop, evolve, and function during development, homeostasis, and various disease states is a subject of intense interest across a variety of disciplines. Microfluidic technologies have become essential tools for investigating gradient sensing in vitro due to their ability to precisely manipulate fluids on demand in well controlled environments at cellular length scales. This minireview will highlight their utility for studying gradient sensing along with relevant applications to biology.

  14. Selected parameters of moulding sands for designing quality control systems

    Directory of Open Access Journals (Sweden)

    J. Jakubski

    2010-07-01

    Full Text Available One of the modern methods of production optimisation are artificial neural networks. Neural networks owe their popularity to the fact thatthey are convenient tools, which can be utilised in a wide scope of problems. They are capable of reflecting complex functions. Especiallytheir non-linearity should be emphasised. They are gaining wider and wider application in the foundry industry, among others, to controlmelting processes in cupolas and arc furnaces, designing castings and supply systems, control of moulding sands treatments, prediction ofproperties of cast alloys as well as selecting die casting.An attempt of the application neural networks to the quality control of moulding sands with bentonite is presented in the paper. This isa method of assessing the suitability of moulding sands by finding correlations in between individual parameters, by means of artificialneural network systems. The presented investigations were performed with the application of the Statistica 8.0 program.The investigations were aimed at the selection of the proper kind of a neural network for prediction a sand moistness on the bases ofcertain moulding sand properties such as: permeability, compactibility and friability. These parameters – determined as sand moistness functions - were introduced as initial parameters.Application of the Statistica program allowed for an automatic selection of the most suitable network for the reflection of dependencies and interactions existing among the proposed parameters. The best results were obtained for unidirectional multi-layer perception network (MLP. The neural network sensitivity to individual moulding sand parameters was determined, which allowed to reject not important parameters when constructing the network.

  15. Elasticity of Moulding Sands – a Method of Reducing Core Cracking

    Directory of Open Access Journals (Sweden)

    Dobosz St. M.

    2017-03-01

    Full Text Available This paper focuses on mechanical properties of self hardening moulding sands with furfuryl and alkyd binders. Elasticity as a new parameter of moulding sands is investigated. With the use of presented testing equipment, it is possible to determine force kinetics and deformation of moulding sand in real time. The need for this kind of study comes from the modern casting industry. New foundries can be characterized with high intensity of production which is correlated with high level of mechanization and automatization of foundry processes. The increasingly common use of manipulators in production of moulds and cores can lead to generation of new types of flaws, caused by breakage in moulds and cores which could occur during mould assembly. Hence it is required that moulds and cores have high resistance to those kinds of factors, attributing it with the phenomenon of elasticity. The article describes the theoretical basis of this property, presents methods of measuring and continues earlier research.

  16. Microfluidic fuel cells and batteries

    CERN Document Server

    Kjeang, Erik

    2014-01-01

    Microfluidic fuel cells and batteries represent a special type of electrochemical power generators that can be miniaturized and integrated in a microfluidic chip. Summarizing the initial ten years of research and development in this emerging field, this SpringerBrief is the first book dedicated to microfluidic fuel cell and battery technology for electrochemical energy conversion and storage. Written at a critical juncture, where strategically applied research is urgently required to seize impending technology opportunities for commercial, analytical, and educational utility, the intention is

  17. Dielectrophoretic Microfluidic Device for in Vitro Fertilization

    Directory of Open Access Journals (Sweden)

    Hong-Yuan Huang

    2018-03-01

    Full Text Available The aim of this work was to create a microfluidic platform that uses in vitro fertilization (IVF and avoids unnecessary damage to oocytes due to the dielectrophoretic force manipulation of the sperms and oocytes that occurs in a traditional IVF operation. The device from this research can serve also to decrease medium volumes, as well as the cost of cell culture under evaporation, and to prevent unnecessary risk in intracytoplasmic sperm injection (ICSI. To decrease the impact and destruction of the oocyte and the sperm, we adopted a positive dielectrophoretic force to manipulate both the sperms and the oocyte. The mouse oocytes were trapped with a positive dielectrophoretic (p-DEP force by using Indium Tin Oxide (ITO-glass electrodes; the ITO-glass electrode chip was fabricated by wet etching the ITO-glass. The polydimethylsiloxane (PDMS flow-focusing microfluidic device was used to generate microdroplets of micrometer size to contain the zygotes. The volume of the microdroplets was controlled by adjusting the flow rates of both inlets for oil and the DEP buffer. As a result, the rate of fertilization was increased by about 5% beyond that of the DEP treatment in traditional IVF, and more than 20% developed to the blastocyst stage with a low sperm-oocyte ratio.

  18. Methods of making microfluidic devices

    KAUST Repository

    Buttner, Ulrich; Mashraei, Yousof; Agambayev, Sumeyra; Salama, Khaled N.

    2017-01-01

    Microfluidics has advanced in terms of designs and structures, however, fabrication methods are either time consuming or expensive to produce, in terms of the facilities and equipment needed. A fast and economically viable method is provided

  19. Microfluidic technology for molecular diagnostics.

    Science.gov (United States)

    Robinson, Tom; Dittrich, Petra S

    2013-01-01

    Molecular diagnostics have helped to improve the lives of millions of patients worldwide by allowing clinicians to diagnose patients earlier as well as providing better ongoing therapies. Point-of-care (POC) testing can bring these laboratory-based techniques to the patient in a home setting or to remote settings in the developing world. However, despite substantial progress in the field, there still remain many challenges. Progress in molecular diagnostics has benefitted greatly from microfluidic technology. This chapter aims to summarise the more recent advances in microfluidic-based molecular diagnostics. Sections include an introduction to microfluidic technology, the challenges of molecular diagnostics, how microfluidic advances are working to solve these issues, some alternative design approaches, and detection within these systems.

  20. Rapid mask prototyping for microfluidics.

    Science.gov (United States)

    Maisonneuve, B G C; Honegger, T; Cordeiro, J; Lecarme, O; Thiry, T; Fuard, D; Berton, K; Picard, E; Zelsmann, M; Peyrade, D

    2016-03-01

    With the rise of microfluidics for the past decade, there has come an ever more pressing need for a low-cost and rapid prototyping technology, especially for research and education purposes. In this article, we report a rapid prototyping process of chromed masks for various microfluidic applications. The process takes place out of a clean room, uses a commercially available video-projector, and can be completed in less than half an hour. We quantify the ranges of fields of view and of resolutions accessible through this video-projection system and report the fabrication of critical microfluidic components (junctions, straight channels, and curved channels). To exemplify the process, three common devices are produced using this method: a droplet generation device, a gradient generation device, and a neuro-engineering oriented device. The neuro-engineering oriented device is a compartmentalized microfluidic chip, and therefore, required the production and the precise alignment of two different masks.

  1. Passive microfluidic array card and reader

    Science.gov (United States)

    Dugan, Lawrence Christopher [Modesto, CA; Coleman, Matthew A [Oakland, CA

    2011-08-09

    A microfluidic array card and reader system for analyzing a sample. The microfluidic array card includes a sample loading section for loading the sample onto the microfluidic array card, a multiplicity of array windows, and a transport section or sections for transporting the sample from the sample loading section to the array windows. The microfluidic array card reader includes a housing, a receiving section for receiving the microfluidic array card, a viewing section, and a light source that directs light to the array window of the microfluidic array card and to the viewing section.

  2. Reconfigurable microfluidic platform in ice

    OpenAIRE

    Varejka, M.

    2008-01-01

    Microfluidic devices are popular tools in the biotechnology industry where they provide smaller reagent requirements, high speed of analysis and the possibility for automation. The aim of the project is to make a flexible biocompatible microfluidic platform adapted to different specific applications, mainly analytical and separations which parameters and configuration can be changed multiple times by changing corresponding computer programme. The current project has been sup...

  3. Assessment of Mould Growth for Library Buildings in Tropical Climates

    Directory of Open Access Journals (Sweden)

    Ngah Abdul Wahab S.

    2014-01-01

    Full Text Available This paper attempt to give a brief insight into the importance of studying mould growth in library building that relates to human health and causes of material deterioration to library materials. It’s significant to conduct this research because no similar study has carried out for a library building in Malaysia. Recent literature on the topics reviews to gain insight into developing a theoretical framework and research method. Likewise, the study also supports through pilot study questionnaires with 30 respondents from two different university libraries. The finding revealed to further investigation and mould growth assessment to be conducted that useful in protecting library materials and users health effects through environmental control.

  4. Development and Evaluation of Mould for Double Curved Concrete Elements

    DEFF Research Database (Denmark)

    Jepsen, Christian Raun; Kristensen, Mathias Kræmmergaard; Kirkegaard, Poul Henning

    2011-01-01

    freeform concrete formwork are available, and more are being developed [1-4]. The common way of producing moulds for unique elements today is to manufacture one mould for each unique element using CNC milling in cheaper materials, but since the method is still labour intensive and produces a lot of waste......Complex freeform architecture is one of the most striking trends in contemporary architecture. Architecture differs from traditional target industries of CAD/CAM technology in many ways including aesthetics, statics, structural aspects, scale and manufacturing technologies. Designing a piece...... of freeform architecture in a CAD program is fairly easy, but the translation to a real piece of architecture can be difficult and expensive and as traditional production methods for free-form architecture prove costly, architects and engineers are forced to simplify designs. Today, methods for manufacturing...

  5. Enhanced Microfluidic Electromagnetic Measurements

    Science.gov (United States)

    Giovangrandi, Laurent (Inventor); Ricco, Antonio J. (Inventor); Kovacs, Gregory (Inventor)

    2015-01-01

    Techniques for enhanced microfluidic impedance spectroscopy include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. Flow in the channel is laminar. A dielectric constant of a fluid constituting either sheath flow is much less than a dielectric constant of the core fluid. Electrical impedance is measured in the channel between at least a first pair of electrodes. In some embodiments, enhanced optical measurements include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. An optical index of refraction of a fluid constituting either sheath flow is much less than an optical index of refraction of the core fluid. An optical property is measured in the channel.

  6. Bioanalysis in microfluidic devices.

    Science.gov (United States)

    Khandurina, Julia; Guttman, András

    2002-01-18

    Microfabricated bioanalytical devices (also referred to as laboratory-on-a-chip or micro-TAS) offer highly efficient platforms for simultaneous analysis of a large number of biologically important molecules, possessing great potential for genome, proteome and metabolome studies. Development and implementation of microfluidic-based bioanalytical tools involves both established and evolving technologies, including microlithography, micromachining, micro-electromechanical systems technology and nanotechnology. This article provides an overview of the latest developments in the key device subject areas and the basic interdisciplinary technologies. Important aspects of DNA and protein analysis, interfacing issues and system integration are all thoroughly discussed, along with applications for this novel "synergized" technology in high-throughput separations of biologically important molecules. This review also gives a better understanding of how to utilize these technologies as well as to provide appropriate technical solutions to problems perceived as being more fundamental.

  7. Mould growth prediction by computational simulation on historic buildings

    OpenAIRE

    Krus, M.; Kilian, R.; Sedlbauer, K.

    2007-01-01

    Historical buildings are often renovated with a high expenditure of time and money without investigating and considering the causes of the damages. In many cases historic buildings can only be maintained by changing their usage. This change of use may influence the interior climate enormously. To assess the effect on the risk of mould growth on building parts or historic monuments a predictive model has been developed recently, describing the hygrothermal behaviour of the spore. It allows for...

  8. Moulded Pulp Manufacturing: Overview and Prospects for the Process Technology

    DEFF Research Database (Denmark)

    Didone, Mattia; Saxena, Prateek; Meijer, Ellen Brilhuis

    2017-01-01

    Eco-friendly packaging such as moulded pulp products have gained commercial importance in the recent years. However, it remains a greatly under-researched area, and there is an arising need to consolidate the best practices from research and industry in order to increase its implementation....... Moreover, based on the latest research in the field, an innovative drying technique that utilizes concepts derived from impulse drying is presented, and the implementation of this process technology is discussed....

  9. Simulation of mould filling process for composite skeleton castings

    OpenAIRE

    M. Dziuba; M. Cholewa

    2008-01-01

    In this work authors showed selected results of simulation and experimental studies on temperature distribution during solidification of skeleton casting and mould filling process. The aim of conducted simulations was the choice of thermal and geometrical parameters for the needs of designed calculations of the skeleton castings and the estimation of the guidelines for the technology of manufacturing. The subject of numerical simulation was the analysis of ability of filling the channels of c...

  10. Application of Microwaves for Binder Content Assessment in Moulding Sands

    Directory of Open Access Journals (Sweden)

    Nowak D.

    2012-09-01

    Full Text Available The paper presents results of preliminary examinations on possibility of determining binder content in traditional moulding sands with the microwave method. The presented measurements were carried-out using a special stand, the so-called slot line. Binder content in the sandmix was determined by measurements of absorption damping Ad and insertion losses IL of electromagnetic wave. One of main advantages of the suggested new method of binder content measurement is short measuring time.

  11. MAIN PROBLEMS OF MOULDING OF SILUMINS. WAYS OF SOLUTION

    Directory of Open Access Journals (Sweden)

    E. I. Marukovich

    2016-01-01

    Full Text Available The main problems of silumin’ moulding are connected with insufficient modifying of casting structure, their considerable inclination to gas porosity, difficult to remove nonmetallic inclusions and these features are shown in the article. Protection of liquid silumin from influence of the air atmosphere; use of crucibles from aluminum oxide; refinement of fusion from nonmetallic inclusions and application of the accelerated hydrogen hardening of castings were used to solve these problems, as it is shown in the article.

  12. Parallel imaging microfluidic cytometer.

    Science.gov (United States)

    Ehrlich, Daniel J; McKenna, Brian K; Evans, James G; Belkina, Anna C; Denis, Gerald V; Sherr, David H; Cheung, Man Ching

    2011-01-01

    By adding an additional degree of freedom from multichannel flow, the parallel microfluidic cytometer (PMC) combines some of the best features of fluorescence-activated flow cytometry (FCM) and microscope-based high-content screening (HCS). The PMC (i) lends itself to fast processing of large numbers of samples, (ii) adds a 1D imaging capability for intracellular localization assays (HCS), (iii) has a high rare-cell sensitivity, and (iv) has an unusual capability for time-synchronized sampling. An inability to practically handle large sample numbers has restricted applications of conventional flow cytometers and microscopes in combinatorial cell assays, network biology, and drug discovery. The PMC promises to relieve a bottleneck in these previously constrained applications. The PMC may also be a powerful tool for finding rare primary cells in the clinic. The multichannel architecture of current PMC prototypes allows 384 unique samples for a cell-based screen to be read out in ∼6-10 min, about 30 times the speed of most current FCM systems. In 1D intracellular imaging, the PMC can obtain protein localization using HCS marker strategies at many times for the sample throughput of charge-coupled device (CCD)-based microscopes or CCD-based single-channel flow cytometers. The PMC also permits the signal integration time to be varied over a larger range than is practical in conventional flow cytometers. The signal-to-noise advantages are useful, for example, in counting rare positive cells in the most difficult early stages of genome-wide screening. We review the status of parallel microfluidic cytometry and discuss some of the directions the new technology may take. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Sample preparation system for microfluidic applications

    Science.gov (United States)

    Mosier, Bruce P [San Francisco, CA; Crocker, Robert W [Fremont, CA; Patel, Kamlesh D [Dublin, CA; Harnett, Cindy K [Livermore, CA

    2007-05-08

    An apparatus that couples automated injection with flow feedback to provide nanoliter accuracy in controlling microliter volumes. The apparatus comprises generally a source of hydraulic fluid pressure, a fluid isolator joined to the outlet of the hydraulic pressure source and a flow sensor to provide pressure-driven analyte metering. For operation generally and particularly in microfluidic systems the hydraulic pressure source is typically an electrokinetic (EK) pump that incorporates gasless electrodes. The apparatus is capable of metering sub-microliter volumes at flowrates of 1 100 .mu.L/min into microsystem load pressures of up to 1000 50 psi, respectively. Flowrates can be specified within 0.5 .mu.L/min and volumes as small as 80 nL can be metered.

  14. Two underestimated threats in food transportation: mould and acceleration.

    Science.gov (United States)

    Janssen, S; Pankoke, I; Klus, K; Schmitt, K; Stephan, U; Wöllenstein, J

    2014-06-13

    Two important parameters are often neglected in the monitoring of perishable goods during transport: mould contamination of fresh food and the influence of acceleration or vibration on the quality of a product. We assert the claim that it is necessary to focus research on these two topics in the context of intelligent logistics in this opinion paper. Further, the technical possibilities for future measurement systems are discussed. By measuring taste deviations, we verified the effect on the quality of beer at different vibration frequencies. The practical importance is shown by examining transport routes and market shares. The general feasibility of a mobile mould detection system is established by examining the measurement resolution of semiconductor sensors for mould-related gases. Furthermore, as an alternative solution, we present a concept for a miniaturized and automated culture-medium-based system. Although there is a lack of related research to date, new efforts can make a vital contribution to the reduction of losses in the logistic chains for several products.

  15. Production of press moulds by plasma spray forming process

    International Nuclear Information System (INIS)

    Borisov, Y.; Myakota, I.; Polyakov, S.

    2001-01-01

    Plasma spray forming process for production of press moulds which are used for manufacture of articles from plastics was developed. The press moulds were produced by plasma spraying of Cu-Al-Fe-alloy powder on surface of a master model. The master models were made from non-metallic materials with heat resistance below 70 C (wood, gypsum etc). Double cooling system which provides for a control of surface model temperature and quenching conditions of sprayed material was designed. It made possible on the one hand to support model surface temperature below 70 C and on the other hand to provide for temperature conditions of martensite transformation in Cu-Al-system with a fixation of metastable ductile α + β 1 -phase. This allowed to decrease residual stresses in sprayed layer (up to 0,5-2,5 MPa), to increase microhardness of the coating material (up to 1200-1800 MPa) and its ductility (σ B = 70-105 MPa, δ = 6-12 %). This plasma spray forming process makes possible to spray thick layers (5-20 mm and more) without their cracking and deformation. The process is used for a production of press moulds which are applied in shoes industry, for fabrication of toys, souvenirs etc. (author)

  16. Process control and product evaluation in micro molding using a screwless/two-plunger injection unit

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Dormann, B.

    2010-01-01

    A newly developed μ-injection molding machine equipped with a screwless/two-plunger injection unit has been employed to mould miniaturized dog-bone shaped specimens on polyoxymethylene and its process capability and robustness have been analyzed. The influence of process parameters on μ-injection......A newly developed μ-injection molding machine equipped with a screwless/two-plunger injection unit has been employed to mould miniaturized dog-bone shaped specimens on polyoxymethylene and its process capability and robustness have been analyzed. The influence of process parameters on μ......-injection molding was investigated using the Design of Experiments technique. Injection pressure and piston stroke speed as well as part weight and dimensions were considered as quality factors over a wide range of process parameters. Experimental results obtained under different processing conditions were...

  17. Evaluation of the viscoelastic behaviour and glass/mould interface friction coefficient in the wafer based precision glass moulding

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Hattel, Jesper Henri; Hansen, Hans Nørgaard

    2014-01-01

    -placements, internal diameter and thickness of the rings are measured during the tests. Viscoelastic andstructural relaxation behaviour of the glass are implemented into the ABAQUS FEM software through aFORTRAN material subroutine (UMAT) and the FE model is validated with a sandwich seal test. Then, byFE simulation...... of the ring compression test and comparison of the experimental creep with the simulatedone in an iterative procedure, viscoelastic parameters of the glass material are characterized. Finally,interfacial glass/mould friction coefficients at different temperatures are determined through FEM basedfriction...... curves combined with experimental data points. The obtained viscoelastic parameters and inter-facial friction coefficients can later be employed for prediction of the final shape/size as well as the stressdistribution in the glass wafer during a real wafer based precision glass moulding process. © 2014...

  18. Integrated lenses in polystyrene microfluidic devices

    KAUST Repository

    Fan, Yiqiang; Li, Huawei; Foulds, Ian G.

    2013-01-01

    This paper reports a new method for integrating microlenses into microfluidic devices for improved observation. Two demonstration microfluidic devices were provided which were fabricated using this new technique. The integrated microlenses were

  19. Manipulation of microfluidic droplets by electrorheological fluid

    KAUST Repository

    Zhang, Menying; Gong, Xiuqing; Wen, Weijia

    2009-01-01

    Microfluidics, especially droplet microfluidics, attracts more and more researchers from diverse fields, because it requires fewer materials and less time, produces less waste and has the potential of highly integrated and computer

  20. Microfluidic standardization: Past, present and future

    NARCIS (Netherlands)

    Heeren, H. van; Atkins, T.; Blom, M.; Bullema, J.E.; Tantra, R.; Verhoeven, D.; Verplanck, N.

    2016-01-01

    This paper addresses the issue of standardization in microfluidics. It contains the main points of an industry wide agreement about microfluidic port pitches and port nomenclature. It also addresses device classification and future steps.

  1. Three dimensions thermal-mechanical model of the billet in continuous casting petal-like mould

    International Nuclear Information System (INIS)

    Li Jing; Wu Li; Cao Zhiqiang; Tingju, L; Wang Tongmin

    2012-01-01

    Petal-like mould is a novel mould which has been applied to the steel industry in recent years. The behavior of the petal-like billet in continuous casting mould plays an important role in designing mould. It is hard to be in situ measured during continuous casting, however, can be worked out by the way of numerical simulation. But the research about the model of the billet in petal-like mould is very little. A 3D finite-element model has been built to simulate the thermal and stress fields of the molten steel in petal-like mould in this paper. The dynamic thermal boundary condition and the effect of ferrostatic pressure have been considered in the model. The temperature and stress in the billet have been predicted by this model.

  2. Influence of Binding Rates on Strength Properties of Moulding Sands with the GEOPOL Binder

    Directory of Open Access Journals (Sweden)

    Holtzer M.

    2014-03-01

    Full Text Available The results of investigations of moulding sands with an inorganic binder called GEOPOL, developed by the SAND TEAM Company are presented in the paper. Hardeners of various hardening rates are used for moulding sands with this binder. The main aim of investigations was determination of the influence of the hardening rate of moulding sands with the GEOPOL binder on technological properties of these sands (bending strength, tensile strength, permeability and grindability. In addition, the final strength of moulding sands of the selected compositions was determined by two methods: by splitting strength and shear strength measurements. No essential influence of the hardening rate on such parameters as: permeability, grindability and final strength was found. However, the sand in which the slowest hardener (SA 72 were used, after 1 hour of holding, had the tensile and bending strength practically zero. Thus, the time needed for taking to pieces the mould made of such moulding sand will be 1.5 - 2 hours.

  3. Effect of hardening methods of moulding sands with water glass on structure of bonding bridges

    Directory of Open Access Journals (Sweden)

    M. Stachowicz

    2010-07-01

    Full Text Available Research on influence of hardening methods on structure of bonding bridges in moulding sands with sodium water glass is presented.Moulding sands with addition of 2.5 % of binder with molar module 2.0 were hardened with CO2 and dried in traditional way or hardenedwith microwaves. It was proved that the hardening method affects structure of bonding bridges, correlating with properties of the hardened moulding sands. It was found that strength of the moulding sands hardened with microwaves for 4 min is very close to that measured after traditional drying at 110 °C for 120 min. So, application of microwave hardening ensures significant shortening of the process time to the value comparable with CO2 hardening but guaranteeing over 10-fold increase of mechanical properties. Analysis of SEM images of hardened moulding sands permitted explaining differences in quality parameters of moulding sands by connecting them with structure of the created bonding bridges.

  4. Isolation and identification mould micoflora inhabiting plant leaf litter from Mount Lawu, Surakarta, Central Java

    Directory of Open Access Journals (Sweden)

    MUHAMMAD ILYAS

    2007-04-01

    Full Text Available A study on isolation and identification mould inhabiting plant leaf litter had been conducted. The objective of the study was to isolate and identify mould inhabiting plant leaf litter from Mount Lawu, Surakarta, Central Java. The mould isolation was based on washing and filtering with membrane isolation method. The result showed that 39 moulds generas with 55 species varians, one group identified in class level, and three groups of unidentified mould isolates had been isolated. Taxas distributions showed that there were endophyte and phytopatogen mould isolates had been isolated such as Fusarium, Pestalotiopsis, Phoma, and Coelomycetes. However, typical soil taxa and common saprobic fungi such as Aspergillus, Cunninghamella, Mucor, Paecilomyces, Penicillium, Rhizopus, and Trichoderma remain dominated the resulted isolates.

  5. An Experimental Investigation to Facilitate an Improvement in the Design of an Electromagnetic Continuous Casting Mould

    Directory of Open Access Journals (Sweden)

    Lintao Zhang

    2016-04-01

    Full Text Available An electromagnetic continuous casting mould designed is proposed with a non-uniform slit distribution structure. This design has aimed to reduce the number of slits so that the mould’s strength is enhanced, whilst maintaining a similar metallurgy effect. In this paper, the metallurgy effect for the designed mould is investigated through the magnetic field distribution along the casting direction, the uniformity feature in the vicinity of the meniscus region, the temperature variation of the molten alloy pool and the mould wall. The results show that the designed mould achieved a similar effect as compared to the original mould; however, the configuration is simplified. This research highlights the topic of mould structure optimization, which would enable the Electromagnetic continuous casting (EMCC technique to be utilized with greater ease by industry.

  6. Possibilities of utilizing used moulding and core sands by microwave treatment

    Directory of Open Access Journals (Sweden)

    K. Granat

    2011-01-01

    Full Text Available The paper presents a semi-industrial reactor designed for microwave utilization of waste moulds and cores made of moulding sandsprepared in furane resin technology. It was found that a possibility exists of effective incinerating this way prepared residues of coresseparated from moulding sands or waste moulds left after casting. The preliminary tests evidenced that microwave heating is an effectiveway of disposing waste moulding sands and the applied apparatus permits effective control of the microwave heating process. The special structure permitting rotations of charge material and proper selection of the generators working cycles guarantee significant speeding-up the process and its full stabilisation. Application of microwave heating for utilization of waste moulds and cores containing synthetic resins as binders ensures significant and measurable economical benefits resulting from shorter process time.

  7. Plasma sprayed coatings on mild steel split moulds for uranium casting

    International Nuclear Information System (INIS)

    Sreekumar, K.P.; Padmanaban, P.V.A.; Venkatramani, N.; Singh, S.P.; Saha, D.P.; Date, V.G.

    2002-01-01

    High velocity high temperature plasma jets are used to deposit metals and ceramics on metallic substrates for oxidation and corrosion protection applications. Plasma sprayed ceramic coatings on metallic substrates are also used to prevent its reaction with molten metals. Metal-alumina duplex coatings on mild steel split moulds have been developed and successfully used for casting of uranium. Techno-economics of the coated moulds against the conventional graphite moulds are a major advantage. Mild steel moulds of 600 mm long and 75 mm in diameter have been plasma spray coated with alumina over a bond coat of molybdenum. In-plant tests showed an increase in number of castings per mould compared to the commonly used graphite moulds. (author)

  8. Gases Emission From Surface Layers of Sand Moulds and Cores Stored Under the Humid Air Conditions

    Directory of Open Access Journals (Sweden)

    Kaźnica N.

    2017-12-01

    Full Text Available A large number of defects of castings made in sand moulds is caused by gases. There are several sources of gases: gases emitted from moulds, cores or protective coatings during pouring and casting solidification; water in moulding sands; moisture adsorbed from surroundings due to atmospheric conditions changes. In investigations of gas volumetric emissions of moulding sands amounts of gases emitted from moulding sand were determined - up to now - in dependence of the applied binders, sand grains, protective coatings or alloys used for moulds pouring. The results of investigating gas volumetric emissions of thin-walled sand cores poured with liquid metal are presented in the hereby paper. They correspond to the surface layer in the mould work part, which is decisive for the surface quality of the obtained castings. In addition, cores were stored under conditions of a high air humidity, where due to large differences in humidity, the moisture - from surroundings - was adsorbed into the surface layer of the sand mould. Due to that, it was possible to asses the influence of the adsorbed moisture on the gas volumetric emission from moulds and cores surface layers by means of the new method of investigating the gas emission kinetics from thin moulding sand layers heated by liquid metal. The results of investigations of kinetics of the gas emission from moulding sands with furan and alkyd resins as well as with hydrated sodium silicate (water glass are presented. Kinetics of gases emissions from these kinds of moulding sands poured with Al-Si alloy were compared.

  9. Galactomyces geotrichum – moulds from dairy products with high biotechnological potential

    OpenAIRE

    Anna Grygier; Kamila Myszka; Magdalena Rudzińska

    2017-01-01

    The article reviews the properties of the Galactomyces geotrichum species, the mould that is most important for the dairy industry. G. geotrichum mould has been isolated from milk, cheeses and alcoholic beverage. Its presence in food products makes it possible to obtain a characteristic aroma and taste, which corresponds to the needs and preferences of consumers. G. geotrichum plays an important role in ecology, where the mould is employed for the degradation of various hazardous substances a...

  10. Accumulation of BSA in Packed-bed Microfluidics

    Science.gov (United States)

    Summers, Samantha; Hu, Chuntian; Hartman, Ryan

    2012-11-01

    Alzheimers and Parkinsons are two diseases that are associated with protein deposition in the brain, causing loss of either cognitive or muscle functioning. Protein deposition diseases are considered progressive diseases since the continual aggregation of protein causes the patient's symptoms to slowly worsen over time. There are currently no known means of treatment for protein deposition diseases. Our goal is to understand the potential for packed-bed microfluidics to study protein accumulation. Measurement of the resistance to flow through micro-scale packed-beds is critical to understanding the process of protein accumulation. Aggregation in bulk is fundamentally different from accumulation on surfaces. Our study attempts to distinguish between either mechanism. The results from our experiments involving protein injection through a microfluidic system will be presented and discussed. Funding received by NSF REU Grant 1062611.

  11. Microfluidic stretchable RF electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2010-12-07

    Stretchable electronics is a revolutionary technology that will potentially create a world of radically different electronic devices and systems that open up an entirely new spectrum of possibilities. This article proposes a microfluidic based solution for stretchable radio frequency (RF) electronics, using hybrid integration of active circuits assembled on flex foils and liquid alloy passive structures embedded in elastic substrates, e.g. polydimethylsiloxane (PDMS). This concept was employed to implement a 900 MHz stretchable RF radiation sensor, consisting of a large area elastic antenna and a cluster of conventional rigid components for RF power detection. The integrated radiation sensor except the power supply was fully embedded in a thin elastomeric substrate. Good electrical performance of the standalone stretchable antenna as well as the RF power detection sub-module was verified by experiments. The sensor successfully detected the RF radiation over 5 m distance in the system demonstration. Experiments on two-dimensional (2D) stretching up to 15%, folding and twisting of the demonstrated sensor were also carried out. Despite the integrated device was severely deformed, no failure in RF radiation sensing was observed in the tests. This technique illuminates a promising route of realizing stretchable and foldable large area integrated RF electronics that are of great interest to a variety of applications like wearable computing, health monitoring, medical diagnostics, and curvilinear electronics.

  12. Microfluidic Technologies for Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Sung Kuk Lee

    2011-06-01

    Full Text Available Microfluidic technologies have shown powerful abilities for reducing cost, time, and labor, and at the same time, for increasing accuracy, throughput, and performance in the analysis of biological and biochemical samples compared with the conventional, macroscale instruments. Synthetic biology is an emerging field of biology and has drawn much attraction due to its potential to create novel, functional biological parts and systems for special purposes. Since it is believed that the development of synthetic biology can be accelerated through the use of microfluidic technology, in this review work we focus our discussion on the latest microfluidic technologies that can provide unprecedented means in synthetic biology for dynamic profiling of gene expression/regulation with high resolution, highly sensitive on-chip and off-chip detection of metabolites, and whole-cell analysis.

  13. Automated Layup of Sheet Prepregs on Complex Moulds

    OpenAIRE

    Elkington, Michael P; Ward, Carwyn; Potter, Kevin D

    2016-01-01

    A new two-stage method for the automated manufacture of high performance composites components is presented which aims to combine the capacity for forming complex shapes of Hand Layup with the speed of existing automated systems. In the first stage of the new process plies are formed into the approximate shape of the mould using a press mechanism. They are then passed onto a layup stage which uses multiple end effectors controlled by a single six axis robot to stick the plies down onto the mo...

  14. Investigation of over-moulded hybrid metal/polymer devices

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Tang, Peter Torben

    2006-01-01

    principles, in-process manufacturing technologies, as well as testing methodologies have to be established in order to be able to develop such integrated devices. In this paper an investigation of the bonding between miniaturized metal insert and a polymer matrix is presented. A special demonstrator...... was designed and manufactured by over-moulding and hot-embossing. The bonding strength between the insert and the plastic part was tested by means of a tensile test. A variety of parameters was studied in order to investigate their influence on the bonding: different polymeric and metallic materials, insert...

  15. Spontaneous oscillations in microfluidic networks

    Science.gov (United States)

    Case, Daniel; Angilella, Jean-Regis; Motter, Adilson

    2017-11-01

    Precisely controlling flows within microfluidic systems is often difficult which typically results in systems being heavily reliant on numerous external pumps and computers. Here, I present a simple microfluidic network that exhibits flow rate switching, bistablity, and spontaneous oscillations controlled by a single pressure. That is, by solely changing the driving pressure, it is possible to switch between an oscillating and steady flow state. Such functionality does not rely on external hardware and may even serve as an on-chip memory or timing mechanism. I use an analytic model and rigorous fluid dynamics simulations to show these results.

  16. Microfluidic device for drug delivery

    Science.gov (United States)

    Beebe, David J. (Inventor); MacDonald, Michael J. (Inventor); Eddington, David T. (Inventor); Mensing, Glennys A. (Inventor)

    2010-01-01

    A microfluidic device is provided for delivering a drug to an individual. The microfluidic device includes a body that defines a reservoir for receiving the drug therein. A valve interconnects the reservoir to an output needle that is insertable into the skin of an individual. A pressure source urges the drug from the reservoir toward the needle. The valve is movable between a closed position preventing the flow of the drug from the reservoir to the output needle and an open position allowing for the flow of the drug from the reservoir to the output needle in response to a predetermined condition in the physiological fluids of the individual.

  17. Bridging Flows: Microfluidic End‐User Solutions

    DEFF Research Database (Denmark)

    Sabourin, David

    Microfluidic applications hold promise for many different end‐users both within and outside, and across many different research communities. Despite the benefits of microfluidic approaches, adoption and implementation thereof is often hindered by practical issues. Microfluidic components which......‐integrated interconnection and miniaturized peristaltic pump solutions were then combined into modular microfluidic systems. One system provides high interconnection numbers/density and allows many possible configurations. Additionally, and apart from many other accounts of modular microfluidic solutions, methods...... for control and actuation of microfluidic networks built from the modular components is described. Prototypes of the microfluidic system have begun to be distributed to external collaborators and researcher parties. These end‐users will assist in the validation of the approach and ultimately fulfil the key...

  18. Dual-nozzle microfluidic droplet generator

    Science.gov (United States)

    Choi, Ji Wook; Lee, Jong Min; Kim, Tae Hyun; Ha, Jang Ho; Ahrberg, Christian D.; Chung, Bong Geun

    2018-05-01

    The droplet-generating microfluidics has become an important technique for a variety of applications ranging from single cell analysis to nanoparticle synthesis. Although there are a large number of methods for generating and experimenting with droplets on microfluidic devices, the dispensing of droplets from these microfluidic devices is a challenge due to aggregation and merging of droplets at the interface of microfluidic devices. Here, we present a microfluidic dual-nozzle device for the generation and dispensing of uniform-sized droplets. The first nozzle of the microfluidic device is used for the generation of the droplets, while the second nozzle can accelerate the droplets and increase the spacing between them, allowing for facile dispensing of droplets. Computational fluid dynamic simulations were conducted to optimize the design parameters of the microfluidic device.

  19. Testosterone Injection

    Science.gov (United States)

    ... typical male characteristics. Testosterone injection works by supplying synthetic testosterone to replace the testosterone that is normally ... as a pellet to be injected under the skin.Testosterone injection may control your symptoms but will ...

  20. Using special additions to preparation of the moulding mixture for casting steel parts of drive wheel type

    Science.gov (United States)

    Josan, A.; Pinca Bretotean, C.

    2015-06-01

    The paper presents the possibility of using special additions to the execution of moulding mixtures for steel castings, drive wheel type. Critical analysis of moulding technology leads to the idea that most defects appear due to using improper moulding mixture. Using a improper moulding mixture leads to penetration of steel in moulding mixture, resulting in the formation of adherences, due to inadequate refractarity of the mould and core mixtures. Using only the unique mixture to the moulding leads to increasing consumption of new sand, respectively to the increase of price of piece. Acording to the dates registered in the industrial practice is necessary to use the special additions to obtain the moulding mixtures, carbonaceous materials respectively.

  1. Intracavitary mould brachytherapy in malignant tumors of the maxilla

    International Nuclear Information System (INIS)

    Rosenblatt, Edward; Blumenfeld, Israel; Cederbaum, Martin; Kuten, Abraham

    1996-01-01

    Purpose: To integrate brachytherapy in the combined modality management of malignant tumors of the maxilla, as a means of increasing the radiotherapy dose to the tumor bed while avoiding high doses to the orbital contents. Materials and methods: Following a partial or total maxillectomy, a duplication of the interim surgical obturator was created using a wash of vinyl polysiloxane. This mould was used as a carrier for afterloading nylon catheters through which 192-Iridium seed-ribbons were inserted. Following brachytherapy, selected patients also received external beam irradiation. Results and discussion: After a median follow-up of 36 months, 9 out of 11 patients are alive and disease-free; 1 developed a local recurrence and another relapsed at another site in the oral cavity. Transient grade 1 - 2 mucositis at the implant site was observed in all patients. The review of computer isodose distributions showed that the average dose received by the homolateral eyeball was 10% (range 9,2 - 10.0) of the prescribed surface dose to the surgical cavity. Conclusions: Brachytherapy can be integrated in the management of patients with malignant tumors of the maxilla in the form of a custom-made intracavitary mould carrying 192-Iridium sources. We found this technique particularly useful in cases with close or positive surgical margins

  2. Habituation in non-neural organisms: evidence from slime moulds.

    Science.gov (United States)

    Boisseau, Romain P; Vogel, David; Dussutour, Audrey

    2016-04-27

    Learning, defined as a change in behaviour evoked by experience, has hitherto been investigated almost exclusively in multicellular neural organisms. Evidence for learning in non-neural multicellular organisms is scant, and only a few unequivocal reports of learning have been described in single-celled organisms. Here we demonstrate habituation, an unmistakable form of learning, in the non-neural organism Physarum polycephalum In our experiment, using chemotaxis as the behavioural output and quinine or caffeine as the stimulus, we showed that P. polycephalum learnt to ignore quinine or caffeine when the stimuli were repeated, but responded again when the stimulus was withheld for a certain time. Our results meet the principle criteria that have been used to demonstrate habituation: responsiveness decline and spontaneous recovery. To distinguish habituation from sensory adaptation or motor fatigue, we also show stimulus specificity. Our results point to the diversity of organisms lacking neurons, which likely display a hitherto unrecognized capacity for learning, and suggest that slime moulds may be an ideal model system in which to investigate fundamental mechanisms underlying learning processes. Besides, documenting learning in non-neural organisms such as slime moulds is centrally important to a comprehensive, phylogenetic understanding of when and where in the tree of life the earliest manifestations of learning evolved. © 2016 The Author(s).

  3. Casting Ductile Iron in Layer Moulds Made from Ecological Sands

    Directory of Open Access Journals (Sweden)

    M. Rączka

    2012-09-01

    Full Text Available The article contains the results of tests performed under the target project in Hardtop Foundry Charsznica.The objective of the tests and studies was to develop a technology of making high-quality ductile iron castings, combined witheffective means of environmental protection. The studies presented in this article related to castings weighing from 1 to 300 kg made from ductile iron of grades 400-15 and 500-7, using two-layer moulds, where the facing and core sand was the sand with an alkaline organic binder, while backing sand was the sand with an inorganic geopolymer binder.A simplified method of sand reclamation was applied with possible reuse of the reclaim as an addition to the backing sand. The castiron spheroidising treatment and inoculation were selected taking into account the specific conditions of Hardtop Foundry. A pilot batch of castings was made, testing the gating and feeding systems and using exothermic sleeves on risers. The study confirmed the validity of the adopted concept of making ductile iron castings in layer moulds, while maintaining the content of sand with an organic binder at a level of maximum 15%.

  4. Electroplating moulds using dry film thick negative photoresist

    Science.gov (United States)

    Kukharenka, E.; Farooqui, M. M.; Grigore, L.; Kraft, M.; Hollinshead, N.

    2003-07-01

    This paper reports on progress on the feasibility of fabricating moulds for electroplating using Ordyl P-50100 (negative) acrylate polymer based dry film photoresist, commercially available from Elga Europe (http://www.elgaeurope.it). We used this photoresist as an alternative to SU8 negative epoxy based photoresist, which is very difficult to process and remove after electroplating (Lorenz et al 1998 Microelectron. Eng. 41/42 371-4, Eyre et al 1998 Proc. MEMS'98 (Heidelberg) (Piscataway, NJ: IEEE) pp 218-22). Ordyl P-50100 is easy to work with and can be easily removed after processing. A single layer of Ordyl P-50100 was deposited by lamination up to 20 µm thickness. Thicker layers (200 µm and more) can be achieved with multilayer lamination using a manual laminator. For our applications we found that Ordyl P-50100 dry film photoresist is a very good alternative to SU8 for the realization of 100 µm high moulds. The results presented will open up new possibilities for low-cost LIGA-type processes for MEMS applications.

  5. Assessment of the possibility of utilisation of used ceramic moulds originated from the investment casting technology

    Directory of Open Access Journals (Sweden)

    M. Holtzer

    2009-04-01

    Full Text Available Review of wastes generated by investment casting technology and discussion on possibilities of disposal of the largest quantity waste from this technology - used ceramic mould is presented in the paper. Preliminary examinations of disintegration process of used ceramic mould conducted in various testing conditions were performed in the frame of presented research. Applied system of disintegration doesn’twarrant obtained material to be suitable for reuse in production of ceramic moulds. Investigations of the inter-phase boundary: ceramicmould-casting were performed to examine environmental harmfulness of used ceramic moulds. Additionally ecologic assessment of spentmoulds by means of it’s elution in the aspect of qualifying possibilities of it’s disposal were performed. Gained results qualify the waste from ceramic mould to storage in deposits for neutral wastes.

  6. Potential of the application of the modified polysaccharides water solutions as binders of moulding sands

    Directory of Open Access Journals (Sweden)

    K. Kaczmarska

    2015-10-01

    Full Text Available The results of preliminary tests of selected properties of the moulding sands with the binder in the form of a 5 % water solution of the sodium salt of carboxymethyl starch (with a degree of substitution (DS of 0,2 and 0,87 arepresented in this study. The moulding sand properties such as permeability, abrasion resistance, tensile and bendingstrength - after curing - are shown in series of tests. The cure process was conducted in a field of electromagnetic radiation within the microwave range. The effect of the microwave treatment on the moulding sand was evaporating of water (solvent in a binder and cross-linking of the polymeric binder. As a result the cured moulding sands with particular properties, essential in the context of its application in the mould technology in the foundry industry, were obtained.

  7. High-temperature expansion and knock-out properties of moulding sands with water glass

    Directory of Open Access Journals (Sweden)

    Major-Gabryś K.

    2007-01-01

    Full Text Available The article focuses on the topic of improving the knock-out properties of moulding sand with water glass and ester hardener. It is settled that the cause of worse knock-out properties of moulding sand can be brought by their thermal expansion in increased temperatures. There is a presentation of the influence of different additives, containing Al2O3, on moulding sands’ expansion in increased temperatures. Within the frames of research, there was an elaboration of the influence of authors own additive- Glassex, on the expansion phenomenon of moulding sands with water glass and ester hardener. It is concluded, that the new additive stops the expansion of moulding sands and as well it improves their knock-out properties.

  8. Topology optimization of microfluidic mixers

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe; Gersborg, Allan Roulund; Sigmund, Ole

    2009-01-01

    This paper demonstrates the application of the topology optimization method as a general and systematic approach for microfluidic mixer design. The mixing process is modeled as convection dominated transport in low Reynolds number incompressible flow. The mixer performance is maximized by altering...

  9. A microfluidic device with pillars

    DEFF Research Database (Denmark)

    2014-01-01

    The invention provides a microfluidic device for mixing liquid reagents, the device comprises, a chip forming at least one reaction chamber between a bottom and a top and extending between an inlet and an outlet. To enable manufacturing from less rigid materials, the device comprises pillars...

  10. Microfluidic technology for PET radiochemistry

    International Nuclear Information System (INIS)

    Gillies, J.M.; Prenant, C.; Chimon, G.N.; Smethurst, G.J.; Dekker, B.A.; Zweit, J.

    2006-01-01

    This paper describes the first application of a microfabricated reaction system to positron emission tomography (PET) radiochemistry. We have applied microfluidic technology to synthesise PET radiopharmaceuticals using 18 F and 124 I as labels for fluorodeoxyglucose (FDG) and Annexin-V, respectively. These reactions involved established methods of nucleophilic substitution on a mannose triflate precursor and direct iodination of the protein using iodogen as an oxidant. This has demonstrated a proof of principle of using microfluidic technology to radiochemical reactions involving low and high molecular weight compounds. Using microfluidic reactions, [ 18 F]FDG was synthesised with a 50% incorporation of the available F-18 radioactivity in a very short time of 4 s. The radiolabelling efficiency of 124 I Annexin-V was 40% after 1 min reaction time. Chromatographic analysis showed that such reaction yields are comparable to conventional methods, but in a much shorter time. The yields can be further improved with more optimisation of the microfluidic device itself and its fluid mixing profiles. This demonstrates the potential for this technology to have an impact on rapid and simpler radiopharmaceutical synthesis using short and medium half-life radionuclides

  11. Microfluidic Liquid-Liquid Contactors

    Energy Technology Data Exchange (ETDEWEB)

    Mcculloch, Quinn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-25

    This report describes progress made on the microfluidic contactor. A model was developed to predict its failure, a surrogate chemical system was selected to demonstrate mass transfer, and an all-optical system has been invented and implemented to monitor carryover and flowrates.

  12. Microfluidic devices for biological applications

    CSIR Research Space (South Africa)

    Potgieter, S

    2010-01-01

    Full Text Available Microfluidics is a multi-disciplinary field that deals with the behaviour, control and manipulation of fluids constrained to sub-millilitre volumes. It is proving to be a useful tool for biological studies, affording advantages such as reduced cost...

  13. Mixing in a Microfluid Device

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Deryabin, Mikhail

    Mixing of fluids in microchannels cannot rely on turbulence since the flow takes place at extremly low Reynolds numbers. Various active and passive devices have been developed to induce mixing in microfluid flow devices. We describe here a model of an active mixer where a transverse periodic flow...

  14. Equilibrium gas-oil ratio measurements using a microfluidic technique.

    Science.gov (United States)

    Fisher, Robert; Shah, Mohammad Khalid; Eskin, Dmitry; Schmidt, Kurt; Singh, Anil; Molla, Shahnawaz; Mostowfi, Farshid

    2013-07-07

    A method for measuring the equilibrium GOR (gas-oil ratio) of reservoir fluids using microfluidic technology is developed. Live crude oils (crude oil with dissolved gas) are injected into a long serpentine microchannel at reservoir pressure. The fluid forms a segmented flow as it travels through the channel. Gas and liquid phases are produced from the exit port of the channel that is maintained at atmospheric conditions. The process is analogous to the production of crude oil from a formation. By using compositional analysis and thermodynamic principles of hydrocarbon fluids, we show excellent equilibrium between the produced gas and liquid phases is achieved. The GOR of a reservoir fluid is a key parameter in determining the equation of state of a crude oil. Equations of state that are commonly used in petroleum engineering and reservoir simulations describe the phase behaviour of a fluid at equilibrium state. Therefore, to accurately determine the coefficients of an equation of state, the produced gas and liquid phases have to be as close to the thermodynamic equilibrium as possible. In the examples presented here, the GORs measured with the microfluidic technique agreed with GOR values obtained from conventional methods. Furthermore, when compared to conventional methods, the microfluidic technique was simpler to perform, required less equipment, and yielded better repeatability.

  15. Transfection in perfused microfluidic cell culture devices: A case study.

    Science.gov (United States)

    Raimes, William; Rubi, Mathieu; Super, Alexandre; Marques, Marco P C; Veraitch, Farlan; Szita, Nicolas

    2017-08-01

    Automated microfluidic devices are a promising route towards a point-of-care autologous cell therapy. The initial steps of induced pluripotent stem cell (iPSC) derivation involve transfection and long term cell culture. Integration of these steps would help reduce the cost and footprint of micro-scale devices with applications in cell reprogramming or gene correction. Current examples of transfection integration focus on maximising efficiency rather than viable long-term culture. Here we look for whole process compatibility by integrating automated transfection with a perfused microfluidic device designed for homogeneous culture conditions. The injection process was characterised using fluorescein to establish a LabVIEW-based routine for user-defined automation. Proof-of-concept is demonstrated by chemically transfecting a GFP plasmid into mouse embryonic stem cells (mESCs). Cells transfected in the device showed an improvement in efficiency (34%, n = 3) compared with standard protocols (17.2%, n = 3). This represents a first step towards microfluidic processing systems for cell reprogramming or gene therapy.

  16. The diversity of moulds in the candied salak (Salacca edulis Reinw.

    Directory of Open Access Journals (Sweden)

    RATNA SETYANINGSIH

    2002-07-01

    Full Text Available The aims of this research were to identify moulds in candied fruit within three varieties of salak (i.e. sleman, gading and pondoh, and to know the effect of sugar concentration added, the time of storage, and additional of preservative chemical substance (benzoic acid for the diversity of moulds in candied salak. The isolation method of moulds was used direct plating. In order to determine the kind of moulds, which tolerance in sugar solution (osmotic pressure, the samples were put on the surface of glucose 25% peptone yeast-extract agar (GPYA medium, and then incubated at 30oC for seven days. After that the colony was transferred on potato dextrose agar (PDA and czapeks dox agar (CDA identification media. The results indicated that there were 10 different kind of moulds can be found in all samples, namely Aspergillus flavus, A, niger, A. versicolor, A. fumigatus, Aspergillus sp., Monilia sp., Mucor sp., Penicillium sp., Rhizopus sp. and Wallemia sp. In order to examine the influence of sugar concentration on the growth of moulds, the candied salaks were treated in different concentration. Candied salak with or without additional benzoic acid were treated with sugar concentration of 200 g/l, 250 g/l and 300 g/l. The highest concentration of sugar showed to lowest diversity of moulds for varieties of sleman and gading, conversely for variety of salak pondoh, the additional of high sugar concentration showed increase in their diversity. The diversity of moulds in day of seventh was smaller than the diversity of moulds in day of null. The concentration of benzoic acid (1 g/l confined the diversity of moulds.

  17. Microstructure, SDAS and Mechanical Properties of A356 alloy Castings Made in Sand and Granulated Blast Furnace Slag Moulds

    Directory of Open Access Journals (Sweden)

    Jinugu B. R.

    2017-03-01

    Full Text Available Investigations were carried out to ensure the granulated blast furnace (GBF slag as an alternative mould material in foundry industry by assessing the cast products structure property correlations. Sodium silicate-CO2 process was adopted for preparing the moulds. Three types of moulds were made with slag, silica sand individually and combination of these two with 10% sodium silicate and 20 seconds CO2 gassing time. A356 alloy castings were performed on these newly developed slag moulds. The cast products were investigated for its metallography and mechanical properties. Results reveal that cast products with good surface finish and without any defects were produced. Faster heat transfers in slag moulds enabled the cast products with fine and refined grain structured; and also, lower Secondary Dendrite Arm Spacing (SDAS values were observed than sand mould. Slag mould casting shows improved mechanical properties like hardness, compression, tensile and impact strength compared to sand mould castings. Two types of tensile fracture modes, namely cleavage pattern with flat surfaces representing Al−Si eutectic zone and the areas of broken Fe-rich intermetallic compounds which appear as flower-like morphology was observed in sand mould castings. In contrast, GBF slag mould castings exhibit majority in dimple fracture morphology with traces of cleavage fracture. Charpy impact fractured surfaces of sand mould castings shows both transgranular and intergranular fracture modes. Only intergranular fracture mode was noticed in both GBF slag and mixed mould castings.

  18. Enabling Lean Design Through Computer Aided Synthesis: The Injection Moulding Cooling Case

    NARCIS (Netherlands)

    Jauregui Becker, Juan Manuel; Wits, Wessel Willems

    2015-01-01

    This paper explores the application of Computer Aided Synthesis (CAS) to support the implementation of Set-Based Concurrent Engineering (SBCE) and Just In Time Decision Making (JIT-DM), which are considered as two of the cornerstones of the Lean Design method. Computer Aided Synthesis refers to a

  19. Incorporating lean thinking and life cycle assessment to reduce environmental impacts of plastic injection moulded products

    OpenAIRE

    Cheung, Wai Ming; Leong, Jun; Vichare, Parag

    2017-01-01

    In the last decades, environmental footprint of the product manufacture has emerged as an important public concern, causing manufacturers to re-assess their product’s environmental impacts. Responding to global outcry on global warming, world leaders have agreed to limit global temperature rise to less than 2°C above the temperature in pre-industrial times. As a result, governments and industrial leaders around the world have proposed a roadmap for 80% emissions reduction by 2050. The aim of ...

  20. Tribological evaluation for experimental design Al_2O_3 obtained via low pressure injection moulding (LPIM)

    International Nuclear Information System (INIS)

    Dotta, A.L.B.; Costa, C.A.; Farias, M.C.M.; Cunha, M.A da

    2016-01-01

    This work represents the tribological study of Al_2O_3 obtained by LPIM using the experimental design technique to evaluate the interaction of the tribological parameters with the friction and wear. The LPIM process was performed at 90 °C for 24 h. The average friction coefficient for the factorial experimental design varied significantly with the load and the speed when Al_2O_3 was tested with the steel counter body. In general, the wear coefficient was lower for the tribological pair Al_2O_3-steel, in which occurred the formation of an iron oxide tribofilm on the surface. As for the Al_2O_3-Al_2O_3 pair, an intergranular fracture of the surface occurred, in addition to the presence of material adhered on the tracks. (author)

  1. A comparative study of metal and ceramic injection moulding for precision applications

    DEFF Research Database (Denmark)

    Islam, Aminul; Giannekas, Nikolaos; Marhöfer, David Maximilian

    2015-01-01

    the right material and process for the right application.With this motivation, the current paper systematically characterizes the PIM and CIM process and presents the process capabilities in terms of part shrinkage, surface replication, tolerance capability and morphological fidelity....

  2. Generation of tunable and pulsatile concentration gradients via microfluidic network

    KAUST Repository

    Zhou, Bingpu

    2014-06-04

    We demonstrate a compact Polydimethylsiloxane microfluidic chip which can quickly generate ten different chemical concentrations simultaneously. The concentration magnitude of each branch can be flexibly regulated based on the flow rate ratios of the two injecting streams. The temporal/pulsatile concentration gradients are achieved by integrating on-chip pneumatic actuated valves controlled by the external signals. The temporal concentration gradients can also be tuned precisely by varying applied frequency and duty cycle of the trigger signal. It is believed that such microdevice will be potentially used for some application areas of producing stable chemical gradients as well as allowing fast, pulsatile gradient transformation in seconds.

  3. Design and development of a microfluidic platform for use with colorimetric gold nanoprobe assays

    Science.gov (United States)

    Bernacka-Wojcik, Iwona

    Due to the importance and wide applications of the DNA analysis, there is a need to make genetic analysis more available and more affordable. As such, the aim of this PhD thesis is to optimize a colorimetric DNA biosensor based on gold nanoprobes developed in CEMOP by reducing its price and the needed volume of solution without compromising the device sensitivity and reliability, towards the point of care use. Firstly, the price of the biosensor was decreased by replacing the silicon photodetector by a low cost, solution processed TiO2 photodetector. To further reduce the photodetector price, a novel fabrication method was developed: a cost-effective inkjet printing technology that enabled to increase TiO2 surface area. Secondly, the DNA biosensor was optimized by means of microfluidics that offer advantages of miniaturization, much lower sample/reagents consumption, enhanced system performance and functionality by integrating different components. In the developed microfluidic platform, the optical path length was extended by detecting along the channel and the light was transmitted by optical fibres enabling to guide the light very close to the analysed solution. Microfluidic chip of high aspect ratio ( 13), smooth and nearly vertical sidewalls was fabricated in PDMS using a SU-8 mould for patterning. The platform coupled to the gold nanoprobe assay enabled detection of Mycobacterium tuberculosis using 3 mul on DNA solution, i.e. 20 times less than in the previous state-of-the-art. Subsequently, the bio-microfluidic platform was optimized in terms of cost, electrical signal processing and sensitivity to colour variation, yielding 160% improvement of colorimetric AuNPs analysis. Planar microlenses were incorporated to converge light into the sample and then to the output fibre core increasing 6 times the signal-to-losses ratio. The optimized platform enabled detection of single nucleotide polymorphism related with obesity risk (FTO) using target DNA concentration

  4. Ice matrix in reconfigurable microfluidic systems

    Energy Technology Data Exchange (ETDEWEB)

    Bossi, A M [Department of Biotechnology, University of Verona, Strada Le Grazie 15, I-37134, Verona (Italy); Vareijka, M; Piletska, E V; Turner, A P F; Piletsky, S A [Cranfield Health, Cranfield University, Vincent Building B52, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Meglinski, I [Department of Physics, University of Otago, PO Box 56, Dunedin, 9054 (New Zealand)

    2013-07-01

    Microfluidic devices find many applications in biotechnologies. Here, we introduce a flexible and biocompatible microfluidic ice-based platform with tunable parameters and configuration of microfluidic patterns that can be changed multiple times during experiments. Freezing and melting of cavities, channels and complex relief structures created and maintained in the bulk of ice by continuous scanning of an infrared laser beam are used as a valve action in microfluidic systems. We demonstrate that pre-concentration of samples and transport of ions and dyes through the open channels created can be achieved in ice microfluidic patterns by IR laser-assisted zone melting. The proposed approach can be useful for performing separation and sensing processes in flexible reconfigurable microfluidic devices. (paper)

  5. Ice matrix in reconfigurable microfluidic systems

    International Nuclear Information System (INIS)

    Bossi, A M; Vareijka, M; Piletska, E V; Turner, A P F; Piletsky, S A; Meglinski, I

    2013-01-01

    Microfluidic devices find many applications in biotechnologies. Here, we introduce a flexible and biocompatible microfluidic ice-based platform with tunable parameters and configuration of microfluidic patterns that can be changed multiple times during experiments. Freezing and melting of cavities, channels and complex relief structures created and maintained in the bulk of ice by continuous scanning of an infrared laser beam are used as a valve action in microfluidic systems. We demonstrate that pre-concentration of samples and transport of ions and dyes through the open channels created can be achieved in ice microfluidic patterns by IR laser-assisted zone melting. The proposed approach can be useful for performing separation and sensing processes in flexible reconfigurable microfluidic devices. (paper)

  6. Ice matrix in reconfigurable microfluidic systems

    Science.gov (United States)

    Bossi, A. M.; Vareijka, M.; Piletska, E. V.; Turner, A. P. F.; Meglinski, I.; Piletsky, S. A.

    2013-07-01

    Microfluidic devices find many applications in biotechnologies. Here, we introduce a flexible and biocompatible microfluidic ice-based platform with tunable parameters and configuration of microfluidic patterns that can be changed multiple times during experiments. Freezing and melting of cavities, channels and complex relief structures created and maintained in the bulk of ice by continuous scanning of an infrared laser beam are used as a valve action in microfluidic systems. We demonstrate that pre-concentration of samples and transport of ions and dyes through the open channels created can be achieved in ice microfluidic patterns by IR laser-assisted zone melting. The proposed approach can be useful for performing separation and sensing processes in flexible reconfigurable microfluidic devices.

  7. Multichannel Bipotentiostat Integrated With a Microfluidic Platform for Electrochemical Real-Time Monitoring of Cell Cultures

    DEFF Research Database (Denmark)

    Vergani, Marco; Carminati, Marco; Ferrari, Giorgio

    2012-01-01

    An electrochemical detection system specifically designed for multi-parameter real-time monitoring of stem cell culturing/differentiation in a microfluidic system is presented. It is composed of a very compact 24-channel electronic board, compatible with arrays of microelectrodes and coupled...... to a microfluidic cell culture system. A versatile data acquisition software enables performing amperometry, cyclic voltammetry and impedance spectroscopy in each of the 12 independent chambers over a 100 kHz bandwidth with current resolution down to 5 pA for 100 ms measuring time. The design of the platform, its...... realization and experimental characterization are reported, with emphasis on the analysis of impact of input capacitance (i.e., microelectrode size) and microfluidic pump operation on current noise. Programmable sequences of successive injections of analytes (ferricyanide and dopamine) and rinsing buffer...

  8. Structure Distribution in Precise Cast Iron Moulded on Meltable Model

    Directory of Open Access Journals (Sweden)

    Skrbek B.

    2015-12-01

    Full Text Available Topic of this work is to compare metalurgy of cast irons poured into sand moulds and into shell molds at IEG Jihlava company and from it following differencies in structures of thin- and thick-walled castings. This work is dealing with investigation and experimental measurement on surfaces and sections suitable thin- and thick-walled investment castings at IEG Jihlava. Cast irons with flake graphite (grey cast iron and cast irons with spheroidal graphite (ductile cast iron. Both mechanical and physical properties are determined using calculations from as measured values of wall thicknesses L and Lu, Vickers hardness and remanent magnetism. Measurement results are discussed, findings are formulated and methods for castings metallurgical quality improvement are recommended finally.

  9. Electric moulding of dispersed lipid nanotubes into a nanofluidic device.

    Science.gov (United States)

    Frusawa, Hiroshi; Manabe, Tatsuhiko; Kagiyama, Eri; Hirano, Ken; Kameta, Naohiro; Masuda, Mitsutoshi; Shimizu, Toshimi

    2013-01-01

    Hydrophilic nanotubes formed by lipid molecules have potential applications as platforms for chemical or biological events occurring in an attolitre volume inside a hollow cylinder. Here, we have integrated the lipid nanotubes (LNTs) by applying an AC electric field via plug-in electrode needles placed above a substrate. The off-chip assembly method has the on-demand adjustability of an electrode configuration, enabling the dispersed LNT to be electrically moulded into a separate film of parallel LNT arrays in one-step. The fluorescence resonance energy transfer technique as well as the digital microscopy visualised the overall filling of gold nanoparticles up to the inner capacity of an LNT film by capillary action, thereby showing the potential of this flexible film for use as a high-throughput nanofluidic device where not only is the endo-signalling and product in each LNT multiplied but also the encapsulated objects are efficiently transported and reacted.

  10. Modeling of Flexible Polyurethane Foam Shrinkage for Bra Cup Moulding Process Control

    Directory of Open Access Journals (Sweden)

    Long Wu

    2018-04-01

    Full Text Available Nowadays, moulding technology has become a remarkable manufacturing process in the intimate apparel industry. Polyurethane (PU foam sheets are used to mould three-dimensional (3D seamless bra cups of various softness and shapes, which eliminate bulky seams and reduce production costs. However, it has been challenging to accurately and effectively control the moulding process and bra cup thickness. In this study, the theoretical mechanism of heat transfer and the thermal conductivity of PU foams are first examined. Experimental studies are carried out to investigate the changes in foam materials at various moulding conditions (viz., temperatures, and lengths of dwell time in terms of surface morphology and thickness by using electron and optical microscopy. Based on the theoretical and experimental investigations of the thermal conductivity of the foam materials, empirical equations of shrinkage ratio and thermal conduction of foam materials were established. A regression model to predict flexible PU foam shrinkage during the bra cup moulding process was formulated by using the Levenberg-Marquardt method of nonlinear least squares algorithm and verified for accuracy. This study therefore provides an effective approach that optimizes control of the bra cup moulding process and assures the ultimate quality and thickness of moulded foam cups.

  11. Flow Dynamics of green sand in the DISAMATIC moulding process using Discrete element method (DEM)

    International Nuclear Information System (INIS)

    Hovad, E; Walther, J H; Thorborg, J; Hattel, J H; Larsen, P

    2015-01-01

    The DISAMATIC casting process production of sand moulds is simulated with DEM (discrete element method). The main purpose is to simulate the dynamics of the flow of green sand, during the production of the sand mould with DEM. The sand shot is simulated, which is the first stage of the DISAMATIC casting process. Depending on the actual casting geometry the mould can be geometrically quite complex involving e.g. shadowing effects and this is directly reflected in the sand flow during the moulding process. In the present work a mould chamber with “ribs” at the walls is chosen as a baseline geometry to emulate some of these important conditions found in the real moulding process. The sand flow is simulated with the DEM and compared with corresponding video footages from the interior of the chamber during the moulding process. The effect of the rolling resistance and the static friction coefficient is analysed and discussed in relation to the experimental findings. (paper)

  12. Studies on mould growth and biomass production using waste banana peel.

    Science.gov (United States)

    Essien, J P; Akpan, E J; Essien, E P

    2005-09-01

    Hyphomycetous (Aspergillus fumigatus) and Phycomycetous (Mucor hiemalis) moulds were cultivated in vitro at room temperature (28 + 20 degrees C) to examined their growth and biomass production on waste banana peel agar (BPA) and broth (BPB) using commercial malt extract agar (MEA) and broth (MEB) as control. The moulds grew comparatively well on banana peel substrates. No significant difference (p > 0.05) in radial growth rates was observed between moulds cultivated on PBA and MEA, although growth rates on MEA were slightly better. Slight variations in sizes of asexual spores and reproductive hyphae were also observed between moulds grown on MEA and BPA. Smaller conidia and sporangiospores, and shorter aerial hyphae (conidiophores and sporangiophores) were noticed in moulds grown on BPA than on MEA. The biomass weight of the test moulds obtained after one month of incubation with BPB were only about 1.8 mg and 1.4 mg less than values recorded for A. fumigatus and M. hiemalis respectively, grown on MEB. The impressive performance of the moulds on banana peel substrate may be attributed to the rich nutrient (particularly the crude protein 7.8% and crude fat 11.6% contents) composition of banana peels. The value of this agricultural waste can therefore be increased by its use not only in the manufacture of mycological medium but also in the production of valuable microfungal biomass which is rich in protein and fatty acids.

  13. DEVELOPMENT OF FLUORINE-FREE MOULD FLUX APPLIED IN LOW CARBON STEEL

    Directory of Open Access Journals (Sweden)

    Jayme Alves de Souza Junior

    2012-12-01

    Full Text Available ract The mould flux is a mixture of non-metallic oxides that, in contact with liquid steel melts, becomes a liquid slag which the mainly function is to lubricate and control heat transfer between mould and strand during the continuous casting process. The mould flux without fluoride has the advantage of decreasing the wear of machine and the SEN in comparison to common mould flux. The application in Continuous Casting of Slabs has been a great challenge in relation to the operational viability together with internal and surface quality of slabs. Another differential is the decrease of environmental issues on account of the contamination of secondary cooling water by the fluorides. It is considered that properties of mould flux as chemical composition, viscosity, softening, melting flowing temperatures, fusion rate, etc, should be suitable to the chemical composition and the mechanical properties at elevated temperatures of steel and also the operational parameters such as casting temperature, casting speed, mould frequency, among others. This work presents a preliminary analysis in relation to operational viability, analysis of surface quality of slabs, measurements of fluorides content in the water of secondary cooling of machine. In addition to that, the analyses of operational features as measurements of wear of SEN, mould flux consumption, slag pool and behavior of thermocouples of detection system break outs (MSD are considered.

  14. Grains colonised by moulds: fungal identification and headspace analysis of produced volatile metabolites

    Directory of Open Access Journals (Sweden)

    Maria Paola Tampieri

    2010-01-01

    Full Text Available The aim of this work was to verify if the headspace analysis of fungal volatile compounds produced by some species of Fusarium can be used as a marker of mould presence on maize. Eight samples of maize (four yellow maize from North Italy and four white maize from Hungary, naturally contaminated by Fusarium and positive for the presence of fumonisins, were analyzed to detect moisture content, Aw, volatile metabolites and an enumeration of viable moulds was performed by means of a colony count technique. Headspace samples were analysed using a gas-chromatograph equipped with a capillary column TR-WAX to detect volatile metabolites of moulds. Furthermore macro and microscopic examination of the colonies was performed in order to distinguish, according to their morphology, the genera of the prevalent present moulds. Prevalent mould of eight samples was Fusarium, but other fungi, like Aspergillus, Penicillum and Mucoraceae, were observed. The metabolites produced by F.graminearum and F. moniliforme were Isobutyl-acetate, 3-Methyl-1-butanol and, only at 8 days, 3-Octanone. The incubation time can affect off flavour production in consequence of the presence of other moulds. Further studies on maize samples under different conditions are needed in order to establish the presence of moulds using the count technique and through the identification of volatile compounds.

  15. Myceliophthora thermophila syn. Sporotrichum thermophile: a thermophilic mould of biotechnological potential.

    Science.gov (United States)

    Singh, Bijender

    2016-01-01

    Myceliophthora thermophila syn. Sporotrichum thermophile is a ubiquitous thermophilic mould with a strong ability to degrade organic matter during optimal growth at 45 °C. Both genome analysis and experimental data have suggested that the mould is capable of hydrolyzing all major polysaccharides found in biomass. The mould is able to secrete a large number of hydrolytic enzymes (cellulases, laccases, xylanases, pectinases, lipases, phytases and some other miscellaneous enzymes) employed in various biotechnological applications. Characterization of the biomass-hydrolyzing activity of wild and recombinant enzymes suggests that this mould is highly efficient in biomass decomposition at both moderate and high temperatures. The native enzymes produced by the mould are more efficient in activity than their mesophilic counterparts beside their low enzyme titers. The mould is able to synthesize various biomolecules, which are used in multifarious applications. Genome sequence data of M. thermophila also supported the physiological data. This review describes the biotechnological potential of thermophilic mould, M. thermophila supported by genomic and experimental evidences.

  16. Virtual analysis of influence of a filter on mould filling

    Directory of Open Access Journals (Sweden)

    Zhian Xu

    2011-11-01

    Full Text Available Ceramic filters are used to avoid slag and impurities in foundry applications. When not properly applied, the presence of these filters may have a significant influence on mould filling. 3-D casting simulation has been applied to study the effects of the use of a ceramic filter on the metal flow in a gating system. Instead of using a pressure drop model to represent the behaviour of a fluid metal flow passing through a filter, a real exact filter geometry, which is created by a high resolution CT-scan and a non-destructive imaging technique, in the gating system is applied in the simulation. In this research, nodular cast iron is poured into a block casting. A depressurized gating system is used. After a choke, a filter with different orientations is placed in the system. Mould filling coupled with temperature is simulated. Geometries using different orientations of the filter, and without the filter have been researched. The simulated results show that the filter has no influence on the pouring time of the casting if the choke section is small enough compared to the effective section of the filter. Although the filter has no significant influence on the flow patterns in the block casting itself, the flow patterns in the filter zone are different. When the liquid metal passes a horizontal filter, it will be broken into many small streams and show a shower effect. After the part under the filter is full, the shower effect disappears. When the filter is located at the vertical position, due to the gravity, the shower effect is less. If no filter presents on the system, the liquid metal passes through the filter zone with a high speed and causes surface turbulence.

  17. Cellular automaton model of crowd evacuation inspired by slime mould

    Science.gov (United States)

    Kalogeiton, V. S.; Papadopoulos, D. P.; Georgilas, I. P.; Sirakoulis, G. Ch.; Adamatzky, A. I.

    2015-04-01

    In all the living organisms, the self-preservation behaviour is almost universal. Even the most simple of living organisms, like slime mould, is typically under intense selective pressure to evolve a response to ensure their evolution and safety in the best possible way. On the other hand, evacuation of a place can be easily characterized as one of the most stressful situations for the individuals taking part on it. Taking inspiration from the slime mould behaviour, we are introducing a computational bio-inspired model crowd evacuation model. Cellular Automata (CA) were selected as a fully parallel advanced computation tool able to mimic the Physarum's behaviour. In particular, the proposed CA model takes into account while mimicking the Physarum foraging process, the food diffusion, the organism's growth, the creation of tubes for each organism, the selection of optimum tube for each human in correspondence to the crowd evacuation under study and finally, the movement of all humans at each time step towards near exit. To test the model's efficiency and robustness, several simulation scenarios were proposed both in virtual and real-life indoor environments (namely, the first floor of office building B of the Department of Electrical and Computer Engineering of Democritus University of Thrace). The proposed model is further evaluated in a purely quantitative way by comparing the simulation results with the corresponding ones from the bibliography taken by real data. The examined fundamental diagrams of velocity-density and flow-density are found in full agreement with many of the already published corresponding results proving the adequacy, the fitness and the resulting dynamics of the model. Finally, several real Physarum experiments were conducted in an archetype of the aforementioned real-life environment proving at last that the proposed model succeeded in reproducing sufficiently the Physarum's recorded behaviour derived from observation of the aforementioned

  18. Microfluidic high gradient magnetic cell separation

    Science.gov (United States)

    Inglis, David W.; Riehn, Robert; Sturm, James C.; Austin, Robert H.

    2006-04-01

    Separation of blood cells by native susceptibility and by the selective attachment of magnetic beads has recently been demonstrated on microfluidic devices. We discuss the basic principles of how forces are generated via the magnetic susceptibility of an object and how microfluidics can be combined with micron-scale magnetic field gradients to greatly enhance in principle the fractionating power of magnetic fields. We discuss our efforts and those of others to build practical microfluidic devices for the magnetic separation of blood cells. We also discuss our attempts to integrate magnetic separation with other microfluidic features for developing handheld medical diagnostic tools.

  19. Integrated lenses in polystyrene microfluidic devices

    KAUST Repository

    Fan, Yiqiang

    2013-04-01

    This paper reports a new method for integrating microlenses into microfluidic devices for improved observation. Two demonstration microfluidic devices were provided which were fabricated using this new technique. The integrated microlenses were fabricated using a free-surface thermo-compression molding method on a polystyrene (PS) sheet which was then bonded on top of microfluidic channels as a cover plate, with the convex microlenses providing a magnified image of the channel for the easier observation of the flow in the microchannels. This approach for fabricating the integrated microlens in microfluidic devices is rapid, low cost and without the requirement of cleanroom facilities. © 2013 IEEE.

  20. Rate of solidification of aluminium casting in varying wall thickness of cylindrical metallic moulds

    Directory of Open Access Journals (Sweden)

    Katsina Christopher BALA

    2014-02-01

    Full Text Available The quality of final casting mainly depends on the rate of solidification as rapid solidification produces fine grains structures with better mechanical properties. The analysis of heat transfer during the casting and solidification of aluminium alloy as well as the experimental investigation of the rate of solidification in varying thicknesses of cylindrical metallic mould was carried out. The temperature variation with time of the casting was recorded from which cooling curves were obtained for the determination of solidification time of the cast. The results showed that as the cylindrical mould thickness increases the solidification time decreases due to the chilling effect of the mould.

  1. Effectiveness of Protective Action of Coatings from Moisture Sorption into Surface Layer of Sand Moulds

    Directory of Open Access Journals (Sweden)

    Kaźnica N.

    2016-12-01

    Full Text Available The results of investigations of the sorption process of surface layers of sand moulds covered by zirconium and zirconium - graphite alcohol coatings are presented in the paper. Investigations comprised two kinds of sand grains (silica sand and reclaimed sand of moulding sand with furan resin. Tests were performed under conditions of a high relative air humidity 75 - 85% and a constant temperature within the range 28 – 33°C. To evaluate the effectiveness of coatings protective action from moisture penetration into surface layers of sand moulds gravimetric method of quantitavie moisture sorption and ultrasonic method were applied in measurements.

  2. Thermal Conductivity of Moulding Sand with Chemical Binders, Attempts of its Increasing

    Directory of Open Access Journals (Sweden)

    Zych J.

    2015-04-01

    Full Text Available The investigation results of the thermal conductivity of the selected group of moulding sands with chemical binders, mainly organic, are presented in the hereby paper. Studies encompassed also moulding sands into which additions improving the thermal conductivity were introduced. Two testing methods were applied, i.e. investigations at a steady and unsteady temperature zone. For investigations at a steady temperature zone the new original experimental stand was designed and built, adapted also for testing moulding sands with binders undergoing destruction at relatively low temperatures.

  3. Plaster: its influence on the behaviour of mould surface in the gluing process

    International Nuclear Information System (INIS)

    Jordao, M.A.P.; Goulart, E.P.; Souza, D.D.D. de; Kiyohara, P.K.

    1989-01-01

    Plaster is an important auxiliary raw material in ceramics, but the industry in Brazil use to give litle importance to its properties. The IPT Ceramic Department initiated studies to upgrade local knowledge on this material. In this paper, the following already studied topics are presented. Characterization of α and β plaster powder, by X-ray diffraction, optical and scanning electron microscopy, specific gravity and surface are (BET). Influence of the plaster/water ratio on the mould characteristics by X-ray diffraction, scanning electron microscopy, porosity and permeability. Behavior of the plaster mould surface against the moulded surface after several aluminum oxide splip castings by scanning electron microscopy [pt

  4. Optical detection in microfluidic systems

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Kutter, Jörg Peter

    2009-01-01

    Optical detection schemes continue to be favoured for measurements in microfluidic systems. A selection of the latest progress mainly within the last two years is critically reviewed. Emphasis is on integrated solutions, such as planar waveguides, coupling schemes to the outside world, evanescent...... to ease commercialisation of the devices. This work will hopefully result in more commercial products that benefit from integrated optics, because the impact on commercial devices so far has been modest....

  5. Microfluidic Devices for Blood Fractionation

    OpenAIRE

    Hou, Han Wei; Bhagat, Ali Asgar S.; Lee, Wong Cheng J.; Huang, Sha; Han, Jongyoon; Lim, Chwee Teck

    2011-01-01

    Blood, a complex biological fluid, comprises 45% cellular components suspended in protein rich plasma. These different hematologic components perform distinct functions in vivo and thus the ability to efficiently fractionate blood into its individual components has innumerable applications in both clinical diagnosis and biological research. Yet, processing blood is not trivial. In the past decade, a flurry of new microfluidic based technologies has emerged to address this compelling problem. ...

  6. Bistable diverter valve in microfluidics

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Bandulasena, H.C.H.

    2011-01-01

    Roč. 50, č. 5 (2011), s. 1225-1233 ISSN 0723-4864 R&D Projects: GA ČR GA101/07/1499; GA AV ČR IAA200760705 Institutional research plan: CEZ:AV0Z20760514 Keywords : fluidics * bistable diverter valves * pressure-driven microfluidics Subject RIV: BK - Fluid Dynamics Impact factor: 1.735, year: 2011 http://www.springerlink.com/content/x4907p1908151522/

  7. Granisetron Injection

    Science.gov (United States)

    Granisetron immediate-release injection is used to prevent nausea and vomiting caused by cancer chemotherapy and to ... nausea and vomiting that may occur after surgery. Granisetron extended-release (long-acting) injection is used with ...

  8. Edaravone Injection

    Science.gov (United States)

    Edaravone injection is used to treat amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease; a condition in which ... die, causing the muscles to shrink and weaken). Edaravone injection is in a class of medications called ...

  9. Meropenem Injection

    Science.gov (United States)

    ... injection is in a class of medications called antibiotics. It works by killing bacteria that cause infection.Antibiotics such as meropenem injection will not work for colds, flu, or other viral infections. Taking ...

  10. Chloramphenicol Injection

    Science.gov (United States)

    ... injection is in a class of medications called antibiotics. It works by stopping the growth of bacteria..Antibiotics such as chloramphenicol injection will not work for colds, flu, or other viral infections. Taking ...

  11. Colistimethate Injection

    Science.gov (United States)

    ... injection is in a class of medications called antibiotics. It works by killing bacteria.Antibiotics such as colistimethate injection will not work for colds, flu, or other viral infections. Using ...

  12. Defibrotide Injection

    Science.gov (United States)

    Defibrotide injection is used to treat adults and children with hepatic veno-occlusive disease (VOD; blocked blood ... the body and then returned to the body). Defibrotide injection is in a class of medications called ...

  13. Nalbuphine Injection

    Science.gov (United States)

    ... injection is in a class of medications called opioid agonist-antagonists. It works by changing the way ... suddenly stop using nalbuphine injection, you may experience withdrawal symptoms including restlessness; teary eyes; runny nose; yawning; ...

  14. Microfluidic Devices for Blood Fractionation

    Directory of Open Access Journals (Sweden)

    Chwee Teck Lim

    2011-07-01

    Full Text Available Blood, a complex biological fluid, comprises 45% cellular components suspended in protein rich plasma. These different hematologic components perform distinct functions in vivo and thus the ability to efficiently fractionate blood into its individual components has innumerable applications in both clinical diagnosis and biological research. Yet, processing blood is not trivial. In the past decade, a flurry of new microfluidic based technologies has emerged to address this compelling problem. Microfluidics is an attractive solution for this application leveraging its numerous advantages to process clinical blood samples. This paper reviews the various microfluidic approaches realized to successfully fractionate one or more blood components. Techniques to separate plasma from hematologic cellular components as well as isolating blood cells of interest including certain rare cells are discussed. Comparisons based on common separation metrics including efficiency (sensitivity, purity (selectivity, and throughput will be presented. Finally, we will provide insights into the challenges associated with blood-based separation systems towards realizing true point-of-care (POC devices and provide future perspectives.

  15. Fibre Length Reduction in Natural Fibre-Reinforced Polymers during Compounding and Injection Moulding—Experiments Versus Numerical Prediction of Fibre Breakage

    Directory of Open Access Journals (Sweden)

    Katharina Albrecht

    2018-03-01

    Full Text Available To establish injection-moulded, natural fibre-reinforced polymers in the automotive industry, numerical simulations are important. To include the breakage behaviour of natural fibres in simulations, a profound understanding is necessary. In this study, the length and width reduction of flax and sisal fibre bundles were analysed experimentally during compounding and injection moulding. Further an optical analysis of the fibre breakage behaviour was performed via scanning electron microscopy and during fibre tensile testing with an ultra-high-speed camera. The fibre breakage of flax and sisal during injection moulding was modelled using a micromechanical model. The experimental and simulative results consistently show that during injection moulding the fibre length is not reduced further; the fibre length was already significantly reduced during compounding. For the mechanical properties of a fibre-reinforced composite it is important to overachieve the critical fibre length in the injection moulded component. The micromechanical model could be used to predict the necessary fibre length in the granules.

  16. Batch fabrication of polymer microfluidic cartridges for QCM sensor packaging by direct bonding

    Science.gov (United States)

    Sandström, Niklas; Zandi Shafagh, Reza; Gylfason, Kristinn B.; Haraldsson, Tommy; van der Wijngaart, Wouter

    2017-12-01

    Quartz crystal microbalance (QCM) sensing is an established technique commonly used in laboratory based life-science applications. However, the relatively complex, multi-part design and multi-step fabrication and assembly of state-of-the-art QCM cartridges make them unsuited for disposable applications such as point-of-care (PoC) diagnostics. In this work, we present the uncomplicated manufacturing of QCMs in polymer microfluidic cartridges. Our novel approach comprises two key innovations: the batch reaction injection molding of microfluidic parts; and the integration of the cartridge components by direct, unassisted bonding. We demonstrate molding of batches of 12 off-stoichiometry thiol-ene epoxy polymer (OSTE+) polymer parts in a single molding cycle using an adapted reaction injection molding process; and the direct bonding of the OSTE+  parts to other OSTE+  substrates, to printed circuit boards, and to QCMs. The microfluidic QCM OSTE+  cartridges were successfully evaluated in terms of liquid sealing as well as electrical properties, and the sensor performance characteristics are on par with those of a commercially available QCM biosensor cartridge. The simplified manufacturing of QCM sensors with maintained performance potentializes novel application areas, e.g. as disposable devices in a point of care setting. Moreover, our results can be extended to simplifying the fabrication of other microfluidic devices with multiple heterogeneously integrated components.

  17. Micro-scale experimental study of Microbial-Induced Carbonate Precipitation (MICP) by using microfluidic devices

    Science.gov (United States)

    Wang, Y.; Soga, K.; DeJong, J. T.; Kabla, A.

    2017-12-01

    Microbial-induced carbonate precipitation (MICP), one of the bio-mineralization processes, is an innovative subsurface improvement technique for enhancing the strength and stiffness of soils, and controlling their hydraulic conductivity. These macro-scale engineering properties of MICP treated soils controlled by micro-scale factors of the precipitated carbonate, such as its content, amount and distribution in the soil matrix. The precipitation process itself is affected by bacteria amount, reaction kinetics, porous medium geometry and flow distribution in the soils. Accordingly, to better understand the MICP process at the pore scale a new experimental technique that can observe the entire process of MICP at the pore-scale was developed. In this study, a 2-D transparent microfluidic chip made of Polydimethylsiloxane (PDMS) representing the soil matrix was designed and fabricated. A staged-injection MICP treatment procedure was simulated inside the microfluidic chip while continuously monitored using microscopic techniques. The staged-injection MICP treatment procedure started with the injection of bacteria suspension, followed with the bacteria setting for attachment, and then ended with the multiple injections of cementation liquid. The main MICP processes visualized during this procedure included the bacteria transport and attachment during the bacteria injection, the bacteria attachment and growth during the bacteria settling, the bacteria detachment during the cementation liquid injection, the cementation development during the cementation liquid injection, and the cementation development after the completion of cementation liquid injection. It is suggested that the visualization of the main MICP processes using the microfluidic technique can improve understating of the fundamental mechanisms of MICP and consequently help improve the treatment technique for in situ implementation of MICP.

  18. Materials for microfluidic chip fabrication.

    Science.gov (United States)

    Ren, Kangning; Zhou, Jianhua; Wu, Hongkai

    2013-11-19

    Through manipulating fluids using microfabricated channel and chamber structures, microfluidics is a powerful tool to realize high sensitive, high speed, high throughput, and low cost analysis. In addition, the method can establish a well-controlled microenivroment for manipulating fluids and particles. It also has rapid growing implementations in both sophisticated chemical/biological analysis and low-cost point-of-care assays. Some unique phenomena emerge at the micrometer scale. For example, reactions are completed in a shorter amount of time as the travel distances of mass and heat are relatively small; the flows are usually laminar; and the capillary effect becomes dominant owing to large surface-to-volume ratios. In the meantime, the surface properties of the device material are greatly amplified, which can lead to either unique functions or problems that we would not encounter at the macroscale. Also, each material inherently corresponds with specific microfabrication strategies and certain native properties of the device. Therefore, the material for making the device plays a dominating role in microfluidic technologies. In this Account, we address the evolution of materials used for fabricating microfluidic chips, and discuss the application-oriented pros and cons of different materials. This Account generally follows the order of the materials introduced to microfluidics. Glass and silicon, the first generation microfluidic device materials, are perfect for capillary electrophoresis and solvent-involved applications but expensive for microfabriaction. Elastomers enable low-cost rapid prototyping and high density integration of valves on chip, allowing complicated and parallel fluid manipulation and in-channel cell culture. Plastics, as competitive alternatives to elastomers, are also rapid and inexpensive to microfabricate. Their broad variety provides flexible choices for different needs. For example, some thermosets support in-situ fabrication of

  19. Laser cleaning of the contaminations on the surface of tire mould

    Science.gov (United States)

    Ye, Yayun; Jia, Baoshen; Chen, Jing; Jiang, Yilan; Tang, Hongping; Wang, Haijun; Luan, Xiaoyu; Liao, Wei; Zhang, Chuanchao; Yao, Caizhen

    2017-07-01

    During the manufacturing of tires, surface pollutants on tire mould will lead to the production of unqualified tires. Tire moulds need to be regularly cleaned. Laser cleaning is recognized as a non-destructive, effective, precise and environmental friendly method. In this paper, laser cleaning was used to remove contaminants on tire mould surface. First, laser induced damage experiments were performed. The results showed that the roughness and hardness of the cast steel sample surface seldom changed under the energy range of 140.1-580.2 mJ laser irradiation 1 pulse and the energy range of 44.7-168.9 mJ laser irradiation 100 pulses. In the laser cleaning experiments, the cleaning thresholds and the optimal cleaning parameters were obtained. Results indicated that laser cleaning was safe and effective for tire mould contamination removal.

  20. Influence of the Reclaim Addition on Properties of Moulding Sands with the Geopol Binder

    Directory of Open Access Journals (Sweden)

    Drożyński D.

    2015-03-01

    Full Text Available The investigation results of the influence of the reclaim additions on the properties of moulding sands with the GEOPOL geopolymer binder developed by the SAND TEAM Company were presented. Two brands of hardeners were applied in the tested compositions, the first one was developed by the SAND TEAM Company, marked SA72 and the new hardener offered by the KRATOS Company, marked KR72. The main purpose of investigations was to determine the influence of reclaim fractions and the applied hardener on the basic moulding sands properties, such as: bending and tensile strength, permeability and grindability. The unfavourable influence of the reclaim additions into moulding sands on the tested properties as well as an increased hardening rate, were found. Moulding sands, in which the hardener KR72 of the KRATOS Company was used, were less sensitive to the reclaim additions

  1. Effects of mould on electrochemical migration behaviour of immersion silver finished printed circuit board.

    Science.gov (United States)

    Yi, Pan; Xiao, Kui; Dong, Chaofang; Zou, Shiwen; Li, Xiaogang

    2018-02-01

    The role played by mould in the electrochemical migration (ECM) behaviour of an immersion silver finished printed circuit board (PCB-ImAg) under a direct current (DC) bias was investigated. An interesting phenomenon is found whereby mould, especially Aspergillus niger, can preferentially grow well on PCB-ImAg under electrical bias and then bridge integrated circuits and form a migration path. The cooperation of the mould and DC bias aggravates the ECM process occurring on PCB-ImAg. When the bias voltage is below 15V, ECM almost does not occur for Ag coating. Mechanisms that explain the ECM processes of PCB-ImAg in the presence of mould and DC bias are proposed. Copyright © 2017. Published by Elsevier B.V.

  2. Modelling the effect of ethanol on growth rate of food spoilage moulds

    NARCIS (Netherlands)

    Dantigny, P.; Guilmart, A.; Radoi, F.; Bensoussan, M.; Zwietering, M.H.

    2005-01-01

    The effect of ethanol (E) on the radial growth rate (¿) of food spoilage moulds (Aspergillus candidus, Aspergillus flavus, Aspergillus niger, Cladosporium cladosporioides, Eurotium herbariorum, Mucor circinelloides, Mucor racemosus, Paecilomyces variotii, Penicillium chrysogenum, Penicillium

  3. Detection methods for centrifugal microfluidic platforms

    DEFF Research Database (Denmark)

    Burger, Robert; Amato, Letizia; Boisen, Anja

    2016-01-01

    Centrifugal microfluidics has attracted much interest from academia as well as industry, since it potentially offers solutions for affordable, user-friendly and portable biosensing. A wide range of so-called fluidic unit operations, e.g. mixing, metering, liquid routing, and particle separation...... for the centrifugal microfluidics platform and cover optical as well as mechanical and electrical detection principles....

  4. Preface book Microfluidics for medical applications

    NARCIS (Netherlands)

    van den Berg, Albert; Segerink, Loes Irene

    2015-01-01

    This book presents an overview of the major microfluidics techniques and platforms used for medicine and medical applications, providing the reader with an overview of the recent developments in this field. It is divided in three parts: (1) tissue and organs on-chip, (2) microfluidics for medicine

  5. Cell Culture Microfluidic Biochips: Experimental Throughput Maximization

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2011-01-01

    Microfluidic biochips offer a promising alternative to a conventional biochemical laboratory, integrating all necessary functionalities on-chip in order to perform biochemical applications. Researchers have started to propose computer-aided design tools for the synthesis of such biochips. Our focus...... metaheuristic for experimental design generation for the cell culture microfluidic biochips, and we have evaluated our approach using multiple experimental setups....

  6. Modular microfluidic system for biological sample preparation

    Science.gov (United States)

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean

    2015-09-29

    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.

  7. Principles, Techniques, and Applications of Tissue Microfluidics

    Science.gov (United States)

    Wade, Lawrence A.; Kartalov, Emil P.; Shibata, Darryl; Taylor, Clive

    2011-01-01

    The principle of tissue microfluidics and its resultant techniques has been applied to cell analysis. Building microfluidics to suit a particular tissue sample would allow the rapid, reliable, inexpensive, highly parallelized, selective extraction of chosen regions of tissue for purposes of further biochemical analysis. Furthermore, the applicability of the techniques ranges beyond the described pathology application. For example, they would also allow the posing and successful answering of new sets of questions in many areas of fundamental research. The proposed integration of microfluidic techniques and tissue slice samples is called "tissue microfluidics" because it molds the microfluidic architectures in accordance with each particular structure of each specific tissue sample. Thus, microfluidics can be built around the tissues, following the tissue structure, or alternatively, the microfluidics can be adapted to the specific geometry of particular tissues. By contrast, the traditional approach is that microfluidic devices are structured in accordance with engineering considerations, while the biological components in applied devices are forced to comply with these engineering presets.

  8. Opportunities for microfluidic technologies in synthetic biology

    OpenAIRE

    Gulati, Shelly; Rouilly, Vincent; Niu, Xize; Chappell, James; Kitney, Richard I.; Edel, Joshua B.; Freemont, Paul S.; deMello, Andrew J.

    2009-01-01

    We introduce microfluidics technologies as a key foundational technology for synthetic biology experimentation. Recent advances in the field of microfluidics are reviewed and the potential of such a technological platform to support the rapid development of synthetic biology solutions is discussed.

  9. Microfluidic magnetic switching valves based on aggregates of magnetic nanoparticles: Effects of aggregate length and nanoparticle sizes

    Energy Technology Data Exchange (ETDEWEB)

    Jiemsakul, Thanakorn [National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120 (Thailand); Manakasettharn, Supone, E-mail: supone@nanotec.or.th [National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120 (Thailand); Kanharattanachai, Sivakorn; Wanna, Yongyuth [College of Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok 10520 (Thailand); Wangsuya, Sujint [College of Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok 10520 (Thailand); Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400 (Thailand); Pratontep, Sirapat [College of Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok 10520 (Thailand)

    2017-01-15

    We demonstrate microfluidic switching valves using magnetic nanoparticles blended within the working fluid as an alternative microfluidic flow control in microchannels. Y-shaped microchannels have been fabricated by using a CO{sub 2} laser cutter to pattern microchannels on transparent poly(methyl methacrylate) (PMMA) sheets covered with thermally bonded transparent polyvinyl chloride (PVC) sheets. To examine the performance of the microfluidic magnetic switching valves, an aqueous magnetic nanoparticle suspension was injected into the microchannels by a syringe pump. Neodymium magnets were then employed to attract magnetic nanoparticles and form an aggregate that blocked the microchannels at a required position. We have found that the maximum volumetric flow rate of the syringe pump that the magnetic nanoparticle aggregate can withstand scales with the square of the external magnetic flux density. The viscosity of the fluid exhibits dependent on the aggregate length and the size of the magnetic nanoparticles. This microfluidic switching valve based on aggregates of magnetic nanoparticles has strong potentials as an on-demand flow control, which may help simplifying microfluidic channel designs. - Highlights: • We demonstrate microfluidic switching valves based on aggregates of magnetic particles. • Maximum flow rate that the aggregate can withstand scales with the square of the external magnetic flux density. • Aggregates with smaller magnetic nanoparticle size can withstand higher flow rate. • Aggregate length exhibits a linear dependence with flow resistance of a viscous fluid.

  10. Inhibitory Properties of Lactic Acid Bacteria against Moulds Associated with Spoilage of Bakery Products

    OpenAIRE

    I. A. Adesina; A. O. Ojokoh; D. J. Arotupin

    2017-01-01

    Aim: To evaluate the potentiality of LAB strains isolated from different fermented products to inhibit moulds associated with spoilage of bakery products. Methodology: Lactic acid bacterial (LAB) strains obtained from fermented products (“burukutu”, “pito”, yoghurt, and “iru”) were screened for antifungal activity against moulds (Aspergillus flavus, Aspergillus fumigatus, Aspergillus repens and Penicillium sp.) isolated from spoilt bakery products. Inhibitory activities of the lactic acid...

  11. Manuscript title: antifungal proteins from moulds: analytical tools and potential application to dry-ripened foods.

    Science.gov (United States)

    Delgado, Josué; Owens, Rebecca A; Doyle, Sean; Asensio, Miguel A; Núñez, Félix

    2016-08-01

    Moulds growing on the surface of dry-ripened foods contribute to their sensory qualities, but some of them are able to produce mycotoxins that pose a hazard to consumers. Small cysteine-rich antifungal proteins (AFPs) from moulds are highly stable to pH and proteolysis and exhibit a broad inhibition spectrum against filamentous fungi, providing new chances to control hazardous moulds in fermented foods. The analytical tools for characterizing the cellular targets and affected pathways are reviewed. Strategies currently employed to study these mechanisms of action include 'omics' approaches that have come to the forefront in recent years, developing in tandem with genome sequencing of relevant organisms. These techniques contribute to a better understanding of the response of moulds against AFPs, allowing the design of complementary strategies to maximize or overcome the limitations of using AFPs on foods. AFPs alter chitin biosynthesis, and some fungi react inducing cell wall integrity (CWI) pathway. However, moulds able to increase chitin content at the cell wall by increasing proteins in either CWI or calmodulin-calcineurin signalling pathways will resist AFPs. Similarly, AFPs increase the intracellular levels of reactive oxygen species (ROS), and moulds increasing G-protein complex β subunit CpcB and/or enzymes to efficiently produce glutathione may evade apoptosis. Unknown aspects that need to be addressed include the interaction with mycotoxin production by less sensitive toxigenic moulds. However, significant steps have been taken to encourage the use of AFPs in intermediate-moisture foods, particularly for mould-ripened cheese and meat products.

  12. Applications of Microfluidics in Quantitative Biology.

    Science.gov (United States)

    Bai, Yang; Gao, Meng; Wen, Lingling; He, Caiyun; Chen, Yuan; Liu, Chenli; Fu, Xiongfei; Huang, Shuqiang

    2018-05-01

    Quantitative biology is dedicated to taking advantage of quantitative reasoning and advanced engineering technologies to make biology more predictable. Microfluidics, as an emerging technique, provides new approaches to precisely control fluidic conditions on small scales and collect data in high-throughput and quantitative manners. In this review, the authors present the relevant applications of microfluidics to quantitative biology based on two major categories (channel-based microfluidics and droplet-based microfluidics), and their typical features. We also envision some other microfluidic techniques that may not be employed in quantitative biology right now, but have great potential in the near future. © 2017 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  13. Development of an Integrated Polymer Microfluidic Stack

    International Nuclear Information System (INIS)

    Datta, Proyag; Hammacher, Jens; Pease, Mark; Gurung, Sitanshu; Goettert, Jost

    2006-01-01

    Microfluidic is a field of considerable interest. While significant research has been carried out to develop microfluidic components, very little has been done to integrate the components into a complete working system. We present a flexible modular system platform that addresses the requirements of a complete microfluidic system. A microfluidic stack system is demonstrated with the layers of the stack being modular for specific functions. The stack and accompanying infrastructure provides an attractive platform for users to transition their design concepts into a working microfluidic system quickly with very little effort. The concept is demonstrated by using the system to carry out a chemilumiscence experiment. Details regarding the fabrication, assembly and experimental methods are presented

  14. Practical Packaging Technology for Microfluidic Systems

    International Nuclear Information System (INIS)

    Lee, Hwan Yong; Han, Song I; Han, Ki Ho

    2010-01-01

    This paper presents the technology for the design, fabrication, and characterization of a microfluidic system interface (MSI): the purpose of this technology is to enable the integration of complex microfluidic systems. The MSI technology can be applied in a simple manner for realizing complex arrangements of microfluidic interconnects, integrated microvalves for fluid control, and optical windows for on-chip optical processes. A microfluidic system for the preparation of genetic samples was used as the test vehicle to prove the effectiveness of the MSI technology for packaging complex microfluidic systems with multiple functionalities. The miniaturized genetic sample preparation system comprised several functional compartments, including compartments for cell purification, cell separation, cell lysis, solid-phase DNA extraction, polymerase chain reaction, and capillary electrophoresis. Additionally, the functional operation of the solid-phase extraction and PCR thermocycling compartments was demonstrated by using the MSI

  15. Manipulation of microfluidic droplets by electrorheological fluid

    KAUST Repository

    Zhang, Menying

    2009-09-01

    Microfluidics, especially droplet microfluidics, attracts more and more researchers from diverse fields, because it requires fewer materials and less time, produces less waste and has the potential of highly integrated and computer-controlled reaction processes for chemistry and biology. Electrorheological fluid, especially giant electrorheological fluid (GERF), which is considered as a kind of smart material, has been applied to the microfluidic systems to achieve active and precise control of fluid by electrical signal. In this review article, we will introduce recent results of microfluidic droplet manipulation, GERF and some pertinent achievements by introducing GERF into microfluidic system: digital generation, manipulation of "smart droplets" and droplet manipulation by GERF. Once it is combined with real-time detection, integrated chip with multiple functions can be realized. © 2009 Wiley-VCH Verlag GmbH & Co. KGaA.

  16. The presence of undesirable mould species on the surface of dry sausages

    Directory of Open Access Journals (Sweden)

    Vesković-Moračanin Slavica M.

    2008-01-01

    Full Text Available Transition from manufacture to the industrial way of meat production and processing, as well as contemporary concept of food quality and safety, have led to the application of starter cultures. Their application leads towards the streamlining of the production process in the desired direction, quality improvement and its harmonization, and thereby to its standardization. Application of moulds in the meat industry is based on positive effects of their proteolytic and lipolytic egzoenzymes which, as a consequence, leads to the creation of characteristic sensory properties ('flavor' of fermented products. Penicillium nalgiovense is a typical representative of moulds used in the production of fermented sausages-salamis from our region. Samples of 'zimska salama' (dry sausage, produced with Penicillium nalgiovense, were evaluated as hygienically unacceptable. Their sensory properties changed due to contamination of this mould during the ripening process. Micological analysis discovered the presence of Penicillium aurantiogriseum, which is a frequent mould contaminant in the meat industry. At the same time, thin layer chromatography revealed no possibility of metabolic activity of this mould in the creation of mycotoxins. However, the presence of this mould on the surface of 'zimska salama' is considered as undesirable due to formation of 'off flavor' in products. Such product is considered as hygienically unacceptable and cannot be used for the human consumption.

  17. Study on the Mould-Resistant Properties of Moso Bamboo Treated with High Pressure and Amylase

    Directory of Open Access Journals (Sweden)

    Xiao-Dong Huang

    2013-11-01

    Full Text Available Starch of moso bamboo mainly exists in the elongated parenchyma cells, and it is difficult for amylase to enter moso bamboo and dissolve the starch. Therefore, the mould resistance capability of moso bamboo’s products cannot meet the need for bamboo to resist fungal decay. In this experiment, moso bamboo blocks were first treated at six levels of pressure and for six different treatment durations. The results showed that reducing sugar content was decreased dramatically from 0.92 mg/L to 0.19 mg/L and the starch content decreased from 1.18% to 0.96% when the pressure was increased from 0 psi to 100 psi. Regression analysis showed that the effects of an individual amylase reaction and individual pressure treatment on the starch or reducing sugar content were significant with a high correlation coefficient. Three traditional types of moso bamboo moulds (Aspergillus niger, Penicillium citrinum, and Trichoderma viride were then used for mould resistance testing. The results revealed that the mould resistance capability of moso bamboo blocks could be greatly improved by the combined effect of enzyme activity and pressure treatment. Mould resistance was enhanced by increasing the pressure or prolonging the treatment time. This research could provide a new method for the protection of bamboo from mould attack.

  18. Research Progress of Microfluidic Chips Preparation and its Optical Element

    Directory of Open Access Journals (Sweden)

    Feng WANG

    2014-03-01

    Full Text Available Microfluidic technology is the emerging technologies in researching fluid channel and related applications in the micro and nano-scale space. Microfluidic chip is a new miniaturized rapid analysis platform by microfluidic technology, it has many characteristics such as liquid flow control, minimal reagent consumption, rapid analysis, which is widely used in physics, chemistry, biology, and engineering science and other fields, it has strong interdisciplinary. This paper mainly discusses research progress of materials used for microfluidic chips and the devices based on microfluidic technology, including microfluidic chip, microfluidic optical devices, microfluidic laser preparation, microfluidic chip applications, focusing on the quasi-molecular laser processing technology and femtosecond laser processing technology in the microfluidic devices preparation, and make development prospects for it.

  19. Optical calorimetry in microfluidic droplets.

    Science.gov (United States)

    Chamoun, Jacob; Pattekar, Ashish; Afshinmanesh, Farzaneh; Martini, Joerg; Recht, Michael I

    2018-05-29

    A novel microfluidic calorimeter that measures the enthalpy change of reactions occurring in 100 μm diameter aqueous droplets in fluoropolymer oil has been developed. The aqueous reactants flow into a microfluidic droplet generation chip in separate fluidic channels, limiting contact between the streams until immediately before they form the droplet. The diffusion-driven mixing of reactants is predominantly restricted to within the droplet. The temperature change in droplets due to the heat of reaction is measured optically by recording the reflectance spectra of encapsulated thermochromic liquid crystals (TLC) that are added to one of the reactant streams. As the droplets travel through the channel, the spectral characteristics of the TLC represent the internal temperature, allowing optical measurement with a precision of ≈6 mK. The microfluidic chip and all fluids are temperature controlled, and the reaction heat within droplets raises their temperature until thermal diffusion dissipates the heat into the surrounding oil and chip walls. Position resolved optical temperature measurement of the droplets allows calculation of the heat of reaction by analyzing the droplet temperature profile over time. Channel dimensions, droplet generation rate, droplet size, reactant stream flows and oil flow rate are carefully balanced to provide rapid diffusional mixing of reactants compared to thermal diffusion, while avoiding thermal "quenching" due to contact between the droplets and the chip walls. Compared to conventional microcalorimetry, which has been used in this work to provide reference measurements, this new continuous flow droplet calorimeter has the potential to perform titrations ≈1000-fold faster while using ≈400-fold less reactants per titration.

  20. Reengineering of Permanent Mould Casting with Lean Manufacturing Methods

    Directory of Open Access Journals (Sweden)

    R. Władysiak

    2007-07-01

    Full Text Available At the work were introduced main areas of production system project of casts produced in permanent moulds, that constitutes reengineering of conventional production system according to Lean Manufacturing (LM methods. New resolution of cooling of dies with water mist was shown to casting of car wheels made from aluminium alloys in low pressure casting process. It was implemented as a part of goal-oriented project in R.H. Alurad Sp.z o.o. in Gorzyce. Its using intensifies solidification and self-cooling of casts shortening the time of casting cycle by the 30%. It was described reorganizing casting stations into multi-machines cells production and the process of their fast tool’s exchange with applying the SMED method. A project of the system was described controlling the production of the foundry with the computer aided light Kanban system. A visualization of the process was shown the production of casts with use the value stream mapping method. They proved that applying casting new method in the technology and LM methods allowed to eliminate down-times, to reduce the level of stocks, to increase the productivity and the flow of the castings production.

  1. Error analysis in predictive modelling demonstrated on mould data.

    Science.gov (United States)

    Baranyi, József; Csernus, Olívia; Beczner, Judit

    2014-01-17

    The purpose of this paper was to develop a predictive model for the effect of temperature and water activity on the growth rate of Aspergillus niger and to determine the sources of the error when the model is used for prediction. Parallel mould growth curves, derived from the same spore batch, were generated and fitted to determine their growth rate. The variances of replicate ln(growth-rate) estimates were used to quantify the experimental variability, inherent to the method of determining the growth rate. The environmental variability was quantified by the variance of the respective means of replicates. The idea is analogous to the "within group" and "between groups" variability concepts of ANOVA procedures. A (secondary) model, with temperature and water activity as explanatory variables, was fitted to the natural logarithm of the growth rates determined by the primary model. The model error and the experimental and environmental errors were ranked according to their contribution to the total error of prediction. Our method can readily be applied to analysing the error structure of predictive models of bacterial growth models, too. © 2013.

  2. Simulation of mould filling process for composite skeleton castings

    Directory of Open Access Journals (Sweden)

    M. Dziuba

    2008-04-01

    Full Text Available In this work authors showed selected results of simulation and experimental studies on temperature distribution during solidification of skeleton casting and mould filling process. The aim of conducted simulations was the choice of thermal and geometrical parameters for the needs of designed calculations of the skeleton castings and the estimation of the guidelines for the technology of manufacturing. The subject of numerical simulation was the analysis of ability of filling the channels of core by liquid metal at estability technological parameters.. Below the assumptions and results of the initial simulated calculations are presented. The total number of the nodes in the casting was 1920 and of the connectors was 5280 what gave filling of 100% for the nodes and 99,56% for the connectors in the results of the simulation. Together it resulted as 99,78 % of filling the volume of the casting. The nodes and connectors were filled up to the 30 level of the casting in the simulation. The all connectors were filled up to the 25 level of the casting in the simulation. Starting from the 25 level individual connectors at the side surface of the casting weren’t filled up. The connectors weren’t supplied by multi-level getting system. The differences of filling the levels are little (maximally 5 per cent.

  3. Birefringence in heat-mechanical modified freshly moulded polyester fibers

    Energy Technology Data Exchange (ETDEWEB)

    Velev, V; Dimov, T; Popov, A; Denev, Y; Hristov, H; Angelov, T; Markova, K; Zagortcheva, M; Arhangelova, N; Uzunov, N, E-mail: v.velev@shu-bg.ne

    2010-11-01

    The article submits new experimental data concerning to the role of combined thermo-mechanical treatments on the structural development of freshly moulded uncrystallized but crystallizable poly (ethylene terephthalate) (PET) fibers. The object of the present work is PET as a thermoplastic polymer with a large practical application. The report is devoted to the influence of the heat-mechanical modification temperature on the structure rearrangement in uniaxially orientated amorphous PET. The heat-mechanical modification of the investigated yarns and the optical measurements were realized by specialized gears constructed and built in the author's laboratories. The fibers heat-mechanical modification includes samples annealing at constant temperature above their glass transition temperature (T{sub g}) without strain stress. The yarn annealing has been followed from well defined uniaxially strain-loading with values from 0 MPa up to 30 MPa during two minutes. The optical measurements were carried out by an optical system using a polarization microscope and a CCD camera. The obtained experimental data has been analyzed by Mocha-1.2 (Jandel Scientific) software. There are established dependences between the heat-mechanical modification mode and the structural rearrangements running in the studied PET samples.

  4. Dimensional measurement of micro-moulded parts by computed tomography

    DEFF Research Database (Denmark)

    Ontiveros, S.; Yagüe-Fabra, J.A.; Jiménez, R.

    2012-01-01

    Computed tomography (CT) is progressively assuming an important role in metrology applications and great efforts are being made in order to turn it into a reliable and standardized measuring technology. CT is typically used for non-destructive tests, but it is currently becoming very popular for ...... and the analysis of the results provide valuable conclusions about the advantages and drawbacks of using CT metrology in comparison with other measuring systems when these techniques are employed for the quality control of micro-moulded parts.......Computed tomography (CT) is progressively assuming an important role in metrology applications and great efforts are being made in order to turn it into a reliable and standardized measuring technology. CT is typically used for non-destructive tests, but it is currently becoming very popular...... for dimensional metrology applications due to its strategic advantages such as the capability of performing measurements on both the component's surface and volume, allowing inspection possibilities to otherwise non-accessible internal features. This paper focuses on the dimensional verification of two micro...

  5. Biosolubilization gamma irradiate ion result coal by mould trichoderma sp

    International Nuclear Information System (INIS)

    Pingkan Aditiawati; Dea Indriani Astuti; Irawan Sugoro; Dwiwahju Sasongko

    2011-01-01

    Biosolubilization of coal is process of converting solid coal to liquid fuel/chemicals by mean of microorganism. The aim of this research was to study the effect of gamma rays irradiation with varian doses of irradiation into solubilization of subbituminous coal by Trichoderma sp. The dosage used was 5, 10, and 20 kGy and unirradiated coal as control. The method was submerged culture in MSS+ medium and incubated at room temperature and agitated at 150 rpm for 21 th days. The parameters observed were colonization, pH and biosolubilization product based on absorbance value at λ 250nm and λ 450nm and GC/MS analysis for the best treatment. The results showed that coal biosolubilization could be increased by gamma irradiation. The mould could growth well in medium containing irradiated coal and the medium of pH was decreased after incubation. The biosolubilization was increased but the irradiation dosage of coal didn't affect significantly. The best dose was 20 kGy with product biosolubilization similar to gasoline and solar. Based on the result, the pre-treatment of gamma irradiation on coal has potency to increased biosolubilization. (author)

  6. Comparison of two setups for induction heating in injection molding

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano

    2015-01-01

    To eliminate defects and improve the quality of molded parts, increasing the mold temperature is one of the applicable solutions. A high mold temperature can increase the path flow of the polymer inside the cavity allowing reduction of the number of injection points, reduction of part thickness......, and moulding of smaller and more complex geometries. The last two aspects are very important in micro injection molding. In this paper, a new embedded induction heating system is proposed and validated and two different coil setups were tested and compared. An experimental investigation was performed based...

  7. Magnetic separation in microfluidic systems

    DEFF Research Database (Denmark)

    Smistrup, Kristian

    2007-01-01

    to facilitate real-time monitoring of the experiments. The set-up and experimental protocol are described in detail. Results are presented for ’active’ magnetic bead separators, where on-chip microfabricated electromagnets supply the magnetic field and field gradients necessary for magnetic bead separation....... It is shown conceptually how such a system can be applied for parallel biochemical processing in a microfluidic system. ’Passive’ magnetic separators are presented, where on-chip soft magnetic elements are magnetized by an external magnetic field and create strong magnetic fields and gradients inside...

  8. Microfluidics and microscale transport processes

    CERN Document Server

    Chakraborty, Suman

    2012-01-01

    With an intense focus on micro- and nanotechnology from a fluidic perspective, this book details the research activities in key directions on both the theoretical and experimental fronts. As part of the IIT Kharagpur Research Monograph series, the text discusses topics such as capillary transport in microchannels, fluid friction and heat transfer in microchannels, electrokinetics, and interfacial transport in nanochannels. It also covers nanoparticle transport in colloidal suspensions, bubble generation in microfluidic channels, micro-heat pipe, the lattice Boltzmann method for phase changing

  9. Microfluidic Approach to Cell Microencapsulation.

    Science.gov (United States)

    Sharma, Varna; Hunckler, Michael; Ramasubramanian, Melur K; Opara, Emmanuel C; Katuri, Kalyan C

    2017-01-01

    Bioartificial pancreas made of insulin-secreting islets cells holds great promise in the treatment of individuals with Type-1 diabetes. Successful islet cell microencapsulation in biopolymers is a key step for providing immunoisolation of transplanted islet cells. Because of the variability in the size and shape of pancreatic islets, one of the main obstacles in their microencapsulation is the inability to consistently control shape, size, and microstructure of the encapsulating biopolymer capsule. In this chapter, we provide a detailed description of a microfluidic approach to islet cell encapsulation in alginate that might address the microencapsulation challenges.

  10. Self-contained microfluidic systems: a review.

    Science.gov (United States)

    Boyd-Moss, Mitchell; Baratchi, Sara; Di Venere, Martina; Khoshmanesh, Khashayar

    2016-08-16

    Microfluidic systems enable rapid diagnosis, screening and monitoring of diseases and health conditions using small amounts of biological samples and reagents. Despite these remarkable features, conventional microfluidic systems rely on bulky expensive external equipment, which hinders their utility as powerful analysis tools outside of research laboratories. 'Self-contained' microfluidic systems, which contain all necessary components to facilitate a complete assay, have been developed to address this limitation. In this review, we provide an in-depth overview of self-contained microfluidic systems. We categorise these systems based on their operating mechanisms into three major groups: passive, hand-powered and active. Several examples are provided to discuss the structure, capabilities and shortcomings of each group. In particular, we discuss the self-contained microfluidic systems enabled by active mechanisms, due to their unique capability for running multi-step and highly controllable diagnostic assays. Integration of self-contained microfluidic systems with the image acquisition and processing capabilities of smartphones, especially those equipped with accessory optical components, enables highly sensitive and quantitative assays, which are discussed. Finally, the future trends and possible solutions to expand the versatility of self-contained, stand-alone microfluidic platforms are outlined.

  11. Microfluidic cell culture systems for drug research.

    Science.gov (United States)

    Wu, Min-Hsien; Huang, Song-Bin; Lee, Gwo-Bin

    2010-04-21

    In pharmaceutical research, an adequate cell-based assay scheme to efficiently screen and to validate potential drug candidates in the initial stage of drug discovery is crucial. In order to better predict the clinical response to drug compounds, a cell culture model that is faithful to in vivo behavior is required. With the recent advances in microfluidic technology, the utilization of a microfluidic-based cell culture has several advantages, making it a promising alternative to the conventional cell culture methods. This review starts with a comprehensive discussion on the general process for drug discovery and development, the role of cell culture in drug research, and the characteristics of the cell culture formats commonly used in current microfluidic-based, cell-culture practices. Due to the significant differences in several physical phenomena between microscale and macroscale devices, microfluidic technology provides unique functionality, which is not previously possible by using traditional techniques. In a subsequent section, the niches for using microfluidic-based cell culture systems for drug research are discussed. Moreover, some critical issues such as cell immobilization, medium pumping or gradient generation in microfluidic-based, cell-culture systems are also reviewed. Finally, some practical applications of microfluidic-based, cell-culture systems in drug research particularly those pertaining to drug toxicity testing and those with a high-throughput capability are highlighted.

  12. Heater Choice, Dampness and Mould Growth in 26 New Zealand Homes: A Study of Propensity for Mould Growth Using Encapsulated Fungal Spores

    Directory of Open Access Journals (Sweden)

    Mikael Boulic

    2015-02-01

    Full Text Available The relationship between the use of unflued gas heaters (UGH, N = 14 and heat pump heaters (HP, N = 12 located in the living rooms, and mould growth on the living room and bedroom walls, of 26 New Zealand (NZ occupied homes was investigated during winter. Two methods were employed to evaluate the potential of mould growth on walls: (i measurement of daily hyphal growth rate using a fungal detector (encapsulated fungal spores; and (ii estimation of fungal contamination based on a four level scale visual inspection. The average wall psychrometric conditions were significantly different between the two heater type groups, in both the living rooms and the bedrooms with the UGH user homes being colder and damper than HP user homes. The UGHs were found to be a significant additional source of moisture in the living rooms which dramatically increased the capacity for fungi to grow on wall surfaces. The average daily hyphal growth rates were 4 and 16 times higher in the living rooms and in the bedrooms of the UGH user homes, respectively. Results from both mould detection methods gave good agreement, showing that the use of a fungal detector was an efficient method to predict the potential of mould growth on the inside of the external walls in NZ homes.

  13. Subcutaneous Injections

    DEFF Research Database (Denmark)

    Thomsen, Maria

    This thesis is about visualization and characterization of the tissue-device interaction during subcutaneous injection. The tissue pressure build-up during subcutaneous injections was measured in humans. The insulin pen FlexTouchr (Novo Nordisk A/S) was used for the measurements and the pressure ...

  14. Hydromorphone Injection

    Science.gov (United States)

    ... anyone else to use your medication. Store hydromorphone injection in a safe place so that no one else can use it accidentally or on purpose. Keep track of how much medication is left so ... with hydromorphone injection may increase the risk that you will develop ...

  15. Ketorolac Injection

    Science.gov (United States)

    ... an older adult, you should know that ketorolac injection is not as safe as other medications that can be used to treat your condition. Your doctor may choose to prescribe a different medication ... to ketorolac injection.Your doctor or pharmacist will give you the ...

  16. Paclitaxel Injection

    Science.gov (United States)

    (pak'' li tax' el)Paclitaxel injection must be given in a hospital or medical facility under the supervision of a doctor who is experienced in giving chemotherapy medications for cancer.Paclitaxel injection may cause a large decrease in the number of white blood cells (a type of blood cell ...

  17. A framework of cloud supported collaborative design in glass lens moulds based on aspheric measurement

    Science.gov (United States)

    Zhu, Yongjian; Wang, Yu; Na, Jingxin; Zhi, Yanan; Fan, Yufeng

    2013-09-01

    Aspheric mould design includes the top-down design and reversal design. In this paper, a new framework of reversal design is proposed combining with cloud supported collaborative design (CSCD) based on aspheric measurement. The framework is a kind of collaborative platform, which is composed of eight modules, including the computerized aspheric precision measurement module (CAPM), computer-aided optical design of aspheric lens system (CAOD), computer-aided design of lens mould (CADLM), FEM(finite element method) simulation of lens molding module (FEMLM), computer-aided manufacture of lens and moulds (CAMLM), measurement data analysis module (MDAM), optical product lifecycle management module (OPLM) and cloud computing network module (CCNM). In this framework, the remote clients send an improved requirement or fabrication demand about optical lens system through CCNM, which transfers this signal to OPLM. In OPLM, one main server is in charge of the task distribution and collaborative work of other six modules. The first measurement data of aspheric lens are produced by clients or our proposed platform CAPM, then are sent to CAOD for optimization and the electronic drawings of lens moulds are generated in CADLM module. According the design drawings, the FEMLM could give the lens-molding simulation parameters through FEM software. The simulation data are used for the second design of moulds in CADLM module. In this case, the moulds could be fabricated in CAMLM by ultra-precision machine, and the aspheric lens could be also produced by lens-molding machine in CAMLM. At last, the final shape of aspheric lens could be measured in CAPM and the data analysis could be conducted in MDAM module. Through the proposed framework, all the work described above could be performed coordinately. And the optimum design data of lens mould could be realized and saved, then shared by all the work team.

  18. Fluorescence detection system for microfluidic droplets

    Science.gov (United States)

    Chen, Binyu; Han, Xiaoming; Su, Zhen; Liu, Quanjun

    2018-05-01

    In microfluidic detection technology, because of the universality of optical methods in laboratory, optical detection is an attractive solution for microfluidic chip laboratory equipment. In addition, the equipment with high stability and low cost can be realized by integrating appropriate optical detection technology on the chip. This paper reports a detection system for microfluidic droplets. Photomultiplier tubes (PMT) is used as a detection device to improve the sensitivity of detection. This system improves the signal to noise ratio by software filtering and spatial filter. The fluorescence intensity is proportional to the concentration of the fluorescence and intensity of the laser. The fluorescence micro droplets of different concentrations can be distinguished by this system.

  19. Influence of the mould on the size of A A 8090 alloy in the material melting bulk state

    International Nuclear Information System (INIS)

    Bolfarini, Claudemiro

    1996-01-01

    Wedge like samples were casted into investment moulds of alumina and spodumen. The later were additionally coated with lithium, barium, magnesium and calcium fluorides and chlorides based salts and other special materials. It was used the 2,6% Li-containing alloy AA8090. The grain size was measured as a function of the wedge thickness nd mould material. The results showed a strong dependence of the grain size to the mould materials for the same cast conditions: pouring temperature, mould temperature and chemical composition of the alloy. The AA8090 alloy had no addition of titanium-boron based grain refiner. (author)

  20. The Influence of the Content of Furfuryl Alcohol Monomer on the Process of Moulding Sand's Thermal Destruction

    Directory of Open Access Journals (Sweden)

    Dobosz St. M.

    2014-10-01

    Full Text Available The article discusses the issue of the influence of furfuryl alcohol content in resin binders on properties of moulding sand at elevated temperature. Reducing the share of this component - due to the requirements of the European Union regarding its toxicity - may cause a decrease in temperature of moulding sands’ destruction and, consequently, the thermal deformation of moulds and the creation of many casting defects. The study examined the impact of the furfuryl alcohol content of the thermal destruction processes and on the strength of the moulding sand at an ambient temperature and the tendency to thermal deformation.

  1. CURING OF POLYMERIC COMPOSITES USING MICROWAVE RESIN TRANSFER MOULDING (RTM

    Directory of Open Access Journals (Sweden)

    R. YUSOFF

    2007-08-01

    Full Text Available The main objective of this work is to compare the difference between microwave heating and conventional thermal heating in fabricating carbon/epoxy composites. Two types of epoxy resin systems were used as matrices, LY5052-HY5052 and DGEBA-HY917-DY073. All composite samples were fabricated using resin transfer moulding (RTM technique. The curing of the LY5052-HY5052-carbon and the DGEBA-HY917-DY073-carbon composite systems, were carried out at 100 °C and 120 °C, respectively. Microwave heating showed better temperature control than conventional heating, however, the heating rate of the microwave cured samples were slower than the conventionally cured samples. This was attributed to the lower power (250 W used when heating with microwaves compared to 2000 W used in conventional heating. Study of thermal characteristics as curing progressed showed that the polymerisation reaction occurred at a faster rate during microwave curing than in conventional curing for both the DGEBA and the LY/HY5052 carbon composite systems. The actual cure cycle was reduced from 60 minutes to 40 minutes when using microwaves for curing DGEBA-carbon composites. As for LY/HY5052-carbon composites, the actual cure cycle was reduced from 3 hours to 40 minutes. Both conventional and microwave heating yielded similar glass transition temperatures (120 °C for DGEBA systems and 130 °C for LY/HY5052 systems. Microwave cured composites had higher void contents than conventionally cured composites (2.2-2.8% and 1.8-2.4% for DGEBA and LY/HY5052 microwave cured composites, respectively, compared to 0.2-0.4% for both DGEBA and LY/HY5052 thermally cured composites. C-scan traces showed that all composites, regardless of methods of curing, had minimal defects.

  2. Presurgical nasoalveolar moulding in unilateral cleft lip and palate

    Directory of Open Access Journals (Sweden)

    Mohammed Zuhaib

    2016-01-01

    Full Text Available Context: Presurgical nasoalveolar moulding (PNAM is a non-surgical method of reshaping the cleft lip, alveolus, palate and the nose to minimize the severity of the cleft deformity, before primary cheiloplastyand palatoplasty. In this context, PNAM proves to be an invaluable asset in the management of unilateral cleft lip and palate. Aims: The study was conducted to evaluate the effi cacy of PNAM in the management of unilateral cleft lip and palate with the following objectives: (1 To assess and compare the degree of reduction in the size of cleft palate and alveolus (pre-PNAM and post-PNAM. (2 To evaluate and compare the improvement in columellar length and correction of columellar deviation (pre-PNAM and post-PNAM. (3 To assess the changes in the position of the alar base and the alar cartilages. Settings and Design: Prospective study. Subjects and Methods: A prospective study consisting of, which included 20 patients with complete unilateral cleft lip and palate was conducted. The age at the start of PNAM treatment of the infants ranged from 2 to 44 days of age reporting to our institute between December 2011 and August 2013. All the patients underwent PNAM therapy before primary cheiloplasty at 6 months of age; clinical parameters were assessed pre- and post-therapy using photographs and dental study models of the maxilla. Statistical Analysis Used: Student's t-test for paired comparisons. Results: Results of the study showed a promising reduction in the cleft size before the surgery, signifi cant improvement in nasal symmetry, including the columellar length on the cleft side. Conclusions: PNAM is a valuable adjunct to our surgical armamentarium in dealing with the challenges of primary closure of unilateral cleft lip and palate thereby enhancing the overall surgical outcome. The advantages of this method include the simplicity of the procedure and improving the quality of surgical repair, particularly in obtaining tension free muscle

  3. Microinjection moulding of polymeric composites with functionalized carbon nanotubes =

    Science.gov (United States)

    Ferreira, Tania Sofia Araujo Figueiras

    Microinjection moulding of polymeric composites with functionalized carbon nanotubes The unique electronic, mechanical, and structural properties of carbon nanotubes (CNT) make them suitable for applications in the fields of electronics, sensors, medical devices, aerospace and automotive industries. The preparation of CNT/polymer nanocomposites presents particular interest among the various possible applications. However, the long entangled nanotubes form agglomerates that poses serious obstacles to further development of nanocomposites with the target properties. One of the approaches to overcome the CNT chemical inertness, enhance the compatibility with the matrix and improve homogeneous dispersion through the matrix is through its covalent functionalization. This is expected to improve the CNT interface with the polymer matrix, thus improving the mechanical properties of the nanocomposites at very low content. One of the purposes of this thesis was to implement the covalent modification of the CNT surface using a simple functionalization method, to increase the CNT surface reactivity and possibly help their dispersion into the polyamide matrix without inducing structural damage on the CNT. The functionalization of CNT was carried out through the 1,3-dipolar cycloaddition reaction of azomethine ylides using a solvent-free reaction route. CNT were successful functionalized with pyrrolidine groups through a simple and fast procedure that was scaled up, and may be compatible with current industrial processes. Another objective was to disperse the CNT in polyamide 6 (PA6) using melt mixing, and to produce PA6/CNT nanocomposites by microinjection molding (plM). Finally, the morphological and physical properties of the mouldings produced were evaluated. The plM process is becoming of greater importance for the manufacturing of polymeric micro- components considering its low cost and short cycle times, useful for mass production. The as-received and functionalized CNT

  4. Microfluidic biolector-microfluidic bioprocess control in microtiter plates.

    Science.gov (United States)

    Funke, Matthias; Buchenauer, Andreas; Schnakenberg, Uwe; Mokwa, Wilfried; Diederichs, Sylvia; Mertens, Alan; Müller, Carsten; Kensy, Frank; Büchs, Jochen

    2010-10-15

    In industrial-scale biotechnological processes, the active control of the pH-value combined with the controlled feeding of substrate solutions (fed-batch) is the standard strategy to cultivate both prokaryotic and eukaryotic cells. On the contrary, for small-scale cultivations, much simpler batch experiments with no process control are performed. This lack of process control often hinders researchers to scale-up and scale-down fermentation experiments, because the microbial metabolism and thereby the growth and production kinetics drastically changes depending on the cultivation strategy applied. While small-scale batches are typically performed highly parallel and in high throughput, large-scale cultivations demand sophisticated equipment for process control which is in most cases costly and difficult to handle. Currently, there is no technical system on the market that realizes simple process control in high throughput. The novel concept of a microfermentation system described in this work combines a fiber-optic online-monitoring device for microtiter plates (MTPs)--the BioLector technology--together with microfluidic control of cultivation processes in volumes below 1 mL. In the microfluidic chip, a micropump is integrated to realize distinct substrate flow rates during fed-batch cultivation in microscale. Hence, a cultivation system with several distinct advantages could be established: (1) high information output on a microscale; (2) many experiments can be performed in parallel and be automated using MTPs; (3) this system is user-friendly and can easily be transferred to a disposable single-use system. This article elucidates this new concept and illustrates applications in fermentations of Escherichia coli under pH-controlled and fed-batch conditions in shaken MTPs. Copyright 2010 Wiley Periodicals, Inc.

  5. Changes of gas pressure in sand mould during cast iron pouring

    Directory of Open Access Journals (Sweden)

    J. Mocek

    2011-10-01

    Full Text Available The paper presents a test method developed to measure changes of gas pressure in sand moulds during manufacture of iron castings. The pressure and temperature measurements were taken in the sand mould layers directly adjacent to the metal – mould interface. A test stand was described along with the measurement methodology. The sensors used allowed studying the fast-changing nature of the processes which give rise to the gas-originated casting defects. The study examined the influence of binders, clays and refining additives on the nature of the gas evolution process. The effect of the base sand type - quartz or olivine - on the nature of pressure changes was compared. The test stand design ensured the stability of technological parameters in the examined mould elements, and a repeatable process of making pilot castings. The main outcome was classification of sand mixtures in terms of pressure occurring during pouring of iron castings. The obtained results confirm the usefulness of the described method for testing gas pressure occurrence in a sand mould.

  6. Moulding Sands with New InorganicBinders - Ecology Assessment in the Aspect of Work Environment

    Directory of Open Access Journals (Sweden)

    I. Szanda

    2012-09-01

    Full Text Available The development of economy and industry introducing new technologies and materials often means the increased threat of occurrenceof factors harmful to humans and environment. Workers employed in foundries as mould pourers are the group of high professional risk.Foundry moulding sands when poured with liquid metal are a source of the emission of harmful, toxic and carcinogenic (benzene,PAHs compounds.The paper presents the results of studies on the concentration of chemical compounds emitted in the process of casting aluminiumalloy and brass using moulding sands with the new inorganic binders. The specific values of the exposure indices were compared with thelimit values. This enabled an assessment of the impact of moulding sands on work environment. The obtained results were compared withthe values of contaminants emitted when pouring foundry moulds made from furan sands and bentonite sands with an addition of coaldust.Studies were carried out under the project POIG.01.01.02-00-015/09 "Advanced materials and technologies."

  7. Fungi associated with black mould on baobab trees in southern Africa.

    Science.gov (United States)

    Cruywagen, Elsie M; Crous, Pedro W; Roux, Jolanda; Slippers, Bernard; Wingfield, Michael J

    2015-07-01

    There have been numerous reports in the scientific and popular literature suggesting that African baobab (Adansonia digitata) trees are dying, with symptoms including a black mould on their bark. The aim of this study was to determine the identity of the fungi causing this black mould and to consider whether they might be affecting the health of trees. The fungi were identified by sequencing directly from mycelium on the infected tissue as well as from cultures on agar. Sequence data for the ITS region of the rDNA resulted in the identification of four fungi including Aureobasidium pullulans, Toxicocladosporium irritans and a new species of Rachicladosporium described here as Rachicladosporium africanum. A single isolate of an unknown Cladosporium sp. was also found. These fungi, referred to here as black mould, are not true sooty mould fungi and they were shown to penetrate below the bark of infected tissue, causing a distinct host reaction. Although infections can lead to dieback of small twigs on severely infected branches, the mould was not found to kill trees.

  8. Active binder content as a factor of the control system of the moulding sand quality

    Directory of Open Access Journals (Sweden)

    J. Jakubski

    2011-01-01

    Full Text Available One of the modern methods of the production optimisation are artificial neural networks. Neural networks are gaining broader and broaderapplication in the foundry industry, among others for controlling melting processes in cupolas and in arc furnaces, for designing castingsand supply systems, for controlling moulding sand processing, for predicting properties of cast alloys or selecting parameters of pressurecastings. An attempt to apply neural networks for controlling the quality of bentonite moulding sands is presented in this paper. This is theassessment method of sands suitability by means of detecting correlations between their individual parameters. The presentedinvestigations were obtained by using the Statistica 9.0 program. The presented investigations were aimed at the selection of the neuralnetwork able to predict the active bentonite content in the moulding sand on the basis of this sand properties such as: permeability,compactibility and the compressive strength. An application of the Statistica program allowed to select automatically the type of networkproper for the representation of dependencies occurring in between the proposed moulding sand parameters. The most advantageousconditions were obtained for the uni-directional multi-layer perception (MLP network. Knowledge of the neural network sensitivity to individual moulding sand parameters, allowed to eliminate not essential ones.

  9. Placement suitability criteria of composite tape for mould surface in automated tape placement

    Directory of Open Access Journals (Sweden)

    Zhang Peng

    2015-10-01

    Full Text Available Automated tape placement is an important automated process used for fabrication of large composite structures in aeronautical industry. The carbon fiber composite parts realized with this process tend to replace the aluminum parts produced by high-speed machining. It is difficult to determine the appropriate width of the composite tape in automated tape placement. Wrinkling will appear in the tape if it does not suit for the mould surface. Thus, this paper deals with establishing placement suitability criteria of the composite tape for the mould surface. With the assumptions for ideal mapping and by applying some principles and theorems of differential geometry, the centerline trajectory of the composite tape is identified to follow the geodesic. The placement suitability of the composite tape is examined on three different types of non-developable mould surfaces and four criteria are derived. The developed criteria have been used to test the deposition process over several mould surfaces and the appropriate width for each mould surface is obtained by referring to these criteria.

  10. Centrifugal micro-fluidic platform for radiochemistry: Potentialities for the chemical analysis of nuclear spent fuels

    International Nuclear Information System (INIS)

    Bruchet, Anthony; Mariet, Clarisse; Taniga, Velan; Descroix, Stephanie; Malaquin, Laurent; Goutelard, Florence

    2013-01-01

    The use of a centrifugal micro-fluidic platform is for the first time reported as an alternative to classical chromatographic procedures for radiochemistry. The original design of the micro-fluidic platform has been thought to fasten and simplify the prototyping process with the use of a circular platform integrating four rectangular microchips made of thermoplastic. The microchips, dedicated to anion-exchange chromatographic separations, integrate a localized monolithic stationary phase as well as injection and collection reservoirs. The results presented here were obtained with a simplified simulated nuclear spent fuel sample composed of non-radioactive isotopes of Europium and Uranium, in proportion usually found for uranium oxide nuclear spent fuel. While keeping the analytical results consistent with the conventional procedure (extraction yield for Europium of ∼97%), the use of the centrifugal micro-fluidic platform allowed to reduce the volume of liquid needed by a factor of ∼250. Thanks to their unique 'easy-to-use' features, centrifugal micro-fluidic platforms are potential successful candidates for the down-scaling of chromatographic separation of radioactive samples (automation, multiplexing, easy integration in glove-boxes environment and low cost of maintenance). (authors)

  11. A Microfluidic Platform to design crosslinked Hyaluronic Acid Nanoparticles (cHANPs) for enhanced MRI

    Science.gov (United States)

    Russo, Maria; Bevilacqua, Paolo; Netti, Paolo Antonio; Torino, Enza

    2016-11-01

    Recent advancements in imaging diagnostics have focused on the use of nanostructures that entrap Magnetic Resonance Imaging (MRI) Contrast Agents (CAs), without the need to chemically modify the clinically approved compounds. Nevertheless, the exploitation of microfluidic platforms for their controlled and continuous production is still missing. Here, a microfluidic platform is used to synthesize crosslinked Hyaluronic Acid NanoParticles (cHANPs) in which a clinically relevant MRI-CAs, gadolinium diethylenetriamine penta-acetic acid (Gd-DTPA), is entrapped. This microfluidic process facilitates a high degree of control over particle synthesis, enabling the production of monodisperse particles as small as 35 nm. Furthermore, the interference of Gd-DTPA during polymer precipitation is overcome by finely tuning process parameters and leveraging the use of hydrophilic-lipophilic balance (HLB) of surfactants and pH conditions. For both production strategies proposed to design Gd-loaded cHANPs, a boosting of the relaxation rate T1 is observed since a T1 of 1562 is achieved with a 10 μM of Gd-loaded cHANPs while a similar value is reached with 100 μM of the relevant clinical Gd-DTPA in solution. The advanced microfluidic platform to synthesize intravascularly-injectable and completely biocompatible hydrogel nanoparticles entrapping clinically approved CAs enables the implementation of straightforward and scalable strategies in diagnostics and therapy applications.

  12. Particle Manipulation Methods in Droplet Microfluidics.

    Science.gov (United States)

    Tenje, Maria; Fornell, Anna; Ohlin, Mathias; Nilsson, Johan

    2018-02-06

    This Feature describes the different particle manipulation techniques available in the droplet microfluidics toolbox to handle particles encapsulated inside droplets and to manipulate whole droplets. We address the advantages and disadvantages of the different techniques to guide new users.

  13. Microfluidic Analytical Separator for Proteomics, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a microfluidic device designed to effect a 2-dimensional resolution of a mixture of proteins based on isoelectric point (pI) and molecular...

  14. Microfluidic Multichannel Flow Cytometer, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a "Microfluidic Multichannel Flow Cytometer." Several novel concepts are integrated to produce the final design, which is compatible with...

  15. Optical bio-sensors in microfluidic chips

    NARCIS (Netherlands)

    Pollnau, Markus; Dongre, C.; Pham Van So, P.V.S.; Bernhardi, Edward; Worhoff, Kerstin; de Ridder, R.M.; Hoekstra, Hugo

    2012-01-01

    Direct femtosecond laser writing is used to integrate optical waveguides that intersect the microfluidic channels in a commercial optofluidic chip. With laser excitation, fluorescently labeled DNA molecules of different sizes are separated by capillary electrophoresis with high operating speed and

  16. Microfluidic Analytical Separator for Proteomics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SHOT proposes an innovative microfluidic device designed to effect a 2-dimensional resolution of a mixture of proteins based on isoelectric point (pI) and molecular...

  17. A Microfluidic Approach for Studying Piezo Channels.

    Science.gov (United States)

    Maneshi, M M; Gottlieb, P A; Hua, S Z

    2017-01-01

    Microfluidics is an interdisciplinary field intersecting many areas in engineering. Utilizing a combination of physics, chemistry, biology, and biotechnology, along with practical applications for designing devices that use low volumes of fluids to achieve high-throughput screening, is a major goal in microfluidics. Microfluidic approaches allow the study of cells growth and differentiation using a variety of conditions including control of fluid flow that generates shear stress. Recently, Piezo1 channels were shown to respond to fluid shear stress and are crucial for vascular development. This channel is ideal for studying fluid shear stress applied to cells using microfluidic devices. We have developed an approach that allows us to analyze the role of Piezo channels on any given cell and serves as a high-throughput screen for drug discovery. We show that this approach can provide detailed information about the inhibitors of Piezo channels. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Temozolomide Injection

    Science.gov (United States)

    ... balance or coordination fainting dizziness hair loss insomnia memory problems pain, itching, swelling, or redness in the place where the medication was injected changes in vision Some side effects can be serious. If you ...

  19. Buprenorphine Injection

    Science.gov (United States)

    ... injection is in a class of medications called opiate partial agonists. It works to prevent withdrawal symptoms ... help. If the victim has collapsed, had a seizure, has trouble breathing, or can't be awakened, ...

  20. Risperidone Injection

    Science.gov (United States)

    ... release (long-acting) injection is used to treat schizophrenia (a mental illness that causes disturbed or unusual ... may help control your symptoms but will not cure your condition. Continue to keep appointments to receive ...