WorldWideScience

Sample records for injection lab-on-valve schemes

  1. Sequential injection lab-on-valve: the third generation of flow injection analysis

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2003-01-01

    Termed the third generation of flow injection analysis, sequential injection (SI)-lab-on-valve (LOV) has specific advantages and allows novel, unique applications - not least as a versatile front end to a variety of detection techniques. This review presents snd discusses progress to date of the ...

  2. Exploiting the bead-injection approach in the integrated sequential injection Lab-on-Valve format using hydrophobic packing materials for on-line matrix removal and preconcentration of trace levels of cadmium in environmental and biological samples via formation of non-charged chelates prior

    DEFF Research Database (Denmark)

    Miró, Manuel; Jonczyk, Sylwia; Wang, Jianhua

    2003-01-01

    The concept of renewable microcolumns within the conduits of an automated single injection lab-on-valve system was exploited in a sorption/elution fashion using sorbents of hydrophobic nature. The scheme's practical applicability was demonstrated for the electrothermal atomic absorption spectrome......The concept of renewable microcolumns within the conduits of an automated single injection lab-on-valve system was exploited in a sorption/elution fashion using sorbents of hydrophobic nature. The scheme's practical applicability was demonstrated for the electrothermal atomic absorption...

  3. New Trends in Flow Injection Analysis: Exploitation of Sequential and Lab-on-Valve Schemes

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    has appeared, that is, the Lab-on-Valve (LOV) approach, the conceptual basis of which is to incorporate all the necessary unit operational manipulations required, and, when possible, even the detection device into a single small integrated microconduit, or “laboratory”, placed atop a selection valve...... sensitivity and selectivity. Either in order to separate/preconcentrate the analyte material, or because of the presence of potentially interfering matrix constituents. Such pretreatments are advantageously performed in FIA/SIA/LOV manifolds, where all appropriate unit operations can be effected under...

  4. On-line liquid phase micro-extraction based on drop-in-plug sequential injection lab-at-valve platform for metal determination

    Energy Technology Data Exchange (ETDEWEB)

    Mitani, Constantina [Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University, Thessaloniki 54124 (Greece); Anthemidis, Aristidis N., E-mail: anthemid@chem.auth.gr [Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University, Thessaloniki 54124 (Greece)

    2013-04-10

    Highlights: ► Drop-in-plug micro-extraction based on SI-LAV platform for metal preconcentration. ► Automatic liquid phase micro-extraction coupled with FAAS. ► Organic solvents with density higher than water are used. ► Lead determination in environmental water and urine samples. -- Abstract: A novel automatic on-line liquid phase micro-extraction method based on drop-in-plug sequential injection lab-at-valve (LAV) platform was proposed for metal preconcentration and determination. A flow-through micro-extraction chamber mounted at the selection valve was adopted without the need of sophisticated lab-on-valve components. Coupled to flame atomic absorption spectrometry (FAAS), the potential of this lab-at-valve scheme is demonstrated for trace lead determination in environmental and biological water samples. A hydrophobic complex of lead with ammonium pyrrolidine dithiocarbamate (APDC) was formed on-line and subsequently extracted into an 80 μL plug of chloroform. The extraction procedure was performed by forming micro-droplets of aqueous phase into the plug of the extractant. All critical parameters that affect the efficiency of the system were studied and optimized. The proposed method offered good performance characteristics and high preconcentration ratios. For 10 mL sample consumption an enhancement factor of 125 was obtained. The detection limit was 1.8 μg L{sup −1} and the precision expressed as relative standard deviation (RSD) at 50.0 μg L{sup −1} of lead was 2.9%. The proposed method was evaluated by analyzing certified reference materials and applied for lead determination in natural waters and urine samples.

  5. A microfluidic control system with re-usable micropump/valve actuator and injection moulded disposable polymer lab-on-a-slide

    DEFF Research Database (Denmark)

    Bu, Minqiang; Perch-Nielsen, Ivan R.; Yi, Sun

    2011-01-01

    A microfluidic control system consisting of micropump/valves with a re-usable pneumatic actuator and a disposable polymer lab-on-a-slide is presented. The lab-on-a-slide was fabricated using low cost methods, such as injection moulding of TOPAS® cyclic olefin copolymer (COC) slide, lamination...... of different layers of polymer, and ultrasonic welding of TOPAS® lid to the slide. The re-usable pneumatic actuator not only simplifies the design of the lab-on-a-slide and reduces the fabrication cost, but also reduces the possibility of cross contamination during replacement of the disposable lab...

  6. Sequential injection-bead injection-lab-on-valve schemes for on-line solid phase extraction and preconcentration of ultra-trace levels of heavy metals with determination by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Wang Jianhua; Hansen, Elo Harald; Miro, Manuel

    2003-01-01

    This communication presents an overview of the state-of-the-art of the exploitation of sequential injection (SI)-bead injection (BI)-lab-on-valve (LOV) schemes for automatic on-line sample pre-treatments interfaced with ETAAS and ICPMS detection as conducted in the authors' group. The discussions are focused on the applications of SI-BI-LOV protocols for on-line microcolumn based solid phase extraction of ultra-trace levels of heavy metals, employing the so-called renewable surface separation and preconcentration manipulatory scheme. Two types of sorbents have been employed as packing material, that is, the hydrophilic SP Sephadex C-25 cation exchange and iminodiacetate based Muromac A-1 chelating resins, and the hydrophobic poly(tetrafluoroethylene) (PTFE) and poly(styrene-divinylbenzene) copolymer alkylated with octadecyl groups (C 18 -PS/DVB). Using ETAAS as detection device, the easy-to-handle hydrophilic renewable reactors hold the features of improved R.S.D.s and LODs as compared to those operated in the conventional, permanent mode, in addition to the elimination of flow resistance. The hydrophobic columns fall into two categories, that is, the renewable one packed with C 18 -PS/DVB beads entails analogous R.S.D.s and LODs with respect to the conventional approach, while those with PTFE beads result in slightly inferior R.S.D.s and LODs by similar comparison, yet offering a wider dynamic range than when using an external permanent column. Moreover, the hydrophilic materials result in much higher enrichment of the analyte than the hydrophobic ones, although PTFE is the packing material that exhibits the best retention efficiency

  7. A LabVIEW®-based software for the control of the AUTORAD platform. A fully automated multisequential flow injection analysis Lab-on-Valve (MSFIA-LOV) system for radiochemical analysis

    International Nuclear Information System (INIS)

    Barbesi, Donato; Vilas, Victor Vicente; Millet, Sylvain; Sandow, Miguel; Colle, Jean-Yves; Heras, Laura Aldave de las

    2017-01-01

    A LabVIEW®-based software for the control of the fully automated multi-sequential flow injection analysis Lab-on-Valve (MSFIA-LOV) platform AutoRAD performing radiochemical analysis is described. The analytical platform interfaces an Arduino®-based device triggering multiple detectors providing a flexible and fit for purpose choice of detection systems. The different analytical devices are interfaced to the PC running LabVIEW®VI software using USB and RS232 interfaces, both for sending commands and receiving confirmation or error responses. The AUTORAD platform has been successfully applied for the chemical separation and determination of Sr, an important fission product pertinent to nuclear waste. (author)

  8. A LabVIEW®-based software for the control of the AUTORAD platform: a fully automated multisequential flow injection analysis Lab-on-Valve (MSFIA-LOV) system for radiochemical analysis.

    Science.gov (United States)

    Barbesi, Donato; Vicente Vilas, Víctor; Millet, Sylvain; Sandow, Miguel; Colle, Jean-Yves; Aldave de Las Heras, Laura

    2017-01-01

    A LabVIEW ® -based software for the control of the fully automated multi-sequential flow injection analysis Lab-on-Valve (MSFIA-LOV) platform AutoRAD performing radiochemical analysis is described. The analytical platform interfaces an Arduino ® -based device triggering multiple detectors providing a flexible and fit for purpose choice of detection systems. The different analytical devices are interfaced to the PC running LabVIEW ® VI software using USB and RS232 interfaces, both for sending commands and receiving confirmation or error responses. The AUTORAD platform has been successfully applied for the chemical separation and determination of Sr, an important fission product pertinent to nuclear waste.

  9. Trends and perspectives of flow injection/sequential injection on-line sample-pretreatment schemes coupled to ETAAS

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2005-01-01

    Flow injection (FI) analysis, the first generation of this technique, became in the 1990s supplemented by its second generation, sequential injection (SI), and most recently by the third generation (i.e.,Lab-on-Valve). The dominant role played by FI in automatic, on-line, sample pretreatments in ...

  10. Miniaturization of environmental chemical assays in flowing systems: The lab-on-a-valve approach vis-à-vis lab-on-a-chip microfluidic devices

    DEFF Research Database (Denmark)

    Miró, Manuel; Hansen, Elo Harald

    2007-01-01

    The analytical capabilities of the microminiaturised lab-on-a-valve (LOV) module integrated into a microsequential injection (muSI) fluidic system in terms of analytical chemical performance, microfluidic handling and on-line sample processing are compared to those of the micro total analysis...... and the kinetics of the chemical reactions at will, LOV allows accommodation of reactions which, at least at the present stage, are not feasible by application of microfluidic LOC systems. Thus, in LOV one may take advantage of kinetic discriminations schemes, where even subtle differences in reactions...... are utilized for analytical purposes. Furthemore, it is also feasible to handle multi-step sequential reactions of divergent kinetics; to conduct multi-parametric determinations without manifold reconfiguration by utilization of the inherent open architecture of the micromachined unit for the implementation...

  11. Extraction and preconcentration of trace levels of cobalt using functionalized magnetic nanoparticles in a sequential injection lab-on-valve system with detection by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Wang Yang; Luo Xiaoyu; Tang Jie; Hu Xiaoya; Xu Qin; Yang Chun

    2012-01-01

    Graphical abstract: An approach to performing extraction and preconcentration employing functionalized magnetic particles for the determination of cobalt in the sequential injection lab-on-valve system using detection by electrothermal atomic absorption spectrometry. Highlights: ► New SPE method for cobalt separation/preconcentration was reported. ► Functionalized magnetic nanoparticles were used as adsorbent. ► Extraction, elution, and detection procedures were performed in the LOV system. ► This automatic extraction technique provided a good platform for metal analysis. - Abstract: A new approach to performing extraction and preconcentration employing functionalized magnetic nanoparticles for the determination of trace metals is presented. Alumina-coated iron oxide nanoparticles were synthesized and used as the solid support. The nanoparticles were functionalized with sodium dodecyl sulfate and used as adsorbents for solid phase extraction of the analyte. Extraction, elution, and detection procedures were performed sequentially in the sequential injection lab-on-valve (SI-LOV) system followed by electrothermal atomic absorption spectrometry (ETAAS). Mixtures of hydrophobic analytes were successfully extracted from solution using the synthesized magnetic adsorbents. The potential use of the established scheme was demonstrated by taking cobalt as a model analyte. Under the optimal conditions, the calibration curve showed an excellent linearity in the concentration range of 0.01–5 μg L −1 , and the relative standard deviation was 2.8% at the 0.5 μg L −1 level (n = 11). The limit of detection was 6 ng L −1 with a sampling frequency of 18 h −1 . The present method has been successfully applied to cobalt determination in water samples and two certified reference materials.

  12. Determination of trace metal ions via on-line separation and preconcentration by means of chelating Sepharose beads in a sequential injection lab-on-valve (SI-LOV) system coupled to electrothermal atomic absorption spectrometric detection

    DEFF Research Database (Denmark)

    Long, Xiangbao; Hansen, Elo Harald; Miró, Manuel

    2005-01-01

    The analytical performance of an on-line sequential injection lab-on-valve (SI-LOV) system using chelating Sepharose beads as sorbent material for the determination of ultra trace levels of Cd(II), Pb(II) and Ni(II) by electrothermal atomic absorption spectrometry (ETAAS) is described and discussed...

  13. Bead Injection Extraction Chromatography using High-capacity Lab-on-Valve as a Front End to Inductively Coupled Plasma Mass Spectrometry for Rapid Urine Radiobioassay

    DEFF Research Database (Denmark)

    Qiao, Jixin; Hou, Xiaolin; Roos, Per

    2013-01-01

    A novel bead injection (BI) extraction chromatographic microflow system exploiting high-capacity lab-on-valve (LOV) platform coupled with inductively coupled plasma mass spectrometric detection is developed for rapid and automated determination of plutonium in human urine. A microconduit (1 m......L) incorporated within the LOV processing unit is loaded on-line with a metered amount of disposable extraction chromatographic resin (up to 330 mg of TEVA) through programmable beads transport. Selective capture and purification of plutonium onto the resin beads is then performed by pressure driven flow after...

  14. On-line dynamic extraction and automated determination of readily bioavailable hexavalent chromium in solid substrates using micro-sequential injection bead-injection lab-on-valve hyphenated with electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Long, Xiangbao; Miró, Manuel; Hansen, Elo Harald

    2006-01-01

    A novel and miniaturized micro-sequential injection bead injection lab-on-valve (μSI-BI-LOV) fractionation system was developed for in-line microcolumn soil extraction under simulated environmental scenarios and accurate monitoring of the content of easily mobilisable hexavalent chromium in soil...... environments at the sub-low parts-per-million level. The flow system integrates dynamic leaching of hexavalent chromium using deionized water as recommended by the German Standard DIN 38414-S4 method; on-line pH adjustment of the extract by a 0.01 mol L-1 Tris-HNO3 buffer solution; isolation of the chromate...... polluted agricultural soil material (San Joaquin Soil-Baseline Trace Element Concentrations) with water-soluble Cr(VI) salts at different concentration levels. The potential of the μSI-BI-LOV set-up with renewable surfaces for flame-AAS determination of high levels of readily bioavailable chromate...

  15. Evaluation of a novel PTFE material for use as a means for separation and preconcentration of trace levels of metal ions in sequential injection (SI) and sequential injection lab-on-valve (SI-LOV) systems. Determination of cadmium (II) with detection by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Long, Xiangbao; Chomchoei, Roongrat; Hansen, Elo Harald

    2004-01-01

    with an external packed column and in a sequential injection lab-on-valve (SI-LOV) system. Employed for the determination of cadmium(II), complexed with diethyldithiophosphate (DDPA), and detection by electrothermal atomic absorption spectrometry (ETAAS), its performance was compared to that of a previously used...

  16. A Universal Approach for Selective Trace Metal Determinations via Sequential Injection-Bead Injection-Lab-on-Valve (SI-BI-LOV) Using Renewable Reagent-loaded Hydrophobic Beads

    DEFF Research Database (Denmark)

    Long, Xiangbao; Miró, Manuel; Hansen, Elo Harald

    -Lab-on-Valve (SI-LOV) mode. The methodology uses poly(styrene-divinylbenzene) beads containing pendant octadecyl moieties (C18-PS/DVB), which are pre-impregnated with a selective organic metal chelating agent prior to the automatic manipulation of the beads in the microbore conduits of the LOV unit. By adapting...

  17. Evaluation of a novel PTFE material for separation and preconcentration of trace levels of metal ions in sequential injection (SI) and sequential injection lab-on-valve (SI-LOV) systems interfaced with detection by ETAAS

    DEFF Research Database (Denmark)

    Long, Xiangbao; Chomchoei, Roongrat; Gała, Piotr

    The operational characteristics of a novel PTFE bead material, granular Algoflon®, used for separation and preconcentration of metal ions via adsorption of on-line generated non-charged metal complexes, were evaluated in a sequential injection (SI) system furnished with an external packed column...... and in a sequential injection lab-on-valve (SI-LOV) system. Employed for the determination of cadmium(II), complexed with diethyldithiophosphate (DDPA), and detection by electrothermal atomic absorption spectrometry (ETAAS), its performance was compared to that of a previously used material, Aldrich PTFE, which had...... demonstrated that PTFE was the most promising for solid-state pretreatments. By comparing the two materials, the Algoflon® beads exhibited much higher sensitivity (1.6107 versus 0.2956 μg l-1 per integrated absorbance (s)), and better retention efficiency (82% versus 74%) and enrichment factor (20.8 versus 17...

  18. Exploiting the Lab-on-Valve Concept for Determination of Trace Levels of Metals in Complex Matrices with Detection by ETAAS and ICPMS

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Wang, Jianhua

    approach [1,2]. Coupled to detection by ETAAS and ICPMS, and illustrated by recent exploits in the authors’ laboratory, it is shown that this methodology eliminates the problems encountered in conventional on-line column preconcentration systems and at the same time improves the overall operational......Termed the third generation of flow injection analysis, the Sequential Injection (SI)-Lab-on-Valve (LOV) concept has proven to entail specific advantages and to allow novel and unique applications. Both in term of its use in the automation and micro-miniaturization of suitable on-line sample...

  19. Simultaneous determination of rutin and ascorbic acid in a sequential injection lab-at-valve system.

    Science.gov (United States)

    Al-Shwaiyat, Mohammed Khair E A; Miekh, Yuliia V; Denisenko, Tatyana A; Vishnikin, Andriy B; Andruch, Vasil; Bazel, Yaroslav R

    2018-02-05

    A green, simple, accurate and highly sensitive sequential injection lab-at-valve procedure has been developed for the simultaneous determination of ascorbic acid (Asc) and rutin using 18-molybdo-2-phosphate Wells-Dawson heteropoly anion (18-MPA). The method is based on the dependence of the reaction rate between 18-MPA and reducing agents on the solution pH. Only Asc is capable of interacting with 18-MPA at pH 4.7, while at pH 7.4 the reaction with both Asc and rutin proceeds simultaneously. In order to improve the precision and sensitivity of the analysis, to minimize reagent consumption and to remove the Schlieren effect, the manifold for the sequential injection analysis was supplemented with external reaction chamber, and the reaction mixture was segmented. By the reduction of 18-MPA with reducing agents one- and two-electron heteropoly blues are formed. The fraction of one-electron heteropoly blue increases at low concentrations of the reducer. Measurement of the absorbance at a wavelength corresponding to the isobestic point allows strictly linear calibration graphs to be obtained. The calibration curves were linear in the concentration ranges of 0.3-24mgL -1 and 0.2-14mgL -1 with detection limits of 0.13mgL -1 and 0.09mgL -1 for rutin and Asc, respectively. The determination of rutin was possible in the presence of up to a 20-fold molar excess of Asc. The method was applied to the determination of Asc and rutin in ascorutin tablets with acceptable accuracy and precision (1-2%). Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Lab-on-Valve Micro Sequential Injection: A Versatile Approach for Implementing Integrated Sample Pre-preparations and Executing (Bio)Chemical Assays

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    waste generation. Most recently, the Lab-on-Valve (LOV) approach has emerged. Termed the third generation of FIA, the conceptual basis of the LOV is to incorporate all the necessary unit operational manipulations required in a chemical assay, and, when possible, even the detection device, into a single...... small integrated microconduit, or “laboratory”, placed atop a selection valve. In the lecture emphasis will be placed on the LOV approach. Proven itself as a versatile front end to a variety of detection techniques, its utility will be exemplified by various applications. Particular focus......-phase microcolumn concept utilising hydrophobic as well as hydrophilic bead materials. Although ETAAS and ICPMS both are characterised by excellent analytical chemical capabilities, they nevertheless often require that the samples be subjected to suitable pretreatment in order to obtain the necessary sensitivity...

  1. Remote monitoring of vacuum and valve status using LabVIEW

    International Nuclear Information System (INIS)

    Rozario, C.; Pal, S.; Nanal, V.; Pillay, R.G.

    2015-01-01

    For remote monitoring of vacuum status in LINAC and associated beam transport lines, a LabVIEW based interface through RS232 communication is developed. All vacuum stations in LINAC are equipped with Pfeiffer pressure measurement units, namely, TPQ 262 (for 2 no.s) and TPG256 (for 6 no.s). The communication to the unit is done via RS232 with the Serial Device Server. The electro-pneumatic gate valves separating beam line sections and cryostats are fitted with limit switches for indicating open/close status. A modular unit based on PIC 18F4520 microcontroller is developed to read the limit switch positions of up to 10 valves. Both the vacuum readout unit and the gate valve monitor unit act as a server to the client PC on the console. Each unit is assigned a unique IP address and connected to the TCP/IP Ethernet bus. The LabVIEW Virtual Instrument based TCP/IP is used for communication through the distributed LAN. It is possible to connect additional client PCs using the LabVIEW Remote Console features. During the accelerator operation the vacuum reading of the gauge and the status of valves can be monitored from the control room console. All the vacuum parameters like gauge value and status at different physical locations are scanned and logged approximately every second. The LabVIEW GUI has helped in making the system user friendly and can be expanded easily. (author)

  2. Lab-on-Valve Micro Sequential Injection: A Versatile Approach for Implementing Integrated Sample Pre-preparations and Executing (Bio)Chemical Assays

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    waste generation. Most recently, the socalled third generation of FIA has emerged, that is, the Lab-on-Valve (LOV) approach, the conceptual basis of which is to incorporate all the necessary unit operational manipulations required, and, when possible, even the detection device into a single small...... integrated microconduit, or “laboratory”, placed atop a selection valve. The lecture will detail the evolution of the three generations of FIA, emphasis being placed on the LOV approach. Proven itself as a versatile front end to a variety of detection techniques, its utility will be exemplified by a series...... of the renewable microcolumn concept. Despite their excellent analytical chemical capabilities, ETAAS as well as ICPMS often require that the samples are subjected to suitable pretreatment in order to obtain the necessary sensitivity and selectivity. Either in order to separate the analyte from potentially...

  3. Dye-based coatings for hydrophobic valves and their application to polymer labs-on-a-chip

    Science.gov (United States)

    Riegger, L.; Mielnik, M. M.; Gulliksen, A.; Mark, D.; Steigert, J.; Lutz, S.; Clad, M.; Zengerle, R.; Koltay, P.; Hoffmann, J.

    2010-04-01

    We provide a method for the selective surface patterning of microfluidic chips with hydrophobic fluoropolymers which is demonstrated by the fabrication of hydrophobic valves via dispensing. It enables efficient optical quality control for the surface patterning thus permitting the low-cost production of highly reproducible hydrophobic valves. Specifically, different dyes for fluoropolymers enabling visual quality control (QC) are investigated, and two fluoropolymer-solvent-dye solutions based on fluorescent quantum dots (QD) and carbon black (CB) are presented in detail. The latter creates superhydrophobic surfaces on arbitrary substrates, e.g. chips made from cyclic olefin copolymer (COC, water contact angle = 157.9°), provides good visibility for the visual QC in polymer labs-on-a-chip and increases the burst pressures of the hydrophobic valves. Finally, an application is presented which aims at the on-chip amplification of mRNA based on defined flow control by hydrophobic valves is presented. Here, the optimization based on QC in combination with the Teflon-CB coating improves the burst pressure reproducibility from 14.5% down to 6.1% compared to Teflon-coated valves.

  4. Large spin current injection in nano-pillar-based lateral spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Tatsuya [Department of Physics, Kyushu University, 744 Motooka, Fukuoka, 819-0395 (Japan); Ohnishi, Kohei; Kimura, Takashi, E-mail: t-kimu@phys.kyushu-u.ac.jp [Department of Physics, Kyushu University, 744 Motooka, Fukuoka, 819-0395 (Japan); Research Center for Quantum Nano-Spin Sciences, Kyushu University, 744 Motooka, Fukuoka, 819-0395 (Japan)

    2016-08-26

    We have investigated the influence of the injection of a large pure spin current on a magnetization process of a non-locally located ferromagnetic dot in nano-pillar-based lateral spin valves. Here, we prepared two kinds of the nano-pillar-type lateral spin valve based on Py nanodots and CoFeAl nanodots fabricated on a Cu film. In the Py/Cu lateral spin valve, although any significant change of the magnetization process of the Py nanodot has not been observed at room temperature. The magnetization reversal process is found to be modified by injecting a large pure spin current at 77 K. Switching the magnetization by the nonlocal spin injection has also been demonstrated at 77 K. In the CoFeAl/Cu lateral spin valve, a room temperature spin valve signal was strongly enhanced from the Py/Cu lateral spin valve because of the highly spin-polarized CoFeAl electrodes. The room temperature nonlocal switching has been demonstrated in the CoFeAl/Cu lateral spin valve.

  5. Construction and characterization of valve for fast gas injection

    International Nuclear Information System (INIS)

    Ueda, M.; Rossi, J.O.; Aso, Y.; Mangueira, L.S.; Pereira, C.A.

    1989-01-01

    An electromagnetic valve for fast gas injection was built and characterized. This type of gas injection valve has been routinely applied to various plasma experiments: in magnetic confinement devices as TOKAMAK, RFP and Compact Toroids as well as intense ion beam and neutral particle generators. The valve is capable of injecting gas pulses with up to 80 m Torr peak pressure, rising time < 400 μs and duration time of 40 ms, in the present experimental set-up. It is easy to build and its components can be totally acquired in the country. (author)

  6. The Impact of Flow Injection on Modern Chemical Analysis

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    and preconcentration procedures. In recent years, FIA has been supplemented by Sequential Injection Analysis (SIA) and the Lab-on-Valve (LOV) approach. Following a brief historic introduction and an account of the impact of FIA in academia, the lecture will describe these two new generations of FIA, accompanied...

  7. Role of passive valves & devices in poison injection system of advanced heavy water reactor

    International Nuclear Information System (INIS)

    Sapra, M.K.; Kundu, S.; Vijayan, P.K.; Vaze, K.K.; Sinha, R.K.

    2014-01-01

    The Advanced Heavy Water Reactor (AHWR) is a 300 MWe pressure tube type boiling light water (H 2 O) cooled, heavy water (D 2 O) moderated reactor. The reactor design is based on well-proven water reactor technologies and incorporates a number of passive safety features such as natural circulation core cooling; direct in-bundle injection of light water coolant during a Loss of Coolant Accident (LOCA) from Advanced Accumulators and Gravity Driven Water Pool by passive means; Passive Decay Heat Removal using Isolation Condensers, Passive Containment Cooling System and Passive Containment Isolation System. In addition to above, there is another passive safety system named as Passive Poison Injection System (PPIS) which is capable of shutting down the reactor for a prolonged time. It is an additional safety system in AHWR to fulfill the shutdown function in the event of failure of wired shutdown systems i.e. primary and secondary shut down systems of the reactor. When demanded, PPIS injects the liquid poison into the moderator by passive means using passive valves and devices. On increase of main heat transport (MHT) system pressure beyond a predetermined value, a set of rupture disks burst, which in-turn actuate the passive valve. The opening of passive valve initiates inrush of high pressure helium gas into poison tanks to push the poison into the moderator system, thereby shutting down the reactor. This paper primarily deals with design and development of Passive Poison Injection System (PPIS) and its passive valves & devices. Recently, a prototype DN 65 size Poison Injection Passive Valve (PIPV) has been developed for AHWR usage and tested rigorously under simulated conditions. The paper will highlight the role of passive valves & devices in PPIS of AHWR. The design concept and test results of passive valves along with rupture disk performance will also be covered. (author)

  8. Model of a catalytic injection in a riser by means of gamma ray transmission measurements

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Alex E.; Brito, Macio F.P.; Dantas, Carlos C.; Melo, Silvio B., E-mail: alex.emoura@ufpe.br, E-mail: sbm@ufpe.br [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil); Barbosa, Enivaldo S., E-mail: Enivaldo.santos@ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Engenharia Mecanica; Lima, Emerson A.O., E-mail: eal@poli.br [Universidade de Pernambuco, Recife, PE (Brazil). Departamento de Matematica

    2015-07-01

    In Gas solid process involving a solid circulation through a closed loop the knowledge of the Solids Circulation Rate (SCR) is fundamental to control and improve the operation of a circulating fluidized bed system. A valve controls the circulation rate of solids in the riser of a fluid catalytic cracking unit. Initially, to control the catalyst injection in the riser, a rotary valve controlled and measured solid flow injection, but with a limited working time. Due to the fine powder catalyst abrasive action on the valve steel axis, this device stop work. A lab made valve were design to avoiding direct contact of the catalyst with mechanical moving parts in while control solid injection in riser, but do not measure the solid flow like the rotary valve. To control the lab made device a fixed pressure measurement at riser bottom is provided by control setup which corresponds to a given mass/time solid injection. In the present work, we proposed a method to evaluate the control valve based on a non-invasive technique. With gamma ray transmission measurements, in a cross section of the pipe, we developed a model that was used in the control system of the Cold Pilot Unit (CPU). Therefore, the interaction of the gamma ray with solid flow in riser should yield the necessary information for the process control system. A first model approximation consider the solid flow rate injection and solid velocity in riser as proposed in literature. In the CPU control system a Programmable Logic Controller-PLC keeps steady state processing the airflow, pressure profile and solid flow inputs. Additionally to preexisting PLC platform, some LabVIEW algorithms were implemented to achieve a good system performance operational condition. (author)

  9. Model of a catalytic injection in a riser by means of gamma ray transmission measurements

    International Nuclear Information System (INIS)

    Moura, Alex E.; Brito, Macio F.P.; Dantas, Carlos C.; Melo, Silvio B.; Barbosa, Enivaldo S.; Lima, Emerson A.O.

    2015-01-01

    In Gas solid process involving a solid circulation through a closed loop the knowledge of the Solids Circulation Rate (SCR) is fundamental to control and improve the operation of a circulating fluidized bed system. A valve controls the circulation rate of solids in the riser of a fluid catalytic cracking unit. Initially, to control the catalyst injection in the riser, a rotary valve controlled and measured solid flow injection, but with a limited working time. Due to the fine powder catalyst abrasive action on the valve steel axis, this device stop work. A lab made valve were design to avoiding direct contact of the catalyst with mechanical moving parts in while control solid injection in riser, but do not measure the solid flow like the rotary valve. To control the lab made device a fixed pressure measurement at riser bottom is provided by control setup which corresponds to a given mass/time solid injection. In the present work, we proposed a method to evaluate the control valve based on a non-invasive technique. With gamma ray transmission measurements, in a cross section of the pipe, we developed a model that was used in the control system of the Cold Pilot Unit (CPU). Therefore, the interaction of the gamma ray with solid flow in riser should yield the necessary information for the process control system. A first model approximation consider the solid flow rate injection and solid velocity in riser as proposed in literature. In the CPU control system a Programmable Logic Controller-PLC keeps steady state processing the airflow, pressure profile and solid flow inputs. Additionally to preexisting PLC platform, some LabVIEW algorithms were implemented to achieve a good system performance operational condition. (author)

  10. Sequential injection/bead injection lab-on-valve schemes for on-line solid phase extraction and preconcentration of ultra-trace levels of heavy metals with determination by ETAAS and ICPMS

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald; Miró, Manuel

    2003-01-01

    are focused on the applications of SI-BI-LOV protocols for on-line microcolumn based solid phase extraction of ultra-trace levels of heavy metals, employing the so-called renewable surface separation and preconcentration manipulatory scheme. Two types of sorbents have been employed as packing material...

  11. Transcatheter aortic-valve implantation with one single minimal contrast media injection.

    Science.gov (United States)

    Arrigo, Mattia; Maisano, Francesco; Haueis, Sabine; Binder, Ronald K; Taramasso, Maurizio; Nietlispach, Fabian

    2015-06-01

    Performing transcatheter aortic valve implantation (TAVI) with the use of minimal contrast in patients at high-risk for acute kidney injury (AKI). Contrast-induced nephropathy (CIN) is a major cause of AKI following TAVI and is associated with increased morbidity and mortality. The amount of contrast media used increases the risk for CIN. Computed tomography was omitted during the screening process. For the procedure transfemoral access was default. The self-expanding CoreValve prosthesis was chosen in all patients to minimize the risk of annular rupture in case of oversizing. Valve sizing was based on echocardiography, aortography, calcification on fluoroscopy, as well as weight and height of the patient. A single contrast injection was performed to confirm correct position of the pigtail catheter at the level of the annulus. The pigtail then served as the marker for the device landing zone. Intraprocedural assessment of the implantation result relied on echocardiography and hemodynamics. Five patients with severe aortic stenosis and at high risk for developing CIN were included. Device success was achieved in all patients and no major complications occurred. The median dose of injected contrast media was 8 ml (4-9). All but one patient had improved renal function after the intervention compared to baseline. Our study shows feasibility of performing TAVI with a single minimal contrast media injection, using a self-expandable valve. This technique has the potential to reduce the incidence of CIN. © 2015 Wiley Periodicals, Inc.

  12. Electrical Injection Schemes for Nanolasers

    DEFF Research Database (Denmark)

    Lupi, Alexandra; Chung, Il-Sug; Yvind, Kresten

    2014-01-01

    Three electrical injection schemes based on recently demonstrated electrically pumped photonic crystal nanolasers have been numerically investigated: 1) a vertical p-i-n junction through a post structure; 2) a lateral p-i-n junction with a homostructure; and 3) a lateral p-i-n junction....... For this analysis, the properties of different schemes, i.e., electrical resistance, threshold voltage, threshold current, and internal efficiency as energy requirements for optical interconnects are compared and the physics behind the differences is discussed....

  13. Investigation on the Effects of Internal EGR by Variable Exhaust Valve Actuation with Post Injection on Auto-ignited Combustion and Emission Performance

    Directory of Open Access Journals (Sweden)

    Insu Cho

    2018-04-01

    Full Text Available Variable valve mechanisms are usually applied to a gasoline combustion engine to improve its power performance by controlling the amount of intake air according to the operating load. These mechanisms offer one possibility of resolving the conflict of objectives between a further reduction of raw emissions and an improvement in fuel efficiency. In recent years, variable valve control systems have become extremely important in the diesel combustion engine. Importantly, it has been shown that there are several potential benefits of applying variable valve timing (VVT to a compression ignition engine. Valve train variability could offer one option to achieve the reduction goals of engine-out emissions and fuel consumption. The aim of this study was to investigate the effects on part load combustion and emission performance of internal exhaust gas recirculation (EGR by variable exhaust valve lift actuation using a cam-in-cam system, which is an electronically variable valve device with a variable inside cam retarded to about 30 degrees. Numerical simulation based on GT-POWER has been performed to predict the NOx reduction strategy at the part load operating point of 1200 rpm in a four-valve diesel engine. A GT-POWER model of a common-rail direct injection engine with internal EGR was built and verified with experimental data. As a result, large potential for reducing NOx emissions through the use of exhaust valve control has been identified. Namely, it is possible to utilize heat efficiently as recompression of retarded post injection with downscaled specification of the exhaust valve rather than the intake valve, even if the CIC V1 condition with a reduction of the exhaust valve has a higher internal EGR rate of about 2% compared to that of the CIC V2 condition.

  14. Highly selective micro-sequential injection lab-on-valve (muSI-LOV) method for the determination of ultra-trace concentrations of nickel in saline matrices using detection by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Long, Xiangbao; Miró, Manuel; Jensen, Rikard; Hansen, Elo Harald

    2006-10-01

    A highly selective procedure is proposed for the determination of ultra-trace level concentrations of nickel in saline aqueous matrices exploiting a micro-sequential injection Lab-On-Valve (muSI-LOV) sample pretreatment protocol comprising bead injection separation/pre-concentration and detection by electrothermal atomic absorption spectrometry (ETAAS). Based on the dimethylglyoxime (DMG) reaction used for nickel analysis, the sample, as contained in a pH 9.0 buffer, is, after on-line merging with the chelating reagent, transported to a reaction coil attached to one of the external ports of the LOV to assure sufficient reaction time for the formation of Ni(DMG)(2) chelate. The non-ionic coordination compound is then collected in a renewable micro-column packed with a reversed-phase copolymeric sorbent [namely, poly(divinylbenzene-co-N-vinylpyrrolidone)] containing a balanced ratio of hydrophilic and lipophilic monomers. Following elution by a 50-muL methanol plug in an air-segmented modality, the nickel is finally quantified by ETAAS. Under the optimized conditions and for a sample volume of 1.8 mL, a retention efficiency of 70 % and an enrichment factor of 25 were obtained. The proposed methodology showed a high tolerance to the commonly encountered alkaline earth matrix elements in environmental waters, that is, calcium and magnesium, and was successfully applied for the determination of nickel in an NIST standard reference material (NIST 1640-Trace elements in natural water), household tap water of high hardness and local seawater. Satisfying recoveries were achieved for all spiked environmental water samples with maximum deviations of 6 %. The experimental results for the standard reference material were not statistically different to the certified value at a significance level of 0.05.

  15. Interfacing microfluidic handling with spectroscopic detection for real-life applications via the lab-on-valve platform: A review

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Miró, Manuel

    2008-01-01

    with syringe pump propelling devices as a front end to a plethora of spectroscopic detection schemes including UV-Vis spectroscopy, spectrofluorimetry, chemiluminescence, AAS, AFS and ICP-AES/MS. In contrast to lab-on-a-chip units, the versatile configuration of the micromachined LOV readily facilitates...

  16. Solid reactors in sequential injection analysis: Recent trends in the environmental field

    DEFF Research Database (Denmark)

    Miró, Manuel; Hansen, Elo Harald

    2006-01-01

    -bead injection (SI-BI), used in either the jet-ring or lab-on-valve configurations, is presented as a front-end to many detectors. This article also outlines recent trends focused on exploiting SI as an automated tool for handling solid samples of environmental concern and accommodating dynamic fractionation...

  17. Electrical injection schemes for nanolasers

    DEFF Research Database (Denmark)

    Lupi, Alexandra; Chung, Il-Sug; Yvind, Kresten

    2013-01-01

    The performance of injection schemes among recently demonstrated electrically pumped photonic crystal nanolasers has been investigated numerically. The computation has been carried out at room temperature using a commercial semiconductor simulation software. For the simulations two electrical...... of 3 InGaAsP QWs on an InP substrate has been chosen for the modeling. In the simulations the main focus is on the electrical and optical properties of the nanolasers i.e. electrical resistance, threshold voltage, threshold current and wallplug efficiency. In the current flow evaluation the lowest...... threshold current has been achieved with the lateral electrical injection through the BH; while the lowest resistance has been obtained from the current post structure even though this model shows a higher current threshold because of the lack of carrier confinement. Final scope of the simulations...

  18. Towards an automatic lab-on-valve-ion mobility spectrometric system for detection of cocaine abuse.

    Science.gov (United States)

    Cocovi-Solberg, David J; Esteve-Turrillas, Francesc A; Armenta, Sergio; de la Guardia, Miguel; Miró, Manuel

    2017-08-25

    A lab-on-valve miniaturized system integrating on-line disposable micro-solid phase extraction has been interfaced with ion mobility spectrometry for the accurate and sensitive determination of cocaine and ecgonine methyl ester in oral fluids. The method is based on the automatic loading of 500μL of oral fluid along with the retention of target analytes and matrix clean-up by mixed-mode cationic/reversed-phase solid phase beads, followed by elution with 100μL of 2-propanol containing (3% v/v) ammonia, which are online injected into the IMS. The sorptive particles are automatically discarded after every individual assay inasmuch as the sorptive capacity of the sorbent material is proven to be dramatically deteriorated with reuse. The method provided a limit of detection of 0.3 and 0.14μgL -1 for cocaine and ecgonine methyl ester, respectively, with relative standard deviation values from 8 till 14% with a total analysis time per sample of 7.5min. Method trueness was evaluated by analyzing oral fluid samples spiked with cocaine at different concentration levels (1, 5 and 25μgL -1 ) affording relative recoveries within the range of 85±24%. Fifteen saliva samples were collected from volunteers and analysed following the proposed automatic procedure, showing a 40% cocaine occurrence with concentrations ranging from 1.3 to 97μgL -1 . Field saliva samples were also analysed by reference methods based on lateral flow immunoassay and gas chromatography-mass spectrometry. The application of this procedure to the control of oral fluids of cocaine consumers represents a step forward towards the development of a point-of-care cocaine abuse sensing system. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effects of thermal barrier coating on gas emissions and performance of a LHR engine with different injection timings and valve adjustments

    International Nuclear Information System (INIS)

    Bueyuekkaya, Ekrem; Engin, Tahsin; Cerit, Muhammet

    2006-01-01

    Tests were performed on a six cylinder, direct injection, turbocharged Diesel engine whose pistons were coated with a 350 μm thickness of MgZrO 3 over a 150 μm thickness of NiCrAl bond coat. CaZrO 3 was employed as the coating material for the cylinder head and valves. The working conditions for the standard engine (uncovered) and low heat rejection (LHR) engine were kept exactly the same to ensure a realistic comparison between the two configurations of the engine. Comparisons between the standard engine and its LHR version were made based on engine performance, exhaust gas emissions, injection timing and valve adjustment. The results showed that 1-8% reduction in brake specific fuel consumption could be achieved by the combined effect of the thermal barrier coating (TBC) and injection timing. On the other hand, NO x emissions were obtained below those of the base engine by 11% for 18 o BTDC injection timing

  20. Recent developments in automated determinations of trace level concentrations of elements and on-line fractionations schemes exploiting the micro-sequential injection - lab-on-valve approach

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Miró, Manuel; Long, Xiangbao

    2006-01-01

    The determination of trace level concentrations of elements, such as metal species, in complex matrices by atomic absorption or emission spectrometric methods often require appropriate pretreatments comprising separation of the analyte from interfering constituents and analyte preconcentration...... are presented as based on the exploitation of micro-sequential injection (μSI-LOV) using hydrophobic as well as hydrophilic bead materials. The examples given comprise the presentation of a universal approach for SPE-assays, front-end speciation of Cr(III) and Cr(VI) in a fully automated and enclosed set...

  1. Spin injection and spin accumulation in all-metal mesoscopic spin valves

    NARCIS (Netherlands)

    Jedema, FJ; Nijboer, MS; Filip, AT; van Wees, BJ

    2003-01-01

    We study the electrical injection and detection of spin accumulation in lateral ferromagnetic-metal-nonmagnetic-metal-ferromagnetic-metal (F/N/F) spin valve devices with transparent interfaces. Different ferromagnetic metals, Permalloy (Py), cobalt (Co), and nickel (Ni), are used as electrical spin

  2. A simple scheme for injection and extraction in compact rings

    International Nuclear Information System (INIS)

    Xu, H. S.; Huang, W. H.; Tang, C. X.

    2014-01-01

    There has been great interest in building compact synchrotrons for various applications, for example, inverse Compton scattering X-ray sources. However, the beam injection and extraction in compact rings require careful design for the lack of space. In this paper, we propose a simple combined injection-extraction scheme exploiting the fringe field of existing dipole magnets instead of additional septum magnets. This scheme is illustrated by using the 4.8 m ring proposed for Tsinghua Thomson scattering X-ray source as an example. Particle tracking is applied to demonstrate the validity of this scheme

  3. Effects of Injection Scheme on Rotating Detonation Engine Operation

    Science.gov (United States)

    Chacon, Fabian; Duvall, James; Gamba, Mirko

    2017-11-01

    In this work, we experimentally investigate the operation and performance characteristics of a rotating detonation engine (RDE) operated with different fuel injection schemes and operating conditions. In particular, we investigate the detonation and operation characteristics produced with an axial flow injector configuration and semi-impinging injector configurations. These are compared to the characteristics produced with a canonical radial injection system (AFRL injector). Each type produces a different flowfield and mixture distribution, leading to a different detonation initiation, injector dynamic response, and combustor pressure rise. By using a combination of diagnostics, we quantify the pressure loses and gains in the system, the ability to maintain detonation over a range of operating points, and the coupling between the detonation and the air/fuel feed lines. We particularly focus on how this coupling affects both the stability and the performance of the detonation wave. This work is supported by the DOE/UTSR program under project DE-FE0025315.

  4. The Use of Large Valve Overlap in Scavenging a Supercharged Spark-ignition Engine Using Fuel Injection

    Science.gov (United States)

    Schey, Oscar W; Young, Alfred W

    1932-01-01

    This investigation was conducted to determine the effect of more complete scavenging on the full throttle power and the fuel consumption of a four-stroke-cycle engine. The NACA single-cylinder universal test engine equipped with both a fuel-injection system and a carburetor was used. The engine was scavenged by using a large valve overlap and maintaining a pressure in the inlet manifold of 2 inches of mercury above atmospheric. The maximum valve overlap used was 112 degrees. Tests were conducted for a range of compression ratios from 5.5 to 8.5. Except for variable speed tests, all tests were conducted at an engine speed of 1,500 r.p.m. The results of the tests show that the clearance volume of an engine can be scavenged by using a large valve overlap and about 2 to 5 inches of mercury pressure difference between the inlet and exhaust valve. With a fuel-injection system when the clearance volume was scavenged, a b.m.e.p. of over 185 pounds per square inch and a fuel consumption of 9.45 pound per brake horsepower per hour were obtained with a 6.5 compression ratio. An increase of approximately 10 pounds per square inch b.m.e.p. was obtained with a fuel-injection system over that with a carburetor.

  5. Effects of valve timing, valve lift and exhaust backpressure on performance and gas exchanging of a two-stroke GDI engine with overhead valves

    International Nuclear Information System (INIS)

    Dalla Nora, Macklini; Lanzanova, Thompson Diórdinis Metzka; Zhao, Hua

    2016-01-01

    Highlights: • Two-stroke operation was achieved in a four-valve direct injection gasoline engine. • Shorter valve opening durations improved torque at lower engine speeds. • The longer the valve opening duration, the lower was the air trapping efficiency. • Higher exhaust backpressure and lower valve lift reduced the compressor work. - Abstract: The current demand for fuel efficient and lightweight powertrains, particularly for application in downsized and hybrid electric vehicles, has renewed the interest in two-stroke engines. In this framework, an overhead four-valve spark-ignition gasoline engine was modified to run in the two-stroke cycle. The scavenging process took place during a long valve overlap period around bottom dead centre at each crankshaft revolution. Boosted intake air was externally supplied at a constant pressure and gasoline was directly injected into the cylinder after valve closure. Intake and exhaust valve timings and lifts were independently varied through an electrohydraulic valve train, so their effects on engine performance and gas exchanging were investigated at 800 rpm and 2000 rpm. Different exhaust backpressures were also evaluated by means of exhaust throttling. Air trapping efficiency, charging efficiency and scavenge ratio were calculated based on air and fuel flow rates, and exhaust oxygen concentration at fuel rich conditions. The results indicated that longer intake and exhaust valve opening durations increased the charge purity and hence torque at higher engine speeds. At lower speeds, although, shorter valve opening durations increased air trapping efficiency and reduced the estimated supercharger power consumption due to lower air short-circuiting. A strong correlation was found between torque and charging efficiency, while air trapping efficiency was more associated to exhaust valve opening duration. The application of exhaust backpressure, as well as lower intake/exhaust valve lifts, made it possible to increase

  6. Density-Gradient Mediated Band Extraction of Leukocytes from Whole Blood Using Centrifugo-Pneumatic Siphon Valving on Centrifugal Microfluidic Discs

    Science.gov (United States)

    Kearney, Sinéad M.; Kilcawley, Niamh A.; Early, Philip L.; Glynn, Macdara T.; Ducrée, Jens

    2016-01-01

    Here we present retrieval of Peripheral Blood Mononuclear Cells by density-gradient medium based centrifugation for subsequent analysis of the leukocytes on an integrated microfluidic “Lab-on-a-Disc” cartridge. Isolation of white blood cells constitutes a critical sample preparation step for many bioassays. Centrifugo-pneumatic siphon valves are particularly suited for blood processing as they function without need of surface treatment and are ‘low-pass’, i.e., holding at high centrifugation speeds and opening upon reduction of the spin rate. Both ‘hydrostatically’ and ‘hydrodynamically’ triggered centrifugo-pneumatic siphon valving schemes are presented. Firstly, the geometry of the pneumatic chamber of hydrostatically primed centrifugo-pneumatic siphon valves is optimised to enable smooth and uniform layering of blood on top of the density-gradient medium; this feature proves to be key for efficient Peripheral Blood Mononuclear Cell extraction. A theoretical analysis of hydrostatically primed valves is also presented which determines the optimum priming pressure for the individual valves. Next, ‘dual siphon’ configurations for both hydrostatically and hydrodynamically primed centrifugo-pneumatic siphon valves are introduced; here plasma and Peripheral Blood Mononuclear Cells are extracted through a distinct siphon valve. This work represents a first step towards enabling on disc multi-parameter analysis. Finally, the efficiency of Peripheral Blood Mononuclear Cells extraction in these structures is characterised using a simplified design. A microfluidic mechanism, which we termed phase switching, is identified which affects the efficiency of Peripheral Blood Mononuclear Cell extraction. PMID:27167376

  7. Hybrid scheme of positron source at SPARC-LAB LNF facility

    Energy Technology Data Exchange (ETDEWEB)

    Abdrashitov, S.V., E-mail: abdsv@tpu.ru [National Research Tomsk Polytechnic University, Lenin Ave 30, 634050 Tomsk (Russian Federation); National Research Tomsk State University, Lenin Ave 36, 634050 Tomsk (Russian Federation); Bogdanov, O.V. [National Research Tomsk Polytechnic University, Lenin Ave 30, 634050 Tomsk (Russian Federation); Dabagov, S.B. [INFN Laboratori Nazionali di Frascati, Via E. Fermi 40, I-00044 Frascati, RM (Italy); RAS PN Lebedev Physical Institute, Leninskiy Prospekt 53, 119991 Moscow (Russian Federation); NRNU MEPhI, Kashirskoe Highway 31, 115409 Moscow (Russian Federation); Pivovarov, Yu.L.; Tukhfatullin, T.A. [National Research Tomsk Polytechnic University, Lenin Ave 30, 634050 Tomsk (Russian Federation)

    2015-07-15

    The hybrid scheme of the positron source for SPARC-LAB LNF facility (Frascati, Italy) is proposed. The comparison of the positron yield in a thin amorphous W converter of 0.1 mm thickness produced by bremsstrahlung, by axial 〈1 0 0〉 and planar (1 1 0) channeling radiations in a W crystal is performed for the positron energy range of 1 ÷ 3 MeV. It is shown that the radiation from 200 MeV electrons (parameters of SPARC-LAB LNF Frascati) in a 10 μm W crystal can produce positrons in the radiator of 0.1 mm thickness with the rate of 10–10{sup 2} s{sup −1} at planar channeling, of 10{sup 2}–10{sup 3} s{sup −1} at bremsstrahlung and of 10{sup 3}–10{sup 4} s{sup −1} at axial channeling.

  8. LabVIEW-based sequential-injection analysis system for the determination of trace metals by square-wave anodic and adsorptive stripping voltammetry on mercury-film electrodes.

    Science.gov (United States)

    Economou, Anastasios; Voulgaropoulos, Anastasios

    2003-01-01

    The development of a dedicated automated sequential-injection analysis apparatus for anodic stripping voltammetry (ASV) and adsorptive stripping voltammetry (AdSV) is reported. The instrument comprised a peristaltic pump, a multiposition selector valve and a home-made potentiostat and used a mercury-film electrode as the working electrodes in a thin-layer electrochemical detector. Programming of the experimental sequence was performed in LabVIEW 5.1. The sequence of operations included formation of the mercury film, electrolytic or adsorptive accumulation of the analyte on the electrode surface, recording of the voltammetric current-potential response, and cleaning of the electrode. The stripping step was carried out by applying a square-wave (SW) potential-time excitation signal to the working electrode. The instrument allowed unattended operation since multiple-step sequences could be readily implemented through the purpose-built software. The utility of the analyser was tested for the determination of copper(II), cadmium(II), lead(II) and zinc(II) by SWASV and of nickel(II), cobalt(II) and uranium(VI) by SWAdSV.

  9. Study on gasoline HCCI engine equipped with electromagnetic variable valve timing system; Untersuchung an einem HCCI Verbrennungsmotor mit elektromagnetisch variablem Ventiltriebsystem

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Y.; Awasaka, M.; Takanashi, J.; Kimura, N. [Honda R and D Co., Ltd. (Japan)

    2004-07-01

    First, this paper describes a study on the technology behind the electromagnetic variable valve timing system. This system provides highly efficient and stable valve opening/closing control. At first, the main purposes of this mechanism were nonthrottling technology that is expected to a reduction in fuel consumption and improving the engine torque with optimal valve timing on stichomythic spark ignited engine. In resent years, increasing attention has been paid to a homogeneous charge compression ignition (HCCI). We also used this mechanism on HCCI study with controlling the amount of internal EGR and intake air. Schemes to extend the operational region of gasoline compression ignition were explored using single (optical) and 4-cylinder 4-stroke engines equipped with an electromagnetic variable valve timing system. This paper focuses mainly on the use of direct fuel injection devices (multi-hole and pintle types), exhaust gas recirculation (EGR) through valve timing, and their effects on the compression ignition operating ranges, and emissions. Also considered is charge boost HCCI using a mechanical supercharger. (orig.)

  10. Studies of valve lifter for automotive heavy duty diesel engine by ceramic materials. II. Development of SiC valve lifter by injection molding method

    Energy Technology Data Exchange (ETDEWEB)

    Yun, H W [Technical Centre of KIA-ASIA MOTORS (Korea, Republic of); Han, I S [Korea Institute of Energy Research, Tajeon (Korea, Republic of); Lim, Y S; Chung, Y J [Myong Ji University (Korea, Republic of)

    1998-02-01

    Valve lifter, namely tappet, is supported by lifter hole which is located upper side of camshaft in cylinder block, transforms rotatic movement of camshaft into linear movement and helps to open and shut the engine valve as an engine parts. The face of valve lifter, which is continuously contacting with camshaft, brings about abnormal wears, such as unfair wear and early wear, because it is severely loaded in the valve train system. These wears act as a defect like over-clearance and cause imperfect combustion of fuel during the valve lifting in the combustion chamber. Consequently, this imperfect combustion makes the engine out-put decrease and has cause on air pollution. To prevent these wears, therefore, the valve lifter cast in metal developed into SiC ceramics valve lifter which has an excellence in wear and impact resistance. As a result, the optimum process conditions like injection condition, mixture ratio and debonding process could be established. After sintering, fine-sinered dual microstructure in which prior {alpha}-SiC, carbon and silicon was obtained. Based on the new SiC({beta}-SiC) produced by reaction among the {alpha}-SiC, carbon and silicon was obtained. Based on the study, it is verified that mechanical properties of SiC valve lifter are excellent in Vickers hardness 1100{approx}1200 bending strength (300{approx}350 Pa), fracture toughness (1.5{approx}1.7 MPacentre dotm{sup 1/2}). Through engine dynamo testing, SiC valve lifter and metal valve lifter are examined and compared into abnormal phenomena such early fracture, unfair and early wear. It is hoped that this research will serve as an important springboard for the future study of heavy duty diesel engine parts developed by ceramics which has a good wear resistance, reliability, and lightability.

  11. The use of valves in the SAGD process

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Michael A. [Global Marketing, Oil and Gas, Tyco Valves and Controls (United States)

    2011-07-01

    Steam-assisted gravity drainage (SAGD) is a developing technology, the aim of which is to increase production of bitumen while minimizing its environmental footprint. Valves must meet the process conditions of the operations, which depend on weel depth: deeper reservoirs of bitumen require higher steam injection pressure. A wide range of valves is used throughout the SAGD process. In the water softening plant, butterfly and process lined valves are used. HP gate valves are used for isolation, globe valves for vents/drains/bypasses, along with ARC valves for steam and booster pump projection with steam traps on injection lines in steam injection. Isolation valves are used throughout the low pressure process including ball, gate and triple-offset valves. Pressure management is carried out on all pressure vessels and lines. Control and choke valves are installed on well pads and production. Instrumentation, actuation and controls are installed throughout. In the ideal situation, suppliers and process engineers would work together in the early stages of a project.

  12. When to use femoral vein injection for diagnosis of patent foramen ovale-Effect of a persistent eustachian valve on right atrial flow patterns during contrast transesophageal echocardiography.

    Science.gov (United States)

    Koh, Tat W

    2017-05-01

    Contrast echocardiography using agitated saline injected into the antecubital vein is the most common method used for the diagnosis of patent foramen ovale. We describe a case whereby the presence of a persistent eustachian valve and a "negative contrast sign" during contrast transesophageal echocardiography raised suspicion of a false-negative result. Femoral vein injection of contrast successfully demonstrated a patent foramen ovale. Femoral vein injection should be considered if this scenario is recognized because the eustachian valve directs blood preferentially from the inferior vena cava toward the interatrial septum and this route may prove to be more reliable. © 2017, Wiley Periodicals, Inc.

  13. New injection scheme using a pulsed quadrupole magnet in electron storage rings

    Directory of Open Access Journals (Sweden)

    Kentaro Harada

    2007-12-01

    Full Text Available We demonstrated a new injection scheme using a single pulsed quadrupole magnet (PQM with no pulsed local bump at the Photon Factory Advanced Ring (PF-AR in High Energy Accelerator Research Organization (KEK. The scheme employs the basic property of a quadrupole magnet, that the field at the center is zero, and nonzero elsewhere. The amplitude of coherent betatron oscillation of the injected beam is effectively reduced by the PQM; then, the injected beam is captured into the ring without largely affecting the already stored beam. In order to investigate the performance of the scheme with a real beam, we built the PQM providing a higher field gradient over 3  T/m and a shorter pulse width of 2.4  μs, which is twice the revolution period of the PF-AR. After the field measurements confirmed the PQM specifications, we installed it into the ring. Then, we conducted the experiment using a real beam and consequently succeeded in storing the beam current of more than 60 mA at the PF-AR. This is the first successful beam injection using a single PQM in electron storage rings.

  14. Experience with the new reverse injection scheme in the Tevatron

    International Nuclear Information System (INIS)

    Saritepe, S.; Goderre, G.; Annala, G.; Hanna, B.; Braun, A.

    1993-01-01

    In the new injection scenario the antiproton beam is injected onto a helical Tevatron orbit to avoid the detrimental effects of the beam-beam interaction at 150 GeV. The new scenario required changes in the tuning procedures. Antiprotons are too precious to be used for tuning, therefore the antiproton injection line has to be tuned with protons by reverse injecting them from the Tevatron into the Main Ring. Previously, the reverse injection was performed in one supercycle. One batch of uncoalesced bunches was injected into the Tevatron and ejected after 40 seconds. The orbit closure was performed in the Main Ring. In the new scheme the lambertson magnets have to be moved, separator polarities have to be switched, activities that cannot be completed in one supercycle. Therefore, the reverse injection sequence was changed. This involved the redefinition of TVBS (Tevatron Beam Synchronized Clock) event $D8 as MRBS (Main Ring Beam Synchronized Clock) $D8 thus making it possible to inject 6 proton batches (or coalesced bunches) and eject them one at a time on command, performing orbit closure each time in the Main Ring

  15. Determination of trace zinc in seawater by coupling solid phase extraction and fluorescence detection in the Lab-On-Valve format.

    Science.gov (United States)

    Grand, Maxime M; Chocholouš, Petr; Růžička, Jarda; Solich, Petr; Measures, Christopher I

    2016-06-07

    By virtue of their compactness, long-term stability, minimal reagent consumption and robustness, miniaturized sequential injection instruments are well suited for automation of assays onboard research ships. However, in order to reach the sensitivity and limit of detection required for open-ocean determinations of trace elements, it is necessary to preconcentrate the analyte prior its derivatization and subsequent detection by fluorescence. In this work, a novel method for the determination of dissolved zinc (Zn) at subnanomolar levels in seawater is described. The proposed method combines, for the first time, automated matrix removal, extraction of the target element, and fluorescence detection within a miniaturized flow manifold, based on the Lab-On-Valve (LOV) concept. The key feature of the microfluidic manipulation of the sample is flow programming, designed to pass sample through a mini-column where the target analyte and other complexable cations are retained, while the seawater matrix is washed out. Next, zinc is eluted and merged with a Zn selective fluorescent probe (FluoZin-3) at the confluence point of the LOV central channel using two high-precision stepper motor driven pumps that are operated in concert. Finally, the thus formed Zn complex is transported to the LOV flow cell for selective fluorescence measurement. This work describes the characterization and optimization of the method including Solid Phase Extraction using the Toyopearl AF-Chelate-650M resin, and detailed assay protocol controlled by a commercially available software and instrument. The proposed method features a LOD of 0.02 nM, high precision (seawater reference standards and comparison with ICP-MS determinations on seawater samples collected in the upper 1300 m of the subtropical south Indian Ocean. This work confirms that integration of sample pretreatment with optical detection in the LOV format offers a widely applicable approach to trace analysis of seawater. Copyright © 2016

  16. Use of the disruption mitigation valve in closed loop for routine protection at JET

    International Nuclear Information System (INIS)

    Reux, Cédric; Lehnen, Michael; Kruezi, Uron; Jachmich, Stefan; Card, Peter; Heinola, Kalle; Joffrin, Emmanuel; Lomas, Peter J.; Marsen, Stefan; Matthews, Guy; Riccardo, Valeria; Rimini, Fernanda; Vries, Peter de

    2013-01-01

    Highlights: ► A massive gas injection valve was used for disruption routine mitigation at JET. ► A disruption mitigation valve was integrated in JET real time systems. ► Simple triggering schemes such as mode lock were used for disruption detection. ► High forces disruptions were prevented by the use of the gas valve. ► Radiated energy is higher in mitigated disruption than in unmitigated ones. -- Abstract: Disruptions are a major concern for next-generation tokamaks, including ITER. Heat loads, electromagnetic forces and runaway electrons generated by disruptions have to be mitigated for a reliable operation of future machines. Massive gas injection is one of the methods proposed for disruption mitigation. This article reports the first use of massive gas injection as an active disruption protection system at JET. During the 2011–2012 campaigns, 67 disruptions have been mitigated by the disruption mitigation valve (DMV) following a detection by mode lock amplitude and loop voltage changes. Most of disruptions where the valve was intended to be used were successfully mitigated by the DMV, although at different stages of the typical slow disruptions of the ITER-like wall. The fraction of magnetic and thermal energy radiated during the disruption was found to be increased by the action of the DMV. Vertical forces dispersion was also reduced. No non-sustained breakdown was observed following pulses terminated by the disruption mitigation valve

  17. Use of the disruption mitigation valve in closed loop for routine protection at JET

    Energy Technology Data Exchange (ETDEWEB)

    Reux, Cédric, E-mail: cedric.reux@ccfe.ac.uk [Ecole Polytechnique, LPP, CNRS UMR 7648, 91128 Palaiseau (France); JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Lehnen, Michael; Kruezi, Uron [Association EURATOM-FZJ, Trilateral Euregio Cluster, 52425 Julich (Germany); Jachmich, Stefan [Laboratoire de Physique des Plasmas-Laboratorium voor Plasmafysica, Association EURATOM-Belgian State Institute ERM/KMS, B-1000 Brussels (Belgium); EFDA-CSU, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Card, Peter [Culham Science Centre, EURATOM/CCFE Association, Abingdon OX14 3DB (United Kingdom); Heinola, Kalle [Department of Physics, University of Helsinki, P.O. Box 64, 00014 University of Helsinki (Finland); Joffrin, Emmanuel [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Lomas, Peter J. [Culham Science Centre, EURATOM/CCFE Association, Abingdon OX14 3DB (United Kingdom); Marsen, Stefan [Max-Planck-Institut für Plasmaphysik, Teilinstitut Greifswald, EURATOM-Assoziation, D-17491 Greifswald (Germany); Matthews, Guy; Riccardo, Valeria; Rimini, Fernanda [Culham Science Centre, EURATOM/CCFE Association, Abingdon OX14 3DB (United Kingdom); Vries, Peter de [FOM Institute DIFFER, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands)

    2013-10-15

    Highlights: ► A massive gas injection valve was used for disruption routine mitigation at JET. ► A disruption mitigation valve was integrated in JET real time systems. ► Simple triggering schemes such as mode lock were used for disruption detection. ► High forces disruptions were prevented by the use of the gas valve. ► Radiated energy is higher in mitigated disruption than in unmitigated ones. -- Abstract: Disruptions are a major concern for next-generation tokamaks, including ITER. Heat loads, electromagnetic forces and runaway electrons generated by disruptions have to be mitigated for a reliable operation of future machines. Massive gas injection is one of the methods proposed for disruption mitigation. This article reports the first use of massive gas injection as an active disruption protection system at JET. During the 2011–2012 campaigns, 67 disruptions have been mitigated by the disruption mitigation valve (DMV) following a detection by mode lock amplitude and loop voltage changes. Most of disruptions where the valve was intended to be used were successfully mitigated by the DMV, although at different stages of the typical slow disruptions of the ITER-like wall. The fraction of magnetic and thermal energy radiated during the disruption was found to be increased by the action of the DMV. Vertical forces dispersion was also reduced. No non-sustained breakdown was observed following pulses terminated by the disruption mitigation valve.

  18. Optimization experiment of gas oil direct injection valve for CNG dual fuel diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B.Y. [Chonnam National University Graduate School, Jeonju (Korea); Park, C. K. [Chonnam National University, Jeonju (Korea)

    1999-04-01

    In this study, we studied for a conversion from diesel engine to natural gas dual fuel engine. For this experimental, we tested about the injection quantity characteristics of pilot valve with the plunger diameter at the retraction volume and investigated to the engine performance and exhaust emissions with the nozzle hole number and injection nozzle diameter. As a result, when the plunger diameter is 7.5 mm at the retraction volume, 25 mm{sup 3}/st, the injection quantity characteristics develop. Also, when a nozzle type is 4*{phi} 0.24, total hydrocarbon(THC) emission reduce at low equivalence ratio. (author). 5 refs., 10 figs., 2 tabs.

  19. Brookhaven Lab and Argonne Lab scientists invent a plasma valve

    CERN Multimedia

    2003-01-01

    Scientists from Brookhaven National Laboratory and Argonne National Laboratory have received U.S. patent number 6,528,948 for a device that shuts off airflow into a vacuum about one million times faster than mechanical valves or shutters that are currently in use (1 page).

  20. The effect of intravitreal bevacizumab injection before Ahmed valve implantation in patients with neovascular glaucoma.

    Science.gov (United States)

    Kang, Jung Youb; Nam, Ki Yup; Lee, Sang Joon; Lee, Seung Uk

    2014-08-01

    To evaluate the effect of intravitreal bevacizumab (IVB) before Ahmed valve implantation for treatment of neovascular glaucoma (NVG). This study is a retrospective, comparative, consecutive case series. The study group consisted of 27 eyes of 26 patients with NVG who underwent an Ahmed valve implantation. Thirteen eyes were treated with Ahmed valve implantation alone (control group), and 14 eyes were treated with a combination of preoperative IVB injection and Ahmed valve implantation (IVB group). Visual acuity, intraocular pressure (IOP), number of anti-glaucoma medications, surgical complications, and success rate were compared between the two groups. There were no significant differences in preoperative characteristics between the two groups. Visual acuity at 1, 2 weeks, and 1 month after surgery were significantly better in the IVB group (p = 0.038, 0.034, and 0.032, respectively). Hyphema associated with Ahmed valve implantation occurred significantly less in the IVB group (p = 0.016). On the other hand, the mean IOP and number of anti-glaucoma medications at all follow-up periods were similar between the two groups. Kaplan-Meier survival analysis showed the probability of success 6 months after surgery as 71.4 % in the IVB group and 84.6 % in the control group. No significant difference in success rate was found between the groups (p = 0.422). IVB before Ahmed valve implantation for treatment of NVG reduced the incidence of hyphema. In this retrospective study, IVB provided better visual outcome in the early postoperative periods but did not significantly improve mean IOP, number of anti-glaucoma medications, or success rate.

  1. Development of the piezoelectric gas injection valve for JT-60

    International Nuclear Information System (INIS)

    Kawasaki, Kazuo; Hiratuka, Hajime

    1986-01-01

    Piezoelectric gas injection valve (PEV) for JT-60 have been developed which was a piezo-electric element. The raliability of the PEV under the actual condition of high magnetic fields and high temperatures are veryfied, and it became clear that the PEV had enough throughput range and sufficient repetability for long life throughput characteristics. Remarkables of the developed PEV are summarized as follows, (1) The maximum throughput rate, responce time and helium leakage rate satisfy the desiged specifications. (2) Throughput equation for PEV is clarified by comparison with experiment. (3) Reliabilities of PEV under the actual condition during coil power test become clear. (author)

  2. Wound Dehiscence and Device Migration after Subconjunctival Bevacizumab Injection with Ahmed Glaucoma Valve Implantation.

    Science.gov (United States)

    Miraftabi, Arezoo; Nilforushan, Naveed

    2016-01-01

    To report a complication pertaining to subconjunctival bevacizumab injection as an adjunct to Ahmed Glaucoma Valve (AGV) implantation. A 54-year-old woman with history of complicated cataract surgery was referred for advanced intractable glaucoma. AGV implantation with adjunctive subconjunctival bevacizumab (1.25 mg) was performed with satisfactory results during the first postoperative week. However, 10 days after surgery, she developed wound dehiscence and tube exposure. The second case was a 33-year-old man with history of congenital glaucoma and uncontrolled IOP who developed AGV exposure and wound dehiscence after surgery. In both cases, for prevention of endophthalmitis and corneal damage by the unstable tube, the shunt was removed and the conjunctiva was re-sutured. The potential adverse effect of subconjunctival bevacizumab injection on wound healing should be considered in AGV surgery.

  3. Wound dehiscence and device migration after subconjunctival bevacizumab injection with Ahmed glaucoma valve implantation

    OpenAIRE

    Arezoo Miraftabi; Naveed Nilforushan

    2016-01-01

    Purpose: To report a complication pertaining to subconjunctival bevacizumab injection as an adjunct to Ahmed Glaucoma Valve (AGV) implantation. Case Report: A 54-year-old woman with history of complicated cataract surgery was referred for advanced intractable glaucoma. AGV implantation with adjunctive subconjunctival bevacizumab (1.25 mg) was performed with satisfactory results during the first postoperative week. However, 10 days after surgery, she developed wound dehiscence and tube exposur...

  4. Development of a smart type motor operated valve for nuclear power plants

    Science.gov (United States)

    Kim, Chang-Hwoi; Park, Joo-Hyun; Lee, Dong-young; Koo, In-Soo

    2005-12-01

    In this paper, the design concept of the smart type motor operator valve for nuclear power plant was described. The development objective of the smart valve is to achieve superior accuracy, long-term reliability, and ease of use. In this reasons, developed smart valve has fieldbus communication such as deviceNet and Profibus-DP, auto-tuning PID controller, self-diagnostics, and on-line calibration capabilities. And also, to achieve pressure, temperature, and flow control with internal PID controller, the pressure sensor and transmitter were included in this valve. And, temperature and flow signal acquisition port was prepared. The developed smart valve will be performed equipment qualification test such as environment, EMI/EMC, and vibration in Korea Test Lab. And, the valve performance is tested in a test loop which is located in Seoul National University Lab. To apply nuclear power plant, the software is being developed according to software life cycle. The developed software is verified by independent software V and V team. It is expected that the smart valve can be applied to an existing NPPs for replacing or to a new nuclear power plants. The design and fabrication of smart valve is now being processed.

  5. Lab-on-a-Chip Instrument Development for Titan Exploration

    Science.gov (United States)

    Willis, P. A.; Greer, F.; Fisher, A.; Hodyss, R. P.; Grunthaner, F.; Jiao, H.; Mair, D.; Harrison, J.

    2009-12-01

    This contribution will describe the initial stages of a new ASTID-funded research program initiated in Fall 2009 aimed at lab-on-a-chip system development for astrobiological investigations on Titan. This technology development builds off related work at JPL and Berkeley [1-3] on the ultrasensitive compositional and chiral analysis of amino acids on Mars in order to search for signatures of past or present life. The Mars-focused instrument system utilizes a microcapillary electrophoresis (μCE) system integrated with on-chip perfluoropolyether (PFPE) membrane valves and pumps for automated liquid sample handling, on-chip derivitization of samples with fluorescent tags, dilution, and mixing with standards for data calibration. It utilizes a four-layer wafer stack design with CE channels patterned in glass, along with a PFPE membrane, a pneumatic manifold layer, and a fluidic bus layer. Three pneumatically driven on-chip diaphragm valves placed in series are used to peristaltically pump reagents, buffers, and samples to and from capillary electrophoresis electrode well positions. Electrophoretic separation occurs in the all-glass channels near the base of the structure. The Titan specific lab-on-a-chip system under development here focuses its attention on the unique organic chemistry of Titan. In order to chromatographically separate mixtures of neutral organics such as polycyclic aromatic hydrocarbons (PAHs), the Titan-specific microfluidic platform utilizes the related technique of microcapillary electrochromatography (μCEC). This technique differs from conventional μCE in that microchannels are filled with a porous stationary phase that presents surfaces upon which analyte species can adsorb/desorb. It is this additional surface interaction that enables separations of species critical to the understanding of the astrobiological potential of Titan that are not readily separated by the μCE technique. We have developed two different approaches for the integration

  6. A Study on the Main Steam Safety Valve Opening Mechanism by Flashing on NPPs

    International Nuclear Information System (INIS)

    Kim, Bae Joo

    2009-01-01

    A safety injection event happened by opening of the Main Steam Safety Valve at Kori unit 1 on April 16, 2005. The safety valves were opened at the lower system pressure than the valve opening set point due to rapid system pressure drop by opening of the Power Operated Relief Valve installed at the upstream of the Main Steam System. But the opening mechanism of safety valve at the lower set point pressure was not explained exactly. So, it needs to be understood about the safety valve opening mechanism to prevent a recurrence of this kind of event at a similar system of Nuclear Power Plant. This study is aimed to suggest the hydrodynamic mechanism for the safety valve opening at the lower set point pressure and the possibility of the recurrence at similar system conditions through document reviewing for the related previous studies and Kori unit 1 event

  7. Spin injection and detection in lateral spin valves with hybrid interfaces

    Science.gov (United States)

    Wang, Le; Liu, Wenyu; Ying, Hao; Chen, Luchen; Lu, Zhanjie; Han, Shuo; Chen, Shanshan; Zhao, Bing; Xu, Xiaoguang; Jiang, Yong

    2018-06-01

    Spin injection and detection in lateral spin valves with hybrid interfaces comprising a Co/Ag transparent contact and a Co/MgO/Ag junction (III) are investigated at room temperature in comparison with pure Co/Ag transparent contacts (I) and Co/MgO/Ag junctions (II). The measured spin-accumulation signals of a type III device are five times higher than those for type I. The extracted spin diffusion length in Ag is 180 nm for all three types of devices. The enhancement of the spin signal of the hybrid structure is mainly attributed to the increase of the interfacial spin polarization from the Co/MgO/Ag junction.

  8. Properties of Laser-Produced Highly Charged Heavy Ions for Direct Injection Scheme

    CERN Document Server

    Sakakibara, Kazuhiko; Hayashizaki, Noriyosu; Ito, Taku; Kashiwagi, Hirotsugu; Okamura, Masahiro

    2005-01-01

    To accelerate highly charged intense ion beam, we have developed the Direct Plasma Injection Scheme (DPIS) with laser ion source. In this scheme an ion beam from a laser ion source is injected directly to a RFQ linac without a low energy beam transport (LEBT) and the beam loss in the LEBT can be avoided. We achieved high current acceleration of carbon ions (60mA) by DPIS with the high current optimized RFQ. As the next setp we will use heavier elements like Ag, Pb, Al and Cu as target in LIS (using CO2, Nd-YAG or other laser) for DPIS and will examine properties of laser-produced plasma (the relationship of between charge state and laser power density, the current dependence of the distance from the target, etc).

  9. On-line monitoring of Glucose and penicillin by sequential injection analysis

    DEFF Research Database (Denmark)

    Min, R.W.; Nielsen, Jens Bredal; Villadsen, John

    1996-01-01

    and a detector. The glucose analyzer is based on an enzymatic reaction using glucose oxidase, which converts glucose to glucono-lactone with formation of hydrogen peroxide and subsequent detection of H2O2 by a chemiluminescence reaction involving luminol. The penicillin analysis is based on formation......A sequential injection analysis (SIA) system has been developed for on-line monitoring of glucose and penicillin during cultivations of the filamentous fungus Penicillium chrysogenum. The SIA system consists of a peristaltic pump, an injection valve, two piston pumps, two multi-position valves...

  10. Study on stair-step liquid triggered capillary valve for microfluidic systems

    Science.gov (United States)

    Zhang, Lei; Jones, Ben; Majeed, Bivragh; Nishiyama, Yukari; Okumura, Yasuaki; Stakenborg, Tim

    2018-06-01

    In lab-on-a-chip systems, various microfluidic technologies are being developed to handle fluids at very small quantities, e.g. in the scale of nano- or pico-liter. To achieve autonomous fluid handling at a low cost, passive fluidic control, based on the capillary force between the liquid and microchannel surface, is of the utmost interest in the microsystem. Valves are an essential component for flow control in many microfluidic systems, which enables a sequence of fluidic operations to be performed. In this paper, we present a new passive valve structure for a capillary driven microfluidic device. It is a variation of a capillary trigger valve that is amenable to silicon microfabrication; it will be referred to as a stair-step liquid triggered valve. In this paper, the valve functionality and its dependencies on channel geometry, surface contact angle, and surface roughness are studied both experimentally and with numerical modeling. The effect of the contact angle was explored in experiments on the silicon microfabricated valve structure; a maximal working contact angle, above which the valve fails to be triggered, was demonstrated. The fluidic behavior in the stair-step channel structure was further explored computationally using the finite volume method with the volume-of-fluid approach. Surface roughness due to scalloping of the sidewall during the Bosch etch process was hypothesized to reduce the sidewall contact angle. The reduced contact angle has considerable impacts on the capillary pressure as the liquid vapor interface traverses the stair-step structure of the valve. An improved match in the maximal working contact angle between the experiments and model was obtained when considering this surface roughness effect.

  11. Effect of mitomycin c and 5-flurouracil adjuvant therapy on the outcomes of Ahmed glaucoma valve implantation.

    Science.gov (United States)

    Cui, Qi N; Hsia, Yen C; Lin, Shan C; Stamper, Robert L; Rose-Nussbaumer, Jennifer; Mehta, Nitisha; Porco, Travis C; Naseri, Ayman; Han, Ying

    2017-03-01

    To examine the effect of mitomycin c and 5-flurouracil on treatment outcomes following Ahmed glaucoma valve implantation. Retrospective consecutive case series. Fifty patients who received Ahmed glaucoma valve implantation from 1999 to 2013 in the San Francisco Veterans Administration Hospital. The +INJECTION group received intraoperative mitomycin c followed by postoperative mitomycin c and/or 5-flurouracil, whereas the -INJECTION group did not. Primary outcome was treatment success at 1 year post-implantation. Intraocular pressure, hypertensive phase, and the number of glaucoma medications were also examined. Twenty-six patients/eyes in the +INJECTION group and 24 patients/eyes in the -INJECTION group were included. Treatment success was higher in the +INJECTION compared with the -INJECTION group (86 vs. 58%; P = 0.04). Intraocular pressure was lower in the +INJECTION compared with the -INJECTION group at 1, 3, 6 and 12 months (P ≪ 0.00001, P = 0.00003, 0.0008 and 0.024). Hypertensive phase occurred less often in the +INJECTION compared with the -INJECTION group (3.8 vs. 54%; P = 0.021). The +INJECTION group required fewer medications compared with the -INJECTION group (P = 0.02, 0.002, 0.003 and 0.008 at 1, 3, 6 and 12 months). Complication rates were comparable between groups (46.2 and 54.2%; P = 0.63). Adjuvant treatment with antifibrotics following Ahmed glaucoma valve implantation decreased the hypertensive phase and improved surgical outcomes without impacting complication rates at 1 year. This study postulates a role for antifibrotics in the postoperative management of Ahmed glaucoma valves. © 2016 Royal Australian and New Zealand College of Ophthalmologists.

  12. Determination of Low Level Concentrations of Metals by Means of Sequential Injection (SI) and Lab-on-Valve (LOV) Methodologies

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Miró, Manuel; Petersen, Roongrat

    /emission spectrometry (FAAS, ETAAS, ICP-AES, ICP-MS). The lecture will initially give an overview of various automated alternatives for facilitating appropriate SI/LOV-separation and pre-concentration schemes of metals in liquid samples, including examples of solid-phase extraction with permanent columns or renewable...

  13. Integration of continuous-flow sampling with microchip electrophoresis using poly(dimethylsiloxane)-based valves in a reversibly sealed device.

    Science.gov (United States)

    Li, Michelle W; Martin, R Scott

    2007-07-01

    Here we describe a reversibly sealed microchip device that incorporates poly(dimethylsiloxane) (PDMS)-based valves for the rapid injection of analytes from a continuously flowing stream into a channel network for analysis with microchip electrophoresis. The microchip was reversibly sealed to a PDMS-coated glass substrate and microbore tubing was used for the introduction of gas and fluids to the microchip device. Two pneumatic valves were incorporated into the design and actuated on the order of hundreds of milliseconds, allowing analyte from a continuously flowing sampling stream to be injected into an electrophoresis separation channel. The device was characterized in terms of the valve actuation time and pushback voltage. It was also found that the addition of sodium dodecyl sulfate (SDS) to the buffer system greatly increased the reproducibility of the injection scheme and enabled the analysis of amino acids derivatized with naphthalene-2,3-dicarboxaldehyde/cyanide. Results from continuous injections of a 0.39 nL fluorescein plug into the optimized system showed that the injection process was reproducible (RSD of 0.7%, n = 10). Studies also showed that the device was capable of monitoring off-chip changes in concentration with a device lag time of 90 s. Finally, the ability of the device to rapidly monitor on-chip concentration changes was demonstrated by continually sampling from an analyte plug that was derivatized upstream from the electrophoresis/continuous flow interface. A reversibly sealed device of this type will be useful for the continuous monitoring and analysis of processes that occur either off-chip (such as microdialysis sampling) or on-chip from other integrated functions.

  14. Automation of Silica Bead-based Nucleic Acid Extraction on a Centrifugal Lab-on-a-Disc Platform

    International Nuclear Information System (INIS)

    Kinahan, David J; Mangwanya, Faith; Garvey, Robert; Chung, Danielle WY; Lipinski, Artur; Julius, Lourdes AN; King, Damien; Mohammadi, Mehdi; Mishra, Rohit; Al-Ofi, May; Miyazaki, Celina; Ducrée, Jens

    2016-01-01

    We describe a centrifugal microfluidic ‘Lab-on-a-Disc’ (LoaD) technology for DNA purification towards eventual integration into a Sample-to-Answer platform for detection of the pathogen Escherichia coli O157:H7 from food samples. For this application, we use a novel microfluidic architecture which combines ‘event-triggered’ dissolvable film (DF) valves with a reaction chamber gated by a centrifugo-pneumatic siphon valve (CPSV). This architecture permits comprehensive flow control by simple changes in the speed of the platform innate spindle motor. Even before method optimisation, characterisation by DNA fluorescence reveals an extraction efficiency of 58%, which is close to commercial spin columns. (paper)

  15. Optimization of injection law for direct injection diesel engine

    International Nuclear Information System (INIS)

    Feola, M.; Bella, G.; Pelloni, P.; Casoli, P.; Toderi, G.; Cantore, G.

    1992-01-01

    This paper describes how different timing and shape of the injection law can influence pollutant emission of a direct injection diesel engine. The study was carried out making use of a multizone thermodynamic model as regards the closed valve phase, and a filling-emptying one as regards the open valve phase. After being calibrated by comparison with experimental data, the abovementioned model was used for injection law optimization as regards minimum pollutant concentration (NO x and soot) in the exhaust gases with the smallest engine performance reduction possible

  16. Dynamic Characteristics Analysis of Power Shift Control Valve

    Directory of Open Access Journals (Sweden)

    Feng Ren

    2014-07-01

    Full Text Available In order to study the influence that dynamic performance of shift control valve has on shifting process of construction machinery, the paper introduces working principle of the shift control valve and sets up the dynamically mathematical model and corresponding simulation model with simulation software LMS Imagine. Lab AMESim. Based on simulation, the paper analyzes the influence of pressure variation characteristics and buffering characteristics acting on vehicle performance during the process of shifting, meanwhile conducting experiments to verify the simulation. The results indicate that the simulation model is accurate and credible; the performance of the valve is satisfactory, which indeed reduces impact during shifting. Furthermore, the valve can meet the demand of other construction machineries in better degree by suitable matching between control spring stiffness and damping holes diameter.

  17. Adaptation of a load-inject valve for a flow injection chemiluminescence system enabling dual-reagent injection enhances understanding of environmental Fenton chemistry

    International Nuclear Information System (INIS)

    Jones, Matthew R.; Nightingale, Philp D.; Turner, Suzanne M.; Liss, Peter S.

    2013-01-01

    Graphical abstract: -- Highlights: •Measurement of multiple components of Fenton chemistry; Fe(II) and H 2 O 2 . •Rapid, quasi-simultaneous analysis enables calculation of environmental kinetics. •Low, nano to pico-molar detection limits with dual analyte analysis. •Able to measure complex matrix samples – organically enriched seawater. •Low cost system with appreciable sensitivity compared to single analyte analysis. -- Abstract: Environmental Fenton chemistry has been poorly constrained within the marine environment at a multi-component level. A simple, unique, reconfiguration of a flow-injection analytical system combined with luminol chemiluminescence allows quasi-simultaneously the measurement, using a single load-inject valve and a single photon multiplier tube, of reduced iron, Fe(II), and hydrogen peroxide. The system enables rapid, every 22 s, measurements with good accuracy at environmentally relevant concentrations, less than 5% relative standard deviations on both a 5 nM Fe(II) standard and a 60 nM hydrogen peroxide standard. Limits of detection were as low as 40 pM Fe(II) and 100 pM hydrogen peroxide. The system showed excellent capability by measuring from within an organic rich seawater the photochemically induced production of Fe(II) and hydrogen peroxide and their subsequent cycling and Fenton like interactions

  18. Studies on the construction of a new 80 MeV injector and a new injection scheme for the synchrotron of the Bonn accelerator facility ELSA

    International Nuclear Information System (INIS)

    Raecke, K.

    2001-09-01

    At the ELSA Accelerator Facility exists the opportunity to install a 80 MeV linear accelerator as an injector for the 2,5 GeV Booster Synchrotron. Because of its length the new structure cannot replace one of the linacs used today so possibilities to built up the accelerator and the transfer channels are worked out. Calculations comparing the injection efficiency of the present layout and the possible new layout show a recognizable improvement. The injection efficiency can be further improved using a single turn injection scheme. A septum magnet and a fast kicker for this injection scheme is designed. (orig.)

  19. Piezoelectric valve for massive gas injection in ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Dibon, Mathias; Neu, Rudolf [Max-Planck-Institute for Plasmaphysics, Boltzmannstr. 2, 85748 Garching (Germany); Technical University Munich, Boltzmannstr. 15, 85748 Garching (Germany); Herrmann, Albrecht; Mank, Klaus; Mertens, Vitus; Pautasso, Gabriella; Ploeckl, Bernhard [Max-Planck-Institute for Plasmaphysics, Boltzmannstr. 2, 85748 Garching (Germany)

    2016-07-01

    A sudden loss of plasma temperature can cause a disruption, which poses a significant problem for current Tokamaks and future fusion devices. Hence, mitigating forces and thermal loads during disruptions is important for the integrity of the vessel and first wall components. Therefore, high speed gas valves are used to deliver a pulse of noble gas onto the plasma, which irradiates the thermal energy quickly, avoiding localized heat loads and mechanical stress due to induced currents. A new design for such a valve is currently under development. The valve plate is driven by two piezoelectric stack actuators. The stroke of the actuators (0.07 mm) is amplified by a monolithic titanium frame and reaches 2 mm. The frame also serves as spring to pre-load the actuators. In the idle state, it also presses the conical valve plate into the seal, closing the gas chamber (42 cm{sup 3}). The actuators accelerate the stem and the valve plate until it is fully opened after 2 ms. The orifice of the valve has a diameter of 14 mm. This allows a peak mass flow rate of the gas up to 8 . 10{sup 4} (Pa.m)/(s) after 1.8 ms and an average mass flow rate of 2 . 10{sup 4} (Pa.m)/(s) over the evacuation time of 10 ms. Therefore, one valve would be sufficient to deliver the required amount of gas to mitigate disruptions at ASDEX Upgrade.

  20. TFTR neutral beam D-T gas injection system operational experiences of the first two years

    International Nuclear Information System (INIS)

    Oldaker, M.E.; Lawson, J.E.; Stevenson, T.N.; Kamperschroer, J.H.

    1995-01-01

    The TFTR Neutral Beam Tritium Gas Injection System (TGIS) has successfully performed tritium operations since December 1993. TGIS operation has been reliable, with no leaks to the secondary containment to date. Notable operational problems include throughput leaks on fill, exit and piezoelectric valves. Repair of a TGIS requires replacement of the assembly, involving TFTR downtime and extensive purging, since the TGIS assembly is highly contaminated with residual tritium, and is located within secondary containment. Modifications to improve reliability and operating range include adjustable reverse bias voltage to the piezoelectric valves, timing and error calculation changes to tune the PLC and hardwired timing control, and exercising piezoelectric valves without actually pulsing gas prior to use after extended inactivity. A pressure sensor failure required the development of an open loop piezoelectric valve drive control scheme, using a simple voltage ramp to partially compensate for declining plenum pressure. Replacement of TGIS's have been performed, maintaining twelve system tritium capability as part of scheduled project maintenance activity

  1. Effect of Fuel Injection and Mixing Characteristics on Pulse-Combustor Performance at High-Pressure

    Science.gov (United States)

    Yungster, Shaye; Paxson, Daniel E.; Perkins, Hugh D.

    2014-01-01

    Recent calculations of pulse-combustors operating at high-pressure conditions produced pressure gains significantly lower than those observed experimentally and computationally at atmospheric conditions. The factors limiting the pressure-gain at high-pressure conditions are identified, and the effects of fuel injection and air mixing characteristics on performance are investigated. New pulse-combustor configurations were developed, and the results show that by suitable changes to the combustor geometry, fuel injection scheme and valve dynamics the performance of the pulse-combustor operating at high-pressure conditions can be increased to levels comparable to those observed at atmospheric conditions. In addition, the new configurations can significantly reduce the levels of NOx emissions. One particular configuration resulted in extremely low levels of NO, producing an emission index much less than one, although at a lower pressure-gain. Calculations at representative cruise conditions demonstrated that pulse-combustors can achieve a high level of performance at such conditions.

  2. Extremely short relativistic-electron-bunch generation in the laser wakefield via novel bunch injection scheme

    NARCIS (Netherlands)

    Khachatryan, A.G.; van Goor, F.A.; Boller, Klaus J.; Reitsma, A.J.W.; Jaroszynski, D.A.

    2004-01-01

    Recently a new electron-bunch injection scheme for the laser wakefield accelerator has been proposed [JETP Lett. 74, 371 (2001); Phys. Rev. E 65, 046504 (2002)]. In this scheme, a low energy electron bunch, sent in a plasma channel just before a high-intensity laser pulse, is trapped in the laser

  3. Developing automated analytical methods for scientific environments using LabVIEW.

    Science.gov (United States)

    Wagner, Christoph; Armenta, Sergio; Lendl, Bernhard

    2010-01-15

    The development of new analytical techniques often requires the building of specially designed devices, each requiring its own dedicated control software. Especially in the research and development phase, LabVIEW has proven to be one highly useful tool for developing this software. Yet, it is still common practice to develop individual solutions for different instruments. In contrast to this, we present here a single LabVIEW-based program that can be directly applied to various analytical tasks without having to change the program code. Driven by a set of simple script commands, it can control a whole range of instruments, from valves and pumps to full-scale spectrometers. Fluid sample (pre-)treatment and separation procedures can thus be flexibly coupled to a wide range of analytical detection methods. Here, the capabilities of the program have been demonstrated by using it for the control of both a sequential injection analysis - capillary electrophoresis (SIA-CE) system with UV detection, and an analytical setup for studying the inhibition of enzymatic reactions using a SIA system with FTIR detection.

  4. Lab-on a-Chip

    Science.gov (United States)

    1999-01-01

    Labs on chips are manufactured in many shapes and sizes and can be used for numerous applications, from medical tests to water quality monitoring to detecting the signatures of life on other planets. The eight holes on this chip are actually ports that can be filled with fluids or chemicals. Tiny valves control the chemical processes by mixing fluids that move in the tiny channels that look like lines, connecting the ports. Scientists at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama designed this chip to grow biological crystals on the International Space Station (ISS). Through this research, they discovered that this technology is ideally suited for solving the challenges of the Vision for Space Exploration. For example, thousands of chips the size of dimes could be loaded on a Martian rover looking for biosignatures of past or present life. Other types of chips could be placed in handheld devices used to monitor microbes in water or to quickly conduct medical tests on astronauts. The portable, handheld Lab-on-a Chip Application Development Portable Test System (LOCAD-PTS) made its debut flight aboard Discovery during the STS-116 mission launched December 9, 2006. The system allowed crew members to monitor their environment for problematic contaminants such as yeast, mold, and even E.coli, and salmonella. Once LOCAD-PTS reached the ISS, the Marshall team continued to manage the experiment, monitoring the study from a console in the Payload Operations Center at MSFC. The results of these studies will help NASA researchers refine the technology for future Moon and Mars missions. (NASA/MSFC/D.Stoffer)

  5. Low intake valve lift in a port fuel-injected engine

    Energy Technology Data Exchange (ETDEWEB)

    Begg, S.M.; Hindle, M.P.; Cowell, T.; Heikal, M.R. [The Sir Harry Ricardo Laboratories, Centre for Automotive Engineering, Cockcroft Building, University of Brighton, Lewes Road, Brighton, East Sussex, BN2 4GJ (United Kingdom)

    2009-12-15

    A phenomenological study of the airflow and fuel spray interaction in a variable valve gasoline engine is presented. Experiments were performed in a steady-state flow rig fitted with a modified production cylinder head. The intake valve lift was varied manually. The mass flow rates of air and fuel through the test rig were adjusted to match typical engine operating conditions. Particle Image Velocimetry (PIV) and Laser Doppler Anemometry (LDA) measurements of the airflow showed the breakdown of a single, forward tumbling vortex-like structure into a pair of high-speed, turbulent jets at low valve lifts. Two transitional phases in the flow at the valve gap were identified for valve lifts less than 1.5 mm and greater than 3 mm. At the lower limit, a jet flapping instability was recorded. A port fuel injector (PFI) spray was characterised in a quiescent, chamber and within the test rig. High Speed Photography (HSP) and Phase Doppler Anemometry (PDA) were used to measure the effects of varying valve lift upon the fuel droplet characteristics. The in-cylinder measurements showed a reduction in mean droplet diameter of up to 50%, close to the valve gap, for peak valve lifts of less than 3 mm. (author)

  6. Extremely short relativistic-electron-bunch generation in the laser wakefield via novel bunch injection scheme

    Directory of Open Access Journals (Sweden)

    A. G. Khachatryan

    2004-12-01

    Full Text Available Recently a new electron-bunch injection scheme for the laser wakefield accelerator has been proposed [JETP Lett. 74, 371 (2001JTPLA20021-364010.1134/1.1427124; Phys. Rev. E 65, 046504 (2002PLEEE81063-651X10.1103/PhysRevE.65.046504]. In this scheme, a low energy electron bunch, sent in a plasma channel just before a high-intensity laser pulse, is trapped in the laser wakefield, considerably compressed and accelerated to an ultrarelativistic energy. In this paper we show the possibility of the generation of an extremely short (on the order of 1   μm long or a few femtoseconds in duration relativistic-electron-bunch by this mechanism. The initial electron bunch, which can be generated, for example, by a laser-driven photocathode rf gun, should have an energy of a few hundred keVs to a few MeVs, a duration in the picosecond range or less and a relatively low concentration. The trapping conditions and parameters of an accelerated bunch are investigated. The laser pulse dynamics as well as a possible experimental setup for the demonstration of the injection scheme are also considered.

  7. A multi-channel humidity control system based on LabVIEW

    International Nuclear Information System (INIS)

    Zhang Aiwu; Xie Yuguang; Liu Hongbang; Liu Yingbiao; Cai Xiao; Yu Boxiang; Lu Junguang; Zhou Li

    2011-01-01

    A real time multi-channel humidity control system was designed based on LabVIEW, using the dry air branch of BESⅢ drying system. The hardware of this control system consist of mini humidity and temperature sensors, intelligent collection module, switch quantity controller and electromagnetic valves. The humidity can be controlled at arbitrary value from air humidity to 3% with accuracy better than 2%. Multi microenvironment with different humidity can be easily controlled and monitored in real time by this system. It can also be extended to hybrid control of multi channel humidity and temperature. (authors)

  8. Improvement of Modeling Scheme of the Safety Injection Tank with Fluidic Device for Realistic LBLOCA Calculation

    International Nuclear Information System (INIS)

    Bang, Young Seok; Cheong, Aeju; Woo, Sweng Woong

    2014-01-01

    Confirmation of the performance of the SIT with FD should be based on thermal-hydraulic analysis of LBLOCA and an adequate and physical model simulating the SIT/FD should be used in the LBLOCA calculation. To develop such a physical model on SIT/FD, simulation of the major phenomena including flow distribution of by standpipe and FD should be justified by full scale experiment and/or plant preoperational testing. Author's previous study indicated that an approximation of SIT/FD phenomena could be obtained by a typical system transient code, MARS-KS, and using 'accumulator' component model, however, that additional improvement on modeling scheme of the FD and standpipe flow paths was needed for a reasonable prediction. One problem was a depressurizing behavior after switchover to low flow injection phase. Also a potential to release of nitrogen gas from the SIT to the downstream pipe and then reactor core through flow paths of FD and standpipe has been concerned. The intrusion of noncondensible gas may have an effect on LBLOCA thermal response. Therefore, a more reliable model on SIT/FD has been requested to get a more accurate prediction and a confidence of the evaluation of LBLOCA. The present paper is to discuss an improvement of modeling scheme from the previous study. Compared to the existing modeling, effect of the present modeling scheme on LBLOCA cladding thermal response is discussed. The present study discussed the modeling scheme of SIT with FD for a realistic simulation of LBLOCA of APR1400. Currently, the SIT blowdown test can be best simulated by the modeling scheme using 'pipe' component with dynamic area reduction. The LBLOCA analysis adopting the modeling scheme showed the PCT increase of 23K when compared to the case of 'accumulator' component model, which was due to the flow rate decrease at transition phase low flow injection and intrusion of nitrogen gas to the core. Accordingly, the effect of SIT/FD modeling

  9. Development of an ITER prototype disruption mitigation valve

    Energy Technology Data Exchange (ETDEWEB)

    Czymek, G., E-mail: g.czymek@fz-juelich.de [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, D52425 Jülich (Germany); Giesen, B., E-mail: ingenieurbuero.giesen@gmx.de [IBG, Sibertstr. 22, D-52525 Heinsberg (Germany); Charl, A.; Panin, A.; Hiller, A.; Nicolai, D.; Neubauer, O.; Koslowski, H.R.; Sandri, N. [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, D52425 Jülich (Germany)

    2015-10-15

    Highlights: • An ITER-DMV prototype for 100 bar, D = 80 mm, opening time 3.5 ms, is ready for fabrication. • The vacuum part is sealed against the working gas by stainless steel bellows for 110 bar. • The conical Laval gas outlet allows maximal mass flow rate. • The eddy current drive turn ratio was optimized for low tilting moment. • Polyimide is used for the head sealing, the decelerator and for the bearing of the guide tube. - Abstract: Disruptions in tokamaks seem to be unavoidable. Consequences of disruptions are (i) high heat loads on plasma-facing components, (ii) large forces on the vacuum vessel, and (iii) the generation of runaway electron beams. In ITER, the thermal energy of the plasma needs to be evenly distributed on the first wall in order to prevent melting, forces from vertical displacement events have to be minimized, and the generation of runaway electrons suppressed. Massive gas injection using fast valves is a concept for disruption mitigation which is presently being explored in many tokamaks. Fast disruption mitigation valves based on an electromagnetic eddy current drive have been developed in Jülich since the 1990s and models of various sizes have been built and are in operation in the TEXTOR, MAST, and JET tokamaks. A disruption mitigation valve for ITER is of necessity larger with an estimated injected gas volume of ∼20 kPa m{sup 3}[7] for runaway electron suppression and all materials used have to be resistant to much higher levels of neutron and gamma radiation than in existing tokamaks. During the last 5 years, the concept for an ITER prototype disruption mitigation valve has been developed up to the stage that a fully functional valve could be built and tested. Special emphasis was given to the development and functional testing of some critical items: (i) the injection chamber seal, (ii) the piston seal, (iii) the eddy current drive, and (iv) a braking mechanism to avoid too fast closure of the valve, which could damage

  10. Fabricating microfluidic valve master molds in SU-8 photoresist

    Science.gov (United States)

    Dy, Aaron J.; Cosmanescu, Alin; Sluka, James; Glazier, James A.; Stupack, Dwayne; Amarie, Dragos

    2014-05-01

    Multilayer soft lithography has become a powerful tool in analytical chemistry, biochemistry, material and life sciences, and medical research. Complex fluidic micro-circuits require reliable components that integrate easily into microchips. We introduce two novel approaches to master mold fabrication for constructing in-line micro-valves using SU-8. Our fabrication techniques enable robust and versatile integration of many lab-on-a-chip functions including filters, mixers, pumps, stream focusing and cell-culture chambers, with in-line valves. SU-8 created more robust valve master molds than the conventional positive photoresists used in multilayer soft lithography, but maintained the advantages of biocompatibility and rapid prototyping. As an example, we used valve master molds made of SU-8 to fabricate PDMS chips capable of precisely controlling beads or cells in solution.

  11. Fabricating microfluidic valve master molds in SU-8 photoresist

    International Nuclear Information System (INIS)

    Dy, Aaron J; Cosmanescu, Alin; Sluka, James; Glazier, James A; Amarie, Dragos; Stupack, Dwayne

    2014-01-01

    Multilayer soft lithography has become a powerful tool in analytical chemistry, biochemistry, material and life sciences, and medical research. Complex fluidic micro-circuits require reliable components that integrate easily into microchips. We introduce two novel approaches to master mold fabrication for constructing in-line micro-valves using SU-8. Our fabrication techniques enable robust and versatile integration of many lab-on-a-chip functions including filters, mixers, pumps, stream focusing and cell-culture chambers, with in-line valves. SU-8 created more robust valve master molds than the conventional positive photoresists used in multilayer soft lithography, but maintained the advantages of biocompatibility and rapid prototyping. As an example, we used valve master molds made of SU-8 to fabricate PDMS chips capable of precisely controlling beads or cells in solution. (technical note)

  12. Organic Spin-Valves and Beyond: Spin Injection and Transport in Organic Semiconductors and the Effect of Interfacial Engineering.

    Science.gov (United States)

    Jang, Hyuk-Jae; Richter, Curt A

    2017-01-01

    Since the first observation of the spin-valve effect through organic semiconductors, efforts to realize novel spintronic technologies based on organic semiconductors have been rapidly growing. However, a complete understanding of spin-polarized carrier injection and transport in organic semiconductors is still lacking and under debate. For example, there is still no clear understanding of major spin-flip mechanisms in organic semiconductors and the role of hybrid metal-organic interfaces in spin injection. Recent findings suggest that organic single crystals can provide spin-transport media with much less structural disorder relative to organic thin films, thus reducing momentum scattering. Additionally, modification of the band energetics, morphology, and even spin magnetic moment at the metal-organic interface by interface engineering can greatly impact the efficiency of spin-polarized carrier injection. Here, progress on efficient spin-polarized carrier injection into organic semiconductors from ferromagnetic metals by using various interface engineering techniques is presented, such as inserting a metallic interlayer, a molecular self-assembled monolayer (SAM), and a ballistic carrier emitter. In addition, efforts to realize long spin transport in single-crystalline organic semiconductors are discussed. The focus here is on understanding and maximizing spin-polarized carrier injection and transport in organic semiconductors and insight is provided for the realization of emerging organic spintronics technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Characteristics of Early Flame Development in a Direct-Injection Spark-Ignition CNG Engine Fitted with a Variable Swirl Control Valve

    Directory of Open Access Journals (Sweden)

    Abd Rashid Abd Aziz

    2017-07-01

    Full Text Available An experimental study was conducted to investigate the effect of the structure of the induction flow on the characteristics of early flames in a lean-stratified and lean-homogeneous charge combustion of compressed natural gas (CNG fuel in a direct injection (DI engine at different engine speeds. The engine speed was varied at 1500 rpm, 1800 rpm and 2100 rpm, and the ignition timing was set at a 38.5° crank angle (CA after top dead center (TDC for all conditions. The engine was operated in a partial-load mode and a homogeneous air/fuel charge was achieved by injecting the fuel early (before the intake valve closure, while late injection during the compression stroke was used to produce a stratified charge. Different induction flow structures were obtained by adjusting the swirl control valves (SCV. Using an endoscopic intensified CCD (ICCD camera, flame images were captured and analyzed. Code was developed to analyze the level of distortion of the flame and its wrinkledness, displacement and position relative to the spark center, as well as the flame growth rate. The results showed a higher flame growth rate with the flame kernel in the homogeneous charge, compared to the stratified combustion case. In the stratified charge combustion scenario, the 10° SCV closure (medium-tumble resulted in a higher early flame growth rate, whereas a homogeneous charge combustion (characterized by strong swirl resulted in the highest rate of flame growth.

  14. Revision of Booster to Storage Ring Transport Line Design and Injection Scheme for Top-Up Operation at NSRRC

    CERN Document Server

    Wang, Min-Huey; Chen, Jenny; Chen June Rong; Hsu, Kuo-Tung; Kuo, Chin-Cheng; Luo, Gwo-Huei

    2005-01-01

    In order to help the operation of constant current, the optics of booster to storage ring transport line (BTS) design is reinvestigated. The initial twiss parameters are derived by measurement. The optics of the transport line is readjusted according to the measured initial beam parameters. The design of pulse width of the injection kicker is also changed from 1.2μsecond to 2.0μsecond. The injection scheme is reviewed and the effects of the kicker error on both injected beam and stored beam are investigated and shown in this report.

  15. Estimation of the common cause failure probabilities of the components under mixed testing schemes

    International Nuclear Information System (INIS)

    Kang, Dae Il; Hwang, Mee Jeong; Han, Sang Hoon

    2009-01-01

    For the case where trains or channels of standby safety systems consisting of more than two redundant components are tested in a staggered manner, the standby safety components within a train can be tested simultaneously or consecutively. In this case, mixed testing schemes, staggered and non-staggered testing schemes, are used for testing the components. Approximate formulas, based on the basic parameter method, were developed for the estimation of the common cause failure (CCF) probabilities of the components under mixed testing schemes. The developed formulas were applied to the four redundant check valves of the auxiliary feed water system as a demonstration study for their appropriateness. For a comparison, we estimated the CCF probabilities of the four redundant check valves for the mixed, staggered, and non-staggered testing schemes. The CCF probabilities of the four redundant check valves for the mixed testing schemes were estimated to be higher than those for the staggered testing scheme, and lower than those for the non-staggered testing scheme.

  16. Disruption mitigation with high-pressure helium gas injection on EAST tokamak

    Science.gov (United States)

    Chen, D. L.; Shen, B.; Granetz, R. S.; Qian, J. P.; Zhuang, H. D.; Zeng, L.; Duan, Y.; Shi, T.; Wang, H.; Sun, Y.; Xiao, B. J.

    2018-03-01

    High pressure noble gas injection is a promising technique to mitigate the effect of disruptions in tokamaks. In this paper, results of mitigation experiments with low-Z massive gas injection (helium) on the EAST tokamak are reported. A fast valve has been developed and successfully implemented on EAST, with valve response time  ⩽150 μs, capable of injecting up to 7 × 1022 particles, corresponding to 300 times the plasma inventory. Different amounts of helium gas were injected into stable plasmas in the preliminary experiments. It is seen that a small amount of helium gas (N_He≃ N_plasma ) can not terminate a discharge, but can trigger MHD activity. Injection of 40 times the plasma inventory impurity (N_He≃ 40× N_plasma ) can effectively radiate away part of the thermal energy and make the electron density increase rapidly. The mitigation result is that the current quench time and vertical displacement can both be reduced significantly, without resulting in significantly higher loop voltage. This also reduces the risk of runaway electron generation. As the amount of injected impurity gas increases, the gas penetration time decreases slowly and asymptotes to (˜7 ms). In addition, the impurity gas jet has also been injected into VDEs, which are more challenging to mitigate that stable plasmas.

  17. Oxygen injection facility

    International Nuclear Information System (INIS)

    Ota, Masamoto; Hirose, Yuki

    1998-01-01

    A compressor introduces air as a starting material and sends it to a dust removing device, a dehumidifying device and an adsorption/separation system disposed downstream. The facility of the present invention is disposed in the vicinity of an injection point and installed in a turbine building of a BWR type reactor having a pipeline of a feedwater system to be injected. The adsorbing/separation system comprises an adsorbing vessel and an automatic valve, and the adsorbing vessel is filled with an adsorbent for selectively adsorbing nitrogen. Zeolite is used as the adsorbent. Nitrogen in the air passing through the adsorbing vessel is adsorbed and removed under a pressurized condition, and a highly concentrated oxygen gas is formed. The direction of the steam of the adsorbed nitrogen is changed by an opening/closing switching operation of an automatic valve and released to the atmosphere (the pressure is released). Generated oxygen gas is stored under pressure in a tank, and injected to the pipeline of the feedwater system by an oxygen injection conduit by way of a flow rate control valve. In the adsorbing vessel, steps of adsorption, separation and storage under pressure are repeated successively. (I.N.)

  18. Pressure control of hydraulic servo system using proportional control valve

    International Nuclear Information System (INIS)

    Yang, Kyong Uk; Oh, In Ho; Lee, Ill Yeong

    1999-01-01

    The purpose of this study is to develop a control scheme for the hydraulic servo system which can rapidly control the pressure in a hydraulic cylinder with very short stroke. Compared with the negligible stroke of the cylinder in the system, the flow gain of the proportional pressure control valve constituting the hydraulic servo system is relatively large and the time delay on the response of the valve is quite long. Therefore, the pressure control system, in this study tends to get unstable during operations. Considering the above mentioned characteristics of the system, a two-degree-of-freedom control scheme, composed of the I-PDD 2 ... feedback compensator and the feedforward controller, is proposed. The reference model scheme is used in deciding the parameters of the controllers. The validity of the proposed control scheme is confirmed through the experiments

  19. Fuel injection system for internal combustion engines. Kraftstoffeinspritzsystem fuer Brennkraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Hafner, U.

    1990-09-13

    A fuel injection system for an internal combustion engine is provided with a fuel supply line (13) and at least one electromagnetically actuated fuel injection valve (14) for apportioning a quantity of fuel for injection. A connection muzzle (24) coming from the valve body (23) juts into an opening (22) in the suction pipe (21) of the internal combustion engine. The end of the injection valve opposite the connecting muzzle (24) is connected with the fuel supply line via a fuel entry. The valve body (23) is enclosed by a casing (25) in order to provide the conditions required for a warm start. An annulus (31) extending over a large part of the axial length of the valve remains between the casing and the valve body (23). The annulus (31) communicates with the fuel flow through the fuel supply line (13) via an afflux and an efflux opening (32, 33) (Fig. 1).

  20. Injection and injection-compression moulding replication capability for the production of polymer lab-on-a-chip with nano structures

    DEFF Research Database (Denmark)

    Calaon, M.; Tosello, G.; Garnaes, J.

    2017-01-01

    The manufacturing precision and accuracy in the production of polymer lab-on-a-chip components with 100-130 nm deep nanochannels are evaluated using a metrological approach. Replication fidelity on corresponding process fingerprint test nanostructures over different substrates (nickel tool and po...

  1. Fault Diagnosis of Hydraulic Servo Valve Based on Genetic Optimization RBF-BP Neural Network

    Directory of Open Access Journals (Sweden)

    Li-Ping FAN

    2014-04-01

    Full Text Available Electro-hydraulic servo valves are core components of the hydraulic servo system of rolling mills. It is necessary to adopt an effective fault diagnosis method to keep the hydraulic servo valve in a good work state. In this paper, RBF and BP neural network are integrated effectively to build a double hidden layers RBF-BP neural network for fault diagnosis. In the process of training the neural network, genetic algorithm (GA is used to initialize and optimize the connection weights and thresholds of the network. Several typical fault states are detected by the constructed GA-optimized fault diagnosis scheme. Simulation results shown that the proposed fault diagnosis scheme can give satisfactory effect.

  2. Flow rate dependent extra-column variance from injection in capillary liquid chromatography.

    Science.gov (United States)

    Aggarwal, Pankaj; Liu, Kun; Sharma, Sonika; Lawson, John S; Dennis Tolley, H; Lee, Milton L

    2015-02-06

    Efficiency and resolution in capillary liquid chromatography (LC) can be significantly affected by extra-column band broadening, especially for isocratic separations. This is particularly a concern in evaluating column bed structure using non-retained test compounds. The band broadening due to an injector supplied with a commercially available capillary LC system was characterized from experimental measurements. The extra-column variance from the injection valve was found to have an extra-column contribution independent of the injection volume, showing an exponential dependence on flow rate. The overall extra-column variance from the injection valve was found to vary from 34 to 23 nL. A new mathematical model was derived that explains this exponential contribution of extra-column variance on chromatographic performance. The chromatographic efficiency was compromised by ∼130% for a non-retained analyte because of injection valve dead volume. The measured chromatographic efficiency was greatly improved when a new nano-flow pumping system with integrated injection valve was used. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Design and development of a direct injection system for cryogenic engines

    Science.gov (United States)

    Mutumba, Angela; Cheeseman, Kevin; Clarke, Henry; Wen, Dongsheng

    2018-04-01

    The cryogenic engine has received increasing attention due to its promising potential as a zero-emission engine. In this study, a new robust liquid nitrogen injection system was commissioned and set up to perform high-pressure injections into an open vessel. The system is used for quasi-steady flow tests used for the characterisation of the direct injection process for cryogenic engines. An electro-hydraulic valve actuator provides intricate control of the valve lift, with a minimum cycle time of 3 ms and a frequency of up to 20 Hz. With additional sub-cooling, liquid phase injections from 14 to 94 bar were achieved. Results showed an increase in the injected mass with the increase in pressure, and decrease in temperature. The injected mass was also observed to increases linearly with the valve lift. Better control of the injection process, minimises the number of variables, providing more comparable and repeatable sets of data. Implications of the results on the engine performance were also discussed.

  4. Automated injection of slurry samples in flow-injection analysis

    NARCIS (Netherlands)

    Hulsman, M.H.F.M.; Hulsman, M.; Bos, M.; van der Linden, W.E.

    1996-01-01

    Two types of injectors are described for introducing solid samples as slurries in flow analysis systems. A time-based and a volume-based injector based on multitube solenoid pinch valves were built, both can be characterized as hydrodynamic injectors. Reproducibility of the injections of dispersed

  5. Intravitreal ranibizumab injection combined trabeculectomy versus Ahmed valve surgery in the treatment of neovascular glaucoma: assessment of efficacy and complications.

    Science.gov (United States)

    Liu, Lan; Xu, Yongfeng; Huang, Zhu; Wang, Xiaoyu

    2016-05-26

    Researches have shown anti-vascular endothelial growth factor (VEGF) agent is effective in treating neovascular eye diseases. The purpose of this study is to evaluate the efficacy and safety of intravitreal ranibizumab (IVR) injection combined trabeculectomy in the treatment of neovascular glaucoma (NVG), and compared it with Ahmed valve surgery. Thirty-six NVG patients (37 eyes) from the First Affiliated Hospital of Zhejiang medical college, between January 1, 2014 and January 31, 2015, were included in this prospective, interventional clinical study. Eighteen NVG eyes were given IVR injection one week before trabeculectomy. Ahmed valve implantation surgery was performed in nineteen eyes. Ocular pain, best corrected visual acuity (BCVA), intraocular pressure (IOP) and surgical complications were evaluated before and after the surgery. IOP was significantly decreased following IVR injection combined trabeculectomy treatment (baseline 57.1 ± 8.9 mmHg; week 1, 15.2 ± 4.3 mmHg p = 0.000; month 1, 16.9 ± 2.1 mmHg p = 0.000; month 3, 20.3 ± 7.7 mmHg p = 0.000; month 6, 19.7 ± 7.3 mmHg p = 0.000). There was a significant, though modest, BCVA improvement in sighted eyes of IVR group (baseline 2.42 ± 0.68, W1 1.80 ± 0.91, P = 0.013; M1 1.77 ± 0.93, p = 0.011). IVR injection combined trabeculectomy had less postoperative complications and lower failure ratio than Ahmed surgery (IVR 5.6 %, Ahmed 31.6 %). The study revealed that IVR injection combined trabeculectomy was an effective and safe treatment for NVG. Compared with Ahmed surgery, IVR injection combined trabeculectomy had less complications and higher success ratio. (Chinese Clinical Registry, TRN ChiCTR-OPN-16008147, 3/24/2016, retrospectively registered).

  6. Utility of lab-on-a-chip technology for high-throughput nucleic acid and protein analysis

    DEFF Research Database (Denmark)

    Hawtin, Paul; Hardern, Ian; Wittig, Rainer

    2005-01-01

    On-chip electrophoresis can provide size separations of nucleic acids and proteins similar to more traditional slab gel electrophoresis. Lab-on-a-chip (LoaC) systems utilize on-chip electrophoresis in conjunction with sizing calibration, sensitive detection schemes, and sophisticated data analysi...

  7. Universal lab-on-a-chip platform for complex, perfused 3D cell cultures

    Science.gov (United States)

    Sonntag, F.; Schmieder, F.; Ströbel, J.; Grünzner, S.; Busek, M.; Günther, K.; Steege, T.; Polk, C.; Klotzbach, U.

    2016-03-01

    The miniaturization, rapid prototyping and automation of lab-on-a-chip technology play nowadays a very important role. Lab-on-a-chip technology is successfully implemented not only for environmental analysis and medical diagnostics, but also as replacement of animals used for the testing of substances in the pharmaceutical and cosmetics industries. For that purpose the Fraunhofer IWS and partners developed a lab-on-a-chip platform for perfused cell-based assays in the last years, which includes different micropumps, valves, channels, reservoirs and customized cell culture modules. This technology is already implemented for the characterization of different human cell cultures and organoids, like skin, liver, endothelium, hair follicle and nephron. The advanced universal lab-on-a-chip platform for complex, perfused 3D cell cultures is divided into a multilayer basic chip with integrated micropump and application-specific 3D printed cell culture modules. Moreover a technology for surface modification of the printed cell culture modules by laser micro structuring and a complex and flexibly programmable controlling device based on an embedded Linux system was developed. A universal lab-on-a-chip platform with an optional oxygenator and a cell culture module for cubic scaffolds as well as first cell culture experiments within the cell culture device will be presented. The module is designed for direct interaction with robotic dispenser systems. This offers the opportunity to combine direct organ printing of cells and scaffolds with the microfluidic cell culture module. The characterization of the developed system was done by means of Micro-Particle Image Velocimetry (μPIV) and an optical oxygen measuring system.

  8. Pressure Fluctuations in a Common-Rail Fuel Injection System

    Science.gov (United States)

    Rothrock, A M

    1931-01-01

    This report presents the results of an investigation to determine experimentally the instantaneous pressures at the discharge orifice of a common-rail fuel injection system in which the timing valve and cut-off valve were at some distance from the automatic fuel injection valve, and also to determine the methods by which the pressure fluctuations could be controlled. The results show that pressure wave phenomena occur between the high-pressure reservoir and the discharge orifice, but that these pressure waves can be controlled so as to be advantageous to the injection of the fuel. The results also give data applicable to the design of such an injection system for a high-speed compression-ignition engine.

  9. On Cyclic Variability in a Residual Effected HCCI Engine with Direct Gasoline Injection during Negative Valve Overlap

    Directory of Open Access Journals (Sweden)

    Jacek Hunicz

    2014-01-01

    Full Text Available This study contributes towards describing the nature of cycle-by-cycle variability in homogeneous charge compression ignition (HCCI engines. Experimental measurements were performed using a single cylinder research engine operated in the negative valve overlap (NVO mode and fuelled with direct gasoline injection. Both stoichiometric and lean mixtures were applied in order to distinguish between different exhaust-fuel reactions during the NVO period and their propagation into the main event combustion. The experimental results show that the mode of cycle-by-cycle variability depends on the NVO phenomena. Under stoichiometric mixture conditions, neither variability in the main event indicated mean effective pressure (IMEP nor the combustion timing was affected by the NVO phenomena; however, long period oscillations in IMEP were observed. In contrast, for lean mixture, where fuel oxidation during the NVO period took place, distinctive correlations between NVO phenomena and the main event combustion parameters were observed. A wavelet analysis revealed the presence of both long-term and short-term oscillations in IMEP, in accordance with the extent of NVO phenomena. Characteristic patterns in IMEP were recognized using an in-house algorithm.

  10. A modelling study into the effects of variable valve timing on the gas exchange process and performance of a 4-valve DI homogeneous charge compression ignition (HCCI) engine

    International Nuclear Information System (INIS)

    Mahrous, A-F.M.; Potrzebowski, A.; Wyszynski, M.L.; Xu, H.M.; Tsolakis, A.; Luszcz, P.

    2009-01-01

    Homogeneous charge compression ignition (HCCI) combustion mode is a relatively new combustion technology that can be achieved by using specially designed cams with reduced lift and duration. The auto-ignition in HCCI engine can be facilitated by adjusting the timing of the exhaust-valve-closing and, to some extent, the timing of the intake-valve-opening so as to capture a proportion of the hot exhaust gases in the engine cylinder during the gas exchange process. The effects of variable valve timing strategy on the gas exchange process and performance of a 4-valve direct injection HCCI engine were computationally investigated using a 1D fluid-dynamic engine cycle simulation code. A non-typical intake valve strategy was examined; whereby the intake valves were assumed to be independently actuated with the same valve-lift profile but at different timings. Using such an intake valves strategy, the obtained results showed that the operating range of the exhaust-valve-timing within which the HCCI combustion can be facilitated and maintained becomes much wider than that of the typical intake-valve-timing case. Also it was found that the engine parameters such as load and volumetric efficiency are significantly modified with the use of the non-typical intake-valve-timing. Additionally, the results demonstrated the potential of the non-typical intake-valve strategy in achieving and maintaining the HCCI combustion at much lower loads within a wide range of valve timings. Minimizing the pumping work penalty, and consequently improving the fuel economy, was shown as an advantage of using the non-typical intake-valve-timing with the timing of the early intake valve coupled with a symmetric degree of exhaust-valve-closing timing

  11. A modelling study into the effects of variable valve timing on the gas exchange process and performance of a 4-valve DI homogeneous charge compression ignition (HCCI) engine

    Energy Technology Data Exchange (ETDEWEB)

    Mahrous, A-F.M. [School of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lecturer at the Department of Mechanical Power Engineering, Faculty of Engineering (Shebin El-Kom), Menoufiya University, Shebin El-Kom (Egypt); Potrzebowski, A.; Wyszynski, M.L.; Xu, H.M.; Tsolakis, A.; Luszcz, P. [School of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2009-02-15

    Homogeneous charge compression ignition (HCCI) combustion mode is a relatively new combustion technology that can be achieved by using specially designed cams with reduced lift and duration. The auto-ignition in HCCI engine can be facilitated by adjusting the timing of the exhaust-valve-closing and, to some extent, the timing of the intake-valve-opening so as to capture a proportion of the hot exhaust gases in the engine cylinder during the gas exchange process. The effects of variable valve timing strategy on the gas exchange process and performance of a 4-valve direct injection HCCI engine were computationally investigated using a 1D fluid-dynamic engine cycle simulation code. A non-typical intake valve strategy was examined; whereby the intake valves were assumed to be independently actuated with the same valve-lift profile but at different timings. Using such an intake valves strategy, the obtained results showed that the operating range of the exhaust-valve-timing within which the HCCI combustion can be facilitated and maintained becomes much wider than that of the typical intake-valve-timing case. Also it was found that the engine parameters such as load and volumetric efficiency are significantly modified with the use of the non-typical intake-valve-timing. Additionally, the results demonstrated the potential of the non-typical intake-valve strategy in achieving and maintaining the HCCI combustion at much lower loads within a wide range of valve timings. Minimizing the pumping work penalty, and consequently improving the fuel economy, was shown as an advantage of using the non-typical intake-valve-timing with the timing of the early intake valve coupled with a symmetric degree of exhaust-valve-closing timing. (author)

  12. Bioprosthetic Valve Fracture to Facilitate Transcatheter Valve-in-Valve Implantation.

    Science.gov (United States)

    Allen, Keith B; Chhatriwalla, Adnan K; Cohen, David J; Saxon, John T; Aggarwal, Sanjeev; Hart, Anthony; Baron, Suzanne; Davis, J Russell; Pak, Alex F; Dvir, Danny; Borkon, A Michael

    2017-11-01

    Valve-in-valve transcatheter aortic valve replacement is less effective in small surgical bioprostheses. We evaluated the feasibility of bioprosthetic valve fracture with a high-pressure balloon to facilitate valve-in-valve transcatheter aortic valve replacement. In vitro bench testing on aortic tissue valves was performed on 19-mm and 21-mm Mitroflow (Sorin, Milan, Italy), Magna and Magna Ease (Edwards Lifesciences, Irvine, CA), Trifecta and Biocor Epic (St. Jude Medical, Minneapolis, MN), and Hancock II and Mosaic (Medtronic, Minneapolis, MN). High-pressure balloons Tru Dilation, Atlas Gold, and Dorado (C.R. Bard, Murray Hill, NJ) were used to determine which valves could be fractured and at what pressure fracture occurred. Mitroflow, Magna, Magna Ease, Mosaic, and Biocor Epic surgical valves were successfully fractured using high-pressures balloon 1 mm larger than the labeled valve size whereas Trifecta and Hancock II surgical valves could not be fractured. Only the internal valve frame was fractured, and the sewing cuff was never disrupted. Manufacturer's rated burst pressures for balloons were exceeded, with fracture pressures ranging from 8 to 24 atmospheres depending on the surgical valve. Testing further demonstrated that fracture facilitated the expansion of previously constrained, underexpanded transcatheter valves (both balloon and self-expanding) to the manufacturer's recommended size. Bench testing demonstrates that the frame of most, but not all, bioprosthetic surgical aortic valves can be fractured using high-pressure balloons. The safety of bioprosthetic valve fracture to optimize valve-in-valve transcatheter aortic valve replacement in small surgical valves requires further clinical investigation. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Development of a universal dual-bolus injection scheme for the quantitative assessment of myocardial perfusion cardiovascular magnetic resonance

    Directory of Open Access Journals (Sweden)

    Alfakih Khaled

    2011-05-01

    Full Text Available Abstract Background The dual-bolus protocol enables accurate quantification of myocardial blood flow (MBF by first-pass perfusion cardiovascular magnetic resonance (CMR. However, despite the advantages and increasing demand for the dual-bolus method for accurate quantification of MBF, thus far, it has not been widely used in the field of quantitative perfusion CMR. The main reasons for this are that the setup for the dual-bolus method is complex and requires a state-of-the-art injector and there is also a lack of post processing software. As a solution to one of these problems, we have devised a universal dual-bolus injection scheme for use in a clinical setting. The purpose of this study is to show the setup and feasibility of the universal dual-bolus injection scheme. Methods The universal dual-bolus injection scheme was tested using multiple combinations of different contrast agents, contrast agent dose, power injectors, perfusion sequences, and CMR scanners. This included 3 different contrast agents (Gd-DO3A-butrol, Gd-DTPA and Gd-DOTA, 4 different doses (0.025 mmol/kg, 0.05 mmol/kg, 0.075 mmol/kg and 0.1 mmol/kg, 2 different types of injectors (with and without "pause" function, 5 different sequences (turbo field echo (TFE, balanced TFE, k-space and time (k-t accelerated TFE, k-t accelerated balanced TFE, turbo fast low-angle shot and 3 different CMR scanners from 2 different manufacturers. The relation between the time width of dilute contrast agent bolus curve and cardiac output was obtained to determine the optimal predefined pause duration between dilute and neat contrast agent injection. Results 161 dual-bolus perfusion scans were performed. Three non-injector-related technical errors were observed (1.9%. No injector-related errors were observed. The dual-bolus scheme worked well in all the combinations of parameters if the optimal predefined pause was used. Linear regression analysis showed that the optimal duration for the predefined

  14. Extreme-temperature lab on a chip for optogalvanic spectroscopy of ultra small samples - key components and a first integration attempt

    International Nuclear Information System (INIS)

    Berglund, Martin; Khaji, Zahra; Persson, Anders; Sturesson, Peter; Breivik, Johan Söderberg; Thornell, Greger; Klintberg, Lena

    2016-01-01

    This is a short summary of the authors’ recent R and D on valves, combustors, plasma sources, and pressure and temperature sensors, realized in high-temperature co-fired ceramics, and an account for the first attempt to monolithically integrate them to form a lab on a chip for sample administration, preparation and analysis, as a stage in optogalvanic spectroscopy. (paper)

  15. Method and apparatus for injecting fluid

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, W E

    1966-07-05

    A method and apparatus are described for injecting grouting material into porous, fractured, unconsolidated, or other formations, whose cohesion is to be increased and/or whose permeability is to be decreased. A tool for injecting the fluid consists of a packer and valves through which the pressurized fluid may pass from the interior of the tool to the packer to expand it. Another valve allows pressure fluid to be vented so as to allow contraction of the packer. A third valve allows a flow of pressurized flow out of the tool and into the material when a predetermined pressure within the tool has been attained. (9 claims)

  16. Common rail fuel injection system for improvement of engine performance and reduction of exhaust emission on heavy duty diesel engine; Common rail system ni yoru seino haishutsu gas no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T; Koyama, T; Sasaki, K; Mori, K; Mori, K [Mitsubishi Motor Corp., Tokyo (Japan)

    1997-10-01

    With the objective of improvement of engine performance and reduction of exhaust emissions, influence of control method to decrease initial injection rate and effect of injector types on fuel leakage of common rail fuel injection system (Common Rail System) were investigated. As a results, it became clear that injector with 2-way valve brings improvement of engine performance and reduction of exhaust emissions as compared with injector with 3-way valve because injector with 2-way valve has lower fuel leakage and is able to use higher injection pressure than injector with 3-way valve. 5 refs., 13 figs., 1 tab.

  17. Control of an air pressure actuated disposable bioreactor for cultivating heart valves

    NARCIS (Netherlands)

    Beelen, M.J.; Neerincx, P.E.; Molengraft, van de M.J.G.

    2011-01-01

    A disposable injection molded bioreactor for growing tissue-engineered heart valves is controlled to mimic the physiological heart cycle. Tissue-engineered heart valves, cultured from human stem cells, are a possible alternative for replacing failing aortic heart valves, where nowadays biological

  18. Teachers' Perspectives on Online Virtual Labs vs. Hands-On Labs in High School Science

    Science.gov (United States)

    Bohr, Teresa M.

    This study of online science teachers' opinions addressed the use of virtual labs in online courses. A growing number of schools use virtual labs that must meet mandated laboratory standards to ensure they provide learning experiences comparable to hands-on labs, which are an integral part of science curricula. The purpose of this qualitative case study was to examine teachers' perceptions of the quality and effectiveness of high school virtual labs. The theoretical foundation was constructivism, as labs provide student-centered activities for problem solving, inquiry, and exploration of phenomena. The research questions focused on experienced teachers' perceptions of the quality of virtual vs. hands-on labs. Data were collected through survey questions derived from the lab objectives of The Next Generation Science Standards . Eighteen teachers rated the degree of importance of each objective and also rated how they felt virtual labs met these objectives; these ratings were reported using descriptive statistics. Responses to open-ended questions were few and served to illustrate the numerical results. Many teachers stated that virtual labs are valuable supplements but could not completely replace hands-on experiences. Studies on the quality and effectiveness of high school virtual labs are limited despite widespread use. Comprehensive studies will ensure that online students have equal access to quality labs. School districts need to define lab requirements, and colleges need to specify the lab experience they require. This study has potential to inspire positive social change by assisting science educators, including those in the local school district, in evaluating and selecting courseware designed to promote higher order thinking skills, real-world problem solving, and development of strong inquiry skills, thereby improving science instruction for all high school students.

  19. Chemical Cell Lysis System Applicable to Lab-on-a-Disc.

    Science.gov (United States)

    Lim, Dayeseul; Yoo, Jae Chern

    2017-09-01

    The design and fabrication of a heating system has been a significant challenge in implementing chemical lysis on a lab-on-a-disc (LOD). The proposed system contains a sample inlet, phase change material (PCM) array, heating chamber, and valve in a single disc, providing cost-effective, rapid, and fully automated chemical cell lysis. Compared to the conventional cell lysis system, our cell lysis system has many advantages, such as a compact structure that is easily integrated into the LOD and reduced processing time and labor. The experiments are conducted with Salmonella typhimurium strains to demonstrate the performance. The experimental results show that the proposed approach is greatly effective in realizing a chemical cell lysis system on an LOD with higher throughput in terms of purity and yield of DNA.

  20. Disruption mitigation experiment with massive gas injection of HT-7

    International Nuclear Information System (INIS)

    Zhuang Huidong; Zhang Xiaodong

    2013-01-01

    Massive gas injection (MGI) is a promising method on disruption mitigation. The working principle of the fast valve for disruption mitigation was introduced. The disruption mitigation experiments by MGI on HT-7 were described. The experiment shows that the impurities radiation is improved by injecting appropriate amount of gas, and the current quench rate is slow down, so the electromagnetic load on the device is mitigated. The experiments show that the fast valve can completely satisfy the requirement of disruption mitigation on HT-7. (authors)

  1. Comprehensive 4-stage categorization of bicuspid aortic valve leaflet morphology by cardiac MRI in 386 patients.

    Science.gov (United States)

    Murphy, I G; Collins, J; Powell, A; Markl, M; McCarthy, P; Malaisrie, S C; Carr, J C; Barker, A J

    2017-08-01

    Bicuspid aortic valve (BAV) disease is heterogeneous and related to valve dysfunction and aortopathy. Appropriate follow up and surveillance of patients with BAV may depend on correct phenotypic categorization. There are multiple classification schemes, however a need exists to comprehensively capture commissure fusion, leaflet asymmetry, and valve orifice orientation. Our aim was to develop a BAV classification scheme for use at MRI to ascertain the frequency of different phenotypes and the consistency of BAV classification. The BAV classification scheme builds on the Sievers surgical BAV classification, adding valve orifice orientation, partial leaflet fusion and leaflet asymmetry. A single observer successfully applied this classification to 386 of 398 Cardiac MRI studies. Repeatability of categorization was ascertained with intraobserver and interobserver kappa scores. Sensitivity and specificity of MRI findings was determined from operative reports, where available. Fusion of the right and left leaflets accounted for over half of all cases. Partial leaflet fusion was seen in 46% of patients. Good interobserver agreement was seen for orientation of the valve opening (κ = 0.90), type (κ = 0.72) and presence of partial fusion (κ = 0.83, p < 0.0001). Retrospective review of operative notes showed sensitivity and specificity for orientation (90, 93%) and for Sievers type (73, 87%). The proposed BAV classification schema was assessed by MRI for its reliability to classify valve morphology in addition to illustrating the wide heterogeneity of leaflet size, orifice orientation, and commissural fusion. The classification may be helpful in further understanding the relationship between valve morphology, flow derangement and aortopathy.

  2. Flowfield Analysis of a Pneumatic Solenoid Valve

    Directory of Open Access Journals (Sweden)

    Sheam-Chyun Lin

    2018-07-01

    Full Text Available Pneumatic solenoid valve has been widely used in the vehicle control systems for meeting the rapid-reaction demand triggered by the dynamic conditions encountered during the driving course of vehicle. For ensuring the safety of human being, the reliable and effective solenoid valve is in great demand to shorten the reaction time and thus becomes the topic of this research. This numerical study chooses a commercial 3/2-way solenoid valve as the reference valve for analysing its performance. At first, CFD software Fluent is adopted to simulate the flow field associated with the valve configuration. Then, the comprehensive flow visualization is implemented to identify the locations of adverse flow patterns. Accordingly, it is found that a high-pressure region exists in the zone between the nozzle exit and the top of iron core. Thereafter, the nozzle diameter and the distance between nozzle and spool are identified as the important design parameters for improving the pressure response characteristics of valve. In conclusion, this work establishes a rigorous and systematic CFD scheme to evaluate the performance of pneumatic solenoid valve.

  3. Lab-on-a-Disc Platform for Automated Chemical Cell Lysis

    Directory of Open Access Journals (Sweden)

    Moo-Jung Seo

    2018-02-01

    Full Text Available Chemical cell lysis is an interesting topic in the research to Lab-on-a-Disc (LOD platforms on account of its perfect compatibility with the centrifugal spin column format. However, standard procedures followed in chemical cell lysis require sophisticated non-contact temperature control as well as the use of pressure resistant valves. These requirements pose a significant challenge thereby making the automation of chemical cell lysis on an LOD extremely difficult to achieve. In this study, an LOD capable of performing fully automated chemical cell lysis is proposed, where a combination of chemical and thermal methods has been used. It comprises a sample inlet, phase change material sheet (PCMS-based temperature sensor, heating chamber, and pressure resistant valves. The PCMS melts and solidifies at a certain temperature and thus is capable of indicating whether the heating chamber has reached a specific temperature. Compared to conventional cell lysis systems, the proposed system offers advantages of reduced manual labor and a compact structure that can be readily integrated onto an LOD. Experiments using Salmonella typhimurium strains were conducted to confirm the performance of the proposed cell lysis system. The experimental results demonstrate that the proposed system has great potential in realizing chemical cell lysis on an LOD whilst achieving higher throughput in terms of purity and yield of DNA thereby providing a good alternative to conventional cell lysis systems.

  4. Lab-on-a-Disc Platform for Automated Chemical Cell Lysis.

    Science.gov (United States)

    Seo, Moo-Jung; Yoo, Jae-Chern

    2018-02-26

    Chemical cell lysis is an interesting topic in the research to Lab-on-a-Disc (LOD) platforms on account of its perfect compatibility with the centrifugal spin column format. However, standard procedures followed in chemical cell lysis require sophisticated non-contact temperature control as well as the use of pressure resistant valves. These requirements pose a significant challenge thereby making the automation of chemical cell lysis on an LOD extremely difficult to achieve. In this study, an LOD capable of performing fully automated chemical cell lysis is proposed, where a combination of chemical and thermal methods has been used. It comprises a sample inlet, phase change material sheet (PCMS)-based temperature sensor, heating chamber, and pressure resistant valves. The PCMS melts and solidifies at a certain temperature and thus is capable of indicating whether the heating chamber has reached a specific temperature. Compared to conventional cell lysis systems, the proposed system offers advantages of reduced manual labor and a compact structure that can be readily integrated onto an LOD. Experiments using Salmonella typhimurium strains were conducted to confirm the performance of the proposed cell lysis system. The experimental results demonstrate that the proposed system has great potential in realizing chemical cell lysis on an LOD whilst achieving higher throughput in terms of purity and yield of DNA thereby providing a good alternative to conventional cell lysis systems.

  5. The Impact of feedback and incentive schemes on performance

    OpenAIRE

    Bruun-Olsen, Alexandra M.; Engelsen Eian, Camilla

    2015-01-01

    Master's thesis in Business administration In this thesis we analyze how different feedback (objective and subjective), incentive schemes (fixed pay and performance pay), and the interaction between them impact performance. To answer our research question we conduct a lab experiment on students from the University of Stavanger. The experiment consists of subjects performing a combined coloring- and calculation task over three periods and receiving either objective or subjective feedback af...

  6. Microgrid Central Controller Development and Hierarchical Control Implementation in the Intelligent MicroGrid Lab of Aalborg University

    DEFF Research Database (Denmark)

    Meng, Lexuan; Savaghebi, Mehdi; Andrade, Fabio

    2015-01-01

    This paper presents the development of a microgrid central controller in an inverter-based intelligent microgrid (iMG) lab in Aalborg University, Denmark. The iMG lab aims to provide a flexible experimental platform for comprehensive studies of microgrids. The complete control system applied...... in this lab is based on the hierarchical control scheme for microgrids and includes primary, secondary and tertiary control. The structure of the lab, including the lab facilities, configurations and communication network, is first introduced. Primary control loops are developed in MATLAB....../Simulink and compiled to dSPACEs for local control purposes. In order to realize system supervision and proper secondary and tertiary management, a LabVIEW-based microgrid central controller is also developed. The software and hardware schemes are described. An example case is introduced and tested in the iMG lab...

  7. Development of multilayer piezoelectric actuator valve for JT-60

    International Nuclear Information System (INIS)

    Miyo, Yasuhiko; Hiratsuka, Hajime; Masui, Hiroshi; Hosogane, Nobuyuki; Miya, Naoyuki

    2001-11-01

    In order to improve the gas injection valve used for the operation of JT-60, a new type of valve (multilayer piezoelectric actuator valve) was developed. The conventional valve (bimorph piezoelectric valve) has been used for 15 years since the beginning of experimental operation in April, 1985. However, it came to be hard to keep the performance of the valve because of the deterioration of the driving source, i.e. piezoelectric element. Developments of the new valve were carried out based on experiences through experimental operations in JT-60. Requirements for the design are: (1) to be hard structure for making a sheet leak, (2) to allow a repair work at atmosphere side without an air vent of the vacuum vessel, (3) to be more smaller and lighter compared with the conventional one, and (4) to have a high maintenance efficiency by utilizing of the commercial piezoelectric elements and power supplies. The newly developed valve was examined with various tests such as gas flow characteristic test, high magnetic field proof test, high temperature proof test and gas flow rate test for aged deterioration. Results, confirm that the performance of the valve is applicable for JT-60 operations. (author)

  8. High-Compression-Ratio; Atkinson-Cycle Engine Using Low-Pressure Direct Injection and Pneumatic-Electronic Valve Actuation Enabled by Ionization Current and Foward-Backward Mass Air Flow Sensor Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Harold Schock; Farhad Jaberi; Ahmed Naguib; Guoming Zhu; David Hung

    2007-12-31

    This report describes the work completed over a two and one half year effort sponsored by the US Department of Energy. The goal was to demonstrate the technology needed to produce a highly efficient engine enabled by several technologies which were to be developed in the course of the work. The technologies included: (1) A low-pressure direct injection system; (2) A mass air flow sensor which would measure the net airflow into the engine on a per cycle basis; (3) A feedback control system enabled by measuring ionization current signals from the spark plug gap; and (4) An infinitely variable cam actuation system based on a pneumatic-hydraulic valve actuation These developments were supplemented by the use of advanced large eddy simulations as well as evaluations of fuel air mixing using the KIVA and WAVE models. The simulations were accompanied by experimental verification when possible. In this effort a solid base has been established for continued development of the advanced engine concepts originally proposed. Due to problems with the valve actuation system a complete demonstration of the engine concept originally proposed was not possible. Some of the highlights that were accomplished during this effort are: (1) A forward-backward mass air flow sensor has been developed and a patent application for the device has been submitted. We are optimistic that this technology will have a particular application in variable valve timing direct injection systems for IC engines. (2) The biggest effort on this project has involved the development of the pneumatic-hydraulic valve actuation system. This system was originally purchased from Cargine, a Swedish supplier and is in the development stage. To date we have not been able to use the actuators to control the exhaust valves, although the actuators have been successfully employed to control the intake valves. The reason for this is the additional complication associated with variable back pressure on the exhaust valves when

  9. Estimation of Valve Stiction Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    S. Sivagamasundari

    2011-06-01

    Full Text Available This paper presents a procedure for quantifying valve stiction in control loops based on particle swarm optimization. Measurements of the Process Variable (PV and Controller Output (OP are used to estimate the parameters of a Hammerstein system, consisting of connection of a non linear control valve stiction model and a linear process model. The parameters of the Hammerstein model are estimated using particle swarm optimization, from the input-output data by minimizing the error between the true model output and the identified model output. Using particle swarm optimization, Hammerstein models with known nonlinear structure and unknown parameters can be identified. A cost-effective optimization technique is adopted to find the best valve stiction models representing a more realistic valve behavior in the oscillating loop. Simulation and practical laboratory control system results are included, which demonstrates the effectiveness and robustness of the identification scheme.

  10. Evaluation on operation of liquid relief valves for steam line break accidents by RELAP5/CANDU+ code

    International Nuclear Information System (INIS)

    Yang, C. Y.; Bang, Y. S.; Kim, H. J.

    2001-01-01

    A development of RELAP5/CANDU+ code for regulatory audits of accident analysis of CANDU nuclear power plants is on progress. This paper is undertaken in a procedure of a verification and validation for RELAP5/CANDU+ code by analyzing main steam line break accidents of WS 2/3/4. Following the ECC injection in sequence of the steam line breaks, the mismatch in heat transfer between the primary and the secondary systems makes pressure of the primary system instantly peaked to the open setpoint of liquid relief valves. The event sequence follows the result of WS 2/3/4 FSAR, but there is a difference in pressure transient after ECC injection. Sensitivity analysis for main factors dependent on the peak pressure such as control logics of liquid relief valves. ECC flow path and feedwater flow is performed. Because the pressure increase is continued for a long time and its peaking is high, open and close of the liquid relief valves are repeated several times, which is obviously different from those of WS 2/3/4 FSAR. As a result, it is evaluated that conservative modeling for the above variables is required in the analysis

  11. Programmable lab-on-a-chip system for single cell analysis

    Science.gov (United States)

    Thalhammer, S.

    2009-05-01

    The collection, selection, amplification and detection of minimum genetic samples became a part of everyday life in medical and biological laboratories, to analyze DNA-fragments of pathogens, patient samples and traces on crime scenes. About a decade ago, a handful of researchers began discussing an intriguing idea. Could the equipment needed for everyday chemistry and biology procedures be shrunk to fit on a chip in the size of a fingernail? Miniature devices for, say, analysing DNA and proteins should be faster and cheaper than conventional versions. Lab-on-a-chip is an advanced technology that integrates a microfluidic system on a microscale chip device. The "laboratory" is created by means of channels, mixers, reservoirs, diffusion chambers, integrated electrodes, pumps, valves and more. With lab-ona- chip technology, complete laboratories on a square centimetre can be created. Here, a multifunctional programmable Lab-on-a-Chip driven by nanofluidics and controlled by surface acoustic waves (SAW) is presented. This system combines serial DNA-isolation-, amplification- and array-detection-process on a modified glass-platform. The fluid actuation is controlled via SAW by interdigital transducers implemented in the chemical modified chip surface. The chemical surface modification allows fluid handling in the sub-microliter range. Minute amount of sample material is extracted by laser-based microdissection out of e.g. histological sections at the single cell level. A few picogram of genetic material are isolated and transferred via a low-pressure transfer system (SPATS) onto the chip. Subsequently the genetic material inside single droplets, which behave like "virtual" beaker, is transported to the reaction and analysis centers on the chip surface via surface acoustic waves, mainly known as noise dumping filters in mobile phones. At these "biological reactors" the genetic material is processed, e.g. amplified via polymerase chain reaction methods, and genetically

  12. Small valve area index: its influence on early mortality after mitral valve replacement

    NARCIS (Netherlands)

    Yazdanbakhsh, A. P.; van den Brink, R. B.; Dekker, Egbert; de Mol, B. A.

    2000-01-01

    OBJECTIVE: To test the hypothesis that mitral valve prosthesis-patient mismatch increases postoperative mortality. METHODS AND RESULTS: The effect of mitral valve prosthesis-patient mismatch on survival in a cohort of consecutive patients after mitral valve replacement with a mechanical prosthesis

  13. Microgrid central controller development and hierarchical control implemetation in the intelligent microgrid lab of Aalborg University

    OpenAIRE

    Meng, Lexuan; Savaghebi, Mehdi; Andrade, Fabio; Vasquez Quintero, Juan Carlos; Guerrero, Josep M.; Graells Sobré, Moisès

    2015-01-01

    This paper presents the development of a microgrid central controller in an inverter-based intelligent microgrid (iMG) lab in Aalborg University, Denmark. The iMG lab aims to provide a flexible experimental platform for comprehensive studies of microgrids. The complete control system applied in this lab is based on the hierarchical control scheme for microgrids and includes primary, secondary and tertiary control. The structure of the lab, including the lab facilities, configurations and comm...

  14. Fast-responding liquid crystal light-valve technology for color-sequential display applications

    Science.gov (United States)

    Janssen, Peter J.; Konovalov, Victor A.; Muravski, Anatoli A.; Yakovenko, Sergei Y.

    1996-04-01

    A color sequential projection system has some distinct advantages over conventional systems which make it uniquely suitable for consumer TV as well as high performance professional applications such as computer monitors and electronic cinema. A fast responding light-valve is, clearly, essential for a good performing system. Response speed of transmissive LC lightvalves has been marginal thus far for good color rendition. Recently, Sevchenko Institute has made some very fast reflective LC cells which were evaluated at Philips Labs. These devices showed sub millisecond-large signal-response times, even at room temperature, and produced good color in a projector emulation testbed. In our presentation we describe our highly efficient color sequential projector and demonstrate its operation on video tape. Next we discuss light-valve requirements and reflective light-valve test results.

  15. Effects of structure parameters on flow and cavitation characteristics within control valve of fuel injector for modern diesel engine

    International Nuclear Information System (INIS)

    Wang, Chao; Li, Guo-Xiu; Sun, Zuo-Yu; Wang, Lan; Sun, Shu-Ping; Gu, Jiao-Jiao; Wu, Xiao-Jun

    2016-01-01

    Highlights: • The Schnerr-Sauer model was used to calculate the cavitation source term. • The development process and influencing factors of cavitation were studied. • The flow process inside control valve during the ball valve opened were studied. • The effects of the structure parameters of the control valve on the cavitation and flow were studied. - Abstract: Cavitation is a common phenomenon in diesel injector and has a strong influence on the internal flow. However, studies so far have focused on cavitation characteristics inside the nozzle. Its influence on the flow during control valve opening remains still unclear. In the paper, a computational study focused on the flow and cavitation phenomena within control valve has been reported and the effects of control valve’s structure parameters (including rounded edge, seal cone angle and outflowing control-orifice structure) on the flow and cavitation characteristics have been investigated in detail. Firstly the 3D model has been validated in terms of single injection quantity and fuel injection duration, showing a good consistency. And then, the development from sheet cavitation to cloud cavitation and the relationship between cavitation, pressure and velocity has been discussed. Based on the numerical results obtained, it is shown that not only the variation of pressure but also the velocity is the important factor which affects cavitation. The increase of the flow velocity reduces the pressure within the flow field which can aggravate the development of cavitation. As cavitation region increases, the fuel flow is hindered and the flow velocity decreases. However, the decrease of flow velocity has suppressed the development of cavitation. All of those variations form a cyclical process.

  16. An experimental study on the effects of high-pressure and multiple injection strategies on DI diesel engine emissions

    KAUST Repository

    Yang, Seung Yeon; Chung, Suk-Ho

    2013-01-01

    An experimental study on effects of high-pressure injections in conjunction with split fuel injections were conducted on an AVL single cylinder DI diesel engine. Various injection schemes were studied through the use of an electronically controlled

  17. Anticipated transient without scram analysis of the simplified boiling water reactor following main steam isolation valve closure with boron injection

    International Nuclear Information System (INIS)

    Khan, H.J.; Cheng, H.S.; Rohatgi, U.S.

    1996-01-01

    The simplified boiling water reactor (SBWR) operating in natural circulation is designed with many passive safety features. An anticipated transient without scram (ATWS) initiated by inadvertent closure of the main steam isolation valve (MSIV) in an SBWR has been analyzed using the RAMONA-4B code of Brookhaven National Laboratory. This analysis demonstrates the predicted performance of the SBWR during an MSIV closure ATWS, followed by shutdown of the reactor through injection of boron into the reactor core from the standby liquid control system

  18. Diesel Engine Valve Clearance Detection Using Acoustic Emission

    Directory of Open Access Journals (Sweden)

    Fathi Elamin

    2010-01-01

    Full Text Available This paper investigated, using experimental method, the suitability of acoustic emission (AE technique for the condition monitoring of diesel engine valve faults. The clearance fault was adjusted experimentally in an exhaust valve and successfully detected and diagnosed in a Ford FSD 425 four-cylinder, four-stroke, in-line OHV, direct injection diesel engine. The effect of faulty exhaust valve clearance on engine performance was monitored and the difference between the healthy and faulty engine was observed from the recorded AE signals. The measured results from this technique show that using only time domain and frequency domain analysis of acoustic emission signals can give a superior measure of engine condition. This concludes that acoustic emission is a powerful and reliable method of detection and diagnosis of the faults in diesel engines and this is considered to be a unique approach to condition monitoring of valve performance.

  19. Effects of the blockage ratio of a valve disk on loss coefficient in a butterfly valve

    International Nuclear Information System (INIS)

    Rho, Hyung Joon; Lee, Jee Keun; Choi, Hee Joo

    2008-01-01

    The loss coefficient of the butterfly valve which allows partial opening of the valve at closed position and is applicable to the small-sized pipe system with the diameter of 1 inch was measured for the variation of the valve disk blockage ratio. Two different types of the valve disk configuration to adjust the blockage ratio were considered. One was the solid type valve disk of which the diameter was changed into the smaller size rather than the pipe diameter, and the other was the perforate type valve disk on which some holes were perforated. The results from two types of valve disk were compared to identify their characteristics in the loss coefficient distributions. The loss coefficient and the controllable angle of the valve disk were decreased exponentially with the decrease of the blockage ratio. In addition, the perforate valve disk had the effect on the higher loss coefficient rather than the solid type valve disk

  20. Mitigating check valve slamming and subsequentwater hammer events for PPFS using MOC

    International Nuclear Information System (INIS)

    Tian Wenxi; Su Guanghui; Wang Gaopeng; Qiu Suizheng; Xiao Zejun

    2009-01-01

    The method of characteristic (MOC) was adopted to analyze the check valve-induced water hammer behaviors for a Parallel Pumps Feedwater System (PPFS) during the alternate startup process. The motion of check valve disc was simulated using inertial valve model. Transient parameters including the pressure oscillation, local flow velocity and slamming of the check valve disc etc. have been obtained. The results showed that severe slamming between the valve disc and valve seat occurred during the alternate startup of parallel pumps. The induced maximum pressure vibration amplitude is up to 5.0 MPa. The scheme of appending a damping torque to slow down the check valve closing speed was also performed to mitigate of water hammer. It has been numerically approved to be an effective approach. (authors)

  1. Mitigating check valve slamming and subsequentwater hammer events for PPFS using MOC

    Institute of Scientific and Technical Information of China (English)

    TIAN Wenxi; SU Guanghui; WANG Gaopeng; QIU Suizheng; XIAO Zejun

    2009-01-01

    The method of characteristic (MOC) was adopted to analyze the check valve-induced water hammer behaviors for a Parallel Pumps Feedwater System (PPFS) during the alternate startup process. The motion of check valve disc was simulated using inertial valve model. Transient parameters including the pressure oscillation, local flow velocity and slamming of the check valve disc etc. have been obtained. The results showed that severe slamming between the valve disc and valve seat occurred during the alternate startup of parallel pumps. The induced maximum pressure vibration amplitude is up to 5.0 MPa. The scheme of appending a damping torque to slow down the check valve closing speed was also performed to mitigate of water hammer. It has been numerically approved to be an effective approach.

  2. Comparison of Ultrasonic Welding and Thermal Bonding for the Integration of Thin Film Metal Electrodes in Injection Molded Polymeric Lab-on-Chip Systems for Electrochemistry

    Directory of Open Access Journals (Sweden)

    Marco Matteucci

    2016-10-01

    Full Text Available We compare ultrasonic welding (UW and thermal bonding (TB for the integration of embedded thin-film gold electrodes for electrochemical applications in injection molded (IM microfluidic chips. The UW bonded chips showed a significantly superior electrochemical performance compared to the ones obtained using TB. Parameters such as metal thickness of electrodes, depth of electrode embedding, delivered power, and height of energy directors (for UW, as well as pressure and temperature (for TB, were systematically studied to evaluate the two bonding methods and requirements for optimal electrochemical performance. The presented technology is intended for easy and effective integration of polymeric Lab-on-Chip systems to encourage their use in research, commercialization and education.

  3. [A design of simple ventilator control system based on LabVIEW].

    Science.gov (United States)

    Pei, Baoqing; Xu, Shengwei; Li, Hui; Li, Deyu; Pei, Yidong; He, Haixing

    2011-01-01

    This paper designed a ventilator control system to control proportional valves and motors. It used LabVIEW to control the object mentioned above and design ,validate, evaluate arithmetic, and establish hardware in loop platform. There are two system' s hierarchies. The high layer was used to run non-real time program and the low layer was used to run real time program. The two layers communicated through TCP/IP net. The program can be divided into several modules, which can be expanded and maintained easily. And the harvest in the prototype designing can be seamlessly used to embedded products. From all above, this system was useful in employing OEM products.

  4. Non-local electrical spin injection and detection in germanium at room temperature

    Science.gov (United States)

    Rortais, F.; Vergnaud, C.; Marty, A.; Vila, L.; Attané, J.-P.; Widiez, J.; Zucchetti, C.; Bottegoni, F.; Jaffrès, H.; George, J.-M.; Jamet, M.

    2017-10-01

    Non-local carrier injection/detection schemes lie at the very foundation of information manipulation in integrated systems. This paradigm consists in controlling with an external signal the channel where charge carriers flow between a "source" and a well separated "drain." The next generation electronics may operate on the spin of carriers in addition to their charge and germanium appears as the best hosting material to develop such a platform for its compatibility with mainstream silicon technology and the predicted long electron spin lifetime at room temperature. In this letter, we demonstrate injection of pure spin currents (i.e., with no associated transport of electric charges) in germanium, combined with non-local spin detection at 10 K and room temperature. For this purpose, we used a lateral spin valve with epitaxially grown magnetic tunnel junctions as spin injector and spin detector. The non-local magnetoresistance signal is clearly visible and reaches ≈15 mΩ at room temperature. The electron spin lifetime and diffusion length are 500 ps and 1 μm, respectively, the spin injection efficiency being as high as 27%. This result paves the way for the realization of full germanium spintronic devices at room temperature.

  5. A comparative study on real lab and simulation lab in communication engineering from students' perspectives

    Science.gov (United States)

    Balakrishnan, B.; Woods, P. C.

    2013-05-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised concerns among educators on the merits and shortcomings of both physical and simulation labs; at the same time, many arguments have been raised on the differences of both labs. Investigating the effectiveness of both labs is complicated, as there are multiple factors that should be considered. In view of this challenge, a study on students' perspectives on their experience related to key aspects on engineering laboratory exercise was conducted. In this study, the Visual Auditory Read and Kinetic model was utilised to measure the students' cognitive styles. The investigation was done through a survey among participants from Multimedia University, Malaysia. The findings revealed that there are significant differences for most of the aspects in physical and simulation labs.

  6. Effects of aging and service wear on main steam isolation valves and valve operators

    International Nuclear Information System (INIS)

    Clark, R.L.

    1996-03-01

    In recent years main steam isolation valve (MSIV operating problems have resulted in significant operational transients (e.g., spurious reactor trips, steam generator dry out, excessive valve seat leakage), increased cost, and decreased plant availability. A key ingredient to an engineering-oriented reliability improvement effort is a thorough understanding of relevant historical experience. A detailed review of historical failure data available through the Institute of Nuclear Power Operation's Nuclear Plant Reliability Data System has been conducted for several types of MSIVs and valve operators for both boiling-water reactors and pressurized-water reactors. The focus of this review is on MSIV failures modes, actuator failure modes, consequences of failure on plant operations, method of failure detection, and major stressors affecting both valves and valve operators

  7. Advanced LabVIEW Labs

    International Nuclear Information System (INIS)

    Jones, Eric D.

    1999-01-01

    In the world of computer-based data acquisition and control, the graphical interface program LabVIEW from National Instruments is so ubiquitous that in many ways it has almost become the laboratory standard. To date, there have been approximately fifteen books concerning LabVIEW, but Professor Essick's treatise takes on a completely different tack than all of the previous discussions. In the more standard treatments of the ways and wherefores of LabVIEW such as LabVIEW Graphical Programming: Practical Applications in Instrumentation and Control by Gary W. Johnson (McGraw Hill, NY 1997), the emphasis has been instructing the reader how to program LabVIEW to create a Virtual Instrument (VI) on the computer for interfacing to a particular instruments. LabVIEW is written in ''G'' a graphical programming language developed by National Instruments. In the past the emphasis has been on training the experimenter to learn ''G''. Without going into details here, ''G'' incorporates the usual loops, arithmetic expressions, etc., found in many programming languages, but in an icon (graphical) environment. The net result being that LabVIEW contains all of the standard methods needed for interfacing to instruments, data acquisition, data analysis, graphics, and also methodology to incorporate programs written in other languages into LabVIEW. Historically, according to Professor Essick, he developed a series of experiments for an upper division laboratory course for computer-based instrumentation. His observation was that while many students had the necessary background in computer programming languages, there were students who had virtually no concept about writing a computer program let alone a computer- based interfacing program. Thus the beginnings of a concept for not only teaching computer- based instrumentation techniques, but aiso a method for the beginner to experience writing a com- puter program. Professor Essick saw LabVIEW as the ''perfect environment in which to

  8. Supra-annular Valve-in-Valve implantation reduces blood stasis on the transcatheter aortic valve leaflets.

    Science.gov (United States)

    Vahidkhah, Koohyar; Azadani, Ali N

    2017-06-14

    Leaflet thrombosis following transcatheter aortic valve replacement (TAVR) and Valve-in-Valve (ViV) procedures has been increasingly recognized. This study aimed to investigate the effect of positioning of the transcatheter aortic valve (TAV) in ViV setting on the flow dynamics aspect of post-ViV thrombosis by quantifying the blood stasis in the intra-annular and supra-annular settings. To that end, two idealized computational models, representing ViV intra-annular and supra-annular positioning of a TAV were developed in a patient-specific geometry. Three-dimensional flow fields were then obtained via fluid-solid interaction modeling to study the difference in blood residence time (BRT) on the TAV leaflets in the two settings. At the end of diastole, a strip of high BRT (⩾1.2s) region was observed on the TAV leaflets in the ViV intra-annular positioning at the fixed boundary where the leaflets are attached to the frame. Such a high BRT region was absent on the TAV leaflets in the supra-annular positioning. The maximum value of BRT on the surface of non-, right, and left coronary leaflets of the TAV in the supra-annular positioning were 53%, 11%, and 27% smaller compared to the intra-annular positioning, respectively. It was concluded that the geometric confinement of TAV by the leaflets of the failed bioprosthetic valve in ViV intra-annular positioning increases the BRT on the leaflets and may act as a permissive factor in valvular thrombosis. The absence of such a geometric confinement in the ViV supra-annular positioning leads to smaller BRT and subsequently less likelihood of leaflet thrombosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Idling operation apparatus for multicylinder fuel injection engine

    Energy Technology Data Exchange (ETDEWEB)

    Kanahira, A

    1974-11-20

    A device to cut off the fuel supply to a number of cylinders at idling is described for those engines equipped with multicylinder fuel injection systems. The discontinuation of the fuel gas supply to the cylinders is made by a magnetically operated valve which is related to the accelerator. When the engine is idling, a switch activates the magnetic valve and the tube leading to the cylinder closes while a valve on the tube leading to a dual tank opens, and the pumped gas returns to the tank. This valve is installed on several cylinders, but not on all. Thus, at idling only a certain number of cylinders are firing, which lowers the hydrocarbon levels in the exhaust gas since non-firing cylinders intake and discharge only air.

  10. Characterizations of gas purge valves for liquid alignment and gas removal in a microfluidic chip

    International Nuclear Information System (INIS)

    Chuang, Han-Sheng; Thakur, Raviraj; Wereley, Steven T

    2012-01-01

    Two polydimethylsiloxane (PDMS) gas purge valves for excessive gas removal in general lab-on-a-chip applications are presented in this paper. Both valves are devised based on a three-layer configuration comprising a top layer for liquid channels, a membrane and a bottom layer for gas channels. The pneumatic valves work as a normal gateway for fluids when the membrane is bulged down (open state) by vacuum or pushed up (closed state) by pressure. In the closed state, the air in front of a liquid can be removed through a small notch or a permeable PDMS membrane by compressing the liquid. The purge valve with a small notch across its valve seat, termed surface-tension (ST) valve, can be operated with pressure under 11.5 kPa. The liquid is mainly retained by the surface tension resulting from the hydrophobic channel walls. In contrast, the purge valve with vacuum-filled grooves adjacent to a liquid channel, termed gas-permeation (GP) valve, can be operated at pressure above 5.5 kPa. Based on the principle of gas permeation, the excessive air can be slowly removed through the vent grooves. Detailed evaluations of both valves in a pneumatically driven microfluidic chip were conducted. Specifically, the purge valves enable users to remove gas and passively align liquids at desired locations without using sensing devices or feedback circuits. Finally, a rapid mixing reaction was successfully performed with the GP valves, showing their practicability as incorporated in a microfluidic chip. (paper)

  11. Impact of bicuspid aortic valve on complications and death in infective endocarditis of native aortic valves.

    Science.gov (United States)

    Kahveci, Gokhan; Bayrak, Fatih; Pala, Selcuk; Mutlu, Bulent

    2009-01-01

    We retrospectively investigated the impact of bicuspid aortic valve on the prognosis of patients who had definite infective endocarditis of the native aortic valve.Of 51 patients, a bicuspid aortic valve was present in 22 (43%); the other 29 had tricuspid aortic valves. On average, the patients who had bicuspid valves were younger than those who had tricuspid valves. Patients with a tricuspid valve had larger left atrial diameters and were more likely to have severe mitral regurgitation.Periannular complications, which we detected in 19 patients (37%), were much more common in the patients who had a bicuspid valve (64% vs 17%, P = 0.001). The presence of a bicuspid valve was the only significant independent predictor of periannular complications. The in-hospital mortality rate in the bicuspid group was lower than that in the tricuspid group; however, this figure did not reach statistical significance (9% vs 24%, P = 0.15). In multivariate analysis, left atrial diameter was the only independent predictor associated with an increased risk of death (hazard ratio, 2.19; 95% confidence interval, 1.1-4.5; P = 0.031).In our study, patients with infective endocarditis in a bicuspid aortic valve were younger and had a higher incidence of periannular complications. Although a worse prognosis has been reported previously, we found that infective endocarditis in a native bicuspid aortic valve is not likely to increase the risk of death in comparison with infective endocarditis in native tricuspid aortic valves.

  12. An advanced lab frame PC-PLC regime for a power supply control

    International Nuclear Information System (INIS)

    Abdel-Bary, M

    2010-01-01

    A lab frame automatic control system (LFACS) based on a programmable logic controller (PLC) is designed, developed and tested in the laboratory. The LFACS is designed to control and monitor one DC power supply with output current accuracy 0.001 amps, one automatic valve. Also the LFACS will monitor one full range vacuum measurement and one water leak detector. The control system is built based on the internationally standard programmable logic controller (PLC) from Siemens. Two software's have been used; firstly SIMATIC S 7 lite has been used to build the control program and safety interlocks, secondly winCC flexible (runs in a PC computer and communicates with the PLC by multi point interface PC adapter (MPI) has been used to build the user-machine interface . This lab frame control system will be generalized to a global control system to control the MGC-20 cyclotron. The lab tests showed a reliable and flexible control system.

  13. Nonlinear control of rotating stall and surge with axisymmetric bleed and air injection on axial flow compressors

    Science.gov (United States)

    Yeung, Chung-Hei (Simon)

    The study of compressor instabilities in gas turbine engines has received much attention in recent years. In particular, rotating stall and surge are major causes of problems ranging from component stress and lifespan reduction to engine explosion. In this thesis, modeling and control of rotating stall and surge using bleed valve and air injection is studied and validated on a low speed, single stage, axial compressor at Caltech. Bleed valve control of stall is achieved only when the compressor characteristic is actuated, due to the fast growth rate of the stall cell compared to the rate limit of the valve. Furthermore, experimental results show that the actuator rate requirement for stall control is reduced by a factor of fourteen via compressor characteristic actuation. Analytical expressions based on low order models (2--3 states) and a high fidelity simulation (37 states) tool are developed to estimate the minimum rate requirement of a bleed valve for control of stall. A comparison of the tools to experiments show a good qualitative agreement, with increasing quantitative accuracy as the complexity of the underlying model increases. Air injection control of stall and surge is also investigated. Simultaneous control of stall and surge is achieved using axisymmetric air injection. Three cases with different injector back pressure are studied. Surge control via binary air injection is achieved in all three cases. Simultaneous stall and surge control is achieved for two of the cases, but is not achieved for the lowest authority case. This is consistent with previous results for control of stall with axisymmetric air injection without a plenum attached. Non-axisymmetric air injection control of stall and surge is also studied. Three existing control algorithms found in literature are modeled and analyzed. A three-state model is obtained for each algorithm. For two cases, conditions for linear stability and bifurcation criticality on control of rotating stall are

  14. Dysfunction of an On-X Heart Valve by Pannus.

    Science.gov (United States)

    Abad, Cipriano; Urso, Stefano; Gomez, Elsa; De la Vega, Maria

    2016-09-01

    A 68-year-old woman with a history of previous double-valve replacement with On-X mechanical heart valves presented with clinical, echocardiographic and cardiac catheterization signs of obstruction of the On-X tricuspid heart valve prosthesis. The patient was successfully reoperated, but at surgery the valve was seen to be invaded by an abnormal overgrowth of pannus that blocked one of the leaflets. A small amount of non-obstructive fresh thrombus was also observed. The valve was successfully replaced with a biological heart valve prosthesis. The patient was discharged home, and is doing well four months after the operation, when echocardiography demonstrated normal function in the tricuspid valve. The present case represents the first ever report of pannus formation and subsequent dysfunction in an On-X heart valve, and also the first case of tricuspid valve malfunction and obstruction using this type of heart valve substitute.

  15. Fracturing mechanics before valve-in-valve therapy of small aortic bioprosthetic heart valves.

    Science.gov (United States)

    Johansen, Peter; Engholt, Henrik; Tang, Mariann; Nybo, Rasmus F; Rasmussen, Per D; Nielsen-Kudsk, Jens Erik

    2017-10-13

    Patients with degraded bioprosthetic heart valves (BHV) who are not candidates for valve replacement may benefit from transcatheter valve-in-valve (VIV) therapy. However, in smaller-sized surgical BHV the resultant orifice may become too narrow. To overcome this, the valve frame can be fractured by a high-pressure balloon prior to VIV. However, knowledge on fracture pressures and mechanics are prerequisites. The aim of this study was to identify the fracture pressures needed in BHV, and to describe the fracture mechanics. Commonly used BHV of small sizes were mounted on a high-pressure balloon situated in a biplane fluoroscopic system with a high-speed camera. The instant of fracture was captured along with the balloon pressure. The valves were inspected for material protrusion and later dissected for fracture zone investigation and description. The valves with a polymer frame fractured at a lower pressure (8-10 atm) than those with a metal stent (19-26 atm). None of the fractured valves had elements protruding. VIV procedures in small-sized BHV may be performed after prior fracture of the valve frame by high-pressure balloon dilatation. This study provides tentative guidelines for expected balloon sizes and pressures for valve fracturing.

  16. Design of LabVIEW®-based software for the control of sequential injection analysis instrumentation for the determination of morphine

    Science.gov (United States)

    Lenehan, Claire E.; Lewis, Simon W.

    2002-01-01

    LabVIEW®-based software for the automation of a sequential injection analysis instrument for the determination of morphine is presented. Detection was based on its chemiluminescence reaction with acidic potassium permanganate in the presence of sodium polyphosphate. The calibration function approximated linearity (range 5 × 10-10 to 5 × 10-6 M) with a line of best fit of y=1.05x+8.9164 (R2 =0.9959), where y is the log10 signal (mV) and x is the log10 morphine concentration (M). Precision, as measured by relative standard deviation, was 0.7% for five replicate analyses of morphine standard (5 × 10-8 M). The limit of detection (3σ) was determined as 5 × 10-11 M morphine. PMID:18924729

  17. Design of LabVIEW-based software for the control of sequential injection analysis instrumentation for the determination of morphine.

    Science.gov (United States)

    Lenehan, Claire E; Barnett, Neil W; Lewis, Simon W

    2002-01-01

    LabVIEW-based software for the automation of a sequential injection analysis instrument for the determination of morphine is presented. Detection was based on its chemiluminescence reaction with acidic potassium permanganate in the presence of sodium polyphosphate. The calibration function approximated linearity (range 5 x 10(-10) to 5 x 10(-6) M) with a line of best fit of y=1.05(x)+8.9164 (R(2) =0.9959), where y is the log10 signal (mV) and x is the log10 morphine concentration (M). Precision, as measured by relative standard deviation, was 0.7% for five replicate analyses of morphine standard (5 x 10(-8) M). The limit of detection (3sigma) was determined as 5 x 10(-11) M morphine.

  18. Simulations of Merging Helion Bunches on the AGS Injection Porch

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, C. J. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-08-29

    During the setup of helions for the FY2014 RHIC run it was discovered that the standard scheme for merging bunches on the AGS injection porch required an injection kicker pulse shorter than what was available. To overcome this difficulty, K. Zeno proposed and developed an interesting and unusual alternative which uses RF harmonic numbers 12, 4, 2 (rather than the standard 8, 4, 2) to merge 8 helion bunches into 2. In this note we carry out simulations that illustrate how the alternative scheme works and how it compares with the standard scheme. This is done in Sections 13 and 14. A scheme in which 6 bunches are merged into 1 is simulated in Section 15. This may be useful if more helions per merged bunch are needed in future runs. General formulae for the simulations are given in Sections 9 through 12. For completeness, Sections 1 through 8 give a derivation of the turn-by-turn equations of longitudinal motion at constant magnetic field. The derivation is based on the work of MacLachlan. The reader may wish to skip over these Sections and start with Section 9.

  19. Simulations of Merging Helion Bunches on the AGS Injection Porch

    International Nuclear Information System (INIS)

    Gardner, C. J.

    2014-01-01

    During the setup of helions for the FY2014 RHIC run it was discovered that the standard scheme for merging bunches on the AGS injection porch required an injection kicker pulse shorter than what was available. To overcome this difficulty, K. Zeno proposed and developed an interesting and unusual alternative which uses RF harmonic numbers 12, 4, 2 (rather than the standard 8, 4, 2) to merge 8 helion bunches into 2. In this note we carry out simulations that illustrate how the alternative scheme works and how it compares with the standard scheme. This is done in Sections 13 and 14. A scheme in which 6 bunches are merged into 1 is simulated in Section 15. This may be useful if more helions per merged bunch are needed in future runs. General formulae for the simulations are given in Sections 9 through 12. For completeness, Sections 1 through 8 give a derivation of the turn-by-turn equations of longitudinal motion at constant magnetic field. The derivation is based on the work of MacLachlan. The reader may wish to skip over these Sections and start with Section 9.

  20. Possibility of Cooper-pair formation controlled by multi-terminal spin injection

    Science.gov (United States)

    Ohnishi, K.; Sakamoto, M.; Ishitaki, M.; Kimura, T.

    2018-03-01

    A multi-terminal lateral spin valve consisting of three ferromagnetic nanopillars on a Cu/Nb bilayer has been fabricated. We investigated the influence of the spin injection on the superconducting properties at the Cu/Nb interface. The non-local spin valve signal exhibits a clear spin insulation signature due to the superconducting gap of the Nb. The magnitude of the spin signal is found to show the probe configuration dependence. From the careful analysis of the bias current dependence, we found the suppression of the superconductivity due to the exchange interaction between the Cooper pair and accumulated spin plays an important role in the multi-terminal spin injections. We also discuss about the possibility of the Cooper-pair formation due to the spin injection from the two injectors with the anti-parallel alignment.

  1. Flow-injection determination of thorium and uranium after on-line ion-exchange preconcentration in Dowex 50-X8

    International Nuclear Information System (INIS)

    Perez Pavon, J.L.; Garcia Pinto, C.G.; Rodriguez Garcia, Estrella; Moreno Cordero, Bernardo

    1992-01-01

    The preconcentration of thorium and uranium on Dowex 50-X8 was studied as a method for the preconcentration of these cations prior to their determination by flow injection with spectrophotometric detection using Arsenazo III in 3.6 M HCl stabilized with Triton X-100 as chromogenic reagent. The preconcentration device is a minicolumn included in the sample loop of the injection valve. A second valve contains a reducing minicolumn filled with lead powder to reduce U(VI) to U(IV) before the confluence of the sample with the reagent stream. The method can be applied to samples containing 0.5-100 μg l -1 and was tested with different spiked water samples. (author). 15 refs.; 3 figs.; 3 tabs

  2. Risk-based prioritization and its application to inspection of valves in the water sector

    International Nuclear Information System (INIS)

    Marlow, David R.; Beale, David J.; Mashford, John S.

    2012-01-01

    Isolation valves facilitate the effective operation and maintenance of water supply networks, but their sheer number presents a significant asset management challenge. If left unmanaged, valve reliability issues can become widespread. Inspections provide a means of increasing reliability, but a survey of industry practices indicated that some utilities did not have such a program in place. To improve asset management and reduce business risk exposure, such utilities need an effective means of commencing inspection programs. From a theoretical perspective, risk concepts provide a means of optimizing maintenance effort. However, in the face of poor data on reliability or condition, pragmatic approaches to risk-based prioritization are needed. One such approach, risk indexing, is considered in this paper. Background on the research is presented, including the application of risk-based inspection concepts within the water sector. The development of a risk indexing scheme is then investigated, drawing on two industry workshops in which the analytical hierarchy process was used to set relative weights. It is concluded that risk indexing provides the basis for a rational prioritization process in the absence of data on valve reliability or condition. - Highlights: ► Importance of valve inspections to water network reliability. ► Theoretical perspective of risk concepts that provide a means of optimizing inspection programs. ► Pragmatic approaches to prioritization in light of poor valve data. ► Development and assessment of a risk index scheme. ► Use of the analytical hierarchy process to set relative weights of risk factors.

  3. Baking Powder Actuated Centrifugo-Pneumatic Valving for Automation of Multi-Step Bioassays

    Directory of Open Access Journals (Sweden)

    David J. Kinahan

    2016-10-01

    Full Text Available We report a new flow control method for centrifugal microfluidic systems; CO2 is released from on-board stored baking powder upon contact with an ancillary liquid. The elevated pressure generated drives the sample into a dead-end pneumatic chamber sealed by a dissolvable film (DF. This liquid incursion wets and dissolves the DF, thus opening the valve. The activation pressure of the DF valve can be tuned by the geometry of the channel upstream of the DF membrane. Through pneumatic coupling with properly dimensioned disc architecture, we established serial cascading of valves, even at a constant spin rate. Similarly, we demonstrate sequential actuation of valves by dividing the disc into a number of distinct pneumatic chambers (separated by DF membranes. Opening these DFs, typically through arrival of a liquid to that location on a disc, permits pressurization of these chambers. This barrier-based scheme provides robust and strictly ordered valve actuation, which is demonstrated by the automation of a multi-step/multi-reagent DNA-based hybridization assay.

  4. Synchronization and Desynchronizing Control Schemes for Supermarket Refrigeration Systems

    DEFF Research Database (Denmark)

    Larsen, Lars Finn Sloth; Thybo, Claus Thybo; Izadi-Zamanabadi, Roozbeh

    2007-01-01

    A supermarket refrigeration system is a hybrid system with switched nonlinear dynamics and discrete-valued input variables such as opening/closing of valves and start/stop of compressors. Practical and simulation studies have shown that the use of distributed hysteresis controllers to operate...... complexity for desynchronizing the valve operations while improving performance. Simulation results indicate the potential increase in efficiency and reduction in wear comparing with traditional control schemes....

  5. Infusion of the solid coal using pressure independent valves to regulate flow

    Energy Technology Data Exchange (ETDEWEB)

    Goretz, H G; Betting, K

    1979-01-01

    In order to improve infusion into the solid coal, attempts were made to effect this through several holes using a single pump; however, the regulation of the quantity of water directed into each hole by a ball-valve tap connected to the injection pump was shown to lack precision - gives the causes of this defect. Satisfactory regulation was obtained by means of pressure- independent flow valves which operate on the principle of hydrodynamic pressure balance; describes method of operation. Underground tests proved satisfactory even with large pressure variations. The problem of dirt penetration during down times was eliminated by installing a check valve. The system proves economical to run.

  6. Rates of fuel discharge as affected by the design of fuel-injection systems for internal-combustion engines

    Science.gov (United States)

    Gelalles, A G; Marsh, E T

    1933-01-01

    Using the method of weighing fuel collected in a receiver during a definite interval of the injection period, rates of discharge were determined, and the effects noted, when various changes were made in a fuel-injection system. The injection system consisted primarily of a by-pass controlled fuel pump and an automatic injection valve. The variables of the system studied were the pump speed, pump-throttle setting, discharge-orifice diameter, injection-valve opening and closing pressures, and injection-tube length and diameter.

  7. Investigations on pneumatically forced-actuated compressor valves

    Science.gov (United States)

    Stöckel, Christian; Thomas, Christiane; Nickl, Jörg; Hesse, Ullrich

    2017-08-01

    In the present paper the performance of a novel designed valve for reciprocating piston machines is investigated, which makes existing compressors utilizable for operating as expander. Three design parameters were identified as critical for the valves performance particularly in forced actuated mode. Within a numerical simulation a study on the crucial geometrical parameters, the influence could be observed. Afterwards the experimental setup for the integral test of the valve design is presented and also additional tests for single valve components.

  8. Development of Long-Lifetime Pulsed Gas Valves for Pulsed Electric Thrusters

    Science.gov (United States)

    Burkhardt, Wendel M.; Crapuchettes, John M.; Addona, Brad M.; Polzin, Kurt A.

    2015-01-01

    It is advantageous for gas-fed pulsed electric thrusters to employ pulsed valves so propellant is only flowing to the device during operation. The propellant utilization of the thruster will be maximized when all the gas injected into the thruster is acted upon by the fields produced by the electrical pulse. Gas that is injected too early will diffuse away from the thruster before the electrical pulse can act to accelerate the propellant. Gas that is injected too late will miss being accelerated by the already-completed electrical pulse. As a consequence, the valve must open quickly and close equally quickly, only remaining open for a short duration. In addition, the valve must have only a small amount of volume between the sealing body and the thruster so the front and back ends of the pulse are as coincident as possible with the valve cycling, with very little latent propellant remaining in the feed lines after the valve is closed. For a real mission of interest, a pulsed thruster can be expected to pulse at least 10(exp 10) - 10(exp 11) times, setting the range for the number of times a valve must open and close. The valves described in this paper have been fabricated and tested for operation in an inductive pulsed plasma thruster (IPPT) for in-space propulsion. In general, an IPPT is an electrodeless space propulsion device where a capacitor is charged to an initial voltage and then discharged, producing a high-current pulse through a coil. The field produced by this pulse ionizes propellant, inductively driving current in a plasma located near the face of the coil. Once the plasma is formed, it can be accelerated and expelled at a high exhaust velocity by the electromagnetic Lorentz body force arising from the interaction of the induced plasma current and the magnetic field produced by the current in the coil. The valve characteristics needed for the IPPT application require a fast-acting valve capable of a minimum of 10(exp 10) valve actuation cycles. Since

  9. Transapical aortic valve implantation without angiography: proof of concept.

    Science.gov (United States)

    Ferrari, Enrico; Sulzer, Christopher; Marcucci, Carlo; Rizzo, Elena; Tozzi, Piergiorgio; von Segesser, Ludwig K

    2010-06-01

    Cardiac computed tomographic scans, coronary angiograms, and aortographies are routinely performed in transcatheter heart valve therapies. Consequently, all patients are exposed to multiple contrast injections with a following risk of nephrotoxicity and postoperative renal failure. The transapical aortic valve implantation without angiography can prevent contrast-related complications. Between November 2008 and November 2009, 30 consecutive high-risk patients (16 female, 53.3%) underwent transapical aortic valve implantation without angiography. The landmarks identification, the stent-valve positioning, and the postoperative control were routinely performed under transesophageal echocardiogram and fluoroscopic visualization without contrast injections. Mean age was 80.1 +/- 8.7 years. Mean valve gradient, aortic orifice area, and ejection fraction were 60.3 +/- 20.9 mm Hg, 0.7 +/- 0.16 cm(2), and 0.526 +/- 0.128, respectively. Risk factors were pulmonary hypertension (60%), peripheral vascular disease (70%), chronic pulmonary disease (50%), previous cardiac surgery (13.3%), and chronic renal insufficiency (40%) (mean blood creatinine and urea levels: 96.8 +/- 54 microg/dL and 8.45 +/- 5.15 mmol/L). Average European System for Cardiac Operative Risk Evaluation was 32.2 +/- 13.3%. Valve deployment in the ideal landing zone was 96.7% successful and valve embolization occurred once. Thirty-day mortality was 10% (3 patients). Causes of death were the following: intraoperative ventricular rupture (conversion to sternotomy), right ventricular failure, and bilateral pneumonia. Stroke occurred in one patient at postoperative day 9. Renal failure (postoperative mean blood creatinine and urea levels: 91.1 +/- 66.8 microg/dL and 7.27 +/- 3.45 mmol/L), myocardial infarction, and atrioventricular block were not detected. Transapical aortic valve implantation without angiography requires a short learning curve and can be performed routinely by experienced teams. Our report

  10. Injection and extraction for cyclotrons

    International Nuclear Information System (INIS)

    Heikkinen, P.

    1994-01-01

    External ion sources for cyclotrons are needed for polarised and heavy ions. This calls for injection systems, either radial or axial. Radial injection is also needed when a cyclotron works as a booster after another cyclotron or a linear accelerator (usually tandem). Requirements for injection differ from separated sector cyclotrons where there is plenty of room to house inflectors and/or strippers, to superconducting cyclotrons where the space is limited by a small magnet gap, and high magnetic field puts other limitations to the inflectors. Several extraction schemes are used in cyclotrons. Stripping injection is used for H - and also for heavy ions where the q/m ratio is usually doubled. For other cases, electric and magnetic deflection has to be used. To increase the turn separation before the first deflector, both resonant and non-resonant schemes are used. In this lecture, external injection systems are surveyed and some rules to thumb for injection parameters are given. Extraction schemes are also reviewed. (orig.)

  11. Effect of the mitral valve on diastolic flow patterns

    International Nuclear Information System (INIS)

    Seo, Jung Hee; Vedula, Vijay; Mittal, Rajat; Abraham, Theodore; Dawoud, Fady; Luo, Hongchang; Lardo, Albert C.

    2014-01-01

    The leaflets of the mitral valve interact with the mitral jet and significantly impact diastolic flow patterns, but the effect of mitral valve morphology and kinematics on diastolic flow and its implications for left ventricular function have not been clearly delineated. In the present study, we employ computational hemodynamic simulations to understand the effect of mitral valve leaflets on diastolic flow. A computational model of the left ventricle is constructed based on a high-resolution contrast computed-tomography scan, and a physiological inspired model of the mitral valve leaflets is synthesized from morphological and echocardiographic data. Simulations are performed with a diode type valve model as well as the physiological mitral valve model in order to delineate the effect of mitral-valve leaflets on the intraventricular flow. The study suggests that a normal physiological mitral valve promotes the formation of a circulatory (or “looped”) flow pattern in the ventricle. The mitral valve leaflets also increase the strength of the apical flow, thereby enhancing apical washout and mixing of ventricular blood. The implications of these findings on ventricular function as well as ventricular flow models are discussed

  12. Survey of valve operator-related events occurring during 1978, 1979 and 1980

    International Nuclear Information System (INIS)

    Brown, E.J.; Ashe, F.S.

    1983-01-01

    The survey approach was to analyze several events and identify trends or patterns. The primary data source was licensee event reports (LERs) and consisted of 444 total valve operator events with 193 motor operator events which served as the basis for this study. The investigation revealed that motor-operated events could be grouped in three major categories which are torque switches, limit switches, and motors. The major findings are: (1) Torque switches do not appear to be a dominant cause of valve assembly inoperability. The reported information suggests torque switch events are an indication of symptomatic change with time in valve operability characteristics rather than a root cause of valve inoperability. (2) Repetitive problems are occurring with valve operators. It may occur on the same valve, a valve in similar service in a similar system, or a valve in similar service in a redundant train of the same system. (3) The plant operating staff objective appears to be a mode of finding measures to return inoperable equipment to operational status rather than to determine root causes of inoperability. (4) Motor burnout of valve motor operators has occurred quite frequently in High Pressure Coolant Injection (HPCI) and Reactor Core Isolation Cooling (RCIC) systems of BWR units. (orig./GL)

  13. NRC valve performance test program - check valve testing

    International Nuclear Information System (INIS)

    Jeanmougin, N.M.

    1987-01-01

    The Valve Performance Test Program addresses the current requirements for testing of pressure isolation valves (PIVs) in light water reactors. Leak rate monitoring is the current method used by operating commercial power plants to survey the condition of their PIVs. ETEC testing of three check valves (4-inch, 6-inch, and 12-inch nominal diameters) indicates that leak rate testing is not a reliable method for detecting impending valve failure. Acoustic emission monitoring of check valves shows promise as a method of detecting loosened internals damage. Future efforts will focus on evaluation of acoustic emission monitoring as a technique for determining check valve condition. Three gate valves also will be tested to evaluate whether the check valve results are applicable to gate type PIVs

  14. Bioprosthetic Valve Fracture Improves the Hemodynamic Results of Valve-in-Valve Transcatheter Aortic Valve Replacement.

    Science.gov (United States)

    Chhatriwalla, Adnan K; Allen, Keith B; Saxon, John T; Cohen, David J; Aggarwal, Sanjeev; Hart, Anthony J; Baron, Suzanne J; Dvir, Danny; Borkon, A Michael

    2017-07-01

    Valve-in-valve (VIV) transcatheter aortic valve replacement (TAVR) may be less effective in small surgical valves because of patient/prosthesis mismatch. Bioprosthetic valve fracture (BVF) using a high-pressure balloon can be performed to facilitate VIV TAVR. We report data from 20 consecutive clinical cases in which BVF was successfully performed before or after VIV TAVR by inflation of a high-pressure balloon positioned across the valve ring during rapid ventricular pacing. Hemodynamic measurements and calculation of the valve effective orifice area were performed at baseline, immediately after VIV TAVR, and after BVF. BVF was successfully performed in 20 patients undergoing VIV TAVR with balloon-expandable (n=8) or self-expanding (n=12) transcatheter valves in Mitroflow, Carpentier-Edwards Perimount, Magna and Magna Ease, Biocor Epic and Biocor Epic Supra, and Mosaic surgical valves. Successful fracture was noted fluoroscopically when the waist of the balloon released and by a sudden drop in inflation pressure, often accompanied by an audible snap. BVF resulted in a reduction in the mean transvalvular gradient (from 20.5±7.4 to 6.7±3.7 mm Hg, P valve effective orifice area (from 1.0±0.4 to 1.8±0.6 cm 2 , P valves to facilitate VIV TAVR with either balloon-expandable or self-expanding transcatheter valves and results in reduced residual transvalvular gradients and increased valve effective orifice area. © 2017 American Heart Association, Inc.

  15. Lab-on-fiber technology

    CERN Document Server

    Cusano, Andrea; Crescitelli, Alessio; Ricciardi, Armando

    2014-01-01

    This book focuses on a research field that is rapidly emerging as one of the most promising ones for the global optics and photonics community: the "lab-on-fiber" technology. Inspired by the well-established 'lab on-a-chip' concept, this new technology essentially envisages novel and highly functionalized devices completely integrated into a single optical fiber for both communication and sensing applications.Based on the R&D experience of some of the world's leading authorities in the fields of optics, photonics, nanotechnology, and material science, this book provides a broad and accurate de

  16. Spin injection and transport in semiconductor and metal nanostructures

    Science.gov (United States)

    Zhu, Lei

    In this thesis we investigate spin injection and transport in semiconductor and metal nanostructures. To overcome the limitation imposed by the low efficiency of spin injection and extraction and strict requirements for retention of spin polarization within the semiconductor, novel device structures with additional logic functionality and optimized device performance have been developed. Weak localization/antilocalization measurements and analysis are used to assess the influence of surface treatments on elastic, inelastic and spin-orbit scatterings during the electron transport within the two-dimensional electron layer at the InAs surface. Furthermore, we have used spin-valve and scanned probe microscopy measurements to investigate the influence of sulfur-based surface treatments and electrically insulating barrier layers on spin injection into, and spin transport within, the two-dimensional electron layer at the surface of p-type InAs. We also demonstrate and analyze a three-terminal, all-electrical spintronic switching device, combining charge current cancellation by appropriate device biasing and ballistic electron transport. The device yields a robust, electrically amplified spin-dependent current signal despite modest efficiency in electrical injection of spin-polarized electrons. Detailed analyses provide insight into the advantages of ballistic, as opposed to diffusive, transport in device operation, as well as scalability to smaller dimensions, and allow us to eliminate the possibility of phenomena unrelated to spin transport contributing to the observed device functionality. The influence of the device geometry on magnetoresistance of nanoscale spin-valve structures is also demonstrated and discussed. Shortcomings of the simplified one-dimensional spin diffusion model for spin valve are elucidated, with comparison of the thickness and the spin diffusion length in the nonmagnetic channel as the criterion for validity of the 1D model. Our work contributes

  17. Platelet thrombosis in cardiac-valve prostheses

    International Nuclear Information System (INIS)

    Dewanjee, M.K.

    1989-01-01

    The contribution of platelets and clotting factors in thrombosis on cardiovascular prostheses had been quantified with several tracers. Thrombus formation in vivo could be measured semiquantitatively in animal models and patients with indium-111, Technetium-99m labeled platelets, iodine-123, iodine-131 labeled fibrinogen, and In-111 and Tc-99m labeled antibody to the fibrinogen-receptor on the platelet- membrane, or fibrin. The early studies demonstrated that certain platelet-inhibitors, e.g. sulfinpyrazone, aspirin or aspirin- persantine increased platelet survival time with mechanical valves implanted in the baboon model and patients. Thrombus localization by imaging is possible for large thrombus on thrombogenic surface of prosthesis in the acute phase. The majority of thrombus was found in the sewing ring (Dacron) in the acute phase in both the mechanical and tissue valves. The amount of retained thrombus in both mechanical and tissue valves in our one-day study in the dog model was similar (< 1% if injected In-111 platelets = 5 billion platelets). As the fibrous ingrowth covered the sewing ring, the thrombus formation decreased significantly. Only a small amount of thrombus was found on the leaflets at one month in both the dog and calf models. 38 refs., 9 figs., 5 tabs

  18. Platelet thrombosis in cardiac-valve prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Dewanjee, M.K.

    1989-01-01

    The contribution of platelets and clotting factors in thrombosis on cardiovascular prostheses had been quantified with several tracers. Thrombus formation in vivo could be measured semiquantitatively in animal models and patients with indium-111, Technetium-99m labeled platelets, iodine-123, iodine-131 labeled fibrinogen, and In-111 and Tc-99m labeled antibody to the fibrinogen-receptor on the platelet- membrane, or fibrin. The early studies demonstrated that certain platelet-inhibitors, e.g. sulfinpyrazone, aspirin or aspirin- persantine increased platelet survival time with mechanical valves implanted in the baboon model and patients. Thrombus localization by imaging is possible for large thrombus on thrombogenic surface of prosthesis in the acute phase. The majority of thrombus was found in the sewing ring (Dacron) in the acute phase in both the mechanical and tissue valves. The amount of retained thrombus in both mechanical and tissue valves in our one-day study in the dog model was similar (< 1% if injected In-111 platelets = 5 billion platelets). As the fibrous ingrowth covered the sewing ring, the thrombus formation decreased significantly. Only a small amount of thrombus was found on the leaflets at one month in both the dog and calf models. 38 refs., 9 figs., 5 tabs.

  19. Intracameral air injection during Ahmed glaucoma valve implantation in neovascular glaucoma for the prevention of tube obstruction with blood clot: Case Report.

    Science.gov (United States)

    Hwang, Sung Ha; Yoo, Chungkwon; Kim, Yong Yeon; Lee, Dae Young; Nam, Dong Heun; Lee, Jong Yeon

    2017-12-01

    Glaucoma drainage implant surgery is a treatment option for the management of neovascular glaucoma. However, tube obstruction by blood clot after Ahmed glaucoma valve (AGV) implantation is an unpredictable clinically challenging situation. We report 4 cases using intracameral air injection for the prevention of the tube obstruction of AGV by blood clot. The first case was a 57-year-old female suffering from ocular pain because of a tube obstruction with blood clot after AGV implantation in neovascular glaucoma. Surgical blood clot removal was performed. However, intractable bleeding was noted during the removal of the blood clot, and so intracameral air injection was performed to prevent a recurrent tube obstruction. After the procedure, although blood clots formed around the tube, the tube opening where air could touch remained patent. In 3 cases of neovascular glaucoma with preoperative severe intraocular hemorrhages, intracameral air injection and AGV implantation were performed simultaneously. In all 3 cases, tube openings were patent. It appears that air impeded the blood clots formation in front of the tube opening. Intracameral air injection could be a feasible option to prevent tube obstruction of AGV implant with a blood clot in neovascular glaucoma with high risk of tube obstruction. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  20. Numerical analysis and experimental studies on solenoid common rail diesel injector with worn control valve

    Science.gov (United States)

    Krivtsov, S. N.; Yakimov, I. V.; Ozornin, S. P.

    2018-03-01

    A mathematical model of a solenoid common rail fuel injector was developed. Its difference from existing models is control valve wear simulation. A common rail injector of 0445110376 Series (Cummins ISf 2.8 Diesel engine) produced by Bosch Company was used as a research object. Injector parameters (fuel delivery and back leakage) were determined by calculation and experimental methods. GT-Suite model average R2 is 0.93 which means that it predicts the injection rate shape very accurately (nominal and marginal technical conditions of an injector). Numerical analysis and experimental studies showed that control valve wear increases back leakage and fuel delivery (especially at 160 MPa). The regression models for determining fuel delivery and back leakage effects on fuel pressure and energizing time were developed (for nominal and marginal technical conditions).

  1. WetLab-2: Providing Quantitative PCR Capabilities on ISS

    Science.gov (United States)

    Parra, Macarena; Jung, Jimmy Kar Chuen; Almeida, Eduardo; Boone, Travis David; Schonfeld, Julie; Tran, Luan Hoang

    2015-01-01

    The objective of NASA Ames Research Centers WetLab-2 Project is to place on the ISS a system capable of conducting gene expression analysis via quantitative real-time PCR (qRT-PCR) of biological specimens sampled or cultured on orbit. The WetLab-2 system is capable of processing sample types ranging from microbial cultures to animal tissues dissected on-orbit. The project has developed a RNA preparation module that can lyse cells and extract RNA of sufficient quality and quantity for use as templates in qRT-PCR reactions. Our protocol has the advantage that it uses non-toxic chemicals, alcohols or other organics. The resulting RNA is transferred into a pipette and then dispensed into reaction tubes that contain all lyophilized reagents needed to perform qRT-PCR reactions. These reaction tubes are mounted on rotors to centrifuge the liquid to the reaction window of the tube using a cordless drill. System operations require simple and limited crew actions including syringe pushes, valve turns and pipette dispenses. The resulting process takes less than 30 min to have tubes ready for loading into the qRT-PCR unit.The project has selected a Commercial-Off-The-Shelf (COTS) qRT-PCR unit, the Cepheid SmartCycler, that will fly in its COTS configuration. The SmartCycler has a number of advantages including modular design (16 independent PCR modules), low power consumption, rapid thermal ramp times and four-color detection. The ability to detect up to four fluorescent channels will enable multiplex assays that can be used to normalize for RNA concentration and integrity, and to study multiple genes of interest in each module. The WetLab-2 system will have the capability to downlink data from the ISS to the ground after a completed run and to uplink new programs. The ability to conduct qRT-PCR on-orbit eliminates the confounding effects on gene expression of reentry stresses and shock acting on live cells and organisms or the concern of RNA degradation of fixed samples. The

  2. Electrically controlled fuel injection system for an internal combustion engine with a control multi-vibrator and electrical correction of the voltage. Elektrisch gesteuerte Kraftstoffeinspritzanlage fuer eine Brennkraftmaschine mit einem Steuermultivibrator und elektrischer Spannungskorrektur

    Energy Technology Data Exchange (ETDEWEB)

    Busse, W; Drews, U; Moeder, H; Ohr, K; Werner, P

    1980-06-19

    The invention concerns an electrically controlled fuel injection system for an internal combustion engine with at least one solenoid operated injection valve and a power transistor in series with the magnetising winding of the valve and with a control multi-vibrator connected before this, which is switched on synchronously with the crankshaft rotation with simultaneous opening of the injection valve, and which is kept in this state for a period determining the quantity injected, depending on the quantity of suction air. A control pulse is supplied for at least one injection valve, which is extended by a voltage correction stage proportionally to the voltage of a source of electrical supply provided for operating the injection valve, particularly to a vehicle battery. It has been found that the delay in response of the solenoid injection valves is independent of the duration of the opening pulse and must be compensated by an additional fuse independent of the length of the opening pulse, whose duration increases with increasing voltage drop. According to the invention this is achieved by a voltage-correcting stage with a Zener diode and several transistors. The individual operating steps are made clear by 3 patent claims and several detailed circuit diagrams and pulse-time graphs.

  3. Check valve

    Science.gov (United States)

    Upton, H.A.; Garcia, P.

    1999-08-24

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion. 5 figs.

  4. Check valve

    International Nuclear Information System (INIS)

    Upton, H.A.; Garcia, P.

    1999-01-01

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion. 5 figs

  5. Compressed gas domestic aerosol valve design using high viscous product

    Directory of Open Access Journals (Sweden)

    A Nourian

    2016-10-01

    Full Text Available Most of the current universal consumer aerosol products using high viscous product such as cooking oil, antiperspirants, hair removal cream are primarily used LPG (Liquefied Petroleum Gas propellant which is unfriendly environmental. The advantages of the new innovative technology described in this paper are: i. No butane or other liquefied hydrocarbon gas is used as a propellant and it replaced with Compressed air, nitrogen or other safe gas propellant. ii. Customer acceptable spray quality and consistency during can lifetime iii. Conventional cans and filling technology There is only a feasible energy source which is inert gas (i.e. compressed air to replace VOCs (Volatile Organic Compounds and greenhouse gases, which must be avoided, to improve atomisation by generating gas bubbles and turbulence inside the atomiser insert and the actuator. This research concentrates on using "bubbly flow" in the valve stem, with injection of compressed gas into the passing flow, thus also generating turbulence. The new valve designed in this investigation using inert gases has advantageous over conventional valve with butane propellant using high viscous product (> 400 Cp because, when the valving arrangement is fully open, there are negligible energy losses as fluid passes through the valve from the interior of the container to the actuator insert. The use of valving arrangement thus permits all pressure drops to be controlled, resulting in improved control of atomising efficiency and flow rate, whereas in conventional valves a significant pressure drops occurs through the valve which has a complex effect on the corresponding spray.

  6. A planar PDMS micropump using in-contact minimized-leakage check valves

    International Nuclear Information System (INIS)

    Ni, Junhui; Li, Beizhi; Huang, Fengliang; Wang, Bin; Lin, Qiao

    2010-01-01

    We present a micropump with a simple planar design featuring compliant in-contact check valves in a single layer, which allows for a simple structure and easy system integration. The micropump, based on poly(dimethylsiloxane) (PDMS), primarily consists of a pneumatically driven thin membrane, a pump chamber, and two in-plane check valves. The pair of check valves is based on an in-contact flap–stopper configuration and is able to minimize leakage flow, greatly enhancing the reliability and performance of the micropump. Systematic experimental characterization of the micropump has been performed in terms of the frequency response of the pumping flow rate with respect to factors including device geometry (e.g. chamber height) and operating parameters (e.g. pneumatic driving pressure and backpressure). The results demonstrate that this micropump is capable of reliably generating a maximum flow rate of 41 µL min −1 and operating against a high backpressure of up to 25 kPa. In addition, a lumped-parameter theoretical model for the planar micropump is also developed for accurate analysis of the device behavior. These results demonstrate the capability of this micropump for diverse applications in lab-on-a-chip systems.

  7. NRC Information No. 88-72: Inadequacies in the design of dc motor-operated valves

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1992-01-01

    On July 1, 1988, a high pressure coolant injection (HPCI) steam admission valve failed to open during a post-maintenance test at the Brunswick nuclear power plant, Unit 1. The same valve had failed in December 1987 and on May 28, 1988. The licensee, Carolina Power and Light Company, established a team to investigate the cause of failure, and the team identified the most probable cause as a dc motor failure due to a shunt-winding to series-winding short circuit. The team believed that this condition was precipitated by thermal binding of the valve internals. The previous failure in May was also diagnosed as having been caused by thermal binding. As a result of these failures, the licensee reviewed the design of the dc motor-operated valves for both the HPCI and the reactor core isolation cooling (RCIC) systems. This review identified a number of significant design deficiencies going well beyond the problems with thermal binding. The deficiencies constitute a potential common cause failure mechanism for safety system valves. Unit 1 was shut down on July 14, 1988 to replace the failed HPCI valve motor and to implement design modifications to other motor-operated valves

  8. Design and characterization of poly(dimethylsiloxane)-based valves for interfacing continuous-flow sampling to microchip electrophoresis.

    Science.gov (United States)

    Li, Michelle W; Huynh, Bryan H; Hulvey, Matthew K; Lunte, Susan M; Martin, R Scott

    2006-02-15

    This work describes the fabrication and evaluation of a poly(dimethyl)siloxane (PDMS)-based device that enables the discrete injection of a sample plug from a continuous-flow stream into a microchannel for subsequent analysis by electrophoresis. Devices were fabricated by aligning valving and flow channel layers followed by plasma sealing the combined layers onto a glass plate that contained fittings for the introduction of liquid sample and nitrogen gas. The design incorporates a reduced-volume pneumatic valve that actuates (on the order of hundreds of milliseconds) to allow analyte from a continuously flowing sampling channel to be injected into a separation channel for electrophoresis. The injector design was optimized to include a pushback channel to flush away stagnant sample associated with the injector dead volume. The effect of the valve actuation time, the pushback voltage, and the sampling stream flow rate on the performance of the device was characterized. Using the optimized design and an injection frequency of 0.64 Hz showed that the injection process is reproducible (RSD of 1.77%, n = 15). Concentration change experiments using fluorescein as the analyte showed that the device could achieve a lag time as small as 14 s. Finally, to demonstrate the potential uses of this device, the microchip was coupled to a microdialysis probe to monitor a concentration change and sample a fluorescein dye mixture.

  9. Decoupling Analysis on Pressure Fluctuation and Needle Valve Response for High Pressure Common Rail Injector

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2017-01-01

    Full Text Available In the process of multiple injections, the influence of different injections makes the controlling of cycle fuel injection quantity more difficult. The high pressure common rail (HPCR simulation model is established in AMESim environment. Through the method of combining numerical simulation and experiment test, it is found that the strong coupling of pressure fluctuation and needle valve response is the fundamental reason, which leads to the fluctuation of main injection fuel quantity (MIFQ with dwell time (DT. The result shows that the largest fluctuation quantity is 3.6mm3 when the reference value of main injection is 60.0mm3. Non-damping LC hydraulic system model is also established. Through the analysis of the model, reducing the length-diameter ratio of internal oil duct and the delivery chamber volume are decoupling methods to the strong coupling.

  10. Development of a Fast Valve for Disruption Mitigation and its Preliminary Application to EAST and HT-7

    International Nuclear Information System (INIS)

    Zhuang Huidong; Zhang Xiaodong

    2013-01-01

    In large tokamaks, disruption of high current plasma would damage plasma facing component surfaces (PFCs) or other inner components due to high heat load, electromagnetic force load and runaway electrons. It would also influence the subsequent plasma discharge due to production of impurities during disruptions. So the avoidance and mitigation of disruptions is essential for the next generation of tokamaks, such as ITER. Massive gas injection (MGI) is a promising method of disruption mitigation. A new fast valve has been developed successfully on EAST. The valve can be opened in 0.5 ms, and the duration of open state is largely dependent on the gas pressure and capacitor voltage. The throughput of the valve can be adjusted from 0 mbar·L to 700 mbar·L by changing the capacitor voltage and gas pressure. The response time and throughput of the fast valve can meet the requirement of disruption mitigation on EAST. In the last round campaign of EAST and HT-7 in 2010, the fast valve has operated successfully. He and Ar was used for the disruption mitigation on HT-7. By injecting the proper amount of gas, the current quench rate could be slowed down, and the impurities radiation would be greatly improved. In elongated plasmas of EAST discharges, the experimental data is opposite to that which is expected. (magnetically confined plasma)

  11. Microfluidic magnetic switching valves based on aggregates of magnetic nanoparticles: Effects of aggregate length and nanoparticle sizes

    Energy Technology Data Exchange (ETDEWEB)

    Jiemsakul, Thanakorn [National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120 (Thailand); Manakasettharn, Supone, E-mail: supone@nanotec.or.th [National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120 (Thailand); Kanharattanachai, Sivakorn; Wanna, Yongyuth [College of Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok 10520 (Thailand); Wangsuya, Sujint [College of Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok 10520 (Thailand); Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400 (Thailand); Pratontep, Sirapat [College of Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok 10520 (Thailand)

    2017-01-15

    We demonstrate microfluidic switching valves using magnetic nanoparticles blended within the working fluid as an alternative microfluidic flow control in microchannels. Y-shaped microchannels have been fabricated by using a CO{sub 2} laser cutter to pattern microchannels on transparent poly(methyl methacrylate) (PMMA) sheets covered with thermally bonded transparent polyvinyl chloride (PVC) sheets. To examine the performance of the microfluidic magnetic switching valves, an aqueous magnetic nanoparticle suspension was injected into the microchannels by a syringe pump. Neodymium magnets were then employed to attract magnetic nanoparticles and form an aggregate that blocked the microchannels at a required position. We have found that the maximum volumetric flow rate of the syringe pump that the magnetic nanoparticle aggregate can withstand scales with the square of the external magnetic flux density. The viscosity of the fluid exhibits dependent on the aggregate length and the size of the magnetic nanoparticles. This microfluidic switching valve based on aggregates of magnetic nanoparticles has strong potentials as an on-demand flow control, which may help simplifying microfluidic channel designs. - Highlights: • We demonstrate microfluidic switching valves based on aggregates of magnetic particles. • Maximum flow rate that the aggregate can withstand scales with the square of the external magnetic flux density. • Aggregates with smaller magnetic nanoparticle size can withstand higher flow rate. • Aggregate length exhibits a linear dependence with flow resistance of a viscous fluid.

  12. A low-cost bioprosthetic semilunar valve for research, disease modelling and surgical training applications.

    Science.gov (United States)

    Rosa, Benoit; Machaidze, Zurab; Shin, Borami; Manjila, Sunil; Brown, David W; Baird, Christopher W; Mayer, John E; Dupont, Pierre E

    2017-11-01

    This paper provides detailed instructions for constructing low-cost bioprosthetic semilunar valves for animal research and clinical training. This work fills an important gap between existing simulator training valves and clinical valves by providing fully functioning designs that can be employed in ex vivo and in vivo experiments and can also be modified to model valvular disease. Valves are constructed in 4 steps consisting of creating a metal frame, covering it with fabric and attaching a suture ring and leaflets. Computer-aided design files are provided for making the frame from wire or by metal 3D printing. The covering fabric and suturing ring are made from materials readily available in a surgical lab, while the leaflets are made from pericardium. The entire fabrication process is described in figures and in a video. To demonstrate disease modelling, design modifications are described for producing paravalvular leaks, and these valves were evaluated in porcine ex vivo (n = 3) and in vivo (n = 6) experiments. Porcine ex vivo and acute in vivo experiments demonstrate that the valves can replicate the performance of clinical valves for research and training purposes. Surgical implantation is similar, and echocardiograms are comparable to clinical valves. Furthermore, valve leaflet function was satisfactory during acute in vivo tests with little central regurgitation, while the paravalvular leak modifications consistently produced leaks in the desired locations. The detailed design procedure presented here, which includes a tutorial video and computer-aided design files, should be of substantial benefit to researchers developing valve disease models and to clinicians developing realistic valve training systems. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  13. Polymer multilevel lab-on-chip systems for electrochemical sensing

    DEFF Research Database (Denmark)

    Matteucci, Marco; Larsen, Simon Tylsgaard; Garau, Alessandro

    2013-01-01

    with depths as small as tens of nanometers and as big as hundreds of microns on the same polymer chip. The authors also describe in detail the fabrication procedure of polymer substrates with embedded Au and pedot:tosylate electrodes for electrochemical applications. The electrode fabrication process...... is simple and fit for integration in a production scheme. The electrode–substrates are then bonded to injection molded counterparts to be used for electrochemical applications. A dimensional and functional characterization of the electrodes is also presented here....

  14. Multifunctional four-port directional control valve constructed from logic valves

    International Nuclear Information System (INIS)

    Lisowski, E.; Czyżycki, W.; Rajda, J.

    2014-01-01

    Highlights: • Directional valve with standard ISO 440-08 has been constructed from logic valves. • Only one innovative valve may replace whole family of the standard valves. • CFD analysis and bench tests of the innovative valve has been carried. • Parameters of the innovative valve are equaling or surpassing the standard ones. • The innovative valve has additional possibilities of pressure and flow control. - Abstract: The paper refers to four-port solenoid pilot operated valves, which are subplate mounted in a hydraulic system in accordance with the ISO 4401 standard. Their widespread use in many machines and devices causes a continuing interest in the development of their design by both the scientific centers and the industry. This paper presents an innovative directional control valve based on the use of logic valves and a methodology followed for the design of it by using Solid Edge CAD and ANSYS/Fluent CFD software. The valve design methodology takes into account the need to seek solutions that minimize flow resistance through the valve. For this purpose, the flow paths are prepared by means of CAD software and pressure-flow curves are determined as a result of CFD analysis. The obtained curves are compared with the curves available in the catalogs of spool type directional control valves. The new solution allows to replace the whole family of spool type four-port directional control valves by one valve built of logic valves. In addition, the innovative directional control valve provides leak-proof shutting the flow paths off and also it can control flow rate and even pressure of working liquid. A prototype of the valve designed by the presented method has been made and tested on the test bench. The results quoted in the paper confirm that the developed logic type directional control valve is able to meet all designed connection configurations, and the obtained pressure-flow curves show very good conformity with the results of CFD analysis

  15. Tight valve

    International Nuclear Information System (INIS)

    Guedj, F.

    1987-01-01

    This sealed valve is made with a valve seat, an axial valve with a rod fixed to its upper end, a thick bell surrounding the rod and welded by a thin join on the valve casing, a threated ring screwed onto the upper end of the rod and a magnet or electromagnet rotating the ring outside the bell [fr

  16. Experimental investigation on combustion performance of cavity-strut injection of supercritical kerosene in supersonic model combustor

    Science.gov (United States)

    Sun, Ming-bo; Zhong, Zhan; Liang, Jian-han; Wang, Hong-bo

    2016-10-01

    Supersonic combustion with cavity-strut injection of supercritical kerosene in a model scramjet engine was experimentally investigated in Mach 2.92 facility with the stagnation temperatures of approximately 1430 K. Static pressure distribution in the axial direction was determined using pressure transducers installed along the centerline of the model combustor top walls. High speed imaging camera was used to capture flame luminosity and combustion region distribution. Multi-cavities were used to and stabilize the combustion in the supersonic combustor. Intrusive injection by thin struts was used to enhance the fuel-air mixing. Supercritical kerosene at temperatures of approximately 780 K and various pressures was prepared using a heat exchanger driven by the hot gas from a pre-burner and injected at equivalence ratios of approximately 1.0. In the experiments, combustor performances with different strut injection schemes were investigated and compared to direct wall injection scheme based on the measured static pressure distributions, the specific thrust increments and the images obtained by high-speed imaging camera. The experimental results showed that the injection by thin struts could obtain an enhanced mixing in the field but could not acquire a steady flame when mixing field cannot well match cavity separation region. There is no significant difference on performance between different schemes since the unsteady intermittent and oscillating flame leads to no actual combustion efficiency improvement.

  17. Transmission usage cost allocation schemes

    International Nuclear Information System (INIS)

    Abou El Ela, A.A.; El-Sehiemy, R.A.

    2009-01-01

    This paper presents different suggested transmission usage cost allocation (TCA) schemes to the system individuals. Different independent system operator (ISO) visions are presented using the proportional rata and flow-based TCA methods. There are two proposed flow-based TCA schemes (FTCA). The first FTCA scheme generalizes the equivalent bilateral exchanges (EBE) concepts for lossy networks through two-stage procedure. The second FTCA scheme is based on the modified sensitivity factors (MSF). These factors are developed from the actual measurements of power flows in transmission lines and the power injections at different buses. The proposed schemes exhibit desirable apportioning properties and are easy to implement and understand. Case studies for different loading conditions are carried out to show the capability of the proposed schemes for solving the TCA problem. (author)

  18. Bioprosthetic Valve Fracture During Valve-in-valve TAVR: Bench to Bedside.

    Science.gov (United States)

    Saxon, John T; Allen, Keith B; Cohen, David J; Chhatriwalla, Adnan K

    2018-01-01

    Valve-in-valve (VIV) transcatheter aortic valve replacement (TAVR) has been established as a safe and effective means of treating failed surgical bioprosthetic valves (BPVs) in patients at high risk for complications related to reoperation. Patients who undergo VIV TAVR are at risk of patient-prosthesis mismatch, as the transcatheter heart valve (THV) is implanted within the ring of the existing BPV, limiting full expansion and reducing the maximum achievable effective orifice area of the THV. Importantly, patient-prosthesis mismatch and high residual transvalvular gradients are associated with reduced survival following VIV TAVR. Bioprosthetic valve fracture (BVF) is as a novel technique to address this problem. During BPV, a non-compliant valvuloplasty balloon is positioned within the BPV frame, and a highpressure balloon inflation is performed to fracture the surgical sewing ring of the BPV. This allows for further expansion of the BPV as well as the implanted THV, thus increasing the maximum effective orifice area that can be achieved after VIV TAVR. This review focuses on the current evidence base for BVF to facilitate VIV TAVR, including initial bench testing, procedural technique, clinical experience and future directions.

  19. Cost-based droop scheme with lower generation costs for microgrids

    DEFF Research Database (Denmark)

    Nutkani, I. U.; Loh, Poh Chiang; Blaabjerg, Frede

    2013-01-01

    on the DG kVA ratings. Other operating characteristics like generation costs, efficiencies and emission penalties at different loadings have not been considered. This makes existing droop schemes not too well-suited for standalone microgrids without central management system, where different types of DGs...... usually exist. As an alternative, this paper proposes a cost-based droop scheme, whose objective is to reduce a generation cost realized with various DG operating characteristics taken into consideration. The proposed droop scheme therefore retains all advantages of the traditional droop schemes, while...... at the same time keep its generation cost low. These findings have been validated through simulation and scaled down lab experiment....

  20. 241-AN-A valve pit manifold valves and position indication acceptance test procedure

    Energy Technology Data Exchange (ETDEWEB)

    VANDYKE, D.W.

    1999-08-25

    This document describes the method used to test design criteria for gear actuated ball valves installed in 241-AN-A Valve Pit located at 200E Tank Farms. The purpose of this procedure is to demonstrate the following: Equipment is properly installed, labeled, and documented on As-Built drawings; New Manifold Valves in the 241-AN-A Valve Pit are fully operable using the handwheel of the valve operators; New valve position indicators on the valve operators will show correct valve positions; New valve position switches will function properly; and New valve locking devices function properly.

  1. Valve thrombosis following transcatheter aortic valve implantation: a systematic review.

    Science.gov (United States)

    Córdoba-Soriano, Juan G; Puri, Rishi; Amat-Santos, Ignacio; Ribeiro, Henrique B; Abdul-Jawad Altisent, Omar; del Trigo, María; Paradis, Jean-Michel; Dumont, Eric; Urena, Marina; Rodés-Cabau, Josep

    2015-03-01

    Despite the rapid global uptake of transcatheter aortic valve implantation, valve trombosis has yet to be systematically evaluated in this field. The aim of this study was to determine the clinical characteristics, diagnostic criteria, and treatment outcomes of patients diagnosed with valve thrombosis following transcatheter aortic valve implantation through a systematic review of published data. Literature published between 2002 and 2012 on valve thrombosis as a complication of transcatheter aortic valve implantation was identified through a systematic electronic search. A total of 11 publications were identified, describing 16 patients (mean age, 80 [5] years, 65% men). All but 1 patient (94%) received a balloon-expandable valve. All patients received dual antiplatelet therapy immediately following the procedure and continued to take either mono- or dual antiplatelet therapy at the time of valve thrombosis diagnosis. Valve thrombosis was diagnosed at a median of 6 months post-procedure, with progressive dyspnea being the most common symptom. A significant increase in transvalvular gradient (from 10 [4] to 40 [12] mmHg) was the most common echocardiographic feature, in addition to leaflet thickening. Thrombus was not directly visualized with echocardiography. Three patients underwent valve explantation, and the remaining received warfarin, which effectively restored the mean transvalvular gradient to baseline within 2 months. Systemic embolism was not a feature of valve thrombosis post-transcatheter aortic valve implantation. Although a rare, yet likely under-reported complication of post-transcatheter aortic valve implantation, progressive dyspnea coupled with an increasing transvalvular gradient on echocardiography within the months following the intervention likely signifies valve thrombosis. While direct thrombus visualization appears difficult, prompt initiation of oral anticoagulation therapy effectively restores baseline valve function. Copyright © 2014

  2. Determining How Magnetic Helicity Injection Really Works

    International Nuclear Information System (INIS)

    Paul M Bellan

    2001-01-01

    OAK-B135 The goal of the Caltech program is to determine how helicity injection works by investigating the actual dynamics and topological evolution associated with magnetic relaxation. A new coaxial helicity injection source has been constructed and brought into operation. The key feature of this source is that it has maximum geometric simplicity. Besides being important for fusion research, this work also has astrophysical implications. Photos obtained using high-speed cameras show a clear sequence of events in the formation process. In particular, they show initial merging/reconnection processes, jet-like expansion, kinking, and separation of the plasma from the source. Various diagnostics have been developed, including laser induced fluorescence and soft x-ray detection using high speed diodes. Gas valves have been improved and a patent disclosure relating to puffed gas valves has been filed. Presentations on this work have been given in the form of invited talks at several university physics departments that were previously unfamiliar with laboratory plasma experiments

  3. Size effect of added LaB6 particles on optical properties of LaB6/Polymer composites

    International Nuclear Information System (INIS)

    Yuan Yifei; Zhang Lin; Hu Lijie; Wang Wei; Min Guanghui

    2011-01-01

    Modified LaB 6 particles with sizes ranging from 50 nm to 400 nm were added into polymethyl methacrylate (PMMA) matrix in order to investigate the effect of added LaB 6 particles on optical properties of LaB 6 /PMMA composites. Method of in-situ polymerization was applied to prepare PMMA from raw material—methyl methacrylate (MMA), a process during which LaB 6 particles were dispersed in MMA. Ultraviolet–visible–near infrared (UV–vis–NIR) absorption spectrum was used to study optical properties of the as-prepared materials. The difference in particle size could apparently affect the composites' absorption of visible light around wavelength of 600 nm. Added LaB 6 particles with size of about 70 nm resulted in the best optical properties among these groups of composites. - Graphical abstract: 70 nm LaB 6 particles resulted in the best performance on absorption of VIS and NIR, which could not be apparently achieved by LaB 6 particles beyond nano-scale. Highlights: ► LaB 6 /PMMA composites were prepared using the method of in-situ polymerization. ► LaB 6 particles added in MMA prolonged the time needed for its pre-polymerization. ► Nanosized LaB 6 particles could obviously absorb much NIR but little VIS.

  4. Lab-on-a-Valve Mesofluidic Platform for On-Chip Handling of Carbon-Coated Titanium Dioxide Nanotubes in a Disposable Microsolid Phase-Extraction Mode.

    Science.gov (United States)

    García-Valverde, María Teresa; Rosende, María; Lucena, Rafael; Cárdenas, Soledad; Miró, Manuel

    2018-04-03

    Mesofluidic lab-on-a-valve (LOV) platforms have been proven suitable to accommodate automatic micro-solid-phase extraction (μSPE) approaches with on-chip handling of micrometer-bead materials in a fully disposable mode to prevent sample cross-contamination and pressure-drop effects. The efficiency of the extraction process notably depends upon the sorptive capacity of the material because the sorbent mass is usually down to 10 mg in LOV devices. Nanomaterials, capitalizing upon their enhanced surface-to-volume ratio and diversity of potential chemical moieties, are appealing alternatives to microbead sorbents. However, the handling and confinement of nanomaterials in fluidic chip structures have been challenging to date. This is most likely a consequence of the aggregation tendency of a number of nanomaterials, including carbon-based sorbents, that leads to excessive back-pressure in flowing systems along with irreproducible bead loading. This paper addresses these challenges by ad hoc synthesis of hybrid nanomaterials, such as porous carbon-coated titanium dioxide nanotubes (TiO 2 -NT@pC). Tailoring of the surface polarity of the carbon coating is proven to foster the dispersion of TiO 2 -NT@pC in LOV settings while affording superior extraction capability of moderately nonpolar species from aqueous matrices. The determination of trace-level concentrations of butylparaben (BPB) and triclosan (TCS) in seawater samples is herein selected as a proof-of-concept of the exploitation of disposable nanomaterials in LOV. The mesofluidic platform accommodating μSPE features online hyphenation to liquid chromatography/tandem mass spectrometry (LC/MS/MS) for reliable determination of the target analytes with excellent limits of detection (0.5 and 0.6 ng/L for BPB and TCS, respectively) and intermediate precision (relative standard deviation <5.8%). For 5.0 mL of sample and 200 μL of eluent, enrichment factors of 23 and 14 with absolute extraction efficiencies of 90% ± 14

  5. Aortic Valve Stenosis

    Science.gov (United States)

    ... most cases, doctors don't know why a heart valve fails to develop properly, so it isn't something you could have prevented. Calcium buildup on the valve. With age, heart valves may accumulate deposits of calcium (aortic valve ...

  6. Packaged Au-PPy valves for drug delivery systems

    Science.gov (United States)

    Tsai, Han-Kuan A.; Ma, Kuo-Sheng; Zoval, Jim; Kulinsky, Lawrence; Madou, Marc

    2006-03-01

    The most common methods for the drug delivery are swallowing pills or receiving injections. However, formulations that control the rate and period of medicine (i.e., time-release medications) are still problematic. The proposed implantable devices which include batteries, sensors, telemetry, valves, and drug storage reservoirs provide an alternative method for the responsive drug delivery system [1]. Using this device, drug concentration can be precisely controlled which enhances drug efficiency and decreases the side effects. In order to achieve responsive drug delivery, a reliable release valve has to be developed. Biocompatibility, low energy consumption, and minimized leakage are the main requirements for such release method. A bilayer structure composed of Au/PPy film is fabricated as a flap to control the release valve. Optimized potentiostatic control to synthesize polypyrrole (PPy) is presented. The release of miniaturize valve is tested and showed in this paper. A novel idea to simultaneously fabricate the device reservoirs as well as protective packaging is proposed in this paper. The solution of PDMS permeability problem is also mentioned in this article.

  7. Electromagnetically controlled measuring device for measuring injection quantities in a diesel injection pump volumetrically. Elektromagnetisch gesteuerte Messvorrichtung zur volumetrischen Messung von Einspritzmengen einer Dieseleinspritzpumpe

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, K H; Mueller, M; Decker, R; Huber, G

    1990-11-22

    The invention concerns a measuring device for volumetric measurements of injection quantities of a diesel injection pump which injects its contents into a volumetric chamber controlled electromagnetically by a discharge valve and enclosed by a non-impact gas pressure loaded volumetric vessel and effects a retreating movement of the latter. The device is provided with an inductive path controller fitted with a differential pair of coils containing an axially movable ferromagnetic core. The path controller forms a part of a lifter rod connected to the volumetric vessel. It gives an opening signal to the discharge valve after each retreat of the volumetric vessel and a closing signal as soon as a defined height of suspension corresponding to the original position of the volumetric vessel after its return is reached.

  8. Preliminary observations of gate valve flow interruption tests, Phase 2

    International Nuclear Information System (INIS)

    Steele, R. Jr.; DeWall, K.G.

    1990-01-01

    This paper presents preliminary observations from the US Nuclear Regulatory Commission/Idaho National Engineering Laboratory Flexible Wedge Gate Valve Qualification and Flow Interruption Test Program, Phase 2. The program investigated the ability of selected boiling water reactor (BWR) process line valves to perform their containment isolation function at high energy pipe break conditions and other more normal flow conditions. The fluid and valve operating responses were measured to provide information concerning valve and operator performance at various valve loadings so that the information could be used to assess typical nuclear industry motor operator sizing equations. Six valves were tested, three 6-in. isolation valves representative of those used in reactor water cleanup systems in BWRs and three 10-in. isolation valves representative of those used in BWR high pressure coolant injection (HPCI) steam lines. The concern with these normally open isolation valves is whether they will close in the event of a downstream pipe break outside of containment. The results of this testing will provide part of the technical insights for NRC efforts regarding Generic Issue 87 (GI-87), Failure of the HPCI Steam Line Without Isolation, which includes concerns about the uncertainties in gate valve motor operator sizing and torque switch settings for these BWR containment isolation valves. As of this writing, the Phase 2 test program has just been completed. Preliminary observations made in the field confirmed most of the results from the Phase 1 test program. All six valves closing in high energy water, high energy steam, and high pressure cold water require more force to close than would be calculated using the typical variables in the standard industry motor operator sizing equations

  9. Rotary pneumatic valve

    Science.gov (United States)

    Hardee, Harry C.

    1991-01-01

    A rotary pneumatic valve which is thrust balanced and the pneumatic pressure developed produces only radial loads on the valve cylinder producing negligible resistance and thus minimal torque on the bearings of the valve. The valve is multiplexed such that at least two complete switching cycles occur for each revolution of the cylinder spindle.

  10. SEBIM pilot operated valves - CANDU and other applications

    International Nuclear Information System (INIS)

    Schaumburg, Gerald; Hera, Vlad

    1999-01-01

    of the reactor. The valves are in service since 1995 and give full satisfaction to the user. Prior to installation they were not only thoroughly lab tested, as already mentioned, but their functions were modelled with the help of a computer simulation software and subjected to physically impossible conditions of fast transients. No need to say, our equipment passed this challenge with flying colors. The Kozloduy Power Plant purchased SEBIM relief valves for use on the nuclear side as well as on the conventional side. All these items were tested, following not only the requirements of the Bulgarian regulator but also those of the French regulator. The SEBIM pilot operated valves are a superior product, ready to satisfied the most demanding customers around the world. They have been successfully used in CANDU and more than 80 nuclear PWR's. They represent an advanced technology, appropriate for many CANDU applications, where they may prove better than the spring-loaded, presently in use. (authors)

  11. Studies on the construction of a new 80 MeV injector and a new injection scheme for the synchrotron of the Bonn accelerator facility ELSA; Studien zum Aufbau eines neuen 80 MeV-Injektors und eines neuen Injektionsschemas fuer das Synchroton der Bonner Beschleunigeranlage ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Raecke, K.

    2001-09-01

    At the ELSA Accelerator Facility exists the opportunity to install a 80 MeV linear accelerator as an injector for the 2,5 GeV Booster Synchrotron. Because of its length the new structure cannot replace one of the linacs used today so possibilities to built up the accelerator and the transfer channels are worked out. Calculations comparing the injection efficiency of the present layout and the possible new layout show a recognizable improvement. The injection efficiency can be further improved using a single turn injection scheme. A septum magnet and a fast kicker for this injection scheme is designed. (orig.)

  12. NRC perspective and experience on valve testing

    International Nuclear Information System (INIS)

    Eapen, P.K.

    1990-01-01

    Testing of safety related valves is one of the major activities at commercial nuclear power plants. In addition to Technical Specification, valve testing is required in 10 CFR 50.55a and 10 CFR 50 Appendix J. NRC inspectors (both resident and specialists) spend a considerable amount of time in following the valve test activities as part of their routine business. In the past, depending on a licensee's organizational structure, a valve could be tested more than three times to verify conformance with Technical Specifications, 10 CFR 50.55a, and 10 CFR 50 Appendix J. The regulatory reviewers were isolated from each other. Licensee test personnel were also not communicating among themselves. As a result, NRC inspectors found that certain valves in the IST program were inadequately tested. The typical licensee response was to say that this valve is exempted from testing under Appendix J. Others would say that the technical specification does not require fast closure of a valve in question. In addition to the above, the inspectors had to deal with exemption requests that were not dispositioned by the NRC. In the seventies there was a gentlemen's agreement to allow the licensee to do the testing in accordance with the exception, without waiting for the NRC approval. Needless to say when the new NRC inspection procedure was issued in March 1989 for implementation, the Regional inspectors had extremely difficult time to cope with the gray areas of valve testing. In August 1987, NRC Region I was reorganized and the special test program section was established to perform inspections in the IST area. This section was chartered to optimize resources and develop a meaningful inspection plan. The perspectives and insights used in the development of a detailed inspection plan is discussed below

  13. An air-pressure-free elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis

    International Nuclear Information System (INIS)

    Jung, Wooseok; Barrett, Matthew; Brooks, Carla; Zenhausern, Frederic; Rivera, Andrew; Birdsell, Dawn N; Wagner, David M

    2015-01-01

    We present a new elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis. The valve functions include metering to capture a designated volume of biological sample into a polymerase chain reaction (PCR) chamber, sealing to preserve the sample during PCR cycling, and transfer of the PCR-products and on-chip formamide post-processing for the analysis of DNA fragments by capillary gel electrophoresis. This new valve differs from prior art polydimethylsiloxane (PDMS) valves in that the valve is not actuated externally by air-pressure or vacuum so that it simplifies a DNA analysis system by eliminating the need for an air-pressure or vacuum source, and off-cartridge solenoid valves, control circuit boards and software. Instead, the new valve is actuated by a thermal cycling peltier assembly integrated within the hardware instrument that tightly comes in contact with a microfluidic cartridge for thermal activation during PCR, so that it spontaneously closes the valve without an additional actuator system. The valve has bumps in the designated locations so that it has a self-alignment that does not require precise alignment of a valve actuator. Moreover, the thickness of the new valve is around 600 μm with an additional bump height of 400 μm so that it is easy to handle and very feasible to fabricate by injection molding compared to other PDMS valves whose thicknesses are around 30–100 μm. The new valve provided over 95% of metering performance in filling the fixed volume of the PCR chamber, preserved over 97% of the sample volume during PCR, and showed very comparable capillary electrophoresis peak heights to the benchtop assay tube controls with very consistent transfer volume of the PCR-product and on-chip formamide. The new valve can perform a core function for integrated nucleic acid analysis by capillary electrophoresis. (paper)

  14. Swing check valve

    International Nuclear Information System (INIS)

    Eminger, H.E.

    1977-01-01

    A swing check valve which includes a valve body having an inlet and outlet is described. A recess in the valve body designed to hold a seal ring and a check valve disc swingable between open and closed positions. The disc is supported by a high strength wire secured at one end in a support spacer pinned through bearing blocks fixed to the valve body and at its other end in a groove formed on the outer peripheral surface of the disc. The parts are designed and chosen such to provide a lightweight valve disc which is held open by minimum velocity of fluid flowing through the valve which thus reduces oscillations and accompanying wear of bearings supporting the valve operating parts. (Auth.)

  15. The influence of Marfans and bicuspid valves on outcomes following aortic valve reimplantation.

    Science.gov (United States)

    Martín, Carlos E; García Montero, Carlos; Serrano, Santiago-Fiz; González, Ana; Mingo, Susana; Moñivas, Vanessa; Centeno, Jorge; Forteza, Alberto

    2017-10-01

    We analyzed our early and midterm results with aortic valve reimplantation surgery to determine the influence of Marfan syndrome and bicuspid valves on outcomes with this technique. Between March 2004 and December 2015, 267 patients underwent aortic valve reimplantation operations. The mean diameter of the sinuses of Valsalva was 50 ± 3 mm and moderate/severe aortic regurgitation was present in 34.4% of these patients. A bicuspid aortic valve was present in 21% and 40% had Marfan syndrome. Overall 30-day mortality was 0.37% (1/267). Mean follow-up was 59.7 ± 38.7 months. Overall survival at 1, 3, and 5 years was 98 ± 8%, 98 ± 1%, and 94 ± 2%, respectively. Freedom from reoperation and aortic regurgitation >II was 99 ± 5%, 98 ± 8%, 96.7 ± 8%, and 99 ± 6%, 98 ± 1%, 98 ± 1%, respectively at 1, 3, and 5 years follow-up, with no differences between Marfan and bicuspid aortic valve groups. (p = 0.94 and p = 0.96, respectively). No endocarditis or thromboembolic complications were documented, and 93.6% of the patients did not receive any anticoagulation therapy. The reimplantation technique for aortic root aneurysms is associated with excellent clinical and functional outcomes at short and mid-term follow-up. © 2017 Wiley Periodicals, Inc.

  16. Electrically controlled fuel injection device for internal combustion engines with air quantity meter. Elektrisch gesteuerte Kraftstoffeinspritzeinrichtung fuer Brennkraftmaschinen mit Luftmengenmesser

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, B; Soell, W

    1980-12-11

    The invention concerns an electrically controlled preferably intermittently working fuel injection device for internal combustion engines with a throttle valve, a solenoid operated injection valve and a transistor circuit, which supplies electrical pulses used to open the injection valve synchronously to the revolution of the crankshaft. The invention is characterized by the fact that an electrical control device is provided, which extends the individual opening pulses in thrust operation (with the throttle valve closed or nearly closed and with a working speed above the speed). The extension produced by the control device decreases from a value at about 20% for the maximum speed to a value of 0 for the tickover speed. Details of the transistor control are made clear by detailed circuit diagrams and 5 patent claims.

  17. Development of fast opening magnetic valve for JT-60 pellet injector

    International Nuclear Information System (INIS)

    Hiratsuka, Hajime; Kawasaki, Kouzo; Takatsu, Hideyuki; Miyo, Yasuhiko; Yoshioka, Yuji; Ohta, Kazuya; Shimizu, Masatsugu; Onozuka, Masanori; Uchikawa, Takashi; Iwamoto, Syuichi; Hashiri, Noboru

    1989-01-01

    A pneumatic four-pellet injector (JT-60 pellet injector) has been constructed for JT-60 in May, 1988. A fast opening magnetically driven propellant gas injection valve has been developed for JT-60 pellet injector. This valve can accelerate four cylindrical pellets, two 3.8 mm diameter by 3.8 mm and two 2.7 mm diameter by 2.7 mm, to greater than 1.6 km/s with propellent gas of up to 50 bar. It is now successfully in use in JT-60, contributing to plasma studies. In this paper the outline of a newly developed fast opening magnetic valve and the results of performance tests are presented. (author). 6 figs.; 1 tab

  18. Flow oscillations on the steam control valve in the middle opening condition. Clarification of the effects of valve body and valve seat by steam experiments

    International Nuclear Information System (INIS)

    Morita, Ryo; Inada, Fumio

    2007-01-01

    A steam control valve might cause vibrations of piping when the valve opening is in a middle condition. For rationalization of maintenance and management of the plant, the valve should be improved, but it is difficult to understand flow characteristics in detail by experiment because flow around the valve is complex 3D structure and becomes supersonic (M>1). Therefore, it is necessary to clarify the cause of the vibrations and to develop the countermeasures by CFD (Computational Fluid Dynamics) technology. In previous researches, we clarified a mechanism of the pressure fluctuations in the middle opening condition and suggested the new valve shape (named 'Extended Valve') that can suppress the pressure fluctuations by air experiments and CFD calculations. Then, we also conducted steam experiments and CFD calculations to understand the differences between air and the steam, and found that the pressure fluctuations in the middle opening condition also occurred in the steam tests and the differences between the air and steam were not remarkable. In this report, to clarify the effects of valve and valve seat shape in steam flow condition, we conduct the steam experiments with various valve and seat shape. As a result, we find the change of the valve seat can decrease the amplitude of pressure fluctuations, but can not quite suppress the pressure fluctuations in the middle opening condition. Then, we apply the 'Extended Valve' to clarify the valve shape effect, and find that the extended valve suppresses the pressure fluctuations in the middle opening condition completely and decreases the pressure amplitude drastically. (author)

  19. Force measuring valve assemblies, systems including such valve assemblies and related methods

    Science.gov (United States)

    DeWall, Kevin George [Pocatello, ID; Garcia, Humberto Enrique [Idaho Falls, ID; McKellar, Michael George [Idaho Falls, ID

    2012-04-17

    Methods of evaluating a fluid condition may include stroking a valve member and measuring a force acting on the valve member during the stroke. Methods of evaluating a fluid condition may include measuring a force acting on a valve member in the presence of fluid flow over a period of time and evaluating at least one of the frequency of changes in the measured force over the period of time and the magnitude of the changes in the measured force over the period of time to identify the presence of an anomaly in a fluid flow and, optionally, its estimated location. Methods of evaluating a valve condition may include directing a fluid flow through a valve while stroking a valve member, measuring a force acting on the valve member during the stroke, and comparing the measured force to a reference force. Valve assemblies and related systems are also disclosed.

  20. Patient-specific pediatric silicone heart valve models based on 3D ultrasound

    Science.gov (United States)

    Ilina, Anna; Lasso, Andras; Jolley, Matthew A.; Wohler, Brittany; Nguyen, Alex; Scanlan, Adam; Baum, Zachary; McGowan, Frank; Fichtinger, Gabor

    2017-03-01

    PURPOSE: Patient-specific heart and valve models have shown promise as training and planning tools for heart surgery, but physically realistic valve models remain elusive. Available proprietary, simulation-focused heart valve models are generic adult mitral valves and do not allow for patient-specific modeling as may be needed for rare diseases such as congenitally abnormal valves. We propose creating silicone valve models from a 3D-printed plastic mold as a solution that can be adapted to any individual patient and heart valve at a fraction of the cost of direct 3D-printing using soft materials. METHODS: Leaflets of a pediatric mitral valve, a tricuspid valve in a patient with hypoplastic left heart syndrome, and a complete atrioventricular canal valve were segmented from ultrasound images. A custom software was developed to automatically generate molds for each valve based on the segmentation. These molds were 3D-printed and used to make silicone valve models. The models were designed with cylindrical rims of different sizes surrounding the leaflets, to show the outline of the valve and add rigidity. Pediatric cardiac surgeons practiced suturing on the models and evaluated them for use as surgical planning and training tools. RESULTS: Five out of six surgeons reported that the valve models would be very useful as training tools for cardiac surgery. In this first iteration of valve models, leaflets were felt to be unrealistically thick or stiff compared to real pediatric leaflets. A thin tube rim was preferred for valve flexibility. CONCLUSION: The valve models were well received and considered to be valuable and accessible tools for heart valve surgery training. Further improvements will be made based on surgeons' feedback.

  1. Proceedings of EPRI/DOE workshop on nuclear industry valve problems

    International Nuclear Information System (INIS)

    Sprung, J.L.

    1981-01-01

    Representatives from 29 nuclear industry organizations (11 valve manufacturers, 4 nuclear steam supply system vendors, 5 utilities, 3 national laboratories, 2 architect/engineering firms, the Department of Energy (DOE), EPRI, and 2 others) attended the workshop. Working sessions on key valves and on valve stem and seat leakage developed the following recommendations: (1) establish a small permanent expert staff to collect, analyze, and disseminate information about nuclear valve problems; (2) perform generic key valve programs for pressurized water reactors and for boiling water reactors, and several plant specific key valve programs, the latter to demonstrate the cost-effectiveness of such studies; (3) confirm the identity of, define, and initiate needed longer term research and development programs dealing with seat and stem leakage; and (4) establish an industry working group to review and advise on these efforts. Separate abstracts were prepared for three papers which are included in the appendix

  2. Transient flow characteristics of a high speed rotary valve

    Science.gov (United States)

    Browning, Patrick H.

    Pressing economic and environmental concerns related to the performance of fossil fuel burning internal combustion engines have revitalized research in more efficient, cleaner burning combustion methods such as homogeneous charge compression ignition (HCCI). Although many variations of such engines now exist, several limiting factors have restrained the full potential of HCCI. A new method patented by West Virginia University (WVU) called Compression Ignition by Air Injection (CIBAI) may help broaden the range of effective HCCI operation. The CIBAI process is ideally facilitated by operating two synchronized piston-cylinders mounted head-to-head with one of the cylinders filled with a homogeneous mixture of air and fuel and the other cylinder filled with air. A specialized valve called the cylinder connecting valve (CCV) separates the two cylinders, opens just before reaching top dead center (TDC), and allows the injection air into the charge to achieve autoignition. The CCV remains open during the entire power stroke such that upon ignition the rapid pressure rise in the charge cylinder forces mass flow back through the CCV into the air-only cylinder. The limited mass transfer between the cylinders through the CCV limits the theoretical auto ignition timing capabilities and thermal efficiency of the CIBAI cycle. Research has been performed to: (1) Experimentally measure the transient behavior of a potential CCV design during valve opening between two chambers maintained at constant pressure and again at constant volume; (2) Develop a modified theoretical CCV mass flow model based upon the measured cold flow valve performance that is capable of predicting the operating conditions required for successful mixture autoignition; (3) Make recommendations for future CCV designs to maximize CIBAI combustion range. Results indicate that the modified-ball CCV design offers suitable transient flow qualities required for application to the CIBAI concept. Mass injection events

  3. On-line ion exchange preconcentration in a sequential injection lab-on-valve microsystem incorporating a renewable column with ETAAS for the trace-level determination of bismuth in urine and river sediment

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2001-01-01

    A sequential injection system for on-line ion-exchange separation and preconcentration of trace-level amounts of metal ions with ensuing detection by electrothermal atomic absorption spectrometry (ETAAS) is described. Based on the use of a renewable microcolumn incorporated within an integrated l.......3% for the determination of 2.0 mug/l Bi (n = 7). The procedure was validated by determination of bismuth in a certified reference material CRM 320 (river sediment), and by bismuth spike recoveries in two human urine samples....

  4. Injection schemes for the TOP Linac; Schemi di iniezione per il TOP Linac

    Energy Technology Data Exchange (ETDEWEB)

    Picardi, L.; Ronsivalle, C. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Dipt. Innovazione; Bartolini, R. [Istituto Superiore di Sanita' , Rome (Italy)

    1999-07-01

    In this report two schemes are studied for the injection in the SCDTL section of the TOP Linac of the proton beam produced by a 7 MeV linear accelerator. The project derives by an agreement between ENEA (National Agency for New Technology, Energy and Environment) and ISS. In these new versions of the design the constraint of a synchronization of the radio frequencies of the two accelerators is suppressed. [Italian] In questo rapporto sono studiati due schemi di iniezione nella sezione accelerante SCDTL a 3 GHz del TOP (terapia oncologica con protoni) linac del fascio di protoni generato da un acceleratore lineare di 7 MeV. L'acceleratore e' frutto di una convenzione tra L'ENEA e l'Istituto Superiore di Sanita'. Rispetto a versioni precedenti del progetto, viene eliminato il vincolo della sincronizzazione delle radiofrequenze dei due acceleratori.

  5. Transcatheter, valve-in-valve transapical aortic and mitral valve implantation, in a high risk patient with aortic and mitral prosthetic valve stenoses

    Directory of Open Access Journals (Sweden)

    Harish Ramakrishna

    2015-01-01

    Full Text Available Transcatheter valve implantation continues to grow worldwide and has been used principally for the nonsurgical management of native aortic valvular disease-as a potentially less invasive method of valve replacement in high-risk and inoperable patients with severe aortic valve stenosis. Given the burden of valvular heart disease in the general population and the increasing numbers of patients who have had previous valve operations, we are now seeing a growing number of high-risk patients presenting with prosthetic valve stenosis, who are not potential surgical candidates. For this high-risk subset transcatheter valve delivery may be the only option. Here, we present an inoperable patient with severe, prosthetic valve aortic and mitral stenosis who was successfully treated with a trans catheter based approach, with a valve-in-valve implantation procedure of both aortic and mitral valves.

  6. Effect of amusement park rides on programmable shunt valve settings.

    Science.gov (United States)

    Strahle, Jennifer; Collins, Kelly; Stetler, William R; Smith, Brandon W; Garton, Thomas; Garton, Catherine; Garton, Hugh J L; Maher, Cormac O

    2013-01-01

    Magnetically programmable shunt valves are susceptible to environmental factors including magnetic fields and accelerative forces. It is unknown if rollercoasters with or without magnetic brakes or linear induction motors (LIMs) are capable of altering the setting of a programmable shunt valve. Two different valve types (type A, n = 10; type B, n = 9) were tested at varying resistance settings in 2 trials on 6 different amusement park rides including 2 rides with LIMs, 2 rides with magnetic brakes, and 2 rides without magnetic technology. The performance level of valve type A and the setting of valve type B changed on rollercoasters with magnets (A = 2.5% [2/80]; B = 5.6% [4/72]) and without magnets (A = 7.5% [3/40]; B = 2.8% [1/36]). Neither valve setting changed when exposed to a Ferris wheel or during ambulation throughout the park. Magnetically programmable valves are susceptible to changes in pressure settings when exposed to amusement park rides with elevated vertical gravitational forces, irrespective of the presence of LIMs or magnetic brakes. © 2013 S. Karger AG, Basel.

  7. Automated injection of a radioactive sample for preparative HPLC with feedback control

    International Nuclear Information System (INIS)

    Iwata, Ren; Yamazaki, Shigeki

    1990-01-01

    The injection of a radioactive reaction mixture into a preparative HPLC column has been automated with computer control for rapid purification of routinely prepared positron emitting radiopharmaceuticals. Using pneumatic valves, a motor-driven pump and a liquid level sensor, two intelligent injection methods for the automation were compared with regard to efficient and rapid sample loading into a 2 mL loop of the 6-way valve. One, a precise but rather slow method, was demonstrated to be suitable for purification of 18 F-radiopharmaceuticals, while the other, due to its rapid operation, was more suitable for 11 C-radiopharmaceuticals. A sample volume of approx 0.5 mL can be injected onto a preparative HPLC column with over 90% efficiency with the present automated system. (author)

  8. Fiber heart valve prosthesis: influence of the fabric construction parameters on the valve fatigue performances.

    Science.gov (United States)

    Vaesken, Antoine; Heim, Frederic; Chakfe, Nabil

    2014-12-01

    Transcatheter aortic valve replacement (TAVR) has become today a largely considered alternative technique to surgical valve replacement in patients who are not operable or patients with high risk for open chest surgery. However, the biological valve tissue used in the devices implanted clinically appears to be fragile material when folded for low diameter catheter insertion purpose and released in calcified environment with irregular geometry. Textile polyester material is characterized by outstanding folding and strength properties combined with proven biocompatibility. It could thereof be considered to replace biological valve leaflets in the TAVR procedure. The textile construction parameters must however be tuned to obtain a material compatible with the valve requested durability. In that context, one issue to be addressed is the friction effect that occurs between filaments and between yarns within a fabric under flexure loading. This phenomenon could be critical for the resistance of the material on the long term. The purpose of the present work is to assess the fatigue performances of textile valve prototypes made from different fabric constructions (monofilament, multifilament, calendered mutifilament) under accelerated cyclic loading. The goal is to identify, which construction is the best suited to long term fatigue stress. Results show that calendered multifilament and monofilament fabric constructions undergo strong ruptures already from 40 Mio cycles, while non calendered multifilament appears more durable. The rupture patterns observed point out that durability is directly related to the flexure stiffness level of the fibrous elements in the construction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. On-line valve monitoring at the Ormen Lange gas plant

    Energy Technology Data Exchange (ETDEWEB)

    Greenlees, R.; Hale, S. [Score Atlanta Inc., Kennesaw, Georgia (United States)

    2011-07-01

    The purpose of this presentation is to discuss replacing time and labor intensive nuclear outage activities with on line condition monitoring solutions, primarily the periodic verification of MOV functionality discussed in USNRC Generic Letter 96.05. This regulation requires that MOV age related performance degradations are properly identified and accounted for, causing utilities to have to retest valves periodically for the duration of the plants operating license. AECL designed CANDU reactors have a world class performance and safety record, with typical average annual capacity factors of 90%. The CANDU reactor design has the ability to refuel on line, as a result (a) it can be a challenge scheduling all required valve testing into limited duration outage work windows, (b) at multi unit sites, Unit 0 valves can be difficult to test because they are rarely ever out of service, (c) deuterium-oxide (heavy water) moderator is expensive to manufacture, as a result, effective through valve leakage monitoring is essential. These three factors alone make CANDU sites the most suitable candidates for on line valve monitoring systems. Nuclear industry regulations have been instrumental in the development of 'at the valve' diagnostic systems, but diagnostic testing has not typically been utilized to the same degree in other less regulated industries. However, that trend is changing, and the move toward valve diagnostics and condition monitoring has moved fastest in the offshore oil and gas industry on the Norwegian side of the North Sea. The Ormen Lange plant, located on Nyhamna Island on the west coast of Norway, operated by Shell, is one of the worlds most advanced gas processing plants. A stated maintenance goal for the plant is that 70% of the maintenance budget and spend should be based on the results of on line condition monitoring, utilizing monitoring systems equipped with switch sensing, strain gages, hydraulic and pneumatic pressure transducers and

  10. On-line valve monitoring at the Ormen Lange gas plant

    International Nuclear Information System (INIS)

    Greenlees, R.; Hale, S.

    2011-01-01

    The purpose of this presentation is to discuss replacing time and labor intensive nuclear outage activities with on line condition monitoring solutions, primarily the periodic verification of MOV functionality discussed in USNRC Generic Letter 96.05. This regulation requires that MOV age related performance degradations are properly identified and accounted for, causing utilities to have to retest valves periodically for the duration of the plants operating license. AECL designed CANDU reactors have a world class performance and safety record, with typical average annual capacity factors of 90%. The CANDU reactor design has the ability to refuel on line, as a result (a) it can be a challenge scheduling all required valve testing into limited duration outage work windows, (b) at multi unit sites, Unit 0 valves can be difficult to test because they are rarely ever out of service, (c) deuterium-oxide (heavy water) moderator is expensive to manufacture, as a result, effective through valve leakage monitoring is essential. These three factors alone make CANDU sites the most suitable candidates for on line valve monitoring systems. Nuclear industry regulations have been instrumental in the development of 'at the valve' diagnostic systems, but diagnostic testing has not typically been utilized to the same degree in other less regulated industries. However, that trend is changing, and the move toward valve diagnostics and condition monitoring has moved fastest in the offshore oil and gas industry on the Norwegian side of the North Sea. The Ormen Lange plant, located on Nyhamna Island on the west coast of Norway, operated by Shell, is one of the worlds most advanced gas processing plants. A stated maintenance goal for the plant is that 70% of the maintenance budget and spend should be based on the results of on line condition monitoring, utilizing monitoring systems equipped with switch sensing, strain gages, hydraulic and pneumatic pressure transducers and acoustic leakage

  11. Structural valve deterioration in a starr-edwards mitral caged-disk valve prosthesis.

    Science.gov (United States)

    Aoyagi, Shigeaki; Tayama, Kei-Ichiro; Okazaki, Teiji; Shintani, Yusuke; Kono, Michitaka; Wada, Kumiko; Kosuga, Ken-Ichi; Mori, Ryusuke; Tanaka, Hiroyuki

    2013-01-01

    The durability of the Starr-Edwards (SE) mitral caged-disk valve, model 6520, is not clearly known, and structural valve deterioration in the SE disk valve is very rare. Replacement of the SE mitral disk valve was performed in 7 patients 23-40 years after implantation. Macroscopic examination of the removed disk valves showed no structural abnormalities in 3 patients, in whom the disk valves were removed at valves excised >36 years after implantation in 4 patients. Disk fracture, a longitudinal split in the disk along its circumference at the site of incorporation of the titanium ring, was detected in the valves removed 36 and 40 years after implantation, respectively, and many cracks were also observed on the outflow aspect of the disk removed 40 years after implantation. Disk fracture and localized disk wear were found in the SE mitral disk valves implanted >36 years previously. The present results suggest that SE mitral caged-disk valves implanted >20 years previously should be carefully followed up, and that those implanted >30 years previously should be electively replaced with modern prosthetic valves

  12. Impact of Chronic Rheumatic Valve Diseases on Large Vessels.

    Science.gov (United States)

    Altunbas, Gokhan; Yuce, Murat; Ozer, Hasan O; Davutoglu, Vedat; Ercan, Suleyman; Kizilkan, Nese; Bilici, Muhammet

    2016-01-01

    BACKGROUND AND AIM OF STUDY: Rheumatic valvular heart disease, which remains a common health problem in developing countries, has numerous consequences on the heart chambers and circulation. The study aim was to investigate the effects of chronic rheumatic valve disease on the diameters of the descending aorta (DA) and inferior vena cava (IVC). METHODS: A total of 88 patients with echocardiographically documented rheumatic valvular heart disease and 112 healthy controls were enrolled into the study. All patients underwent detailed echocardiographic examinations, while their height and body weight were recorded and adjusted to their body surface area. RESULTS: The most common involvement was mitral valve disease, followed by aortic valve disease and tricuspid valve disease. The mean diameter of the DA (indexed to BSA) was 1.79 ± 0.49 cm for patients and 1.53 ± 0.41 for controls (p Rheumatic valve disease, especially mitral stenosis, was closely related to remodeling of the great vessels.

  13. Technology Roadmap: Lab-on-a-Chip

    OpenAIRE

    Pattharaporn Suntharasaj; Tugrul U Daim

    2010-01-01

    With the integration of microfluidic and MEMS technologies, biochips such as the lab-on-a-chip (LOC) devices are at the brink of revolutionizing the medical disease diagnostics industries. Remarkable advancements in the biochips industry are making products resembling Star Trek.s "tricorder" and handheld medical scanners a reality. Soon, doctors can screen for cancer at the molecular level without costly and cumbersome equipments, and discuss treatment plans based on immediate lab results. Th...

  14. The analysis of actuating mechanism and review of concepts for the vortex valve

    International Nuclear Information System (INIS)

    Park, Jong Kyun; Sim, Yun Seop; Joung, Sae Won; Lee, Ki Young; Lee, Jun; Kim, Young In

    1995-12-01

    To understand the basic features of the passive fluidic device, which is increasing available core cooling water from the safety injection tanks in the KNGR, review of the existing vortex valves concepts and analysis of the actuating mechanism of them have been performed and the results are as following: * Preliminary methodology development for parallel two water columns behavior, which is similar to the SIT valve actuation condition * Preliminary methodology for the vortex value actuation features * Analysis of the parallel water columns behavior and vortex valve actuation features using the results of above activities * Further works to be done in the analytical methodology. 16 figs., 2 refs. (Author) .new

  15. Local spin valve effect in lateral (Ga,MnAs/GaAs spin Esaki diode devices

    Directory of Open Access Journals (Sweden)

    M. Ciorga

    2011-06-01

    Full Text Available We report here on a local spin valve effect observed unambiguously in lateral all-semiconductor all-electrical spin injection devices, employing p+ −(Ga,MnAs/n+ −GaAs Esaki diode structures as spin aligning contacts. We discuss the observed local spin-valve signal as a result of the interplay between spin-transport-related contribution and the tunneling anisotropic magnetoresistance of the magnetic contacts. The magnitude of the spin-related magnetoresistance change is equal to 30 Ω which is twice the magnitude of the measured non-local signal.

  16. Aqueous Boric acid injection facility of PWR type reactor

    International Nuclear Information System (INIS)

    Matsuoka, Tsuyoshi; Iwami, Masao.

    1996-01-01

    If a rupture should be caused in a secondary system of a PWR type reactor, pressure of a primary coolant recycling system is lowered, and a back flow check valve is opened in response to the lowering of the pressure. Then, low temperature aqueous boric acid in the lower portion of a pressurized tank is flown into the primary coolant recycling system based on the pressure difference, and the aqueous boric acid reaches the reactor core together with coolants to suppress reactivity. If the injection is continued, high temperature aqueous boric acid in the upper portion boils under a reduced pressure, further urges the low temperature aqueous boric acid in the lower portion by the steam pressure and injects the same to the primary system. The aqueous boric acid stream from the pressurized tank flowing by self evaporation of the high temperature aqueous boric acid itself is rectified by a rectifying device to prevent occurrence of vortex flow, and the steam is injected in a state of uniform stream. When the pressure in the pressurized tank is lowered, a bypass valve is opened to introduce the high pressure fluid of primary system into the pressurized tank to keep the pressure to a predetermined value. When the pressure in the pressurized tank is elevated to higher than the pressure of the primary system, a back flow check valve is opened, and high pressure aqueous boric acid is flown out of the pressurized tank to keep the pressure to a predetermined value. (N.H.)

  17. Intro to Valve Guide Reconditioning. Automotive Mechanics. Valves. Instructor's Guide [and] Student Guide.

    Science.gov (United States)

    Horner, W.

    This instructional package, one in a series of individualized instructional units on tools and techniques for repairing worn valve guides in motor vehicles, provides practical experience for students in working on cylinder heads. Covered in the module are reaming valve guides that are oversized to match a new oversized valve, reaming valve guides…

  18. Heart valve surgery

    Science.gov (United States)

    ... replacement; Valve repair; Heart valve prosthesis; Mechanical valves; Prosthetic valves ... surgery. Your heart valve has been damaged by infection ( endocarditis ). You have received a new heart valve ...

  19. The heavy ion injection scheme for RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Rhoades-Brown, M.J.

    1989-01-01

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven has a multi-component injection system. The Collider requires very heavy ions such as 79 197 Au to be injected fully stripped of atomic electrons, at a kinetic energy of approximately 10 GeV/nucleon. However, the heavy ions are produced initially at a negative ion source and accelerated first in a 15 MV Tandem. These partially stripped ions have a kinetic energy of approximately 1 MeV/nucleon on leaving the Tandem. In order to achieve the injection requirements for RHIC, the partially stripped ions are accelerated in the Booster (currently under construction) and pass through a stripping foil on their way to the Alternating Gradient Synchrotron (AGS), where they are further accelerated before injection into RHIC. Recent theoretical calculations have shown quite convincingly that very heavy ions with 2 electrons in the filled K-shell may be accelerated with negligible loss in the AGS. 13 refs., 3 figs., 3 tabs

  20. Injection-controlled laser resonator

    Science.gov (United States)

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  1. A novel synthetic test system for thyristor level in the converter valve of HVDC power transmission

    Directory of Open Access Journals (Sweden)

    Liu Longchen

    2016-01-01

    Full Text Available The converter valve is the core equipment in the HVDC power transmission system, a+-nd its performance has a direct effect on the reliability, stability and efficiency of the whole power system. As the basic unit of HVDC converter valve, the thyristor level needs to be test routinely in order to grasp the state of the converter valve equipment. Therefore, it is urgent to develop a novel synthetic test system for the thyristor level with thyristor control unit (TCU. However, currently there is no specific test scheme for the thyristor level of HVDC converter valve. In this paper, the synthetic test principle, content and methods for the thyristor level with TCU are presented based on the analysis of the thyristor reverse recovery characteristic and the IEC technology standard. And a transient high-voltage pulse is applied to the thyristor level during its reverse recovery period in order to test the characteristics of thyristor level. Then, the synthetic test system for the thyristor level is applied to the converter valve test of ±800 kV HVDC power transmission project, and the practical test result verifies the reasonability and validity of the proposed synthetic test system.

  2. On-demand liquid-in-liquid droplet metering and fusion utilizing pneumatically actuated membrane valves

    International Nuclear Information System (INIS)

    Lin, Bo-Chih; Su, Yu-Chuan

    2008-01-01

    This paper presents an active emulsification scheme that is capable of producing micro-droplets with desired volumes and compositions on demand. Devices with pneumatically actuated membranes constructed on top of specially designed microfluidic channels are utilized to meter and fuse liquid-in-liquid droplets. By steadily pressurizing a fluid and intermittently blocking its flow, droplets with desired volumes are dispersed into another fluid. Furthermore, droplets from multiple sources are fused together to produce combined droplets with desired compositions. In the prototype demonstration, a three-layer PDMS molding and irreversible bonding process was employed to fabricate the proposed microfluidic devices. For a dispersed-phase flow that is normally blocked by a membrane valve, the relationship between the volume (V) of a metered droplet and the corresponding valve open time (T) is found to be approximately V = kT a , in which k and a are constants determined mainly by the fluid-driving pressures. In addition to the metering device, functional droplet entrapment, fusion and flow-switching devices were also integrated in the system to produce desired combined droplets and deliver them to intended destinations upon request. As such, the demonstrated microfluidic system could potentially realize the controllability on droplet volume, composition and motion, which is desired for a variety of chemical and biological applications

  3. An analytical investigation on the valve and centrifugal pump speed control with a constant differential pressure across the valve

    International Nuclear Information System (INIS)

    Jung, B. R.; Joo, K. I.; Lee, B. J.; Baek, S. J.; Noh, T. S.

    2003-01-01

    A valve opening and centrifugal pump speed control was investigated analytically in a simple pumping system where the differential pressure across the control valve is maintained constant over the required flow range. The valve control program was derived analytically only as a function of the required flow rate to maintain the constant differential pressure across the valve. The centrifugal pump speed control program was also derived analytically for the required flow rate for the constant differential pressure across the control valve. These derivations theoretically show that the independent control is possible between the valve and pump speed in a system with a constant valve pressure drop. In addition, it was shown that a linear pump speed control is impossible in maintaining the constant valve pressure drop

  4. Which valve is which?

    Directory of Open Access Journals (Sweden)

    Pravin Saxena

    2015-01-01

    Full Text Available A 25-year-old man presented with a history of breathlessness for the past 2 years. He had a history of operation for Tetralogy of Fallot at the age of 5 years and history suggestive of Rheumatic fever at the age of 7 years. On echocardiographic examination, all his heart valves were severely regurgitating. Morphologically, all the valves were irreparable. The ejection fraction was 35%. He underwent quadruple valve replacement. The aortic and mitral valves were replaced by metallic valve and the tricuspid and pulmonary by tissue valve.

  5. Transcatheter aortic valve-in-valve treatment of degenerative stentless supra-annular Freedom Solo valves: A single centre experience.

    Science.gov (United States)

    Cockburn, James; Dooley, Maureen; Parker, Jessica; Hill, Andrew; Hutchinson, Nevil; de Belder, Adam; Trivedi, Uday; Hildick-Smith, David

    2017-02-15

    Redo surgery for degenerative bioprosthetic aortic valves is associated with significant morbidity and mortality. Report results of valve-in-valve therapy (ViV-TAVI) in failed supra-annular stentless Freedom Solo (FS) bioprostheses, which are the highest risk for coronary occlusion. Six patients with FS valves (mean age 78.5 years, 50% males). Five had valvular restenosis (peak gradient 87.2 mm Hg, valve area 0.63 cm 2 ), one had severe regurgitation (AR). Median time to failure was 7 years. Patients were high risk (mean STS/Logistic EuroScore 10.6 15.8, respectively). FS valves ranged from 21 to 25 mm. Successful ViV-TAVI was achieved in 4/6 patients (67%). Of the unsuccessful cases, (patient 1 and 2 of series) patient 1 underwent BAV with simultaneous aortography which revealed left main stem occlusion. The procedure was stopped and the patient went forward for repeat surgery. Patient 2 underwent successful ViV-TAVI with a 26-mm CoreValve with a guide catheter in the left main, but on removal coronary obstruction occurred, necessitating valve snaring into the aorta. Among the successful cases, (patients 3, 4, 5, 6) the TAVIs used were CoreValve Evolut R 23 mm (n = 3), and Lotus 23 mm (n = 1). In the successful cases the peak gradient fell from 83.0 to 38.3 mm Hg. No patient was left with >1+ AR. One patient had a stroke on Day 2, with full neurological recovery. Two patients underwent semi-elective pacing for LBBB and PR >280 ms. ViV-TAVI in stentless Freedom Solo valves is high risk. The risk of coronary occlusion is high. The smallest possible prosthesis (1:1 sizing) should be used, and strategies to protect the coronary vessels must be considered. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Experiments on the injection, confinement, and ejection of electron clouds in a magnetic mirror

    International Nuclear Information System (INIS)

    Eckhouse, S.; Fisher, A.; Rostoker, N.

    1978-01-01

    A cloud of (5 to 10 keV) electrons is injected into a magnetic mirror field. The magnetic field rises in 40--120 μsec to a maximum of 10 kG. Two methods of injection were tried: In the first, the injector is located at the mirror midplane and electrons are injected perpendicular to the magnetic field lines. In the second scheme, the injector is located near the mirror maximum. Up to about 10 11 electrons were trapped in both schemes with a mean kinetic energy of 0.3 MeV. Measured confinement time is limited only by the magnetic field decay time. The compressed electron cloud executes electrostatic oscillations. The frequency of the oscillation is proportional to the number of electrons trapped, and it is independent of the value of the magnetic field and the initial electron energy. The electron cloud was ejected along the mirror axis and properties of the ejected electron cloud were measured by x-ray pulses from bremstrahlung of electrons on the vacuum system wall and by collecting electrons on a Faraday cup

  7. Mechanical design of injection line for VEC

    International Nuclear Information System (INIS)

    Nandi, C.; Bandopadhyay, D.K.; Pal, G.; Sharma, R.N.; Mallik, C.; Chaudhuri, J.; Bhandari, R.K.

    2003-01-01

    A 14.5 GHz ECR ion source along with its analyzing section was earlier installed at VECC for injecting multiply charged gaseous and metallic ions into the existing K 130 cyclotron. The injection line from this ECR ion source was connected to the vertical section of the existing injection line for integrating it with the K 130 cyclotron. The injection line comprises two solenoid magnets, a steering magnet, and a bending magnet. In between the solenoid magnets a length about 1.5 metres has been provided for future atomic physics experimental applications. Two gate valves are used to isolate this area. For beam diagnostics, two Faraday cups, designed and fabricated in this centre, have been installed

  8. Air injection evaluation in open steam discharge pipes based on ejector equipment theory

    International Nuclear Information System (INIS)

    Bigu, M.; Nita, I.; Tenescu, M.

    2005-01-01

    The paper starts from the finding that the calculation method proposed by ANSI B31.1 for open steam discharge pipes (normative 'ANSI/ASMF B31.1-1980 appendix II Non-Mandatory rules for the design of safety valve installation') shows an air injection in steam system without making a quantitative evaluation of this process of air injection in the exhaust steam. For this it is proposed an assimilation of process with an ejection process in which either steam or air is the ejected fluid. The reason of using opened exhaust systems instead of closed exhaust systems is the fact that expansions and especially shock load from discharge valves and especially in exhaust elbow, are not conducted over the pipe system (ventilation tube). In order to estimate the quantity of air flow which enters through the ejection effect the present paper makes use of gas-gas ejectors. The interest for optimal operating of the system is that the air mixture have a value low in comparison with steam flow (i.e. 2-3% or upmost 5-7%). These percents of mixture lead to properly choosing of the ratio of the two pipe diameters (ventilation tube D/ exhaust elbow d). The results show that optimum ratio is between D/d = 1.10 to 1.15 and in extreme cases 1.20. A lower value of ratio is not acceptable because the pipes come in direct contact when expansion and/or hydraulic hammer occur and stresses from exhaust elbow of safety valve are propagated towards ventilation tube. A higher value of the ratio D/d leads to great air injection in ventilation tube and so to an unjustified large diameter of ventilation tube. It must be mention that the optimal ratio is obtained at sub critical flow of ejected air with Mach number lower then unity, at a static pressure between 0.6 to 1.0 bar in mixture zone of the two fluids. (authors)

  9. Air injection evaluation in open steam discharge pipes based on ejector equipment theory

    International Nuclear Information System (INIS)

    Bigu, M.; Nita, I.; Tenescu, M.

    2005-01-01

    Full text: The paper starts from the finding that the calculation method proposed by ANSI B31.1 for open steam discharge pipes (normative 'ANSI/ASMF B31.1-1980 appendix II Non-Mandatory rules for the design of safety valve installation') shows an air injection in steam system without making a quantitative evaluation of this process of air injection in the exhaust steam. For this it is proposed an assimilation of process with an ejection process in which either steam or air is the ejected fluid. The reason of using opened exhaust systems instead of closed exhaust systems is the fact that expansions and especially shock load from discharge valves and especially in exhaust elbow, are not conducted over the pipe system (ventilation tube). In order to estimate the quantity of air flow which enters through the ejection effect the present paper makes use of gas-gas ejectors. The interest for optimal operating of the system is that the air mixture have a value low in comparison with steam flow (i.e. 2-3% or upmost 5-7%). These percents of mixture lead to properly choosing of the ratio of the two pipe diameters (ventilation tube D/ exhaust elbow d). The results show that optimum ratio is between D/d = 1.10 to 1.15 and in extreme cases 1.20. A lower value of ratio is not acceptable because the pipes come in direct contact when expansion and/or hydraulic hammer occur and stresses from exhaust elbow of safety valve are propagated towards ventilation tube. A higher value of the ratio D/d leads to great air injection in ventilation tube and so to an unjustified large diameter of ventilation tube. It must be mention that the optimal ratio is obtained at sub critical flow of ejected air with Mach number lower then unity, at a static pressure between 0.6 to 1.0 bar in mixture zone of the two fluids

  10. Control Valve

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Wayne R.

    2018-03-20

    A control valve includes a first conduit having a first inlet and a first outlet and defining a first passage; a second conduit having a second inlet and a second outlet and defining a second passage, the second conduit extending into the first passage such that the second inlet is located within the first passage; and a valve plate disposed pivotably within the first passage, the valve plate defining a valve plate surface. Pivoting of the valve plate within the first passage varies flow from the first inlet to the first outlet and the valve plate is pivotal between a first position and a second position such that in the first position the valve plate substantially prevents fluid communication between the first passage and the second passage and such that in the second position the valve plate permits fluid communication between the first passage and the second passage.

  11. Investigation of the effect of different carbon film thickness on the exhaust valve

    Science.gov (United States)

    Karamangil, M. I.; Avci, A.; Bilal, H.

    2008-03-01

    Valves working under different loads and temperatures are the mostly forced engine elements. In an internal combustion engine, pressures and temperatures affecting on the valves vary with fuel type and the combustion characteristics of the fuel. Consequently, valves are exposed to different dynamic and thermal stress. In this study, stress distributions and temperature profiles on exhaust valve are obtained depending on different carbon film thickness. It is concluded that heat losses and valve temperatures decrease and valve surfaces are exposed to less thermal shocks with increasing carbon film thickness.

  12. A Study of Spill Control Characteristics of JP-8 and Conventional Diesel Fuel with a Common Rail Direct Injection System

    Directory of Open Access Journals (Sweden)

    Seomoon Yang

    2017-12-01

    Full Text Available Diversification of energy sources is a key task for decreasing environmental impacts and global emission of gases. JP-8, a fuel derived from natural gas, coal, biomass, and waste plastics, is a bright prospect. JP-8 is considered a multi-source multi-purpose fuel, with several applications. A preliminary characterization of the JP-8 injection rate and injection quantity behavior was investigated based on the high-pressure common rail injection system used in a heavy-duty engine. According to the spill injection and injection pressure, a trade-off trend between injection rate and injection quantity was observed. As expected, pilot injection of JP-8 aviation fuel and diesel fuel affects the spray quantity and injection evolution of the subsequent operation without pilot injection. The difference in spilling between diesel and JP-8 aviation fuel is greater than the difference in injection amount per time; in the process of controlling the injector solenoid through ECU (Electric Control Units, the oil pressure valve and the needle valve operate to a higher extent in order to maintain the diesel fuel’s injection quantity volume. It was found that the total injection quantity was decreased by adding 20% pilot injection duration. Because the pilot injection quantity causes solenoid response, loss and needle lift stroke friction loss.

  13. Prosthetic valve endocarditis after transcatheter aortic valve implantation

    DEFF Research Database (Denmark)

    Olsen, Niels Thue; De Backer, Ole; Thyregod, Hans G H

    2015-01-01

    BACKGROUND: Transcatheter aortic valve implantation (TAVI) is an advancing mode of treatment for inoperable or high-risk patients with aortic stenosis. Prosthetic valve endocarditis (PVE) after TAVI is a serious complication, but only limited data exist on its incidence, outcome, and procedural......%) were treated conservatively and 1 with surgery. Four patients (22%) died from endocarditis or complications to treatment, 2 of those (11%) during initial hospitalization for PVE. An increased risk of TAVI-PVE was seen in patients with low implanted valve position (hazard ratio, 2.8 [1.1-7.2]), moderate...

  14. Modeling and control of fuel distribution in a dual-fuel internal combustion engine leveraging late intake valve closings

    Energy Technology Data Exchange (ETDEWEB)

    Kassa, Mateos [Mechanical, Materials, and Aerospace Engineering Department, Illinois Institute of Technology, Chicago, IL, USA; Hall, Carrie [Mechanical, Materials, and Aerospace Engineering Department, Illinois Institute of Technology, Chicago, IL, USA; Ickes, Andrew [Fuels, Engine and Aftertreatment Research, Argonne National Laboratory, Argonne, IL, USA; Wallner, Thomas [Fuels, Engine and Aftertreatment Research, Argonne National Laboratory, Argonne, IL, USA

    2016-10-07

    Advanced internal combustion engines, although generally more efficient than conventional combustion engines, often encounter limitations in multi-cylinder applications due to variations in the combustion process encountered across cylinders and between cycles. This study leverages experimental data from an inline 6-cylinder heavy-duty dual fuel engine equipped with exhaust gas recirculation (EGR), a variable geometry turbocharger, and a fully-flexible variable intake valve actuation system to study cylinder-to-cylinder variations in power production and the underlying uneven fuel distribution that causes these variations. The engine is operated with late intake valve closure timings in a dual-fuel combustion mode in which a high reactivity fuel is directly injected into the cylinders and a low reactivity fuel is port injected into the cylinders. Both dual fuel implementation and late intake valve closing (IVC) timings have been shown to improve thermal efficiency. However, experimental data from this study reveal that when late IVC timings are used on a multi-cylinder dual fuel engine a significant variation in IMEP across cylinders results and as such, leads to efficiency losses. The difference in IMEP between the different cylinders ranges from 9% at an IVC of 570°ATDC to 38% at an IVC of 610°ATDC and indicates an increasingly uneven fuel distribution. These experimental observations along with engine simulation models developed using GT-Power have been used to better understand the distribution of the port injected fuel across cylinders under various operating conditions on such dual fuel engines. This study revealed that the fuel distribution across cylinders in this dual fuel application is significantly affected by changes in the effective compression ratio as determined by the intake valve close timing as well as the design of the intake system (specifically the length of the intake runners). Late intake valve closures allow a portion of the trapped air

  15. Design and performance characteristic analysis of servo valve-type water hydraulic poppet valve

    International Nuclear Information System (INIS)

    Park, Sung Hwan

    2009-01-01

    For water hydraulic system control, the flow or pressure control using high-speed solenoid valve controlled by PWM control method could be a good solution for prevention of internal leakage. However, since the PWM control of on-off valves cause extensive flow and pressure fluctuation, it is difficult to control the water hydraulic actuators precisely. In this study, the servo valve-type water hydraulic valve using proportional poppet as the main valve is designed and the performance characteristics of the servo valve-type water hydraulic valve are analyzed. Furthermore, it is demonstrated through experiments that a decline in control chamber pressure that follows the change of pilot flow is caused by the occurrence of cavitation around the proportional poppet, and that fundamental characteristics of the developed valve remain unaffected by the occurrence of cavitation

  16. IonLab. A remote-controlled experiment for academic and vocational education and training on extraction chromatography and ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Wolfgang; Fournier, Claudia; Vahlbruch, Jan-Willem; Walther, Clemens [Leibniz Univ., Hannover (Germany). Inst. for Radioecology and Radiation Protection (IRS)

    2016-07-01

    As a major contribution to modern web-based education and training in nuclear chemistry we have built and operated a remote-controlled experiment - IonLab - as part of the integrated EUFP7 project CINCHII. The setup is suitable for teaching basics on extraction chromatography and ion exchange using radionuclides. We describe separation of the beta emitting nuclides Sr-90 and Y-90 followed by radiometric detection, but the experiment is easily adapted to other separation schemes. This approach is aimed at institutions in academic or vocational education who need to convey the skills of handling radioactive (or otherwise dangerous, e.g. biotoxic) substances without appropriately licensed laboratory space for teaching. This camera-monitored remote controlled lab experiment has proved to be much closer to a real hands-on training and superior to a mere computer simulation.

  17. Injection into the LNLS UVX electron storage ring

    International Nuclear Information System (INIS)

    Lin, Liu

    1991-01-01

    To inject the 1.15 GeV electron storage ring - UVX - a beam from a linear accelerator - MAIRA - is used. The electrons are injected and accumulated at low energy (100MeV) until the nominal current of 100 mA is reached and than are ramped to the nominal energy. A study on a conventional injection scheme has been carried out. Two injection modes are investigated: injection with the phase ellipse parameters matched and mismatched to the ring's acceptance. The mismatched mode is optimized to fit the maximum of the injected beam into the acceptance

  18. Relief valve testing study

    International Nuclear Information System (INIS)

    BROMM, R.D.

    2001-01-01

    Reclosing pressure-actuated valves, commonly called relief valves, are designed to relieve system pressure once it reaches the set point of the valve. They generally operate either proportional to the differential between their set pressure and the system pressure (gradual lift) or by rapidly opening fully when the set pressure is reached (pop action). A pop action valve allows the maximum fluid flow through the valve when the set pressure is reached. A gradual lift valve allows fluid flow in proportion to how much the system pressure has exceeded the set pressure of the valve (in the case of pressure relief) or has decreased below the set pressure (vacuum relief). These valves are used to protect systems from over and under pressurization. They are used on boilers, pressure vessels, piping systems and vacuum systems to prevent catastrophic failures of these systems, which can happen if they are under or over pressurized beyond the material tolerances. The construction of these valves ranges from extreme precision of less than a psi tolerance and a very short lifetime to extremely robust construction such as those used on historic railroad steam engines that are designed operate many times a day without changing their set pressure when the engines are operating. Relief valves can be designed to be immune to the effects of back pressure or to be vulnerable to it. Which type of valve to use depends upon the design requirements of the system

  19. Research on digital system design of nuclear power valve

    Science.gov (United States)

    Zhang, Xiaolong; Li, Yuan; Wang, Tao; Dai, Ye

    2018-04-01

    With the progress of China's nuclear power industry, nuclear power plant valve products is in a period of rapid development, high performance, low cost, short cycle of design requirements for nuclear power valve is proposed, so there is an urgent need for advanced digital design method and integrated design platform to provide technical support. Especially in the background of the nuclear power plant leakage in Japan, it is more practical to improve the design capability and product performance of the nuclear power valve. The finite element numerical analysis is a common and effective method for the development of nuclear power valves. Nuclear power valve has high safety, complexity of valve chamber and nonlinearity of seal joint surface. Therefore, it is urgent to establish accurate prediction models for earthquake prediction and seal failure to meet engineering accuracy and calculation conditions. In this paper, a general method of finite element modeling for nuclear power valve assembly and key components is presented, aiming at revealing the characteristics and rules of finite element modeling of nuclear power valves, and putting forward aprecision control strategy for finite element models for nuclear power valve characteristics analysis.

  20. Design and development of innovative passive valves for Nuclear Power Plant applications

    Energy Technology Data Exchange (ETDEWEB)

    Sapra, M.K., E-mail: sapramk@barc.gov.in; Kundu, S.; Pal, A.K.; Vijayan, P.K.; Vaze, K.K.; Sinha, R.K.

    2015-05-15

    by India. For example, the Hot Shutdown Passive Valves (HSPV), developed for the decay heat removal system keep the main heat transport system under hot conditions by passively sensing and controlling the system pressure. Another crucial and important valve which has been successfully developed is the Poison Injection Passive Valve (PIPV) for the Passive Poison Injection System. It not only provides higher reliability, but also ensures safe shutdown of the reactor in case of insider threats or malevolent acts in disabling active shutdown system of the reactor. Recently, an innovative valve called the Accumulator Isolation Passive Valve (AIPV) has been developed for the Emergency Core Cooling System (ECCS), which is engineered to mitigate the consequences of Loss of Coolant Accident (LOCA). During normal operation of the reactor, the pressurized accumulators (55 bar) are kept isolated from the reactor core (70 bar) by means of AIPVs. In case of a LOCA, these passive valves open when the main heat transport system pressure falls to a desired value. For prolonged cooling of the core, these passive valves regulate the discharge in a desired manner. These are non-standard, high pressure and high temperature valves, which are unavailable commercially and hence have to be indigenously designed and developed. This paper primarily deals with the design, development and testing of Accumulator Isolation Passive Valves (AIPV) proposed to be used in the ECCS. A 25 NB size AIPV has been designed and successfully tested at Integral Test Loop (ITL) under simulated reactor conditions. It is a self-acting, ANSI 600 rating valve, which requires no external energy (i.e., neither air nor electrical power). It not only provides passive isolation but also passively controls high pressure liquid discharge through it. The design concept of the valve, functional performance, in situ valve testing methodology and the test results at simulated conditions are discussed.

  1. Mitral Valve Disease

    Science.gov (United States)

    ... for mitral valve replacement—mechanical valves (metal) or biological valves (tissue). The principal advantage of mechanical valves ... small risk of stroke due to blood clotting. Biological valves usually are made from animal tissue. Biological ...

  2. Transcatheter aortic valve replacement

    Science.gov (United States)

    ... gov/ency/article/007684.htm Transcatheter aortic valve replacement To use the sharing features on this page, please enable JavaScript. Transcatheter aortic valve replacement (TAVR) is surgery to replace the aortic valve. ...

  3. Development of lab scale fast gas injection system for SST-1 Tokamak

    International Nuclear Information System (INIS)

    Pathan, F.S.; Banaudha, Moni; Khristi, Yohan; Khan, M.S.; Khan, Ziauddin; Raval, D.C.; Khirwadkar, Samir

    2017-01-01

    The plasma density control plays an important role in Tokamak operation. The factors that influence plasma density in a Tokamak device are working gas injection, pumping, ionization rate and the recycle coefficient representing the wall conditions. Among these factors, gas injection is relatively convenient to be controlled. Hence, the most frequently adopted method to control the plasma density is to control the fast gas injection. This paper describes the design and experimental work carried out towards the development of Fast Gas Injection System for SST-1 Tokamak. Laboratory based test setup was successfully established for Fast Gas Injection System that can feed predefined quantity of gas in a controlled manner into vacuum chamber. Further, this FGIS system will be implemented in SST-1 Tokamak environment with online density feedback signal

  4. Light extinction method on high-pressure diesel injection

    Science.gov (United States)

    Su, Tzay-Fa; El-Beshbeeshy, Mahmound S.; Corradini, Michael L.; Farrell, Patrick V.

    1995-09-01

    A two dimensional optical diagnostic technique based on light extinction was improved and demonstrated in an investigation of diesel spray characteristics at high injection pressures. Traditional light extinction methods require the spray image to be perpendicular to the light path. In the improved light extinction scheme, a tilted spray image which has an angle with the light path is still capable of being processed. This technique utilizes high speed photography and digital image analysis to obtain qualitative and quantitative information of the spray characteristics. The injection system used was an electronically controlled common rail unit injector system with injection pressures up to 100 MPa. The nozzle of the injector was a mini-sac type with six holes on the nozzle tip. Two different injection angle nozzles, 125 degree(s) and 140 degree(s), producing an in-plane tilted spray and an out of plane tilted spray were investigated. The experiments were conducted on a constant volume spray chamber with the injector mounted tilted at an angle of 62.5 degree(s)$. Only one spray plume was viewed, and other sprays were free to inject to the chamber. The spray chamber was pressurized with argon and air under room temperature to match the combustion chamber density at the start of the injection. The experimental results show that the difference in the spray tip penetration length, spray angle, and overall average Sauter mean diameter is small between the in- plane tilted spray and the out of plane tilted spray. The results also show that in-plane tilted spray has a slightly larger axial cross- section Sauter mean diameter than the out of plane tilted spray.

  5. Use of a valve operation test and evaluation system to enhance valve reliability

    International Nuclear Information System (INIS)

    Lowry, D.A.

    1990-01-01

    Power plant owners have emphasized the need for assuring safe, reliable operation of valves. While most valves must simply open or close, the mechanisms involved can be quite complex. Motor operated valves (MOVs) must be properly adjusted to assure operability. Individual operator components determine the performance of the entire MOV. Failure in MOVs could cripple or shut down a unit. Thus, a complete valve program consisting of design reviews, operational testing, and preventive and predictive maintenance activities will enhance an owner's confidence level that his valves win operate as expected. Liberty's Valve Operation Test and Evaluation System (VOTES) accurately measures stein thrust without intruding on valve operation. Since mounting a strain gage to a valve stem is a desirable but impractical way of obtaining precise stem thrust, Liberty developed a method to obtain identical data by placing a strain gage sensor on the valve yoke. VOTES provides information which effectively eliminates costly, unscheduled downtime. This paper presents the results of infield VOTES testing. The system's proven ability to identify and characterize actuator and valve performance is demonstrated. Specific topics of discussion include the ability of VOTES to ease a utility's IE Bulletin 8543 concerns and conclusively diagnose MOV components. Data from static and differential pressure testing are presented. Technical, operational, and financial advantages resulting from VOTES technology are explored in detail

  6. Steam Turbine Control Valve Stiction Effect on Power System Stability

    International Nuclear Information System (INIS)

    Halimi, B.

    2010-01-01

    One of the most important problems in power system dynamic stability is low frequency oscillations. This kind of oscillation has significant effects on the stability and security of the power system. In some previous papers, a fact was introduced that a steam pressure continuous fluctuation in turbine steam inlet pipeline may lead to a kind of low frequency oscillation of power systems. Generally, in a power generation plant, steam turbine system composes of some main components, i.e. a boiler or steam generator, stop valves, control valves and turbines that are connected by piping. In the conventional system, the turbine system is composed with a lot of stop and control valves. The steam is provided by a boiler or steam generator. In an abnormal case, the stop valve shuts of the steal flow to the turbine. The steam flow to the turbine is regulated by controlling the control valves. The control valves are provided to regulate the flow of steam to the turbine for starting, increasing or decreasing the power, and also maintaining speed control with the turbine governor system. Unfortunately, the control valve has inherent static friction (stiction) nonlinearity characteristics. Industrial surveys indicated that about 20-30% of all control loops oscillate due to valve problem caused by this nonlinear characteristic. In this paper, steam turbine control valve stiction effect on power system oscillation is presented. To analyze the stiction characteristic effect, firstly a model of control valve and its stiction characteristic are derived by using Newton's laws. A complete tandem steam prime mover, including a speed governing system, a four-stage steam turbine, and a shaft with up to for masses is adopted to analyze the performance of the steam turbine. The governor system consists of some important parts, i.e. a proportional controller, speed relay, control valve with its stiction characteristic, and stem lift position of control valve controller. The steam turbine has

  7. Evaluation of a coolant injection into the in-vessel with a RCS depressurization by using SCDAP/RELAP5

    International Nuclear Information System (INIS)

    Rae-Joon, Park; Sang-Baik, Kim; Hee-Dong, Kim

    2007-01-01

    As part of the evaluations of a severe accident management strategy, a coolant injection in the vessel with a reactor coolant system (RCS) depressurization has been evaluated by using the SCDAP/RELAP5 computer code. Two high pressure sequences of a small break loss of coolant accident (LOCA) without safety injection (SI) and a total loss of feed water (LOFW) accident have been analyzed in optimized power reactor OPR-1000. The SCDAP/RELAP5 results have shown that only one train operation of a high pressure safety injection at 30,000 seconds with a RCS depressurization by using one condenser dump valve at 6 minutes after an entrance of the severe accident management guidance prevents a reactor vessel failure for the small break LOCA without SI. In this case, only train operation of the low pressure safety injection (LPSI) without the high pressure safety injection (HPSI) does not prevent a reactor vessel failure. Only one train operation of the HPSI at 20,208 seconds with a RCS depressurization by using two safety depressurization system valves at 40 minutes after an initial opening of the safety relief valve prevents a reactor vessel failure for the total LOFW. (authors)

  8. Use of color-change indicators to quantify passive films on the stainless steel valves of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Cong Qian [School of Materials Science, Engineering, Dalian University of Technology, Dalian 116085 (China); Yang, Shu Kai [School of Materials Science, Engineering, Dalian University of Technology, Dalian 116085 (China); Suzhou Nuclear Power Research Institute, Suzhou 215004 (China); Zhao, Jie, E-mail: jiezhao@dlut.edu.cn [School of Materials Science, Engineering, Dalian University of Technology, Dalian 116085 (China)

    2016-02-15

    Highlights: • A facile method to evaluate passivation quality by color change indicator. • Two indicators were compared in lab and applied on vales in nuclear power plants. • It shows that the higher value of color change the worse quality of passivation. • Traditional ferroxyl solution is unstable and might impair the vale surface. • The new indicator is more practicable than the ferroxyl test for on-site inspection. - Abstract: The passive film on nuclear-grade stainless steels was evaluated by quantifying its color changes. Coloration reactions were compared by using ferroin and blue dot solutions as indicators on the basis of the measured results in a laboratory. The reactions were then applied on stainless steel valves in a nuclear power plant. The degree of color change indicates the degree of growth of a passive film. The ferroin solution exhibits higher accuracy and more stable than blue dot solution in determining passive film quality. The potentiodynamic polarization curves show that blue dot solution might cause surface damage compared with ferroin solution. The inspection result on stainless steel valves supports our laboratory result. However, stainless steel exhibited a dramatic decrease in sensitivity to blue dot because of the intrinsic instability and high acidity of this solution. Ferroin solution is superior to blue dot solution for stainless steel facilities in a nuclear power plant.

  9. Advanced HVAC modeling with FemLab/Simulink/MatLab

    NARCIS (Netherlands)

    Schijndel, van A.W.M.

    2003-01-01

    The combined MatLab toolboxes FemLab and Simulink are evaluated as solvers for HVAC problems based on partial differential equations (PDEs). The FemLab software is designed to simulate systems of coupled PDEs, 1-D, 2-D or 3-D, nonlinear and time dependent. In order to show how the program works, a

  10. A Harmonic Kicker Scheme for the Circulator Cooler Ring in the Proposed Medium Energy Electron-Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Nissen, Edward W.; Hutton, Andrew M.; Kimber, Andrew J.

    2013-06-01

    The current electron cooler design for the proposed Medium Energy Electron-Ion collider (MEIC) at Jefferson Lab utilizes a circulator ring for reuse of the cooling electron bunch up to 100 times to cool the ion beams. This cooler requires a fast kicker system for injecting and extracting individual bunches in the circulator ring. Such a kicker must work at a high repetition rate, up to 7.5 to 75 MHz depending on the number of turns in the recirculator ring. It also must have a very short rise and fall time (of order of 1 ns) such that it will kick an individual bunch without disturbing the others in the ring. Both requirements are orders of magnitude beyond the present state-of-the-art as well as the goals of other on-going kicker R&D programs such as that for the ILC damping rings. In this paper we report a scheme of creating this fast, high repetition rate kicker by combining RF waveforms at multiple frequencies to create a kicker waveform that will, for example, kick every eleventh bunch while leaving the other ten unperturbed. We also present a possible implementation of this scheme as well as discuss its limitations.

  11. A study on the force balance of an unbalanced globe valve

    International Nuclear Information System (INIS)

    Yang, Sang Min; Cho, Taik Dong; Ko, Sung Ho; Lee, Ho Young

    2007-01-01

    A pneumatic control valve is a piping element that controls the volumetric flow rate and pressure of a fluid: it is necessary to analyze the characteristics of the forces with respect to the opening of the valve in order to evaluate its operating performance. The forces occurring during operation are: resisting force and actuator force, where the load resistance is mostly affected by the fluid pressure difference of the valve. In this study, a force balance equation derived from the equilibrium relationship between the resisting force and the actuator force of an unbalanced globe valve is proposed, and the force balance equations are used to model the dynamic equations of a pneumatic unbalanced globe valve installed in nuclear power plants. A CFD analysis is also carried out to evaluate the pressure distribution and forces acting on the top and bottom planes of the valve plug. The results of this analysis have been verified through experimentation. This study has shown that the fluid pressure difference between the inlet and outlet of the valve, measured from the force balance equation of an unbalanced valve, should actually be examined with the fluid-pressure difference between the top and bottom side of the valve plug

  12. Aortic valve insufficiency in the teenager and young adult: the role of prosthetic valve replacement.

    Science.gov (United States)

    Bradley, Scott M

    2013-10-01

    The contents of this article were presented in the session "Aortic insufficiency in the teenager" at the congenital parallel symposium of the 2013 Society of Thoracic Surgeons (STS) annual meeting. The accompanying articles detail the approaches of aortic valve repair and the Ross procedure.(1,2) The current article focuses on prosthetic valve replacement. For many young patients requiring aortic valve surgery, either aortic valve repair or a Ross procedure provides a good option. The advantages include avoidance of anticoagulation and potential for growth. In other patients, a prosthetic valve is an appropriate alternative. This article discusses the current state of knowledge regarding mechanical and bioprosthetic valve prostheses and their specific advantages relative to valve repair or a Ross procedure. In current practice, young patients requiring aortic valve surgery frequently undergo valve replacement with a prosthetic valve. In STS adult cardiac database, among patients ≤30 years of age undergoing aortic valve surgery, 34% had placement of a mechanical valve, 51% had placement of a bioprosthetic valve, 9% had aortic valve repair, and 2% had a Ross procedure. In the STS congenital database, among patients 12 to 30 years of age undergoing aortic valve surgery, 21% had placement of a mechanical valve, 18% had placement of a bioprosthetic valve, 30% had aortic valve repair, and 24% had a Ross procedure. In the future, the balance among these options may be altered by design improvements in prosthetic valves, alternatives to warfarin, the development of new patch materials for valve repair, and techniques to avoid Ross autograft failure.

  13. Injection Process Control of the Well at the Hydrodynamic Research of Coalbed

    Science.gov (United States)

    Odnokopylov, I. G.; Galtseva, O. V.; Krasnov, I. Yu; Smirnov, A. O.; Karpov, M. S.; Surzhikova, O. A.; Kuznetsov, V. V.; Li, J.

    2017-04-01

    This scientific work is devoted to the study results of water injection process into the well at the hydrodynamic research by using the high pressure unregulated pump. The injection process should be accompanied by the retention of some hydraulic parameters at constant level during some time. Various variants for use of mechatronic nodes for automatization of water injection process are considered. Scheme for reducing the load on the pump and equipment in hydraulic system and also for improving the quality control system with high accuracy is shown. Simulation results of injection process into the well at the pressure and consumption fixation and recommendations for the use of the proposed schemes depending on the technological process are given.

  14. Performance of an Otto cycle motor with natural gas direct injection; Desempenho de um motor ciclo Otto com injecao direta de gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Cleiton Rubens Formiga

    1997-07-01

    A Otto cycle engine with natural gas direct injection, during the inlet stroke, was submitted to runs with full power in a Foucaut dynamometer. The results obtained show a increase in the volumetric efficiency of the engine with natural gas direct injection when compared with natural gas injection applied in the inlet manifold, upstream of the throttle butterfly. In the conversion to natural gas direct injection, the technical characteristics were not changed. A kit for natural gas direct injection, with electronic management was located on the cylinder head of the test engine. Maintaining the pressure constant in the natural gas fuel line, using a reduction valve, the mass of fuel injected into the cylinder was regulated, varying the opening time of the solenoid valve fuel injector. Engine performance data is compared, emphasizing the factors that contribute to this increase in relative volumetric efficiency. Modifications are made to maximize the power of the engine with natural gas direct injection. (author)

  15. Aortic valve bypass

    DEFF Research Database (Denmark)

    Lund, Jens T; Jensen, Maiken Brit; Arendrup, Henrik

    2013-01-01

    In aortic valve bypass (AVB) a valve-containing conduit is connecting the apex of the left ventricle to the descending aorta. Candidates are patients with symptomatic aortic valve stenosis rejected for conventional aortic valve replacement (AVR) or transcatheter aortic valve implantation (TAVI). ...

  16. AREVA's innovative solutions for valve diagnostics and in-situ valve repair

    International Nuclear Information System (INIS)

    Damies, H.; Breitenberger, U.; Munoz, L.; Kostroun, F.

    2012-01-01

    Optimized maintenance strategies are a key aspect for safe and undisturbed plant operation. Innovative valve service solutions can support that in an efficient way. The ADAM®/SIPLUG® valve monitoring system allows full online monitoring of valves and actuators with automatic evaluation and assessment. Especially for safety-related and operation-related valves this provides valuable information on components condition to ensure proper function and contribute to optimization of maintenance strategies as well as effective maintenance performance. More than 25 years of experience in various plants worldwide show that application of ADAM®/SIPLUG® valve diagnostics solution leads to increased plant safety and availability. With the innovative AVARIS technology an in-situ valve repair is possible. It has the unique ability to conduct several steps in-situ, to maintain the sealing seat of gate or check valves. By applying AVARIS, the valve is restored in its original state, the system remains unchanged. Thus, all original documents remain valid and applicable. In comparison to previous procedures like cutting valves out of the pipeline and repairing hard facings or damaged seal seats in a separate workshop or alternatively replacement by a new valve body the new AVARIS technology avoids costs, risk and effort. (author)

  17. Reversible thermo-pneumatic valves on centrifugal microfluidic platforms.

    Science.gov (United States)

    Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Harun, Sulaiman Wadi; Kazemzadeh, Amin; Rothan, Hussin A; Yusof, Rohana; Madou, Marc

    2015-08-21

    Centrifugal microfluidic systems utilize a conventional spindle motor to automate parallel biochemical assays on a single microfluidic disk. The integration of complex, sequential microfluidic procedures on these platforms relies on robust valving techniques that allow for the precise control and manipulation of fluid flow. The ability of valves to consistently return to their former conditions after each actuation plays a significant role in the real-time manipulation of fluidic operations. In this paper, we introduce an active valving technique that operates based on the deflection of a latex film with the potential for real-time flow manipulation in a wide range of operational spinning speeds. The reversible thermo-pneumatic valve (RTPV) seals or reopens an inlet when a trapped air volume is heated or cooled, respectively. The RTPV is a gas-impermeable valve composed of an air chamber enclosed by a latex membrane and a specially designed liquid transition chamber that enables the efficient usage of the applied thermal energy. Inputting thermo-pneumatic (TP) energy into the air chamber deflects the membrane into the liquid transition chamber against an inlet, sealing it and thus preventing fluid flow. From this point, a centrifugal pressure higher than the induced TP pressure in the air chamber reopens the fluid pathway. The behaviour of this newly introduced reversible valving system on a microfluidic disk is studied experimentally and theoretically over a range of rotational frequencies from 700 RPM to 2500 RPM. Furthermore, adding a physical component (e.g., a hemispherical rubber element) to induce initial flow resistance shifts the operational range of rotational frequencies of the RTPV to more than 6000 RPM. An analytical solution for the cooling of a heated RTPV on a spinning disk is also presented, which highlights the need for the future development of time-programmable RTPVs. Moreover, the reversibility and gas impermeability of the RTPV in the

  18. On-line diagnostic techniques for air-operated control valves based on time series analysis

    International Nuclear Information System (INIS)

    Ito, Kenji; Matsuoka, Yoshinori; Minamikawa, Shigeru; Komatsu, Yasuki; Satoh, Takeshi.

    1996-01-01

    The objective of this research is to study the feasibility of applying on-line diagnostic techniques based on time series analysis to air-operated control valves - numerous valves of the type which are used in PWR plants. Generally the techniques can detect anomalies by failures in the initial stages for which detection is difficult by conventional surveillance of process parameters measured directly. However, the effectiveness of these techniques depends on the system being diagnosed. The difficulties in applying diagnostic techniques to air-operated control valves seem to come from the reduced sensitivity of their response as compared with hydraulic control systems, as well as the need to identify anomalies in low level signals that fluctuate only slightly but continuously. In this research, simulation tests were performed by setting various kinds of failure modes for a test valve with the same specifications as of a valve actually used in the plants. Actual control signals recorded from an operating plant were then used as input signals for simulation. The results of the tests confirmed the feasibility of applying on-line diagnostic techniques based on time series analysis to air-operated control valves. (author)

  19. Space Vehicle Valve System

    Science.gov (United States)

    Kelley, Anthony R. (Inventor); Lindner, Jeffrey L. (Inventor)

    2014-01-01

    The present invention is a space vehicle valve system which controls the internal pressure of a space vehicle and the flow rate of purged gases at a given internal pressure and aperture site. A plurality of quasi-unique variable dimension peaked valve structures cover the purge apertures on a space vehicle. Interchangeable sheet guards configured to cover valve apertures on the peaked valve structure contain a pressure-activated surface on the inner surface. Sheet guards move outwardly from the peaked valve structure when in structural contact with a purge gas stream flowing through the apertures on the space vehicle. Changing the properties of the sheet guards changes the response of the sheet guards at a given internal pressure, providing control of the flow rate at a given aperture site.

  20. Microfluidic Arrayed Lab-On-A-Chip for Electrochemical Capacitive Detection of DNA Hybridization Events.

    Science.gov (United States)

    Ben-Yoav, Hadar; Dykstra, Peter H; Bentley, William E; Ghodssi, Reza

    2017-01-01

    A microfluidic electrochemical lab-on-a-chip (LOC) device for DNA hybridization detection has been developed. The device comprises a 3 × 3 array of microelectrodes integrated with a dual layer microfluidic valved manipulation system that provides controlled and automated capabilities for high throughput analysis of microliter volume samples. The surface of the microelectrodes is functionalized with single-stranded DNA (ssDNA) probes which enable specific detection of complementary ssDNA targets. These targets are detected by a capacitive technique which measures dielectric variation at the microelectrode-electrolyte interface due to DNA hybridization events. A quantitative analysis of the hybridization events is carried out based on a sensing modeling that includes detailed analysis of energy storage and dissipation components. By calculating these components during hybridization events the device is able to demonstrate specific and dose response sensing characteristics. The developed microfluidic LOC for DNA hybridization detection offers a technology for real-time and label-free assessment of genetic markers outside of laboratory settings, such as at the point-of-care or in-field environmental monitoring.

  1. First report on a human percutaneous transluminal implantation of a self-expanding valve prosthesis for interventional treatment of aortic valve stenosis.

    Science.gov (United States)

    Grube, Eberhard; Laborde, Jean C; Zickmann, Bernfried; Gerckens, Ulrich; Felderhoff, Thomas; Sauren, Barthel; Bootsveld, Andreas; Buellesfeld, Lutz; Iversen, Stein

    2005-12-01

    Percutaneous aortic valve replacement is a new technology for the treatment of patients with significant aortic valve stenosis. We present the first report on a human implantation of a self-expanding aortic valve prosthesis, which is composed of three bovine pericardial leaflets inserted within a self-expanding nitinol stent. The 73-year-old woman presented with severe symptomatic aortic valve stenosis (mean transvalvular gradient of 45 mmHg; valve area of 0.7 cm2). Surgical valve replacement had been declined for the patient because of comorbidities, including previous bypass surgery. A retrograde approach via the common iliac artery was used for valve deployment. The contralateral femoral vessels were used for a temporary extracorporal circulation, unloading the left ventricle during the actual stent expansion. Clinical, hemodynamic, and echocardiographic outcomes were assessed serially during the procedure. Clinical and echocardiographic follow-up at day 1, 2, and 14 post procedure was performed to evaluate the short-term outcome. The prosthesis was successfully deployed within the native aortic valve, with accurate and stable positioning and with no impairment of the coronary artery or vein graft blood flow. 2D and doppler echo immediately after device deployment showed a significant reduction in transaortic mean pressure gradient (from 45 to 8 mmHg) without evidence of aortic or mitral valve insufficiency. The clinical status has then significantly improved. These results remained unchanged up to the day 14 follow-up. This case report demonstrates a successful percutaneous implantation of a self-expanding aortic valve prosthesis with remarkable functional and clinical improvements in the acute and short-term outcome. Copyright (c) 2005 Wiley-Liss, Inc.

  2. Transcatheter aortic valve implantation in failed bioprosthetic surgical valves

    DEFF Research Database (Denmark)

    Dvir, Danny; Webb, John G; Bleiziffer, Sabine

    2014-01-01

    for patients with structural valve deterioration; however, a comprehensive evaluation of survival after the procedure has not yet been performed. OBJECTIVE: To determine the survival of patients after transcatheter valve-in-valve implantation inside failed surgical bioprosthetic valves. DESIGN, SETTING......, stroke, and New York Heart Association functional class. RESULTS: Modes of bioprosthesis failure were stenosis (n = 181 [39.4%]), regurgitation (n = 139 [30.3%]), and combined (n = 139 [30.3%]). The stenosis group had a higher percentage of small valves (37% vs 20.9% and 26.6% in the regurgitation...... and combined groups, respectively; P = .005). Within 1 month following valve-in-valve implantation, 35 (7.6%) patients died, 8 (1.7%) had major stroke, and 313 (92.6%) of surviving patients had good functional status (New York Heart Association class I/II). The overall 1-year Kaplan-Meier survival rate was 83...

  3. On Converting Secret Sharing Scheme to Visual Secret Sharing Scheme

    Directory of Open Access Journals (Sweden)

    Wang Daoshun

    2010-01-01

    Full Text Available Abstract Traditional Secret Sharing (SS schemes reconstruct secret exactly the same as the original one but involve complex computation. Visual Secret Sharing (VSS schemes decode the secret without computation, but each share is m times as big as the original and the quality of the reconstructed secret image is reduced. Probabilistic visual secret sharing (Prob.VSS schemes for a binary image use only one subpixel to share the secret image; however the probability of white pixels in a white area is higher than that in a black area in the reconstructed secret image. SS schemes, VSS schemes, and Prob. VSS schemes have various construction methods and advantages. This paper first presents an approach to convert (transform a -SS scheme to a -VSS scheme for greyscale images. The generation of the shadow images (shares is based on Boolean XOR operation. The secret image can be reconstructed directly by performing Boolean OR operation, as in most conventional VSS schemes. Its pixel expansion is significantly smaller than that of VSS schemes. The quality of the reconstructed images, measured by average contrast, is the same as VSS schemes. Then a novel matrix-concatenation approach is used to extend the greyscale -SS scheme to a more general case of greyscale -VSS scheme.

  4. Butterfly valves for seawater

    International Nuclear Information System (INIS)

    Yamanaka, Katsuto

    1991-01-01

    Recently in thermal and nuclear power stations and chemical plants which have become large capacity, large quantity of cooling water is required, and mostly seawater is utilized. In these cooling water systems, considering thermal efficiency and economy, the pipings become complex, and various control functions are demanded. For the purpose, the installation of shut-off valves and control valves for pipings is necessary. The various types of valves have been employed, and in particular, butterfly valves have many merits in their function, size, structure, operation, maintenance, usable period, price and so on. The corrosion behavior of seawater is complicated due to the pollution of seawater, therefore, the environment of the valves used for seawater became severe. The structure and the features of the butterfly valves for seawater, the change of the structure of the butterfly valves for seawater and the checkup of the butterfly valves for seawater are reported. The corrosion of metallic materials is complicatedly different due to the locating condition of plants, the state of pipings and the condition of use. The corrosion countermeasures for butterfly valves must be examined from the synthetic viewpoints. (K.I.)

  5. Electrical spin injection and detection in silicon nanowires with axial doping gradient.

    Science.gov (United States)

    Kountouriotis, Konstantinos; Barreda, Jorge L; Keiper, Timothy David; Zhang, Mei; Xiong, Peng

    2018-06-13

    The interest in spin transport in nanoscopic semiconductor channels is driven by both the inevitable miniaturization of spintronics devices toward nanoscale and the rich spin-dependent physics the quantum confinement engenders. For such studies, the all-important issue of the ferromagnet/semiconductor (FM/SC) interface becomes even more critical at nanoscale. Here we elucidate the effects of the FM/SC interface on electrical spin injection and detection at nanoscale dimensions, utilizing a unique type of Si nanowires (NWs) with an inherent axial doping gradient. Two-terminal and nonlocal four-terminal lateral spin-valve measurements were performed using different combinations from a series of FM contacts positioned along the same NW. The data are analyzed with a general model of spin accumulation in a normal channel under electrical spin injection from a FM, which reveals a distinct correlation of decreasing spin-valve signal with increasing injector junction resistance. The observation is attributed to the diminishing contribution of the d-electrons in the FM to the injected current spin polarization with increasing Schottky barrier width. The results demonstrate that there is a window of interface parameters for optimal spin injection efficiency and current spin polarization, which provides important design guidelines for nano-spintronic devices with quasi-1D semiconductor channels.

  6. Multidetector computed tomography sizing of bioprosthetic valves: guidelines for measurement and implications for valve-in-valve therapies

    International Nuclear Information System (INIS)

    Rajani, R.; Attia, R.; Condemi, F.; Webb, J.; Woodburn, P.; Hodson, D.; Nair, A.; Preston, R.; Razavi, R.; Bapat, V.N.

    2016-01-01

    Aim: To describe a technique for bioprosthetic multidetector computed tomography (MDCT) sizing and to compare MDCT-derived values against manufacturer-provided sizing. Materials and methods: Fourteen bioprosthetic stented valves commonly used in the aortic valve position were evaluated using a Philips 256 MDCT system. All valves were scanned using a dedicated cardiac CT protocol with a four-channel electrocardiography (ECG) simulator. Measurements were made of major and minor axes and the area and perimeter of the internal stent using varying reconstruction kernels and window settings. Measurements derived from MDCT (MDCT ID) were compared against the stent internal diameter (Stent ID) as provided by the valve manufacturer and the True ID (Stent ID + insertion of leaflets). All data were collected and analysed using SPSS for Mac (version 21). Results: The mean difference between the MDCT ID and Stent ID was 0.6±1.9 mm (r=0.649, p=0.012) and between MDCT ID and True ID 2.1±2 mm (r=0.71, p=0.005). There was no difference in the major (p=0.90), minor (p=0.87), area (p=0.92), or perimeter (p=0.92) measurements when sharp, standard, and detailed stent kernels were used. Similarly, the measurements remained consistent across differing windowing levels. Conclusion: Bioprosthetic stented valves may be reliably sized using MDCT in patients requiring valve-in-valve (VIV) interventions where the valve type and size are unknown. In these cases, clinicians should be aware that MDCT has a tendency to overestimate the True ID size. - Highlights: • Cardiac CT is likely to be ideally suited for bioprosthetic aortic valve sizing for valve in valve procedures. • We compared MDCT sizing for 14 varying bioprosthetic aortic valves across varying window settings and reconstruction kernels. • We provide “normal” MDCT sizing for varying valves and show their relationship to surgical sizing. • Bioprosthetic valves may be reliably sized by MDCT but require adjustment owing to

  7. 2D temperature field measurement in a direct-injection engine using LIF technology

    Science.gov (United States)

    Liu, Yongfeng; Tian, Hongsen; Yang, Jianwei; Sun, Jianmin; Zhu, Aihua

    2011-12-01

    A new multi-spectral detection strategy for temperature laser- induced- fluorescence (LIF) 2-D imaging measurements is reported for high pressure flames in high-speed diesel engine. Schematic of the experimental set-up is outlined and the experimental data on the diesel engine is summarized. Experiment injection system is a third generation Bosch high-pressure common rail featuring a maximum pressure of 160MPa. The injector is equipped with a six-hole nozzle, where each hole has a diameter of 0.124 mm. and slightly offset to the center of the cylinder axis to allow a better cooling of the narrow bridge between the exhaust valves. The measurement system includes a blower, which supplied the intake flow rate, and a prototype single-valve direct injection diesel engine head modified to lay down the swirled-type injector. 14-bit digital CCD cameras are employed to achieve a greater level of accuracy in comparison to the results of previous measurements. The temperature field spatial distributions in the cylinder for different crank angle degrees are carried out in a single direct-injection diesel engine.

  8. Nuclear valves latest development

    International Nuclear Information System (INIS)

    Isaac, F.; Monier, M.

    1993-01-01

    In the frame of Nuclear Power Plant upgrade (Emergency Power Supply and Emergency Core Cooling), Westinghouse had to face a new valve design philosophy specially for motor operated valves. The valves have to been designed to resist any operating conditions, postulated accident or loss of control. The requirements for motor operated valves are listed and the selected model and related upgrading explained. As part of plant upgrade and valves replacement, Westinghouse has sponsored alternative hardfacing research programme. Two types of materials have been investigated: nickel base alloys and iron base alloys. Programme requirements and test results are given. A new globe valve model (On-Off or regulating) is described developed by Alsthom Velan permitting the seat replacement in less than 10 min. (Z.S.) 2 figs

  9. The Impact of Vacuum Gate Valves on the LHC Beam

    CERN Document Server

    Appleby, R B; Cerutti, F; Ferrari, A; Mauri, M; Vlachoudis, V

    2009-01-01

    The LHC vacuum sector valves are located in the straight sections of the LHC ring, and designed to sectorize the LHC vacuum. The valves are interlocked and should trigger a beam dump request if they close on a circulating beam. This report studies the impact on the machine if this request is not made and the valve scrapes the LHC beam halo. Cascade calculations are made using a model of IR7, with several different valve locations, to calculate the downstream energy deposition in superconducting magnet coils and the corresponding signal in beam loss monitors at the quench level. The calculations are done at 7, 5, and 3.5 TeV. It is found that when a downstream magnet reaches the quench level, the neighbouring BLMs see a signal well above the detection threshold. Furthermore, the BLM signal is consistent with the BLM applied threshold settings and a signal is seen in the time domain before the quench level is reached. Therefore the report concludes that the BLMs can see the closing valve and trigger a beam dump...

  10. Effects of valve characteristics and pipe diameter on water hammer phenomena

    International Nuclear Information System (INIS)

    Hur, J.; Kim, T. H.; Mun, B. H.; Choi, H. Y.; Lee, K. W.; Noh, T. S.

    2001-01-01

    The water hammer phenomena mean that the dynamic loads are induced on the pipe, the pipe support and the equipments in the system due to the sudden change of the flow velocity inside the pipe. The sudden changes are mainly caused by the valve sudden on/off and pump sudden start/trip. To develop a selection criterion of the parts to be analyzed for the water hammer, the effects of the valve characteristics and pipe diameter on the water hammer are analyzed. The analyses using Method of Characteristics (MOC) show that the effects of the valve pressure difference and the valve opening time are very significant, but the effects of the pipe diameter are not dominant

  11. The management of vesicoureteral reflux in the setting of posterior urethral valve with emphasis on bladder function and renal outcome: a single center cohort study.

    Science.gov (United States)

    Tourchi, Ali; Kajbafzadeh, Abdol-Mohammad; Aryan, Zahra; Ebadi, Maryam

    2014-01-01

    To represent our experience in the management of posterior urethral valves and concomitant vesicoureteral reflux (VUR). A total of 326 children with posterior urethral valve who had underwent valve ablation/bladder neck incision were studied, and those who had persistent VUR and were categorized under 3 main groups were followed up. Group 1 (n = 71) received prophylactic antibiotic, group 2 (n = 50) underwent Deflux injection (2a) (n = 28): Deflux injection alone, group 2b (n = 22) Deflux with concomitant autologous blood injection (HABIT), and group 3 (n = 19) underwent ureteroneocystostomy before referral and was followed up conservatively. VUR resolution, incidence of urinary tract infections (UTI), and bladder function were assessed. Mean duration of follow-up was 3.8 years; VUR resolution occurred in 66.1%, 86.0%, and 94.0% of groups 1-3, respectively (P = .013). Resolution rate in group 2b was significantly higher than group 2a (90.9% vs 78.5%). Patients in group 2 experienced a longer UTI-free period compared with others (P <.05). Urodynamic studies demonstrated significant decrease in maximum voiding detrusor pressure and detrusor overactivity in all groups (P <.001). Children in group 3 ended up with lower compliance compared with others (P <.001). After toilet training, only 2.8%, 21.4%, 13.6%, and 27% children were diagnosed with lower urinary tract dysfunction in groups 1-3, respectively (P = .027). Myogenic failure developed only in 3 boys in group 3. Ablation/bladder neck incision leads to significant improvement in VUR status in part because of improvement in bladder function. After successful valve removal, conservative therapy can be regarded as the mainstay of reflux treatment, whereas HABIT is recommended for high grade VUR associated with febrile UTI or deterioration in renal function. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Research and application of zinc injection in PWRs

    International Nuclear Information System (INIS)

    Jiang Lei

    2012-01-01

    In the middle 1990s, some PWRs in USA and Germany started to inject Zinc into the reactor coolant system for reducing both radiation fields and primary water stress corrosion cracking (PWSCC). Based on data from the labs and experience in the demonstration pants, Zinc injection obviously reduced radiation fields, and effectively mitigated PWSCC. Plants in USA injected high concentration zinc that is 15 ppb to 40 ppb to restrained PWSCC. Whereas, plants in Germany injected low concentration zinc that is 5 ppb to 10 ppb to reduce radiation fields. There are more than ten years at aspect of zinc rejection in overseas PWR, but domestic plants don't add zinc. The building PWR in Zhejiang Sanmen is the first AP1000 unit in the world, according to requirement of designers, it will start to inject zinc in the initial fuel cycle. (author)

  13. Mechanisms of mechanical heart valve cavitation: investigation using a tilting disk valve model.

    Science.gov (United States)

    He, Z; Xi, B; Zhu, K; Hwang, N H

    2001-09-01

    The induction of mechanical heart valve (MHV) cavitation was investigated using a 27 mm Medtronic Hall (MH27) tilting disk valve. The MH27 valve was mounted in the mitral position of a simulating pulse flow system, and stroboscopic lighting used to visualize cavitation bubbles on the occluder inflow surface at the instant of valve closure. MHV cavitation was monitored using a digital camera with 0.04 mm/pixel resolution sufficient to render the tiny bubbles clearly visible on the computer monitor screen. Cavitation on MH27 valve was classified as five types according to the time, site and shape of the cavitation bubbles. Valve cavitation occurred at the instant of occluder impact with the valve seat at closing. The impact motion was subdivided into three temporal phases: (i) squeezing flow; (ii) elastic collision; and (iii) leaflet rebound. MHV cavitation caused by vortices was found to be initiated by the squeezing jet and/or by the transvalvular leakage jets. By using a tension wave which swept across the occluder surface immediately upon elastic impact, nuclei in the vortex core were expanded to form cavitation bubbles. Analysis of the shape and location of the cavitation bubbles permitted a better understanding of MHV cavitation mechanisms, based on the fluid dynamics of jet vortex and tension wave propagations.

  14. Real Time Implementation of PID and Fuzzy PD Controllers for DC-Servo Motor Based on Lab View Environment

    Directory of Open Access Journals (Sweden)

    Safaa M. Z. Al-Ubaidi

    2012-06-01

    Full Text Available This paper presents an implementation of conventional PID (CPID controller using Ziegler-Nichols rules and fuzzy PD (FPD controller for position servo motor control based on Lab View (Laboratory Virtual Instrument Engineering Workbench Environment through Data Acquisition (DAQ Device PCI- 6521 of National Instrument's and Data Acquisition Accessory Board Model (CB-68LP.CPID controller is perhaps the most well-known and most widely used in industrial applications. However, it has been known that CPID controller generally don’t work well for non-linear systems, higher order and time-delayed linear system and particularly complex and vague system. To overcome these difficulties, this paper proposes to use the FPD controller for a servo motor system instead of CPID. The parameters of servo motor used are completely unknown. The FPD structure has two-input single-output and fairly similar characteristic to its conventional counterpart and provides good performance. Simple rules base are used for FPD (nine rules only. Performance evaluation was carried out via a comparison study for the proposed control scheme and other existing control scheme, such as CPID controller. The critical point for this experiment on position system is a steady state error and settling time.  The performance showing that the FPD has less settling time and zero steady state error over its CPID. The algorithms of FPD and CPID controllers are implemented using PID, Fuzzy Logic and simulation toolkits of the Lab View environment.

  15. Enhancing the Performance of Distributed Feedback Dye Lasers and Plasmonic V-grooves for Lab-on-a-chip Systems

    DEFF Research Database (Denmark)

    Smith, Cameron

    The ability to perform laboratory operations in compact systems is not only advantageous for the development of diagnostics tools and their production, but also provides unique opportunities to explore the natural world on the micro- and nanoscale. To this end, we focus on two optical schemes: 1...... to the advantages they bring to lab-on-a-chip systems.......) polymer-based distributed feedback (DFB) dye lasers, and 2) plasmonic V-grooves. Regarding the first, DFB dye lasers are well suited to serve as compact, minimal analyte volume and highly sensitive refractive index sensors, where changes occurring in an analyte result in readily measurable shifts...

  16. Percutaneous aortic valve implantation of the Medtronic CoreValve self-expanding valve prosthesis via left subclavian artery access: the first case report in Greece.

    Science.gov (United States)

    Karavolias, George K; Georgiadou, Panagiota; Houri, Mazen; Sbarouni, Eftihia; Thomopoulou, Sofia; Tsiapras, Dimitrios; Smirli, Anna; Balanika, Marina; Voudris, Vassilis

    2010-01-01

    This case report describes a percutaneous aortic valve implantation with the Medtronic CoreValve selfexpanding valve prosthesis in a patient with severe aortic stenosis. The approach was made via the left subclavian artery because of the lack of femoral vessel access. The patient was a 78-year-old female with breathlessness on minimal effort, a recent hospitalisation due to pulmonary oedema, and frequent episodes of pre-syncope; surgical valve replacement had been ruled out. The prosthetic valve was successfully implanted with mild paravalvular aortic regurgitation. At 30 days, the patient's clinical condition had significantly improved, with excellent functioning of the aortic valve prosthesis.

  17. Tricuspid valve endocarditis following central venous cannulation: The increasing problem of catheter related infection

    Directory of Open Access Journals (Sweden)

    Suresh Babu Kale

    2013-01-01

    Full Text Available A central venous catheter (CVC is inserted for measurement of haemodynamic variables, delivery of nutritional supplements and drugs and access for haemodialysis and haemofiltration. Catheterization and maintenance are common practices and there is more to the technique than routine placement as evident when a procedure-related complication occurs. More than 15% of the patients who receive CVC placement have some complications and infectious endocarditis involving the tricuspid valve is a rare and serious complication with high morbidity and mortality. Overenthusiastic and deep insertion of the guide wire and forceful injection through the CVC may lead to injury of the tricuspid valve and predispose to bacterial deposition and endocarditis. We report a case of tricuspid valve endocarditis, probably secondary to injury of the anterior tricuspid leaflet by the guide wire or the CVC that required open heart surgery with vegetectomy and repair of the tricuspid valve.

  18. Comparative study of Butterfly valves

    International Nuclear Information System (INIS)

    Galmes Belmonte, F.B.

    1998-01-01

    This work tries to justify the hydrodynamic butterfly valves performance, using the EPRI tests, results carried out in laboratory and in situ. This justification will be possible if: - The valves to study are similar - Their performance is calculated using EPRI's methodology Looking for this objective, the elements of the present work are: 1. Brief EPRI butterfly valve description it wild provide the factors which are necessary to define the butterfly valves similarity. 2. EPRI tests description and range of validation against test data definition. 3. Description of the spanish butterfly analyzed valves, and comparison with the EPRI performance results, to prove that this valves are similar to the EPRI test valves. In this way, it will not be necessary to carry out particular dynamic tests on the spanish valves to describe their hydrodynamic performance. (Author)

  19. Valve Disease

    Science.gov (United States)

    ... blood. There are 4 valves in the heart: tricuspid, pulmonary, mitral, and aortic. Two types of problems can disrupt blood flow through the valves: regurgitation or stenosis. Regurgitation is also called insufficiency or incompetence. Regurgitation happens when a valve doesn’ ...

  20. Redo mitral valve surgery

    Directory of Open Access Journals (Sweden)

    Redoy Ranjan

    2018-03-01

    Full Text Available This study is based on the findings of a single surgeon’s practice of mitral valve replacement of 167 patients from April 2005 to June 2017 who developed symptomatic mitral restenosis after closed or open mitral commisurotomy. Both clinical and color doppler echocardiographic data of peri-operative and six months follow-up period were evaluated and compared to assess the early outcome of the redo mitral valve surgery. With male-female ratio of 1: 2.2 and after a duration of 6 to 22 years symptom free interval between the redo procedures, the selected patients with mitral valve restenosis undergone valve replacement with either mechanical valve in 62% cases and also tissue valve in 38% cases. Particular emphasis was given to separate the adhered pericardium from the heart completely to ameliorate base to apex and global contraction of the heart. Besides favorable post-operative clinical outcome, the echocardiographic findings were also encouraging as there was statistically significant increase in the mitral valve area and ejection fraction with significant decrease in the left atrial diameter, pressure gradient across the mitral valve and pulmonary artery systolic pressure. Therefore, in case of inevitable mitral restenosis after closed or open commisurotomy, mitral valve replacement is a promising treatment modality.

  1. Double-disc gate valve

    International Nuclear Information System (INIS)

    Wheatley, S.J.

    1979-01-01

    The invention relates to an improvement in a conventional double-disc gate valve having a vertically movable gate assembly including a wedge, spreaders slidably engaged therewith, a valve disc carried by the spreaders. When the gate assembly is lowered to a selected point in the valve casing, the valve discs are moved transversely outward to close inlet and outlet ports in the casing. The valve includes hold-down means for guiding the disc-and-spreader assemblies as they are moved transversely outward and inward. If such valves are operated at relatively high differential pressures, they sometimes jam during opening. Such jamming has been a problem for many years in gate valves used in gaseous diffusion plants for the separation of uranium isotopes. The invention is based on the finding that the above-mentioned jamming results when the outlet disc tilts about its horizontal axis in a certain way during opening of the valve. In accordance with the invention, tilting of the outlet disc is maintained at a tolerable value by providing the disc with a rigid downwardly extending member and by providing the casing with a stop for limiting inward arcuate movement of the member to a preselected value during opening of the valve

  2. A study on modelling of a butterfly-type control valve by a pneumatic actuator

    International Nuclear Information System (INIS)

    Hwang, I Cheol; Park, Cheol Jae

    2009-01-01

    This paper studies on the modelling of a butterfly-type control valve actuating by an on-off pneumatic solenoid valve. The mathematical model is composed of nonlinear differential equations three parts: (i) a solenoid valve, (ii) a pneumatic cylinder, (iii) a rotary-type butterfly valve. The flow characteristics of the butterfly control valve is analysed by a computer simulator, then its simple transfer function is identified from the step responses.

  3. Radiation asymmetries during disruptions on DIII-D caused by massive gas injection

    International Nuclear Information System (INIS)

    Commaux, N.; Baylor, L. R.; Jernigan, T. C.; Foust, C. R.; Combs, S.; Meitner, S. J.; Hollmann, E. M.; Izzo, V. A.; Moyer, R. A.; Humphreys, D. A.; Wesley, J. C.; Eidietis, N. W.; Parks, P. B.; Lasnier, C. J.

    2014-01-01

    One of the major challenges that the ITER tokamak will have to face during its operations are disruptions. During the last few years, it has been proven that the global consequences of a disruption can be mitigated by the injection of large quantities of impurities. But one aspect that has been difficult to study was the possibility of local effects inside the torus during such injection that could damage a portion of the device despite the global heat losses and generated currents remaining below design parameter. 3D MHD simulations show that there is a potential for large toroidal asymmetries of the radiated power during impurity injection due to the interaction between the particle injection plume and a large n = 1 mode. Another aspect of 3D effects is the potential occurrence of Vertical Displacement Events (VDE), which could induce large poloidal heat load asymmetries. This potential deleterious effect of 3D phenomena has been studied on the DIII-D tokamak, thanks to the implementation of a multi-location massive gas injection (MGI) system as well as new diagnostic capabilities. This study showed the existence of a correlation between the location of the n = 1 mode and the local heat load on the plasma facing components but shows also that this effect is much smaller than anticipated (peaking factor of ∼1.1 vs 3-4 according to the simulations). There seems to be no observable heat load on the first wall of DIII-D at the location of the impurity injection port as well as no significant radiation asymmetries whether one or 2 valves are fired. This study enabled the first attempt of mitigation of a VDE using impurity injection at different poloidal locations. The results showed a more favorable heat deposition when the VDE is mitigated early (right at the onset) by impurity injection. No significant improvement of the heat load mitigation efficiency has been observed for late particle injection whether the injection is done “in the way” of the VDE

  4. The Double-Orifice Valve Technique to Treat Tricuspid Valve Incompetence.

    Science.gov (United States)

    Hetzer, Roland; Javier, Mariano; Delmo Walter, Eva Maria

    2016-01-01

    A straightforward tricuspid valve (TV) repair technique was used to treat either moderate or severe functional (normal valve with dilated annulus) or for primary/organic (Ebstein's anomaly, leaflet retraction/tethering and chordal malposition/tethering, with annular dilatation) TV incompetence, and its long-term outcome assessed. A double-orifice valve technique was employed in 91 patients (mean age 52.6 ± 23.2 years; median age 56 years; range: 0.6-82 years) with severe tricuspid regurgitation. Among the patients, three had post-transplant iatrogenic chordal rupture, five had infective endocarditis, 11 had mitral valve insufficiency, 23 had Ebstein's anomaly, and 47 had isolated severe TV incompetence. The basic principle was to reduce the distance between the coapting leaflets, wherein the most mobile leaflet could coapt to the opposite leaflet, by creating two orifices, ensuring valve competence. The TV repair was performed through a median sternotomy or right anterior thoracotomy in the fifth intercostal space under cardiopulmonary bypass. The degree and extent of creating a double-valve orifice was determined by considering the minimal body surface area (BSA)-related acceptable TV diameter. Repair was accomplished by passing pledgeted mattress sutures from the middle of the true anterior annulus to a spot on the opposite septal annulus, located approximately two-thirds of the length of the septal annulus to avoid injury to the bundle of His. The annular apposition divides the TV into a larger anterior and a smaller posterior orifices, enabling valve closure, on both sides. In adults, the diameter of the anterior valve orifice should be 23-25 mm, and the posterior orifice 15-18 mm; thus, the total valve orifice area is 5-6 cm2. In children, the total valve orifice should be a standard deviation of 1.7 mm for a BSA of 1.0m2. During a mean follow up of 8.7 ± 1.34 years (median 10 years; range: 1.5-25.9 years) there have been no reoperations for TV insufficiency

  5. Spray-controlled combustionprocess with piezo injection; Strahlgefuehrtes Brennverfahren mit Piezo-Benzineinspritzung

    Energy Technology Data Exchange (ETDEWEB)

    Schaupp, U.; Altenschmidt, F.; Bertsch, D.; Laudenbach, N. [DaimlerChrysler AG, Stuttgart (Germany)

    2007-07-01

    The novel 2nd generation injection system of Mercedes-Benz have resulted in reduced fuel consumption and lower emissions while improving the engine performance. The piezo technology is a great technical advance. The characteristic field range in which stratified charge operation is possible has been extended since the first generation of injection systems. Lower fuel consumption is achieved not only in normal traffic but also when cruising on motorways at constant speed. The advantages are noticeable not only in the test cycle but also in real operation. The piezo injection valve was not available on the market and had to be constructed, including the 200 bar high-pressure fuel injection system. The stability of the injection system and the good mixing characteristics resulted in an optimally combustible mixture at the spark plug. Apart from stability in stratified charge operation, the possibility of multiple injection also has further advantages and potentials in terms of consumption and emissions. (orig.)

  6. Experimental study on the effect of an artificial cardiac valve on the left ventricular flow

    Science.gov (United States)

    Wang, JiangSheng; Gao, Qi; Wei, RunJie; Wang, JinJun

    2017-09-01

    The use of artificial valves to replace diseased human heart valves is currently the main solution to address the malfunctioning of these valves. However, the effect of artificial valves on the ventricular flow still needs to be understood in flow physics. The left ventricular flow downstream of a St. Jude Medical (SJM) bileaflet mechanical heart valve (BMHV), which is a widely implanted mechanical bileaflet valve, is investigated with time-resolved particle image velocimetry in the current work. A tilting-disk valve is installed on the aortic orifice to guarantee unidirectional flow. Several post-processing tools are applied to provide combined analyses of the physics involved in the ventricular flow. The triple jet pattern that is closely related to the characteristics of the bileaflet valve is discussed in detail from both Eulerian and Lagrangian views. The effects of large-scale vortices on the transportation of blood are revealed by the combined analysis of the tracking of Lagrangian coherent structures, the Eulerian monitoring of the shear stresses, and virtual dye visualization. It is found that the utilization of the SJM BMHV complicates the ventricular flow and could reduce the efficiency of blood transportation. In addition, the kinematics of the bileaflets is presented to explore the effects of flow structures on their motion. These combined analyses could elucidate the properties of SJM BMHV. Furthermore, they could provide new insights into the understanding of other complex blood flows.

  7. An experimental study on the effects of high-pressure and multiple injection strategies on DI diesel engine emissions

    KAUST Repository

    Yang, Seung Yeon

    2013-03-25

    An experimental study on effects of high-pressure injections in conjunction with split fuel injections were conducted on an AVL single cylinder DI diesel engine. Various injection schemes were studied through the use of an electronically controlled, common rail injection system capable of injection pressures up to 200 MPa and a maximum of six injections per combustion event. Up to 100 MPa of the fuel injection pressure, the higher injection pressures create faster combustion rates that result in the higher in-cylinder gas temperatures as compared to conventional low-pressure fuel injection systems. When applying high-pressure injections, particulate emission reductions of up to 50% were observed with no change in hydrocarbon emissions, reductions of CO emissions and only slightly higher NOx emissions. Over 100 MPa, on the other hand, the higher injection pressures still reduced up to almost zero-level of particulate emission, at the same time that the NO emission is reduced greatly. Under these high-pressure injection conditions, strong correlations between soot and CO emissions were observed, which compete for the oxidizing OH species. Multiple or split high-pressure injections also investigated as a means to decrease particulate emissions. As a result, a four-split injection strategy resulted in a 55% reduction in particulates and with little or no penalty on NOx emissions. The high pressure split injection strategy with EGR was more effective in reducing particulate and CO emissions simultaneously. Copyright © 2013 SAE International and Copyright © 2013 TSAE.

  8. Valve for closing a steam line

    International Nuclear Information System (INIS)

    Meyer, W.; Potrykus, G.

    1976-01-01

    Instead of several control elements, the quick-closing valve, especially in the main-steam line between steam generator and turbine of a power station has the valve cone itself as the only movable part, acting with its inner surface as a piston within a second cylinder space. The valve shaft is at the same time a piston rod with a stepped piston at the upper end. This piston is loaded in a cylinder at the upspace below the valve cover on one hand by a spring, on the other hand by its own medium. Two non-return valves, one of it in a bore of the valve cone, connect the first-mentioned cylinder space with the steam-loaded inlet resp. outlet side of the valve. For controlling the valve, a magnet valve is sufficient. By automatic control of the valve cone coupled with several pistons several control lines can be omitted. There are also no pressurized control lines outside the valve which could be damaged by exterior influences. (ERA) [de

  9. Integrating Multiple On-line Knowledge Bases for Disease-Lab Test Relation Extraction.

    Science.gov (United States)

    Zhang, Yaoyun; Soysal, Ergin; Moon, Sungrim; Wang, Jingqi; Tao, Cui; Xu, Hua

    2015-01-01

    A computable knowledge base containing relations between diseases and lab tests would be a great resource for many biomedical informatics applications. This paper describes our initial step towards establishing a comprehensive knowledge base of disease and lab tests relations utilizing three public on-line resources. LabTestsOnline, MedlinePlus and Wikipedia are integrated to create a freely available, computable disease-lab test knowledgebase. Disease and lab test concepts are identified using MetaMap and relations between diseases and lab tests are determined based on source-specific rules. Experimental results demonstrate a high precision for relation extraction, with Wikipedia achieving the highest precision of 87%. Combining the three sources reached a recall of 51.40%, when compared with a subset of disease-lab test relations extracted from a reference book. Moreover, we found additional disease-lab test relations from on-line resources, indicating they are complementary to existing reference books for building a comprehensive disease and lab test relation knowledge base.

  10. Fluid mechanics of heart valves.

    Science.gov (United States)

    Yoganathan, Ajit P; He, Zhaoming; Casey Jones, S

    2004-01-01

    Valvular heart disease is a life-threatening disease that afflicts millions of people worldwide and leads to approximately 250,000 valve repairs and/or replacements each year. Malfunction of a native valve impairs its efficient fluid mechanic/hemodynamic performance. Artificial heart valves have been used since 1960 to replace diseased native valves and have saved millions of lives. Unfortunately, despite four decades of use, these devices are less than ideal and lead to many complications. Many of these complications/problems are directly related to the fluid mechanics associated with the various mechanical and bioprosthetic valve designs. This review focuses on the state-of-the-art experimental and computational fluid mechanics of native and prosthetic heart valves in current clinical use. The fluid dynamic performance characteristics of caged-ball, tilting-disc, bileaflet mechanical valves and porcine and pericardial stented and nonstented bioprostheic valves are reviewed. Other issues related to heart valve performance, such as biomaterials, solid mechanics, tissue mechanics, and durability, are not addressed in this review.

  11. Design of shutdown system no.2 liquid poison injection system for 500 MWe PHWR

    International Nuclear Information System (INIS)

    Bhatnagar, S.; Balasubrahmanian, A.K.; Pillai, A.V.

    1997-01-01

    Defence in depth and two group system concepts form the basic design philosophy for the shutdown systems. There are two independent, diverse and fast acting shutdown systems provided for the 500 MWe PHWR. The design is based on fail-safe principle, sufficient component redundancy and on-line testing. Liquid poison injection system, as shutdown system 2, is newly developed for the 500 MWe PHWRs. The system operates by rapidly injecting gadolinium nitrate solution into bulk moderator using stored helium pressure thereby inserting negative reactivity. A high pressure helium supply tank which provides the energy for system actuation, is connected, through an array of fast acting valves in series-parallel arrangement, to the individual poison tanks storing gadolinium nitrate solution. The valves, belonging to three different channels of reactor Protection System 2, are the only active components in the system. The valves are fail safe and are periodically tested on-line without actually firing the system. The system comprising of in-core assemblies and the external process system has been engineered. Experimental work is being carried out by BARC for design validation and data generation. This paper describes the conceptual development, design basis, design parameters and detailed engineering of the system. (author)

  12. Proving test on the reliability for nuclear valves

    International Nuclear Information System (INIS)

    Kajiyama, Yasuo; Tashiro, Hisao; Uga, Takeo; Maeda, Shunichi.

    1986-01-01

    Since valves are the most common components, they could be the most frequent causes of troubles in nuclear power plants. This proving test, therefore, has an important meaning to examine and verify the reliability of various valves under simulating conditions of abnormal and transient operations of the nuclear power plant. The test was performed mainly for the various types and pressure ratings of valves which were used in the primary and secondary systems in BWR and PWR nuclear power plants and which had major operating or safety related functions in those nuclear power plants. The results of the proving test, confirmed for more than four years, showed relatively favourable performance of the tested valves. It is concluded that performances of valves including operability, seat sealing and structural integrity were proved under the thermal cycling, vibration and pipe reaction load conditions. Operating functions during and after accident such as loss of coolant accident were satisfactory. From these results, it was considered that the purpose of this proving test was satisfactorily fulfilled. Several data accumulated by the test would be useful to get better reliability if it was evaluated with the actually experienced data of valves in the nuclear power plants. (Nogami, K.)

  13. Björk-Shiley convexoconcave valves: susceptibility artifacts at brain MR imaging and mechanical valve fractures.

    Science.gov (United States)

    van Gorp, Maarten J; van der Graaf, Yolanda; de Mol, Bas A J M; Bakker, Chris J G; Witkamp, Theo D; Ramos, Lino M P; Mali, Willem P T M

    2004-03-01

    To assess the relationship between heart valve history and susceptibility artifacts at magnetic resonance (MR) imaging of the brain in patients with Björk-Shiley convexoconcave (BSCC) valves. MR images of the brain were obtained in 58 patients with prosthetic heart valves: 20 patients had BSCC valve replacements, and 38 had other types of heart valves. Two experienced neuroradiologists determined the presence or absence of susceptibility artifacts in a consensus reading. Artifacts were defined as characteristic black spots that were visible on T2*-weighted gradient-echo MR images. The statuses of the 20 explanted BSCC valves-specifically, whether they were intact or had an outlet strut fracture (OSF) or a single-leg fracture (SLF)-had been determined earlier. Number of artifacts seen at brain MR imaging was correlated with explanted valve status, and differences were analyzed with nonparametric statistical tests. Significantly more patients with BSCC valves (17 [85%] of 20 patients) than patients with other types of prosthetic valves (18 [47%] of 38 patients) had susceptibility artifacts at MR imaging (P =.005). BSCC valve OSFs were associated with a significantly higher number of artifacts than were intact BSCC valves (P =.01). No significant relationship between SLF and number of artifacts was observed. Susceptibility artifacts at brain MR imaging are not restricted to patients with BSCC valves. These artifacts can be seen on images obtained in patients with various other types of fractured and intact prosthetic heart valves. Copyright RSNA, 2004

  14. Valve assembly

    International Nuclear Information System (INIS)

    Sandling, M.

    1981-01-01

    An improved valve assembly, used for controlling the flow of radioactive slurry, is described. Radioactive contamination of the air during removal or replacement of the valve is prevented by sucking air from the atmosphere through a portion of the structure above the valve housing. (U.K.)

  15. Mitral Valve Stenosis

    Science.gov (United States)

    ... the left ventricle from flowing backward. A defective heart valve fails to either open or close fully. Risk factors Mitral valve stenosis is less common today than it once was because the most common cause, ... other heart valve problems, mitral valve stenosis can strain your ...

  16. Workshop on gate valve pressure locking and thermal binding

    International Nuclear Information System (INIS)

    Brown, E.J.

    1995-07-01

    The purpose of the Workshop on Gate Valve Pressure Locking and Thermal Binding was to discuss pressure locking and thermal binding issues that could lead to inoperable gate valves in both boiling water and pressurized water reactors. The goal was to foster exchange of information to develop the technical bases to understand the phenomena, identify the components that are susceptible, discuss actual events, discuss the safety significance, and illustrate known corrective actions that can prevent or limit the occurrence of pressure locking or thermal binding. The presentations were structured to cover U.S. Nuclear Regulatory Commission staff evaluation of operating experience and planned regulatory activity; industry discussions of specific events, including foreign experience, and efforts to determine causes and alleviate the affects; and valve vendor experience and recommended corrective action. The discussions indicated that identifying valves susceptible to pressure locking and thermal binding was a complex process involving knowledge of components, systems, and plant operations. The corrective action options are varied and straightforward

  17. Characterization of a bioprosthetic bicuspid venous valve hemodynamics: implications for mechanism of valve dynamics.

    Science.gov (United States)

    Tien, W-H; Chen, H Y; Berwick, Z C; Krieger, J; Chambers, S; Dabiri, D; Kassab, G S

    2014-10-01

    Chronic venous insufficiency (CVI) of the lower extremities is a common clinical problem. Although bioprosthetic valves have been proposed to treat severe reflux, clinical success has been limited due to thrombosis and neointima overgrowth of the leaflets that is, in part, related to the hemodynamics of the valve. A bioprosthetic valve that mimics native valve hemodynamics is essential. A computational model of the prosthetic valve based on realistic geometry and mechanical properties was developed to simulate the interaction of valve structure (fluid-structure interaction, FSI) with the surrounding flow. The simulation results were validated by experiments of a bioprosthetic bicuspid venous valve using particle image velocimetry (PIV) with high spatial and temporal resolution in a pulse duplicator (PD). Flow velocity fields surrounding the valve leaflets were calculated from PIV measurements and comparisons to the FSI simulation results were made. Both the spatial and temporal results of the simulations and experiments were in agreement. The FSI prediction of the transition point from equilibrium phase to valve-closing phase had a 7% delay compared to the PD measurements, while the PIV measurements matched the PD exactly. FSI predictions of reversed flow were within 10% compared to PD measurements. Stagnation or stasis regions were observed in both simulations and experiments. The pressure differential across the valve and associated forces on the leaflets from simulations showed the valve mechanism to be pressure driven. The flow velocity simulations were highly consistent with the experimental results. The FSI simulation and force analysis showed that the valve closure mechanism is pressure driven under the test conditions. FSI simulation and PIV measurements demonstrated that the flow behind the leaflet was mostly stagnant and a potential source for thrombosis. The validated FSI simulations should enable future valve design optimizations that are needed for

  18. Aortic valve replacement and the stentless Freedom SOLO valve

    NARCIS (Netherlands)

    Wollersheim, L.W.L.M.

    2016-01-01

    Aortic valve stenosis has become the most prevalent valvular heart disease in Europe and North America, and is generally caused by age-related calcification of the aortic valve. For most patients, severe symptomatic aortic stenosis needs effective mechanical relief in the form of valve replacement

  19. Door valve for fuel handling path

    International Nuclear Information System (INIS)

    Makishima, Katsuhiko.

    1969-01-01

    A door valve is provided which seals cover gas from a liquid metal cooled reactor without leakage therefrom. A threaded shaft is screwed into a heavy box press which is packed with lead. The shaft is adapted to be rotated by an electric motor or a manually operated wheel which is disposed outside of the door valve. From the box press a valve plate is suspended by four linkage bars, one for each corner. Each linkage bar is provided with two wheels which are respectively mounted at the connections with the box press and the valve plate. The wheels are carried on the horizontal grooves formed in a door valve casing. In operation the shaft rotates and travels to permit the box press and the valve plate to move into the door valve casing while the valve plate does not contact the casing. When the box press reaches the home position, the wheels drop into the recesses which are disposed at the ends of the grooves, the valve plate is carried on the valve opening, and the box press presses the valve plate to increase the tightness. The valve plate does not suffer wear as it does not over other parts. (Yamaguchi, T.)

  20. Near net shape, low cost ceramic valves for advanced engine applications

    Energy Technology Data Exchange (ETDEWEB)

    Pidria, M.; Merlone, E.; Parussa, F. [Fiat Research Centre, Orbassano (Italy); Handelsman, J.; Gorodnev, A. [Ceracom Materials Ltd., Yavneh (Israel)

    2003-07-01

    Future gasoline and diesel engines with electro-hydraulic or electro-mechanical valve control systems require the development of lighter valves to achieve the best results in terms of increased performances, lower fuel consumption and overall efficiency. Ceramic materials can adequately satisfy the required mechanical and thermal properties, nevertheless they still lack as far as manufacturing costs are concerned. Objective of the work was the development of a low-cost forming and sintering process, to produce near-net shape ceramic valves thus requiring very low finishing operations and significantly minimizing material waste. Between available technical ceramic materials, silicon nitride has been chosen to replace conventional steels and Ni-based alloys for the exhaust valves application. The work was then devoted to (i) the selection of the best starting materials composition, taking into account the requirements of a cost effective and high volume production, (ii) the development of an innovative pressure-injection molding process to produce near-net shape parts via a thermosetting feedstock and (iii) the optimization of a proper pressure-less sintering route to obtain cost-competitive, real scale components with adequate final density and mechanical properties. (orig.)

  1. LOFT pressurizer safety: relief valve reliability

    Energy Technology Data Exchange (ETDEWEB)

    Brown, E.S.

    1978-01-18

    The LOFT pressurizer self-actuating safety-relief valves are constructed to the present state-of-the-art and should have reliability equivalent to the valves in use on PWR plants in the U.S. There have been no NRC incident reports on valve failures to lift that would challenge the Technical Specification Safety Limit. Fourteen valves have been reported as lifting a few percentage points outside the +-1% Tech. Spec. surveillance tolerance (9 valves tested over and 5 valves tested under specification). There have been no incident reports on failures to reseat. The LOFT surveillance program for assuring reliability is equivalent to nuclear industry practice.

  2. LOFT pressurizer safety: relief valve reliability

    International Nuclear Information System (INIS)

    Brown, E.S.

    1978-01-01

    The LOFT pressurizer self-actuating safety-relief valves are constructed to the present state-of-the-art and should have reliability equivalent to the valves in use on PWR plants in the U.S. There have been no NRC incident reports on valve failures to lift that would challenge the Technical Specification Safety Limit. Fourteen valves have been reported as lifting a few percentage points outside the +-1% Tech. Spec. surveillance tolerance (9 valves tested over and 5 valves tested under specification). There have been no incident reports on failures to reseat. The LOFT surveillance program for assuring reliability is equivalent to nuclear industry practice

  3. Microfluidic sieve valves

    Science.gov (United States)

    Quake, Stephen R; Marcus, Joshua S; Hansen, Carl L

    2015-01-13

    Sieve valves for use in microfluidic device are provided. The valves are useful for impeding the flow of particles, such as chromatography beads or cells, in a microfluidic channel while allowing liquid solution to pass through the valve. The valves find particular use in making microfluidic chromatography modules.

  4. Simulant Development for Hanford Tank Farms Double Valve Isolation (DVI) Valves Testing

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.

    2012-12-21

    Leakage testing of a representative sample of the safety-significant isolation valves for Double Valve Isolation (DVI) in an environment that simulates the abrasive characteristics of the Hanford Tank Farms Waste Transfer System during waste feed delivery to the Waste Treatment and Immobilization Plant (WTP) is to be conducted. The testing will consist of periodic leak performed on the DVI valves after prescribed numbers of valve cycles (open and close) in a simulated environment representative of the abrasive properties of the waste and the Waste Transfer System. The valve operations include exposure to cycling conditions that include gravity drain and flush operation following slurry transfer. The simulant test will establish the performance characteristics and verify compliance with the Documented Safety Analysis. Proper simulant development is essential to ensure that the critical process streams characteristics are represented, National Research Council report “Advice on the Department of Energy's Cleanup Technology Roadmap: Gaps and Bridges”

  5. Surface microstructure replication in injection molding

    DEFF Research Database (Denmark)

    Theilade, Uffe Arlø; Hansen, Hans Nørgaard

    2006-01-01

    topography is transcribed onto the plastic part through complex mechanisms. This replication, however, is not perfect, and the replication quality depends on the plastic material properties, the topography itself, and the process conditions. This paper describes and discusses an investigation of injection...... molding of surface microstructures. The fundamental problem of surface microstructure replication has been studied. The research is based on specific microstructures as found in lab-on-a-chip products and on rough surfaces generated from EDM (electro discharge machining) mold cavities. Emphasis is put...... on the ability to replicate surface microstructures under normal injection-molding conditions, i.e., with commodity materials within typical process windows. It was found that within typical process windows the replication quality depends significantly on several process parameters, and especially the mold...

  6. An analysis on water hammer in liquid injection shutdown system of CANDU-9

    International Nuclear Information System (INIS)

    Kim, T. H.; Heo, J.; Han, S. K.; Choi, H. Y.; No, T. S.

    2000-01-01

    The water hammer analysis code, PTRAN, is used for computation of transient pressures and pressure differentials in the Liquid Injection Shutdown System(LISS) piping network of CANDU-9 to ensure that the design allowables for LEVEL C Service Limit are met for the water hammer loads resulting from the water hammer. The LISS piping network of CANDU-9 has incorporated design improvement in considering the water hammer, such as declining the horizontal part of helium header, and raising the elevation of the overall system piping configuration, etc. The maximum pressure in the LISS piping network is found to be 7.92 MPa(a) at the closed valve in the vent line, which is below the allowable working pressure and the valve design pressure under Level C service conditions. And it is also shown that the maximum pressure in CANDU-9 is much lower than that in CANDU-6

  7. Quantitative assessment of an aortic and pulmonary valve function according to valve fenestration

    International Nuclear Information System (INIS)

    Mirkhani, S.H.; Golestani, M.G.; Hosini, M.; Kazemian, A.

    1999-01-01

    There are some reasons for malfunction of aortic and pulmonary valve like fibrosis, calcification, and atheroma. Although, in some papers fenestration were known as a pathologic sign, but it is not generally accepted, while this matter is important in choosing suitable Homograft Heart Valve. In this paper fenestrations and its size, numbers and situation effect was studied. We collected 98 hearts, the donors died because of accident, we excluded valves with atheroma, calcification, fibrosis and unequal cusps, 91 aortic and 93 pulmonary valves were given further consideration. We classified valves according to situation, number and size of fenestration. Each valve was tested with 104 cm of non-nal saline column pressure which is equal to 76 mm Hg. Valve efficacy was detected by fluid flow assay. With study of 184 valves, 95 had no fenestration, 64 had less than 2 fenestration and 25 had more than 2 fenestration. Valve efficacy in condition of less than 2 fenestration was more than others (p <0.01). Malfunction effects of fenestration increased in larger valve and it will be decreased if their situation would be marginal (free margin of cusp). In the comparison of aortic and pulmonary valve we saw that malfunction effect of fenestration in pulmonary valve was more than aortic valve. Our experience in Immam Khomeini Homograft Valve Bank has shown that a great deal of valves is fenestrated. It seems that fenestration must be considered as a quality criterion in homograft valve preparation, especially in pulmonary and large aortic valves; but complementary studies is necessary

  8. Sequential transcatheter aortic valve implantation due to valve dislodgement - a Portico valve implanted over a CoreValve bioprosthesis.

    Science.gov (United States)

    Campante Teles, Rui; Costa, Cátia; Almeida, Manuel; Brito, João; Sondergaard, Lars; Neves, José P; Abecasis, João; M Gabriel, Henrique

    2017-03-01

    Transcatheter aortic valve implantation (TAVI) has become an important treatment in high surgical risk patients with severe aortic stenosis (AS), whose complications need to be managed promptly. The authors report the case of an 86-year-old woman presenting with severe symptomatic AS, rejected for surgery due to advanced age and comorbidities. The patient underwent a first TAVI, with implantation of a Medtronic CoreValve ® , which became dislodged and migrated to the ascending aorta. Due to the previous balloon valvuloplasty, the patient's AS became moderate, and her symptoms improved. After several months, she required another intervention, performed with a St. Jude Portico ® repositionable self-expanding transcatheter aortic valve. There was a good clinical response that was maintained at one-year follow-up. The use of a self-expanding transcatheter bioprosthesis with repositioning features is a solution in cases of valve dislocation to avoid suboptimal positioning of a second implant, especially when the two valves have to be positioned overlapping or partially overlapping each other. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. All-VCSEL Transmitters With Remote Optical Injection for WDM-OFDM-PON

    DEFF Research Database (Denmark)

    Deng, Lei; Zhao, Ying; Pang, Xiaodan

    2014-01-01

    We report on a novel scheme that uses vertical cavity surface emitting lasers (VCSELs) and remote optical injection technique in the hybrid wavelength division multiplexing orthogonal frequency division multiplexing (OFDM) passive optical network. In the proposed scheme, 1.55-$\\mu{\\rm m}$ VCSELs ...

  10. Effect of co-free valve on activity reduction in PWR

    International Nuclear Information System (INIS)

    Bahn, C.B.; Han, B.C.; Bum, J.S.; Hwang, I.S.; Lee, C.B.

    2002-01-01

    Radioactive nuclei, such as 68 Co and 60 Co, deposited on out-of-core surfaces in a pressurized water reactor (PWR) primary coolant system, are major sources of occupational radiation exposure to plant maintenance personnel and act as costly impediment to prompt and effective repairs. Valve hardfacing alloys exposed to primary coolant are considered as one of the main Co sources. To evaluate the Co-free valve, such as NOREM 02 and Deloro 50, the candidates for the alternative to Stellite 6, in a simulated PWR primary condition, SNU corrosion test loop (SCOTL) was constructed. For gate valves hard-faced with made of NOREM 02 and Deloro 50 hot cycling tests were conducted for up to 2,000 on-off cycles with cold leak tests at 1,000 cycle interval. It was observed that the leak rate of NOREM 02 (Fe-base) did not satisfy the nuclear grade valve leak criteria. After 1000 cycles test, while there was no leakage in case of Deloro 50 (Ni-base). Also, Deloro 50 showed no leakage after 2000 cycles. To estimate the activity reduction effect, we modified CRUDSIM-MIT which modeled the effects of coolant chemistry on the crud transport and activity buildup in the primary system of PWR. In the new code, crud evaluation and assessment (CREAT), 60 Co activity buildup prediction includes 1) Co-base valve replacement effect, 2) Co-base valve maintenance effect, and 3) control rod drive mechanism (CRDM) and main coolant pump (MCP) shaft contribution. CREAT predicted that the main contributor of Co activity buildup was the corrosion-induced release of Co from the steam generator (SG) tubing. With new SG's tubed with alloy 690, Korean Next Generation Reactor (APR-1400) is expected to have about 64% lower Co activity on SG surface. The use of all Co-free valves is expected to cut additional 8% of activity which is only marginal. (authors)

  11. The effect of valve strategy on in-cylinder flow and combustion

    Energy Technology Data Exchange (ETDEWEB)

    Soederberg, F

    1997-01-01

    This paper examines the effects of different valve strategies and their effect on in-cylinder flow and combustion. A conventional four valve per cylinder otto engine was modified to enable optical access. The flow measurements were made with a two-component laser Doppler velocimetry system. The combustion was monitored by running pressure data from a pressure transducer through a one-zone heat release model. The results show that when the valves operate normally a barrel flow is present and when one valve is closed a swirling flow occurs. No increase in turbulence was found with later phasing, except in the case of very late inlet valve opening and port deactivation. This resulted in a jet with high turbulence, making the combustion fast and stable, even with a very lean mixture ({lambda}=1.8). 6 refs, 44 figs, 4 tabs

  12. BMW V8 gasoline engine with turbocharging, direct injection and fully variable valve gear; V8-Ottomotor von BMW mit zwei Turboladern, Direkteinspritzung und vollvariablem Ventiltrieb

    Energy Technology Data Exchange (ETDEWEB)

    Schopp, Johann; Duengen, Rainer; Fach, Heiko [BMW Group, Muenchen (Germany); Schuenemann, Erik

    2013-01-15

    In July 2012, BMW has launched its new V8 gasoline engine with so-called TwinPower Turbo technology, including turbocharging, direct injection and fully variable valve gear Valvetronic. The main objectives were to achieve a significant reduction in fuel consumption and a moderate increase in power output, to derive a 4.0-l engine-capacity version, as well as to ensure high process commonality with the new BMW M5 engine simultaneously developed by BMW M GmbH which uses a virtually identical basic engine. It was first deployed simultaneously in the new 6 Series Gran Coupe, the 5 Series Gran Turismo, the 6 Series and the revised 7 Series. (orig.)

  13. Impact of the injection dose of exhaust gases, on work parameters of combustion engine

    Science.gov (United States)

    Marek, W.; Śliwiński, K.

    2016-09-01

    This article is another one from the series in which were presented research results indicated the possible areas of application of the pneumatic injection using hot combustion gases proposed by Professor Jarnuszkiewicz. This publication present the results of the control system of exhaust gas recirculation. The main aim of this research was to determine the effect of exhaust gas recirculation to the operating parameters of the internal combustion engine on the basis of laboratory measurements. All measurements were performed at a constant engine speed. These conditions correspond to the operation of the motor operating an electrical generator. The study was conducted on the four-stroke two-cylinder engine with spark ignition. The study were specifically tested on the air injection system and therefore the selection of the rotational speed was not bound, as in conventional versions of operating parameters of the electrical machine. During the measurement there were applied criterion which used power control corresponding to the requirements of load power, at minimal values of engine speed. Recirculation value determined by the following recurrent position control valve of the injection doses inflator gas for pneumatic injection system. They were studied and recorded, the impact of dose of gases recirculation to the operating and ecological engine parameters such as power, torque, specific fuel consumption, efficiency, air fuel ratio, exhaust gas temperature and nitrogen oxides and hydrocarbons.

  14. Impact of Early Valve Surgery on Outcome of Staphylococcus aureus Prosthetic Valve Infective Endocarditis: Analysis in the International Collaboration of Endocarditis–Prospective Cohort Study

    Science.gov (United States)

    Chirouze, Catherine; Alla, François; Fowler, Vance G.; Sexton, Daniel J.; Corey, G. Ralph; Chu, Vivian H.; Wang, Andrew; Erpelding, Marie-Line; Durante-Mangoni, Emanuele; Fernández-Hidalgo, Nuria; Giannitsioti, Efthymia; Hannan, Margaret M.; Lejko-Zupanc, Tatjana; Miró, José M.; Muñoz, Patricia; Murdoch, David R.; Tattevin, Pierre; Tribouilloy, Christophe; Hoen, Bruno; Clara, Liliana; Sanchez, Marisa; Nacinovich, Francisco; Oses, Pablo Fernandez; Ronderos, Ricardo; Sucari, Adriana; Thierer, Jorge; Casabé, José; Cortes, Claudia; Altclas, Javier; Kogan, Silvia; Spelman, Denis; Athan, Eugene; Harris, Owen; Kennedy, Karina; Tan, Ren; Gordon, David; Papanicolas, Lito; Eisen, Damon; Grigg, Leeanne; Street, Alan; Korman, Tony; Kotsanas, Despina; Dever, Robyn; Jones, Phillip; Konecny, Pam; Lawrence, Richard; Rees, David; Ryan, Suzanne; Feneley, Michael P.; Harkness, John; Jones, Phillip; Ryan, Suzanne; Jones, Phillip; Ryan, Suzanne; Jones, Phillip; Post, Jeffrey; Reinbott, Porl; Ryan, Suzanne; Gattringer, Rainer; Wiesbauer, Franz; Andrade, Adriana Ribas; de Brito, Ana Cláudia Passos; Guimarães, Armenio Costa; Grinberg, Max; Mansur, Alfredo José; Siciliano, Rinaldo Focaccia; Strabelli, Tania Mara Varejao; Vieira, Marcelo Luiz Campos; de Medeiros Tranchesi, Regina Aparecida; Paiva, Marcelo Goulart; Fortes, Claudio Querido; de Oliveira Ramos, Auristela; Ferraiuoli, Giovanna; Golebiovski, Wilma; Lamas, Cristiane; Santos, Marisa; Weksler, Clara; Karlowsky, James A.; Keynan, Yoav; Morris, Andrew M.; Rubinstein, Ethan; Jones, Sandra Braun; Garcia, Patricia; Cereceda, M; Fica, Alberto; Mella, Rodrigo Montagna; Barsic, Bruno; Bukovski, Suzana; Krajinovic, Vladimir; Pangercic, Ana; Rudez, Igor; Vincelj, Josip; Freiberger, Tomas; Pol, Jiri; Zaloudikova, Barbora; Ashour, Zainab; El Kholy, Amani; Mishaal, Marwa; Rizk, Hussien; Aissa, Neijla; Alauzet, Corentine; Alla, Francois; Campagnac, Catherine; Doco-Lecompte, Thanh; Selton-Suty, Christine; Casalta, Jean-Paul; Fournier, Pierre-Edouard; Habib, Gilbert; Raoult, Didier; Thuny, Franck; Delahaye, François; Delahaye, Armelle; Vandenesch, Francois; Donal, Erwan; Donnio, Pierre Yves; Michelet, Christian; Revest, Matthieu; Tattevin, Pierre; Violette, Jérémie; Chevalier, Florent; Jeu, Antoine; Sorel, Claire; Tribouilloy, Christophe; Bernard, Yvette; Chirouze, Catherine; Hoen, Bruno; Leroy, Joel; Plesiat, Patrick; Naber, Christoph; Neuerburg, Carl; Mazaheri, Bahram; Naber, Christoph; Neuerburg, Carl; Athanasia, Sofia; Giannitsioti, Efthymia; Mylona, Elena; Paniara, Olga; Papanicolaou, Konstantinos; Pyros, John; Skoutelis, Athanasios; Sharma, Gautam; Francis, Johnson; Nair, Lathi; Thomas, Vinod; Venugopal, Krishnan; Hannan, Margaret; Hurley, John; Gilon, Dan; Israel, Sarah; Korem, Maya; Strahilevitz, Jacob; Rubinstein, Ethan; Strahilevitz, Jacob; Casillo, Roberta; Cuccurullo, Susanna; Dialetto, Giovanni; Durante-Mangoni, Emanuele; Irene, Mattucci; Ragone, Enrico; Tripodi, Marie Françoise; Utili, Riccardo; Cecchi, Enrico; De Rosa, Francesco; Forno, Davide; Imazio, Massimo; Trinchero, Rita; Tebini, Alessandro; Grossi, Paolo; Lattanzio, Mariangela; Toniolo, Antonio; Goglio, Antonio; Raglio, Annibale; Ravasio, Veronica; Rizzi, Marco; Suter, Fredy; Carosi, Giampiero; Magri, Silvia; Signorini, Liana; Baban, Tania; Kanafani, Zeina; Kanj, Souha S.; Yasmine, Mohamad; Abidin, Imran; Tamin, Syahidah Syed; Martínez, Eduardo Rivera; Soto Nieto, Gabriel Israel; van der Meer, Jan T.M.; Chambers, Stephen; Holland, David; Morris, Arthur; Raymond, Nigel; Read, Kerry; Murdoch, David R.; Dragulescu, Stefan; Ionac, Adina; Mornos, Cristian; Butkevich, O.M.; Chipigina, Natalia; Kirill, Ozerecky; Vadim, Kulichenko; Vinogradova, Tatiana; Edathodu, Jameela; Halim, Magid; Lum, Luh-Nah; Tan, Ru-San; Lejko-Zupanc, Tatjana; Logar, Mateja; Mueller-Premru, Manica; Commerford, Patrick; Commerford, Anita; Deetlefs, Eduan; Hansa, Cass; Ntsekhe, Mpiko; Almela, Manuel; Armero, Yolanda; Azqueta, Manuel; Castañeda, Ximena; Cervera, Carlos; del Rio, Ana; Falces, Carlos; Garcia-de-la-Maria, Cristina; Fita, Guillermina; Gatell, Jose M.; Marco, Francesc; Mestres, Carlos A.; Miró, José M.; Moreno, Asuncion; Ninot, Salvador; Paré, Carlos; Pericas, Joan; Ramirez, Jose; Rovira, Irene; Sitges, Marta; Anguera, Ignasi; Font, Bernat; Guma, Joan Raimon; Bermejo, Javier; Bouza, Emilio; Fernández, Miguel Angel Garcia; Gonzalez-Ramallo, Victor; Marín, Mercedes; Muñoz, Patricia; Pedromingo, Miguel; Roda, Jorge; Rodríguez-Créixems, Marta; Solis, Jorge; Almirante, Benito; Fernandez-Hidalgo, Nuria; Tornos, Pilar; de Alarcón, Arístides; Parra, Ricardo; Alestig, Eric; Johansson, Magnus; Olaison, Lars; Snygg-Martin, Ulrika; Pachirat, Orathai; Pachirat, Pimchitra; Pussadhamma, Burabha; Senthong, Vichai; Casey, Anna; Elliott, Tom; Lambert, Peter; Watkin, Richard; Eyton, Christina; Klein, John L.; Bradley, Suzanne; Kauffman, Carol; Bedimo, Roger; Chu, Vivian H.; Corey, G. Ralph; Crowley, Anna Lisa; Douglas, Pamela; Drew, Laura; Fowler, Vance G.; Holland, Thomas; Lalani, Tahaniyat; Mudrick, Daniel; Samad, Zaniab; Sexton, Daniel; Stryjewski, Martin; Wang, Andrew; Woods, Christopher W.; Lerakis, Stamatios; Cantey, Robert; Steed, Lisa; Wray, Dannah; Dickerman, Stuart A.; Bonilla, Hector; DiPersio, Joseph; Salstrom, Sara-Jane; Baddley, John; Patel, Mukesh; Peterson, Gail; Stancoven, Amy; Afonso, Luis; Kulman, Theresa; Levine, Donald; Rybak, Michael; Cabell, Christopher H.; Baloch, Khaula; Chu, Vivian H.; Corey, G. Ralph; Dixon, Christy C.; Fowler, Vance G.; Harding, Tina; Jones-Richmond, Marian; Pappas, Paul; Park, Lawrence P.; Redick, Thomas; Stafford, Judy; Anstrom, Kevin; Athan, Eugene; Bayer, Arnold S.; Cabell, Christopher H.; Chu, Vivian H.; Corey, G. Ralph; Fowler, Vance G.; Hoen, Bruno; Karchmer, A. W.; Miró, José M.; Murdoch, David R.; Sexton, Daniel J.; Wang, Andrew; Bayer, Arnold S.; Cabell, Christopher H.; Chu, Vivian; Corey, G. Ralph; Durack, David T.; Eykyn, Susannah; Fowler, Vance G.; Hoen, Bruno; Miró, José M.; Moreillon, Phillipe; Olaison, Lars; Raoult, Didier; Rubinstein, Ethan; Sexton, Daniel J.

    2015-01-01

    Background. The impact of early valve surgery (EVS) on the outcome of Staphylococcus aureus (SA) prosthetic valve infective endocarditis (PVIE) is unresolved. The objective of this study was to evaluate the association between EVS, performed within the first 60 days of hospitalization, and outcome of SA PVIE within the International Collaboration on Endocarditis–Prospective Cohort Study. Methods. Participants were enrolled between June 2000 and December 2006. Cox proportional hazards modeling that included surgery as a time-dependent covariate and propensity adjustment for likelihood to receive cardiac surgery was used to evaluate the impact of EVS and 1-year all-cause mortality on patients with definite left-sided S. aureus PVIE and no history of injection drug use. Results. EVS was performed in 74 of the 168 (44.3%) patients. One-year mortality was significantly higher among patients with S. aureus PVIE than in patients with non–S. aureus PVIE (48.2% vs 32.9%; P = .003). Staphylococcus aureus PVIE patients who underwent EVS had a significantly lower 1-year mortality rate (33.8% vs 59.1%; P = .001). In multivariate, propensity-adjusted models, EVS was not associated with 1-year mortality (risk ratio, 0.67 [95% confidence interval, .39–1.15]; P = .15). Conclusions. In this prospective, multinational cohort of patients with S. aureus PVIE, EVS was not associated with reduced 1-year mortality. The decision to pursue EVS should be individualized for each patient, based upon infection-specific characteristics rather than solely upon the microbiology of the infection causing PVIE. PMID:25389255

  15. Application of ceramics to the sliding seat of valve bridge; Valve bridge yodobu eno ceramics tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, T; Ono, T [Mitsubishi Motors Corp., Tokyo (Japan)

    1997-10-01

    For use in the valve train, using an OHV (over head valve) configuration. of a 4 valve diesel engine for trucks and buses; we developed a valve bridge, a component of a valve train, with a ceramic head that is made of silicon nitride(Si3N4) in contact with a rocker arm in order to reduce cost and improve wear resistance for further diesel engine emissions regulations. In order to evaluate the effect of this valve bridge, RIG tests and durability tests on actual engines were carried out. 7 figs., 2 tabs.

  16. Numerical Investigation Into Effect of Fuel Injection Timing on CAI/HCCI Combustion in a Four-Stroke GDI Engine

    Science.gov (United States)

    Cao, Li; Zhao, Hua; Jiang, Xi; Kalian, Navin

    2006-02-01

    The Controlled Auto-Ignition (CAI) combustion, also known as Homogeneous Charge Compression Ignition (HCCI), was achieved by trapping residuals with early exhaust valve closure in conjunction with direct injection. Multi-cycle 3D engine simulations have been carried out for parametric study on four different injection timings in order to better understand the effects of injection timings on in-cylinder mixing and CAI combustion. The full engine cycle simulation including complete gas exchange and combustion processes was carried out over several cycles in order to obtain the stable cycle for analysis. The combustion models used in the present study are the Shell auto-ignition model and the characteristic-time combustion model, which were modified to take the high level of EGR into consideration. A liquid sheet breakup spray model was used for the droplet breakup processes. The analyses show that the injection timing plays an important role in affecting the in-cylinder air/fuel mixing and mixture temperature, which in turn affects the CAI combustion and engine performance.

  17. Thermal fatigue behavior of valves

    International Nuclear Information System (INIS)

    Moinereau, D.; Scliffet, L.; Capion, J.C.; Genette, P.

    1991-01-01

    This paper reports that valves of pressurized water reactors are exposed to thermal shocks during transient operations. The numerous thermal shock tests performed on valves on the EDF test facilities have shown the sensibility of fillets and geometrical discontinuities to thermal fatigue: cracks can appear in those areas and grow through the valve body. Valves systems designated as level 1 must be designed to withstand fatigue up to the second isolation valve: the relevant rule is specified in the paragraph B 3500 of the French RCCM code. It is a simplified method which doesn't require finite element calculations. Many valve systems have been designed according to this rule and have been operated without accident. However, in one case, important cracks were found in the fillet of a check-valve after numerous thermal shocks. Calculation of the valve's behavior according to the RCCM code to estimate the fatigue damage resulting from thermal shocks led to a low damage factor, which doesn't agree with the experimental results. This was confirmed by new testings and showed the inadequacy of B 3500 rule for thermal transients. On this base a new rule is proposed to estimate fatigue damage resulting from thermal shocks. An experimental program has been realized to validate this rule. Axisymetrical analytical mock-ups with different geometries and one check-valve in austenitic stainless steel 316 L have been submitted to hot thermal shocks of 210 degrees C magnitude

  18. Door valve for fuel handling path

    International Nuclear Information System (INIS)

    Makishima, Katsuhiko.

    1969-01-01

    A door valve is provided which seals cover gas from a liquid metal cooled reactor without leakage therefrom. A threaded shaft is screwed into a heavy box press which is packed with lead. The shaft is adapted to be rotated by an electric motor or a manually operated wheel which is disposed outside of the door valve. A valve plate is suspended from the box press by four guide wheels mounted thereon. The guide wheels are fitted into inclined guide grooves formed at the valve plate and into grooved formed in the inner wall of a valve casing. A locking ball is provided at each side of the valve plate. In operation the shaft rotates and travels to permit the box press and the valve plate to move into the door valve casing, thus releasing the locking balls. The valve plate does not contact the bottom of the casing. When the box press reaches the home position, the valve plate is carried on the valve opening, and the box press presses the valve plate to increase the tightness. The valve plate does not suffer wear as it does not slide over other parts. (Yamaguchi, T.)

  19. Study on the Regulating Performance of Sliding Regulation-Valve

    Science.gov (United States)

    Hu, Wei; Peng, Xiaoyong; Zhang, Yuan; Zheng, Yulan; Zhu, Fangyao

    2018-01-01

    Using a proven reliable method of CFD to study the regulating performance of a sliding regulation valve with a conical spool and rugby body. The numerical simulation results indicate that no matter where the spool is located, the flow field always has a vortex at the center of the valve body; When the spool is at the origin, the vortex and resistance coefficient of the valve are the minimum; When the spool moves from the origin to the right (the opening of the valve becomes smaller) to reach a certain position later, vortex currents also begin to appear around the tube wall behind the orifice. In addition, the vortex increases as the throttling port decreases whereas the resistance coefficient of the valve ascends slowly with the increase of the deviation of the spool and the rise in series; This type of regulating valve has S type (slow at both ends, sensitive at the center) flow characteristics at the stroke, and is not affected by the size of Re.

  20. The effect of lymphatic valve morphology on fluid transport

    Science.gov (United States)

    Alexeev, Alexander; Ballard, Matthew; Nepiyushchikh, Zhanna; Dixon, Brandon

    2016-11-01

    The lymphatic vasculature is present in nearly all invertebrate tissue, and is essential in the transport of fluid and particles such as immune cells, antigens, proteins and lipids from the tissue to lymph nodes and to the venous circulation. Lymphatic vessels are made of up a series of contractile units that work together in harmony as "micro hearts" to pump fluid against a pressure gradient. Lymphatic valves are critical to this functionality, as they open and close with the oscillating pressure gradients from contractions, thus allowing flow in only one direction and leading to a net pumping effect. We use a hybrid lattice-Boltzmann lattice spring model which captures fluid-solid interactions through two-way coupling between a viscous fluid and lymphatic valves in a section of a lymphatic vessel to study the dynamics of lymphatic valves and their effect on fluid transport. Further, we investigate the effect of variations in valve geometry and material properties on fluid pumping. This work helps to increase our understanding of the mechanisms of lymphatic fluid transport, which has implications in a variety of pathologies, including cancer metastasis, autoimmunity, atherosclerosis and obesity. Support from NSF CMMI 1635133 is gratefully acknowledged.

  1. Scissor thrust valve actuator

    Science.gov (United States)

    DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.

    2006-08-29

    Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.

  2. Experimental study on coil of direct action solenoid valve with temperature increasing

    International Nuclear Information System (INIS)

    Wang Lu; Liu Qianfeng; Bo Hanliang

    2012-01-01

    Hydraulic control rod drive technology (HCRDT) is a newly invented patent and Institute of Nuclear and New Energy Technology of Tsinghua University owns HCRDT's independent intellectual property rights. The integrated valve which is made up of three direct action solenoid valves is the key part of this technology, so the performance of the solenoid valve directly affects the function of the integrated valve and the HCRDT. Based on the conditions occurring in the operation of the control rod hydraulic drive system, the coil of the direct action solenoid valve with temperature increasing was studied by the experiment and analyzed by ANSYS code. The result shows that the temperature of the coil for the solenoid valve increases with the current increasing firstly. The temperature of the inner wall of the coil is higher than that of the exterior wall. The temperature of the middle coil is higher than that of the edge of the coil. The design of the direct action solenoid valve can be optimized. (authors)

  3. Heavy gas valves

    Energy Technology Data Exchange (ETDEWEB)

    Steier, L [Vereinigte Armaturen Gesellschaft m.b.H., Mannheim (Germany, F.R.)

    1979-01-01

    Heavy gas valves must comply with special requirements. Apart from absolute safety in operation there are stringent requirements for material, sealing and ease of operation even in the most difficult conditions. Ball valves and single plate pipe gate valves lateral sealing rings have a dual, double sided sealing effect according to the GROVE sealing system. Single plate gate valves with lateral protective plates are suitable preferably for highly contaminated media. Soft sealing gate valves made of cast iron are used for low pressure applications.

  4. THE RESULTS OF SURGICAL TREATMENT OF TRICUSPID VALVE INFECTIVE ENDOCARDITIS USING VALVE REPAIR AND VALVE REPLACEMENT OPERATIONS

    Directory of Open Access Journals (Sweden)

    S. A. Kovalev

    2015-01-01

    Full Text Available Aim. To evaluate in-hospital and long-term results of surgical treatment of patients with infective endocarditis of the tricuspid valve, to compare the effectiveness of valve repair and valve replacement techniques, and to identify risk factors of mortality and reoperations. Materials and methods. 31 surgical patients with tricuspid valve infective endocarditis were evaluated. Patients were divided into 2 groups. In Group 1 (n = 14 repairs of the tricuspid valve were performed, in Group 2 (n = 17 patients had undergone tricuspid valve replacements. Epidemiological, clinical, microbiological and echocardiographic data were studied. Methods of comparative analysis, the Kaplan–Meier method, and Cox risk models were applied. Results. The most common complication of in-hospital stay was atrioventricular block (17.7% of cases in Group 2. In Group 1, this type of complication was not found. Hospital mortality was 7.14% in Group 1, and 0% in Group 2. Long-term results have shown the significant reduction of heart failure in general cohort and in both groups. In Group 1 the severity of heart failure in the long term was less than in Group 2. No significant differences in the severity of tricuspid regurgitation were found between the groups. In 7-year follow up no cases of death were registered in Group 1. Cumulative survival rate in Group 2 within 60 months was 67.3 ± 16.2%. No reoperations were performed in patients from Group 1. In Group 2, the freedom from reoperation within 60 months was 70.9 ± 15.3%. Combined intervention was found as predictor of postoperative mortality. Prosthetic valve endocarditis was identified as risk factor for reoperation. Conclusion. Valve repair and valve replacement techniques of surgical treatment of tricuspid valve endocarditis can provide satisfactory hospital and long-term results. Tricuspid valve repair techniques allowed reducing the incidence of postoperative atrioventricular block. In the long-term, patients

  5. Characteristic analysis of servo valve

    International Nuclear Information System (INIS)

    Ko, J. H.; Ryu, D. R.; Lee, J. H.; Kim, Y. S.; Na, J. C.; Kim, D. S.

    2008-01-01

    Electro-pneumatic servo valve is an electro-mechanical device which converts electric signals into a proper pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristics, no air leakage at a null point, and can be fabricated at a low-cost. The first objective of this research is to design and to fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In order to design the mechanism of the servo valve optimally, the flow inside the valve depending upon the position of spool was analyzed variously, and on the basis of such analysis results, the valve mechanism, which was formed by combination of the spool and the sleeve, was designed and manufactured. And a tester for conducting an overall performance test was designed and manufactured, and as a result of conducting the flow rate test, the pressure test and the frequency test on the developed pneumatic servo valve

  6. Experimental investigation of the fluid dynamic efficiency of a high performance multi-valve internal combustion engine during the intake phase: Influence of valve-valve interference phenomena

    Directory of Open Access Journals (Sweden)

    Algieri Angelo

    2013-01-01

    Full Text Available The purpose of the present work is the analysis of the fluid dynamic behavior of a high performance internal combustion engine during the intake phase. In particular, a four-valve spark-ignition engine has been characterized at the steady flow rig. Dimensionless discharge coefficients have been used to define the global fluid dynamic efficiency of the intake system, while the Laser Doppler Anemometry (LDA technique has been employed to evaluate the mean flow in the valve curtain area and to characterise the interference phenomena between the two intake valves. The investigation has shown the significant influence of the valve lift on the volumetric efficiency of the intake apparatus. Moreover, the experimental analysis has highlighted that the valve-valve interference phenomena have a relevant impact on the head breathability, on the flow development within the combustion chamber and on the velocity standard deviations.

  7. Multi-Agent System Based Special Protection and Emergency Control Scheme against Cascading Events in Power System

    DEFF Research Database (Denmark)

    Liu, Zhou

    relay operations due to low voltage or overload state in the post stage of N-1 (or N-k) contingency. If such state could be sensed and adjusted appropriately before those relay actions, the system stability might be sustained. So it is of great significance to develop a suitable protection scheme...... the proposed protection strategy in this thesis, a real time simulation platform based on Real Time Digital Simulator (RTDS) and LabVIEW is built. In this platform, the cases of cascaded blackouts are simulated on the test system simplified from the East Denmark power system. For the MAS based control system......, the distributed power system agents are set up in RTDS, while the agents in higher level are designed by LabVIEW toolkits. The case studies and simulation results demonstrate the effectiveness of real time application of the proposed MAS based special protection and emergency control scheme against the cascaded...

  8. On-line dynamic fractionation and automatic determination of inorganic phosphorous in environmental solid substrates exploiting sequential injection microcolumn extraction and flow injection analysi

    DEFF Research Database (Denmark)

    Buanuam, Janya; Miró, Manuel; Hansen, Elo Harald

    2006-01-01

    Sequential injection microcolumn extraction (SI-MCE) based on the implementation of a soil containing microcartridge as external reactor in a sequential injection network is, for the first time, proposed for dynamic fractionation of macronutrients in environmental solids, as exemplified by the pa......Sequential injection microcolumn extraction (SI-MCE) based on the implementation of a soil containing microcartridge as external reactor in a sequential injection network is, for the first time, proposed for dynamic fractionation of macronutrients in environmental solids, as exemplified...... by the partitioning of inorganic phosphorous in agricultural soils. The on-line fractionation method capitalises on the accurate metering and sequential exposure of the various extractants to the solid sample by application of programmable flow as precisely coordinated by a syringe pump. Three different soil phase...... associations for phosphorus, that is, exchangeable, Al- and Fe-bound and Ca-bound fractions, were elucidated by accommodation in the flow manifold of the 3 steps of the Hietjles-Litjkema (HL) scheme involving the use of 1.0 M NH4Cl, 0.1 M NaOH and 0.5 M HCl, respectively, as sequential leaching reagents...

  9. Injection and laser acceleration of ions based on the resonant surface photoionization

    International Nuclear Information System (INIS)

    Antsiferov, V.V.; Smirnov, G.I.; Telegin, G.G.

    1993-01-01

    The collective effects have been investigated of the injection and acceleration of the ion beams due to the resonant surface photoionization. The considered scheme of the laser accelerator allows to obtain positive ions with relativistic velocities. 11 refs., 2 figs

  10. Condition monitoring of a motor-operated valve using estimated motor torque

    International Nuclear Information System (INIS)

    Chai, Jangbom; Kang, Shinchul; Park, Sungkeun; Hong, Sungyull; Lim, Chanwoo

    2004-01-01

    This paper is concerned with the development of data analysis methods to be used in on-line monitoring and diagnosis of Motor-Operated Valves (MOVs) effectively and accurately. The technique to be utilized includes the electrical measurements and signal processing to estimate electric torque of induction motors, which are attached to most of MOV systems. The estimated torque of an induction motor is compared with the directly measured torque using a torque cell in various loading conditions including the degraded voltage conditions to validate the estimating scheme. The accuracy of the estimating scheme is presented. The advantages of the estimated torque signatures are reviewed over the currently used ones such as the current signature and the power signature in several respects: accuracy, sensitivity, resolution and so on. Additionally, the estimated torque methods are suggested as a good way to monitor the conditions of MOVs with higher accuracy. (author)

  11. Magnetic Tools for Lab-on-a-chip Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Pekas, Nikola Slobodan [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    This study establishes a set of magnetics-based tools that have been integrated with microfluidic systems. The overall impact of the work begins to enable the rapid and efficient manipulation and detection of magnetic entities such as particles, picoliter-sized droplets, or bacterial cells. Details of design, fabrication, and theoretical and experimental assessments are presented. The manipulation strategy has been demonstrated in the format of a particle diverter, whereby micron-sized particles are actively directed into desired flow channels at a split-flow junction by means of integrated microelectromagnets. Magnetic detection has been realized by deploying Giant Magnetoresistance (GMR) sensors--microfabricated structures originally developed for use as readout elements in computer hard-drives. We successfully transferred the GMR technology to the lab-on-a-chip arena, and demonstrated the versatility of the concept in several important areas: real-time, integrated monitoring of the properties of multiphase droplet flows; rapid quantitative determination of the concentration of magnetic nanoparticles in droplets of ferrofluids; and high-speed detection of individual magnetic microparticles and magnetotactic bacteria. The study also includes novel schemes for hydrodynamic flow focusing that work in conjunction with GMR-based detection to ensure precise navigation of the sample stream through the GMR detection volume, therefore effectively establishing a novel concept of a microfabricated magnetic flow cytometer.

  12. On-line sample-pre-treatment schemes for trace-level determinations of metals by coupling flow injection or sequential injection with ICP-MS

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2003-01-01

    a polytetrafluoroethylene (PTFE) knotted reactor (KR), solvent extraction-back extraction and hydride/vapor generation. It also addresses a novel, robust approach, whereby the protocol of SI-LOV-bead injection (BI) on-line separation and pre-concentration of ultra-trace levels of metals by a renewable microcolumn...

  13. The principles of designing autoregulated circuits of particles injection in synchrotron accelerators

    International Nuclear Information System (INIS)

    Karabekov, I.P.; Krol', V.K.

    1974-01-01

    The paper deals with an investigation of beam injection systems of large electron synchrotrons from the point of view of a possibility of the injection process automation. The injection system elements of the Erevan synchrotron are considered as an example to show the possibility of designing a closed automatic control system based on the beam parameter data. To obtain data on the beam parameters a scheme based on magnetoinduction zero-indicators is used. The particle capture int orbit and automatic control system is shown to be indeterminate without preliminary monochromatization of the beam. The automatic control functional scheme is presented and main technical requirements for some synchrotron components are formulated. The realization of the proposed automatic control system on the Erevan synchrotron will ensure the matching of beam trajectory parameters at the point of particle capture into orbit with injected particle energy and the injection field value on the orbit, if the accuracy required for the adjustment of the magnetic field parameters necessary for the first turns is achieved

  14. Check valve slam waterhammer in piping systems equipped with multiple parallel pumps

    International Nuclear Information System (INIS)

    Sponsel, J.; Bird, E.; Zarechnak, A.

    1993-01-01

    The low pressure safety injection system at the calvert cliff's plant is designed to provide cooling water to the reactor in the event of a postulated accident and for reactor cool-down and decay heat removal during normal maintenance and refueling. This system experienced repeated damage to the axial piping supports on the pump section and the discharge headers due to the check valve phenomenon. To determine the cause, testing was performed in both the LPSI and CCW systems

  15. Mechanical versus bioprosthetic aortic valve replacement.

    Science.gov (United States)

    Head, Stuart J; Çelik, Mevlüt; Kappetein, A Pieter

    2017-07-21

    Mechanical valves used for aortic valve replacement (AVR) continue to be associated with bleeding risks because of anticoagulation therapy, while bioprosthetic valves are at risk of structural valve deterioration requiring reoperation. This risk/benefit ratio of mechanical and bioprosthetic valves has led American and European guidelines on valvular heart disease to be consistent in recommending the use of mechanical prostheses in patients younger than 60 years of age. Despite these recommendations, the use of bioprosthetic valves has significantly increased over the last decades in all age groups. A systematic review of manuscripts applying propensity-matching or multivariable analysis to compare the usage of mechanical vs. bioprosthetic valves found either similar outcomes between the two types of valves or favourable outcomes with mechanical prostheses, particularly in younger patients. The risk/benefit ratio and choice of valves will be impacted by developments in valve designs, anticoagulation therapy, reducing the required international normalized ratio, and transcatheter and minimally invasive procedures. However, there is currently no evidence to support lowering the age threshold for implanting a bioprosthesis. Physicians in the Heart Team and patients should be cautious in pursuing more bioprosthetic valve use until its benefit is clearly proven in middle-aged patients. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  16. Electricity storage using a thermal storage scheme

    Energy Technology Data Exchange (ETDEWEB)

    White, Alexander, E-mail: ajw36@cam.ac.uk [Hopkinson Laboratory, Cambridge University Engineering Department, Trumpington Street, Cambridge. CB2 1PZ (United Kingdom)

    2015-01-22

    The increasing use of renewable energy technologies for electricity generation, many of which have an unpredictably intermittent nature, will inevitably lead to a greater demand for large-scale electricity storage schemes. For example, the expanding fraction of electricity produced by wind turbines will require either backup or storage capacity to cover extended periods of wind lull. This paper describes a recently proposed storage scheme, referred to here as Pumped Thermal Storage (PTS), and which is based on “sensible heat” storage in large thermal reservoirs. During the charging phase, the system effectively operates as a high temperature-ratio heat pump, extracting heat from a cold reservoir and delivering heat to a hot one. In the discharge phase the processes are reversed and it operates as a heat engine. The round-trip efficiency is limited only by process irreversibilities (as opposed to Second Law limitations on the coefficient of performance and the thermal efficiency of the heat pump and heat engine respectively). PTS is currently being developed in both France and England. In both cases, the schemes operate on the Joule-Brayton (gas turbine) cycle, using argon as the working fluid. However, the French scheme proposes the use of turbomachinery for compression and expansion, whereas for that being developed in England reciprocating devices are proposed. The current paper focuses on the impact of the various process irreversibilities on the thermodynamic round-trip efficiency of the scheme. Consideration is given to compression and expansion losses and pressure losses (in pipe-work, valves and thermal reservoirs); heat transfer related irreversibility in the thermal reservoirs is discussed but not included in the analysis. Results are presented demonstrating how the various loss parameters and operating conditions influence the overall performance.

  17. Thermally induced pressure locking of gate valves: A survey of valve bonnet pressurization rates

    International Nuclear Information System (INIS)

    Ezekoye, L.I.; Moore, W.E.

    1996-01-01

    Closed, water filled gate valves run the risk of becoming pressurized due to heat input from the environment or from adjacent connected piping. Thermal pressurization of gate valve bonnets may lead to the valves failing to open on demand and can even induce structural failure of valves. This paper presents an analytical prediction of the pressurization rate of a closed pressure vessel subject to uniform heating which may be considered as an upper bound to the pressurization rate that may occur in the field. Then actual valve experiences described in the literature are reviewed to determine the expected pressurization rate in existing hardware designs. A statistical approach is applied to reconcile the differing pressurization rates reported in the literature and determine a rate that can be applied in valve evaluations. The limitations of the reconciled rate are discussed

  18. Outcome of pregnancy in women after pulmonary autograft valve replacement for congenital aortic valve disease

    NARCIS (Netherlands)

    Yap, Sing-Chien; Drenthen, Willem; Pieper, Petronella G.; Moons, Philip; Mulder, Barbara J. M.; Klieverik, Loes M.; Vliegen, Hubert W.; van Dijk, Arie P. J.; Meijboom, Folkert J.; Roos-Hesselink, Jolien W.

    Background and aim of the study: The pulmonary autograft has been recommended as the valve of choice for aortic valve replacement (AVR) in young women contemplating pregnancy. However, current information on maternal and perinatal outcome of pregnancy in women with pulmonary autograft valve

  19. Outcome of pregnancy in women after pulmonary autograft valve replacement for congenital aortic valve disease

    NARCIS (Netherlands)

    Yap, Sing-Chien; Drenthen, Willem; Pieper, Petronella G.; Moons, Philip; Mulder, Barbara J. M.; Klieverik, Loes M.; Vliegen, Hubert W.; van Dijk, Arie P. J.; Meijboom, Folkert J.; Roos-Hesselink, Jolien W.

    2007-01-01

    Background and aim of the study: The pulmonary autograft has been recommended as the valve of choice for aortic valve replacement (AVR) in young women contemplating pregnancy. However, current information on maternal and perinatal outcome of pregnancy in women with pulmonary autograft valve

  20. Outcome of pregnancy in women after pulmonary autograft valve replacement for congenital aortic valve disease.

    NARCIS (Netherlands)

    Yap, S.C.; Drenthen, W.; Pieper, P.G.; Moons, P.; Mulder, B.J.M.; Klieverik, L.M.; Vliegen, H.W.; Dijk, A.P.J. van; Meijboom, F.J.; Roos-Hesselink, J.W.

    2007-01-01

    BACKGROUND AND AIM OF THE STUDY: The pulmonary autograft has been recommended as the valve of choice for aortic valve replacement (AVR) in young women contemplating pregnancy. However, current information on maternal and perinatal outcome of pregnancy in women with pulmonary autograft valve

  1. Dynamic load effects on gate valve operability

    International Nuclear Information System (INIS)

    Steele, R. Jr.; MacDonald, P.E.; Arendts, J.G.

    1986-01-01

    The Idaho National Engineering Laboratory (INEL) participated in an internationally sponsored seismic research program conducted at the decommissioned Heissdampfreaktor (HDR) located in the Federal Republic of Germany. An existing piping system was modified by installation of an 8-in., naturally aged, motor-operated gate valve from a US nuclear power plant and a piping support system of US design. Six other piping support systems of varying flexibility from stiff to flexible were also installed at various times during the tests. Additional valve loadings included internal hydraulic loads and, during one block of tests, elevated temperature. The operability and integrity of the aged gate valve and the dynamic response of the various piping support system were measured during 25 representative seismic events

  2. Prevalence of Pre-Analytical Errors in Clinical Chemistry Diagnostic Labs in Sulaimani City of Iraqi Kurdistan.

    Science.gov (United States)

    Najat, Dereen

    2017-01-01

    Laboratory testing is roughly divided into three phases: a pre-analytical phase, an analytical phase and a post-analytical phase. Most analytical errors have been attributed to the analytical phase. However, recent studies have shown that up to 70% of analytical errors reflect the pre-analytical phase. The pre-analytical phase comprises all processes from the time a laboratory request is made by a physician until the specimen is analyzed at the lab. Generally, the pre-analytical phase includes patient preparation, specimen transportation, specimen collection and storage. In the present study, we report the first comprehensive assessment of the frequency and types of pre-analytical errors at the Sulaimani diagnostic labs in Iraqi Kurdistan. Over 2 months, 5500 venous blood samples were observed in 10 public diagnostic labs of Sulaimani City. The percentages of rejected samples and types of sample inappropriateness were evaluated. The percentage of each of the following pre-analytical errors were recorded: delay in sample transportation, clotted samples, expired reagents, hemolyzed samples, samples not on ice, incorrect sample identification, insufficient sample, tube broken in centrifuge, request procedure errors, sample mix-ups, communication conflicts, misinterpreted orders, lipemic samples, contaminated samples and missed physician's request orders. The difference between the relative frequencies of errors observed in the hospitals considered was tested using a proportional Z test. In particular, the survey aimed to discover whether analytical errors were recorded and examine the types of platforms used in the selected diagnostic labs. The analysis showed a high prevalence of improper sample handling during the pre-analytical phase. In appropriate samples, the percentage error was as high as 39%. The major reasons for rejection were hemolyzed samples (9%), incorrect sample identification (8%) and clotted samples (6%). Most quality control schemes at Sulaimani

  3. Prevalence of Pre-Analytical Errors in Clinical Chemistry Diagnostic Labs in Sulaimani City of Iraqi Kurdistan.

    Directory of Open Access Journals (Sweden)

    Dereen Najat

    Full Text Available Laboratory testing is roughly divided into three phases: a pre-analytical phase, an analytical phase and a post-analytical phase. Most analytical errors have been attributed to the analytical phase. However, recent studies have shown that up to 70% of analytical errors reflect the pre-analytical phase. The pre-analytical phase comprises all processes from the time a laboratory request is made by a physician until the specimen is analyzed at the lab. Generally, the pre-analytical phase includes patient preparation, specimen transportation, specimen collection and storage. In the present study, we report the first comprehensive assessment of the frequency and types of pre-analytical errors at the Sulaimani diagnostic labs in Iraqi Kurdistan.Over 2 months, 5500 venous blood samples were observed in 10 public diagnostic labs of Sulaimani City. The percentages of rejected samples and types of sample inappropriateness were evaluated. The percentage of each of the following pre-analytical errors were recorded: delay in sample transportation, clotted samples, expired reagents, hemolyzed samples, samples not on ice, incorrect sample identification, insufficient sample, tube broken in centrifuge, request procedure errors, sample mix-ups, communication conflicts, misinterpreted orders, lipemic samples, contaminated samples and missed physician's request orders. The difference between the relative frequencies of errors observed in the hospitals considered was tested using a proportional Z test. In particular, the survey aimed to discover whether analytical errors were recorded and examine the types of platforms used in the selected diagnostic labs.The analysis showed a high prevalence of improper sample handling during the pre-analytical phase. In appropriate samples, the percentage error was as high as 39%. The major reasons for rejection were hemolyzed samples (9%, incorrect sample identification (8% and clotted samples (6%. Most quality control schemes

  4. Flow Injection/Sequential Injection Analysis Systems: Potential Use as Tools for Rapid Liver Diseases Biomarker Study

    Directory of Open Access Journals (Sweden)

    Supaporn Kradtap Hartwell

    2012-01-01

    Full Text Available Flow injection/sequential injection analysis (FIA/SIA systems are suitable for carrying out automatic wet chemical/biochemical reactions with reduced volume and time consumption. Various parts of the system such as pump, valve, and reactor may be built or adapted from available materials. Therefore the systems can be at lower cost as compared to other instrumentation-based analysis systems. Their applications for determination of biomarkers for liver diseases have been demonstrated in various formats of operation but only a few and limited types of biomarkers have been used as model analytes. This paper summarizes these applications for different types of reactions as a guide for using flow-based systems in more biomarker and/or multibiomarker studies.

  5. Magnetically operated check valve

    Science.gov (United States)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-06-01

    A magnetically operated check valve is disclosed. The valve is comprised of a valve body and a movable poppet disposed therein. A magnet attracts the poppet to hold the valve shut until the force of fluid flow through the valve overcomes the magnetic attraction and moves the poppet to an unseated, open position. The poppet and magnet are configured and disposed to trap a magnetically attracted particulate and prevent it from flowing to a valve seating region.

  6. Lactococcus garvieae Endocarditis on a Prosthetic Biological Aortic Valve.

    Science.gov (United States)

    Tsur, A; Slutzki, T; Flusser, D

    2015-09-01

    Lactococcus garvieae (LG) endocarditis is a rare disease in humans. There are only about 16 reported cases in the world. We report a 76-year-old male patient with LG endocarditis. In depth interview with the patient revealed that 2 weeks prior to admission, he had eaten sushi containing raw fish. Unlike many of the other infections reported, which were on a native mitral valve, our patient's vegetation was on a prosthetic aortic valve. © 2014 Blackwell Verlag GmbH.

  7. Out-of-plane microvalves for whole blood separation on lab-on-a-CD

    Science.gov (United States)

    Li, Tingjie; Zhang, Limin; Leung, Kar Man; Yang, Jun

    2010-10-01

    The emergence of lab-on-a-CD technology provides a centrifugal and compact platform for high throughput blood analysis in point-of-care (POC) diagnostics. Blood separation of the whole blood is the first step for clinical blood diagnosis. This paper describes a novel design of an out-of-plane microvalve that enables high performance of whole blood separation on lab-on-a-CD centrifugal devices. In our lab-on-a-CD design, blood cells and plasma are redistributed into a downstream sedimentation reservoir and an upstream supernatant reservoir, respectively, when the device spins. By tuning the rotational speed, the 'close' or 'open' status of an out-of-plane microvalve embedded in the lab-on-a-CD device is controlled to isolate these two reservoirs. Compared with a similar design but without the out-of-plane microvalve, this novel microvalve structure can effectively prevent blood cells from diffusing back to the supernatant reservoir containing pure plasma, and thus improve the performance of blood separation as well as subsequent blood analysis. We demonstrate that the lab-on-a-CD device with out-of-plane microvalves can achieve 99.9% plasma purity and 96 ± 0.5% plasma yield for the whole blood. Because of its simple structure and easily controlled working mechanism, the out-of-plane microvalve not only leads to high performance of whole blood separation, but also makes the manufacturing of this type of lab-on-a-CD device easy and inexpensive. If integrated into some existing lab-on-a-CD devices, the out-of-plane microvalve may also help improve their performance.

  8. Out-of-plane microvalves for whole blood separation on lab-on-a-CD

    International Nuclear Information System (INIS)

    Li, Tingjie; Zhang, Limin; Leung, Kar Man; Yang, Jun

    2010-01-01

    The emergence of lab-on-a-CD technology provides a centrifugal and compact platform for high throughput blood analysis in point-of-care (POC) diagnostics. Blood separation of the whole blood is the first step for clinical blood diagnosis. This paper describes a novel design of an out-of-plane microvalve that enables high performance of whole blood separation on lab-on-a-CD centrifugal devices. In our lab-on-a-CD design, blood cells and plasma are redistributed into a downstream sedimentation reservoir and an upstream supernatant reservoir, respectively, when the device spins. By tuning the rotational speed, the 'close' or 'open' status of an out-of-plane microvalve embedded in the lab-on-a-CD device is controlled to isolate these two reservoirs. Compared with a similar design but without the out-of-plane microvalve, this novel microvalve structure can effectively prevent blood cells from diffusing back to the supernatant reservoir containing pure plasma, and thus improve the performance of blood separation as well as subsequent blood analysis. We demonstrate that the lab-on-a-CD device with out-of-plane microvalves can achieve 99.9% plasma purity and 96 ± 0.5% plasma yield for the whole blood. Because of its simple structure and easily controlled working mechanism, the out-of-plane microvalve not only leads to high performance of whole blood separation, but also makes the manufacturing of this type of lab-on-a-CD device easy and inexpensive. If integrated into some existing lab-on-a-CD devices, the out-of-plane microvalve may also help improve their performance

  9. Influence of Actively Controlled Heat Release Timing on the Performance and Operational Characteristics of a Rotary Valve, Acoustically Resonant Pulse Combustor

    KAUST Repository

    Lisanti, Joel; Roberts, William L.

    2017-01-01

    The influence of heat release timing on the performance and operational characteristics of a rotary valve, acoustically resonant pulse combustor is investigated both experimentally and numerically. Simulation results are obtained by solving the quasi-1D Navier-Stokes equations with forced volumetric heat addition. Experimental efforts modify heat release timing through modulated fuel injection and modification of the fluid dynamic mixing. Results indicate that the heat release timing has a profound effect on the operation and efficiency of the pulse combustor and that this timing can be difficult to control experimentally.

  10. Influence of Actively Controlled Heat Release Timing on the Performance and Operational Characteristics of a Rotary Valve, Acoustically Resonant Pulse Combustor

    KAUST Repository

    Lisanti, Joel

    2017-01-05

    The influence of heat release timing on the performance and operational characteristics of a rotary valve, acoustically resonant pulse combustor is investigated both experimentally and numerically. Simulation results are obtained by solving the quasi-1D Navier-Stokes equations with forced volumetric heat addition. Experimental efforts modify heat release timing through modulated fuel injection and modification of the fluid dynamic mixing. Results indicate that the heat release timing has a profound effect on the operation and efficiency of the pulse combustor and that this timing can be difficult to control experimentally.

  11. A novel fault location scheme for power distribution system based on injection method and transient line voltage

    Science.gov (United States)

    Huang, Yuehua; Li, Xiaomin; Cheng, Jiangzhou; Nie, Deyu; Wang, Zhuoyuan

    2018-02-01

    This paper presents a novel fault location method by injecting travelling wave current. The new methodology is based on Time Difference Of Arrival(TDOA)measurement which is available measurements the injection point and the end node of main radial. In other words, TDOA is the maximum correlation time when the signal reflected wave crest of the injected and fault appear simultaneously. Then distance calculation is equal to the wave velocity multiplied by TDOA. Furthermore, in case of some transformers connected to the end of the feeder, it’s necessary to combine with the transient voltage comparison of amplitude. Finally, in order to verify the effectiveness of this method, several simulations have been undertaken by using MATLAB/SIMULINK software packages. The proposed fault location is useful to short the positioning time in the premise of ensuring the accuracy, besides the error is 5.1% and 13.7%.

  12. A remote control valve

    International Nuclear Information System (INIS)

    Cachard, Maurice de; Dumont, Maurice.

    1976-01-01

    This invention concerns a remote control valve for shutting off or distributing a fluid flowing at a high rate and low pressure. Among the different valves at present in use, electric valves are the most recommended for remote control but their reliability is uncertain and they soon become costly when large diameter valves are used. The valve described in this invention does away with this drawback owing to its simplicity and the small number of moving parts, this makes it particularly reliable. It mainly includes: a tubular body fitted with at least one side opening; at least one valve wedge for this opening, coaxial with the body, and mobile; a mobile piston integral with this wedge. Several valves to the specifications of this invention can be fitted in series (a shut-off valve can be used in conjunction with one or more distribution valves). The fitting and maintenance of the valve is very simple owing to its design. It can be fabricated in any material such as metals, alloys, plastics and concrete. The structure of the valve prevents the flowing fluid from coming into contact with the outside environment, thereby making it particularly suitable in the handling of dangerous or corrosive fluids. Finally, the opening and shutting of the valve occurs slowly, thereby doing away with the water hammer effect so frequent in large bore pipes [fr

  13. Valve testing for UK PWR safety applications

    International Nuclear Information System (INIS)

    George, P.T.; Bryant, S.

    1989-01-01

    Extensive testing and development has been done by the Central Electricity Generating Board (CEGB) to support the design, construction and operation of Sizewell B, the UK's first PWR. A Blowdown Rig for the Assessment of Valve Operability - (BRAVO) has been constructed at the CEGB Marchwood Engineering Laboratory to reproduce PWR Pressurizer fluid conditions for the full scale testing of Pressurizer Relief System (PRS) valves. A full size tandem pair of Pilot Operated Safety Relief Valves (POSRVs) is being tested under the full range of pressurizer fluid conditions. Tests to date have produced important data on the performance of the valve in its Cold Overpressure protection mode of operation and on methods for the in-service testing of the valve. Also, a full size pressurizer safety valve has been tested under full PRS fluid conditions to develop a methodology for the pre-service testing of the Sizewell valves. Further work will be carried out to develop procedures for the in-service testing of the valve. In the Main Steam Safety Valve test program carried out at the Siemens-KWU Test Facilities, a single MSSV from three potential suppliers was tested under full secondary system conditions. The test results have been analyzed and are reflected in the CEGB's arrangements for the pre-service and in-service testing of the Sizewell MSSVs. Valves required to interrupt pipebreak flow must be qualified for this duty by testing or a combination of testing and analysis. To obtain guidance on the performance of such tests gate and globe valves have been subjected to simulated pipebreaks under PWR primary circuit conditions. In the light of problems encountered with gate valve closure under these conditions, further tests are currently being carried out on the BRAVO facility on a gate valve, in preparation for the full scale flow interruption qualification testing of the Sizewell main steam isolation valve

  14. OCDMA PON supporting ONU inter-networking based on gain-switched Fabry-Pérot lasers with external dual-wavelength injection.

    Science.gov (United States)

    Liu, Jie; Zeng, Duoduo; Guo, Changjian; Xu, Lei; He, Sailing

    2010-10-25

    We propose and demonstrate an OCDMA-PON scheme with optical network unit (ONU) internetworking capability, which utilizes low-cost gain-switched Fabry-Pérot (GS-FP) lasers with external dual-wavelength injection as the pulse sources on the ONU side. The injection-generated optical pulses in two wavelengths from the same GS-FP laser are used separately for the PON uplink transmission and ONU internetworking. Experimental results based on a two-user OCDMA system confirm the feasibility of the proposed scheme. With OCDMA technologies, separate ONU-internetworking groups can be established using different optical codes. We also give experiment results to analyze the performance of the ONU-ONU transmission at different power of interference signals when two ONU-internetworking groups are present in the OCDMA-PON.

  15. Infective Endocarditis of the Aortic Valve with Anterior Mitral Valve Leaflet Aneurysm

    NARCIS (Netherlands)

    Tomsic, Anton; Li, Wilson W. L.; van Paridon, Marieke; Bindraban, Navin R.; de Mol, Bas A. J. M.

    2016-01-01

    Mitral valve leaflet aneurysm is a rare and potentially devastating complication of aortic valve endocarditis. We report the case of a 48-year-old man who had endocarditis of the native aortic valve and a concomitant aneurysm of the anterior mitral valve leaflet. Severe mitral regurgitation occurred

  16. Stent valve implantation in conventional redo aortic valve surgery to prevent patient-prosthesis mismatch.

    Science.gov (United States)

    Ferrari, Enrico; Franciosi, Giorgio; Clivio, Sara; Faletra, Francesco; Moccetti, Marco; Moccetti, Tiziano; Pedrazzini, Giovanni; Demertzis, Stefanos

    2017-03-01

    The goal was to show the technical details, feasibility and clinical results of balloon-expandable stent valve implantation in the aortic position during conventional redo open-heart surgery in selected obese patients with a small aortic prosthesis and severe patient-prosthesis mismatch. Two symptomatic overweight patients (body mass index of 31 and 38), each with a small aortic prosthesis (a 4-year-old, 21-mm Hancock II biological valve and a 29-year-old, 23-mm Duromedic mechanical valve), increased transvalvular gradients (59/31 and 74/44 mmHg) and a reduced indexed effective orifice area (0.50 and 0.43 cm 2 /m 2 ) underwent implantation of two 26-mm balloon-expandable Sapien 3 valves during standard on-pump redo valve surgery. Using full re-sternotomy, cardiopulmonary bypass and cardioplegic arrest, the two balloon-expandable stent valves were implanted under direct view using a standard aortotomy, after prosthesis removal and without annulus enlargement. Aortic cross-clamp times were 162 and 126 min; cardiopulmonary bypass times were 178 and 180 min; total surgical times were 360 and 318 min. At discharge, echocardiograms showed transvalvular peak and mean gradients of 13/9 and 23/13 mmHg and indexed effective orifice areas of 0.64 and 1.08 cm 2 /m 2 . The 3-month echocardiographic follow-up showed transvalvular peak and mean gradients of 18/9 and 19/11 mmHg and indexed effective orifice areas of 0.78 cm 2 /m 2 and 0.84 cm 2 /m 2 , with improved symptoms (New York Heart Association class 1). Implantation of a balloon-expandable stent valve during redo aortic valve surgery is feasible in selected cases and prevents patient-prosthesis mismatch in obese patients without need for aortic annulus enlargement. Moreover, in the case of stent valve degeneration, this approach permits additional valve-in-valve procedures with large stent valves and prevents re-redo surgery. © The Author 2016. Published by Oxford University Press on behalf of the

  17. Analysis on inflowing of the injecting Water in faulted formation

    Directory of Open Access Journals (Sweden)

    Ji Youjun

    2015-06-01

    Full Text Available As to low permeability reservoir, faults and fractures have a significant impact on effect of water injection and may lead up to the lower efficiency of oil displacement, which will bring about low efficiency of injecting water, and the intended purpose of improving recovery factor by water injection will not be reached. In order to reveal the mechanism for channeling of injecting water, research work is conducted as follows: First of all, based on seepage mechanics, fluid mechanics, rock mass mechanics, and multifield coupling theory, the mathematical model considering fluid–solid coupling of water-flooding development for low permeability reservoir is established, the numerical solution of the coupling model is obtained, and by creating an interface program between the seepage simulation procedure and stress computation program, we set up a feasible method to simulate the process of development of reservoir considering deformation of reservoir stratum; second, some cores are selected to test the stress sensitivity of rock in reservoir, and the relation of permeability and stress is proposed to connect the field parameters of the coupling model; finally, taking the S11 block of Daqing Oilfield, for instance, the seepage field and deformation of reservoir stratum is analyzed, and then the mechanism for leakage of injecting water in this block is given out, and the advice for adjustment of injection–production scheme in the future development stage is provided.

  18. Surge-damping vacuum valve

    International Nuclear Information System (INIS)

    Bullock, J.C.; Kelley, B.E.

    1977-01-01

    A valve for damping out flow surges in a vacuum system is described. The surge-damping mechanism consists of a slotted, spring-loaded disk adjacent to the valve's vacuum port (the flow passage to the vacuum roughing pump). Under flow surge conditions, the differential pressure forces the disk into a sealing engagement with the vacuum port, thereby restricting the gas flow path to narrow slots in the disk's periphery. The increased flow damps out the flow surge. When pressure is equalized on both sides of the valve, the spring load moves the disk away from the port to restore full flow conductance through the valve

  19. Cavitation guide for control valves

    Energy Technology Data Exchange (ETDEWEB)

    Tullis, J.P. [Tullis Engineering Consultants, Logan, UT (United States)

    1993-04-01

    This guide teaches the basic fundamentals of cavitation to provide the reader with an understanding of what causes cavitation, when it occurs, and the potential problems cavitation can cause to a valve and piping system. The document provides guidelines for understanding how to reduce the cavitation and/or select control valves for a cavitating system. The guide provides a method for predicting the cavitation intensity of control valves, and how the effect of cavitation on a system will vary with valve type, valve function, valve size, operating pressure, duration of operation and details of the piping installation. The guide defines six cavitation limits identifying cavitation intensities ranging from inception to the maximum intensity possible. The intensity of the cavitation at each limit Is described, including a brief discussion of how each level of cavitation influences the valve and system. Examples are included to demonstrate how to apply the method, including making both size and pressure scale effects corrections. Methods of controlling cavitation are discussed providing information on various techniques which can be used to design a new system or modify an existing one so it can operate at a desired level of cavitation.

  20. Cavitation guide for control valves

    International Nuclear Information System (INIS)

    Tullis, J.P.

    1993-04-01

    This guide teaches the basic fundamentals of cavitation to provide the reader with an understanding of what causes cavitation, when it occurs, and the potential problems cavitation can cause to a valve and piping system. The document provides guidelines for understanding how to reduce the cavitation and/or select control valves for a cavitating system. The guide provides a method for predicting the cavitation intensity of control valves, and how the effect of cavitation on a system will vary with valve type, valve function, valve size, operating pressure, duration of operation and details of the piping installation. The guide defines six cavitation limits identifying cavitation intensities ranging from inception to the maximum intensity possible. The intensity of the cavitation at each limit Is described, including a brief discussion of how each level of cavitation influences the valve and system. Examples are included to demonstrate how to apply the method, including making both size and pressure scale effects corrections. Methods of controlling cavitation are discussed providing information on various techniques which can be used to design a new system or modify an existing one so it can operate at a desired level of cavitation

  1. Wall stress on ascending thoracic aortic aneurysms with bicuspid compared with tricuspid aortic valve.

    Science.gov (United States)

    Xuan, Yue; Wang, Zhongjie; Liu, Raymond; Haraldsson, Henrik; Hope, Michael D; Saloner, David A; Guccione, Julius M; Ge, Liang; Tseng, Elaine

    2018-03-08

    Guidelines for repair of bicuspid aortic valve-associated ascending thoracic aortic aneurysms have been changing, most recently to the same criteria as tricuspid aortic valve-ascending thoracic aortic aneurysms. Rupture/dissection occurs when wall stress exceeds wall strength. Recent studies suggest similar strength of bicuspid aortic valve versus tricuspid aortic valve-ascending thoracic aortic aneurysms; thus, comparative wall stress may better predict dissection in bicuspid aortic valve versus tricuspid aortic valve-ascending thoracic aortic aneurysms. Our aim was to determine whether bicuspid aortic valve-ascending thoracic aortic aneurysms had higher wall stresses than their tricuspid aortic valve counterparts. Patients with bicuspid aortic valve- and tricuspid aortic valve-ascending thoracic aortic aneurysms (bicuspid aortic valve = 17, tricuspid aortic valve = 19) greater than 4.5 cm underwent electrocardiogram-gated computed tomography angiography. Patient-specific 3-dimensional geometry was reconstructed and loaded to systemic pressure after accounting for prestress geometry. Finite element analyses were performed using the LS-DYNA solver (LSTC Inc, Livermore, Calif) with user-defined fiber-embedded material model to determine ascending thoracic aortic aneurysm wall stress. Bicuspid aortic valve-ascending thoracic aortic aneurysms 99th-percentile longitudinal stresses were 280 kPa versus 242 kPa (P = .028) for tricuspid aortic valve-ascending thoracic aortic aneurysms in systole. These stresses did not correlate to diameter for bicuspid aortic valve-ascending thoracic aortic aneurysms (r = -0.004) but had better correlation to tricuspid aortic valve-ascending thoracic aortic aneurysms diameter (r = 0.677). Longitudinal stresses on sinotubular junction were significantly higher in bicuspid aortic valve-ascending thoracic aortic aneurysms than in tricuspid aortic valve-ascending thoracic aortic aneurysms (405 vs 329 kPa, P = .023). Bicuspid

  2. The effect of some hemodynamic factors on the behaviour of the aortic valve

    NARCIS (Netherlands)

    Steenhoven, van A.A.; Veenstra, P.C.; Reneman, R.S.

    1982-01-01

    To test the validity of a theoretical model of aortic valve closure, based upon the observations in a two-dimensional analogue, the effect of some hemodynamic factors on aortic valve behaviour was studied in open-chest dogs. Direct cinematography was used to record aortic valve movements. The ECG,

  3. A Computational Study on Hydrodynamic Torque Coefficients of a Butterfly Valve

    International Nuclear Information System (INIS)

    Lee, Do-Hwan; Park, Sung-Keun; Kang, Shin-Chul; Kim, Dae-Woong; Park, Ju-Yeop

    2007-01-01

    Butterfly valves have been widely used for on-off or control purposes in the process industry, since they provide quick opening and closing operation and good flow control characteristics. For the evaluation of the adequacy of valve operability and the actuator sizing, the required torque estimation is necessary. Since the principal contributing component of the require torque in the mid-stroke position is hydrodynamic torque, it is necessary to predict the torque properly under the actual flow conditions. The research on the prediction of the valve performance was led by EPRI (Electric Power Research Institute) in early 1990s. A performance prediction model was developed based on the experimental results and the free-streamline analysis by Sarpkaya. Recently, Kalsi Engineering carried out extended tests and developed the improved model. Variation of disk geometries and upstream flow conditions were tried to obtain accurate hydrodynamic torque coefficients. However, since the model is only commercially available, a general method to obtain hydrodynamic torque for butterfly valves is called for

  4. Butterfly valve torque prediction methodology

    International Nuclear Information System (INIS)

    Eldiwany, B.H.; Sharma, V.; Kalsi, M.S.; Wolfe, K.

    1994-01-01

    As part of the Motor-Operated Valve (MOV) Performance Prediction Program, the Electric Power Research Institute has sponsored the development of methodologies for predicting thrust and torque requirements of gate, globe, and butterfly MOVs. This paper presents the methodology that will be used by utilities to calculate the dynamic torque requirements for butterfly valves. The total dynamic torque at any disc position is the sum of the hydrodynamic torque, bearing torque (which is induced by the hydrodynamic force), as well as other small torque components (such as packing torque). The hydrodynamic torque on the valve disc, caused by the fluid flow through the valve, depends on the disc angle, flow velocity, upstream flow disturbances, disc shape, and the disc aspect ratio. The butterfly valve model provides sets of nondimensional flow and torque coefficients that can be used to predict flow rate and hydrodynamic torque throughout the disc stroke and to calculate the required actuation torque and the maximum transmitted torque throughout the opening and closing stroke. The scope of the model includes symmetric and nonsymmetric discs of different shapes and aspects ratios in compressible and incompressible fluid applications under both choked and nonchoked flow conditions. The model features were validated against test data from a comprehensive flowloop and in situ test program. These tests were designed to systematically address the effect of the following parameters on the required torque: valve size, disc shapes and disc aspect ratios, upstream elbow orientation and its proximity, and flow conditions. The applicability of the nondimensional coefficients to valves of different sizes was validated by performing tests on 42-in. valve and a precisely scaled 6-in. model. The butterfly valve model torque predictions were found to bound test data from the flow-loop and in situ testing, as shown in the examples provided in this paper

  5. An HARQ scheme with antenna switching for V-BLAST system

    Directory of Open Access Journals (Sweden)

    Bonghoe Kim

    2004-12-01

    Full Text Available Bell-labs layered space-time (BLAST achieves high spectral efficiency in rich scattering environments by transmitting independent data streams via each transmit antenna. However, this high spectral efficiency is significantly reduced if the signals ate the receiver go through correlated channels. In this paper, we propose a hybrid automatic request (HARQ scheme to alleviate the adverse effect of the channel correlation by simply switching the transmission in retransmission. With the proposed scheme, we can achieve significant improvement over the correlated channels with negligible complexity increase.

  6. Missed aortic valve endocarditis resulting in complete atrioventricular block and redo mechanical valve replacement.

    Science.gov (United States)

    Harky, Amer; Garner, Megan; Popa, Miruna; Shipolini, Alex

    2017-08-03

    Infective endocarditis is a rare disease associated with high morbidity and mortality. As a result, early diagnosis and prompt antibiotic treatment with or without surgical intervention is crucial in the management of such condition.We report a case of missed infective endocarditis of the aortic valve. The patient underwent mechanical aortic valve replacement, with the native valve being sent for histopathological examination. On re-admission 16 months later, he presented with syncope, shortness of breathing and complete heart block. On review of the histopathology of native aortic valve, endocarditis was identified which had not been acted on. The patient underwent redo aortic valve replacement for severe aortic regurgitation.We highlight the importance of following up histopathological results as well as the need for multidisciplinary treatment of endocarditis with a combination of surgical and antibiotic therapy. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. First results on GlioLab/GlioSat Precursors Missions

    Science.gov (United States)

    Cappelletti, Chantal; Notarangelo, Angelo; Demoss, Darrin; Carella, Massimo

    2012-07-01

    Since 2009 GAUSS group is involved in a joint collaboration with Morehead State University (MSU) Space Science Center and IRCCS Casa Sollievo della Sofferenza (CSS) research labs with the aim to design a biomedical project in order to investigate if the combined effects of microgravity conditions and ionizing radiation increase or decrease the survival rate of cancer cells. The biological sample consists of Glioblastoma cancer cell line ANGM-CSS. Glioblastoma is a kind of cancer that can be treated after surgery only by radiotherapy using ionizing radiation. This treatment, anyway, results in a very low survival rate. This project uses different university space platforms: a CubeLab, named GlioLab, on board the International Space Station and the university microsatellite UniSat-5 designed by GAUSS. In addition a GlioLab/GlioSat precursor experiment has already flown two times with the Space Shuttle during the missions STS-134 and STS-135. The phase 0 or the precursor of GlioLab uses a COTS system, named Liquid Mixing Apparatus (LMA), to board the biological samples inside the Space Shuttle for thirty day . The LMA allows to board liquids inside a vial but is not equipped with environment control system. After landing the samples were investigated by researchers at CSS in Italy and at MSU in Kentucky. This paper deals with the experimental set up and the results obtained during the STS-134 and STS-135 missions and with the new evidences on the behavior of this kind of cancer. In particular the results obtained on the DNA analysis give a confirmation of the original idea of GLioLab/Gliosat project justifying the development of the two systems.

  8. Study on high reliability safety valve for railway vehicle

    Science.gov (United States)

    Zhang, Xuan; Chen, Ruikun; Zhang, Shixi; Xu, BuDu

    2017-09-01

    Now, the realization of most of the functions of the railway vehicles rely on compressed air, so the demand for compressed air is growing higher and higher. This safety valve is a protection device for pressure limitation and pressure relief in an air supply system of railway vehicles. I am going to introduce the structure, operating principle, research and development process of the safety valve designed by our company in this document.

  9. Valve assembly having remotely replaceable bearings

    International Nuclear Information System (INIS)

    Johnson, E.R.; Tanner, D.E.

    1980-01-01

    A valve assembly having remotely replaceable bearings is disclosed wherein a valve disc is supported within a flow duct for rotation about a pair of axially aligned bearings, one of which is carried by a spindle received within a diametral bore in the valve disc, and the other of which is carried by a bearing support block releasably mounted on the duct circumferentially of an annular collar on the valve disc coaxial with its diametrical bore. The spindle and bearing support block are adapted for remote removal to facilitate servicing or replacement of the valve disc support bearings

  10. Controlling the cavitation phenomenon of evolution on a butterfly valve

    International Nuclear Information System (INIS)

    Baran, G; Safta, C A; Catana, I; Magheti, I; Savu, M

    2010-01-01

    Development of the phenomenon of cavitation in cavitation behavior requires knowledge of both plant and equipment working in the facility. This paper presents a diagram of cavitational behavior for a butterfly valve with a diameter of 100 mm at various openings, which was experimentally built. We proposed seven stages of evolution of the phenomenon of cavitation in the case of a butterfly valve. All these phases are characterized by pressure drop, noise and vibration at various flow rates and flow sections through the valve. The level of noise and vibration for the seven stages of development of the phenomenon of cavitation were measured simultaneously. The experimental measurements were comprised in a knowledge database used in training of a neural network of a neural flow controller that maintains flow rate constantly in the facility by changing the opening butterfly valve. A fuzzy position controller is used to access the valve open. This is the method proposed to provide operational supervision outside the cavitation for a butterfly valve.

  11. Controlling the cavitation phenomenon of evolution on a butterfly valve

    Energy Technology Data Exchange (ETDEWEB)

    Baran, G; Safta, C A [Department of Hydraulic and Hydraulic Machineries, University Politehnica of Bucharest, 313 Splaiul Independentei, Bucharest, 060042 (Romania); Catana, I [Department of Control and Computer Science, University Politehnica of Bucharest (Romania); Magheti, I; Savu, M, E-mail: baran_gheorghe@yahoo.co.u [Department of Mechanical Engineering, University Politehnica of Bucharest (Romania)

    2010-08-15

    Development of the phenomenon of cavitation in cavitation behavior requires knowledge of both plant and equipment working in the facility. This paper presents a diagram of cavitational behavior for a butterfly valve with a diameter of 100 mm at various openings, which was experimentally built. We proposed seven stages of evolution of the phenomenon of cavitation in the case of a butterfly valve. All these phases are characterized by pressure drop, noise and vibration at various flow rates and flow sections through the valve. The level of noise and vibration for the seven stages of development of the phenomenon of cavitation were measured simultaneously. The experimental measurements were comprised in a knowledge database used in training of a neural network of a neural flow controller that maintains flow rate constantly in the facility by changing the opening butterfly valve. A fuzzy position controller is used to access the valve open. This is the method proposed to provide operational supervision outside the cavitation for a butterfly valve.

  12. Numerical Investigation of Injection Timing Influence on Fuel Slip and Influence of Compression Ratio on Knock Occurrence in Conventional Dual Fuel Engine

    Directory of Open Access Journals (Sweden)

    Mario Sremec

    2017-12-01

    Full Text Available Compressed natural gas can be used in diesel engine with great benefits, but because of its low reactivity it is usually used in a so called dual fuel combustion process. Optimal parameters for dual fuel engines are not yet investigated thoroughly which is the motivation for this work. In this work, a numerical study performed in a cycle simulation tool (AVL Boost v2013 on the influence of different injection timings on fuel slip into exhaust and influence of compression ratio on knock phenomena in port injected dual fuel engine was conducted. The introduction of natural gas into the intake port of a diesel engine usually results in some fuel slipping into the exhaust port due to valve overlap. By analysing the simulation results, the injection strategy that significantly decreases the natural gas slip is defined. The knock occurrence study showed that the highest allowed compression ratio that will result in knock free operation of the presented engine is 18 for ambient intake condition, while for charged intake conditions the compression ratio should be lowered to 16.

  13. Inverse spin-valve effect in nanoscale Si-based spin-valve devices

    Science.gov (United States)

    Hiep, Duong Dinh; Tanaka, Masaaki; Hai, Pham Nam

    2017-12-01

    We investigated the spin-valve effect in nano-scale silicon (Si)-based spin-valve devices using a Fe/MgO/Ge spin injector/detector deposited on Si by molecular beam epitaxy. For a device with a 20 nm Si channel, we observed clear magnetoresistance up to 3% at low temperature when a magnetic field was applied in the film plane along the Si channel transport direction. A large spin-dependent output voltage of 20 mV was observed at a bias voltage of 0.9 V at 15 K, which is among the highest values in lateral spin-valve devices reported so far. Furthermore, we observed that the sign of the spin-valve effect is reversed at low temperatures, suggesting the possibility of a spin-blockade effect of defect states in the MgO/Ge tunneling barrier.

  14. Aortic valve surgery - open

    Science.gov (United States)

    ... gov/ency/article/007408.htm Aortic valve surgery - open To use the sharing features on this page, ... separates the heart and aorta. The aortic valve opens so blood can flow out. It then closes ...

  15. Influence of narrow fuel spray angle and split injection strategies on combustion efficiency and engine performance in a common rail direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Raouf Mobasheri

    2017-03-01

    Full Text Available Direct injection diesel engines have been widely used in transportation and stationary power systems because of their inherent high thermal efficiency. On the other hand, emission regulations such as NOx and particulates have become more stringent from the standpoint of preserving the environment in recent years. In this study, previous results of multiple injection strategies have been further investigated to analyze the effects of narrow fuel spray angle on optimum multiple injection schemes in a heavy duty common rail direct injection diesel engine. An advanced computational fluid dynamics simulation has been carried out on a Caterpillar 3401 diesel engine for a conventional part load condition in 1600 r/min at two exhaust gas recirculation rates. A good agreement of calculated and measured in-cylinder pressure, heat release rate and pollutant formation trends was obtained under various operating points. Three different included spray angles have been studied in comparison with the traditional spray injection angle. The results show that spray targeting is very effective for controlling the in-cylinder mixture distributions especially when it accompanied with various injection strategies. It was found that the optimum engine performance for simultaneous reduction of soot and NOx emissions was achieved with 105° included spray angle along with an optimized split injection strategy. The results show, in this case, the fuel spray impinges at the edge of the piston bowl and a counterclockwise flow motion is generated that pushes mixture toward the center of the piston bowl.

  16. Mitral Valve Prolapse

    Science.gov (United States)

    Mitral valve prolapse (MVP) occurs when one of your heart's valves doesn't work properly. The flaps of the valve are "floppy" and ... to run in families. Most of the time, MVP doesn't cause any problems. Rarely, blood can ...

  17. Are Virtual Labs as Effective as Hands-on Labs for Undergraduate Physics? A Comparative Study at Two Major Universities

    Science.gov (United States)

    Darrah, Marjorie; Humbert, Roxann; Finstein, Jeanne; Simon, Marllin; Hopkins, John

    2014-01-01

    Most physics professors would agree that the lab experiences students have in introductory physics are central to the learning of the concepts in the course. It is also true that these physics labs require time and money for upkeep, not to mention the hours spent setting up and taking down labs. Virtual physics lab experiences can provide an…

  18. Controlling the efficiency of spin injection into graphene by carrier drift

    NARCIS (Netherlands)

    Jozsa, C.; Popinciuc, M.; Tombros, N.; Jonkman, H. T.; van Wees, B. J.

    Electrical spin injection from ferromagnetic metals into graphene is hindered by the impedance mismatch between the two materials. This problem can be reduced by the introduction of a thin tunnel barrier at the interface. We present room-temperature nonlocal spin valve measurements in

  19. Fairchild Stratos Division's Type II prototype lockhopper valve: METC Prototype Test Valve No. F-1 prototype lockhopper valve-testing and development project. Static test report

    Energy Technology Data Exchange (ETDEWEB)

    Goff, D. R.; Cutright, R. L.; Griffith, R. A.; Loomis, R. B.; Maxfield, D. A.; Moritz, R. S.

    1981-10-01

    METC Prototype Test Valve No. F-1 is a hybrid design, based on a segmented ball termed a visor valve, developed and manufactured by Fairchild Stratos Division under contract to the Department of Energy. The valve uses a visor arm that rotates into position and then translates to seal. This valve conditionally completed static testing at METC with clean gas to pressures of 1600 psig and internal valve temperatures to 600/sup 0/F. External leakage was excessive due to leakage through the stuffing box, purge fittings, external bolts, and other assemblies. The stuffing box was repacked several times and redesigned midway through the testing, but external leakage was still excessive. Internal leakage through the seats, except for a few anomalies, was very low throughout the 2409 cycles of testing. As shown by the low internal leakage, the visor valve concept appears to have potential for lock-hopper valve applications. The problems that are present with METC Prototype Test Valve No. F-1 are in the seals, which are equivalent to the shaft and bonnet seals in standard valve designs. The operating conditions at these seals are well within the capabilities of available seal designs and materials. Further engineering and minor modifications should be able to resolve the problems identified during static testing.

  20. Effective Pneumatic Scheme and Control Strategy of a Climbing Robot for Class Wall Cleaning on High-rise Buildings

    Directory of Open Access Journals (Sweden)

    Guanghua Zong

    2008-11-01

    Full Text Available A new kind of pneumatic climbing robot is presented to meet the requirements of glass-wall cleaning for high-rise buildings, which is totally actuated by pneumatic cylinders and attached to the glass wall with vacuum suckers. Using the pneumatic actuators the climbing robot can be made lightweight and dexterous. At the same time the movement driven by pneumatic actuators has the characteristic of passive compliance. In order to solve the problems of high speed movement for the Y cylinder and precise position control of the X cylinder, the applied pneumatic schemes of X and Y cylinders are employed to drive the high-speed on-off solenoid valves and an ordinary valve to adjust the air-flow and pressure to the cylinders. Furthermore a method of segment and variable bang-bang controller is proposed to implement the accurate control of the position servo system for the X cylinder during the sideways movement. Testing results show that the novel approach can effectively improve the control quality. This cleaning robot can meet the requirements of realization.

  1. Effective Pneumatic Scheme and Control Strategy of a Climbing Robot for Class Wall Cleaning on High-rise Buildings

    Directory of Open Access Journals (Sweden)

    Houxiang Zhang

    2006-06-01

    Full Text Available A new kind of pneumatic climbing robot is presented to meet the requirements of glass-wall cleaning for high-rise buildings, which is totally actuated by pneumatic cylinders and attached to the glass wall with vacuum suckers. Using the pneumatic actuators the climbing robot can be made lightweight and dexterous. At the same time the movement driven by pneumatic actuators has the characteristic of passive compliance. In order to solve the problems of high speed movement for the Y cylinder and precise position control of the X cylinder, the applied pneumatic schemes of X and Y cylinders are employed to drive the high-speed on-off solenoid valves and an ordinary valve to adjust the air-flow and pressure to the cylinders. Furthermore a method of segment and variable bang-bang controller is proposed to implement the accurate control of the position servo system for the X cylinder during the sideways movement. Testing results show that the novel approach can effectively improve the control quality. This cleaning robot can meet the requirements of realization.

  2. Small sodium valve design and operating experience

    International Nuclear Information System (INIS)

    McGough, C.B.

    1974-01-01

    The United States Liquid Metal Fast Breeder Reactor program (LMFBR) includes an extensive program devoted to the development of small sodium valves. This program is now focused on the development and production of valves for the Fast Flux Test Facility (FFTF) now under construction near Richland, Washington. Other AEC support facilities, such as various test loops located at the Liquid Metal Engineering Center (LMEC), Los Angeles, California, and at the Hanford Engineering Development Laboratory (HEDL), Richland, Washington, also have significant requirements for small sodium valves, and valves similar in design to the FFTF valves are being supplied to these AEC laboratories for use in their critical test installations. A principal motivation for these valve programs, beyond the immediate need to provide high-reliability valves for FFTF and the support facilities, is the necessity to develop small valve technology for the Clinch River Breeder Reactor Plant (CRBRP). FFTF small sodium valve design and development experience will be directly applied to the CRBRP program. Various test programs have been, and are being, conducted to verify the performance and integrity of the FFTF valves, and to uncover any potential problems so that they can be corrected before the valves are placed in service in FFTF. The principal small sodium valve designs being utilized in current U.S. programs, the test and operational experience obtained to date on them, problems uncovered, and future development and testing efforts being planned are reviewed. The standards and requirements to which the valves are being designed and fabricated, the valve designs in current use, valve operators, test and operating experience, and future valve development plans are summarized. (U.S.)

  3. Maximizing prosthetic valve size with the Top Hat supra-annular aortic valve

    DEFF Research Database (Denmark)

    Aagaard, Jan; Geha, Alexander S.

    2007-01-01

    BACKGROUND AND AIM OF THE STUDY: The CarboMedics Top Hat supra-annular aortic valve allows a one-size (and often two-size) increase over the standard intra-annular valve. This advantage should minimize the risk of patient-prosthesis mismatch, where the effective prosthetic valve orifice area....... This study evaluates the authors' clinical experience with Top Hat supra-annular aortic valve size selection, and the technical aspects of implantation. METHODS: Between January 1999 and October 2005, a total of 251 consecutive patients underwent 252 aortic valve replacements with Top Hat supra...... required unplanned coronary bypass, and 30-day mortality was 2.0% (5/251), indicating a good safety profile for the valves implanted in this series. CONCLUSION: The general distribution of implant sizes in the US indicates that cardiac surgeons may be under-sizing the Top Hat supra-annular aortic valve...

  4. Comparative study of oxihydrogen injection in turbocharged compression ignition engines

    Science.gov (United States)

    Barna, L.; Lelea, D.

    2018-01-01

    This document proposes for analysis, comparative study of the turbocharged, compression-ignition engine, equipped with EGR valve, operation in case the injection in intake manifold thereof a maximum flow rate of 1l/min oxyhydrogen resulted of water electrolysis, at two different injection pressures, namely 100 Pa and 3000 Pa, from the point of view of flue gas opacity. We found a substantial reduction of flue gas opacity in both cases compared to conventional diesel operation, but in different proportions.

  5. Impact of pannus formation on hemodynamic dysfunction of prosthetic aortic valve: pannus extent and its relationship to prosthetic valve motion and degree of stenosis.

    Science.gov (United States)

    Koo, Hyun Jung; Ha, Hojin; Kang, Joon-Won; Kim, Jeong A; Song, Jae-Kwan; Kim, Hwa Jung; Lim, Tae-Hwan; Yang, Dong Hyun

    2018-02-19

    Although pannus is an important cause of prosthetic valve dysfunction, the minimum pannus size that can induce hemodynamic dysfunction has not yet been determined. This study investigated the correlation between the limitation of motion (LOM) of the prosthetic valve and pannus extent and determined the pannus extent that could induce severe aortic stenosis. This study included 49 patients who underwent mechanical aortic valve replacement (AVR) and showed pannus on cardiac computed tomography (CT). Pannus width, ratio of pannus width to valve diameter, pannus area, effective orifice area, encroachment ratio by pannus, pannus involvement angle and percent LOM of mechanical valves were evaluated on CT. Transvalvular peak velocity (TPV) and transvalvular pressure gradient (TPG) were measured by transesophageal echocardiography to determine the degree of aortic stenosis. The relationship between percent LOM of the prosthetic valve and pannus extent and the cut-off of pannus extent required to induce severe aortic stenosis were evaluated. The mean interval between AVR and pannus formation was 11 years and was longer in patients with than without severe aortic stenosis (14.0 vs. 7.3 years). On CT, the percent LOM of the prosthetic valve was significantly associated with the extent of pannus only in patients with pannus involvement angle > 180° (r = 0.55-0.68, P Pannus width, effective orifice area, and encroachment ratio were significantly associated with increased TPV and TPG (r = 0.51-0.62, P Pannus width > 3.5 mm, pannus width/valve inner diameter > 0.15, and encroachment ratio > 0.14 were significantly associated with severe aortic stenosis (TPV > 4 m/s; mean TPG ≥ 35 mmHg), with c-indices of 0.74-079 (P pannus extent parameters are good indicators of significant hemodynamic changes with increased TPV and mean TPG.

  6. Numerical simulation on flow field of nuclear safety grade 2 single-seat pneumatic diaphragm control valve

    International Nuclear Information System (INIS)

    Zhong Yun; Zhang Jige; Wang Dezhong; Shi Jianzhong

    2010-01-01

    The Computational Fluid Dynamics (CFD) method is employed to simulate numerically the steady flow and transient flow under variable openings of the nuclear safety grade 2 single-seat pneumatic diaphragm control valve, which is a sleeve valve. The steady simulations under rated condition tells that there is a large amount of vortex in the valve seat necking and around the valve cone, which leads to a much greater flow impact on the head of the valve cone and uneven pressure distribution on spool face. More consideration should be taken on the characteristics of the valve cone accordingly, when designing a valve of this kind. Then the transient flow under 100% and 40% openings is simulated numerically on the basis of steady simulations. The pulsation of the pressure magnitude at the points with large vorticity, in the valve seat necking and around the valve cone, is monitored. The main pulsation frequencies differ from the low natural frequencies of the model, which means that it is safe from leading to structural resonance. (authors)

  7. Identification Trouble Valve Destruction On Hidroulic Press Breaker Model MPV.1620 ''DAVY-ITALlA''

    International Nuclear Information System (INIS)

    Paidjo; Pinitojo; Hafid, Abdul; Musa, Tamsil; Sagino

    2000-01-01

    To 'utility instalation examination and operation test, how long capacity to appear on the severaly valve.Torned valve on hidroulic press breaker is three sample: The first directional control valve type. 4 WE 10 H 32 / CE 24 N 9 Z4. Coil: Hydronorma GZ . 63-4 -A. 476. 24VDC, 1,46 A. For two and three is boll spriral spring valve Process operation explanation a short is oil lubrication to pump from reception center tank in to directional control valve then distributed. anything to boll spiral spring valve continued to hidroulic piston for pressed the sample job / plate thickness maximum = 16 mm with to different corner model, maximum press = 160 bar.Hindrance principle is to utilize operation test, hidroulic piston movement botom-up is smothly 0 whereas botom-down went no smoothly. Operation test property to utilize repeated resutls of the aqua. Hindrance / broken the fist estimate that the hole oil works at the directional control valve to threadbore hidroulic piston, wherever preasure not maximum to manometer indicate = 0 bar, at the moment to utilize operation. The second on the boll spiral spring valve no maximum, then to utilize servise detail and to utilize operation test againt. The results from operation test to concende destruction at the boll spiral spring valve, wherever after over houling to appear boll massive place position possessed spring wire> 3 mm to twist of couse preasure to press hidroulic piston no maximum because from leaking

  8. Check valves aging assessment

    International Nuclear Information System (INIS)

    Haynes, H.D.

    1991-01-01

    In support of the NRC Nuclear Plant Aging Research (NPAR) program, the Oak Ridge National Laboratory (ORNL) has carried out an assessment of several check value diagnostic monitoring methods, in particular, those based on measurements of acoustic emission, ultrasonics, and magnetic flux. The evaluations have focussed on the capabilities of each method to provide information useful in determining check valve aging and service wear effects, check valve failures, and undesirable operating modes. This paper describes the benefits and limitations associated with each method and includes recent laboratory and field test data, including data obtained from the vendors who recently participated in a comprehensive series of tests directed by a nuclear industry users group. In addition, as part of the ORNL Advanced Diagnostic Engineering Research and Development Center (ADEC), two novel nonintrusive monitoring methods were developed that provide several unique capabilities. These methods, based on external ac- an dc-magnetic monitoring are also described. None of the examined methods could, by themselves, monitor both the instantaneous position and motion of check valve internals and valve leakage; however, the combination of acoustic emission monitoring with one of the other methods provides the means to determine vital check valve operational information

  9. Simulation study to determine the feasibility of injecting hydrogen sulfide, carbon dioxide and nitrogen gas injection to improve gas and oil recovery oil-rim reservoir

    Science.gov (United States)

    Eid, Mohamed El Gohary

    This study is combining two important and complicated processes; Enhanced Oil Recovery, EOR, from the oil rim and Enhanced Gas Recovery, EGR from the gas cap using nonhydrocarbon injection gases. EOR is proven technology that is continuously evolving to meet increased demand and oil production and desire to augment oil reserves. On the other hand, the rapid growth of the industrial and urban development has generated an unprecedented power demand, particularly during summer months. The required gas supplies to meet this demand are being stretched. To free up gas supply, alternative injectants to hydrocarbon gas are being reviewed to support reservoir pressure and maximize oil and gas recovery in oil rim reservoirs. In this study, a multi layered heterogeneous gas reservoir with an oil rim was selected to identify the most optimized development plan for maximum oil and gas recovery. The integrated reservoir characterization model and the pertinent transformed reservoir simulation history matched model were quality assured and quality checked. The development scheme is identified, in which the pattern and completion of the wells are optimized to best adapt to the heterogeneity of the reservoir. Lateral and maximum block contact holes will be investigated. The non-hydrocarbon gases considered for this study are hydrogen sulphide, carbon dioxide and nitrogen, utilized to investigate miscible and immiscible EOR processes. In November 2010, re-vaporization study, was completed successfully, the first in the UAE, with an ultimate objective is to examine the gas and condensate production in gas reservoir using non hydrocarbon gases. Field development options and proces schemes as well as reservoir management and long term business plans including phases of implementation will be identified and assured. The development option that maximizes the ultimate recovery factor will be evaluated and selected. The study achieved satisfactory results in integrating gas and oil

  10. Combining selection valve and mixing chamber for nanoflow gradient generation: Toward developing a liquid chromatography cartridge coupled with mass spectrometer for protein and peptide analysis.

    Science.gov (United States)

    Chen, Apeng; Lu, Joann J; Gu, Congying; Zhang, Min; Lynch, Kyle B; Liu, Shaorong

    2015-08-05

    Toward developing a micro HPLC cartridge, we have recently built a high-pressure electroosmotic pump (EOP). However, we do not recommend people to use this pump to deliver an organic solvent directly, because it often makes the pump rate unstable. We have experimented several approaches to address this issue, but none of them are satisfactory. Here, we develop an innovative approach to address this issue. We first create an abruption (a dead-volume) within a fluid conduit. We then utilize an EOP to withdraw, via a selection valve, a train of eluent solutions having decreasing eluting power into the fluid conduit. When these solutions are further aspirated through the dead-volume, these solutions are partially mixed, smoothening concentration transitions between two adjacent eluent solutions. As these solutions are pushed back, through the dead-volume again, a smooth gradient profile is formed. In this work, we characterize this scheme for gradient formation, and we incorporate this approach with a high-pressure EOP, a nanoliter injection valve, and a capillary column, yielding a micro HPLC system. We then couple this micro HPLC with an electrospray ionization - mass spectrometer for peptide and protein separations and identifications. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Double-reed exhaust valve engine

    Science.gov (United States)

    Bennett, Charles L.

    2015-06-30

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a double reed outlet valve for controlling the flow of low-pressure working fluid out of the engine. The double reed provides a stronger force resisting closure of the outlet valve than the force tending to open the outlet valve. The double reed valve enables engine operation at relatively higher torque and lower efficiency at low speed, with lower torque, but higher efficiency at high speed.

  12. Lab-on-a-Chip Pathogen Sensors for Food Safety

    Directory of Open Access Journals (Sweden)

    Bumsang Kim

    2012-08-01

    Full Text Available There have been a number of cases of foodborne illness among humans that are caused by pathogens such as Escherichia coli O157:H7, Salmonella typhimurium, etc. The current practices to detect such pathogenic agents are cell culturing, immunoassays, or polymerase chain reactions (PCRs. These methods are essentially laboratory-based methods that are not at all real-time and thus unavailable for early-monitoring of such pathogens. They are also very difficult to implement in the field. Lab-on-a-chip biosensors, however, have a strong potential to be used in the field since they can be miniaturized and automated; they are also potentially fast and very sensitive. These lab-on-a-chip biosensors can detect pathogens in farms, packaging/processing facilities, delivery/distribution systems, and at the consumer level. There are still several issues to be resolved before applying these lab-on-a-chip sensors to field applications, including the pre-treatment of a sample, proper storage of reagents, full integration into a battery-powered system, and demonstration of very high sensitivity, which are addressed in this review article. Several different types of lab-on-a-chip biosensors, including immunoassay- and PCR-based, have been developed and tested for detecting foodborne pathogens. Their assay performance, including detection limit and assay time, are also summarized. Finally, the use of optical fibers or optical waveguide is discussed as a means to improve the portability and sensitivity of lab-on-a-chip pathogen sensors.

  13. Proceedings of the symposium on inservice testing of pumps and valves

    International Nuclear Information System (INIS)

    1990-10-01

    The 1990 Symposium on Inservice Testing of Pumps and Valves, jointly sponsored by the Board on Nuclear Codes and Standards of the American Society of Mechanical Engineers and by the Nuclear Regulatory Commission, provided a forum for the discussion of current programs and methods for inservice testing at nuclear power plants. The symposium also provided an opportunity to discuss the need to improve inservice testing in order to ensure the reliable performance of pumps and valves. The participation of industry representatives, regulators, and consultants resulted in the discussion of a broad spectrum of ideas and perspectives regarding the improvement of inservice testing of pumps and valves at nuclear power plants

  14. Proceedings of the symposium on inservice testing of pumps and valves

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    The 1990 Symposium on Inservice Testing of Pumps and Valves, jointly sponsored by the Board on Nuclear Codes and Standards of the American Society of Mechanical Engineers and by the Nuclear Regulatory Commission, provided a forum for the discussion of current programs and methods for inservice testing at nuclear power plants. The symposium also provided an opportunity to discuss the need to improve inservice testing in order to ensure the reliable performance of pumps and valves. The participation of industry representatives, regulators, and consultants resulted in the discussion of a broad spectrum of ideas and perspectives regarding the improvement of inservice testing of pumps and valves at nuclear power plants.

  15. Heart Valve Diseases

    Science.gov (United States)

    Your heart has four valves. Normally, these valves open to let blood flow through or out of your heart, and then shut to keep it from flowing ... close tightly. It's one of the most common heart valve conditions. Sometimes it causes regurgitation. Stenosis - when ...

  16. Design And Analysis Of A Camless Valve Mechanism For I.C Engines Using Rotary Disc Valves

    Directory of Open Access Journals (Sweden)

    Vivek Jitendra Panchal

    2017-09-01

    Full Text Available It is the object of the presented paper to provide an electromechanical rotary valve actuating system for opening and closing valves of an internal combustion engine capable of separately controlling both the inlet and exhaust valve operations of each individual cylinder in a multi-cylinder engine. This indicates that only one valve will be required for each cylinder of the engine. Previously published versions of this concept require a separate valve for intake and exhaust in each cylinder. The system provides an alternative to the camshaft assembly in an attempt to overcome the limitations and inadequacies inevitably posed by a fully mechanical system. The prototype development is approached in a theoretical manner beginning with the conceptualization and design of a rotating disk with a notches and corresponding closure surfaces to open and close the flow path. The actuated disk and notch design is then refined and followed by the design of an inlet and exhaust manifold to correspond to the valve design and the theorizing and design of a sealing gasket. The rotating speed of the valve is determined by a general idling speed and can be varied to provide variable valve timing with the motor. The final assembly eliminates a majority of the moving parts currently used in camshaft systems like the cam camshaft rocker arm push rod and springs and results in a significantly lighter valve actuation system. By eliminating the translatory motion of valves the problem of valves slamming on the valve seats at high velocities is eliminated thus greatly reducing engine wear.

  17. Apparatus utilized for injecting fluids into earth formations penetrated by a well

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, H

    1967-04-06

    An apparatus useful for injecting fluid into earth formations penetrated by a well consists of a tubular element which is inserted into the well. A number of axially spaced parts above the tubular element are capable of packing off chosen portions of the well casing. Flow passages in the tubular element cooperate with the packer-off, spaced parts, connecting the inside of the tubular element with the well casing. Check valves close each of the passages to fluid flow. Each check valve is sensitive to a predetermined pressure differential inside the tubular element and to the pressure on the packed-off portion of the well casing outside the tubular element, in order to control the passageway. (9 claims)

  18. [Ahmed valve in glaucoma surgery].

    Science.gov (United States)

    Bikbov, M M; Khusnitdinov, I I

    This is a review on Ahmed valve application in glaucoma surgery. It contains, in particular, data on the Ahmed valve efficiency, results of experimental and histological studies of filtering bleb encapsulation, examines the use of antimetabolites and anti-VEGF agents, and discusses implantation techniques. The current appraisal of antimetabolites delivery systems integrated into the Ahmed valve is presented. Various complications encountered in practice and preventive measures are also covered.

  19. Valve monitoring ITI-MOVATS

    International Nuclear Information System (INIS)

    Moureau, S.

    1993-01-01

    ITI-MOVATS provides a wide range of test devices to monitor the performance of valves: motor operated gate or globe valve, butterfly valve, air operated valve, and check valve. The ITI-MOVATS testing equipment is used in the following three areas: actuator setup/baseline testing, periodic/post-maintenance testing, and differential pressure testing. The parameters typically measured with the MOVATS diagnostic system as well as the devices used to measure them are described. (Z.S.)

  20. The nordic aortic valve intervention (NOTION) trial comparing transcatheter versus surgical valve implantation

    DEFF Research Database (Denmark)

    Thyregod, Hans Gustav; Søndergaard, Lars; Ihlemann, Nikolaj

    2013-01-01

    Degenerative aortic valve (AV) stenosis is the most prevalent heart valve disease in the western world. Surgical aortic valve replacement (SAVR) has until recently been the standard of treatment for patients with severe AV stenosis. Whether transcatheter aortic valve implantation (TAVI) can...

  1. Gasoline New Timing and Flux Adjustable Rotary Valve Design (Hereinafter: Rotary Valve

    Directory of Open Access Journals (Sweden)

    Du huiqi

    2016-01-01

    Full Text Available Conventional gasoline engine with an umbrella valve control cylinder intake and exhaust, in order to achieve sealing effect, the valve is driven by the spring force; at the same time, when the cam opens the valve to overcome the spring force acting. Sealing the better, the more power consumed in the engine mechanical losses, the valve mechanism consumes about 30%, which is not a small loss! This article describes a new type of rotary valve is to significantly reduce mechanical losses, so as to achieve energy saving purposes.

  2. Fluid control valves

    International Nuclear Information System (INIS)

    Rankin, J.

    1980-01-01

    A fluid control valve is described in which it is not necessary to insert a hand or a tool into the housing to remove the valve seat. Such a valve is particularly suitable for the control of radioactive fluids since maintenance by remote control is possible. (UK)

  3. What Is Heart Valve Surgery?

    Science.gov (United States)

    ... working correctly. Most valve replacements involve the aortic Tricuspid valve and mitral valves. The aortic valve separates ... where it shouldn’t. This is called incompetence, insufficiency or regurgitation. • Prolapse — mitral valve flaps don’t ...

  4. What Is Heart Valve Disease?

    Science.gov (United States)

    ... and replacing it with a man-made or biological valve. Biological valves are made from pig, cow, or human ... the valve. Man-made valves last longer than biological valves and usually don’t have to be ...

  5. Comparative study between CardiaMed valves (freely floating valve leaflets versus St. Jude Medical (fixed valve leaflets in mitral valve replacement surgery

    Directory of Open Access Journals (Sweden)

    Mostafa Ahmed

    2017-09-01

    Conclusions: CardiaMed freely floating leaflet prostheses showed good hemodynamic characteristics. The prosthesis adequately corrects hemodynamics and is safe and no worse than the St. Jude Medical valve in the mitral valve position.

  6. On discharge from poppet valves: effects of pressure and system dynamics

    Science.gov (United States)

    Winroth, P. M.; Ford, C. L.; Alfredsson, P. H.

    2018-02-01

    Simplified flow models are commonly used to design and optimize internal combustion engine systems. The exhaust valves and ports are modelled as straight pipe flows with a corresponding discharge coefficient. The discharge coefficient is usually determined from steady-flow experiments at low pressure ratios and at fixed valve lifts. The inherent assumptions are that the flow through the valve is insensitive to the pressure ratio and may be considered as quasi-steady. The present study challenges these two assumptions through experiments at varying pressure ratios and by comparing measurements of the discharge coefficient obtained under steady and dynamic conditions. Steady flow experiments were performed in a flow bench, whereas the dynamic measurements were performed on a pressurized, 2 l, fixed volume cylinder with one or two moving valves. In the latter experiments an initial pressure (in the range 300-500 kPa) was established whereafter the valve(s) was opened with a lift profile corresponding to different equivalent engine speeds (in the range 800-1350 rpm). The experiments were only concerned with the blowdown phase, i.e. the initial part of the exhaustion process since no piston was simulated. The results show that the process is neither pressure-ratio independent nor quasi-steady. A measure of the "steadiness" has been defined, relating the relative change in the open flow area of the valve to the relative change of flow conditions in the cylinder, a measure that indicates if the process can be regarded as quasi-steady or not.

  7. A microfluidic timer for timed valving and pumping in centrifugal microfluidics.

    Science.gov (United States)

    Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-03-21

    Accurate timing of microfluidic operations is essential for the automation of complex laboratory workflows, in particular for the supply of sample and reagents. Here we present a new unit operation for timed valving and pumping in centrifugal microfluidics. It is based on temporary storage of pneumatic energy and time delayed sudden release of said energy. The timer is loaded at a relatively higher spinning frequency. The countdown is started by reducing to a relatively lower release frequency, at which the timer is released after a pre-defined delay time. We demonstrate timing for 1) the sequential release of 4 liquids at times of 2.7 s ± 0.2 s, 14.0 s ± 0.5 s, 43.4 s ± 1.0 s and 133.8 s ± 2.3 s, 2) timed valving of typical assay reagents (contact angles 36-78°, viscosities 0.9-5.6 mPa s) and 3) on demand valving of liquids from 4 inlet chambers in any user defined sequence controlled by the spinning protocol. The microfluidic timer is compatible to all wetting properties and viscosities of common assay reagents and does neither require assistive equipment, nor coatings. It can be monolithically integrated into a microfluidic test carrier and is compatible to scalable fabrication technologies such as thermoforming or injection molding.

  8. Experimental and analytical studies on waterhammer generated by the closing of check valves

    International Nuclear Information System (INIS)

    Huet, J.L.; Garcia, J.L.; Coppolani, P.; Ziegler, B.

    1987-01-01

    A double-guillotine rupture on a water line upstream from a check valve generates a severe transient between the check valve and the pressure vessel on the downstream side. Successively following phenomena occur: - decrease then reversal of the flow, - closing of the check valve with impact of the plug on its seat, - waterhammer propagating in the pipe downstream from the check valve. The COMMISARIAT A L'ENERGIE ATOMIQUE (C.E.A.) FRAMATOME and ELECTRICITE DE FRANCE (E.D.F.) have undertaken a joint program in order to: - investigate the behavior uf the check valve in the event of a sudden closure, - evaluate the pressure and flow transient in the line. The program includes: - full scale tests in two loops, CLAUDIA (C.E.A.) and ECLAIR (E.D.F.), - analytical studies in order to qualify the calculation codes. This paper describes the experimental program and presents the analysis results for a benchmark test

  9. Development and Implementation of a New HELIOS Diagnostic using a Fast Piezoelectric Valve on the Prototype Material Plasma Exposure eXperiment

    Science.gov (United States)

    Ray, Holly; Biewer, Theodore; Caneses, Juan; Green, Jonathan; Lindquist, Elizabeth; McQuown, Levon; Schmitz, Oliver

    2017-10-01

    A new helium line-ratio spectral monitoring (HELIOS) diagnostic, using a piezoelectric valve with high duty cycles (on/off times ms), allowing for good background correction, and measured particle flowrates on the order of 1020 particles/second is being implemented on Oak Ridge National Laboratory's (ORNL) Prototype Material Plasma Exposure eXperiment (Proto-MPEX). Built in collaboration with the University of Wisconsin - Madison, the HELIOS diagnostic communicates with a Labview program for controlled bursts of helium into the vessel. The open magnetic geometry of Proto-MPEX is ideal for testing and characterizing a HELIOS diagnostic. The circular cross-section with four ports allows for cross comparison between different diagnostics: 1) Helium injection with the piezoelectric puff valve, 2) HELIOS line-of-sight high-gain observation, 3) scan-able Double Langmuir probe, and 4) HELIOS 2D imaging observation. Electron density and temperature measurements from the various techniques will be compared. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725 and DE-SC00013911.

  10. Face-Sealing Butterfly Valve

    Science.gov (United States)

    Tervo, John N.

    1992-01-01

    Valve plate made to translate as well as rotate. Valve opened and closed by turning shaft and lever. Interactions among lever, spring, valve plate, and face seal cause plate to undergo combination of translation and rotation so valve plate clears seal during parts of opening and closing motions.

  11. Dr. Monaco Examines Lab-on a-Chip

    Science.gov (United States)

    2003-01-01

    Dr. Lisa Monaco, Marshall Space Flight Center's (MSFC's) project scientist for the Lab-on-a-Chip Applications Development (LOCAD) program, examines a lab on a chip. The small dots are actually ports where fluids and chemicals can be mixed or samples can be collected for testing. Tiny channels, only clearly visible under a microscope, form pathways between the ports. Many chemical and biological processes, previously conducted on large pieces of laboratory equipment, can now be performed on these small glass or plastic plates. Monaco and other researchers at MSFC in Huntsville, Alabama, are customizing the chips to be used for many space applications, such as monitoring microbes inside spacecraft and detecting life on other planets. The portable, handheld Lab-on-a Chip Application Development Portable Test System (LOCAD-PTS) made its debut flight aboard Discovery during the STS-116 mission launched December 9, 2006. The system allowed crew members to monitor their environment for problematic contaminants such as yeast, mold, and even E.coli, and salmonella. Once LOCAD-PTS reached the International Space Station (ISS), the Marshall team continued to manage the experiment, monitoring the study from a console in the Payload Operations Center at MSFC. The results of these studies will help NASA researchers refine the technology for future Moon and Mars missions. (NASA/MSFC/D.Stoffer)

  12. Transapical JenaValve in a patient with mechanical mitral valve prosthesis.

    LENUS (Irish Health Repository)

    O' Sullivan, Katie E

    2014-01-29

    We report the first case of transcatheter aortic valve replacement implantation using JenaValve™ in a patient with mechanical mitral valve prosthesis. We believe that the design features of this valve may be particularly suited for use in this setting. © 2014 Wiley Periodicals, Inc.

  13. Development of liquid poison injection system (SDS-2) for 500 MWe PHWRs

    International Nuclear Information System (INIS)

    Nawathe, Shirish; Umashankari, P.; Balakrishnan, Kamala; Mahajan, S.C.; Kakodkar, A.

    1991-01-01

    A secondary shut-down system (SDS-2) in the form of a mecahnism for introducing poison into the moderator of the PHWR is under development in Reactor Engineering Division of BARC. The system, as conceived, consists of a tank containing pressurised helium connected to poison tanks through quick opening solenoid valves. The tanks are connected to horizontal injection tubes in the calandria. On system actuation, gadolinium nitrate solution from the tanks passes to the injection tubes which have a number of holes through which the poison enters the moderator. This report details the development work being done on this poison injection system. An experimental facility was set up to measure the poison jet growth rate and the jet spread after injection, and mathematical models were developed to convert the observed jets into reactivity worth values. A description of the work and the computed results are presented. (author). 21 graphs. , 15 tabs

  14. Study on the Measurement of Valve Leak Rate Using Acoustic Emission Technology

    International Nuclear Information System (INIS)

    Lee, Sang-Guk; Park, Jong-Hyuck; Yoo, Keun-Bae; Lee, Sun-Ki; Hong, Sung-Yull

    2006-01-01

    This study is to estimate the feasibility of acoustic emission(AE) method for the internal leak from the valves. In this study, 4 inch ball water valve leak tests using three different leak path and various leak rates were performed in order to analyze AE properties when leaks arise in valve seat. As a result of leak test for specimens simulated valve seat, we conformed that leak sound amplitude increased in proportion to the increase of leak rate, and leak rates were plotted versus peak acoustic amplitudes recorded within those two narrow frequency bands on each spectrum plot. The resulting plots of leak rate versus peak AE amplitude were the primary basis for determining the feasibility of quantifying leak acoustically. The large amount of data attained also allowed a favorable investigation of the effects of different leak paths, leak rates, pressure differentials and AE sensors on the AE amplitude spectrum. From the experimental results, it was suggested that the AE method for monitoring of leak was feasible. This paper describes quantitative measurements of fluid valve leak rates by the analysis of AE. Experimental apparatus were fabricated to accept a variety of leaking water valves in order to determine what characteristics of AE signal change with leak rate. The data for each valve were generated by varying the leak rate and recording the time averaged amplitude of AE versus frequency. Leak rates were varied by modifying the valve seating surfaces in ways designed to simulate actual defects observed in service. Most of the data analysis involved plotting the leak rate versus signal amplitude at a specific frequency to determine how well the two variables correlate in terms of accuracy, resolution, and repeatability

  15. Integrated lasers for polymer Lab-on-a-Chip systems

    DEFF Research Database (Denmark)

    Mappes, Timo; Vannahme, Christoph; Grosmann, Tobias

    2012-01-01

    We develop optical Lab-on-a-Chips on different platforms for marker-based and label-free biophotonic sensor applications. Our chips are based on polymers and fabricated by mass production technologies to integrate microfluidic channels, optical waveguides and miniaturized lasers.......We develop optical Lab-on-a-Chips on different platforms for marker-based and label-free biophotonic sensor applications. Our chips are based on polymers and fabricated by mass production technologies to integrate microfluidic channels, optical waveguides and miniaturized lasers....

  16. Experimental study on thermal-hydraulic behaviors of a pressure balanced coolant injection system for a passive safety light water reactor JPSR

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Takashi; Watanabe, Hironori; Araya, Fumimasa; Nakajima, Katsutoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Iwamura, Takamichi; Murao, Yoshio

    1998-02-01

    A conceptual design study of a passive safety light water reactor JPSR has been performed at Japan Atomic Energy Research Institute JAERI. A pressure balanced coolant injection experiment has been carried out, with an objective to understand thermal-hydraulic characteristics of a passive coolant injection system which has been considered to be adopted to JPSR. This report summarizes experimental results and data recorded in experiment run performed in FY. 1993 and 1994. Preliminary experiments previously performed are also briefly described. As the results of the experiment, it was found that an initiation of coolant injection was delayed with increase in a subcooling in the pressure balance line. By inserting a separation device which divides the inside of core make-up tank (CMT) into several small compartments, a diffusion of a high temperature region formed just under the water surface was restrained and then a steam condensation was suppressed. A time interval from an uncovery of the pressure balance line to the initiation of the coolant injection was not related by a linear function with a discharge flow rate simulating a loss-of-coolant accident (LOCA) condition. The coolant was injected intermittently by actuation of a trial fabricated passive valve actuated by pressure difference for the present experiment. It was also found that the trial passive valve had difficulties in setting an actuation set point and vibrations noises and some fraction of the coolant was remained in CMT without effective use. A modification was proposed for resolving these problems by introducing an anti-closing mechanism. (author)

  17. Transcatheter mitral valve repair in osteogenesis imperfecta associated mitral valve regurgitation.

    Science.gov (United States)

    van der Kley, Frank; Delgado, Victoria; Ajmone Marsan, Nina; Schalij, Martin J

    2014-08-01

    Osteogenesis imperfecta is associated with increased prevalence of significant mitral valve regurgitation. Surgical mitral valve repair and replacement are feasible but are associated with increased risk of bleeding and dehiscence of implanted valves may occur more frequently. The present case report describes the outcomes of transcatheter mitral valve repair in a patient with osteogenesis imperfecta. A 60 year-old patient with osteogenesis imperfecta and associated symptomatic moderate to severe mitral regurgitation underwent transthoracic echocardiography which showed a nondilated left ventricle with preserved systolic function and moderate to severe mitral regurgitation. On transoesophageal echocardiography the regurgitant jet originated between the anterolateral scallops of the anterior and posterior leaflets (A1-P1). Considering the comorbidities associated with osteogenesis imperfecta the patient was accepted for transcatheter mitral valve repair using the Mitraclip device (Abbott vascular, Menlo, CA). Under fluoroscopy and 3D transoesophageal echocardiography guidance, a Mitraclip device was implanted between the anterolateral and central scallops with significant reduction of mitral regurgitation. The postoperative evolution was uneventful. At one month follow-up, transthoracic echocardiography showed a stable position of the Mitraclip device with no mitral regurgitation. Transcatheter mitral valve repair is feasible and safe in patients with osteogenesis imperfecta and associated symptomatic significant mitral regurgitation. Copyright © 2014 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  18. An update on Lab Rover: A hospital material transporter

    Science.gov (United States)

    Mattaboni, Paul

    1994-01-01

    The development of a hospital material transporter, 'Lab Rover', is described. Conventional material transport now utilizes people power, push carts, pneumatic tubes and tracked vehicles. Hospitals are faced with enormous pressure to reduce operating costs. Cyberotics, Inc. developed an Autonomous Intelligent Vehicle (AIV). This battery operated service robot was designed specifically for health care institutions. Applications for the AIV include distribution of clinical lab samples, pharmacy drugs, administrative records, x-ray distribution, meal tray delivery, and certain emergency room applications. The first AIV was installed at Lahey Clinic in Burlington, Mass. Lab Rover was beta tested for one year and has been 'on line' for an additional 2 years.

  19. Supra-annular valve strategy for an early degenerated transcatheter balloon-expandable heart valve.

    Science.gov (United States)

    Kamioka, Norihiko; Caughron, Hope; Corrigan, Frank; Block, Peter; Babaliaros, Vasilis

    2018-01-23

    Currently, there are no recommendations regarding the selection of valve type for a transcatheter heart valve (THV)-in-THV procedure. A supra-annular valve design may be superior in that it results in a larger effective orifice area and may have a lower chance of valve thrombosis after THV-in-THV. In this report, we describe the use of a supra-annular valve strategy for an early degenerated THV. © 2018 Wiley Periodicals, Inc.

  20. Numerical simulation and analysis of ball valve three-dimensional flow based on CFD

    International Nuclear Information System (INIS)

    Zhang, S C; Zhang, Y L; Fang, Z M

    2012-01-01

    The new rotor oil-gas mixture pump that added ball valves in its export is a kind of innovative products, which can better adapt to the oil and gas mixed condition. In order to explore the rule of flow field in the export ball valve of new rotor oil-gas mixture pump, established the 3 d model of ball valve flow field was established. Using the FLUENT software, combining the standard k-ε turbulent model with multiphase flow technology and adopting the SIMPLE algorithm to simulate the 3 d gas-liquid two phase flow field in export ball valve of new rotor oil-gas mixture pump. In the different conditions that the volume of gas rate was 25%, 50%, 75%, through analyzing the velocity field, stress field and the distribution of the liquid and gas with the ball valve open height respectively at 3mm, 5mm, 7mm. Discussed how open height and different volume of gas rate to influence the field in export ball valve in the process of gas-liquid mixing was discussed. The simulation results showed that the greater the open height, the smaller the difference pressure of ball valve; the gap velocity decreasing with the open height increasing. The gas is mainly distributed in the vicinity of the valve ball in the process of gas-liquid mixing. The gas liquid ratio has a little effect on the gap velocity in the same open height. The results showed the flow field forms in the ball valve directly, to a certain degree, it had released the rules of gas-liquid flow in the valve and provided the theoretical guidance for design and optimization of the new rotor oil-gas mixture pump export ball valve.

  1. Dielectric passivation schemes for high efficiency n-type c-si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Saynova, D.S.; Romijn, I.G.; Cesar, I.; Lamers, M.W.P.E.; Gutjahr, A. [ECN Solar Energy, P.O. Box 1, NL-1755 ZG Petten (Netherlands); Dingemans, G. [ASM, Kapeldreef 75, B-3001 Leuven (Belgium); Knoops, H.C.M.; Van de Loo, B.W.H.; Kessels, W.M.M. [Eindhoven University of Technology, Department of Appl. Physics, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Siarheyeva, O.; Granneman, E. [Levitech BV, Versterkerstraat 10, 1322AP Almere (Netherlands); Venema, P.R.; Vlooswijk, A.H.G. [Tempress Systems BV, Radeweg 31, 8171 Vaassen (Netherlands); Gautero, L.; Borsa, D.M.

    2013-10-15

    We investigate the impact of different dielectric layers and stacks on the passivation properties of boron doped p{sup ++}-emitters and phosphorous doped n{sup +}-BSFs which are relevant for competitive n-type cell conversion efficiencies. The applied passivation schemes are associated with specific properties at c-Si/dielectric interface and functional mechanisms. In this way we aim to gain a deeper understanding of the passivation mechanism of the differently doped fields within the n-type cells and identify options to further improve the efficiency. The deposition technologies in our study comprise industrial PECVD systems and/or ALD both in industrial and lab scale configurations. In case of p{sup ++}-emitters the best results were achieved by combining field effect and chemical passivation using stacks of low temperature wet chemical oxide and thin ALD-AlOx capped with PECVD-SiNx. The corresponding Implied Voc values were of about (673{+-}2) mV and J{sub 0} of (68{+-}2) fA/cm{sup 2}. For the n{sup +}-BSF passivation the passivation scheme based on SiOx with or without additional AlOx film deposited by a lab scale temporal ALD processes and capped with PECVD-SiNx layer yielded a comparable Implied Voc of (673{+-}2) mV, but then corresponding to J{sub 0} value of (80{+-}15) fA/cm{sup 2}. This passivation scheme is mainly based on the chemical passivation and was also suitable for p{sup ++} surface. This means that we have demonstrated that for n-Pasha cells both the emitter and BSF can be passivated with the same type of passivation that should lead to > 20% cell efficiency. This offers the possibility for transfer this passivation scheme to advanced cell architectures, such as IBC.

  2. Magnetism reflectometer study shows LiF layers improve efficiency in spin valve devices

    Energy Technology Data Exchange (ETDEWEB)

    Bardoel, Agatha A [ORNL; Lauter, Valeria [ORNL; Szulczewski, Greg J [ORNL

    2012-01-01

    New, more efficient materials for spin valves - a device used in magnetic sensors, random access memories, and hard disk drives - may be on the way based on research using the magnetism reflectometer at Oak Ridge National Laboratory (ORNL). Spin valve devices work by means of two or more conducting magnetic material layers that alternate their electrical resistance depending on the layers alignment. Giant magnetoresistance is a quantum mechanical effect first observed in thin film structures about 20 years ago. The effect is observed as a significant change in electrical resistance, depending on whether the magnetization of adjacent ferromagnetic layers is in a parallel or an antiparallel magnetic alignment. 'What we are doing here is developing new materials. The search for new materials suitable for injecting and transferring carriers with a preferential spin orientation is most important for the development of spintronics,' said Valeria Lauter, lead instrument scientist on the magnetism reflectometer at the Spallation Neutron Source (SNS), who collaborated on the experiment. The researchers discovered that the conductivity of such materials is improved when an organic polymer semiconductor layer is placed between the magnetic materials. Organic semiconductors are now the material of choice for future spin valve devices because they preserve spin coherence over longer times and distances than conventional semiconductors. While research into spin valves has been ongoing, research into organic semiconductors is recent. Previous research has shown that a 'conductivity mismatch' exists in spin valve systems in which ferromagnetic metal electrodes interface with such organic semiconductors as Alq3 ({pi}-conjugated molecule tris(8-hydroxy-quinoline) aluminium). This mismatch limits the efficient injection of the electrons from the electrodes at the interface with the semiconductor material. However, lithium fluoride (LiF), commonly used in light

  3. Latest design of gate valves

    Energy Technology Data Exchange (ETDEWEB)

    Kurzhofer, U.; Stolte, J.; Weyand, M.

    1996-12-01

    Babcock Sempell, one of the most important valve manufacturers in Europe, has delivered valves for the nuclear power industry since the beginning of the peaceful application of nuclear power in the 1960s. The latest innovation by Babcock Sempell is a gate valve that meets all recent technical requirements of the nuclear power technology. At the moment in the United States, Germany, Sweden, and many other countries, motor-operated gate and globe valves are judged very critically. Besides the absolute control of the so-called {open_quotes}trip failure,{close_quotes} the integrity of all valve parts submitted to operational forces must be maintained. In case of failure of the limit and torque switches, all valve designs have been tested with respect to the quality of guidance of the gate. The guidances (i.e., guides) shall avoid a tilting of the gate during the closing procedure. The gate valve newly designed by Babcock Sempell fulfills all these characteristic criteria. In addition, the valve has cobalt-free seat hardfacing, the suitability of which has been proven by friction tests as well as full-scale blowdown tests at the GAP of Siemens in Karlstein, West Germany. Babcock Sempell was to deliver more than 30 gate valves of this type for 5 Swedish nuclear power stations by autumn 1995. In the presentation, the author will report on the testing performed, qualifications, and sizing criteria which led to the new technical design.

  4. Design of the Modular Pneumatic Valve Terminal

    Directory of Open Access Journals (Sweden)

    Jakub E. TAKOSOGLU

    2015-11-01

    Full Text Available The paper presents design of the modular pneumatic valve terminal, which was made on the basis of the patent application No A1 402905 „A valve for controlling fluid power drives, specially for pneumatic actuators, and the control system for fluid power drives valves”. The authors describe a method of operation of the system with double-acting valve and 5/2 (five ways and two position valve. Functions of the valve, and an example of application of the valve terminal in the production process were presented. 3D solid models of all the components of the valve were made. The paper presents a complete 3D model of the valve in various configurations. Using CAD-embedded SOLIDWORKS Flow Simulation computational fluid dynamics CFD analysis was also carried out of compressed air flow in the ways of the valve elements

  5. Remote actuated valve implant

    Science.gov (United States)

    McKnight, Timothy E; Johnson, Anthony; Moise, Jr., Kenneth J; Ericson, Milton Nance; Baba, Justin S; Wilgen, John B; Evans, III, Boyd McCutchen

    2014-02-25

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  6. Measurement report on the LHC injection kicker ripple denition and maximum pulse length (MD 1268)

    CERN Document Server

    Bartmann, Wolfgang; Kotzian, Gerd; Stoel, Linda; Velotti, Francesco Maria; Vlachodimitropoulos, Vasileios; Wiesner, Christoph; CERN. Geneva. ATS Department

    2016-01-01

    The present LHC lling scheme uses a batch spacing which corresponds to the design report specication of the injection kicker rise time. A reduction of the batch spacing can be directly used to increase luminosity without detrimental eect on beam stability. Therefore, measurements were performed to understand if a tighter batch spacing would lead to increased injection oscillations of a the rst and last bunches of a bunch train and eventually also a growth of the transverse emittance. The results of theses measurement were used to dene the minimum possible batch spacing for an acceptable emittance growth. Another measurement was performed to test if a batch consisting of 320 bunches can be injected instead of the nominal 288 bunch trains. This bunch train is dierently produced in the LHC injectors and features an optimum between beam stability and luminosity gain. The pulse length of the injection kicker was measured to ensure the full batch can be injected at once.

  7. Learning Experience on Transformer Using HOT Lab for Pre-service Physics Teacher’s

    Science.gov (United States)

    Malik, A.; Setiawan, A.; Suhandi, A.; Permanasari, A.

    2017-09-01

    This study aimed at investigating pre-service teacher’s critical thinking skills improvement through Higher Order Thinking (HOT) Lab on transformer learning. This research used mix method with the embedded experimental model. Research subjects are 60 students of Physics Education in UIN Sunan Gunung Djati Bandung. The results showed that based on the results of the analysis of practical reports and observation sheet shows students in the experimental group was better in carrying out the practicum and can solve the real problem while the control group was going on the opposite. The critical thinking skills of students applying the HOT Lab were higher than the verification lab. Critical thinking skills could increase due to HOT Lab based problems solving that can develop higher order thinking skills through laboratory activities. Therefore, it was concluded that the application of HOT Lab was more effective than verification lab on improving students’ thinking skills on transformer topic learning. Finally, HOT Lab can be implemented in other subject learning and could be used to improve another higher order thinking skills.

  8. Efficacy of intravitreal ranibizumab combined with Ahmed glaucoma valve implantation for the treatment of neovascular glaucoma.

    Science.gov (United States)

    Tang, Min; Fu, Yang; Wang, Ying; Zheng, Zhi; Fan, Ying; Sun, Xiaodong; Xu, Xun

    2016-01-09

    Neovascular glaucoma is a refractive glaucoma. Recently, anti-VEGF factors have been used alone or in combination for the treatment of neovascular glaucoma. However, the medium- and long-term efficacy of such drugs remains to be evaluated. This study was to determine the efficacy of intravitreal ranibizumab combined with Ahmed glaucoma valve implantation for the treatment of neovascular glaucoma. In this prospective non-randomized study, 43 neovascular glaucoma patients (43 eyes) were assigned to receive either 0.5 mg intravitreal ranibizumab for three to 14 days before Ahmed glaucoma valve implantation (injection group, n = 21) or Ahmed glaucoma valve implantation alone (control group, n = 22). The patients were followed up for six to 12 months. Differences in surgical success rate, intraocular pressure, best corrected visual acuity, anti-glaucoma medications and postoperative complications were compared between the two groups. Surgical success was defined as IOP > = 6 mm Hg and glaucoma medications, and without severe complications or reoperation. Of the 43 patients, 40 completed the 6-month follow-up and 37 completed the 1-year follow-up. Success rate was 73.7% vs. 71.4% at six months and 72.2% vs. 68.4% at 12 months in the injection group and the control group respectively. No significant difference was noted between the two groups (six months: P = 0.87, 12 months: P = 1.00). There were no significant differences in the two groups with respect to intraocular pressure, best corrected visual acuity, anti-glaucoma medications or postoperative complications at six months or 12 months. Single intravitreal ranibizumab (0.5 mg) before surgery has no significant effect on the medium- or long-term outcomes of neovascular glaucoma treated with Ahmed glaucoma valve implantation. Chinese Clinical Trial Registry ( ChiCTR-OOC-14005709, Trial registration date: 2014-12-01).

  9. Performance of balanced bellows safety relief valves

    International Nuclear Information System (INIS)

    Lai, Y.S.

    1992-01-01

    By the nature of its design, the set point and lift of a conventional spring loaded safety relief valve are sensitive to back pressure. One way to reduce the adverse effects of the back pressure on the safety relief valve function is to install a balanced bellows in a safety relief valve. The metallic bellows has a rather wide range of manufacturing tolerance which makes the design of the bellows safety relief valve very complicated. The state-of-the-art balanced bellows safety relief valve can only substantially minimize, but cannot totally eliminate the back pressure effects on its set point and relieving capacity. Set point change is a linear function of the back pressure to the set pressure ratio. Depending on the valve design, the set point correction factor can be either greater or smaller than unity. There exists an allowable back pressure and critical back pressure for each safety relief valve. When total back pressure exceeds the R a , the relieving capacity will be reduced mainly resulting from the valve lift being reduced by the back pressure and the capacity reduction factor should be applied in valve sizing. Once the R c is exceeded, the safety relief valve becomes unstable and loses its over pressure protection capability. The capacity reduction factor is a function of system overpressure, but their relationship is non-linear in nature. (orig.)

  10. The study on flow characteristics of butterfly valve using flow visualization

    International Nuclear Information System (INIS)

    Yang, S. M.; Hong, S. D.; Song, D. S.; Park, J. K.; Park, J. I.; Shin, S. K.; Kim, H. J.

    2005-01-01

    Flow visualization of butterfly valve is tested for four types(15 deg., 30 .deg., 45 .deg., and 90 .deg.) of valve opening angle. The inner flow characteristics of valve are studied. The flow variation was measured using a high speed camera which takes 500 frames per second with 1024 x 1024 pixels. These captured images were used for calculation to analyze two dimensional flow velocity of the valve. The smaller opening angle, the more increasing the differential pressure of a butterfly valve. Therefore, we know that the complex flow is occurred by increasing the differential pressure. And it is found that the flowing backward is more increased according to the increase of the opening angle of a butterfly valve. However, its flow pattern is similar to a simple pipe flow when the opening angle is 90 .deg.

  11. Modeling valve leakage

    International Nuclear Information System (INIS)

    Bell, S.R.; Rohrscheib, R.

    1994-01-01

    The American Society of Mechanical Engineers (ASME) Code requires individual valve leakage testing for Category A valves. Although the U.S. Nuclear Regulatory Commission (USNRC) has recognized that it is more appropriate to test containment isolation valves in groups, as allowed by 10 CFR 50, Appendix J, a utility seeking relief from these Code requirements must provide technical justification for the relief and establish a conservative alternate acceptance criteria. In order to provide technical justification for group testing of containment isolation valves, Illinois Power developed a calculation (model) for determining the size of a leakage pathway in a valve disc or seat for a given leakage rate. The model was verified experimentally by machining leakage pathways of known size and then measuring the leakage and comparing this value to the calculated value. For the range of values typical of leakage rate testing, the correlation between the experimental values and calculated values was quote good. Based upon these results, Illinois Power established a conservative acceptance criteria for all valves in the inservice testing (IST) program and was granted relief by the USNRC from the individual leakage testing requirements of the ASME Code. This paper presents the results of Illinois Power's work in the area of valve leakage rate testing

  12. Effect of the sinus of valsalva on the closing motion of bileaflet prosthetic heart valves.

    Science.gov (United States)

    Ohta, Y; Kikuta, Y; Shimooka, T; Mitamura, Y; Yuhta, T; Dohi, T

    2000-04-01

    Conventional bileaflet prosthetic mechanical heart valves close passively with backflow. Naturally, the valve has problems associated with closure, such as backflow, water hammer effect, and fracture of the leaflet. On the other hand, in the case of the natural aortic valve, the vortex flow in the sinus of Valsalva pushes the leaflet to close, and the valve starts the closing motion earlier than the prosthetic valve as the forward flow decelerates. This closing mechanism is thought to decrease backflow at valve closure. In this study, we propose a new bileaflet mechanical valve resembling a drawbridge in shape, and the prototype valve was designed so that the leaflet closes with the help of the vortex flow in the sinus. The test valve was made of aluminum alloy, and its closing motion was compared to that of the CarboMedics (CM) valve. Both valves were driven by a computer controlled hydraulic mock circulator and were photographed at 648 frames/s by a high speed charge-coupled device (CCD) camera. Each frame of the valve motion image was analyzed with a personal computer, and the opening angles were measured. The flow rate was set as 5.0 L/min. The system was pulsed with 70 bpm, and the systolic/diastolic ratio was 0.3. Glycerin water was used as the circulation fluid at room temperature, and polystyrene particles were used to visualize the streamline. The model of the sinus of Valsalva was made of transparent silicone rubber. As a result, high speed video analysis showed that the test valve started the closing motion 41 ms earlier than the CM valve, and streamline analysis showed that the test valve had a closing mechanism similar to the natural one with the effect of vortex flow. The structure of the test valve was thought to be effective for soft closure and could solve problems associated with closure.

  13. Study on the communication technology of instrument based on LabVIEW

    International Nuclear Information System (INIS)

    Jiang Wei; Lai Qinggui; Zhang Xiaobo

    2012-01-01

    The hardware and software structure of communication of universal instrument is discussed based on LabVIEW, the several realization of remote communication is compared too. In the control and measure system of LIA, using LabVIEW, the communication is realized among the plenty of instruments which have the various interfaces, in this paper the frame of hardware and software about instrument communication is showed. (authors)

  14. Water hammer caused by closure of turbine safety spherical valves

    Science.gov (United States)

    Karadžić, U.; Bergant, A.; Vukoslavčević, P.

    2010-08-01

    This paper investigates water hammer effects caused by closure of spherical valves against the discharge. During the first phase of modernisation of Perućica high-head hydropower plant (HPP), Montenegro, safety spherical valves (inlet turbine valves) have been refurbished on the first two Pelton turbine units. The valve closure is controlled by the valve actuator (hydraulic servomotor). Because the torque acting on the valve body is dependent on flow conditions the valve closing time may vary significantly for different flow velocities (passive valve). For the passive valve the torques acting on the valve body should be considered in the valve model. The valve closing time results from numerical simulation. On the contrary, for the active valve the valve closing time is assumed prior to simulation. The spherical valve boundary condition is incorporated into the method of characteristics (MOC) algorithm. The staggered (diamond) grid in applying the MOC is used in this paper. The passive valve boundary condition is described by the water hammer equations, the valve equation that relates discharge to pressure head drop and the dynamic equation of the valve body motion (torque equation). The active valve boundary condition is described by the first two equations, respectively. Standard quasi-steady friction model is used for estimating friction losses in plant's tunnel and penstocks. Numerical results using both the active and the passive spherical valve models are compared with results of measurements. It has been found that the influence of flow conditions on the spherical valve closing time is minor for the cases considered. Computed and measured results agree reasonably well.

  15. Water hammer caused by closure of turbine safety spherical valves

    International Nuclear Information System (INIS)

    Karadzic, U; Vukoslavcevic, P; Bergant, A

    2010-01-01

    This paper investigates water hammer effects caused by closure of spherical valves against the discharge. During the first phase of modernisation of Perucica high-head hydropower plant (HPP), Montenegro, safety spherical valves (inlet turbine valves) have been refurbished on the first two Pelton turbine units. The valve closure is controlled by the valve actuator (hydraulic servomotor). Because the torque acting on the valve body is dependent on flow conditions the valve closing time may vary significantly for different flow velocities (passive valve). For the passive valve the torques acting on the valve body should be considered in the valve model. The valve closing time results from numerical simulation. On the contrary, for the active valve the valve closing time is assumed prior to simulation. The spherical valve boundary condition is incorporated into the method of characteristics (MOC) algorithm. The staggered (diamond) grid in applying the MOC is used in this paper. The passive valve boundary condition is described by the water hammer equations, the valve equation that relates discharge to pressure head drop and the dynamic equation of the valve body motion (torque equation). The active valve boundary condition is described by the first two equations, respectively. Standard quasi-steady friction model is used for estimating friction losses in plant's tunnel and penstocks. Numerical results using both the active and the passive spherical valve models are compared with results of measurements. It has been found that the influence of flow conditions on the spherical valve closing time is minor for the cases considered. Computed and measured results agree reasonably well.

  16. Water hammer caused by closure of turbine safety spherical valves

    Energy Technology Data Exchange (ETDEWEB)

    Karadzic, U; Vukoslavcevic, P [Faculty of Mechanical Engineering, University of Montenegro Dzordza Vasingtona nn, Podgorica, 81000 (Montenegro); Bergant, A, E-mail: uros.karadzic@ac.m [LitostrojPower d.o.o., Litostrojska 50, Ljubljana, 1000 (Slovenia)

    2010-08-15

    This paper investigates water hammer effects caused by closure of spherical valves against the discharge. During the first phase of modernisation of Perucica high-head hydropower plant (HPP), Montenegro, safety spherical valves (inlet turbine valves) have been refurbished on the first two Pelton turbine units. The valve closure is controlled by the valve actuator (hydraulic servomotor). Because the torque acting on the valve body is dependent on flow conditions the valve closing time may vary significantly for different flow velocities (passive valve). For the passive valve the torques acting on the valve body should be considered in the valve model. The valve closing time results from numerical simulation. On the contrary, for the active valve the valve closing time is assumed prior to simulation. The spherical valve boundary condition is incorporated into the method of characteristics (MOC) algorithm. The staggered (diamond) grid in applying the MOC is used in this paper. The passive valve boundary condition is described by the water hammer equations, the valve equation that relates discharge to pressure head drop and the dynamic equation of the valve body motion (torque equation). The active valve boundary condition is described by the first two equations, respectively. Standard quasi-steady friction model is used for estimating friction losses in plant's tunnel and penstocks. Numerical results using both the active and the passive spherical valve models are compared with results of measurements. It has been found that the influence of flow conditions on the spherical valve closing time is minor for the cases considered. Computed and measured results agree reasonably well.

  17. Labs not in a lab: A case study of instructor and student perceptions of an online biology lab class

    Science.gov (United States)

    Doiron, Jessica Boyce

    Distance learning is not a new phenomenon but with the advancement in technology, the different ways of delivering an education have increased. Today, many universities and colleges offer their students the option of taking courses online instead of sitting in a classroom on campus. In general students like online classes because they allow for flexibility, the comfort of sitting at home, and the potential to save money. Even though there are advantages to taking online classes, many students and instructors still debate the effectiveness and quality of education in a distant learning environment. Many universities and colleges are receiving pressure from students to offer more and more classes online. Research argues for both the advantages and disadvantages of online classes and stresses the importance of colleges and universities weighing both sides before deciding to adopt an online class. Certain classes may not be suitable for online instruction and not all instructors are suitable to teach online classes. The literature also reveals that there is a need for more research on online biology lab classes. With the lack of information on online biology labs needed by science educators who face the increasing demand for online biology labs, this case study hopes to provide insight into the use of online biology lab classes and the how students and an instructor at a community college in Virginia perceive their online biology lab experience as well as the effectiveness of the online labs.

  18. The Influence of Tablet PCs on Students' Use of Multiple Representations in Lab Reports

    Science.gov (United States)

    Guelman, Clarisa Bercovich; De Leone, Charles; Price, Edward

    2009-11-01

    This study examined how different tools influenced students' use of representations in the Physics laboratory. In one section of a lab course, every student had a Tablet PC that served as a digital-ink based lab notebook. Students could seamlessly create hand-drawn graphics and equations, and write lab reports on the same computer used for data acquisition, simulation, and analysis. In another lab section, students used traditional printed lab guides, kept paper notebooks, and then wrote lab reports on regular laptops. Analysis of the lab reports showed differences between the sections' use of multiple representations, including an increased use of diagrams and equations by the Tablet users.

  19. An experimental study of fuel injection strategies in CAI gasoline engine

    Energy Technology Data Exchange (ETDEWEB)

    Hunicz, J.; Kordos, P. [Department of Combustion Engines and Transport, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin (Poland)

    2011-01-15

    Combustion of gasoline in a direct injection controlled auto-ignition (CAI) single-cylinder research engine was studied. CAI operation was achieved with the use of the negative valve overlap (NVO) technique and internal exhaust gas re-circulation (EGR). Experiments were performed at single injection and split injection, where some amount of fuel was injected close to top dead centre (TDC) during NVO interval, and the second injection was applied with variable timing. Additionally, combustion at variable fuel-rail pressure was examined. Investigation showed that at fuel injection into recompressed exhaust fuel reforming took place. This process was identified via an analysis of the exhaust-fuel mixture composition after NVO interval. It was found that at single fuel injection in NVO phase, its advance determined the heat release rate and auto-ignition timing, and had a strong influence on NO{sub X} emission. However, a delay of single injection to intake stroke resulted in deterioration of cycle-to-cycle variability. Application of split injection showed benefits of this strategy versus single injection. Examinations of different fuel mass split ratios and variable second injection timing resulted in further optimisation of mixture formation. At equal share of the fuel mass injected in the first injection during NVO and in the second injection at the beginning of compression, the lowest emission level and cyclic variability improvement were observed. (author)

  20. Multiple-port valve

    International Nuclear Information System (INIS)

    Doody, T.J.

    1978-01-01

    A multiple-port valve assembly is designed to direct flow from a primary conduit into any one of a plurality of secondary conduits as well as to direct a reverse flow. The valve includes two mating hemispherical sockets that rotatably receive a spherical valve plug. The valve plug is attached to the primary conduit and includes diverging passageways from that conduit to a plurality of ports. Each of the ports is alignable with one or more of a plurality of secondary conduits fitting into one of the hemispherical sockets. The other hemispherical socket includes a slot for the primary conduit such that the conduit's motion along that slot with rotation of the spherical plug about various axes will position the valve-plug ports in respect to the secondary conduits

  1. Impact of Early Valve Surgery on Outcome of Staphylococcus aureus Prosthetic Valve Infective Endocarditis: Analysis in the International Collaboration of Endocarditis–Prospective Cohort Study

    OpenAIRE

    Chirouze, Catherine; Alla, François; Fowler, Vance G.; Sexton, Daniel J.; Corey, G. Ralph; Chu, Vivian H.; Wang, Andrew; Erpelding, Marie-Line; Durante-Mangoni, Emanuele; Fernández-Hidalgo, Nuria; Giannitsioti, Efthymia; Hannan, Margaret M.; Lejko-Zupanc, Tatjana; Miró, José M.; Muñoz, Patricia

    2014-01-01

    Using appropriate analytical methods to examine data from the International Collaboration on Endocarditis–Prospective Cohort Study, we found that early valve surgery was not associated with reduced 1-year mortality in Staphylococcus aureus prosthetic valve infective endocarditis.

  2. Micro Machining of Injection Mold Inserts for Fluidic Channel of Polymeric Biochips

    Directory of Open Access Journals (Sweden)

    Myeong-Woo Cho

    2007-08-01

    Full Text Available Recently, the polymeric micro-fluidic biochip, often called LOC (lab-on-a-chip, has been focused as a cheap, rapid and simplified method to replace the existing biochemical laboratory works. It becomes possible to form miniaturized lab functionalities on a chip with the development of MEMS technologies. The micro-fluidic chips contain many micro-channels for the flow of sample and reagents, mixing, and detection tasks. Typical substrate materials for the chip are glass and polymers. Typical techniques for micro-fluidic chip fabrication are utilizing various micro pattern forming methods, such as wet-etching, micro-contact printing, and hot-embossing, micro injection molding, LIGA, and micro powder blasting processes, etc. In this study, to establish the basis of the micro pattern fabrication and mass production of polymeric micro-fluidic chips using injection molding process, micro machining method was applied to form micro-channels on the LOC molds. In the research, a series of machining experiments using micro end-mills were performed to determine optimum machining conditions to improve surface roughness and shape accuracy of designed simplified micro-channels. Obtained conditions were used to machine required mold inserts for micro-channels using micro end-mills. Test injection processes using machined molds and COC polymer were performed, and then the results were investigated.

  3. Improving the Quality of Lab Reports by Using Them as Lab Instructions

    Science.gov (United States)

    Haagen-Schuetzenhoefer, Claudia

    2012-10-01

    Lab exercises are quite popular in teaching science. Teachers have numerous goals in mind when teaching science laboratories. Nevertheless, empirical research draws a heterogeneous picture of the benefits of lab work. Research has shown that it does not necessarily contribute to the enhancement of practical abilities or content knowledge. Lab activities are frequently based on recipe-like, step-by-step instructions ("cookbook style"), which do not motivate students to engage cognitively. Consequently, students put the emphasis on "task completion" or "manipulating equipment."2

  4. Nuclear reactor steam depressurization valve

    International Nuclear Information System (INIS)

    Moore, G.L.

    1991-01-01

    This patent describes improvement in a nuclear reactor plant, an improved steam depressurization valve positioned intermediate along a steam discharge pipe for controlling the venting of steam pressure from the reactor through the pipe. The improvement comprises: a housing including a domed cover forming a chamber and having a partition plate dividing the chamber into a fluid pressure activation compartment and a steam flow control compartment, the valve housing being provided with an inlet connection and an outlet connection in the steam flow control compartment, and a fluid duct in communication with a source of fluid pressure for operating the valve; a valve set mounted within the fluid flow control compartment comprising a cylindrical section surrounding the inlet connection with one end adjoining the connection and having a radially projecting flange at the other end with a contoured extended valve sealing flange provided with an annular valve sealing member, and a valve cylinder traversing the partition plate and reciprocally movable within an opening in the partition plate with one terminal and extending into the fluid pressure activation compartment and the other terminal end extending into the steam flow control compartment coaxially aligned with the valve seat surrounding the inlet connection, the valve cylinder being surrounded by two bellow fluid seals and provided with guides to inhibit lateral movement, an end of the valve cylinder extending into the fluid flow control compartment having a radially projecting flange substantially conterminous with the valve seat flange and having a contoured surface facing and complimentary to the contoured valve seating surface whereby the two contoured valve surfaces can meet in matching relationship, thus providing a pressure actuated reciprocatable valve member for making closing contact with the valve seat and withdrawing therefrom for opening fluid flow through the valve

  5. Connect high speed analog-digital converter with EPICS based on LabVIEW

    International Nuclear Information System (INIS)

    Wang Wei; Chi Yunlong

    2008-01-01

    This paper introduce a method to connect high speed analog-digital converter (ADC212/100) with EPICS on Windows platform using LabVIEW. We use labVIEW to communicate with the converter, then use interface sub-VIs between LabVIEW and EPICS to access the EPICS IOC by Channel Access (CA). For the easy use graph programming language of LabVIEW, this method could shorten the develop period and reduce manpower cost. (authors)

  6. Automated valve fault detection based on acoustic emission parameters and support vector machine

    Directory of Open Access Journals (Sweden)

    Salah M. Ali

    2018-03-01

    Full Text Available Reciprocating compressors are one of the most used types of compressors with wide applications in industry. The most common failure in reciprocating compressors is always related to the valves. Therefore, a reliable condition monitoring method is required to avoid the unplanned shutdown in this category of machines. Acoustic emission (AE technique is one of the effective recent methods in the field of valve condition monitoring. However, a major challenge is related to the analysis of AE signal which perhaps only depends on the experience and knowledge of technicians. This paper proposes automated fault detection method using support vector machine (SVM and AE parameters in an attempt to reduce human intervention in the process. Experiments were conducted on a single stage reciprocating air compressor by combining healthy and faulty valve conditions to acquire the AE signals. Valve functioning was identified through AE waveform analysis. SVM faults detection model was subsequently devised and validated based on training and testing samples respectively. The results demonstrated automatic valve fault detection model with accuracy exceeding 98%. It is believed that valve faults can be detected efficiently without human intervention by employing the proposed model for a single stage reciprocating compressor. Keywords: Condition monitoring, Faults detection, Signal analysis, Acoustic emission, Support vector machine

  7. Guide to prosthetic cardiac valves

    International Nuclear Information System (INIS)

    Morse, D.; Steiner, R.M.; Fernandez, J.

    1985-01-01

    This book contains 10 chapters. Some of the chapter titles are: The development of artificial heart valves: Introduction and historical perspective; The radiology of prosthetic heart valves; The evaluation of patients for prosthetic valve implantation; Pathology of cardiac valve replacement; and Bioengineering of mechanical and biological heart valve substitutes

  8. Investigation of the influence of sampling schemes on quantitative dynamic fluorescence imaging.

    Science.gov (United States)

    Dai, Yunpeng; Chen, Xueli; Yin, Jipeng; Wang, Guodong; Wang, Bo; Zhan, Yonghua; Nie, Yongzhan; Wu, Kaichun; Liang, Jimin

    2018-04-01

    Dynamic optical data from a series of sampling intervals can be used for quantitative analysis to obtain meaningful kinetic parameters of probe in vivo . The sampling schemes may affect the quantification results of dynamic fluorescence imaging. Here, we investigate the influence of different sampling schemes on the quantification of binding potential ( BP ) with theoretically simulated and experimentally measured data. Three groups of sampling schemes are investigated including the sampling starting point, sampling sparsity, and sampling uniformity. In the investigation of the influence of the sampling starting point, we further summarize two cases by considering the missing timing sequence between the probe injection and sampling starting time. Results show that the mean value of BP exhibits an obvious growth trend with an increase in the delay of the sampling starting point, and has a strong correlation with the sampling sparsity. The growth trend is much more obvious if throwing the missing timing sequence. The standard deviation of BP is inversely related to the sampling sparsity, and independent of the sampling uniformity and the delay of sampling starting time. Moreover, the mean value of BP obtained by uniform sampling is significantly higher than that by using the non-uniform sampling. Our results collectively suggest that a suitable sampling scheme can help compartmental modeling of dynamic fluorescence imaging provide more accurate results and simpler operations.

  9. Thermal tests on UF6 containers and valves modelisation and extrapolation on real fire situations

    International Nuclear Information System (INIS)

    Duret, B.; Warniez, P.

    1988-12-01

    From realistic tests on containers or on valves, we propose a modelisation which we apply to 3 particular problems: resistance of a 48 Y containers, during a fire situation. Influence of the presence of a valve. Evaluation of a leakage through a breach, mechanically created before a fire

  10. Effect of reservoir heterogeneity on air injection performance in a light oil reservoir

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2018-03-01

    Full Text Available Air injection is a good option to development light oil reservoir. As well-known that, reservoir heterogeneity has great effect for various EOR processes. This also applies to air injection. However, oil recovery mechanisms and physical processes for air injection in heterogeneous reservoir with dip angle are still not well understood. The reported setting of reservoir heterogeneous for physical model or simulation model of air injection only simply uses different-layer permeability of porous media. In practice, reservoir heterogeneity follows the principle of geostatistics. How much of contrast in permeability actually challenges the air injection in light oil reservoir? This should be investigated by using layered porous medial settings of the classical Dykstra-Parsons style. Unfortunately, there has been no work addressing this issue for air injection in light oil reservoir. In this paper, Reservoir heterogeneity is quantified based on the use of different reservoir permeability distribution according to classical Dykstra-Parsons coefficients method. The aim of this work is to investigate the effect of reservoir heterogeneity on physical process and production performance of air injection in light oil reservoir through numerical reservoir simulation approach. The basic model is calibrated based on previous study. Total eleven pseudo compounders are included in this model and ten complexity of reactions are proposed to achieve the reaction scheme. Results show that oil recovery factor is decreased with the increasing of reservoir heterogeneity both for air and N2 injection from updip location, which is against the working behavior of air injection from updip location. Reservoir heterogeneity sometimes can act as positive effect to improve sweep efficiency as well as enhance production performance for air injection. High O2 content air injection can benefit oil recovery factor, also lead to early O2 breakthrough in heterogeneous reservoir. Well

  11. Model based feasibility study on bidirectional check valves in wave energy converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Andersen, Torben Ole

    2014-01-01

    Discrete fluid power force systems have been proposed as the primary stage for Wave Energy Converters (WEC’s) when converting ocean waves into electricity, this to improve the overall efficiency of wave energy devices. This paper presents a model based feasibility study of using bidirectional check....../Off and bidirectional check valves. Based on the analysis it is found that the energy production may be slightly improved by using bidirectional check valves as compared to on/off valves, due to a decrease in switching losses. Furthermore a reduction in high flow peaks are realised. The downside being increased...

  12. Electrical spin injection into high mobility 2D systems.

    Science.gov (United States)

    Oltscher, M; Ciorga, M; Utz, M; Schuh, D; Bougeard, D; Weiss, D

    2014-12-05

    We report on spin injection into a high mobility 2D electron system confined at an (Al,Ga)As/GaAs interface, using (Ga,Mn)As Esaki diode contacts as spin aligners. We measured a clear nonlocal spin valve signal, which varies nonmonotonically with the applied bias voltage. The magnitude of the signal cannot be described by the standard spin drift-diffusion model, because at maximum this would require the spin polarization of the injected current to be much larger than 100%, which is unphysical. A strong correlation of the spin signal with contact width and electron mean free path suggests that ballistic transport in the 2D region below ferromagnetic contacts should be taken into account to fully describe the results.

  13. Pellet injection and plasma behavior simulation code PEPSI

    International Nuclear Information System (INIS)

    Takase, Haruhiko; Tobita, Kenji; Nishio, Satoshi

    2003-08-01

    Fueling is one of the major issues on design of nuclear fusion reactor and the injection of solid hydrogen pellet to the core plasma is a useful method. On the design of a nuclear fusion reactor, it is necessary to determine requirements on the pellet size, the number of pellets, the injection speed and the injection cycle. PEllet injection and Plasma behavior SImulation code PEPSI has been developed to assess these parameters. PEPSI has two special features: 1) Adopting two numerical pellet models, Parks model and Strauss model, 2) Calculating fusion power and other plasma parameters in combination with a time-dependent one-dimensional transport model. This report describes the numerical models, numerical scheme, sequence of calculation, list of subroutines, list of variables and an example of calculation. (author)

  14. Trans-apical aortic valve implantation in a patient with stentless valve degeneration.

    Science.gov (United States)

    Kapetanakis, Emmanouil I; MacCarthy, Philip; Monaghan, Mark; Wendler, Olaf

    2011-06-01

    Trans-apical valve-in-valve trans-catheter aortic valve implantation (TAVI) has successfully been performed in selected, high-risk patients, who suffered prosthetic degeneration after aortic valve replacement using stented xenografts. We report the case of a 79-year-old male patient who underwent one of the first successful TAVIs in a failing stentless bioprosthesis. Copyright © 2010 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  15. Numerical and experimental investigation on the performance of safety valves operating with different gases

    International Nuclear Information System (INIS)

    Dossena, V.; Marinoni, F.; Bassi, F.; Franchina, N.; Savini, M.

    2013-01-01

    A detailed analysis of the effect related to the expansion of different gases throughout safety relief valves is carried out both numerically and experimentally. The considered gases are air, argon and ethylene, representative of a wide range of specific heat ratios. A first experimental campaign performed in air and argon on a safety relief valve characterized by connection 1/2″ × 1″ and orifice designation D (diameter 10 mm) according to API 526 showed significant reduction both in disc lift and in exhausted mass flow rate, at the nominal overpressure, when operating with argon. In order to gain a deeper insight into the physics involved and to evaluate the valve behavior with other gases, an extensive numerical testing has been performed by means of an accurate CFD code based on discontinuous Galerkin formulation. Numerical results are at first validated against measurements obtained in air on a 2″ J 3″ safety relief valve proving a remarkable accuracy of the computational method. Then the validated solver is applied on the same computational grid using argon and ethylene as working fluids. The three gases are considered as thermally perfect gases. A critical discussion based on the numerical results allows to clarify the fluid dynamic and physical reasons causing the observed trends both in the opening force and in the discharge coefficient. The main conclusion is that particular care must be taken when a safety valve operates with a fluid characterized by a specific heat ratio greater than the one of the gas used during type testing. -- Highlights: ► Effects of different gases on the discharge capacity and operational characteristics on safety relief valves. ► Influence of different specific heat ratio on safety relief valves discharge coefficient. ► Skilful application of Discontinuous Galerkin CFD solver to safety valves performances prediction

  16. Early clinical outcome of aortic transcatheter valve-in-valve implantation in the Nordic countries

    DEFF Research Database (Denmark)

    Ihlberg, Leo; Nissen, Henrik Hoffmann; Nielsen, Niels Erik

    2013-01-01

    Transcatheter valve-in-valve implantation has emerged as an option, in addition to reoperative surgical aortic valve replacement, to treat failed biologic heart valve substitutes. However, the clinical experience with this approach is still limited. We report the comprehensive experience...

  17. Simple Check Valves for Microfluidic Devices

    Science.gov (United States)

    Willis, Peter A.; Greer, Harold F.; Smith, J. Anthony

    2010-01-01

    A simple design concept for check valves has been adopted for microfluidic devices that consist mostly of (1) deformable fluorocarbon polymer membranes sandwiched between (2) borosilicate float glass wafers into which channels, valve seats, and holes have been etched. The first microfluidic devices in which these check valves are intended to be used are micro-capillary electrophoresis (microCE) devices undergoing development for use on Mars in detecting compounds indicative of life. In this application, it will be necessary to store some liquid samples in reservoirs in the devices for subsequent laboratory analysis, and check valves are needed to prevent cross-contamination of the samples. The simple check-valve design concept is also applicable to other microfluidic devices and to fluidic devices in general. These check valves are simplified microscopic versions of conventional rubber- flap check valves that are parts of numerous industrial and consumer products. These check valves are fabricated, not as separate components, but as integral parts of microfluidic devices. A check valve according to this concept consists of suitably shaped portions of a deformable membrane and the two glass wafers between which the membrane is sandwiched (see figure). The valve flap is formed by making an approximately semicircular cut in the membrane. The flap is centered over a hole in the lower glass wafer, through which hole the liquid in question is intended to flow upward into a wider hole, channel, or reservoir in the upper glass wafer. The radius of the cut exceeds the radius of the hole by an amount large enough to prevent settling of the flap into the hole. As in a conventional rubber-flap check valve, back pressure in the liquid pushes the flap against the valve seat (in this case, the valve seat is the adjacent surface of the lower glass wafer), thereby forming a seal that prevents backflow.

  18. Butterfly valve of all rubber lining type

    International Nuclear Information System (INIS)

    Shimada, Shosaku; Nakatsuma, Sumiya; Sasaki, Iwao; Aoki, Naoshi.

    1982-01-01

    The valves used for the circulating water pipes for condensers in nuclear and thermal power stations have become large with the increase of power output, and their specifications have become strict. The materials for the valves change from cast iron to steel plate construction. To cope with sea water corrosion, rubber lining has been applied to the internal surfaces of valve boxes, and the build-up welding of stainless steel has been made on the edges of valves. However, recently it is desired to develop butterfly valves, of which the whole valve disks are lined with hard rubber. For the purpose of confirming the performance of large bore valves, a 2600 mm bore butterfly valve of all rubber lining type was used, and the opening and closing test of 1100 times was carried out by applying thermal cycle and pressure difference and using artifical sea water. Also the bending test of hard rubber lining was performed with test pieces. Thus, it was confirmed that the butterfly valves of all rubber lining type have the performance exceeding that of the valves with build-up welding. The course of development of the valves of all rubber lining type, the construction and the items of confirmation by tests of these valves, and the tests of the valve and the hard rubber lining described above are reported. (Kako, I.)

  19. Micromachined filter-chamber array with passive valves for biochemical assays on beads.

    Science.gov (United States)

    Andersson, H; van der Wijngaart, W; Stemme, G

    2001-01-01

    The filter-chamber array presented here enables a real-time parallel analysis of three different samples on beads in a volume of 3 nL, on a 1 cm2 chip. The filter-chamber array is a system containing three filter-chambers, three passive valves at the inlet channels and a common outlet. The design enables parallel sample handling and time-controlled analysis. The device is microfabricated in silicon and sealed with a Pyrex lid to enable real-time analysis. Single nucleotide polymorphism analysis by using pyrosequencing has successfully been performed in single filter-chamber devices. The passive valves consist of plasma-deposited octafluorocyclobutane and show a much higher resistance towards water and surface-active solutions than previous hydrophobic patches. The device is not sensitive to gas bubbles, clogging is rare and reversible, and the filter-chamber array is reusable. More complex (bio)chemical reactions on beads can be performed in the devices with passive valves than in the devices without valves.

  20. Gate valve and motor-operator research findings

    International Nuclear Information System (INIS)

    Steele, R. Jr.; DeWall, K.G.; Watkins, J.C.; Russell, M.J.; Bramwell, D.

    1995-09-01

    This report provides an update on the valve research being sponsored by the US Nuclear Regulatory Commission (NRC) and conducted at the Idaho National Engineering Laboratory (INEL). The research addresses the need to provide assurance that motor-operated valves can perform their intended safety function, usually to open or close against specified (design basis) flow and pressure loads. This report describes several important developments: Two methods for estimating or bounding the design basis stem factor (in rising-stem valves), using data from tests less severe than design basis tests; a new correlation for evaluating the opening responses of gate valves and for predicting opening requirements; an extrapolation method that uses the results of a best effort flow test to estimate the design basis closing requirements of a gate valve that exhibits atypical responses (peak force occurs before flow isolation); and the extension of the original INEL closing correlation to include low- flow and low-pressure loads. The report also includes a general approach, presented in step-by-step format, for determining operating margins for rising-stem valves (gate valves and globe valves) as well as quarter-turn valves (ball valves and butterfly valves)

  1. Magnetic Check Valve

    Science.gov (United States)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-01-01

    Poppet in proposed check valve restored to closed condition by magnetic attraction instead of spring force. Oscillations suppressed, with consequent reduction of wear. Stationary magnetic disk mounted just upstream of poppet, also containing magnet. Valve body nonmagnetic. Forward pressure or flow would push poppet away from stationary magnetic disk so fluid flows easily around poppet. Stop in valve body prevents poppet from being swept away. When flow stopped or started to reverse, magnetic attraction draws poppet back to disk. Poppet then engages floating O-ring, thereby closing valve and preventing reverse flow. Floating O-ring facilitates sealing at low loads.

  2. Applications of geological labs on chip for CO_2 storage issues

    International Nuclear Information System (INIS)

    Morais, Sandy

    2016-01-01

    CO_2 geological storage in deep saline aquifers represents a mediation solution for reducing the anthropogenic CO_2 emissions. Consequently, this kind of storage requires adequate scientific knowledge to evaluate injection scenarios, estimate reservoir capacity and assess leakage risks. In this context, we have developed and used high pressure/high temperature micro-fluidic tools to investigate the different mechanisms associated with CO_2 geological storage in deep saline aquifers. The silicon-Pyrex 2D porous networks (Geological Labs On Chips) can replicate the reservoir p,T conditions (25 ≤ T ≤ 50 C, 50 ≤ p ≤ 10 MPa), geological and topological properties. This thesis manuscript first highlights the strategies developed during this work to fabricate the GLoCs and to access to global characteristics of our porous media such as porosity and permeability, which are later compared to numerical modelling results. The carbon dioxide detection in GLoCs mimicking p,T conditions of geological reservoirs by using the direct integration of optical fiber for IR spectroscopy is presented. I then detail the strategies for following the dissolution of carbonates in GLoCs with X-rays laminography experiments.Then, the manuscript focuses on the use of GLoCs to investigate each CO_2 trapping mechanism at the pore scale. The direct optical visualization and image processing allow us to follow the evolution of the injected CO_2/aqueous phase within the reservoir, including displacement mechanisms and pore saturation levels. Eventually, I present the ongoing works such as experiments with reactive brines and hydrates formations in porous media [fr

  3. Injectable loop recorder implantation in an ambulatory setting by advanced practice providers: Analysis of outcomes.

    Science.gov (United States)

    Kipp, Ryan; Young, Natasha; Barnett, Anne; Kopp, Douglas; Leal, Miguel A; Eckhardt, Lee L; Teelin, Thomas; Hoffmayer, Kurt S; Wright, Jennifer; Field, Michael

    2017-09-01

    Implantable loop recorder (ILR) insertion has historically been performed in a surgical environment such as the electrophysiology (EP) lab. The newest generation loop recorder (Medtronic Reveal LINQ™, Minneapolis, MN, USA) is injectable with potential for implantation in a non-EP lab setting by advanced practice providers (APPs) facilitating improved workflow and resource utilization. We report the safety and efficacy of injectable ILR placement in the ambulatory care setting by APPs. A retrospective review was performed including all patients referred for injectable ILR placement from March 2014 to November 2015. All device placement procedures were performed in an ambulatory care setting using the standard manufacturer deployment kit with sterile technique and local anesthetic following a single dose of intravenous antibiotics. Acute procedural success and complication rates following injectable ILR placement in the ambulatory setting were reviewed. During the study period, 125 injectable ILRs were implanted. Acute procedural success with adequate sensing (R-waves ≥ 0.2 mV) occurred in 100% of patients. There were no acute procedural complications. Subacute complications occurred in two patients (1.6% of implantations), including one possible infection treated with oral antibiotics and one device removal due to pain at the implant site. In this retrospective single-center study, implantation of injectable ILR in an ambulatory care setting by APPs following a single dose of intravenous antibiotics and standard manufacturer technique yielded a low complication rate with high acute procedural success. Use of this implantation strategy may improve EP lab workflow while providing a safe and effective technique for device placement. © 2017 Wiley Periodicals, Inc.

  4. Experimental substantiation of the design of a prosthetic heart valve for «valve-in-valve» implantation

    Directory of Open Access Journals (Sweden)

    K. Yu. Klyshnikov

    2017-01-01

    Full Text Available The aim of the study was to perform a series of in vitro tests of a prototype of the developing heart valve prosthesis to evaluate its functional characteristics. Materials and methods. In this work we have used the frames and full prototypes of the prosthesis, consisting of a stent-like stainless steel support frame with mounted biological leaflets and cover. The authors evaluated the calculated and experimental forces necessary for the displacement of the sutureless implanted prosthesis using the test machine under uniaxial tension. The risk of defects and damages to the supporting framework as a result of implantation was evaluated by scanning electron microscopy. The hydrodynamic characteristics of the prosthesis were investigated under physiological conditions and «valvein-valve» implantation. Evaluation of the ergonomics and applicability of the proposed construction on the cadaver heart model of cattle was carried out. Results. As a result of the forces assessment, it was found that the force required to shear the prosthesis was 3.12 ± 0.37 N, while the calculated value was 1.7 N, which is significantly lower than the obtained value. The comparison of the images obtained with small and large magnifications demonstrated the absence of critical surface defects. Additional analysis under the super-large magnifications also did not reveal problem areas. During the hydrodynamic study, it was shown that the average transplant gradient increased slightly from 2.8–3.4 to 3.2–4.5 mm Hg for the initial prosthesis and the «valve-in-valve» complex, respectively. The decrease of the effective orifice area was 6–9% relative to the initial one. Evaluation of the implantation technique demonstrated the consistency of the approach: the use of the developed holder in combination with the balloon implantation system made it possible to position the prosthesis throughout the procedure. Conclusion. The series of tests demonstrates the consistency

  5. Anterior mitral valve aneurysm: a rare sequelae of aortic valve endocarditis

    Directory of Open Access Journals (Sweden)

    Rajesh Janardhanan

    2016-05-01

    Full Text Available In intravenous drug abusers, infective endocarditis usually involves right-sided valves, with Staphylococcus aureus being the most common etiologic agent. We present a patient who is an intravenous drug abuser with left-sided (aortic valve endocarditis caused by Enterococcus faecalis who subsequently developed an anterior mitral valve aneurysm, which is an exceedingly rare complication. A systematic literature search was conducted which identified only five reported cases in the literature of mitral valve aneurysmal rupture in the setting of E. faecalis endocarditis. Real-time 3D-transesophageal echocardiography was critical in making an accurate diagnosis leading to timely intervention. Learning objectives: • Early recognition of a mitral valve aneurysm (MVA is important because it may rupture and produce catastrophic mitral regurgitation (MR in an already seriously ill patient requiring emergency surgery, or it may be overlooked at the time of aortic valve replacement (AVR. • Real-time 3D-transesophageal echocardiography (RT-3DTEE is much more advanced and accurate than transthoracic echocardiography for the diagnosis and management of MVA.

  6. Anterior mitral valve aneurysm: a rare sequelae of aortic valve endocarditis.

    Science.gov (United States)

    Janardhanan, Rajesh; Kamal, Muhammad Umar; Riaz, Irbaz Bin; Smith, M Cristy

    2016-03-01

    SummaryIn intravenous drug abusers, infective endocarditis usually involves right-sided valves, with Staphylococcus aureus being the most common etiologic agent. We present a patient who is an intravenous drug abuser with left-sided (aortic valve) endocarditis caused by Enterococcus faecalis who subsequently developed an anterior mitral valve aneurysm, which is an exceedingly rare complication. A systematic literature search was conducted which identified only five reported cases in the literature of mitral valve aneurysmal rupture in the setting of E. faecalis endocarditis. Real-time 3D-transesophageal echocardiography was critical in making an accurate diagnosis leading to timely intervention. Early recognition of a mitral valve aneurysm (MVA) is important because it may rupture and produce catastrophic mitral regurgitation (MR) in an already seriously ill patient requiring emergency surgery, or it may be overlooked at the time of aortic valve replacement (AVR).Real-time 3D-transesophageal echocardiography (RT-3DTEE) is much more advanced and accurate than transthoracic echocardiography for the diagnosis and management of MVA. © 2016 The authors.

  7. Numerical investigation on cavitation in pressure relief valve for coal liquefaction

    International Nuclear Information System (INIS)

    Ou, G F; Li, W Z; Xiao, D H; Zheng, Z J; Dou, H S; Wang, C

    2015-01-01

    The pressure relief valve for regulating the level of the high-pressure separator works under a pressure difference up to 15 MPa in the temperature of 415 °C. Severe cavitation erosion and particle impact lead to the valve disc's mass loss. In this paper, three-dimensional turbulent cavitating flows in the pressure relief valve are numerically simulated to reveal the mechanism of mass loss at valve disc. The RNG k-ε turbulence model and the mixture model with a mass transfer for cavitation are employed to simulate the cavitating flow in the pressure relief valve. The result shows that there is phase change in the pressure relief process and cavitation bubbles would be transported by high-velocity backflow to the head of valve disc. For the local pressure higher than the saturated vapor pressure, the bubbles collapse at the head of disc and cavitation erosion is formed at the head of the disc. By comparing the cases of opening of 40%, 50%, and 60%, backflow velocity and cavitation region in front of the disc decrease with the opening increase. Therefore, during the actual operation, the pressure relief valve should be kept to a relatively large opening

  8. Proceedings of the 4th NRC/ASME symposium on valve and pump testing

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The 1996 Symposium on Valve and Pump Testing, jointly sponsored by the Board on Nuclear Codes and Standards of the American Society of Mechanical Engineers and by the U.S. Nuclear Regulatory Commission, provides a forum for the discussion of current programs and methods for inservice testing and motor-operated valve testing at nuclear power plants. The symposium also provides an opportunity to discuss the need to improve that testing in order to help ensure the reliable performance of pumps and valves. The participation of industry representatives, regulators, and consultants results in the discussion of a broad spectrum of ideas and perspectives regarding the improvement of inservice testing of pumps and valves at nuclear power plants. Individual papers of this Proceedings have been cataloged separately.

  9. Proceedings of the 4th NRC/ASME symposium on valve and pump testing

    International Nuclear Information System (INIS)

    1996-01-01

    The 1996 Symposium on Valve and Pump Testing, jointly sponsored by the Board on Nuclear Codes and Standards of the American Society of Mechanical Engineers and by the U.S. Nuclear Regulatory Commission, provides a forum for the discussion of current programs and methods for inservice testing and motor-operated valve testing at nuclear power plants. The symposium also provides an opportunity to discuss the need to improve that testing in order to help ensure the reliable performance of pumps and valves. The participation of industry representatives, regulators, and consultants results in the discussion of a broad spectrum of ideas and perspectives regarding the improvement of inservice testing of pumps and valves at nuclear power plants. Individual papers of this Proceedings have been cataloged separately

  10. Transcatheter Aortic Valve Replacement for Degenerative Bioprosthetic Surgical Valves

    DEFF Research Database (Denmark)

    Dvir, Danny; Webb, John; Brecker, Stephen

    2012-01-01

    Transcatheter aortic valve-in-valve implantation is an emerging therapeutic alternative for patients with a failed surgical bioprosthesis and may obviate the need for reoperation. We evaluated the clinical results of this technique using a large, worldwide registry....

  11. Limitations on anti p-p luminosity with direct injection and stacking of antiprotons

    International Nuclear Information System (INIS)

    Courant, E.D.; Teng, L.C.

    1979-01-01

    If protons of very high energy impinge on a target, a large part of the resulting antiprotons are sufficiently collimated to be injectible into a stacking and accelerating ring. They can then be stacked and injected into the main proton accelerator so as to produce anti p-p collisions without low energy antiproton cooling. A scheme is presented for the VBA, where 20 TeV protons produce 9 x 10 -4 antiprotons per proton at 100 GeV, which are then stacked, accelerated to 1 TeV, and injected into the main ring. With 16 proton pulses of 10 15 protons, one obtains a luminosity of the order of 10 32 cm -2 sec -1 with a beam-beam tune shift of 10 -3 per interaction region. The beams are bunched into 1000 bunches; the orbits are separated by means of relatively modest electostatic electrodes

  12. Large spin-valve effect in a lateral spin-valve device based on ferromagnetic semiconductor GaMnAs

    Science.gov (United States)

    Asahara, Hirokatsu; Kanaki, Toshiki; Ohya, Shinobu; Tanaka, Masaaki

    2018-03-01

    We investigate the spin-dependent transport properties of a lateral spin-valve device based on the ferromagnetic semiconductor GaMnAs. This device is composed of a GaMnAs channel layer grown on GaAs with a narrow trench across the channel. Its current-voltage characteristics show tunneling behavior. Large magnetoresistance (MR) ratios of more than ˜10% are obtained. These values are much larger than those (˜0.1%) reported for lateral-type spin metal-oxide-semiconductor field-effect transistors. The magnetic field direction dependence of the MR curve differs from that of the anisotropic magnetoresistance of GaMnAs, which confirms that the MR signal originates from the spin-valve effect between the GaMnAs electrodes.

  13. Overflow control valve

    International Nuclear Information System (INIS)

    Kessinger, B.A.; Hundal, R.; Parlak, E.A.

    1982-01-01

    An overflow control valve for use in a liquid sodium coolant pump tank which can be remotely engaged with and disengaged from the pump tank wall to thereby permit valve removal. An actuating shaft for controlling the valve also has means for operating a sliding cylinder against a spring to retract the cylinder from sealing contact with the pump tank nozzle. (author)

  14. Valve-sparing aortic root replacement†.

    Science.gov (United States)

    Koolbergen, David R; Manshanden, Johan S J; Bouma, Berto J; Blom, Nico A; Mulder, Barbara J M; de Mol, Bas A J M; Hazekamp, Mark G

    2015-02-01

    To evaluate our results of valve-sparing aortic root replacement and associated (multiple) valve repair. From September 2003 to September 2013, 97 patients had valve-sparing aortic root replacement procedures. Patient records and preoperative, postoperative and recent echocardiograms were reviewed. Median age was 40.3 (range: 13.4-68.6) years and 67 (69.1%) were male. Seven (7.2%) patients were younger than 18 years, the youngest being 13.4 years. Fifty-four (55.7%) had Marfan syndrome, 2 (2.1%) other fibrous tissue diseases, 15 (15.5%) bicuspid aortic valve and 3 (3.1%) had earlier Fallot repair. The reimplantation technique was used in all, with a straight vascular prosthesis in 11 (26-34 mm) and the Valsalva prosthesis in 86 (26-32 mm). Concomitant aortic valve repair was performed in 43 (44.3%), mitral valve repair in 10 (10.3%), tricuspid valve repair in 5 (5.2%) and aortic arch replacement in 3 (3.1%). Mean follow-up was 4.2 ± 2.4 years. Follow-up was complete in all. One 14-year old patient died 1.3 years post-surgery presumably of ventricular arrhythmia. One patient underwent reoperation for aneurysm of the proximal right coronary artery after 4.9 years and 4 patients required aortic valve replacement, 3 of which because of endocarditis after 0.1, 0.8 and 1.3 years and 1 because of cusp prolapse after 3.8 years. No thrombo-embolic complications occurred. Mortality, root reoperation and aortic regurgitation were absent in 88.0 ± 0.5% at 5-year follow-up. Results of valve-sparing root replacement are good, even in association with a high incidence of concomitant valve repair. Valve-sparing aortic root replacement can be performed at a very young age as long as an adult size prosthesis can be implanted. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  15. The prognosis of infective endocarditis treated with biological valves versus mechanical valves: A meta-analysis.

    Science.gov (United States)

    Tao, Ende; Wan, Li; Wang, WenJun; Luo, YunLong; Zeng, JinFu; Wu, Xia

    2017-01-01

    Surgery remains the primary form of treatment for infective endocarditis (IE). However, it is not clear what type of prosthetic valve provides a better prognosis. We conducted a meta-analysis to compare the prognosis of infective endocarditis treated with biological valves to cases treated with mechanical valves. Pubmed, Embase and Cochrane databases were searched from January 1960 to November 2016.Randomized controlled trials, retrospective cohorts and prospective studies comparing outcomes between biological valve and mechanical valve management for infective endocarditis were analyzed. The Newcastle-Ottawa Scale(NOS) was used to evaluate the quality of the literature and extracted data, and Stata 12.0 software was used for the meta-analysis. A total of 11 publications were included; 10,754 cases were selected, involving 6776 cases of biological valves and 3,978 cases of mechanical valves. The all-cause mortality risk of the biological valve group was higher than that of the mechanical valve group (HR = 1.22, 95% CI 1.03 to 1.44, P = 0.023), as was early mortality (RR = 1.21, 95% CI 1.02 to 1.43, P = 0.033). The recurrence of endocarditis (HR = 1.75, 95% CI 1.26 to 2.42, P = 0.001), as well as the risk of reoperation (HR = 1.79, 95% CI 1.15 to 2.80, P = 0.010) were more likely to occur in the biological valve group. The incidence of postoperative embolism was less in the biological valve group than in the mechanical valve group, but this difference was not statistically significant (RR = 0.90, 95% CI 0.76 to 1.07, P = 0.245). For patients with prosthetic valve endocarditis (PVE), there was no significant difference in survival rates between the biological valve group and the mechanical valve group (HR = 0.91, 95% CI 0.68 to 1.21, P = 0.520). The results of our meta-analysis suggest that mechanical valves can provide a significantly better prognosis in patients with infective endocarditis. There were significant differences in the clinical features of patients

  16. TELECOM LAB

    CERN Multimedia

    IT-CS-TEL Section

    2001-01-01

    The Telecom Lab is moving from Building 104 to Building 31 S-026, with its entrance via the ramp on the side facing Restaurant n°2. The help desk will thus be closed to users on Tuesday 8 May. On May 9, the Lab will only be able to deal with problems of a technical nature at the new address and it will not be able to process any new subscription requests throughout the week from 7 to 11 May. We apologise for any inconvenience this may cause and thank you for your understanding.

  17. Oil pipeline valve automation for spill reduction

    Energy Technology Data Exchange (ETDEWEB)

    Mohitpour, Mo; Trefanenko, Bill [Enbridge Technology Inc, Calgary (Canada); Tolmasquim, Sueli Tiomno; Kossatz, Helmut [TRANSPETRO - PETROBRAS Transporte S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    Liquid pipeline codes generally stipulate placement of block valves along liquid transmission pipelines such as on each side of major river crossings where environmental hazards could cause or are foreseen to potentially cause serious consequences. Codes, however, do not stipulate any requirement for block valve spacing for low vapour pressure petroleum transportation, nor for remote pipeline valve operations to reduce spills. A review of pipeline codes for valve requirement and spill limitation in high consequence areas is thus presented along with a criteria for an acceptable spill volume that could be caused by pipeline leak/full rupture. A technique for deciding economically and technically effective pipeline block valve automation for remote operation to reduce oil spilled and control of hazards is also provided. In this review, industry practice is highlighted and application of the criteria for maximum permissible oil spill and the technique for deciding valve automation thus developed, as applied to ORSUB pipeline is presented. ORSUB is one of the three initially selected pipelines that have been studied. These pipelines represent about 14% of the total length of petroleum transmission lines operated by PETROBRAS Transporte S.A. (TRANSPETRO) in Brazil. Based on the implementation of valve motorization on these three pipeline, motorization of block valves for remote operation on the remaining pipelines is intended, depending on the success of these implementations, on historical records of failure and appropriate ranking. (author)

  18. Intelligent Flow Control Valve

    Science.gov (United States)

    Kelley, Anthony R (Inventor)

    2015-01-01

    The present invention is an intelligent flow control valve which may be inserted into the flow coming out of a pipe and activated to provide a method to stop, measure, and meter flow coming from the open or possibly broken pipe. The intelligent flow control valve may be used to stop the flow while repairs are made. Once repairs have been made, the valve may be removed or used as a control valve to meter the amount of flow from inside the pipe. With the addition of instrumentation, the valve may also be used as a variable area flow meter and flow controller programmed based upon flowing conditions. With robotic additions, the valve may be configured to crawl into a desired pipe location, anchor itself, and activate flow control or metering remotely.

  19. Metallurgical Laboratory (MetLab) Treatability Study: An Analysis of Passive Soil Vapor Extraction Wells (PSVE) FY1999 Update; ANNUAL

    International Nuclear Information System (INIS)

    Riha, B.D.

    1999-01-01

    The results to date on the treatability study of the PSVE system at the MetLab of the Savannah River Site (SRS) indicate the technology is performing well. Well concentrations are decreasing and contour maps of the vadose zone soil gas plume show a decrease in the extent of the plume. In the 18 months of operation approximately 200 pounds of chlorinated organic contaminants have been removed by natural barometric pumping of wells fitted with BaroBall valves (low pressure check valves). The mass removal estimates are approximate since the flow rates are estimated, the concentration data is based on exponential fits of a limited data set, and the concentration data is normalized to the average CO2.The concentration values presented in this report should be taken as the general trend or order of magnitude of concentration until longer-term data is collected. These trends are of exponentially decreasing concentration showing the same characteristics as the concentration trends at the SRS Miscellaneous Chemical Basin after three years of PSVE (Riha et. al., 1999)

  20. Analysis on typical illegal events for nuclear safety class 1 valve

    International Nuclear Information System (INIS)

    Tian Dongqing; Gao Runsheng; Jiao Dianhui; Yang Lili; Chen Peng

    2014-01-01

    Illegal welding events of nuclear safety class l valve forging occurred to the manufacturer, while the valve was returned to be repaired. Illegal nondestructive test event of nuclear safety class valve occurred also to the manufacturer in the manufacturing process. The two events have resulted in quality incipient fault for the installed valves and the valves in the manufacturing process. It was reflected that operation of the factory quality assurance system isn't activated, and nuclear power engineering and operating company have insufficient supervision. The event-related parties should strengthen quality management and process control, get rid of the quality incipient fault, and experience feedback should be done well to guarantee quality of equipment in nuclear power plant. (authors)