WorldWideScience

Sample records for initio lattice dynamics

  1. Ab initio lattice dynamics of metal surfaces

    International Nuclear Information System (INIS)

    Heid, R.; Bohnen, K.-P.

    2003-01-01

    Dynamical properties of atoms on surfaces depend sensitively on their bonding environment and thus provide valuable insight into the local geometry and chemical binding at the boundary of a solid. Density-functional theory provides a unified approach to the calculation of structural and dynamical properties from first principles. Its high accuracy and predictive power for lattice dynamical properties of semiconductor surfaces has been demonstrated in a previous article by Fritsch and Schroeder (Phys. Rep. 309 (1999) 209). In this report, we review the state-of-the-art of these ab initio approaches to surface dynamical properties of metal surfaces. We give a brief introduction to the conceptual framework with focus on recent advances in computational procedures for the ab initio linear-response approach, which have been a prerequisite for an efficient treatment of surface dynamics of noble and transition metals. The discussed applications to clean and adsorbate-covered surfaces demonstrate the high accuracy and reliability of this approach in predicting detailed microscopic properties of the phonon dynamics for a wide range of metallic surfaces

  2. Ab initio study of the lattice dynamics of CsNiF3

    International Nuclear Information System (INIS)

    Legut, Dominik; Wdowik, Urszula D

    2010-01-01

    Lattice dynamics of the quasi-one-dimensional ferromagnetic chain-like structure of CsNiF 3 has been studied using density functional theory and the direct method. Investigations were limited to the harmonic approximation. Antiferromagnetic and ferromagnetic spin orderings on Ni atoms were considered. It is found that phonons remain practically insensitive to the type of magnetic arrangement. The difference in the calculated Helmholtz free energies between antiferro- and ferromagnetic ordering is too small to provide sufficient information on the preference of the type of magnetic ordering in CsNiF 3 . Calculated acoustic phonons agree very well with the inelastic neutron scattering experiments, while the optical phonons remain in an acceptable agreement with Raman and infrared measurements. Comparison of the experimental heat capacity and the calculated lattice contribution to the heat capacity shows that the magnetic contribution is negligible above 20-30 K. Thermal motions of particular atoms in CsNiF 3 crystals are highly anisotropic with surprisingly high mean-squared vibrations of Cs ions which exceed thermal vibrations of very light F ions. Such a behavior could be explained by the difference of the force constants between the Cs and F sites which overcomes the effect associated with the difference between masses of Cs and F ions. Nickel cations reveal very high on-site force constants, i.e. very low amplitudes of thermal vibrations, as they form some kind of rigid rods in the CsNiF 3 lattice. Calculated elastic constants indicate CsNiF 3 to be rather a soft material.

  3. Ab Initio Molecular Dynamics and Lattice Dynamics-Based Force Field for Modeling Hexagonal Boron Nitride in Mechanical and Interfacial Applications.

    Science.gov (United States)

    Govind Rajan, Ananth; Strano, Michael S; Blankschtein, Daniel

    2018-04-05

    Hexagonal boron nitride (hBN) is an up-and-coming two-dimensional material, with applications in electronic devices, tribology, and separation membranes. Herein, we utilize density-functional-theory-based ab initio molecular dynamics (MD) simulations and lattice dynamics calculations to develop a classical force field (FF) for modeling hBN. The FF predicts the crystal structure, elastic constants, and phonon dispersion relation of hBN with good accuracy and exhibits remarkable agreement with the interlayer binding energy predicted by random phase approximation calculations. We demonstrate the importance of including Coulombic interactions but excluding 1-4 intrasheet interactions to obtain the correct phonon dispersion relation. We find that improper dihedrals do not modify the bulk mechanical properties and the extent of thermal vibrations in hBN, although they impact its flexural rigidity. Combining the FF with the accurate TIP4P/Ice water model yields excellent agreement with interaction energies predicted by quantum Monte Carlo calculations. Our FF should enable an accurate description of hBN interfaces in classical MD simulations.

  4. Room temperature single-crystal diffuse scattering and ab initio lattice dynamics in CaTiSiO5.

    Science.gov (United States)

    Gutmann, M J; Refson, K; Zimmermann, M V; Swainson, I P; Dabkowski, A; Dabkowska, H

    2013-08-07

    Single-crystal diffuse scattering data have been collected at room temperature on synthetic titanite using both neutrons and high-energy x-rays. A simple ball-and-springs model reproduces the observed diffuse scattering well, confirming its origin to be primarily due to thermal motion of the atoms. Ab initio phonons are calculated using density-functional perturbation theory and are shown to reproduce the experimental diffuse scattering. The observed diffuse x-ray and neutron scattering patterns are consistent with a summation of mode frequencies and displacement eigenvectors associated with the entire phonon spectrum, rather than with a simple, short-range static displacement. A band gap is observed between 600 and 700 cm(-1) with only two modes crossing this region, both associated with antiferroelectric Ti-O motion along a. One of these modes (of Bu symmetry), displays a large LO-TO mode-splitting (562-701.4 cm(-1)) and has a dominant component coming from Ti-O bond-stretching and, thus, the mode-splitting is related to the polarizability of the Ti-O bonds along the chain direction. Similar mode-splitting is observed in piezo- and ferroelectric materials. The calculated phonon dispersion model may be of use to others in future to understand the phase transition at higher temperatures, as well as in the interpretation of measured phonon dispersion curves.

  5. Dynamical lattice theory

    International Nuclear Information System (INIS)

    Chodos, A.

    1978-01-01

    A version of lattice gauge theory is presented in which the shape of the lattice is not assumed at the outset but is a consequence of the dynamics. Other related features which are not specified a priori include the internal and space-time symmetry groups and the dimensionality of space-time. The theory possesses a much larger invariance group than the usual gauge group on a lattice, and has associated with it an integer k 0 analogous to the topological quantum numer of quantum chromodynamics. Families of semiclassical solutions are found which are labeled by k 0 and a second integer x, but the analysis is not carried far enough to determine which space-time and internal symmetry groups characterize the lowest-lying states of the theory

  6. Sulfamerazine: Understanding the Influence of Slip Planes in the Polymorphic Phase Transformation through X-Ray Crystallographic Studies and ab Initio Lattice Dynamics.

    Science.gov (United States)

    Pallipurath, Anuradha R; Skelton, Jonathan M; Warren, Mark R; Kamali, Naghmeh; McArdle, Patrick; Erxleben, Andrea

    2015-10-05

    Understanding the polymorphism exhibited by organic active-pharmaceutical ingredients (APIs), in particular the relationships between crystal structure and the thermodynamics of polymorph stability, is vital for the production of more stable drugs and better therapeutics, and for the economics of the pharmaceutical industry in general. In this article, we report a detailed study of the structure-property relationships among the polymorphs of the model API, Sulfamerazine. Detailed experimental characterization using synchrotron radiation is complemented by computational modeling of the lattice dynamics and mechanical properties, in order to study the origin of differences in millability and to investigate the thermodynamics of the phase equilibria. Good agreement is observed between the simulated phonon spectra and mid-infrared and Raman spectra. The presence of slip planes, which are found to give rise to low-frequency lattice vibrations, explains the higher millability of Form I compared to Form II. Energy/volume curves for the three polymorphs, together with the temperature dependence of the thermodynamic free energy computed from the phonon frequencies, explains why Form II converts to Form I at high temperature, whereas Form III is a rare polymorph that is difficult to isolate. The combined experimental and theoretical approach employed here should be generally applicable to the study of other systems that exhibit polymorphism.

  7. Lattice dynamics of thorium

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, J [Agra Coll. (India). Dept. of Physics

    1977-03-01

    In the present work, a local model pseudopotential has been proposed to study the lattice dynamics of thorium. The model potential depends on the core and ionic radii, and accounts for the s-d-f hybridization effects in a phenomenological way. When this form of potential is applied to derive the photon dispersion curves of Th, sufficiently good agreement is found between the computed and experimental results.

  8. Predicting lattice thermal conductivity with help from ab initio methods

    Science.gov (United States)

    Broido, David

    2015-03-01

    The lattice thermal conductivity is a fundamental transport parameter that determines the utility a material for specific thermal management applications. Materials with low thermal conductivity find applicability in thermoelectric cooling and energy harvesting. High thermal conductivity materials are urgently needed to help address the ever-growing heat dissipation problem in microelectronic devices. Predictive computational approaches can provide critical guidance in the search and development of new materials for such applications. Ab initio methods for calculating lattice thermal conductivity have demonstrated predictive capability, but while they are becoming increasingly efficient, they are still computationally expensive particularly for complex crystals with large unit cells . In this talk, I will review our work on first principles phonon transport for which the intrinsic lattice thermal conductivity is limited only by phonon-phonon scattering arising from anharmonicity. I will examine use of the phase space for anharmonic phonon scattering and the Grüneisen parameters as measures of the thermal conductivities for a range of materials and compare these to the widely used guidelines stemming from the theory of Liebfried and Schölmann. This research was supported primarily by the NSF under Grant CBET-1402949, and by the S3TEC, an Energy Frontier Research Center funded by the US DOE, office of Basic Energy Sciences under Award No. DE-SC0001299.

  9. Structure and lattice dynamics of GaN and AlN. Ab-initio investigations of strained polytypes and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Jan-Martin

    2004-10-14

    In this dissertation, ab-initio investigations of the strain influence on vibrational properties of GaN and AlN as well as of short-period GaN/AlN superlattices are presented. Based on densityfunctional theory and density-functional perturbation theory, for differently strained structures complete phonon spectra and related properties are calculated using the local-density approximation and norm-conserving pseudopotentials. (orig.)

  10. Lattice dynamics at high pressure: application of inelastic X-ray scattering and ab-initio calculations -MgO at 35 GPa

    International Nuclear Information System (INIS)

    Ghose, Subrata

    2006-01-01

    Full text: Until recently, inelastic neutron scattering (INS) has been extensively used to study the phonon dispersion throughout the Brillouin zone and phonon density of states in crystalline materials. The weak interaction of neutrons with matter and the typical size of the neutron beams require the use of cm-size single crystals that puts an upper limit to the measurement of phonon dispersion at high pressure to about 10-15 Gpa by INS. Inelastic X-ray scattering (IXS) using third generation synchrotron sources now makes it possible to measure the phonon dispersion at high pressures up to 50 GP A in crystals tens of microns in size mounted in a diamond-anvil cell, usually using He as the pressure transmitting medium. We have used this technique to measure the longitudinal acoustic and optic phonon branches of MgO along the Γ-X direction at 35 Gpa. The experimentally observed phonon-branches are in remarkable agreement with ab-initio quantum mechanical calculations using the density-functional perturbation theory. The derived thermodynamic properties, such as specific heat and the entropy are in very good agreement with values obtained from a thermodynamically assessed data set

  11. Ab Initio molecular dynamics with excited electrons

    NARCIS (Netherlands)

    Alavi, A.; Kohanoff, J.; Parrinello, M.; Frenkel, D.

    1994-01-01

    A method to do ab initio molecular dynamics suitable for metallic and electronically hot systems is described. It is based on a density functional which is costationary with the finite-temperature functional of Mermin, with state being included with possibly fractional occupation numbers.

  12. Ab initio interionic potentials for NaCl by multiple lattice inversion

    International Nuclear Information System (INIS)

    Zhang Shuo; Chen Nanxian

    2002-01-01

    Based on the Chen-Moebius lattice inversion and a series of pseudopotential total-energy curves, a different method is presented to derive the ab initio interionic pair potentials for B1-type ionic crystals. Comparing with the experimental data, the static properties of B1- and B2-type NaCl are well reproduced by the interionic potentials. Moreover, the phase stability of B1-NaCl has been described by the energy minimizations from the global deformed and disturbed states. The molecular-dynamics simulations for the molten NaCl indicate that the calculated mean-square displacements, radial distribution function, and diffusion coefficients gain good agreements with the experimental results. It can be concluded that the inversion pair potentials are valid over a wide range of interionic separations for describing the structural properties of B1-type ionic crystals

  13. Ab initio lattice dynamics of complex structures

    DEFF Research Database (Denmark)

    Voss, Johannes

    2008-01-01

    In this thesis, density functional theory is applied in a study of thermodynamic properties of so-called complex metal hydrides, which are promising materials for hydrogen storage applications. Since the unit cells of these crystals can be relatively large with many symmetrically inequivalent ato...

  14. Lattice dynamics of lithium oxide

    Indian Academy of Sciences (India)

    Abstract. Li2O finds several important technological applications, as it is used in solid- state batteries, can be used as a blanket breeding material in nuclear fusion reactors, etc. Li2O exhibits a fast ion phase, characterized by a thermally induced dynamic disorder in the anionic sub-lattice of Li+, at elevated temperatures ...

  15. Harmonic Lattice Dynamics of Germanium

    Energy Technology Data Exchange (ETDEWEB)

    Nelin, G

    1974-07-01

    The phonon dispersion relations of the DELTA-, LAMBDA-, and SIGMA-directions of germanium at 80 K are analysed in terms of current harmonic lattice dynamical models. On the basis of this experience, a new model is proposed which gives a unified account of the strong points of the previous models. The principal elements of the presented theory are quasiparticle bond charges combined with a valence force field.

  16. Harmonic Lattice Dynamics of Germanium

    International Nuclear Information System (INIS)

    Nelin, G.

    1974-01-01

    The phonon dispersion relations of the Δ-, Λ-, and Σ-directions of germanium at 80 K are analysed in terms of current harmonic lattice dynamical models. On the basis of this experience, a new model is proposed which gives a unified account of the strong points of the previous models. The principal elements of the presented theory are quasiparticle bond charges combined with a valence force field

  17. Lattice dynamics of ionic crystals

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1990-01-01

    The theory of lattice dynamics for ionic and rare-gas crystals is derived in the harmonic approximation. We start from a Hamiltonian and average over electron coordinates in order to obtain an effective interaction between ion displacements. We assume that electronic excitations are localized on a single ion, which limits the theory to ionic crystals. The deformation-dipole model and the indirect-ionic-interaction model are derived. These two contributions are closely linked, and together provide an accurate description of short-range forces

  18. The lattice dynamics of imidazole

    International Nuclear Information System (INIS)

    Link, K.H.

    1983-05-01

    The lattice dynamics of imidazole have been investigated. To this end dispersion curves have been determined at 10 K by inelastic coherent neutron scattering. RAMAN measurements have been done to investigate identical gamma - point modes. The combination of extinction rules for RAMAN - and neutron scattering leads to the symmetry assignment of identical gamma - point modes. The experiment yields a force constant of the streching vibration of the hydrogen bond of 0.33 mdyn/A. A force model has been developed to describe the intermolecular atom - atom Interactions in imidazole. (orig./BHO)

  19. Anomalous diffusion in a dynamical optical lattice

    Science.gov (United States)

    Zheng, Wei; Cooper, Nigel R.

    2018-02-01

    Motivated by experimental progress in strongly coupled atom-photon systems in optical cavities, we study theoretically the quantum dynamics of atoms coupled to a one-dimensional dynamical optical lattice. The dynamical lattice is chosen to have a period that is incommensurate with that of an underlying static lattice, leading to a dynamical version of the Aubry-André model which can cause localization of single-particle wave functions. We show that atomic wave packets in this dynamical lattice generically spread via anomalous diffusion, which can be tuned between superdiffusive and subdiffusive regimes. This anomalous diffusion arises from an interplay between Anderson localization and quantum fluctuations of the cavity field.

  20. Hydrogen Bond Dynamics in Aqueous Solutions: Ab initio Molecular ...

    Indian Academy of Sciences (India)

    Rate equation for the decay of CHB(t) · Definition of Hydrogen Bonds · Results of Molecular Dynamics · Dynamics of anion-water and water-water hydrogen bonds · Structural relaxation of anion-water & water-water H-bonds · Ab initio Molecular Dynamics : · Slide 14 · Dynamics of hydrogen bonds : CPMD results · Slide 16.

  1. Lattice dynamics in solid oxygen

    International Nuclear Information System (INIS)

    Kobashi, K.; Klein, M.L.; Chandrasekharan, V.

    1979-01-01

    Lattice dynamical calculations for the bulk α, β, and γ phases of solid O 2 and for the monolayer α and β phases have been made in the harmonic approximation. In the α and β phases, atom-atom 6-12 potentials are employed. In the γ phase, effective potentials are used between molecular centers and only the translational lattice vibrations are calculated. It is found that Laufer and Leroi's potential parameters give two k=O frequencies at 42.7 and 43.6 cm -1 in the bulk α-O 2 , and at 40.7 cm -1 for the degenerate k=0 modes in the β phase. The observed Raman lines for α-O 2 at 43 and 79 cm -1 , which are both known to exhibit isotope shifts, are thus tentatively assigned to an accidentally degenerate line and a two-phonon band, respectively, In view of the possible contribution from anharmonic effects, the agreement of the calculation with experiment (48-51 cm -1 ) in β-O 2 may be better than it seems. For the bulk γ-O 2 , a discrepancy is observed between the calculated elastic constants and those derived from Brillouin scattering experiments. This discrepancy may be due to the neglect of translation-rotation coupling. In the monolayer O 2 , Raman active modes at 28.3 and 40.6 cm -1 for the α phase, and 31.9 cm -1 for the β phase are predicted

  2. Microscopic theory for coupled atomistic magnetization and lattice dynamics

    Science.gov (United States)

    Fransson, J.; Thonig, D.; Bessarab, P. F.; Bhattacharjee, S.; Hellsvik, J.; Nordström, L.

    2017-12-01

    A coupled atomistic spin and lattice dynamics approach is developed which merges the dynamics of these two degrees of freedom into a single set of coupled equations of motion. The underlying microscopic model comprises local exchange interactions between the electron spin and magnetic moment and the local couplings between the electronic charge and lattice displacements. An effective action for the spin and lattice variables is constructed in which the interactions among the spin and lattice components are determined by the underlying electronic structure. In this way, expressions are obtained for the electronically mediated couplings between the spin and lattice degrees of freedom, besides the well known interatomic force constants and spin-spin interactions. These former susceptibilities provide an atomistic ab initio description for the coupled spin and lattice dynamics. It is important to notice that this theory is strictly bilinear in the spin and lattice variables and provides a minimal model for the coupled dynamics of these subsystems and that the two subsystems are treated on the same footing. Questions concerning time-reversal and inversion symmetry are rigorously addressed and it is shown how these aspects are absorbed in the tensor structure of the interaction fields. By means of these results regarding the spin-lattice coupling, simple explanations of ionic dimerization in double-antiferromagnetic materials, as well as charge density waves induced by a nonuniform spin structure, are given. In the final parts, coupled equations of motion for the combined spin and lattice dynamics are constructed, which subsequently can be reduced to a form which is analogous to the Landau-Lifshitz-Gilbert equations for spin dynamics and a damped driven mechanical oscillator for the ionic motion. It is important to notice, however, that these equations comprise contributions that couple these descriptions into one unified formulation. Finally, Kubo-like expressions for

  3. Lattice dynamics of alpha uranium

    International Nuclear Information System (INIS)

    Crummett, W.P.

    1978-01-01

    Inelastic neutron scattering measurements of the phonon dispersion curves along the three-principal high-symmetry directions have been performed to investigate the lattice dynamics of α-U. The dispersion curves along the [0 zeta 0] and [00 zeta] directions are not too unusual. However, dips and depressions are observed in the [zeta 00] branches similar to those observed in high-T/sub c/ superconductors. Standard group theoretical techniques have been employed to discern the symmetry properties of the phonon branches and to block diagonalize the dynamical matrix of the various phenomenological models that have been applied to α-U. These phenomenological models include: a four neighbor Born-von Karman general tensor model, a twelve neighbor axially symmetric model, and a shell model. None of these models was able to satisfactorily fit the [zeta 00] data. However, a modified form of the shell model which included axially symmetric interactions to six neighbors was found to reproduce most of the dispersion curves well, including the [zeta 00] branches. A simple pseudopotential model was less successful. To obtain all real frequencies from this model it was necessary to include a Born-von Karman short range contribution. These measurements and calculations have implied that the bonding properties of α-U are particularly dependent upon the details of the electronic system

  4. Lattice Dynamics of Gallium Phosphide

    International Nuclear Information System (INIS)

    Yarnell, J.L.; Warren, J.L.; Wenzel, R.G.; Dean, P.J.

    1968-01-01

    Dispersion curves for phonons propagating in the [100], [110], and [111] directions in gallium phosphide have been measured using a triple-axis neutron diffraction spectrometer operating in the constant-Q mode. The sample was a pseudo-single crystal which was prepared by gluing together 36 single crystal plates of gallium phosphide 1 to 2.5 cm in diameter and ∼0.07 cm thick. The plates were grown epitaxially on substrates of gallium arsenide or gallium phosphide, and aligned individually by neutron diffraction. Rocking curves for eight reflections symmetrically distributed in the plane of the experiment had full widths at half maximum in the range 0.52° - 0.58° and were approximately Gaussian in shape. Gallium phosphide crystallizes in the zinc blende structure. A group theoretic analysis of the lattice dynamics of this structure and a shell model fit to the measured dispersion curves are presented. Various optical properties of gallium phosphide are discussed in terms of the phonon dispersion curves. In particular, the phonons which assist indirect electronic transitions are identified as those at the zone boundary in the [100] direction (symmetry point X) in agreement with theoretical and experimental indications that the extrema of the conduction and valence bands are at X and Γ (center of the zone), respectively. The LO branches lie above the TO branches throughout the Brillouin zone in contradiction to the predictions of Keyes and Mitra. The shell model fit indicates that the charge on the gallium atom is negative. (author)

  5. Lattice Dynamics of fcc Ca

    DEFF Research Database (Denmark)

    Stassis, C.; Zaretsky, J.; Misemer, D. K.;

    1983-01-01

    A large single crystal of FCC Ca was grown and was used to study the lattice dynamics of this divalent metal by coherent inelastic neutron scattering. The phonon dispersion curves were measured, at room temperature, along the [ξ00], [ξξ0], [ξξξ], and [0ξ1] symmetry directions. The dispersion curves...... to the propagation of elastic waves. The frequencies of the T1[ξξ0] branch for ξ between approximately 0.5 and 0.8 are slightly above the velocity-of-sound line determined from the low-frequency measurements. Since a similar effect has been observed in FCC Yb, it is natural to assume that the anomalous dispersion...... bear a striking resemblance to those of FCC Yb, which is also a divalent metal with an electronic band structure similar to that of Ca. In particular, the shear moduli c44 and (c11-c 12)/2 differ by a factor of 3.4, which implies that FCC Ca (like FCC Yb) is very anisotropic with regard...

  6. Dynamical fermions in lattice quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, Kalman

    2007-07-01

    The thesis presentS results in Quantum Chromo Dynamics (QCD) with dynamical lattice fermions. The topological susceptibilty in QCD is determined, the calculations are carried out with dynamical overlap fermions. The most important properties of the quark-gluon plasma phase of QCD are studied, for which dynamical staggered fermions are used. (orig.)

  7. Dynamical fermions in lattice quantum chromodynamics

    International Nuclear Information System (INIS)

    Szabo, Kalman

    2007-01-01

    The thesis presentS results in Quantum Chromo Dynamics (QCD) with dynamical lattice fermions. The topological susceptibilty in QCD is determined, the calculations are carried out with dynamical overlap fermions. The most important properties of the quark-gluon plasma phase of QCD are studied, for which dynamical staggered fermions are used. (orig.)

  8. D2 dissociative adsorption on and associative desorption from Si(100): Dynamic consequences of an ab initio potential energy surface

    DEFF Research Database (Denmark)

    Luntz, A. C.; Kratzer, Peter

    1996-01-01

    favors the symmetric one. Under the conditions of many experiments, either could dominate. The calculations show quite weak dynamic coupling to the Si lattice for both paths, i.e., weak surface temperature dependences to dissociation and small energy loss to the lattice upon desorption......Dynamical calculations are reported for D-2 dissociative chemisorption on and associative desorption from a Si(100) surface. These calculations use the dynamically relevant effective potential which is based on an ab initio potential energy surface for the ''pre-paired'' species. Three coordinates...

  9. Dynamical Regge calculus as lattice gravity

    International Nuclear Information System (INIS)

    Hagura, Hiroyuki

    2001-01-01

    We propose a hybrid approach to lattice quantum gravity by combining simultaneously the dynamical triangulation with the Regge calculus, called the dynamical Regge calculus (DRC). In this approach lattice diffeomorphism is realized as an exact symmetry by some hybrid (k, l) moves on the simplicial lattice. Numerical study of 3D pure gravity shows that an entropy of the DRC is not exponetially bounded if we adopt the uniform measure Π i dl i . On the other hand, using the scale-invariant measure Π i dl i /l i , we can calculate observables and observe a large hysteresis between two phases that indicates the first-order nature of the phase transition

  10. Ab initio optimization principle for the ground states of translationally invariant strongly correlated quantum lattice models.

    Science.gov (United States)

    Ran, Shi-Ju

    2016-05-01

    In this work, a simple and fundamental numeric scheme dubbed as ab initio optimization principle (AOP) is proposed for the ground states of translational invariant strongly correlated quantum lattice models. The idea is to transform a nondeterministic-polynomial-hard ground-state simulation with infinite degrees of freedom into a single optimization problem of a local function with finite number of physical and ancillary degrees of freedom. This work contributes mainly in the following aspects: (1) AOP provides a simple and efficient scheme to simulate the ground state by solving a local optimization problem. Its solution contains two kinds of boundary states, one of which play the role of the entanglement bath that mimics the interactions between a supercell and the infinite environment, and the other gives the ground state in a tensor network (TN) form. (2) In the sense of TN, a novel decomposition named as tensor ring decomposition (TRD) is proposed to implement AOP. Instead of following the contraction-truncation scheme used by many existing TN-based algorithms, TRD solves the contraction of a uniform TN in an opposite way by encoding the contraction in a set of self-consistent equations that automatically reconstruct the whole TN, making the simulation simple and unified; (3) AOP inherits and develops the ideas of different well-established methods, including the density matrix renormalization group (DMRG), infinite time-evolving block decimation (iTEBD), network contractor dynamics, density matrix embedding theory, etc., providing a unified perspective that is previously missing in this fields. (4) AOP as well as TRD give novel implications to existing TN-based algorithms: A modified iTEBD is suggested and the two-dimensional (2D) AOP is argued to be an intrinsic 2D extension of DMRG that is based on infinite projected entangled pair state. This paper is focused on one-dimensional quantum models to present AOP. The benchmark is given on a transverse Ising

  11. Multiple time step integrators in ab initio molecular dynamics

    International Nuclear Information System (INIS)

    Luehr, Nathan; Martínez, Todd J.; Markland, Thomas E.

    2014-01-01

    Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy

  12. Ab initio molecular dynamics simulation of laser melting of silicon

    NARCIS (Netherlands)

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1996-01-01

    The method of ab initio molecular dynamics, based on finite temperature density functional theory, is used to simulate laser heating of crystal silicon. We have found that a high concentration of excited electrons dramatically weakens the covalent bond. As a result, the system undergoes a melting

  13. Young Modulus of Crystalline Polyethylene from ab Initio Molecular Dynamics

    NARCIS (Netherlands)

    Hageman, J.C.L.; Meier, Robert J.; Heinemann, M.; Groot, R.A. de

    1997-01-01

    The Young modulus for crystalline polyethylene is calculated using ab initio molecular dynamics based on density functional theory in the local density approximation (DFT-LDA). This modulus, which can be seen as the ultimate value for the Young modulus of polyethylene fibers, is found to be 334 GPa.

  14. Bicanonical ab Initio Molecular Dynamics for Open Systems.

    Science.gov (United States)

    Frenzel, Johannes; Meyer, Bernd; Marx, Dominik

    2017-08-08

    Performing ab initio molecular dynamics simulations of open systems, where the chemical potential rather than the number of both nuclei and electrons is fixed, still is a challenge. Here, drawing on bicanonical sampling ideas introduced two decades ago by Swope and Andersen [ J. Chem. Phys. 1995 , 102 , 2851 - 2863 ] to calculate chemical potentials of liquids and solids, an ab initio simulation technique is devised, which introduces a fictitious dynamics of two superimposed but otherwise independent periodic systems including full electronic structure, such that either the chemical potential or the average fractional particle number of a specific chemical species can be kept constant. As proof of concept, we demonstrate that solvation free energies can be computed from these bicanonical ab initio simulations upon directly superimposing pure bulk water and the respective aqueous solution being the two limiting systems. The method is useful in many circumstances, for instance for studying heterogeneous catalytic processes taking place on surfaces where the chemical potential of reactants rather than their number is controlled and opens a pathway toward ab initio simulations at constant electrochemical potential.

  15. Ab initio lattice stability of fcc and hcp Fe-Mn random alloys

    International Nuclear Information System (INIS)

    Gebhardt, T; Music, D; Hallstedt, B; Schneider, J M; Ekholm, M; Abrikosov, I A; Vitos, L

    2010-01-01

    We have studied the lattice stability of face centred cubic (fcc) versus hexagonal close packed (hcp) Fe-Mn random alloys using ab initio calculations. In the calculations we considered the antiferromagnetic order of local moments, which for fcc alloys models the magnetic configuration of this phase at room temperature (below its Neel temperature) as well as their complete disorder, corresponding to paramagnetic fcc and hcp alloys. For both cases, the results are consistent with our thermodynamic calculations, obtained within the Calphad approach. For the room temperature magnetic configuration, the cross-over of the total energies of the hcp phase and the fcc phase of Fe-Mn alloys is at the expected Mn content, whereas for the magnetic configuration above the fcc Neel temperature, the hcp lattice is more stable within the whole composition range studied. The increase of the total energy difference between hcp and antiferromagnetic fcc due to additions of Mn as well as the stabilizing effect of antiferromagnetic ordering on the fcc phase are well displayed. These results are of relevance for understanding the deformation mechanisms of these random alloys.

  16. Ab initio lattice stability of fcc and hcp Fe-Mn random alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gebhardt, T; Music, D; Hallstedt, B; Schneider, J M [Materials Chemistry, RWTH Aachen University, D-52056 Aachen (Germany); Ekholm, M; Abrikosov, I A [Department of Physics, Chemistry and Biology (IFM), Linkoeping University, SE-581 83 Linkoeping (Sweden); Vitos, L, E-mail: gebhardt@mch.rwth-aachen.d [Department of Materials Science and Engineering, Applied Materials Physics, oyal Institute of Technology, SE-10044 Stockholm (Sweden)

    2010-07-28

    We have studied the lattice stability of face centred cubic (fcc) versus hexagonal close packed (hcp) Fe-Mn random alloys using ab initio calculations. In the calculations we considered the antiferromagnetic order of local moments, which for fcc alloys models the magnetic configuration of this phase at room temperature (below its Neel temperature) as well as their complete disorder, corresponding to paramagnetic fcc and hcp alloys. For both cases, the results are consistent with our thermodynamic calculations, obtained within the Calphad approach. For the room temperature magnetic configuration, the cross-over of the total energies of the hcp phase and the fcc phase of Fe-Mn alloys is at the expected Mn content, whereas for the magnetic configuration above the fcc Neel temperature, the hcp lattice is more stable within the whole composition range studied. The increase of the total energy difference between hcp and antiferromagnetic fcc due to additions of Mn as well as the stabilizing effect of antiferromagnetic ordering on the fcc phase are well displayed. These results are of relevance for understanding the deformation mechanisms of these random alloys.

  17. Ab initio simulations and neutron scattering studies of structure and dynamics in PdH

    International Nuclear Information System (INIS)

    Totolici, I.E.

    2001-07-01

    The work presented in this PhD thesis is concerned with the interpretation of the neutron scattering measurements from the palladium hydrogen system by means of ab initio electronic structure calculations. The motivation of performing such calculations was due to recent neutron scattering studies on this system that showed a strong directional dependence to the dynamical structure factor together with a complex dependence on energy. Here we attempt to describe the origin of these features by ab initio simulations of the dynamical structure factor. The method assumes an adiabatic separation of the motion of the proton and palladium atoms. The proton wave functions are calculated by a direct solution of the associated single-particle Schroedinger equation using a plane wave basis set method and a mapping of the adiabatic surface. The Fourier components of the adiabatic potential are obtained from LDA pseudopotential calculations. Using Fermi's golden rule within the Born approximation we were then able to calculate the dynamical structure factor, S(Q,ω), for exciting the proton from its ground state to various excited states as a function of the magnitude and direction of the scattering wave vector. The results are in agreement with the inelastic neutron scattering spectra and allow us to identify the origin of previous inexplicable features, in particular the strong directional dependence to the experimental data. The method was extended to investigate the expansion of the equilibrium lattice constant as a function of the H isotope when the zero-point energy of the proton/deuterium is explicitly taken into account in the relaxation process. The results we obtained predicted a bigger lattice constant for the hydride, as expected. Furthermore, other complex ab initio calculations were carried out in order to describe the origin of the large optic dispersion, seen previously in the coherent neutron scattering data. Our calculated dispersion proved to be in good

  18. Strong dynamics and lattice gauge theory

    Science.gov (United States)

    Schaich, David

    In this dissertation I use lattice gauge theory to study models of electroweak symmetry breaking that involve new strong dynamics. Electroweak symmetry breaking (EWSB) is the process by which elementary particles acquire mass. First proposed in the 1960s, this process has been clearly established by experiments, and can now be considered a law of nature. However, the physics underlying EWSB is still unknown, and understanding it remains a central challenge in particle physics today. A natural possibility is that EWSB is driven by the dynamics of some new, strongly-interacting force. Strong interactions invalidate the standard analytical approach of perturbation theory, making these models difficult to study. Lattice gauge theory is the premier method for obtaining quantitatively-reliable, nonperturbative predictions from strongly-interacting theories. In this approach, we replace spacetime by a regular, finite grid of discrete sites connected by links. The fields and interactions described by the theory are likewise discretized, and defined on the lattice so that we recover the original theory in continuous spacetime on an infinitely large lattice with sites infinitesimally close together. The finite number of degrees of freedom in the discretized system lets us simulate the lattice theory using high-performance computing. Lattice gauge theory has long been applied to quantum chromodynamics, the theory of strong nuclear interactions. Using lattice gauge theory to study dynamical EWSB, as I do in this dissertation, is a new and exciting application of these methods. Of particular interest is non-perturbative lattice calculation of the electroweak S parameter. Experimentally S ≈ -0.15(10), which tightly constrains dynamical EWSB. On the lattice, I extract S from the momentum-dependence of vector and axial-vector current correlators. I created and applied computer programs to calculate these correlators and analyze them to determine S. I also calculated the masses

  19. Ab initio molecular dynamics in a finite homogeneous electric field.

    Science.gov (United States)

    Umari, P; Pasquarello, Alfredo

    2002-10-07

    We treat homogeneous electric fields within density functional calculations with periodic boundary conditions. A nonlocal energy functional depending on the applied field is used within an ab initio molecular dynamics scheme. The reliability of the method is demonstrated in the case of bulk MgO for the Born effective charges, and the high- and low-frequency dielectric constants. We evaluate the static dielectric constant by performing a damped molecular dynamics in an electric field and avoiding the calculation of the dynamical matrix. Application of this method to vitreous silica shows good agreement with experiment and illustrates its potential for systems of large size.

  20. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Makhov, Dmitry V.; Shalashilin, Dmitrii V. [Department of Chemistry, University of Leeds, Leeds LS2 9JT (United Kingdom); Glover, William J.; Martinez, Todd J. [Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA and SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2014-08-07

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  1. Dynamical properties of dissipative XYZ Heisenberg lattices

    Science.gov (United States)

    Rota, R.; Minganti, F.; Biella, A.; Ciuti, C.

    2018-04-01

    We study dynamical properties of dissipative XYZ Heisenberg lattices where anisotropic spin-spin coupling competes with local incoherent spin flip processes. In particular, we explore a region of the parameter space where dissipative magnetic phase transitions for the steady state have been recently predicted by mean-field theories and exact numerical methods. We investigate the asymptotic decay rate towards the steady state both in 1D (up to the thermodynamical limit) and in finite-size 2D lattices, showing that critical dynamics does not occur in 1D, but it can emerge in 2D. We also analyze the behavior of individual homodyne quantum trajectories, which reveal the nature of the transition.

  2. Lattice dynamics of γ--Ce

    International Nuclear Information System (INIS)

    Gould, T.A.

    1978-08-01

    The phonon and magnetic measurements described in the thesis produced the following significant results concerning the lattice dynamical and magnetic properties of γ-Ce. The phonon spectrum is relatively soft, which is consistent with results obtained for CeSn 3 . The L [110] and T [111] branches of the dispersion curve are anomalous. The C 11 and C 44 elastic constants are quite close in value. No discrete magnetic excitations were observed. The magnetic scattering is qualitatively similar to the results from Ce 0 . 74 Th 0 . 26 , however, GAMMA/sub Ce/ less than GAMMA/sub Ce-Th/. The various lattice dynamical and magnetic similarities among γ-Ce, CeSn 3 , and Ce 0 . 74 Th 0 . 26 are mixed valence compounds. Therefore, a complete theoretical description of the observed properties of Ce and its compounds may provide a basis for understanding a whole class of mixed valence materials

  3. Diffusion of particles over dynamically disordered lattice

    Czech Academy of Sciences Publication Activity Database

    Tarasenko, Alexander; Jastrabík, Lubomír

    2011-01-01

    Roč. 13, č. 6 (2011), s. 2300-2306 ISSN 1463-9076 R&D Projects: GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : diffusion * Monte Carlo simulations * dynamic disordered lattice Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.573, year: 2011

  4. Lattice dynamics of sapphire (corundum). Pt. 2

    International Nuclear Information System (INIS)

    Kappus, W.

    1975-01-01

    Theoretical models of the lattice dynamics of sapphire (α - Al 2 O 3 ), based on the assumption of rigid ions, have been fitted to measured phonons at the Gamma-point of the Brillouin zone. Short range interactions were taken into account by assuming 2-body interactions between touching ions. Additional 3-body interactions could not improve the fit significantly. Calculated dispersion curves are presented and compared with inelastic neutron scattering data. A good agreement for branches along the trigonal axis can be stated. (orig.) [de

  5. Lattice dynamics and molecular dynamics simulation of complex materials

    International Nuclear Information System (INIS)

    Chaplot, S.L.

    1997-01-01

    In this article we briefly review the lattice dynamics and molecular dynamics simulation techniques, as used for complex ionic and molecular solids, and demonstrate a number of applications through examples of our work. These computational studies, along with experiments, have provided microscopic insight into the structure and dynamics, phase transitions and thermodynamical properties of a variety of materials including fullerene, high temperature superconducting oxides and geological minerals as a function of pressure and temperature. The computational techniques also allow the study of the structures and dynamics associated with disorder, defects, surfaces, interfaces etc. (author)

  6. Ab Initio Liquid Water Dynamics in Aqueous TMAO Solution.

    Science.gov (United States)

    Usui, Kota; Hunger, Johannes; Sulpizi, Marialore; Ohto, Tatsuhiko; Bonn, Mischa; Nagata, Yuki

    2015-08-20

    Ab initio molecular dynamics (AIMD) simulations in trimethylamine N-oxide (TMAO)-D2O solution are employed to elucidate the effects of TMAO on the reorientational dynamics of D2O molecules. By decomposing the O-D groups of the D2O molecules into specific subensembles, we reveal that water reorientational dynamics are retarded considerably in the vicinity of the hydrophilic TMAO oxygen (O(TMAO)) atom, due to the O-D···O(TMAO) hydrogen-bond. We find that this reorientational motion is governed by two distinct mechanisms: The O-D group rotates (1) after breaking the O-D···O(TMAO) hydrogen-bond, or (2) together with the TMAO molecule while keeping this hydrogen-bond intact. While the orientational slow-down is prominent in the AIMD simulation, simulations based on force field models exhibit much faster dynamics. The simulated angle-resolved radial distribution functions illustrate that the O-D···O(TMAO) hydrogen-bond has a strong directionality through the sp(3) orbital configuration in the AIMD simulation, and this directionality is not properly accounted for in the force field simulation. These results imply that care must be taken when modeling negatively charged oxygen atoms as single point charges; force field models may not adequately describe the hydration configuration and dynamics.

  7. Inelastic neutron scattering and lattice dynamics of GaPO4

    International Nuclear Information System (INIS)

    Mittal, R.; Chaplot, S.L.; Kolesnikov, A.I.; Loong, C.K.; Jayakumar, O.D.; Kulshreshtha, S.K.

    2004-01-01

    We report here measurements of phonon spectrum and lattice dynamical calculations for GaPO 4 . The measurements in low-cristobalite phase of GaPO 4 are carried out using high-resolution medium-energy chopper spectrometer at ANL, USA in the energy transfer range 0-160 MeV. Semiempirical interatomic potential in GaPO 4 , previously determined using ab-initio calculations have been widely used in studying the phase transitions among various polymorphs. The calculated phonon spectrum using the available potential show fair agreement with the experimental data. However, the agreement between the two is improved by including the polarisability of the oxygen atoms in the framework of the shell model. The lattice dynamical models are also exploited for calculations of various thermodynamic properties of GaPO 4 . (author)

  8. Lattice stretching bistability and dynamic heterogeneity

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Savin, A. V.; Zolotaryuk, A. V.

    2012-01-01

    A simple one-dimensional lattice model is suggested to describe the experimentally observed plateau in force-stretching diagrams for some macromolecules. This chain model involves the nearest-neighbor interaction of a Morse-like potential (required to have a saturation branch) and a harmonic second......-neighbor coupling. Under an external stretching applied to the chain ends, the intersite Morse-like potential results in the appearance of a double-well potential within each chain monomer, whereas the interaction between the second neighbors provides a homogeneous bistable (degenerate) ground state, at least...... stretched bonds with a double-well potential. This case allows us to explain the existence of a plateau in the force-extension diagram for DNA and α-helix protein. Finally, the soliton dynamics are studied in detail....

  9. Lattice dynamics and lattice thermal conductivity of thorium dicarbide

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Zongmeng [Institute of Theoretical Physics and Department of Physics, East China Normal University, Shanghai 200241 (China); Huai, Ping, E-mail: huaiping@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Qiu, Wujie [Institute of Theoretical Physics and Department of Physics, East China Normal University, Shanghai 200241 (China); State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Ke, Xuezhi, E-mail: xzke@phy.ecnu.edu.cn [Institute of Theoretical Physics and Department of Physics, East China Normal University, Shanghai 200241 (China); Zhang, Wenqing [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zhu, Zhiyuan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2014-11-15

    The elastic and thermodynamic properties of ThC{sub 2} with a monoclinic symmetry have been studied by means of density functional theory and direct force-constant method. The calculated properties including the thermal expansion, the heat capacity and the elastic constants are in a good agreement with experiment. Our results show that the vibrational property of the C{sub 2} dimer in ThC{sub 2} is similar to that of a free standing C{sub 2} dimer. This indicates that the C{sub 2} dimer in ThC{sub 2} is not strongly bonded to Th atoms. The lattice thermal conductivity for ThC{sub 2} was calculated by means of the Debye–Callaway model. As a comparison, the conductivity of ThC was also calculated. Our results show that the ThC and ThC{sub 2} contributions of the lattice thermal conductivity to the total conductivity are 29% and 17%, respectively.

  10. Ab Initio Molecular Dynamics Simulations of Furfural at the Liquid-Solid Interface

    OpenAIRE

    Sanwu Wang; Hongli Dang; Wenhua Xue; Darwin Shields; Xin Liu; Friederike C. Jentoft; Daniel E. Resasco

    2013-01-01

    The bonding configuration and the heat of adsorption of a furfural molecule on the Pd(111) surface were determined by ab initio density-functional-theory calculations. The dynamics of pure liquid water, the liquid-solid interface formed by liquid water and the Pd(111) surface, as well as furfural at the water-Pd interface, were investigated by ab initio molecular dynamics simulations at finite temperatures. Calculations and simulations suggest that the bonding configurati...

  11. Lattice dynamics of α-cerium

    International Nuclear Information System (INIS)

    Smith, G.S.

    1985-01-01

    The lattice dynamics of the fcc α-phase of cerium metal was investigated using inelastic neutron scattering techniques. This phase of cerium is an example of a mixed-valent system. Various physical properties of α-Ce suggest that there may be coupling between the phonons and the f d transitions associated with the mixed valence phenomenon. These measurements of the dispersion curves provide important information about the electron-phonon interaction in this phase of cerium. These studies were not performed in the past because single crystals of α-Ce were not available. We were able to prepare a single α-Ce crystal using a high temperature, high pressure technique. The sample was of sufficient size for inelastic neutron scattering experiments, but the measurements were complicated because of the large mosaic spread (approx.7.0 0 ) of the crystal. It was possible, however, to obtain a set of dispersion curves along the [00zeta], [zeta,zeta,0], and [zeta,zeta,zeta] symmetry directions. Comparison of the dispersion curves with those of fcc γ-Ce indicate that the branches exhibit anomalous features that may be related to the mixed-valence effects

  12. Ab initio/interpolated quantum dynamics on coupled electronic states with full configuration interaction wave functions

    International Nuclear Information System (INIS)

    Thompson, K.; Martinez, T.J.

    1999-01-01

    We present a new approach to first-principles molecular dynamics that combines a general and flexible interpolation method with ab initio evaluation of the potential energy surface. This hybrid approach extends significantly the domain of applicability of ab initio molecular dynamics. Use of interpolation significantly reduces the computational effort associated with the dynamics over most of the time scale of interest, while regions where potential energy surfaces are difficult to interpolate, for example near conical intersections, are treated by direct solution of the electronic Schroedinger equation during the dynamics. We demonstrate the concept through application to the nonadiabatic dynamics of collisional electronic quenching of Li(2p). Full configuration interaction is used to describe the wave functions of the ground and excited electronic states. The hybrid approach agrees well with full ab initio multiple spawning dynamics, while being more than an order of magnitude faster. copyright 1999 American Institute of Physics

  13. Model for lattice dynamics of hexagonal close packed metals

    Energy Technology Data Exchange (ETDEWEB)

    Singh, R K [Tata Inst. of Fundamental Research, Bombay (India); Kumar, S [Meerut Coll. (India). Dept. of Physics

    1977-11-19

    A lattice dynamical model, which satisfies the requirements of translational invariance as well as the static equilibrium of hexagonal close packed lattice, has been proposed and applied to study the phonon dispersion relations in magnesium. The results revealed by this model have been claimed to be better than earlier ones.

  14. Lattice dynamics of a- Si3N4

    International Nuclear Information System (INIS)

    Schulz, P.A.B.; Silva, C.E.T.G. da

    1984-01-01

    We introduce a model for the lattice dynamics of SI 3 N 4 in its amorphous phase. This model is based on a Born hamiltonian, solved in the Bethe lattice approximation. We included the local vicinity until third nearest neighbours, building up the central cluster. (M.W.O.) [pt

  15. Lattice dynamics and thermal diffuse scattering for molecular crystals

    International Nuclear Information System (INIS)

    Kroon, P.A.

    1977-01-01

    Thermal diffuse scattering (TDS) corrections on the observed reflection intensities in the accurate determination of crystal structures by X-ray diffraction are emphasized. A lattice-dynamical model and procedure for lattice-dynamical calculations are set up. Expression for first- and second-order TDS intensity distributions are derived. A comparison with other models is made. First-order TDS corrections for naphtalene at 100 K are presented

  16. Dynamical behaviour of the coupled diffusion map lattice

    International Nuclear Information System (INIS)

    Wei Wang; Cerdeira, H.A.

    1993-10-01

    In this paper we report the dynamical study of a coupled diffusive map lattice with the coupling between the elements only through the bifurcation parameter of the mapping function. The diffusive process of the lattice from an initially random distribution state to a homogeneous one and the stable range of the diffusive homogeneous attractor are discussed. For various coupling strengths we find that there are several types of spatio-temporal structures. In addition, the evolution of the lattice into chaos is studied and a largest Lyapunov exponent is used to characterize the dynamical behaviour. (author). 22 refs, 9 figs

  17. A Force Balanced Fragmentation Method for ab Initio Molecular Dynamic Simulation of Protein

    Directory of Open Access Journals (Sweden)

    Mingyuan Xu

    2018-05-01

    Full Text Available A force balanced generalized molecular fractionation with conjugate caps (FB-GMFCC method is proposed for ab initio molecular dynamic simulation of proteins. In this approach, the energy of the protein is computed by a linear combination of the QM energies of individual residues and molecular fragments that account for the two-body interaction of hydrogen bond between backbone peptides. The atomic forces on the caped H atoms were corrected to conserve the total force of the protein. Using this approach, ab initio molecular dynamic simulation of an Ace-(ALA9-NME linear peptide showed the conservation of the total energy of the system throughout the simulation. Further a more robust 110 ps ab initio molecular dynamic simulation was performed for a protein with 56 residues and 862 atoms in explicit water. Compared with the classical force field, the ab initio molecular dynamic simulations gave better description of the geometry of peptide bonds. Although further development is still needed, the current approach is highly efficient, trivially parallel, and can be applied to ab initio molecular dynamic simulation study of large proteins.

  18. On non local elasticity and its relation with lattice dynamics

    International Nuclear Information System (INIS)

    Idiodi, J.O.A.

    1984-11-01

    In this paper we have modelled a three-dimensional discrete lattice by a nonlocal continuum which possesses dispersive phonons. Previous efforts in the development of non-local theories appear not to have paid much attention to establishing actual contact with the nontrivial models frequently employed in lattice dynamics. As a first attempt in this direction, we present in this paper explicit results for the form of a non-local stress-tensor that describes exactly the lattice dynamical model of Gazis, Herman and Wallis. This model takes into account angular stiffness forces involving consecutive nearest neighbours forming a right angle at equilibrium. In addition, a general result for the surface eigenmodes of a semi-finite isotropic medium is derived. One of the justifications for this kind of study is the simpler approach it offers to the problems of interest in lattice dynamics. (author)

  19. Topology in dynamical lattice QCD simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Florian

    2012-08-20

    Lattice simulations of Quantum Chromodynamics (QCD), the quantum field theory which describes the interaction between quarks and gluons, have reached a point were contact to experimental data can be made. The underlying mechanisms, like chiral symmetry breaking or the confinement of quarks, are however still not understood. This thesis focuses on topological structures in the QCD vacuum. Those are not only mathematically interesting but also closely related to chiral symmetry and confinement. We consider methods to identify these objects in lattice QCD simulations. Based on this, we explore the structures resulting from different discretizations and investigate the effect of a very strong electromagnetic field on the QCD vacuum.

  20. Topology in dynamical lattice QCD simulations

    International Nuclear Information System (INIS)

    Gruber, Florian

    2012-01-01

    Lattice simulations of Quantum Chromodynamics (QCD), the quantum field theory which describes the interaction between quarks and gluons, have reached a point were contact to experimental data can be made. The underlying mechanisms, like chiral symmetry breaking or the confinement of quarks, are however still not understood. This thesis focuses on topological structures in the QCD vacuum. Those are not only mathematically interesting but also closely related to chiral symmetry and confinement. We consider methods to identify these objects in lattice QCD simulations. Based on this, we explore the structures resulting from different discretizations and investigate the effect of a very strong electromagnetic field on the QCD vacuum.

  1. OPTIMIZING THE DYNAMIC APERTURE FOR TRIPLE BEND ACHROMATIC LATTICES

    International Nuclear Information System (INIS)

    KRAMER, S.L.; BENGTSSON, J.

    2006-01-01

    The Triple Bend Achromatic (TBA) lattice has the potential for lower natural emittance per period than the Double Bend Achromatic (DBA) lattice for high brightness light sources. However, the DBA has been chosen for 3rd generation light sources more often due to the higher number of undulator straight section available for a comparable emittance. The TBA has considerable flexibility in linear optics tuning while maintaining this emittance advantage. We have used the tune and chromaticity flexibility of a TBA lattice to minimize the lowest order nonlinearities to implement a 3rd order achromatic tune, while maintaining a constant emittance. This frees the geometric sextupoles to counter the higher order nonlinearities. This procedure is being used to improve the nonlinear dynamics of the TBA as a proposed lattice for NSLS-II facility. The flexibility of the TBA lattice will also provide for future upgrade capabilities of the beam parameters

  2. Field theoretic approach to dynamical orbital localization in ab initio molecular dynamics

    International Nuclear Information System (INIS)

    Thomas, Jordan W.; Iftimie, Radu; Tuckerman, Mark E.

    2004-01-01

    Techniques from gauge-field theory are employed to derive an alternative formulation of the Car-Parrinello ab initio molecular-dynamics method that allows maximally localized Wannier orbitals to be generated dynamically as the calculation proceeds. In particular, the Car-Parrinello Lagrangian is mapped onto an SU(n) non-Abelian gauge-field theory and the fictitious kinetic energy in the Car-Parrinello Lagrangian is modified to yield a fully gauge-invariant form. The Dirac gauge-fixing method is then employed to derive a set of equations of motion that automatically maintain orbital locality by restricting the orbitals to remain in the 'Wannier gauge'. An approximate algorithm for integrating the equations of motion that is stable and maintains orbital locality is then developed based on the exact equations of motion. It is shown in a realistic application (64 water molecules plus one hydrogen-chloride molecule in a periodic box) that orbital locality can be maintained with only a modest increase in CPU time. The ability to keep orbitals localized in an ab initio molecular-dynamics calculation is a crucial ingredient in the development of emerging linear scaling approaches

  3. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.

    Science.gov (United States)

    Sumner, Isaiah; Iyengar, Srinivasan S

    2007-10-18

    We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.

  4. Lattice gas simulations of dynamical geometry in one dimension.

    Science.gov (United States)

    Love, Peter J; Boghosian, Bruce M; Meyer, David A

    2004-08-15

    We present numerical results obtained using a lattice gas model with dynamical geometry. The (irreversible) macroscopic behaviour of the geometry (size) of the lattice is discussed in terms of a simple scaling theory and obtained numerically. The emergence of irreversible behaviour from the reversible microscopic lattice gas rules is discussed in terms of the constraint that the macroscopic evolution be reproducible. The average size of the lattice exhibits power-law growth with exponent at late times. The deviation of the macroscopic behaviour from reproducibility for particular initial conditions ('rogue states') is investigated as a function of system size. The number of such 'rogue states' is observed to decrease with increasing system size. Two mean-field analyses of the macroscopic behaviour are also presented. Copyright 2004 The Royal Society

  5. Hyperon-Nulceon Scattering from Fully-Dynamical Lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Silas Beane; Paulo Bedaque; Thomas Luu; Konstantinos Orginos; Elizabetta Pallante; Assumpta Parreno; Martin Savage

    2007-10-01

    We present results of the first fully-dynamical lattice QCD determination of hyperon-nucleon scattering. One s-wave phase shift was determined for n{Lambda} scattering in both spin-channels at pion masses of 350, 490, and 590 MeV, and for n{Sigma}^- scattering in both spin channels at pion masses of 490, and 590 MeV. The calculations were performed with domain-wall valence quarks on dynamical, staggered gauge configurations with a lattice spacing of b ~0.125 fm.

  6. Understanding hydration of Zn(2+) in hydrothermal fluids with ab initio molecular dynamics

    NARCIS (Netherlands)

    Liu, X.; Lu, X.; Wang, R.; Meijer, E.J.

    2011-01-01

    With ab initio molecular dynamics simulations, the free-energy profiles of hydrated Zn2+ are calculated for both gaseous and aqueous systems from ambient to supercritical conditions, and from the derived free-energy information, the speciation of hydrated Zn2+ has been revealed. It is shown that the

  7. Ab initio molecular dynamics simulation of hydrogen fluoride at several thermodynamic states

    DEFF Research Database (Denmark)

    Kreitmeir, M.; Bertagnolli, H.; Mortensen, Jens Jørgen

    2003-01-01

    Liquid hydrogen fluoride is a simple but interesting system for studies of the influence of hydrogen bonds on physical properties. We have performed ab initio molecular dynamics simulations of HF at several thermodynamic states, where we examine the microscopic structure of the liquid as well...

  8. Ab initio molecular dynamics approach to a quantitative description of ion pairing in water

    Czech Academy of Sciences Publication Activity Database

    Pluhařová, Eva; Maršálek, Ondřej; Schmidt, B.; Jungwirth, Pavel

    2013-01-01

    Roč. 4, č. 23 (2013), s. 4177-4181 ISSN 1948-7185 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : ion pairing * charge transfer * water * ab initio molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.687, year: 2013

  9. Conformational Sampling by Ab Initio Molecular Dynamics Simulations Improves NMR Chemical Shift Predictions

    Czech Academy of Sciences Publication Activity Database

    Dračínský, Martin; Möller, H. M.; Exner, T. E.

    2013-01-01

    Roč. 9, č. 8 (2013), s. 3806-3815 ISSN 1549-9618 R&D Projects: GA ČR GA13-24880S Institutional support: RVO:61388963 Keywords : ab initio molecular dynamics * NMR spectroscopy * DFT calculations * hydration Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.310, year: 2013

  10. Investigation of the Hydroxylation Mechanism of Noncoupled Copper Oxygenases by Ab Initio Molecular Dynamics Simulations

    Czech Academy of Sciences Publication Activity Database

    Meliá, C.; Ferrer, S.; Řezáč, Jan; Parisel, O.; Reinaud, O.; Moliner, V.; de la Lande, A.

    2013-01-01

    Roč. 19, č. 51 (2013), s. 17328-17337 ISSN 0947-6539 Institutional support: RVO:61388963 Keywords : ab initio calculations * copper * electron transfer * enzymes * molecular dynamics * reaction mechanisms Subject RIV: CC - Organic Chemistry Impact factor: 5.696, year: 2013

  11. Kink dynamics in a topological φ4 lattice

    Science.gov (United States)

    Adib, A. B.; Almeida, C. A. S.

    2001-09-01

    Recently proposed was a discretization for nonlinear Klein-Gordon field theories in which the resulting lattice preserves the topological (Bogomol'nyi) lower bound on the kink energy and, as a consequence, has no Peierls-Nabarro barrier even for large spatial discretizations (h~1.0). It was then suggested that these ``topological discrete systems'' are a natural choice for the numerical study of continuum kink dynamics. Giving particular emphasis to the φ4 theory, we numerically investigate kink-antikink scattering and breather formation in these topological lattices. Our results indicate that, even though these systems are quite accurate for studying free kinks in coarse lattices, for legitimate dynamical kink problems the accuracy is rather restricted to fine lattices (h~0.1). We suggest that this fact is related to the breaking of the Bogomol'nyi bound during the kink-antikink interaction, where the field profile loses its static property as required by the Bogomol'nyi argument. We conclude, therefore, that these lattices are not suitable for the study of more general kink dynamics, since a standard discretization is simpler and has effectively the same accuracy for such resolutions.

  12. Lattice dynamic properties of Rh2XAl (X=Fe and Y) alloys

    Science.gov (United States)

    Al, Selgin; Arikan, Nihat; Demir, Süleyman; Iyigör, Ahmet

    2018-02-01

    The electronic band structure, elastic and vibrational spectra of Rh2FeAl and Rh2YAl alloys were computed in detail by employing an ab-initio pseudopotential method and a linear-response technique based on the density-functional theory (DFT) scheme within a generalized gradient approximation (GGA). Computed lattice constants, bulk modulus and elastic constants were compared. Rh2YAl exhibited higher ability to resist volume change than Rh2FeAl. The elastic constants, shear modulus, Young modulus, Poisson's ratio, B/G ratio electronic band structure, total and partial density of states, and total magnetic moment of alloys were also presented. Rh2FeAl showed spin up and spin down states whereas Rh2YAl showed none due to being non-magnetic. The calculated total densities of states for both materials suggest that both alloys are metallic in nature. Full phonon spectra of Rh2FeAl and Rh2YA1 alloys in the L21 phase were collected using the ab-initio linear response method. The obtained phonon frequencies were in the positive region indicating that both alloys are dynamically stable.

  13. First-Principles Lattice Dynamics Method for Strongly Anharmonic Crystals

    Science.gov (United States)

    Tadano, Terumasa; Tsuneyuki, Shinji

    2018-04-01

    We review our recent development of a first-principles lattice dynamics method that can treat anharmonic effects nonperturbatively. The method is based on the self-consistent phonon theory, and temperature-dependent phonon frequencies can be calculated efficiently by incorporating recent numerical techniques to estimate anharmonic force constants. The validity of our approach is demonstrated through applications to cubic strontium titanate, where overall good agreement with experimental data is obtained for phonon frequencies and lattice thermal conductivity. We also show the feasibility of highly accurate calculations based on a hybrid exchange-correlation functional within the present framework. Our method provides a new way of studying lattice dynamics in severely anharmonic materials where the standard harmonic approximation and the perturbative approach break down.

  14. Optical spectra and lattice dynamics of molecular crystals

    CERN Document Server

    Zhizhin, GN

    1995-01-01

    The current volume is a single topic volume on the optical spectra and lattice dynamics of molecular crystals. The book is divided into two parts. Part I covers both the theoretical and experimental investigations of organic crystals. Part II deals with the investigation of the structure, phase transitions and reorientational motion of molecules in organic crystals. In addition appendices are given which provide the parameters for the calculation of the lattice dynamics of molecular crystals, procedures for the calculation of frequency eigenvectors of utilizing computers, and the frequencies and eigenvectors of lattice modes for several organic crystals. Quite a large amount of Russian literature is cited, some of which has previously not been available to scientists in the West.

  15. Inelastic neutron scattering and lattice dynamics of minerals

    Indian Academy of Sciences (India)

    We review current research on minerals using inelastic neutron scattering and lattice dynamics calculations. Inelastic neutron scattering studies in combination with first principles and atomistic calculations provide a detailed understanding of the phonon dispersion relations, density of states and their manifestations in ...

  16. Inelastic neutron scattering and lattice dynamics of minerals

    Indian Academy of Sciences (India)

    Abstract. We review current research on minerals using inelastic neutron scattering and lattice dynamics calculations. Inelastic neutron scattering studies in combination with first principles and atomistic calculations provide a detailed understanding of the phonon dispersion relations, density of states and their ...

  17. Local field corrections in the lattice dynamics of chromium | Ndukwe ...

    African Journals Online (AJOL)

    This work extends the inclusion of local field corrections in the calculation of the phonon dispersion curves to the transition metal, chromium (Cr3+) using the formalism of lattice dynamics based on the transition metal model potential approach in the adiabatic and hatmonic approximations. The results obtained here have a ...

  18. Anisotropic Born-Mayer potential in lattice dynamics of Vanadium

    International Nuclear Information System (INIS)

    Onwuagba, B.N.

    1988-01-01

    A microscopic theory of the lattice dynamics of the transition metal vanadium is developed based on the Animalu's transition metal model potential (TMMP). The Born-Mayer potential associated with the distribution of the transition metal d-electrons is treated as anisotropic. Good agreement with experimental phonon dispersion curves longitudinal branches in the [111] direction

  19. A new simulation algorithm for lattice QCD with dynamical quarks

    CERN Document Server

    Bunk, B.; Jegerlehner, B.; Luscher, M.; Simma, H.; Sommer, R.; Bunk, B; Jansen, K; Jegerlehner, B; Luscher, M; Simma, H

    1994-01-01

    A previously introduced multi-boson technique for the simulation of QCD with dynamical quarks is described and some results of first test runs on a 6^3\\times12 lattice with Wilson quarks and gauge group SU(2) are reported.

  20. Nonlinear dynamics of ultracold gases in double-well lattices

    International Nuclear Information System (INIS)

    Yukalov, V I; Yukalova, E P

    2009-01-01

    An ultracold gas is considered, loaded into a lattice, each site of which is formed by a double-well potential. Initial conditions, after the loading, correspond to a nonequilibrium state. The nonlinear dynamics of the system, starting with a nonequilibrium state, is analysed in the local-field approximation. The importance of taking into account attenuation, caused by particle collisions, is emphasized. The presence of this attenuation dramatically influences the system dynamics

  1. Lattice dynamical appraisal of the anisotropic Debye-Waller factors in graphite lattice

    International Nuclear Information System (INIS)

    Haridasan, T.M.; Sathyamurthy, G.

    1989-12-01

    The Debye-Waller factors in graphite for the atomic motions within the basal plane and also across the basal planes have been calculated using the various lattice dynamical models available to date and a critical comparison is made with the existing experimental data from X ray and neutron scattering studies. The present study reveals the need for further investigation on the nature of atomic motion across the basal planes. (author). 15 refs, 1 tab

  2. Lattice dynamics of femtosecond laser-excited antimony

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Fattah, Mahmoud Hanafy [Applied Research Center, Old Dominion University, Newport News, VA 23606 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529 (United States); Bugayev, Aleksey [Applied Research Center, Old Dominion University, Newport News, VA 23606 (United States); Elsayed-Ali, Hani E., E-mail: helsayed@odu.edu [Applied Research Center, Old Dominion University, Newport News, VA 23606 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529 (United States)

    2016-07-01

    Ultrafast electron diffraction is used to probe the lattice dynamics of femtosecond laser-excited antimony thin film. The temporal hierarchies of the intensity and position of diffraction orders are monitored. The femtosecond laser excitation of antimony film was found to lead to initial compression after the laser pulse, which gives way to tension vibrating at new equilibrium displacement. A damped harmonic oscillator model, in which the hot electron-blast force contributes to the driving force of oscillations in lattice spacing, is used to interpret the data. The electron–phonon energy-exchange rate and the electronic Grüneisen parameter were obtained.

  3. Structural, dynamical, electronic, and bonding properties of laser-heated silicon: An ab initio molecular-dynamics study

    NARCIS (Netherlands)

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1997-01-01

    The method of ab initio molecular dynamics, based on finite-temperature density-functional theory, is used to simulate laser heating of crystalline silicon. We found that a high concentration of excited electrons dramatically weakens the covalent bonding. As a result the system undergoes a melting

  4. Dynamics of an impurity in a one-dimensional lattice

    International Nuclear Information System (INIS)

    Massel, F; Kantian, A; Giamarchi, T; Daley, A J; Törmä, P

    2013-01-01

    We study the non-equilibrium dynamics of an impurity in a harmonic trap that is kicked with a well-defined quasi-momentum, and interacts with a bath of free fermions or interacting bosons in a one-dimensional lattice configuration. Using numerical and analytical techniques we investigate the full dynamics beyond linear response, which allows us to quantitatively characterize states of the impurity in the bath for different parameter regimes. These vary from a tightly bound molecular state in a strongly interacting limit to a polaron (dressed impurity) and a free particle for weak interactions, with composite behaviour in the intermediate regime. These dynamics and different parameter regimes should be readily realizable in systems of cold atoms in optical lattices. (paper)

  5. A lattice with no transition and large dynamic aperture

    International Nuclear Information System (INIS)

    Guignard, G.

    1989-01-01

    In the case of a one-ring high-energy scheme for an advanced hadron facility, beam losses can be reduced if the ring lattice accomodates the beam from injection to maximum energy without crossing the transition. Since there is no synchrotron booster in such a scheme and the injection energy is relatively low, this requirement implies a negative compaction factor and an imaginary transition energy. This can be achieved by making the horizontal dispersion negative in some regions of the arcs so that the average value taken in the dipoles is globally also negative. Such a modulation of the dispersion may result in an increasing difficulty to obtain a large enough dynamic aperture in the presence of sextupoles. A careful optimization is therefore necessary and the possibility of modifying the linear lattice in order to include the requirements associated with chromaticity adjustments has to be studied. This paper summarizes the work done along this line and based on previous searches for a race track lattice that can be used in a hadron facility main ring. It describes an alternative lattice design, which tends to minimize the effects of the nonlinear aberrations introduced by sextupoles and to achieve a large dynamic aperture, keeping the betatron amplitudes as low as possible. 7 refs., 6 figs., 1 tab

  6. Investigation of polarization effects in the gramicidin A channel from ab initio molecular dynamics simulations.

    Science.gov (United States)

    Timko, Jeff; Kuyucak, Serdar

    2012-11-28

    Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K(+) ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K(+) ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K(+) ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K(+) ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.

  7. An ab-initio study of mechanical, dynamical and electronic properties of MgEu intermetallic

    Science.gov (United States)

    Kumar, S. Ramesh; Jaiganesh, G.; Jayalakshmi, V.

    2018-04-01

    The theoretical investigation on the mechanical, dynamical and electronic properties of MgEu in CsCl-type structure has been carried out through the ab-initio calculations within the framework of the density functional theory and the density functional perturbation theory. For the purpose, Vienna Ab initio Simulation Package and Phonopy packages were used. Our calculated ground-state properties of MgEu are in good agreement with other available results. Our computed elastic constants and phonon spectrum results suggest that MgEu is mechanically and dynamically stable up to 5 GPa. The thermodynamic quantities as a function of temperatures are also reported and discussed. The band structure, density of states and charge density also calculated to understand the electronic properties of MgEu.

  8. Dynamical Aperture Control in Accelerator Lattices With Multipole Potentials

    CERN Document Server

    Morozov, I

    2017-01-01

    We develop tools for symbolic representation of a non-linear accelerator model and analytical methods for description of non-linear dynamics. Information relevant to the dynamic aperture (DA) is then obtained from this model and can be used for indirect DA control or as a complement to direct numerical optimization. We apply two analytical methods and use multipole magnets to satisfy derived analytical constraints. The accelerator model is represented as a product of unperturbed and perturbed exponential operators with the exponent of the perturbed operator given as a power series in the perturbation parameter. Normal forms can be applied to this representation and the lattice parameters are used to control the normal form Hamiltonian and normal form transformation. Hamiltonian control is used to compute a control term or controlled operator. Lattice parameters are then fitted to satisfy the imposed control constraints. Theoretical results, as well as illustrative examples, are presented.

  9. Lattice fluid dynamics from perfect discretizations of continuum flows

    International Nuclear Information System (INIS)

    Katz, E.; Wiese, U.

    1998-01-01

    We use renormalization group methods to derive equations of motion for large scale variables in fluid dynamics. The large scale variables are averages of the underlying continuum variables over cubic volumes and naturally exist on a lattice. The resulting lattice dynamics represents a perfect discretization of continuum physics, i.e., grid artifacts are completely eliminated. Perfect equations of motion are derived for static, slow flows of incompressible, viscous fluids. For Hagen-Poiseuille flow in a channel with a square cross section the equations reduce to a perfect discretization of the Poisson equation for the velocity field with Dirichlet boundary conditions. The perfect large scale Poisson equation is used in a numerical simulation and is shown to represent the continuum flow exactly. For nonsquare cross sections one can use a numerical iterative procedure to derive flow equations that are approximately perfect. copyright 1998 The American Physical Society

  10. Femtosecond visualization of lattice dynamics in shock-compressed matter.

    Science.gov (United States)

    Milathianaki, D; Boutet, S; Williams, G J; Higginbotham, A; Ratner, D; Gleason, A E; Messerschmidt, M; Seibert, M M; Swift, D C; Hering, P; Robinson, J; White, W E; Wark, J S

    2013-10-11

    The ultrafast evolution of microstructure is key to understanding high-pressure and strain-rate phenomena. However, the visualization of lattice dynamics at scales commensurate with those of atomistic simulations has been challenging. Here, we report femtosecond x-ray diffraction measurements unveiling the response of copper to laser shock-compression at peak normal elastic stresses of ~73 gigapascals (GPa) and strain rates of 10(9) per second. We capture the evolution of the lattice from a one-dimensional (1D) elastic to a 3D plastically relaxed state within a few tens of picoseconds, after reaching shear stresses of 18 GPa. Our in situ high-precision measurement of material strength at spatial (<1 micrometer) and temporal (<50 picoseconds) scales provides a direct comparison with multimillion-atom molecular dynamics simulations.

  11. Advances and applications in the FIREBALL ab initio tight-binding molecular-dynamics formalism

    Czech Academy of Sciences Publication Activity Database

    Lewis, J.P.; Jelínek, Pavel; Ortega, J.; Demkov, A.A.; Trabada, D.G.; Haycock, B.; Wang, H.; Adams, G.; Tomfohr, J.K.; Abad, E.; Wang, Ho.; Drabold, D.A.

    2011-01-01

    Roč. 248, č. 9 (2011), 1989-2007 ISSN 0370-1972 R&D Projects: GA ČR GA202/09/0545; GA ČR GAP204/10/0952 Grant - others:AVČR(CZ) M100100904 Institutional research plan: CEZ:AV0Z10100521 Keywords : DFT * ab initio molecular-dynamics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.316, year: 2011

  12. Ab initio molecular dynamics simulation of aqueous solution of nitric oxide in different formal oxidation states

    Science.gov (United States)

    Venâncio, Mateus F.; Rocha, Willian R.

    2015-10-01

    Ab initio molecular dynamics simulations were used to investigate the early chemical events involved in the dynamics of nitric oxide (NOrad), nitrosonium cation (NO+) and nitroxide anion (NO-) in aqueous solution. The NO+ ion is very reactive in aqueous solution having a lifetime of ∼4 × 10-13 s, which is shorter than the value of 3 × 10-10 s predicted experimentally. The NO+ reacts generating the nitrous acid as an intermediate and the NO2- ion as the final product. The dynamics of NOrad revealed the reversibly formation of a transient anion radical species HONOrad -.

  13. Single-Particle Quantum Dynamics in a Magnetic Lattice

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, Marco

    2001-02-01

    We study the quantum dynamics of a spinless charged-particle propagating through a magnetic lattice in a transport line or storage ring. Starting from the Klein-Gordon equation and by applying the paraxial approximation, we derive a Schroedinger-like equation for the betatron motion. A suitable unitary transformation reduces the problem to that of a simple harmonic oscillator. As a result we are able to find an explicit expression for the particle wavefunction.

  14. Ab initio study of lattice instabilities of zinc chalcogenides ZnX (X=O, S, Se, Te induced by ultrafast intense laser irradiation

    Directory of Open Access Journals (Sweden)

    Dahua Ren

    2017-09-01

    Full Text Available Ab initio calculations of lattice constants, lattice stabilities of ZnX (X=O, S, Se, Te at different electronic temperatures (Te have been performed using generalized gradient approximation (GGA pseudopotential method within the density functional theory (DFT. The calculated phonon frequencies of ZnX at Te = 0 eV accord well with the experimental and other theoretical values. Firstly, it is indicated that the lattice constants of ZnX increase and all the phonon frequencies reduce as Te increases. Additionally, the transverse-acoustic phonon frequencies of ZnX are imaginary with the elevation of Te, namely the lattices of ZnX become unstable under ultrafast intense laser irradiation. Moreover, the transverse optical mode-longitudinal optical mode (LO-TO splitting degree of ZnX (X=S, Se, Te gradually decreases as the electronic temperature increases, mainly due to the reason that the electronic excitation weakens the strength ionicity of ionic crystal ZnX under intense laser irradiation. However, the LO-TO splitting degree of ZnO firstly increases and then decreases with the increase of electronic temperature. After that, it can be helpful for understanding the mechanism of ultrafast intense laser induced semiconductors damage.

  15. Slow dynamics in translation-invariant quantum lattice models

    Science.gov (United States)

    Michailidis, Alexios A.; Žnidarič, Marko; Medvedyeva, Mariya; Abanin, Dmitry A.; Prosen, Tomaž; Papić, Z.

    2018-03-01

    Many-body quantum systems typically display fast dynamics and ballistic spreading of information. Here we address the open problem of how slow the dynamics can be after a generic breaking of integrability by local interactions. We develop a method based on degenerate perturbation theory that reveals slow dynamical regimes and delocalization processes in general translation invariant models, along with accurate estimates of their delocalization time scales. Our results shed light on the fundamental questions of the robustness of quantum integrable systems and the possibility of many-body localization without disorder. As an example, we construct a large class of one-dimensional lattice models where, despite the absence of asymptotic localization, the transient dynamics is exceptionally slow, i.e., the dynamics is indistinguishable from that of many-body localized systems for the system sizes and time scales accessible in experiments and numerical simulations.

  16. Topological dynamics of gyroscopic and Floquet lattices from Newton's laws

    Science.gov (United States)

    Lee, Ching Hua; Li, Guangjie; Jin, Guliuxin; Liu, Yuhan; Zhang, Xiao

    2018-02-01

    Despite intense interest in realizing topological phases across a variety of electronic, photonic, and mechanical platforms, the detailed microscopic origin of topological behavior often remains elusive. To bridge this conceptual gap, we show how hallmarks of topological modes—boundary localization and chirality—emerge from Newton's laws in mechanical topological systems. We first construct a gyroscopic lattice with analytically solvable edge modes, and show how the Lorentz and spring restoring forces conspire to support very robust "dangling bond" boundary modes. The chirality and locality of these modes intuitively emerges from microscopic balancing of restoring forces and cyclotron tendencies. Next, we introduce the highlight of this work, an experimentally realistic mechanical nonequilibrium (Floquet) Chern lattice driven by ac electromagnets. Through appropriate synchronization of the ac driving protocol, the Floquet lattice is "pushed around" by a rotating potential analogous to an object washed ashore by water waves. Besides hosting "dangling bond" chiral modes analogous to the gyroscopic boundary modes, our Floquet Chern lattice also supports peculiar half-period chiral modes with no static analog, i.e., analogs of anomalous Floquet Chern insulators edge modes. With key parameters controlled electronically, our setup has the advantage of being dynamically tunable for applications involving arbitrary Floquet modulations. The physical intuition gleaned from our two prototypical topological systems is applicable not just to arbitrarily complicated mechanical systems, but also photonic and electrical topological setups.

  17. One-loop lattice artifacts of a dynamical charm quark

    Energy Technology Data Exchange (ETDEWEB)

    Athenodorou, Andreas; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2011-10-15

    For a few observables in O(a) improved lattice QCD, we compute discretization effects arising from the vacuum polarization of a heavy quark at one-loop order. In particular, the force between static quarks, the running coupling in the Schroedinger functional and a related quantity, anti {upsilon}, are considered. Results show that the cutoff effects of a dynamical charm quark are typically smaller than those present in the pure gauge theory. This perturbative result is a good indication that dynamical charm quarks are feasible already now. (orig.)

  18. One-loop lattice artifacts of a dynamical charm quark

    International Nuclear Information System (INIS)

    Athenodorou, Andreas; Sommer, Rainer

    2011-10-01

    For a few observables in O(a) improved lattice QCD, we compute discretization effects arising from the vacuum polarization of a heavy quark at one-loop order. In particular, the force between static quarks, the running coupling in the Schroedinger functional and a related quantity, anti υ, are considered. Results show that the cutoff effects of a dynamical charm quark are typically smaller than those present in the pure gauge theory. This perturbative result is a good indication that dynamical charm quarks are feasible already now. (orig.)

  19. Orbital free ab initio molecular dynamics simulation study of some static and dynamic properties of liquid noble metals

    Directory of Open Access Journals (Sweden)

    G.M. Bhuiyan

    2012-10-01

    Full Text Available Several static and dynamic properties of liquid Cu, Ag and Au at thermodynamic states near their respective melting points, have been evaluated by means of the orbital free ab-initio molecular dynamics simulation method. The calculated static structure shows good agreement with the available X-ray and neutron diffraction data. As for the dynamic properties, the calculated dynamic structure factors point to the existence of collective density excitations along with a positive dispersion for l-Cu and l-Ag. Several transport coefficients have been obtained which show a reasonable agreement with the available experimental data.

  20. Modeling of nuclear glasses by classical and ab initio molecular dynamics

    International Nuclear Information System (INIS)

    Ganster, P.

    2004-01-01

    A calcium aluminosilicate glass of molar composition 67 % SiO 2 - 12 % Al 2 O 3 - 21 % CaO was modelled by classical and ab initio molecular dynamics. The size effect study in classical MD shows that the systems of 100 atoms are more ordered than the larger ones. These effects are mainly due to the 3-body terms in the empirical potentials. Nevertheless, these effects are small and the structures generated are in agreement with experimental data. In such kind of glass, we denote an aluminium avoidance and an excess of non bridging oxygens which can be compensated by tri-coordinated oxygens. When the dynamics of systems of 100 and 200 atoms is followed by ab initio MD, some local arrangements occurs (bond length, angular distributions). Thus, more realistic vibrational properties are obtained in ab initio MD. The modelling of thin films shows that aluminum atoms extend to the most external part of the surface and they are all tri-coordinated. Calcium atoms are set in the sub layer part of the surface and they produce a depolymerization of the network. In classical MD, tri-coordinated aluminium atoms produce an important electric field above the surface. With non bridging oxygens, they constitute attractive sites for single water molecules. (author) [fr

  1. Modelling of nuclear glasses by classical and ab initio molecular dynamics

    International Nuclear Information System (INIS)

    Ganster, P.

    2004-10-01

    A calcium aluminosilicate glass of molar composition 67 % SiO 2 - 12 % Al 2 O 3 - 21 % CaO was modelled by classical and ab initio molecular dynamics. The size effect study in classical MD shows that the systems of 100 atoms are more ordered than the larger ones. These effects are mainly due to the 3-body terms in the empirical potentials. Nevertheless, these effects are small and the structures generated are in agreement with experimental data. In such kind of glass, we denote an aluminium avoidance and an excess of non bridging oxygens which can be compensated by tri coordinated oxygens. When the dynamics of systems of 100 and 200 atoms is followed by ab initio MD, some local arrangements occurs (bond length, angular distributions). Thus, more realistic vibrational properties are obtained in ab initio MD. The modelling of thin films shows that aluminium atoms extend to the most external part of the surface and they are all tri-coordinated. Calcium atoms are set in the sub layer part of the surface and they produce a depolymerization of the network. In classical MD, tri-coordinated aluminium atoms produce an important electric field above the surface. With non bridging oxygens, they constitute attractive sites for single water molecules. (author)

  2. Lattice gas simulations of dynamical geometry in two dimensions.

    Science.gov (United States)

    Klales, Anna; Cianci, Donato; Needell, Zachary; Meyer, David A; Love, Peter J

    2010-10-01

    We present a hydrodynamic lattice gas model for two-dimensional flows on curved surfaces with dynamical geometry. This model is an extension to two dimensions of the dynamical geometry lattice gas model previously studied in one dimension. We expand upon a variation of the two-dimensional flat space Frisch-Hasslacher-Pomeau (FHP) model created by Frisch [Phys. Rev. Lett. 56, 1505 (1986)] and independently by Wolfram, and modified by Boghosian [Philos. Trans. R. Soc. London, Ser. A 360, 333 (2002)]. We define a hydrodynamic lattice gas model on an arbitrary triangulation whose flat space limit is the FHP model. Rules that change the geometry are constructed using the Pachner moves, which alter the triangulation but not the topology. We present results on the growth of the number of triangles as a function of time. Simulations show that the number of triangles grows with time as t(1/3), in agreement with a mean-field prediction. We also present preliminary results on the distribution of curvature for a typical triangulation in these simulations.

  3. Structure of hydrogenated amorphous silicon from ab initio molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Buda, F. (Department of Physics, The Ohio State University, 174 West 18th Avenue, Columbus, Ohio (USA)); Chiarotti, G.L. (International School for Advanced Studies, Strada Costiera 11, I-34014 Trieste (Italy) Laboratorio Tecnologie Avanzate Superfici e Catalisi del Consorzio Interuniversitario Nazionale di Fisica della Materia, Padriciano 99, I-34012 Trieste (Italy)); Car, R. (International School for Advanced Studies, Strada Costiera 11, I-34014 Trieste (Italy) Institut Romard de Recherche Numerique en Physique des Materiaux, CH-1015 Lausanne, Switzerland Department of Condensed Matter Physics, University of Geneva, CH-1211 Geneva (Switzerland)); Parrinello, M. (IBM Research Division, Zurich Research Laboratory, CH-8803 Rueschlikon (Switzerland))

    1991-09-15

    We have generated a model of hydrogenated amorphous silicon by first-principles molecular dynamics. Our results are in good agreement with the available experimental data and provide new insight into the microscopic structure of this material. The calculation lends support to models in which monohydride complexes are prevalent, and indicates a strong tendency of hydrogen to form small clusters.

  4. Nuclear quantum effects in ab initio dynamics: Theory and experiments for lithium imide

    Science.gov (United States)

    Ceriotti, Michele; Miceli, Giacomo; Pietropaolo, Antonino; Colognesi, Daniele; Nale, Angeloclaudio; Catti, Michele; Bernasconi, Marco; Parrinello, Michele

    2010-11-01

    Owing to their small mass, hydrogen atoms exhibit strong quantum behavior even at room temperature. Including these effects in first-principles calculations is challenging because of the huge computational effort required by conventional techniques. Here we present the first ab initio application of a recently developed stochastic scheme, which allows to approximate nuclear quantum effects inexpensively. The proton momentum distribution of lithium imide, a material of interest for hydrogen storage, was experimentally measured by inelastic neutron-scattering experiments and compared with the outcome of quantum thermostatted ab initio dynamics. We obtain favorable agreement between theory and experiments for this purely quantum-mechanical property, thereby demonstrating that it is possible to improve the modeling of complex hydrogen-containing materials without additional computational effort.

  5. Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study

    International Nuclear Information System (INIS)

    Sharma, Nalini; Ahluwalia, P. K.; Thakur, Anil

    2016-01-01

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg_1_0In_9_0, Hg_3_0In_7_0_,_. Hg_5_0In_5_0, Hg_7_0In_3_0, and Hg_9_0Pb_1_0) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the local arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.

  6. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo

    International Nuclear Information System (INIS)

    Zen, Andrea; Luo, Ye; Mazzola, Guglielmo; Sorella, Sandro; Guidoni, Leonardo

    2015-01-01

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems

  7. Simulation of plume dynamics by the Lattice Boltzmann Method

    Science.gov (United States)

    Mora, Peter; Yuen, David A.

    2017-09-01

    The Lattice Boltzmann Method (LBM) is a semi-microscopic method to simulate fluid mechanics by modelling distributions of particles moving and colliding on a lattice. We present 2-D simulations using the LBM of a fluid in a rectangular box being heated from below, and cooled from above, with a Rayleigh of Ra = 108, similar to current estimates of the Earth's mantle, and a Prandtl number of 5000. At this Prandtl number, the flow is found to be in the non-inertial regime where the inertial terms denoted I ≪ 1. Hence, the simulations presented lie within the regime of relevance for geodynamical problems. We obtain narrow upwelling plumes with mushroom heads and chutes of downwelling fluid as expected of a flow in the non-inertial regime. The method developed demonstrates that the LBM has great potential for simulating thermal convection and plume dynamics relevant to geodynamics, albeit with some limitations.

  8. The dynamics of the Frustrated Ising Lattice Gas

    International Nuclear Information System (INIS)

    Arenzon, J.J.; Stariolo, D.A.; Ricci-Tersenghi, F.

    2000-04-01

    The dynamical properties of a three dimensional model glass, the Frustrated Ising Lattice Gas (FILG) are studied by Monte Carlo simulations. We present results of compression experiments, where the chemical potential is either slowly or abruptly changed, as well as simulations at constant density. One-time quantities like density and two-times ones as correlations, responses and mean square displacements are measured, and the departure from equilibrium clearly characterized. The aging scenario, particularly in the case of the density autocorrelations, is reminiscent of spin glass phenomenology with violations of the fluctuation-dissipation theorem, typical of systems with one replica symmetry breaking. The FILG, as a valid on-lattice model of structural glasses, can be described with tools developed in spin glass theory and, being a finite dimensional model, can open the way for a systematic study of activated processes in glasses. (author)

  9. Nucleon form factors on the lattice with light dynamical fermions

    International Nuclear Information System (INIS)

    Goeckeler, M.; Haegler, P.; Horsley, R.

    2007-09-01

    The electromagnetic form factors provide important insight into the internal structure of the nucleon and continue to be of major interest for experiment and phenomenology. For an intermediate range of momenta the form factors can be calculated on the lattice. However, the reliability of the results is limited by systematic errors mostly due to the required extrapolation to physical quark masses. Chiral effective field theories predict a rather strong quark mass dependence in a range which was yet inaccessible for lattice simulations. We give an update on recent results from the QCDSF collaboration using gauge configurations with dynamical N f =2, non-perturbatively O(a)-improved Wilson fermions at pion masses as low as 350 MeV. (orig.)

  10. Nucleon form factors on the lattice with light dynamical fermions

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Theoretische Physik T39; Horsley, R. [Edinburgh Univ. (GB). School of Physics] (and others)

    2007-09-15

    The electromagnetic form factors provide important insight into the internal structure of the nucleon and continue to be of major interest for experiment and phenomenology. For an intermediate range of momenta the form factors can be calculated on the lattice. However, the reliability of the results is limited by systematic errors mostly due to the required extrapolation to physical quark masses. Chiral effective field theories predict a rather strong quark mass dependence in a range which was yet inaccessible for lattice simulations. We give an update on recent results from the QCDSF collaboration using gauge configurations with dynamical N{sub f}=2, non-perturbatively O(a)-improved Wilson fermions at pion masses as low as 350 MeV. (orig.)

  11. Single-layer 1T‧-MoS2 under electron irradiation from ab initio molecular dynamics

    Science.gov (United States)

    Pizzochero, Michele; Yazyev, Oleg V.

    2018-04-01

    Irradiation with high-energy particles has recently emerged as an effective tool for tailoring the properties of two-dimensional transition metal dichalcogenides. In order to carry out an atomically-precise manipulation of the lattice, a detailed understanding of the beam-induced events occurring at the atomic scale is necessary. Here, we investigate the response of 1T' -MoS2 to the electron irradiation by ab initio molecular dynamics means. Our simulations suggest that an electron beam with energy smaller than 75 keV does not result in any knock-on damage. The displacement threshold energies are different for the two nonequivalent sulfur atoms in 1T' -MoS2 and strongly depend on whether the top or bottom chalcogen layer is considered. As a result, a careful tuning of the beam energy can promote the formation of ordered defects in the sample. We further discuss the effect of the electron irradiation in the neighborhood of a defective site, the mobility of the sulfur vacancies created and their tendency to aggregate. Overall, our work provides useful guidelines for the imaging and the defect engineering of 1T' -MoS2 using electron microscopy.

  12. Finite size effects in lattice QCD with dynamical Wilson fermions

    Energy Technology Data Exchange (ETDEWEB)

    Orth, B.

    2004-06-01

    Due to limited computing resources choosing the parameters for a full lattice QCD simulation always amounts to a compromise between the competing objectives of a lattice spacing as small, quarks as light, and a volume as large as possible. Aiming at pushing unquenched simulations with the standard Wilson action towards the computationally expensive regime of small quark masses, the GRAL project addresses the question whether computing time can be saved by sticking to lattices with rather modest numbers of grid sites and extrapolating the finite-volume results to the infinite volume (prior to the usual chiral and continuum extrapolations). In this context we investigate in this work finite-size effects in simulated light hadron masses. Understanding their systematic volume dependence may not only help saving computer time in light quark simulations with the Wilson action, but also guide future simulations with dynamical chiral fermions which for a foreseeable time will be restricted to rather small lattices. We analyze data from hybrid Monte Carlo simulations with the N{sub f} = 2 Wilson action at two values of the coupling parameter, {beta} = 5.6 (lattice spacing {alpha} {approx} 0.08 fm) and {beta} = 5.32144 ({alpha} {approx} 0.13 fm). The larger {beta} corresponds to the coupling used previously by SESAM/T{chi}L. The considered hopping parameters {kappa} = 0.1575, 0.158 (at the larger {beta}) and {kappa} = 0.1665 (at the smaller {beta}) correspond to quark masses of 85, 50 and 36% of the strange quark mass, respectively. At each quark mass we study at least three different lattice extents in the range from L = 10 to L = 24 (0.85-2.04 fm). Estimates of autocorrelation times in the stochastic updating process and of the computational cost of every run are given. For each simulated sea quark mass we calculate quark propagators and hadronic correlation functions in order to extract the pion, rho and nucleon masses as well as the pion decay constant and the quark mass

  13. Moessbauer effect in lattice dynamics. Experimental techniques and applications

    International Nuclear Information System (INIS)

    Chen, Yi-Long; Yang, De-Ping

    2007-01-01

    This up-to-date review closes an important gap in the existing literature by providing a comprehensive description of the applications of Moessbauer effect in lattice dynamics, along with a collection of applications in metals, alloys, amorphous solids, molecular crystals, thin films, and nanocrystals. It is the first book to systematically compare Moessbauer spectroscopy using synchrotron radiation to conventional Moessbauer spectroscopy, discussing in detail its advantages and capabilities, backed by the latest theoretical developments and experimental examples. Intended as a self-contained volume that may be used as a complete reference or textbook, 'Moessbauer Effect in Lattice Dynamics' adopts new pedagogical approaches with several non-traditional and refreshing theoretical expositions, while all quantitative relations are derived with the necessary details so as to be easily followed by the reader. Two entire chapters are devoted to the study of the dynamics of impurity atoms in solids, while a thorough description of the Mannheim model as a theoretical method is presented and its predictions compared to experimental results. Finally, an in-depth analysis of absorption of Moessbauer radiation is presented, based on recent research by one of the authors, resulting in an exact expression of fractional absorption and a method to determine the optimal thickness of an absorber. Supplemented by elaborate appendices containing constants and parameters. (orig.)

  14. Modelling of nuclear glasses by classical and ab initio molecular dynamics; Modelisation de verres intervenant dans le conditionnement des dechets radioactifs par dynamiques moleculaires classique et ab initio

    Energy Technology Data Exchange (ETDEWEB)

    Ganster, P

    2004-10-15

    A calcium aluminosilicate glass of molar composition 67 % SiO{sub 2} - 12 % Al{sub 2}O{sub 3} - 21 % CaO was modelled by classical and ab initio molecular dynamics. The size effect study in classical MD shows that the systems of 100 atoms are more ordered than the larger ones. These effects are mainly due to the 3-body terms in the empirical potentials. Nevertheless, these effects are small and the structures generated are in agreement with experimental data. In such kind of glass, we denote an aluminium avoidance and an excess of non bridging oxygens which can be compensated by tri coordinated oxygens. When the dynamics of systems of 100 and 200 atoms is followed by ab initio MD, some local arrangements occurs (bond length, angular distributions). Thus, more realistic vibrational properties are obtained in ab initio MD. The modelling of thin films shows that aluminium atoms extend to the most external part of the surface and they are all tri-coordinated. Calcium atoms are set in the sub layer part of the surface and they produce a depolymerization of the network. In classical MD, tri-coordinated aluminium atoms produce an important electric field above the surface. With non bridging oxygens, they constitute attractive sites for single water molecules. (author)

  15. Calcium ions in aqueous solutions: Accurate force field description aided by ab initio molecular dynamics and neutron scattering

    Science.gov (United States)

    Martinek, Tomas; Duboué-Dijon, Elise; Timr, Štěpán; Mason, Philip E.; Baxová, Katarina; Fischer, Henry E.; Schmidt, Burkhard; Pluhařová, Eva; Jungwirth, Pavel

    2018-06-01

    We present a combination of force field and ab initio molecular dynamics simulations together with neutron scattering experiments with isotopic substitution that aim at characterizing ion hydration and pairing in aqueous calcium chloride and formate/acetate solutions. Benchmarking against neutron scattering data on concentrated solutions together with ion pairing free energy profiles from ab initio molecular dynamics allows us to develop an accurate calcium force field which accounts in a mean-field way for electronic polarization effects via charge rescaling. This refined calcium parameterization is directly usable for standard molecular dynamics simulations of processes involving this key biological signaling ion.

  16. Lattice dynamics of impurity clusters : application to pairs

    International Nuclear Information System (INIS)

    Chandralekha Devi, N.; Behera, S.N.

    1979-01-01

    A general solution is obtained for the lattice dynamics of a cluster of n-impurity atoms using the double-time Green's function formalism. The cluster is characterized by n-mass defect and m-force constant change parameters. It is shown that this general solution for the Green's function for the n-impurity cluster can also be expressed in terms of the Green's function for the (n-1)-impurity cluster. As an application, the cluster impurity modes for a pair are calculated using the Debye model for the host lattice dynamics. The splitting of the high frequency local modes and nearly zero frequency resonant modes due to pairs show an oscillatory behaviour on varying the distance of separation between the two impurity atoms. These oscillations are most prominent for two similar impurities and get damped for two dissimilar impurities or if one of the impurities produces a force constant change. The predictions of the calculation provide qualitative explanation of the data obtained from the infrared measurements of the resonant modes in mixed crystal system of KBrsub(1-c)Clsub(c):Lisup(+) and KBrsub(1-c)Isub(c):Lisup(+). (author)

  17. Group theoretic reduction of Laplacian dynamical problems on fractal lattices

    International Nuclear Information System (INIS)

    Schwalm, W.A.; Schwalm, M.K.; Giona, M.

    1997-01-01

    Discrete forms of the Schroedinger equation, the diffusion equation, the linearized Landau-Ginzburg equation, and discrete models for vibrations and spin dynamics belong to a class of Laplacian-based finite difference models. Real-space renormalization of such models on finitely ramified regular fractals is known to give exact recursion relations. It is shown that these recursions commute with Lie groups representing continuous symmetries of the discrete models. Each such symmetry reduces the order of the renormalization recursions by one, resulting in a system of recursions with one fewer variable. Group trajectories are obtained from inverse images of fixed and invariant sets of the recursions. A subset of the Laplacian finite difference models can be mapped by change of boundary conditions and time dependence to a diffusion problem with closed boundaries. In such cases conservation of mass simplifies the group flow and obtaining the groups becomes easier. To illustrate this, the renormalization recursions for Green functions on four standard examples are decoupled. The examples are (1) the linear chain, (2) an anisotropic version of Dhar close-quote s 3-simplex, similar to a model dealt with by Hood and Southern, (3) the fourfold coordinated Sierpiacute nski lattice of Rammal and of Domany et al., and (4) a form of the Vicsek lattice. Prospects for applying the group theoretic method to more general dynamical systems are discussed. copyright 1997 The American Physical Society

  18. First principles analysis of lattice dynamics for Fe-based superconductors and entropically-stabilized phases

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Steven [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    Modern calculations are becoming an essential, complementary tool to inelastic x-ray scattering studies, where x-rays are scattered inelastically to resolve meV phonons. Calculations of the inelastic structure factor for any value of Q assist in both planning the experiment and analyzing the results. Moreover, differences between the measured data and theoretical calculations help identify important new physics driving the properties of novel correlated systems. We have used such calculations to better and more e ciently measure the phonon dispersion and elastic constants of several iron pnictide superconductors. This dissertation describes calculations and measurements at room temperature in the tetragonal phase of CaFe{sub 2}As{sub 2} and LaFeAsO. In both cases, spin-polarized calculations imposing the antiferromagnetic order present in the low-temperature orthorhombic phase dramatically improves the agreement between theory and experiment. This is discussed in terms of the strong antiferromagnetic correlations that are known to persist in the tetragonal phase. In addition, we discuss a relatively new approach called self-consistent ab initio lattice dynamics (SCAILD), which goes beyond the harmonic approximation to include phonon-phonon interactions and produce a temperature-dependent phonon dispersion. We used this technique to study the HCP to BCC transition in beryllium.

  19. Dynamical Disentangling and Cooling of Atoms in Bilayer Optical Lattices

    Science.gov (United States)

    Kantian, A.; Langer, S.; Daley, A. J.

    2018-02-01

    We show how experimentally available bilayer lattice systems can be used to prepare quantum many-body states with exceptionally low entropy in one layer, by dynamically disentangling the two layers. This disentangling operation moves one layer—subsystem A —into a regime where excitations in A develop a single-particle gap. As a result, this operation maps directly to cooling for subsystem A , with entropy being shuttled to the other layer. For both bosonic and fermionic atoms, we study the corresponding dynamics showing that disentangling can be realized cleanly in ongoing experiments. The corresponding entanglement entropies are directly measurable with quantum gas microscopes, and, as a tool for producing lower-entropy states, this technique opens a range of applications beginning with simplifying production of magnetically ordered states of bosons and fermions.

  20. Ab initio study on the dynamics of furfural at the liquid-solid interfaces

    Science.gov (United States)

    Dang, Hongli; Xue, Wenhua; Shields, Darwin; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu

    2013-03-01

    Catalytic biomass conversion sometimes occurs at the liquid-solid interfaces. We report ab initio molecular dynamics simulations at finite temperatures for the catalytic reactions involving furfural at the water-Pd and water-Cu interfaces. We found that, during the dynamic process, the furan ring of furfural prefers to be parallel to the Pd surface and the aldehyde group tends to be away from the Pd surface. On the other hand, at the water-Cu(111) interface, furfural prefers to be tilted to the Cu surface while the aldehyde group is bonded to the surface. In both cases, interaction of liquid water and furfural is identified. The difference of dynamic process of furfural at the two interfaces suggests different catalytic reaction mechanisms for the conversion of furfural, consistent with the experimental investigations. Supported by DOE (DE-SC0004600). Simulations and calculations were performed on XSED's and NERSC's supercomputers

  1. Ab Initio Molecular Dynamics Studies of Pb m Sb n ( m + n ≤ 9) Alloy Clusters

    Science.gov (United States)

    Song, Bingyi; Xu, Baoqiang; Yang, Bin; Jiang, Wenlong; Chen, Xiumin; Xu, Na; Liu, Dachun; Dai, Yongnian

    2017-10-01

    Structure, stability, and dynamics of Pb m Sb n ( m + n ≤ 9) clusters were investigated using ab initio molecular dynamics. Size dependence of binding energies, the second-order energy difference of clusters, dissociation energy, HOMO-LUMO gaps, Mayer bond order, and the diffusion coefficient of Pb m Sb n clusters were discussed. Results suggest that Pb3Sb2, Pb4Sb2, and Pb5Sb4 ( n = 2 or 4) clusters have higher stability than other clusters, which is consistent with previous findings. In case of Pb-Sb alloy, the dynamics results show that Pb4Sb2 (Pb-22.71 wt pct Sb) can exist in gas phase at 1073 K (800 °C), which reasonably explains the azeotropic phenomenon, and the calculated values are in agreement with the experimental results (Pb-22 wt pct Sb).

  2. Ab initio molecular dynamics, iterative methods and multiscale approaches in electronic structure calculations

    International Nuclear Information System (INIS)

    Bernholc, J.

    1998-01-01

    The field of computational materials physics has grown very quickly in the past decade, and it is now possible to simulate properties of complex materials completely from first principles. The presentation has mostly focused on first-principles dynamic simulations. Such simulations have been pioneered by Car and Parrinello, who introduced a method for performing realistic simulations within the context of density functional theory. The Car-Parrinello method and related plane wave approaches are reviewed in depth. The Car-Parrinello method was reviewed and illustrated with several applications: the dynamics of the C 60 solid, diffusion across Si steps, and computing free energy differences. Alternative ab initio simulation schemes, which use preconditioned conjugate gradient techniques for energy minimization and dynamics were also discussed

  3. Dynamic quantum crystallography: lattice-dynamical models refined against diffraction data. II. Applications to L-alanine, naphthalene and xylitol.

    Science.gov (United States)

    Hoser, Anna A; Madsen, Anders Ø

    2017-03-01

    In the first paper of this series [Hoser & Madsen (2016). Acta Cryst. A72, 206-214], a new approach was introduced which enables the refinement of frequencies of normal modes obtained from ab initio periodic computations against single-crystal diffraction data. In this contribution, the performance of this approach is tested by refinement against data in the temperature range from 23 to 205 K on the molecular crystals of L-alanine, naphthalene and xylitol. The models, which are lattice-dynamical models derived at the Γ point of the Brillouin zone, are able to describe the atomic vibrations of L-alanine and naphthalene to a level where the residual densities are similar to those obtained from the independent atom model. For the more flexible molecule xylitol, larger deviations are found. Hydrogen ADPs (anisotropic displacement parameters) derived from the models are in similar or better agreement with neutron diffraction results than ADPs obtained by other procedures. The heat capacity calculated after normal mode refinement for naphthalene is in reasonable agreement with the heat capacity obtained from calorimetric measurements (to less than 1 cal mol -1  K -1 below 300 K), with deviations at higher temperatures indicating anharmonicity. Standard uncertainties and correlation of the refined parameters have been derived based on a Monte Carlo procedure. The uncertainties are quite small and probably underestimated.

  4. Ab initio molecular dynamics of the reaction of quercetin with superoxide radical

    International Nuclear Information System (INIS)

    Lespade, Laure

    2016-01-01

    Highlights: • Ab initio molecular dynamics is performed to describe the reaction of quercetin and superoxide. • The reaction occurs near the sites 4′ and 7 when the system contains sufficiently water molecules. • The difference of reactivity of superoxide compared to commonly used radicals as DPPH · or ABTS ·+ is explained. - Abstract: Superoxide plays an important role in biology but in unregulated concentrations it is implicated in a lot of diseases such as cancer or atherosclerosis. Antioxidants like flavonoids are abundant in plant and are good scavengers of superoxide radical. The modeling of superoxide scavenging by flavonoids from the diet still remains a challenge. In this study, ab initio molecular dynamics of the reaction of the flavonoid quercetin toward superoxide radical has been carried out using Car–Parrinello density functional theory. The study has proven different reactant solvation by modifying the number of water molecules surrounding superoxide. The reaction consists in the gift of a hydrogen atom of one of the hydroxyl groups of quercetin to the radical. When it occurs, it is relatively fast, lower than 100 fs. Calculations show that it depends largely on the environment of the hydroxyl group giving its hydrogen atom, the geometry of the first water layer and the presence of a certain number of water molecules in the second layer, indicating a great influence of the solvent on the reactivity.

  5. Ab initio molecular dynamics of the reaction of quercetin with superoxide radical

    Energy Technology Data Exchange (ETDEWEB)

    Lespade, Laure, E-mail: l.lespade@ism.u-bordeaux1.fr

    2016-08-22

    Highlights: • Ab initio molecular dynamics is performed to describe the reaction of quercetin and superoxide. • The reaction occurs near the sites 4′ and 7 when the system contains sufficiently water molecules. • The difference of reactivity of superoxide compared to commonly used radicals as DPPH{sup ·} or ABTS{sup ·+} is explained. - Abstract: Superoxide plays an important role in biology but in unregulated concentrations it is implicated in a lot of diseases such as cancer or atherosclerosis. Antioxidants like flavonoids are abundant in plant and are good scavengers of superoxide radical. The modeling of superoxide scavenging by flavonoids from the diet still remains a challenge. In this study, ab initio molecular dynamics of the reaction of the flavonoid quercetin toward superoxide radical has been carried out using Car–Parrinello density functional theory. The study has proven different reactant solvation by modifying the number of water molecules surrounding superoxide. The reaction consists in the gift of a hydrogen atom of one of the hydroxyl groups of quercetin to the radical. When it occurs, it is relatively fast, lower than 100 fs. Calculations show that it depends largely on the environment of the hydroxyl group giving its hydrogen atom, the geometry of the first water layer and the presence of a certain number of water molecules in the second layer, indicating a great influence of the solvent on the reactivity.

  6. Structural investigation of water-acetonitrile mixtures: An ab initio, molecular dynamics and X-ray diffraction study

    International Nuclear Information System (INIS)

    Bako, Imre; Megyes, Tuende; Palinkas, Gabor

    2005-01-01

    In this work, we present a study on water-acetonitrile (AN) mixtures by molecular dynamics ab initio and X-ray diffraction techniques. Comparison of the experimental total G(r) functions of the mixtures with the results of molecular dynamics simulation shows an overall good agreement. The properties of hydrogen bonded clusters (water clusters, and water-AN clusters) in these mixtures have been determined. Two different types of AN-water dimers were identified by ab initio quantum chemical calculation. One of these structures proved to be a true H-bonded dimer and the other a dipole bound dimer

  7. Static structure, microscopic dynamics and electronic properties of the liquid Bi–Li alloy. An ab initio molecular dynamics study

    International Nuclear Information System (INIS)

    Souto, J; Alemany, M M G; Gallego, L J; González, L E; González, D J

    2013-01-01

    We report an ab initio molecular dynamics study of the static, dynamic and electronic properties of the liquid Bi x Li 1−x alloy, which is a complex binary system with a marked tendency to heterocoordination. The calculated total static structure factors are in good agreement with the available experimental data. The partial dynamic structure factors exhibit side peaks indicative of propagating density fluctuations, and for some concentrations we have found a density fluctuation mode with phase velocity greater than the hydrodynamic sound velocity. We have also evaluated other dynamical properties such as the diffusion coefficients, the shear viscosity and the adiabatic sound velocity. The electronic density of states show that the liquid Bi x Li 1−x alloy has a metallic character, although with strong deviations from the free-electron parabolic curve. The results reported improve the understanding of binary liquid alloys with both fast and slow propagating collective modes. (paper)

  8. Lattice dynamics of α boron and of boron carbide

    International Nuclear Information System (INIS)

    Vast, N.

    1999-01-01

    The atomic structure and the lattice dynamics of α boron and of B 4 C boron carbide have been studied by Density Functional Theory (D.F.T.) and Density Functional Perturbation Theory (D.F.P.T.). The bulk moduli of the unit-cell and of the icosahedron have been investigated, and the equation of state at zero temperature has been determined. In α boron, Raman diffusion and infrared absorption have been studied under pressure, and the theoretical and experimental Grueneisen coefficients have been compared. In boron carbide, inspection of the theoretical and experimental vibrational spectra has led to the determination of the atomic structure of B 4 C. Finally, the effects of isotopic disorder have been modeled by an exact method beyond the mean-field approximation, and the effects onto the Raman lines has been investigated. The method has been applied to isotopic alloys of diamond and germanium. (author)

  9. Cooperative Dynamics in Lattice-Embedded Scale-Free Networks

    International Nuclear Information System (INIS)

    Shang Lihui; Zhang Mingji; Yang Yanqing

    2009-01-01

    We investigate cooperative behaviors of lattice-embedded scale-free networking agents in the prisoner's dilemma game model by employing two initial strategy distribution mechanisms, which are specific distribution to the most connected sites (hubs) and random distribution. Our study indicates that the game dynamics crucially depends on the underlying spatial network structure with different strategy distribution mechanism. The cooperators' specific distribution contributes to an enhanced level of cooperation in the system compared with random one, and cooperation is robust to cooperators' specific distribution but fragile to defectors' specific distribution. Especially, unlike the specific case, increasing heterogeneity of network does not always favor the emergence of cooperation under random mechanism. Furthermore, we study the geographical effects and find that the graphically constrained network structure tends to improve the evolution of cooperation in random case and in specific one for a large temptation to defect.

  10. Formation Dynamics of Potassium-Based Graphite Intercalation Compounds: An Ab Initio Study

    Science.gov (United States)

    Jiang, Xiankai; Song, Bo; Tománek, David

    2018-04-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. We use ab initio molecular dynamics simulations to study the microscopic dynamics of potassium intercalation in graphite. Upon adsorbing on graphite from the vapor phase, K atoms transfer their valence charge to the substrate. K atoms adsorbed on the surface diffuse rapidly along the graphene basal plane and eventually enter the interlayer region following a "U -turn" across the edge, gaining additional energy. This process is promoted at higher coverages associated with higher K pressure, leading to the formation of a stable intercalation compound. We find that the functionalization of graphene edges is an essential prerequisite for intercalation since bare edges reconstruct and reconnect, closing off the entry channels for the atoms.

  11. Decarboxylation of furfural on Pd(111): Ab initio molecular dynamics simulations

    Science.gov (United States)

    Xue, Wenhua; Dang, Hongli; Shields, Darwin; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu

    2013-03-01

    Furfural conversion over metal catalysts plays an important role in the studies of biomass-derived feedstocks. We report ab initio molecular dynamics simulations for the decarboxylation process of furfural on the palladium surface at finite temperatures. We observed and analyzed the atomic-scale dynamics of furfural on the Pd(111) surface and the fluctuations of the bondlengths between the atoms in furfural. We found that the dominant bonding structure is the parallel structure in which the furfural plane, while slightly distorted, is parallel to the Pd surface. Analysis of the bondlength fluctuations indicates that the C-H bond is the aldehyde group of a furfural molecule is likely to be broken first, while the C =O bond has a tendency to be isolated as CO. Our results show that the reaction of decarbonylation dominates, consistent with the experimental measurements. Supported by DOE (DE-SC0004600). Simulations and calculations were performed on XSEDE's and NERSC's supercomputers.

  12. An ab initio approach to free-energy reconstruction using logarithmic mean force dynamics

    International Nuclear Information System (INIS)

    Nakamura, Makoto; Obata, Masao; Morishita, Tetsuya; Oda, Tatsuki

    2014-01-01

    We present an ab initio approach for evaluating a free energy profile along a reaction coordinate by combining logarithmic mean force dynamics (LogMFD) and first-principles molecular dynamics. The mean force, which is the derivative of the free energy with respect to the reaction coordinate, is estimated using density functional theory (DFT) in the present approach, which is expected to provide an accurate free energy profile along the reaction coordinate. We apply this new method, first-principles LogMFD (FP-LogMFD), to a glycine dipeptide molecule and reconstruct one- and two-dimensional free energy profiles in the framework of DFT. The resultant free energy profile is compared with that obtained by the thermodynamic integration method and by the previous LogMFD calculation using an empirical force-field, showing that FP-LogMFD is a promising method to calculate free energy without empirical force-fields

  13. Structure and lattice dynamics in non-centrosymmetric borates

    International Nuclear Information System (INIS)

    Stein, W.D.R.

    2007-01-01

    This thesis deals with a study of structural and lattice dynamical properties of some noncentrosymmetric borates with outstanding non-linear optical properties. The focus was on the compound bismuth triborate (BiB 3 O 6 ). The structure of the tetraborates MB 4 O 7 (M=Pb,Sr,Ba) was also investigated. The structural investigations in bismuth triborate include powder and single crystal diffraction experiments on X-ray and neutron sources. The crystal structure was under examination in the temperature range from 100 K to room temperature and the lattice constants in the temperature range from 20 K to 800 K. The lattice constants show a nearly linear dependency from temperature. Our observations are in good agreement with investigations of the thermal expansion, which shows a strong anisotropy within the layer-like structure of bismuth triborate. Within the borate layers, along the polar axis a strong positive and in the orthogonal direction a negative thermal expansion is observed. This effect can be explained by a zig-zag effect within the borate layers. The lone electron pair at the bismuth atom is discussed to be possibly the origin of the temperature dependency of the coordination environment of the bismuth atom. The influence of the lone electron pair on the crystal structure is raising by lowering the temperature. At the bismuth atom distinct anharmonic effects are observed, where the maximum points along the direction of the polar axis and therefore along the direction of the lone electron pair. The phonon dispersion of bismuth triborate has been investigated by inelastic neutron scattering. The low symmetry of the crystal structure depicts to be a special challenge. The dispersion was observed along the three reciprocal lattice constants. Along the polar axis the dispersion could be characterized to a maximum energy of 20 THz. The low energy acoustic branch along the polar axis shows a softening at the zone boundary. In the orthogonal directions the dispersion

  14. Molecular dynamics simulation of electron trapping in the sapphire lattice

    International Nuclear Information System (INIS)

    Rambaut, C.; Oh, K.H.; Fayeulle, S.; Kohanoff, J.

    1995-10-01

    Energy storage and release in dielectric materials can be described on the basis of the charge trapping mechanism. Most phenomenological aspects have been recently rationalized in terms of the space charge mode. Dynamical aspects are studied here by performing Molecular Dynamics simulations. We show that an excess electron introduced into the sapphire lattice (α -Al 2 O 3 ) can be trapped only at a limited number of sites. The energy gained by allowing the electron to localize in these sites is of the order of 4-5 eV, in good agreement with the results of the space charge model. Displacements of the neighboring ions due to the implanted charge are shown to be localized in a small region of about 5 A. Detrapping is observed at 250 K. The ionic displacements turn out to play an important role in modifying the potential landscape by lowering, in a dynamical way, the barriers that cause localization at low temperature. (author). 18 refs, 7 figs, 2 tabs

  15. Comparative classical and 'ab initio' molecular dynamics study of molten and glassy germanium dioxide

    International Nuclear Information System (INIS)

    Hawlitzky, M; Horbach, J; Binder, K; Ispas, S; Krack, M

    2008-01-01

    A molecular dynamics (MD) study of the static and dynamic properties of molten and glassy germanium dioxide is presented. The interactions between the atoms are modeled by the classical pair potential proposed by Oeffner and Elliott (OE) (1998 Phys. Rev. B 58 14791). We compare our results to experiments and previous simulations. In addition, an 'ab initio' method, the so-called Car-Parrinello molecular dynamics (CPMD), is applied to check the accuracy of the structural properties, as obtained by the classical MD simulations with the OE potential. As in a similar study for SiO 2 , the structure predicted by CPMD is only slightly softer than that resulting from the classical MD. In contrast to earlier simulations, both the static structure and dynamic properties are in very good agreement with pertinent experimental data. MD simulations with the OE potential are also used to study the relaxation dynamics. As previously found for SiO 2 , for high temperatures the dynamics of molten GeO 2 is compatible with a description in terms of mode coupling theory

  16. Dynamic Aperture Improvement of PEP-II Lattices Using Resonance Basis Lie Generators

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yiton T

    2003-08-11

    To simplify the engineering efforts of implementing the PEP-II lattices, many modifications have been made to these lattices since the conceptual design report. During the development and evolution of the lattices, changes in a lattice would often result in a significant reduction in the dynamic aperture. At such times, we often relied on a non-linear analysis using the one-turn resonance basis Lie generator to identify the cause of the degradation. In this paper, we will present such examples to facilitate the usage of map for diagnosing the problems in lattice design.

  17. Potential Energy and Free Energy Surfaces of the Formic Acid Dimer: Correlared ab initio Calculations and Molecular Dynamics Simulations

    Czech Academy of Sciences Publication Activity Database

    Chocholoušová, Jana; Vacek, Jaroslav; Hobza, Pavel

    2002-01-01

    Roč. 4, - (2002), s. 2119-2122 ISSN 1463-9076 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : formic acid dimer * ab initio calculations * molecular dynamics simulations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.838, year: 2002

  18. Valence force fields and the lattice dynamics of beryllium oxide

    International Nuclear Information System (INIS)

    Ramani, R.; Mani, K.K.; Singh, R.P.

    1976-01-01

    The lattice dynamics of beryllium oxide have been studied using a rigid-ion model, with short-range forces represented by a valence force field. Various existing calculations on group-IV elements using such a field have been examined as a prelude to transference of force constants from diamond to beryllium oxide. The effects of ionicity on the force constants have been included in the form of scale factors. It is shown that no satisfactory fit to the long-wavelength data on BeO can be found with transferred force constants. However, adequate least-squares fits can be found both with four- and six-parameter valence force fields, the discrepancy with experiment being large only for one optical mode at the Brillouin-zone center. Dispersion curves along Δ and Σ are presented and are in fair agreement with experiment, deviations arising essentially from the quality of the fit to the long-wavelength data. The bond-bending interactions are found to play a significant role and arguments have been presented to show that the inclusion of further angle-angle interactions would yield a very satisfactory picture of the dynamics

  19. Dynamic structure factor for liquid He4 and quantum lattice model

    International Nuclear Information System (INIS)

    Lee, M.H.

    1975-01-01

    It has been realized for some time now that the quantum lattice model (or the anisotropic Heisenberg antiferromagnetic model) is a useful model for studying the properties of quantum liquids especially near the lambda transition. The static critical values calculated from the quantum lattice model are in good agreement with the observed values. Furthermore, it was shown recently that there are collective modes in the quantum lattice model which are equivalent to the plasmons. Hence, it would seem to be interesting to study the dynamic structure factor for the quantum lattice model and to make a comparison with experiment. Work on the dynamic structure factor is reported here. (Auth.)

  20. Haber Process Made Efficient by Hydroxylated Graphene: Ab Initio Thermochemistry and Reactive Molecular Dynamics.

    Science.gov (United States)

    Chaban, Vitaly V; Prezhdo, Oleg V

    2016-07-07

    The Haber-Bosch process is the main industrial method for producing ammonia from diatomic nitrogen and hydrogen. We use a combination of ab initio thermochemical analysis and reactive molecular dynamics to demonstrate that a significant increase in the ammonia production yield can be achieved using hydroxylated graphene and related species. Exploiting the polarity difference between N2/H2 and NH3, as well as the universal proton acceptor behavior of NH3, we demonstrate a strong shift of the equilibrium of the Haber-Bosch process toward ammonia (ca. 50 kJ mol(-1) enthalpy gain and ca. 60-70 kJ mol(-1) free energy gain). The modified process is of significant importance to the chemical industry.

  1. Carbon diffusion in molten uranium: an ab initio molecular dynamics study

    Science.gov (United States)

    Garrett, Kerry E.; Abrecht, David G.; Kessler, Sean H.; Henson, Neil J.; Devanathan, Ram; Schwantes, Jon M.; Reilly, Dallas D.

    2018-04-01

    In this work we used ab initio molecular dynamics within the framework of density functional theory and the projector-augmented wave method to study carbon diffusion in liquid uranium at temperatures above 1600 K. The electronic interactions of carbon and uranium were described using the local density approximation (LDA). The self-diffusion of uranium based on this approach is compared with literature computational and experimental results for liquid uranium. The temperature dependence of carbon and uranium diffusion in the melt was evaluated by fitting the resulting diffusion coefficients to an Arrhenius relationship. We found that the LDA calculated activation energy for carbon was nearly twice that of uranium: 0.55 ± 0.03 eV for carbon compared to 0.32 ± 0.04 eV for uranium. Structural analysis of the liquid uranium-carbon system is also discussed.

  2. Structural properties of iron nitride on Cu(100): An ab-initio molecular dynamics study

    KAUST Repository

    Heryadi, Dodi

    2011-01-01

    Due to their potential applications in magnetic storage devices, iron nitrides have been a subject of numerous experimental and theoretical investigations. Thin films of iron nitride have been successfully grown on different substrates. To study the structural properties of a single monolayer film of FeN we have performed an ab-initio molecular dynamics simulation of its formation on a Cu(100) substrate. The iron nitride layer formed in our simulation shows a p4gm(2x2) reconstructed surface, in agreement with experimental results. In addition to its structural properties, we are also able to determine the magnetization of this thin film. Our results show that one monolayer of iron nitride on Cu(100) is ferromagnetic with a magnetic moment of 1.67 μ B. © 2011 Materials Research Society.

  3. Water-mediated tautomerization of cytosine to the rare imino form: An ab initio dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Fogarasi, Geza [Institute of Chemistry, Eotvos University, H-1518 Budapest, Pf. 32. (Hungary)], E-mail: fg@chem.elte.hu

    2008-06-16

    Tautomerism in nucleotide bases is one of the possible mechanisms of mutation of DNA. In spite of numerous studies on the structure and energy of cytosine tautomers, little information is available on the process of proton transfer itself. We present here Born-Oppenheimer dynamics calculations, with the potential surface obtained 'on the fly' from ab initio quantum chemistry (QC) and the atoms moving classically. In search for water-mediated tautomerization the monohydrated complex was studied, running about 300 trajectories each of 3000-5000 points of 1 fs steps. One single trajectory has been found to lead to tautomerization. Although the QC method used in the simulations was inevitably modest (B3LYP/3-21G), higher-level test calculations along the same trajectory suggest that the simulation grasped the basic mechanism of proton transfer: a concerted, synchronous process characterized by strong coupling between the motions of the two participating hydrogen atoms.

  4. Ab Initio Molecular-Dynamics Simulation of Neuromorphic Computing in Phase-Change Memory Materials.

    Science.gov (United States)

    Skelton, Jonathan M; Loke, Desmond; Lee, Taehoon; Elliott, Stephen R

    2015-07-08

    We present an in silico study of the neuromorphic-computing behavior of the prototypical phase-change material, Ge2Sb2Te5, using ab initio molecular-dynamics simulations. Stepwise changes in structural order in response to temperature pulses of varying length and duration are observed, and a good reproduction of the spike-timing-dependent plasticity observed in nanoelectronic synapses is demonstrated. Short above-melting pulses lead to instantaneous loss of structural and chemical order, followed by delayed partial recovery upon structural relaxation. We also investigate the link between structural order and electrical and optical properties. These results pave the way toward a first-principles understanding of phase-change physics beyond binary switching.

  5. A direct ab initio molecular dynamics (MD) study on the benzophenone-water 1 : 1 complex.

    Science.gov (United States)

    Tachikawa, Hiroto; Iyama, Tetsuji; Kato, Kohichi

    2009-07-28

    Direct ab initio molecular dynamics (MD) method has been applied to a benzophenone-water 1 : 1 complex Bp(H(2)O) and free benzophenone (Bp) to elucidate the effects of zero-point energy (ZPE) vibration and temperature on the absorption spectra of Bp(H(2)O). The n-pi transition of free-Bp (S(1) state) was blue-shifted by the interaction with a water molecule, whereas three pi-pi transitions (S(2), S(3) and S(4)) were red-shifted. The effects of the ZPE vibration and temperature of Bp(H(2)O) increased the intensity of the n-pi transition of Bp(H(2)O) and caused broadening of the pi-pi transitions. In case of the temperature effect, the intensity of n-pi transition increases with increasing temperature. The electronic states of Bp(H(2)O) were discussed on the basis of the theoretical results.

  6. Ab initio path-integral molecular dynamics and the quantum nature of hydrogen bonds

    International Nuclear Information System (INIS)

    Feng Yexin; Chen Ji; Wang Enge; Li Xin-Zheng

    2016-01-01

    The hydrogen bond (HB) is an important type of intermolecular interaction, which is generally weak, ubiquitous, and essential to life on earth. The small mass of hydrogen means that many properties of HBs are quantum mechanical in nature. In recent years, because of the development of computer simulation methods and computational power, the influence of nuclear quantum effects (NQEs) on the structural and energetic properties of some hydrogen bonded systems has been intensively studied. Here, we present a review of these studies by focussing on the explanation of the principles underlying the simulation methods, i.e., the ab initio path-integral molecular dynamics. Its extension in combination with the thermodynamic integration method for the calculation of free energies will also be introduced. We use two examples to show how this influence of NQEs in realistic systems is simulated in practice. (topical review)

  7. Dielectric Response and Born Dynamic Charge of BN Nanotubes from Ab Initio Finite Electric Field Calculations

    Science.gov (United States)

    Guo, Guang-Yu; Ishibashi, Shoji; Tamura, Tomoyuki; Terakura, Kiyoyuki

    2007-03-01

    Since the discovery of carbon nanotubes (CNTs) in 1991 by Iijima, carbon and other nanotubes have attracted considerable interest worldwide because of their unusual properties and also great potentials for technological applications. Though CNTs continue to attract great interest, other nanotubes such as BN nanotubes (BN-NTs) may offer different opportunities that CNTs cannot provide. In this contribution, we present the results of our recent systematic ab initio calculations of the static dielectric constant, electric polarizability, Born dynamical charge, electrostriction coefficient and piezoelectric constant of BN-NTs using the latest crystalline finite electric field theory [1]. [1] I. Souza, J. Iniguez, and D. Vanderbilt, Phys. Rev. Lett. 89, 117602 (2002); P. Umari and A. Pasquarello, Phys. Rev. Lett. 89, 157602 (2002).

  8. Improved real-time dynamics from imaginary frequency lattice simulations

    Directory of Open Access Journals (Sweden)

    Pawlowski Jan M.

    2018-01-01

    Full Text Available The computation of real-time properties, such as transport coefficients or bound state spectra of strongly interacting quantum fields in thermal equilibrium is a pressing matter. Since the sign problem prevents a direct evaluation of these quantities, lattice data needs to be analytically continued from the Euclidean domain of the simulation to Minkowski time, in general an ill-posed inverse problem. Here we report on a novel approach to improve the determination of real-time information in the form of spectral functions by setting up a simulation prescription in imaginary frequencies. By carefully distinguishing between initial conditions and quantum dynamics one obtains access to correlation functions also outside the conventional Matsubara frequencies. In particular the range between ω0 and ω1 = 2πT, which is most relevant for the inverse problem may be more highly resolved. In combination with the fact that in imaginary frequencies the kernel of the inverse problem is not an exponential but only a rational function we observe significant improvements in the reconstruction of spectral functions, demonstrated in a simple 0+1 dimensional scalar field theory toy model.

  9. Lattice dynamic studies from {sup 151}Eu-Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Katada, Motomi [Tokyo Metropolitan Univ., Hachioji (Japan). Faculty of Science

    1997-03-01

    New complexes {l_brace}(Eu(napy){sub 2}(H{sub 2}O){sub 3})(Fe(CN){sub 6})4H{sub 2}O{r_brace}{sub x}, bpy({l_brace}(Eu(bpy)(H{sub 2}O){sub 4})(Fe(CN){sub 6})1.5bpy4H{sub 2}O{r_brace}{sub x}) and ({l_brace}(Eu(phen){sub 2}(H{sub 2}O){sub 2})(Fe(CN){sub 6})2phen{r_brace}{sub x}) etc were synthesized using phenanthroline and bipyridine. Lattice dynamic behaviors of Eu and Fe atom in the complexes were investigated by Moessbauer spectroscopy. By {sup 151}Eu-Moessbauer spectrum and parameters of new complexes, bpy complex showed the largest quadrupole splitting value, indicating bad symmetry of Eu ligand in the environment. Molecular structure of napy, bpy and phen complex were shown. These complexes are consisted of Eu atom coordinated with ligand and water molecule, of which (Fe(CN){sub 6}){sup 3-} ion formed one dimentional polymer chain and naphthyridines formed stacking structure. New complexes were observed by {sup 57}Fe-Moessbauer spectroscopy, too. The quadrupole splitting values were very different each other, indicating change of symmetry of Fe atom in the environment and three valence low spin state of Fe in the complex. (S.Y.)

  10. Improved real-time dynamics from imaginary frequency lattice simulations

    Science.gov (United States)

    Pawlowski, Jan M.; Rothkopf, Alexander

    2018-03-01

    The computation of real-time properties, such as transport coefficients or bound state spectra of strongly interacting quantum fields in thermal equilibrium is a pressing matter. Since the sign problem prevents a direct evaluation of these quantities, lattice data needs to be analytically continued from the Euclidean domain of the simulation to Minkowski time, in general an ill-posed inverse problem. Here we report on a novel approach to improve the determination of real-time information in the form of spectral functions by setting up a simulation prescription in imaginary frequencies. By carefully distinguishing between initial conditions and quantum dynamics one obtains access to correlation functions also outside the conventional Matsubara frequencies. In particular the range between ω0 and ω1 = 2πT, which is most relevant for the inverse problem may be more highly resolved. In combination with the fact that in imaginary frequencies the kernel of the inverse problem is not an exponential but only a rational function we observe significant improvements in the reconstruction of spectral functions, demonstrated in a simple 0+1 dimensional scalar field theory toy model.

  11. Lattice dynamics of a crystal with a molecular impurity

    International Nuclear Information System (INIS)

    Sahoo, D.; Venkataraman, G.

    1975-01-01

    The dynamics of a crystal containing a molecular impurity is discussed with allowance for the effects of internal vibrations of the molecule. Cartesian coordinates are used to describe internal vibrations, angular oscillations and centre of mass translations of the impurity, and the displacement of atoms of the host lattice. Next the Hamiltonian is set up and the equations of motion derived. In this process, use is made of Dirac brackets when dealing with vibrational coordinates (of the molecule) which have redundancy and constraints. A method of solution of the normal modes of the system is indicated by using the defect space matrixpartitioning technique. The special case of a rigid molecular impurity is then discussed along with the relevance of the present formalism in the interpretation of a recent neutron scattering experiment. It is also shown how the results of crystal-field approximation model and those of the molecular model approximation are obtained as further special cases of the present formalism. A comparison of the present work with those of others has been made. (author)

  12. Dynamic hysteresis behaviors in the kinetic Ising system on triangular lattice

    Science.gov (United States)

    Kantar, Ersin; Ertaş, Mehmet

    2018-04-01

    We studied dynamic hysteresis behaviors of the spin-1 Blume-Capel (BC) model in a triangular lattice by means of the effective-field theory (EFT) with correlations and using Glauber-type stochastic dynamics. The effects of the exchange interaction (J), crystal field (D), temperature (T) and oscillating frequency (w) on the hysteresis behaviors of the BC model in a triangular lattice are investigated in detail. Results are compared with some other dynamic studies and quantitatively good agreement is found.

  13. Probing the dynamic response of antivortex, interstitial and trapped vortex lattices on magnetic periodic pinning potentials

    International Nuclear Information System (INIS)

    Gomez, A; Gonzalez, E M; Vicent, J L; Gilbert, D A; Liu Kai; Milošević, M V

    2013-01-01

    The dynamics of the pinned vortex, antivortex and interstitial vortex have been studied in superconducting/magnetic hybrids consisting of arrays of Co/Pd multilayer nanodots embedded in Nb films. The magnetic nanodots show out-of-plane magnetization at the remanent state. This magnetic state allows for superconducting vortex lattices of different types in an applied homogeneous magnetic field. We experimentally and theoretically show three such lattices: (i) a lattice containing only antivortices; (ii) a vortex lattice entirely pinned on the dots; and (iii) a vortex lattice with pinned and interstitial vortices. Between the flux creep (low vortex velocity) and the free flux flow (high vortex velocity) regimes the interaction between the magnetic array and the vortex lattice governs the vortex dynamics, which in turn enables distinguishing experimentally the type of vortex lattice which governs the dissipation. We show that the vortex lattice with interstitial vortices has the highest onset velocity where the lattice becomes ordered, whereas the pinned vortex lattice has the smallest onset velocity. Further, for this system, we directly estimate that the external force needed to depin vortices is 60% larger than the one needed to depin antivortices; therefore we are able to decouple the antivortex–vortex motion. (paper)

  14. Nonequilibrium Chemical Effects in Single-Molecule SERS Revealed by Ab Initio Molecular Dynamics Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Sean A.; Apra, Edoardo; Govind, Niranjan; Hess, Wayne P.; El-Khoury, Patrick Z.

    2017-02-03

    Recent developments in nanophotonics have paved the way for achieving significant advances in the realm of single molecule chemical detection, imaging, and dynamics. In particular, surface-enhanced Raman scattering (SERS) is a powerful analytical technique that is now routinely used to identify the chemical identity of single molecules. Understanding how nanoscale physical and chemical processes affect single molecule SERS spectra and selection rules is a challenging task, and is still actively debated. Herein, we explore underappreciated chemical phenomena in ultrasensitive SERS. We observe a fluctuating excited electronic state manifold, governed by the conformational dynamics of a molecule (4,4’-dimercaptostilbene, DMS) interacting with a metallic cluster (Ag20). This affects our simulated single molecule SERS spectra; the time trajectories of a molecule interacting with its unique local environment dictates the relative intensities of the observable Raman-active vibrational states. Ab initio molecular dynamics of a model Ag20-DMS system are used to illustrate both concepts in light of recent experimental results.

  15. Ab initio molecular dynamics: basic concepts, current trends and novel applications

    International Nuclear Information System (INIS)

    Tuckerman, Mark E

    2002-01-01

    The field of ab initio molecular dynamics (AIMD), in which finite temperature molecular dynamics (MD) trajectories are generated with forces obtained from accurate 'on the fly' electronic structure calculations, is a rapidly evolving and growing technology that allows chemical processes in condensed phases to be studied in an accurate and unbiased way. This article is intended to present the basics of the AIMD method as well as to provide a broad survey of the state of the art of the field and showcase some of its capabilities. Beginning with a derivation of the method from the Born-Oppenheimer approximation, issues including the density functional representation of electronic structure, basis sets, calculation of observables and the Car-Parrinello extended Lagrangian algorithm are discussed. A number of example applications, including liquid structure and dynamics and aqueous proton transport, are presented in order to highlight some of the current capabilities of the approach. Finally, advanced topics such as inclusion of nuclear quantum effects, excited states and scaling issues are addressed. (topical review)

  16. On-the-fly ab initio semiclassical dynamics: Emission spectra of oligothiophenes

    Science.gov (United States)

    Wehrle, Marius; Sulc, Miroslav; Vanicek, Jiri

    2014-03-01

    We employ the thawed Gaussian approximation (TGA) [E. J. Heller, J. Chem. Phys. 62, 1544 (1975)] within an on-the-fly ab initio (OTF-AI) scheme to calculate the vibrationally resolved emission spectra of oligothiophenes up to five rings. OTF-AI-TGA is efficient enough to treat all vibrational degrees of freedom on an equal footing even in case of 5-oligothiophene (105 vibrational degrees of freedom), thus obviating the need for the crude global harmonic approximation, popular for large system. The experimental emission spectra have been almost perfectly reproduced. In order to provide a deeper insight into the associated physical and chemical processes, we present a systematic approach to assess the importance and to analyze the mutual coupling of individual vibrational degrees of freedom during the dynamics. This allows us to explain the changes in the vibrational line shapes of the oligothiophenes with increasing number of rings. Furthermore, we observe the dynamical interplay between quinoid and aromatic characters of individual rings in the oligothiophene chain during the dynamics and confirm that the quinoid character prevails in the center of the chain. This research was supported by the Swiss NSF Grant No. 200021_124936/1 and NCCR Molecular Ultrafast Science & Technology (MUST), and by the EPFL.

  17. Ab initio calculations of ideal strength and lattice instability in W-Ta and W-Re alloys

    Science.gov (United States)

    Yang, Chaoming; Qi, Liang

    2018-01-01

    An important theoretical criterion to evaluate the ductility of metals with a body-centered cubic (bcc) lattice is the mechanical failure mode of their perfect crystals under tension along ; directions. When the tensile stress reaches the ideal tensile strength, the pure W crystal fails by a cleavage fracture along the {100 } plane so that it is intrinsically brittle. To discover the strategy to improve its ductility, we performed density functional theory and density functional perturbation theory calculations to study the ideal tensile strength and the lattice instability under tension for both W-Ta and W-Re alloys. Anisotropic linear elastic fracture mechanics (LEFM) theory and Rice's criterion were also applied to analyze the mechanical instability at the crack tip under tension based on the competition between cleavage propagation and dislocation emission. The results show that the intrinsic ductility can be achieved in both W-Ta and W-Re, however, by different mechanisms. Even though W-Ta alloys with low Ta concentrations are still intrinsically brittle, the intrinsic ductility of W-Ta alloys with high Ta concentrations is promoted by elastic shear instability before the cleavage failure. The intrinsic ductility of W-Re alloys is produced by unstable transverse phonon waves before the cleavage failure, and the corresponding phonon mode is related to the generation of 1/2 {2 ¯11 } dislocation in bcc crystals. The ideal tensile calculations, phonon analyses, and anisotropic LEFM examinations are mutually consistent in the evaluation of intrinsic ductility. These results bring us physical insights on the ductility-brittle mechanisms of W alloys under extreme stress conditions.

  18. Transmission-lattice based geometric phase analysis for evaluating the dynamic deformation of a liquid surface.

    Science.gov (United States)

    Shi, Wenxiong; Huang, Xianfu; Liu, Zhanwei

    2014-05-05

    Quantitatively measuring a dynamic liquid surface often presents a challenge due to high transparency, fluidity and specular reflection. Here, a novel Transmission-Lattice based Geometric Phase Analysis (TLGPA) method is introduced. In this method, a special lattice is placed underneath a liquid to be tested and, when viewed from above, the phase of the transmission-lattice image is modulated by the deformation of the liquid surface. Combining this with multi-directional Newton iteration algorithms, the dynamic deformation field of the liquid surface can be calculated from the phase variation of a series of transmission-lattice images captured at different moments. The developed method has the advantage of strong self-adaption ability to initial lattice rotational errors and this is discussed in detail. Dynamic 3D ripples formation and propagation was investigated and the results obtained demonstrated the feasibility of the method.

  19. Simulations of the dissociation of small helium clusters with ab initio molecular dynamics in electronically excited states

    International Nuclear Information System (INIS)

    Closser, Kristina D.; Head-Gordon, Martin; Gessner, Oliver

    2014-01-01

    The dynamics resulting from electronic excitations of helium clusters were explored using ab initio molecular dynamics. The simulations were performed with configuration interaction singles and adiabatic classical dynamics coupled to a state-following algorithm. 100 different configurations of He 7 were excited into the 2s and 2p manifold for a total of 2800 trajectories. While the most common outcome (90%) was complete fragmentation to 6 ground state atoms and 1 excited state atom, 3% of trajectories yielded bound, He 2 * , and <0.5% yielded an excited helium trimer. The nature of the dynamics, kinetic energy release, and connections to experiments are discussed

  20. Hydrated Electron Transfer to Nucleobases in Aqueous Solutions Revealed by Ab Initio Molecular Dynamics Simulations.

    Science.gov (United States)

    Zhao, Jing; Wang, Mei; Fu, Aiyun; Yang, Hongfang; Bu, Yuxiang

    2015-08-03

    We present an ab initio molecular dynamics (AIMD) simulation study into the transfer dynamics of an excess electron from its cavity-shaped hydrated electron state to a hydrated nucleobase (NB)-bound state. In contrast to the traditional view that electron localization at NBs (G/A/C/T), which is the first step for electron-induced DNA damage, is related only to dry or prehydrated electrons, and a fully hydrated electron no longer transfers to NBs, our AIMD simulations indicate that a fully hydrated electron can still transfer to NBs. We monitored the transfer dynamics of fully hydrated electrons towards hydrated NBs in aqueous solutions by using AIMD simulations and found that due to solution-structure fluctuation and attraction of NBs, a fully hydrated electron can transfer to a NB gradually over time. Concurrently, the hydrated electron cavity gradually reorganizes, distorts, and even breaks. The transfer could be completed in about 120-200 fs in four aqueous NB solutions, depending on the electron-binding ability of hydrated NBs and the structural fluctuation of the solution. The transferring electron resides in the π*-type lowest unoccupied molecular orbital of the NB, which leads to a hydrated NB anion. Clearly, the observed transfer of hydrated electrons can be attributed to the strong electron-binding ability of hydrated NBs over the hydrated electron cavity, which is the driving force, and the transfer dynamics is structure-fluctuation controlled. This work provides new insights into the evolution dynamics of hydrated electrons and provides some helpful information for understanding the DNA-damage mechanism in solution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Structures and Dynamics of Two-Dimensional Dust Lattices with and without Coulomb Molecules in Plasmas

    International Nuclear Information System (INIS)

    Huang Feng; Wang Xue-Jin; Liu Yan-Hong; Ye Mao-Fu; Wang Long

    2010-01-01

    Structures and dynamics of two-dimensional dust lattices with and without Coulomb molecules in plasmas are investigated. The experimental results show that the lattices have the crystal-like hexagonal structures, i.e. most particles have six nearest-neighboring particles. However, the lattice points can be occupied by the individual particles or by a pair of particles called Coulomb molecules. The pair correlation function is used to compare the structures between the lattices with or without the Coulomb molecules. In the experiments, the Coulomb molecules can also decompose and recombine with another individual particle to form a new molecule. (physics of gases, plasmas, and electric discharges)

  2. Ab initio molecular dynamics simulations of low energy recoil events in MgO

    International Nuclear Information System (INIS)

    Petersen, B. A.; Liu, B.; Weber, W. J.; Oak Ridge National Laboratory; Zhang, Y.; Oak Ridge National Laboratory

    2017-01-01

    In this paper, low-energy recoil events in MgO are studied using ab initio molecular dynamics simulations to reveal the dynamic displacement processes and final defect configurations. Threshold displacement energies, E_d, are obtained for Mg and O along three low-index crystallographic directions, [100], [110], and [111]. The minimum values for E_d are found along the [110] direction consisting of the same element, either Mg or O atoms. Minimum threshold values of 29.5 eV for Mg and 25.5 eV for O, respectively, are suggested from the calculations. For other directions, the threshold energies are considerably higher, 65.5 and 150.0 eV for O along [111] and [100], and 122.5 eV for Mg along both [111] and [100] directions, respectively. These results show that the recoil events in MgO are partial-charge transfer assisted processes where the charge transfer plays an important role. Finally, there is a similar trend found in other oxide materials, where the threshold displacement energy correlates linearly with the peak partial-charge transfer, suggesting this behavior might be universal in ceramic oxides.

  3. Resolving the HONO formation mechanism in the ionosphere via ab initio molecular dynamic simulations.

    Science.gov (United States)

    He, Rongxing; Li, Lei; Zhong, Jie; Zhu, Chongqin; Francisco, Joseph S; Zeng, Xiao Cheng

    2016-04-26

    Solar emission produces copious nitrosonium ions (NO(+)) in the D layer of the ionosphere, 60 to 90 km above the Earth's surface. NO(+) is believed to transfer its charge to water clusters in that region, leading to the formation of gaseous nitrous acid (HONO) and protonated water cluster. The dynamics of this reaction at the ionospheric temperature (200-220 K) and the associated mechanistic details are largely unknown. Using ab initio molecular dynamics (AIMD) simulations and transition-state search, key structures of the water hydrates-tetrahydrate NO(+)(H2O)4 and pentahydrate NO(+)(H2O)5-are identified and shown to be responsible for HONO formation in the ionosphere. The critical tetrahydrate NO(+)(H2O)4 exhibits a chain-like structure through which all of the lowest-energy isomers must go. However, most lowest-energy isomers of pentahydrate NO(+)(H2O)5 can be converted to the HONO-containing product, encountering very low barriers, via a chain-like or a three-armed, star-like structure. Although these structures are not the global minima, at 220 K, most lowest-energy NO(+)(H2O)4 and NO(+)(H2O)5 isomers tend to channel through these highly populated isomers toward HONO formation.

  4. Erbium(III) in aqueous solution: an ab initio molecular dynamics study.

    Science.gov (United States)

    Canaval, Lorenz R; Sakwarathorn, Theerathad; Rode, Bernd M; Messner, Christoph B; Lutz, Oliver M D; Bonn, Günther K

    2013-12-05

    Structural and dynamical properties of the erbium(III) ion in water have been obtained by means of ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) simulations for the ground state and an excited state. The quality of the simulations has been monitored by recording UV/vis and Raman spectra of dilute solutions of ErCl3 and Er(NO3)3 in water and by comparison with EXAFS data from literature. Slight deviations between these data can be mainly attributed to relativistic effects, which are not sufficiently considered by the methodological framework. In both simulations, a mixture of coordination numbers eight and nine and a ligand exchange on the picosecond range are observed. The strength of the Er-ligand bond is considerably lower than that of trivalent transition metal ions but higher than that for La(III) and Ce(III) in aqueous solution. The main difference between ground state and excited state is the ligand exchange rate of the first shell. The second hydration shell is stable in both cases but with significantly different properties.

  5. Evolving Lattices for Analyzing Behavioral Dynamics of Characters in Literary Text

    Directory of Open Access Journals (Sweden)

    Eugene S Kitamura

    2011-10-01

    Full Text Available This paper is about an application of rough set derived lattices in order to analyze the dynamics of literary text. Due to the double approximation nature of rough set theory, a pseudo-closure obtained from two different equivalence relations allows us to form arbitrary lattices. Moreover, such double approximations with different equivalence relations permit us to obtain lattice fixed points based on two interpretations. The two interpretations used for literary text analysis are subjects and their attributes. The attributes chosen for this application are verbs. The progression of a story is defined by the sequence of verbs (or event occurrences. By fixing a window size and sliding the window down the story steps, we obtain a lattice representing the relationship between subjects and their attributes within that window frame. The resulting lattice provides information such as complementarity (lattice complement existence rate and distributivity (lattice complement possession rate. These measurements depend on the overlap and the lack of overlap among the attributes of characters. As the story develops and new character and attributes are provided as the source of lattices, one can observe its evolution. In fact, a dramatic change in the behavior dynamics in a scene is reflected in the particular shifts in the character-attribute relationship. This method lets us quantify the developments of character behavioral dynamics in a story.

  6. Digital Quantum Simulation of Z2 Lattice Gauge Theories with Dynamical Fermionic Matter

    Science.gov (United States)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio

    2017-02-01

    We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2 +1 ) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z2 model in (2 +1 ) dimensions.

  7. Microcanonical and hybrid simulations of lattice quantum chromodynamics with dynamical fermions

    International Nuclear Information System (INIS)

    Sinclair, D.K.

    1986-10-01

    Lattice QCD is simulated using Microcanonical and Hybrid (Micro-canonical/Langevin) methods to facilitate the inclusion of dynamical fermions (quarks). We report on simulations with 4 flavors of light dynamical quarks on a 10 3 x 6 lattice to study the finite temperature deconfinement/chiral transition which should be observable in relativistic heavy ion collisions, as a function of quark mass. A first order transition is observed at large mass, weakens at intermediate mass and strengthens for very small quark mass

  8. Common misconceptions about the dynamical theory of crystal lattices: Cauchy relations, lattice potentials and infinite crystals

    International Nuclear Information System (INIS)

    Elcoro, Luis; Etxebarria, Jesus

    2011-01-01

    The requirement of rotational invariance for lattice potential energies is investigated. Starting from this condition, it is shown that the Cauchy relations for the elastic constants are fulfilled if the lattice potential is built from pair interactions or when the first-neighbour approximation is adopted. This is seldom recognized in widely used solid-state textbooks. Frequently, pair interaction is even considered to be the most general situation. In addition, it is shown that the demand of rotational invariance in an infinite crystal leads to inconsistencies in the symmetry of the elastic tensor. However, for finite crystals, no problems arise, and the Huang conditions are deduced using exclusively a microscopic approach for the elasticity theory, without making any reference to macroscopic parameters. This work may be useful in both undergraduate and graduate level courses to point out the crudeness of the pair-potential interaction and to explore the limits of the infinite-crystal approximation.

  9. Ab initio interaction potentials for X and B excited states of He-I2 for studying dynamics

    International Nuclear Information System (INIS)

    Prosmiti, Rita; Garcia-Gutierrez, Leonor; Delgado-Tellez, Laura; Valdes, Alvaro; Villarreal, Pablo; Delgado-Barrio, Gerardo

    2009-01-01

    Ab initio CCSD(T) and MRCI approaches were employed to construct potential energy surfaces of the ground and the B electronic excited states of He-I 2 complex, while full quantum mechanical methods were applied to study its spectroscopy and dynamics. A description of the approach adopted, together with the results obtained and their comparison with recent experimental data, as well as further improvements are presented.

  10. An analysis of hydrated proton diffusion in ab initio molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Tse, Ying-Lung Steve; Voth, Gregory A., E-mail: gavoth@uchicago.edu [Department of Chemistry, James Franck Institute, and Computation Institute, University of Chicago, Chicago, Illinois 60637 (United States); Knight, Chris [Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2015-01-07

    A detailed understanding of the inherently multiscale proton transport process raises a number of scientifically challenging questions. For example, there remain many (partially addressed) questions on the molecular mechanism for long-range proton migration and the potential for the formation of long-lived traps giving rise to burst-and-rest proton dynamics. Using results from a sizeable collection of ab initio molecular dynamics (AIMD) simulations (totaling ∼2.7 ns) with various density functional approximations (Becke-Lee-Yang-Parr (BLYP), BLYP–D3, Hamprecht-Cohen-Tozer-Handy, B3LYP) and temperatures (300–330 K), equilibrium and dynamical properties of one excess proton and 128 water molecules are studied. Two features in particular (concerted hops and weak hydrogen-bond donors) are investigated to identify modes in the system that are strongly correlated with the onset of periods of burst-and-rest dynamics. The question of concerted hops seeks to identify those time scales over which long-range proton transport can be classified as a series of sequential water hopping events or as a near-simultaneous concerted process along compressed water wires. The coupling of the observed burst-and-rest dynamics with motions of a fourth neighboring water molecule (a weak hydrogen-bond donor) solvating the protonated water molecule is also investigated. The presence (absence) of hydrogen bonds involving this fourth water molecule before and after successful proton hopping events is found to be strongly correlated with periods of burst (rest) dynamics (and consistent with pre-solvation concepts). By analyzing several realizations of the AIMD trajectories on the 100-ps time scale, convergence of statistics can be assessed. For instance, it was observed that the probability for a fourth water molecule to approach the hydronium, if not already proximal at the beginning of the lifetime of the hydronium, is very low, indicative of the formation of stable void regions

  11. Meteorite Impact-Induced Rapid NH3 Production on Early Earth: Ab Initio Molecular Dynamics Simulation

    Science.gov (United States)

    Shimamura, Kohei; Shimojo, Fuyuki; Nakano, Aiichiro; Tanaka, Shigenori

    2016-12-01

    NH3 is an essential molecule as a nitrogen source for prebiotic amino acid syntheses such as the Strecker reaction. Previous shock experiments demonstrated that meteorite impacts on ancient oceans would have provided a considerable amount of NH3 from atmospheric N2 and oceanic H2O through reduction by meteoritic iron. However, specific production mechanisms remain unclear, and impact velocities employed in the experiments were substantially lower than typical impact velocities of meteorites on the early Earth. Here, to investigate the issues from the atomistic viewpoint, we performed multi-scale shock technique-based ab initio molecular dynamics simulations. The results revealed a rapid production of NH3 within several picoseconds after the shock, indicating that shocks with greater impact velocities would provide further increase in the yield of NH3. Meanwhile, the picosecond-order production makes one expect that the important nitrogen source precursors of amino acids were obtained immediately after the impact. It was also observed that the reduction of N2 proceeded according to an associative mechanism, rather than a dissociative mechanism as in the Haber-Bosch process.

  12. Elastic properties of amorphous boron suboxide based solids studied using ab initio molecular dynamics

    International Nuclear Information System (INIS)

    Music, Denis; Schneider, Jochen M

    2008-01-01

    We have studied the correlation between chemical composition, structure, chemical bonding and elastic properties of amorphous B 6 O based solids using ab initio molecular dynamics. These solids are of different chemical compositions, but the elasticity data appear to be a function of density. This is in agreement with previous experimental observations. As the density increases from 1.64 to 2.38 g cm -3 , the elastic modulus increases from 74 to 253 GPa. This may be understood by analyzing the cohesive energy and the chemical bonding of these compounds. The cohesive energy decreases from -7.051 to -7.584 eV/atom in the elastic modulus range studied. On the basis of the electron density distributions, Mulliken analysis and radial distribution functions, icosahedral bonding is the dominating bonding type. C and N promote cross-linking of icosahedra and thus increase the density, while H hinders the cross-linking by forming OH groups. The presence of icosahedral bonding is independent of the density

  13. Ab Initio Study of the Dynamical Si–O Bond Breaking Event in α-Quartz

    International Nuclear Information System (INIS)

    Su Rui; Zhang Hong; Han Wei; Chen Jun

    2015-01-01

    The Si–O bond breaking event in the α-quartz at the first triplet (T_1) excitation state is studied by using ab initio molecular dynamics (AIMD) and nudged elastic band calculations. A meta-stable non-bridging oxygen hole center and E′ center (NBOHC-E′) is observed in the AIMD which consists of a broken Si–O bond with a Si–O distance of 2.54 Å. By disallowing the re-bonding of the Si and O atoms, another defect configuration (III-Si/V-Si) is obtained and validated to be stable at both ground and excitation states. The NBOHC-E′ is found to present on the minimal energy pathway of the initial to III-Si/V-Si transition, showing that the generating of the NBOHC-E′ is an important step of the excitation induced structure defect. The energy barriers to produce the NBOHC-E′ and III-Si/V-Si defects are calculated to be 1.19 and 1.28 eV, respectively. The electronic structures of the two defects are calculated by the self-consistent GW calculations and the results show a clear electron transition from the bonding orbital to the non-bonding orbital. (paper)

  14. PAC study of dynamic hyperfine interactions at {sup 111}In-doped Sc{sub 2}O{sub 3} semiconductor and comparison with ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, E. L., E-mail: munoz@fisica.unlp.edu.ar; Richard, D. [Departamento de Fisica and Instituto de Fisica La Plata (IFLP, CCT La Plata, CONICET) (Argentina); Carbonari, A. W. [Instituto de Pesquisas Energeticas y Nucleares-IPEN-CNEN/SP (Brazil); Errico, L. A.; Renteria, M. [Departamento de Fisica and Instituto de Fisica La Plata (IFLP, CCT La Plata, CONICET) (Argentina)

    2010-04-15

    Time-Differential {gamma}-{gamma} Perturbed-Angular-Correlation (PAC) measurements were performed in {sup 111}In-difussed Sc{sub 2}O{sub 3} polycrystals in order to characterize the electric-field-gradient tensor at {sup 111}Cd nuclei located at the two non-equivalent cation sites of the host lattice. The experimental data were compared with ab initio calculations performed using the Full-Potential Augmented Plane Wave plus local orbital (FP-APW+lo) method in the framework of the Density Functional Theory. The PAC experiments were carried out in air in the temperature range 10-900 K. The spectra present a strong damping below 650 K. This damping is associated with dynamic hyperfine interactions that were analyzed with the perturbation factor proposed by Baeverstam et al.. A model based in the population of impurity levels that are introduced by the Cd probes (supported by FP-APW+lo results) is proposed in order to explain the origin of the observed dynamic interactions.

  15. A first principles study of phase stability, bonding, electronic and lattice dynamical properties of beryllium chalcogenides at high pressure

    International Nuclear Information System (INIS)

    Dabhi, Shweta; Mankad, Venu; Jha, Prafulla K.

    2014-01-01

    Highlights: • First principles calculations are performed for BeS, BeSe and BeTe in B3, B8 and B1 phases. • They are indirect wide band gap semiconductors stable in B3 phase at ambient condition. • Phonon calculations at ambient and high pressure are reported. • The NiAs phase is dynamically stable at high pressure. - Abstract: The present paper reports a detailed and systematic theoretical study of structural, mechanical, electronic, vibrational and thermodynamical properties of three beryllium chalcogenides BeS, BeSe and BeTe in zinc blende, NiAs and rock salt phases by performing ab initio calculations based on density-functional theory. The calculated value of lattice constants and bulk modulus are compared with the available experimental and other theoretical data and found to agree reasonably well. These compounds are indirect wide band gap semiconductors with a partially ionic contribution in all considered three phases. The zinc blende phase of these chalcogenides is found stable at ambient condition and phase transition from zinc blende to NiAs structure is found to occur. The bulk modulus, its pressure derivative, anisotropic factor, Poission’s ratio, Young’s modulus for these are also calculated and discussed. The phonon dispersion curves of these beryllium chalcogenides in zinc blende phase depict their dynamical stability in this phase at ambient condition. We have also estimated the temperature variation of specific heat at constant volume, entropy and Debye temperature for these compounds in zinc blende phase. The variation of lattice-specific heat with temperature obeys the classical Dulong–Petit’s law at high temperature, while at low-temperature it obeys the Debye’s T 3 law

  16. Virtual synthesis of crystals using ab initio MD: Case study on LiFePO4

    Science.gov (United States)

    Mishra, S. B.; Nanda, B. R. K.

    2017-05-01

    Molecular dynamics simulation technique is fairly successful in studying the structural aspects and dynamics of fluids. Here we study the ability of ab initio molecular dynamics (ab initio MD) to carry out virtual experiments to synthesize new crystalline materials and to predict their structures. For this purpose the olivine phosphate LiFePO4 (LFPO) is used as an example. As transition metal oxides in general are stabilized with layered geometry, we carried out ab initio MD simulations over a hypothetical layered configuration consisting of alternate LiPO2 and FeO2 layers. With intermittent steps of electron minimization, the resulted equilibrium lattice consist of PO4 tetrahedra and distorted Fe-O complexes similar to the one observed in the experimental lattice.

  17. Lattice Dynamics Study of Phonon Instability and Thermal Properties of Type-I Clathrate K₈Si46 under High Pressure.

    Science.gov (United States)

    Zhang, Wei; Zeng, Zhao Yi; Ge, Ni Na; Li, Zhi Guo

    2016-07-25

    For a further understanding of the phase transitions mechanism in type-I silicon clathrates K₈Si 46 , ab initio self-consistent electronic calculations combined with linear-response method have been performed to investigate the vibrational properties of alkali metal K atoms encapsulated type-I silicon-clathrate under pressure within the framework of density functional perturbation theory. Our lattice dynamics simulation results showed that the pressure induced phase transition of K₈Si 46 was believed to be driven by the phonon instability of the calthrate lattice. Analysis of the evolution of the partial phonon density of state with pressure, a legible dynamic picture for both guest K atoms and host lattice, was given. In addition, based on phonon calculations and combined with quasi-harmonic approximation, the specific heat of K₈Si 46 was derived, which agreed very well with experimental results. Also, other important thermal properties including the thermal expansion coefficients and Grüneisen parameters of K₈Si 46 under different temperature and pressure were also predicted.

  18. Lattice Dynamics Study of Phonon Instability and Thermal Properties of Type-I Clathrate K8Si46 under High Pressure

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2016-07-01

    Full Text Available For a further understanding of the phase transitions mechanism in type-I silicon clathrates K8Si46, ab initio self-consistent electronic calculations combined with linear-response method have been performed to investigate the vibrational properties of alkali metal K atoms encapsulated type-I silicon-clathrate under pressure within the framework of density functional perturbation theory. Our lattice dynamics simulation results showed that the pressure induced phase transition of K8Si46 was believed to be driven by the phonon instability of the calthrate lattice. Analysis of the evolution of the partial phonon density of state with pressure, a legible dynamic picture for both guest K atoms and host lattice, was given. In addition, based on phonon calculations and combined with quasi-harmonic approximation, the specific heat of K8Si46 was derived, which agreed very well with experimental results. Also, other important thermal properties including the thermal expansion coefficients and Grüneisen parameters of K8Si46 under different temperature and pressure were also predicted.

  19. Temperature Dependence of Lattice Dynamics of Lithium 7

    DEFF Research Database (Denmark)

    Beg, M. M.; Nielsen, Mourits

    1976-01-01

    10% smaller than those at 100 K. Temperature dependences of selected phonons have been studied from 110 K to near the melting point. The energy shifts and phonon linewidths have been evaluated at 293, 383, and 424 K by comparing the widths and energies to those measured at 110 K. The lattice...

  20. Coupling of ab initio density functional theory and molecular dynamics for the multiscale modeling of carbon nanotubes

    International Nuclear Information System (INIS)

    Ng, T Y; Yeak, S H; Liew, K M

    2008-01-01

    A multiscale technique is developed that couples empirical molecular dynamics (MD) and ab initio density functional theory (DFT). An overlap handshaking region between the empirical MD and ab initio DFT regions is formulated and the interaction forces between the carbon atoms are calculated based on the second-generation reactive empirical bond order potential, the long-range Lennard-Jones potential as well as the quantum-mechanical DFT derived forces. A density of point algorithm is also developed to track all interatomic distances in the system, and to activate and establish the DFT and handshaking regions. Through parallel computing, this multiscale method is used here to study the dynamic behavior of single-walled carbon nanotubes (SWCNTs) under asymmetrical axial compression. The detection of sideways buckling due to the asymmetrical axial compression is reported and discussed. It is noted from this study on SWCNTs that the MD results may be stiffer compared to those with electron density considerations, i.e. first-principle ab initio methods

  1. Dynamic separation of electron excitation and lattice heating during the photoinduced melting of the periodic lattice distortion in 2H-TaSe2

    NARCIS (Netherlands)

    Zhu, Pengfei; Cao, J.; Zhu, Y.; Geck, J.; Hidaka, Y.; Pjerov, S.; Ritschel, T.; Berger, H.; Shen, Y.; Tobey, R.; Hill, J. P.; Wang, X. J.

    2013-01-01

    The photoinduced structural dynamics in 2H-TaSe2 in the charge-density wave (CDW) state is investigated using MeV ultrafast electron diffraction. By simultaneously tracking both the melting of the periodic lattice distortion (PLD) associated with the CDW and the lattice heating, following an

  2. Scalar meson in dynamical and partially quenched two-flavor QCD: Lattice results and chiral loops

    International Nuclear Information System (INIS)

    Prelovsek, S.; Dawson, C.; Izubuchi, T.; Orginos, K.; Soni, A.

    2004-01-01

    This is an exploratory study of the lightest nonsinglet scalar qq state on the lattice with two dynamical quarks. Domain wall fermions are used for both sea and valence quarks on a 16 3 x32 lattice with an inverse lattice spacing of 1.7 GeV. We extract the scalar meson mass 1.58±0.34 GeV from the exponential time dependence of the dynamical correlators with m val =m sea and N f =2. Since this statistical error bar from dynamical correlators is rather large, we analyze also the partially quenched lattice correlators with m val ≠m sea . They are positive for m val ≥m sea and negative for m val sea . In order to understand this striking effect of partial quenching, we derive the scalar correlator within the partially quenched chiral perturbation theory (ChPT) and find it describes lattice correlators well. The leading unphysical contribution in partially quenched ChPT comes from the exchange of the two pseudoscalar fields and is also positive for m val ≥m sea and negative for m val sea at large t. After the subtraction of this unphysical contribution from the partially quenched lattice correlators, the correlators are positive and exponentially falling. The resulting scalar meson mass 1.51±0.19 GeV from the partially quenched correlators is consistent with the dynamical result and has an appreciably smaller error bar

  3. Emergent dynamic structures and statistical law in spherical lattice gas automata

    Science.gov (United States)

    Yao, Zhenwei

    2017-12-01

    Various lattice gas automata have been proposed in the past decades to simulate physics and address a host of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics. It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore geometrically driven nonequilibrium physics.

  4. Emergent dynamic structures and statistical law in spherical lattice gas automata.

    Science.gov (United States)

    Yao, Zhenwei

    2017-12-01

    Various lattice gas automata have been proposed in the past decades to simulate physics and address a host of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics. It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore geometrically driven nonequilibrium physics.

  5. An ab initio molecular

    Indian Academy of Sciences (India)

    mechanisms of two molecular crystals: An ab initio molecular dynamics ... for Computation in Molecular and Materials Science and Department of Chemistry, School of ..... NSAF Foundation of National Natural Science Foun- ... Matter 14 2717.

  6. Dynamic aperture and performance of the SSC low energy booster lattice

    International Nuclear Information System (INIS)

    Pilat, F.; Bourianoff, G.; Cole, B.; Talman, R.; York, R.

    1991-05-01

    A systematic study of lattice designs proposed for the SSC Low Energy Booster has been performed, where the dynamic behavior of high transition gamma lattices is compared with that of a simpler FODO- like machine. After optimization of the transverse tunes, the dynamic aperture is determined by tracking the chromaticity corrected, ''ideal'' lattices, where the only sources on nonlinearity are the chromaticity sextupoles. The robustness of the lattices against misalignment, systematic and random errors is then evaluated and error compensation schemes worked out. The computational speed of the TEAPOT code has been greatly enhanced by porting and running its tracking core on the Intel iPSC/860 parallel computer. 7 refs., 5 figs., 3 tabs

  7. Lattice dynamics of silver and gold on Krebs's model

    International Nuclear Information System (INIS)

    Bertolo, L.A.; Shukla, M.M.

    1975-01-01

    Phonon dispersion relations along the principal symmetry directions of gold and silver have been calculated for phonons propagating at room temperature. The calculated curves are compared with the recent experimental findings. Also calculated are the lattice heat capacities of these metals at absolute zero temperature. Computed(theta - T) curves of them show good agreements with experimental results. The effect of various forms of the dielectric screening functions on the calculated phonon spectrum of gold and silver has also been investigated

  8. Structural, dynamical, and electronic properties of amorphous silicon: An ab initio molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Car, R.; Parrinello, M.

    1988-01-18

    An amorphous silicon structure is obtained with a computer simulation based on a new molecular-dynamics technique in which the interatomic potential is derived from a parameter-free quantum mechanical method. Our results for the atomic structure, the phonon spectrum, and the electronic properties are in excellent agreement with experiment. In addition we study details of the microscopic dynamics which are not directly accessible to experiment. We find in particular that structural defects are associated with weak bonds. These may give rise to low-frequency vibrational modes.

  9. Detection of Damage in a Lattice Mast Excited by Wind by Dynamic Measurements

    DEFF Research Database (Denmark)

    Pedersen, Lars; Brincker, Rune

    2007-01-01

    The paper illustrates the effectiveness of monitoring the dynamic response of a system for detection of damage herein using an output-only assessment scheme. The system is a 20 m height steel lattice mass excited by wind and the mast is instrumented with accelerometers picking up dynamic response...

  10. SPASER as a complex system: femtosecond dynamics traced by ab-initio simulations

    KAUST Repository

    Gongora, J. S. Totero; Miroshnichenko, Andrey E.; Kivshar, Yuri S.; Fratalocchi, Andrea

    2016-01-01

    Integrating coherent light sources at the nanoscale with spasers is one of the most promising applications of plasmonics. A spaser is a nano-plasmonic counterpart of a laser, with photons replaced by surface plasmon polaritons and the resonant cavity replaced by a nanoparticle supporting localized plasmonic modes. Despite the large body of experimental and theoretical studies, the understanding of the fundamental properties of the spaser emission is still challenging. In this work, we investigated the ultrafast dynamics of the emission from a core-shell spaser by developing a rigorous first-principle numerical model. Our results show that the spaser is a highly nonlinear system with many interacting degrees of freedom, whose emission sustain a rich manifold of different spatial phases. In the regime of strong interaction we observed that the spaser emission manifests an irreversible ergodic evolution, where energy is equally shared among all the available degrees of freedom. Under this condition, the spaser generates ultrafast vortex lasing modes that are spinning on the femtosecond scale, acquiring the character of a nanoparticle with an effective spin. Interestingly, the spin orientation is defined by spontaneous symmetry breaking induced by quantum noise, which is a fundamental component of our ab-initio model. This opens up interesting possibilities of achieving unidirectional emission from a perfectly spherical nanoparticle, stimulating a broad range of applications for nano-plasmonic lasers as unidirectional couplers, random information sources and novel form of photonics neural-networks. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  11. SPASER as a complex system: femtosecond dynamics traced by ab-initio simulations

    KAUST Repository

    Gongora, J. S. Totero

    2016-03-14

    Integrating coherent light sources at the nanoscale with spasers is one of the most promising applications of plasmonics. A spaser is a nano-plasmonic counterpart of a laser, with photons replaced by surface plasmon polaritons and the resonant cavity replaced by a nanoparticle supporting localized plasmonic modes. Despite the large body of experimental and theoretical studies, the understanding of the fundamental properties of the spaser emission is still challenging. In this work, we investigated the ultrafast dynamics of the emission from a core-shell spaser by developing a rigorous first-principle numerical model. Our results show that the spaser is a highly nonlinear system with many interacting degrees of freedom, whose emission sustain a rich manifold of different spatial phases. In the regime of strong interaction we observed that the spaser emission manifests an irreversible ergodic evolution, where energy is equally shared among all the available degrees of freedom. Under this condition, the spaser generates ultrafast vortex lasing modes that are spinning on the femtosecond scale, acquiring the character of a nanoparticle with an effective spin. Interestingly, the spin orientation is defined by spontaneous symmetry breaking induced by quantum noise, which is a fundamental component of our ab-initio model. This opens up interesting possibilities of achieving unidirectional emission from a perfectly spherical nanoparticle, stimulating a broad range of applications for nano-plasmonic lasers as unidirectional couplers, random information sources and novel form of photonics neural-networks. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  12. Many-body dynamics with cold atoms and molecules in optical lattices

    International Nuclear Information System (INIS)

    Schachenmayer, J.

    2012-01-01

    Systems of cold atoms or molecules, trapped in a periodic potential formed from standing waves of laser light, provide an experimental possibility to study strongly correlated many-body lattice models, which are traditionally used in condensed matter physics. Due to the relatively weak energy scales in these ''optical lattices'' (next-neighbor tunneling energies are typically on the order of tens of Hertz), the time-scales of the dynamics in these systems is relatively slow and can be observed in experiments. Furthermore, the microscopic parameters of the models can be very well controlled by lattice laser intensities and external fields. Thus, optical lattices provide an excellent framework to study many-body quantum non-equilibrium dynamics, which on the theoretical level is the topic of this thesis. This thesis contains a study of many-body dynamics in optical lattices for both idealized isolated models and realistic models with imperfections. It is centered around four main topics: The first two topics are studies of coherent many-body dynamics. This contains explicitly: (i) an analysis of the possibility to dynamically prepare crystalline states of Rydberg atoms or polar molecules by adiabatically tuning laser parameters; and (ii) a study of the collapses and revivals of the momentum-distribution of a Bose-Einstein condensate with a fixed number of atoms, which is suddenly loaded into a deep optical lattice. The third main topic is entanglement and specifically the dynamical growth of entanglement between portions of an optical lattice in quench experiments. A method to create and measure large-scale entanglement is presented in this thesis. The fourth main topic addresses classical noise. Specifically, a system of atoms in an optical lattice, which is created from lasers with intensity fluctuations, is analyzed in this work. The noisy evolution of many-body correlation functions is studied and a method to cancel this noise in a realistic experimental setup is

  13. Dynamic colloidal sorting on a magnetic bubble lattice

    Science.gov (United States)

    Tierno, Pietro; Soba, Alejandro; Johansen, Tom H.; Sagués, Francesc

    2008-11-01

    We use a uniaxial garnet film with a magnetic bubble lattice to sort paramagnetic colloidal particles with different diameters, i.e., 1.0 and 2.8μm. We apply an external magnetic field which precesses around an axis normal to the film with a frequency Ω =62.8s-1 and intensity 3120A/m bubbles while the others are transported through the array. We complement the experimental measurements with numerical simulations to explore the sorting capability for particles with different magnetic moments.

  14. Swamp plots for dynamic aperture studies of PEP-II lattices

    International Nuclear Information System (INIS)

    Yan, Y.T.; Irwin, J.; Cai, Y.; Chen, T.; Ritson, D.

    1995-01-01

    With a newly developed algorithm using resonance basis Lie generators and their evaluation with action-angle Poisson bracket maps (nPB tracking) the authors have been able to perform fast tracking for dynamic aperture studies of PEP-II lattices as well as incorporate lattice nonlinearities in beam-beam studies. They have been able to better understand the relationship between dynamic apertures and the tune shift and resonance coefficients in the generators of the one-turn maps. To obtain swamp plots (dynamic aperture vs. working point) of the PEP-II lattices, they first compute a one-turn resonance basis map for a nominal working point and then perform nPB tracking by switching the working point while holding fixed all other terms in the map. Results have been spot-checked by comparing with element-by-element tracking

  15. Statistical properties of the dense hydrogen plasma: An ab initio molecular dynamics investigation

    International Nuclear Information System (INIS)

    Kohanoff, J.; Hansen, J.P.

    1995-12-01

    The hydrogen plasma is studied in the very high density (atomic and metallic) regime by extensive ab initio Molecular Dynamics simulations. Protons are treated classically, and electrons in the Born-Oppenheimer framework, within the local density approximation (LDA). Densities and temperatures studied fall within the strong coupling regime of the protons. We address the question of the validity of linear screening, and we find it to yield a reasonably good description up to r s approx. 0.5, but already too crude for r s = 1 (with r s = (3/4πρ) 1/3 the ion sphere radius). Finite-size and Brillouin zone sampling effects in metallic systems are studied and shown to be very delicate also in the fluid (liquid metal) phase. We analyse the low-temperature phase diagram and the melting transition. A remarkably fast decrease of the melting temperature with decreasing density is found, up to a point when it becomes comparable to the Fermi temperature of the protons. The possible vicinity of a triple point bcc-hcp(fcc)- liquid is discussed in the region of r s approx. 1.1 and T approx. 100 - 200K. The fluid phase is studied in detail for several temperatures. Proton-electron correlations show a weak temperature dependence, and proton-proton correlations exhibit a well-defined first coordination shell, thus characterizing fluid H in this regime as an atomic liquid. Diffusion coefficients are compared to the values for the one-component plasma. Vibrational densities of states (VDOS) show a plasmon renormalization due to electron screening, and the presence of a plasmon-coupled single-particle mode up to very high temperatures. Collective modes are studied through dynamical structure factors. In close relationship with the VDOS, the simulations reveal the remarkable persistent of a weakly damped high-frequency ion acoustic mode, even under conditions of strong electron screening. The possibility of using this observation as a diagnostic for the plasma phase transition to the

  16. Ab initio determination of ion traps and the dynamics of silver in silver-doped chalcogenide glass

    International Nuclear Information System (INIS)

    Chaudhuri, I.; Inam, F.; Drabold, D. A.

    2009-01-01

    We present a microscopic picture of silver dynamics in GeSe 3 :Ag glass obtained from the ab initio simulation. The dynamics of Ag is explored at two temperatures: 300 and 700 K. In the relaxed network, Ag occupies trapping centers that exist between suitably separated host sites. At 700 K, Ag motion proceeds via a trapping-release dynamics between 'supertraps' or cages consisting of multiple trapping center sites in a small volume. Our work offers a first-principles identification of trapping centers invoked in current theories, with a description of their properties and associated Ag dynamics. We compute the charge state of the Ag in the network and show that it is neutral if weakly bonded and Ag + if in a trapping center

  17. Non-equilibrium dynamics in disordered materials: Ab initio molecular dynamics simulations

    International Nuclear Information System (INIS)

    Ohmura, Satoshi; Nagaya, Kiyonobu; Yao, Makoto; Shimojo, Fuyuki

    2015-01-01

    The dynamic properties of liquid B 2 O 3 under pressure and highly-charged bromophenol molecule are studied by using molecular dynamics (MD) simulations based on density functional theory (DFT). Diffusion properties of covalent liquids under high pressure are very interesting in the sense that they show unexpected pressure dependence. It is found from our simulation that the magnitude relation of diffusion coefficients for boron and oxygen in liquid B 2 O 3 shows the anomalous pressure dependence. The simulation clarified the microscopic origin of the anomalous diffusion properties. Our simulation also reveals the dissociation mechanism in the coulomb explosion of the highly-charged bromophenol molecule. When the charge state n is 6, hydrogen atom in the hydroxyl group dissociates at times shorter than 20 fs while all hydrogen atoms dissociate when n is 8. After the hydrogen dissociation, the carbon ring breaks at about 100 fs. There is also a difference on the mechanism of the ring breaking depending on charge states, in which the ring breaks with expanding (n = 6) or shrink (n = 8)

  18. A Review of Solid-Solution Models of High-Entropy Alloys Based on Ab Initio Calculations

    Directory of Open Access Journals (Sweden)

    Fuyang Tian

    2017-11-01

    Full Text Available Similar to the importance of XRD in experiments, ab initio calculations, as a powerful tool, have been applied to predict the new potential materials and investigate the intrinsic properties of materials in theory. As a typical solid-solution material, the large degree of uncertainty of high-entropy alloys (HEAs results in the difficulty of ab initio calculations application to HEAs. The present review focuses on the available ab initio based solid-solution models (virtual lattice approximation, coherent potential approximation, special quasirandom structure, similar local atomic environment, maximum-entropy method, and hybrid Monte Carlo/molecular dynamics and their applications and limits in single phase HEAs.

  19. Mei symmetry and conservation laws of discrete nonholonomic dynamical systems with regular and irregular lattices

    International Nuclear Information System (INIS)

    Zhao Gang-Ling; Chen Li-Qun; Fu Jing-Li; Hong Fang-Yu

    2013-01-01

    In this paper, Noether symmetry and Mei symmetry of discrete nonholonomic dynamical systems with regular and the irregular lattices are investigated. Firstly, the equations of motion of discrete nonholonomic systems are introduced for regular and irregular lattices. Secondly, for cases of the two lattices, based on the invariance of the Hamiltomian functional under the infinitesimal transformation of time and generalized coordinates, we present the quasi-extremal equation, the discrete analogues of Noether identity, Noether theorems, and the Noether conservation laws of the systems. Thirdly, in cases of the two lattices, we study the Mei symmetry in which we give the discrete analogues of the criterion, the theorem, and the conservative laws of Mei symmetry for the systems. Finally, an example is discussed for the application of the results

  20. Digital Quantum Simulation of Z_{2} Lattice Gauge Theories with Dynamical Fermionic Matter.

    Science.gov (United States)

    Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J Ignacio

    2017-02-17

    We propose a scheme for digital quantum simulation of lattice gauge theories with dynamical fermions. Using a layered optical lattice with ancilla atoms that can move and interact with the other atoms (simulating the physical degrees of freedom), we obtain a stroboscopic dynamics which yields the four-body plaquette interactions, arising in models with (2+1) and higher dimensions, without the use of perturbation theory. As an example we show how to simulate a Z_{2} model in (2+1) dimensions.

  1. New ab initio potential surfaces and three-dimensional quantum dynamics for transition state spectroscopy in ozone photodissociation

    Science.gov (United States)

    Yamashita, Koichi; Morokuma, Keiji; Le Quéré, Frederic; Leforestier, Claude

    1992-04-01

    New ab initio potential energy surfaces (PESs) of the ground and B ( 1B 2) states of ozone have been calculated with the CASSCF-SECI/DZP method to describe the three-dimensional photodissociation process. The dissociation energy of the ground state and the vertical barrier height of the B PES are obtained to be 0.88 and 1.34 eV, respectively, in better agreement with the experimental values than the previous calculation. The photodissociation autocorrelation function, calculated on the new B PES, based on exact three-dimensional quantum dynamics, reproduces well the main recurrence feature extracted from the experimental spectra.

  2. Ab initio molecular dynamics simulation of structural transformation in zinc blende GaN under high pressure

    International Nuclear Information System (INIS)

    Xiao, H.Y.; Gao, Fei; Zu, X.T.; Weber, W.J.

    2010-01-01

    High-pressure induced zinc blende to rocksalt phase transition in GaN has been investigated by ab initio molecular dynamics method to characterize the transformation mechanism at the atomic level. It was shown that at 100 GPa GaN passes through tetragonal and monoclinic states before rocksalt structure is formed. The transformation mechanism is consistent with that for other zinc blende semiconductors obtained from the same method. Detailed structural analysis showed that there is no bond breaking involved in the phase transition.

  3. An ab initio study of the structure and dynamics of bulk liquid Cd and its liquid-vapor interface

    International Nuclear Information System (INIS)

    Calderín, L; González, L E; González, D J

    2013-01-01

    Several static and dynamic properties of bulk liquid Cd at a thermodynamic state near its triple point have been calculated by means of ab initio molecular dynamics simulations. The calculated static structure shows a very good agreement with the available experimental data. The dynamical structure reveals collective density excitations with an associated dispersion relation which points to a small positive dispersion. Results are also reported for several transport coefficients. Additional simulations have also been performed at a slightly higher temperature in order to study the structure of the free liquid surface. The ionic density profile shows an oscillatory behavior with two different wavelengths, as the spacing between the outer and first inner layer is different from that between the other inner layers. The calculated reflectivity shows a marked maximum whose origin is related to the surface layering, along with a shoulder located at a much smaller wavevector transfer.

  4. Critique of the Brownian approximation to the generalized Langevin equation in lattice dynamics

    International Nuclear Information System (INIS)

    Diestler, D.J.; Riley, M.E.

    1985-01-01

    We consider the classical motion of a harmonic lattice in which only those atoms in a certain subset of the lattice (primary zone) may interact with an external force. The formally exact generalized Langevin equation (GLE) for the primary zone is an appropriate description of the dynamics. We examine a previously proposed Brownian, or frictional damping, approximation that reduces the GLE to a set of coupled ordinary Langevin equations for the primary atoms. It is shown that the solution of these equations can contain undamped motion if there is more than one atom in the primary zone. Such motion is explicitly demonstrated for a model that has been used to describe energy transfer in atom--surface collisions. The inability of the standard Brownian approximation to yield an acceptable, physically meaningful result for primary zones comprising more than one atom suggests that the Brownian approximation may introduce other spurious dynamical effects. Further work on damping of correlated motion in lattices is needed

  5. Superexchange-mediated magnetization dynamics with ultracold alkaline-earth atoms in an optical lattice

    International Nuclear Information System (INIS)

    Zhu Shaobing; Qian Jun; Wang Yuzhu

    2017-01-01

    Superexchange and inter-orbital spin-exchange interactions are key ingredients for understanding (orbital) quantum magnetism in strongly correlated systems and have been realized in ultracold atomic gases. Here we study the spin dynamics of ultracold alkaline-earth atoms in an optical lattice when the two exchange interactions coexist. In the superexchange interaction dominating regime, we find that the time-resolved spin imbalance shows a remarkable modulated oscillation, which can be attributed to the interplay between local and nonlocal quantum mechanical exchange mechanisms. Moreover, the filling of the long-lived excited atoms affects the collapse and revival of the magnetization dynamics. These observations can be realized in state-dependent optical lattices combined with the state-of-the-art advances in optical lattice clock spectroscopy. (paper)

  6. Dynamics, stability, and statistics on lattices and networks

    International Nuclear Information System (INIS)

    Livi, Roberto

    2014-01-01

    These lectures aim at surveying some dynamical models that have been widely explored in the recent scientific literature as case studies of complex dynamical evolution, emerging from the spatio-temporal organization of several coupled dynamical variables. The first message is that a suitable mathematical description of such models needs tools and concepts borrowed from the general theory of dynamical systems and from out-of-equilibrium statistical mechanics. The second message is that the overall scenario is definitely reacher than the standard problems in these fields. For instance, systems exhibiting complex unpredictable evolution do not necessarily exhibit deterministic chaotic behavior (i.e., Lyapunov chaos) as it happens for dynamical models made of a few degrees of freedom. In fact, a very large number of spatially organized dynamical variables may yield unpredictable evolution even in the absence of Lyapunov instability. Such a mechanism may emerge from the combination of spatial extension and nonlinearity. Moreover, spatial extension allows one to introduce naturally disorder, or heterogeneity of the interactions as important ingredients for complex evolution. It is worth to point out that the models discussed in these lectures share such features, despite they have been inspired by quite different physical and biological problems. Along these lectures we describe also some of the technical tools employed for the study of such models, e.g., Lyapunov stability analysis, unpredictability indicators for “stable chaos,” hydrodynamic description of transport in low spatial dimension, spectral decomposition of stochastic dynamics on directed networks, etc

  7. Nonreciprocal acoustics and dynamics in the in-plane oscillations of a geometrically nonlinear lattice.

    Science.gov (United States)

    Zhang, Zhen; Koroleva, I; Manevitch, L I; Bergman, L A; Vakakis, A F

    2016-09-01

    We study the dynamics and acoustics of a nonlinear lattice with fixed boundary conditions composed of a finite number of particles coupled by linear springs, undergoing in-plane oscillations. The source of the strongly nonlinearity of this lattice is geometric effects generated by the in-plane stretching of the coupling linear springs. It has been shown that in the limit of low energy the lattice gives rise to a strongly nonlinear acoustic vacuum, which is a medium with zero speed of sound as defined in classical acoustics. The acoustic vacuum possesses strongly nonlocal coupling effects and an orthogonal set of nonlinear standing waves [or nonlinear normal modes (NNMs)] with mode shapes identical to those of the corresponding linear lattice; in contrast to the linear case, however, all NNMs except the one with the highest wavelength are unstable. In addition, the lattice supports two types of waves, namely, nearly linear sound waves (termed "L waves") corresponding to predominantly axial oscillations of the particles and strongly nonlinear localized propagating pulses (termed "NL pulses") corresponding to predominantly transverse oscillating wave packets of the particles with localized envelopes. We show the existence of nonlinear nonreciprocity phenomena in the dynamics and acoustics of the lattice. Two opposite cases are examined in the limit of low energy. The first gives rise to nonreciprocal dynamics and corresponds to collective, spatially extended transverse loading of the lattice leading to the excitation of individual, predominantly transverse NNMs, whereas the second case gives rise to nonreciprocal acoutics by considering the response of the lattice to spatially localized, transverse impulse or displacement excitations. We demonstrate intense and recurring energy exchanges between a directly excited NNM and other NNMs with higher wave numbers, so that nonreciprocal energy exchanges from small-to-large wave numbers are established. Moreover, we show the

  8. A Dynamic Momentum Compaction Factor Lattice for Improvements to Stochastic Cooling in Storage Rings

    Energy Technology Data Exchange (ETDEWEB)

    Olivieri, David Nicholas [Massachusetts U., Amherst

    1996-01-01

    A dynamic momentum compaction factor, also referred to as a dynamic $\\Delta \\gamma \\tau$, lattice for the FNAL Antiproton Source Debuncher Storage Ring is studied, both theoretically and experimentally, for the purpose of improving stochastic precooling, and hence, improving the global antiproton production and stacking performance. A dynamic $\\Delta \\gamma \\tau$ lattice is proposed due to the competing requirements inherent within the Debuncher storage ring upon $\\gamma \\tau$· Specifically, the Debuncher storage ring performs two disparate functions, $(i)$ accepting and debunching a large number of $\\overline{p}$s/pulse at the outset of the production cycle, which would perform ideally with a large value of $\\gamma\\tau$, and $(ii)$ subsequently employing stochastic cooling throughout the remainder of the $\\overline{p}$ production cycle for improved transfer and stacking efficiency into the Accumulator, for which a small value $\\gamma \\tau$ is ideal in order to reduce the diffusive heating caused by the mixing factor. In the initial design of the Debuncher optical lattice, an intermediate value of $\\gamma \\tau$ was chosen as a compromise between the two functional requirements. The goal of the thesis is to improve stochastic precooling by changing $\\gamma \\tau$ between two desired values during each p production cycle. In particular, the dynamic $\\Delta \\gamma \\tau$ lattice accomplishes a reduction in $\\gamma \\tau$, and hence the mixing factor, through an uniform increase to the dispersion throughout the arc sections of the storage ring. Experimental measurements of cooling rates and system performance parameters, with the implementation of the dynamic $\\Delta \\gamma \\tau$ lattice, are in agreement with theoretical predictions based upon a detailed integration of the stochastic cooling Fokker Planck equations. Based upon the consistency between theory and experiment, predictions of cooling rates are presented for future operational

  9. Recent results of EPR and Moessbauer investigations on lattice dynamics in ammonium sulphate

    CERN Document Server

    Grecu, M N; Grecu, V V

    2003-01-01

    Recent results of the lattice dynamics investigation on ammonium sulfate are reported based on recent experiments carried out using using the non-destructive experimental technique of EPR and NGR. The main results confirm the presence and the contribution of a soft mode, which accompanied the paraferroelectric phase transition in the investigated crystal. (authors)

  10. Efficiencies of dynamic Monte Carlo algorithms for off-lattice particle systems with a single impurity

    KAUST Repository

    Novotny, M.A.; Watanabe, Hiroshi; Ito, Nobuyasu

    2010-01-01

    The efficiency of dynamic Monte Carlo algorithms for off-lattice systems composed of particles is studied for the case of a single impurity particle. The theoretical efficiencies of the rejection-free method and of the Monte Carlo with Absorbing

  11. Effect of three-body forces on the lattice dynamics of noble metals

    Indian Academy of Sciences (India)

    A simple method to generate an effective electron–ion interaction pseudopotential from the energy wave number characteristic obtained by first principles calculations has been suggested. This effective potential has been used, in third order perturbation, to study the effect of three-body forces on the lattice dynamics of ...

  12. Efficiencies of dynamic Monte Carlo algorithms for off-lattice particle systems with a single impurity

    KAUST Repository

    Novotny, M.A.

    2010-02-01

    The efficiency of dynamic Monte Carlo algorithms for off-lattice systems composed of particles is studied for the case of a single impurity particle. The theoretical efficiencies of the rejection-free method and of the Monte Carlo with Absorbing Markov Chains method are given. Simulation results are presented to confirm the theoretical efficiencies. © 2010.

  13. Thermodynamic properties by equation of state and from Ab initio molecular dynamics of liquid potassium under pressure

    Science.gov (United States)

    Li, Huaming; Tian, Yanting; Sun, Yongli; Li, Mo; Nonequilibrium materials; physics Team; Computational materials science Team

    In this work, we apply a general equation of state of liquid and Ab initio molecular-dynamics method to study thermodynamic properties in liquid potassium under high pressure. Isothermal bulk modulus and molar volume of molten sodium are calculated within good precision as compared with the experimental data. The calculated internal energy data and the calculated values of isobaric heat capacity of molten potassium show the minimum along the isothermal lines as the previous result obtained in liquid sodium. The expressions for acoustical parameter and nonlinearity parameter are obtained based on thermodynamic relations from the equation of state. Both parameters for liquid potassium are calculated under high pressure along the isothermal lines by using the available thermodynamic data and numeric derivations. Furthermore, Ab initio molecular-dynamics simulations are used to calculate some thermodynamic properties of liquid potassium along the isothermal lines. Scientific Research Starting Foundation from Taiyuan university of Technology, Shanxi Provincial government (``100-talents program''), China Scholarship Council and National Natural Science Foundation of China (NSFC) under Grant No. 51602213.

  14. High-order dynamic lattice method for seismic simulation in anisotropic media

    Science.gov (United States)

    Hu, Xiaolin; Jia, Xiaofeng

    2018-03-01

    The discrete particle-based dynamic lattice method (DLM) offers an approach to simulate elastic wave propagation in anisotropic media by calculating the anisotropic micromechanical interactions between these particles based on the directions of the bonds that connect them in the lattice. To build such a lattice, the media are discretized into particles. This discretization inevitably leads to numerical dispersion. The basic lattice unit used in the original DLM only includes interactions between the central particle and its nearest neighbours; therefore, it represents the first-order form of a particle lattice. The first-order lattice suffers from numerical dispersion compared with other numerical methods, such as high-order finite-difference methods, in terms of seismic wave simulation. Due to its unique way of discretizing the media, the particle-based DLM no longer solves elastic wave equations; this means that one cannot build a high-order DLM by simply creating a high-order discrete operator to better approximate a partial derivative operator. To build a high-order DLM, we carry out a thorough dispersion analysis of the method and discover that by adding more neighbouring particles into the lattice unit, the DLM will yield different spatial accuracy. According to the dispersion analysis, the high-order DLM presented here can adapt the requirement of spatial accuracy for seismic wave simulations. For any given spatial accuracy, we can design a corresponding high-order lattice unit to satisfy the accuracy requirement. Numerical tests show that the high-order DLM improves the accuracy of elastic wave simulation in anisotropic media.

  15. Lattice Dynamical Properties of Ferroelectric Thin Films at the Nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Xiaoxing [Temple University

    2014-01-13

    In this project, we have successfully demonstrated atomic layer-by-layer growth by laser MBE from separate targets by depositing SrTiO3 films from SrO and TiO2 targets. The RHEED intensity oscillation was used to monitor and control the growth of each SrO and TiO2 layer. We have shown that by using separate oxide targets, laser MBE can achieve the same level of stoichiometry control as the reactive MBE. We have also studied strain relaxation in LaAlO3 films and its effect on the 2D electron gas at LaAlO3/SrTiO3 interface. We found that there are two layers of different in-plane lattice constants in the LaAlO3 films, one next to the SrTiO3 substrate nearly coherently strained, while the top part relaxed as the film thickness increases above 20 unit cells. This strain relaxation significantly affect the transport properties of the LaAlO3/SrTiO3 interface.

  16. Nonequilibriun Dynamic Phases of Driven Vortex Lattices in Superconductors with Periodic Pinning Arrays

    Science.gov (United States)

    Reichhardt, C.; Olson, C. J.; Nori, F.

    1998-03-01

    We present results from extensive simulations of driven vortex lattices interacting with periodic pinning arrays. Changing an applied driving force produces an exceptionally rich variety of distinct dynamic phases which include over a dozen well defined plastic flow phases. Transitions between different dynamical phases are marked by sharp jumps in the V(I) curves that coincide with distinct changes in the vortex trajectories and vortex lattice order. A series of dynamical phase diagrams are presented which outline the onset of the different dynamical phases (C. Reichhardt, C.J. Olson, and F. Nori, Phys. Rev. Lett. 78), 2648 (1997); and to be published. Videos are avaliable at http://www-personal.engin.umich.edu/ñori/. Using force balance arguments, several of the phase boundaries can be derived analyticaly.

  17. Lattice dynamics of fcc helium at high pressure

    International Nuclear Information System (INIS)

    Eckert, J.; Thomlinson, W.; Shirane, G.

    1977-01-01

    The neutron-inelastic-scattering technique was used to measure the phonon dispersion relations in a high-density crystal of fcc He at 38 K. The crystal was grown at a pressure of 4.93 kbar and a temperature of 38.5 K in a high-pressure sample holder. Its lattice parameter was determined to be 3.915 +- 0.002 A, equivalent to a molar volume of 9.03 cm 3 /mol. The measured dispersion curves were found to be in good agreement with a recent calculation by Goldman using the first-order self-consistent phonon theory without short-range correlation functions. The strong anharmonic effects observed in earlier measurements on the crystals of 21 cm 3 /mol were found to be much less prominent in this He crystal. The magnitude of the multiphonon interference effects on the one-phonon intensities is shown to be less than half of that observed in the low-density crystals. Thermodynamic analysis of the data yielded THETA/sup M//sub D/ = 154 K which indicates that the ratio of mean amplitude of vibration to the nearest-neighbor distance is 8.6%, as opposed to nearly 30% for the lowest-density He crystals. The dependence of the phonon energies on volume is discussed with reference to the earlier work of Traylor et al. on an fcc crystal at 11.7 cm 3 /mol. Limited measurements were also made at 22 K to determine the temperature dependence of the phonon energies. Unusually large isochoric temperature shifts of as much as 15% for some phonons close to the zone center were found over the range of 22--38 K

  18. Dynamics of ligand exchange mechanism at Cu(II) in water: An ab initio quantum mechanical charge field molecular dynamics study with extended quantum mechanical region

    International Nuclear Information System (INIS)

    Moin, Syed Tarique; Hofer, Thomas S.; Weiss, Alexander K. H.; Rode, Bernd M.

    2013-01-01

    Ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) were successfully applied to Cu(II) embedded in water to elucidate structure and to understand dynamics of ligand exchange mechanism. From the simulation studies, it was found that using an extended large quantum mechanical region including two shells of hydration is required for a better description of the dynamics of exchanging water molecules. The structural features characterized by radial distribution function, angular distribution function and other analytical parameters were consistent with experimental data. The major outcome of this study was the dynamics of exchange mechanism and reactions in the first hydration shell that could not be studied so far. The dynamical data such as mean residence time of the first shell water molecules and other relevant data from the simulations are close to the results determined experimentally. Another major characteristic of hydrated Cu(II) is the Jahn-Teller distortion which was also successfully reproduced, leading to the final conclusion that the dominating aqua complex is a 6-coordinated species. The ab initio QMCF-MD formalism proved again its capabilities of unraveling even ambiguous properties of hydrated species that are far difficult to explore by any conventional quantum mechanics/molecular mechanics (QM/MM) approach or experiment

  19. Dynamics of ligand exchange mechanism at Cu(II) in water: an ab initio quantum mechanical charge field molecular dynamics study with extended quantum mechanical region.

    Science.gov (United States)

    Moin, Syed Tarique; Hofer, Thomas S; Weiss, Alexander K H; Rode, Bernd M

    2013-07-07

    Ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) were successfully applied to Cu(II) embedded in water to elucidate structure and to understand dynamics of ligand exchange mechanism. From the simulation studies, it was found that using an extended large quantum mechanical region including two shells of hydration is required for a better description of the dynamics of exchanging water molecules. The structural features characterized by radial distribution function, angular distribution function and other analytical parameters were consistent with experimental data. The major outcome of this study was the dynamics of exchange mechanism and reactions in the first hydration shell that could not be studied so far. The dynamical data such as mean residence time of the first shell water molecules and other relevant data from the simulations are close to the results determined experimentally. Another major characteristic of hydrated Cu(II) is the Jahn-Teller distortion which was also successfully reproduced, leading to the final conclusion that the dominating aqua complex is a 6-coordinated species. The ab initio QMCF-MD formalism proved again its capabilities of unraveling even ambiguous properties of hydrated species that are far difficult to explore by any conventional quantum mechanics/molecular mechanics (QM/MM) approach or experiment.

  20. Structure and dynamics of solvated Ba(II) in dilute aqueous solution - an ab initio QM/MM MD approach

    International Nuclear Information System (INIS)

    Hofer, Thomas S.; Rode, Bernd M.; Randolf, Bernhard R.

    2005-01-01

    Structural properties of the hydrated Ba(II) ion have been investigated by ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations at double zeta HF quantum mechanical level. The first shell coordination number was found to be 9.3, and several other structural parameters such as angular distribution functions, radial distribution functions and tilt- and θ-angle distributions allowed the full characterization of the hydration structure of the Ba(II) ion in dilute aqueous solution. Velocity autocorrelation functions were used to calculate librational and vibrational motions, ion-ligand motions as well as reorientation times. Different dynamical parameters such as water reorientation, mean ligand residence time, the number of ligand exchange processes and rate constants were also analyzed and the ligand exchange rate constant for the first shell was determined as k = 5.3 x 10 10 s -1

  1. Structure impact on the thermal and electronic properties of bismuth telluride by ab-initio and molecular dynamics calculations

    International Nuclear Information System (INIS)

    Termentzidis, K; Pokropivny, A; Xiong, S-Y; Chumakov, Y; Volz, S; Woda, M; Cortona, P

    2012-01-01

    We use molecular dynamics and ab-initio methods to predict the thermal and electronic properties of new materials with high figures of merit. The simulated systems are bulk bismuth tellurides with antisite and vacancy defects. Optimizations of the materials under investigation are performed by the SIESTA code for subsequent calculations of force constants, electronic properties, and Seebeck coefficients. The prediction of the thermal conductivity is made by Non-Equilibrium Molecular Dynamics (NEMD) using the LAMMPS code. The thermal conductivity of bulk bismuth telluride with different stoichiometry and with a number of substitution defects is calculated. We have found that the thermal conductivity can be decreased by 60% by introducing vacancy defects. The calculated thermal conductivities for the different structures are compared with the available experimental and theoretical results.

  2. Non-adiabatic ab initio molecular dynamics of supersonic beam epitaxy of silicon carbide at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Taioli, Simone [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Department of Physics, University of Trento, Trento (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia (Italy); Department of Chemistry, University of Bologna, Bologna (Italy); Garberoglio, Giovanni [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Simonucci, Stefano [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia (Italy); Department of Physics, University of Camerino, Camerino (Italy); Beccara, Silvio a [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Department of Physics, University of Trento, Trento (Italy); Aversa, Lucrezia [Institute of Materials for Electronics and Magnetism, IMEM-CNR, Trento (Italy); Nardi, Marco [Institute of Materials for Electronics and Magnetism, IMEM-CNR, Trento (Italy); Institut fuer Physik, Humboldt-Universitaet zu Berlin, Berlin (Germany); Verucchi, Roberto [Institute of Materials for Electronics and Magnetism, FBK-CNR, Trento (Italy); Iannotta, Salvatore [Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parma (Italy); Dapor, Maurizio [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Department of Materials Engineering and Industrial Technologies, University of Trento, Trento (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Padova (Italy); and others

    2013-01-28

    In this work, we investigate the processes leading to the room-temperature growth of silicon carbide thin films by supersonic molecular beam epitaxy technique. We present experimental data showing that the collision of fullerene on a silicon surface induces strong chemical-physical perturbations and, for sufficient velocity, disruption of molecular bonds, and cage breaking with formation of nanostructures with different stoichiometric character. We show that in these out-of-equilibrium conditions, it is necessary to go beyond the standard implementations of density functional theory, as ab initio methods based on the Born-Oppenheimer approximation fail to capture the excited-state dynamics. In particular, we analyse the Si-C{sub 60} collision within the non-adiabatic nuclear dynamics framework, where stochastic hops occur between adiabatic surfaces calculated with time-dependent density functional theory. This theoretical description of the C{sub 60} impact on the Si surface is in good agreement with our experimental findings.

  3. Continuous time modelling of dynamical spatial lattice data observed at sparsely distributed times

    DEFF Research Database (Denmark)

    Rasmussen, Jakob Gulddahl; Møller, Jesper

    2007-01-01

    Summary. We consider statistical and computational aspects of simulation-based Bayesian inference for a spatial-temporal model based on a multivariate point process which is only observed at sparsely distributed times. The point processes are indexed by the sites of a spatial lattice......, and they exhibit spatial interaction. For specificity we consider a particular dynamical spatial lattice data set which has previously been analysed by a discrete time model involving unknown normalizing constants. We discuss the advantages and disadvantages of using continuous time processes compared...... with discrete time processes in the setting of the present paper as well as other spatial-temporal situations....

  4. Dynamical phase transition in a fully frustrated Josephson array on a square lattice

    International Nuclear Information System (INIS)

    Fisher, K. D.; Stroud, D.; Janin, L.

    1999-01-01

    We study dynamical phase transitions at temperature T=0 in a fully frustrated square Josephson junction array subject to a driving current density, which has nonzero components i x , i y parallel to both axes of the lattice. Our numerical results show clear evidence for three dynamical phases: a pinned vortex lattice characterized by zero time-averaged voltages x > t and y > t , a ''plastic'' phase in which both x > t and y > t are nonzero, and a moving lattice phase in which only one of the time-average voltage components is nonzero. The last of these has a finite transverse critical current: if a current is applied in the x direction, a nonzero transverse current density i y is required before y > t becomes nonzero. The voltage traces in the moving lattice phase are periodic in time. By contrast, the voltages in the plastic phase have continuous power spectra that are weakly dependent on frequency. This phase diagram is found numerically to be qualitatively unchanged by the presence of weak disorder. We also describe two simple analytical models that recover some, but not all, the characteristics of the three dynamical phases, and of the phase diagram calculated numerically. (c) 1999 The American Physical Society

  5. Dynamic Aperture Studies for the LHC High Luminosity Lattice

    CERN Document Server

    De Maria, R; Giovannozzi, Massimo; Mcintosh, Eric; Cai, Y; Nosochkov, Y; Wang, M H

    2015-01-01

    Since quite some time, dynamic aperture studies have been undertaken with the aim of specifying the required field quality of the new magnets that will be installed in the LHC ring in the framework of the high-luminosity upgrade. In this paper the latest results concerning the specification work will be presented, taking into account both injection and collision energies and the field quality contribution from all the magnets in the newly designed interaction regions.

  6. Hydration structure and dynamics of a hydroxide ion in water clusters of varying size and temperature: Quantum chemical and ab initio molecular dynamics studies

    International Nuclear Information System (INIS)

    Bankura, Arindam; Chandra, Amalendu

    2012-01-01

    Highlights: ► A theoretical study of hydroxide ion-water clusters is carried for varying cluster size and temperature. ► The structures of OH − (H 2 O) n are found out through quantum chemical calculations for n = 4, 8, 16 and 20. ► The finite temperature behavior of the clusters is studied through ab initio dynamical simulations. ► The spectral features of OH modes (deuterated) and their dependence on hydrogen bonding states of water are discussed. ► The mechanism and kinetics of proton transfer processes in these anionic clusters are also investigated. - Abstract: We have investigated the hydration structure and dynamics of OH − (H 2 O) n clusters (n = 4, 8, 16 and 20) by means of quantum chemical and ab initio molecular dynamics calculations. Quantum chemical calculations reveal that the solvation structure of the hydroxide ion transforms from three and four-coordinated surface states to five-coordinated interior state with increase in cluster size. Several other isomeric structures with energies not very different from the most stable isomer are also found. Ab initio simulations show that the most probable configurations at higher temperatures need not be the lowest energy isomeric structure. The rates of proton transfer in these clusters are found to be slower than that in bulk water. The vibrational spectral calculations reveal distinct features for free OH (deuterated) stretch modes of water in different hydrogen bonding states. Effects of temperature on the structural and dynamical properties are also investigated for the largest cluster considered here.

  7. Systematic study of the lattice dynamics of the uranium rocksalt-structure compounds

    International Nuclear Information System (INIS)

    Jackman, J.A.; Holden, T.M.; Buyers, W.J.L.; DuPlessis, P. de V.; Vogt, O.; Genossar, J.

    1986-01-01

    The phonon-dispersion relations of USe and UTe have been determined by the inelastic scattering of thermal neutrons. All existing phonon measurements for the UX series, viz., UC, UN, UAs, USb, US, USe, and UTe, have been fitted to the rigid-ion and shell models and dispersion relations have been predicted for UP. The U-X force constants dominate the lattice dynamics and are nearly constant for the series, whereas the U-U force constants vary systematically from being large and positive for the compounds with the smallest lattice parameter to being negative for the chalcogenide series. The negative U-U force constant is identified with destabilizing f-d interactions. Elastic constants, derived from the slopes of the dispersion relations and from ultrasound velocity measurements, have been determined. The bulk modulus decreases unusually rapidly as the lattice parameter increases and is in fair agreement with band-structure calculations

  8. Hydrogen atom injection into carbon surfaces by comparison between Monte-Carlo, molecular dynamics and ab-initio calculations

    International Nuclear Information System (INIS)

    Ito, A.; Kenmotsu, T.; Kikuhara, Y.; Inai, K.; Ohya, K.; Wang, Y.; Irle, S.; Morokuma, K.; Nakamura, H.

    2009-01-01

    Full text: To understand the plasma-wall interaction on divertor plates, we investigate the interaction of hydrogen atoms and carbon materials used in the high heat flux components by the use of the following simulations. Monte-Carlo (MC) method based on binary collision approximation can calculate the sputtering process of hydrogen atoms on the carbon material quickly. Classical molecular dynamics (MD) method employs multi-body potential models and can treat realistic structures of crystal and molecule. The ab-initio method can calculate electron energy in quantum mechanics, which is regarded as realistic potential for atoms. In the present paper, the interaction of the hydrogen and the carbon material is investigated using the multi-scale (MC, MD and ab-initio) methods. The bombardment of hydrogen atoms onto the carbon material is simulated by the ACAT-code of the MC method, which cannot represent the structure of crystal, and the MD method using modified reactive empirical bond order (REBO) potential, which treats single crystal graphite and amorphous carbon. Consequently, we clarify that the sputtering yield and the reflection rate calculated by the ACAT-code agree with those on the amorphous carbon calculated by the MD. Moreover, there are many kinds of REBO potential for the MD. Adsorption, reflection and penetration rates between a hydrogen atom and a graphene surface are calculated by the MD simulations using the two kinds of potential model. For the incident energy of less than 1 eV, the MD simulation using the modified REBO potential, which is based on Brenner's REBO potential in 2002, shows that reflection is dominant, while the most popular Brenner's REBO potential in 1990 shows that adsorption is dominant. This reflection of the low energy injection is caused by a small potential barrier for the hydrogen atom in the modified REBO potential. The small potential barrier is confirmed by the ab-initio calculations, which are hybrid DFT (B3LYP/cc-pVDZ), ab-initio

  9. Dynamical barrier for the formation of solitary waves in discrete lattices

    International Nuclear Information System (INIS)

    Kevrekidis, P.G.; Espinola-Rocha, J.A.; Drossinos, Y.; Stefanov, A.

    2008-01-01

    We consider the problem of the existence of a dynamical barrier of 'mass' that needs to be excited on a lattice site to lead to the formation and subsequent persistence of localized modes for a nonlinear Schroedinger lattice. We contrast the existence of a dynamical barrier with its absence in the static theory of localized modes in one spatial dimension. We suggest an energetic criterion that provides a sufficient, but not necessary, condition on the amplitude of a single-site initial condition required to form a solitary wave. We show that this effect is not one-dimensional by considering its two-dimensional analog. The existence of a sufficient condition for the excitation of localized modes in the non-integrable, discrete, nonlinear Schroedinger equation is compared to the dynamics of excitations in the integrable, both discrete and continuum, version of the nonlinear Schroedinger equation

  10. Dynamical barrier for the formation of solitary waves in discrete lattices

    Energy Technology Data Exchange (ETDEWEB)

    Kevrekidis, P.G. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003 (United States)], E-mail: kevrekid@math.umass.edu; Espinola-Rocha, J.A. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003 (United States); Drossinos, Y. [European Commission, Joint Research Centre, I-21020 Ispra (Vatican City State, Holy See,) (Italy); School of Mechanical and Systems Engineering, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU (United Kingdom); Stefanov, A. [Department of Mathematics, University of Kansas, 1460 Jayhawk Blvd., Lawrence, KS 66045-7523 (United States)

    2008-03-24

    We consider the problem of the existence of a dynamical barrier of 'mass' that needs to be excited on a lattice site to lead to the formation and subsequent persistence of localized modes for a nonlinear Schroedinger lattice. We contrast the existence of a dynamical barrier with its absence in the static theory of localized modes in one spatial dimension. We suggest an energetic criterion that provides a sufficient, but not necessary, condition on the amplitude of a single-site initial condition required to form a solitary wave. We show that this effect is not one-dimensional by considering its two-dimensional analog. The existence of a sufficient condition for the excitation of localized modes in the non-integrable, discrete, nonlinear Schroedinger equation is compared to the dynamics of excitations in the integrable, both discrete and continuum, version of the nonlinear Schroedinger equation.

  11. Phonon-mediated Thermal Conductivity in Ionic Solids by Lattice Dynamics-based Methods

    Energy Technology Data Exchange (ETDEWEB)

    Chernatynskiy, Aleksandr [Univ. of Florida, Gainesville, FL (United States); Turney, Joseph E. [Carnegie Mellon Univ., Pittsburgh, PA (United States); McGaughey, Alan J. H. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Amon, Christina H. [Univ. of Toronto, ON (Canada); Phillpot, Simon R. [Univ. of Florida, Gainesville, FL (United States)

    2011-07-22

    Phonon properties predicted from lattice dynamics calculations and the Boltzmann Transport Equation (BTE) are used to elucidate the thermal-transport properties of ionic materials. It is found that a rigorous treatment of the Coulombic interactions within the harmonic analysis is needed for the analysis of the phonon structure of the solid, while a short-range approximation is sufficient for the third-order force constants. The effects on the thermal conductivity of the relaxation time approximation, the classical approximation to the phonon statistics, the direct summation method for the electrostatic interactions, and the quasi-harmonic approximation to lattice dynamics are quantified. Quantitative agreement is found between predictions from molecular dynamics simulations (a method valid at temperatures above the Debye temperature) and the BTE result within quasi-harmonic approximation over a wide temperature range.

  12. Magnetic nanoparticles in fluid environment: combining molecular dynamics and Lattice-Boltzmann

    Energy Technology Data Exchange (ETDEWEB)

    Melenev, Petr, E-mail: melenev@icmm.ru [Ural Federal University, 4, Turgeneva str., 620000 Ekaterinburg (Russian Federation); Institute of Continuous Media Mechanics, 1, Koroleva str., 614013 Perm (Russian Federation)

    2017-06-01

    Hydrodynamic interactions between magnetic nanoparticles suspended in the Newtonian liquid are accounted for using a combination of the lattice Boltzmann method and molecular dynamics simulations. Nanoparticle is modelled by the system of molecular dynamics material points (which form structure resembles raspberry) coupled to the lattice Boltzmann fluid. The hydrodynamic coupling between the colloids is studied by simulations of the thermo-induced rotational diffusion of two raspberry objects. It was found that for the considered range of model parameters the approaching of the raspberries leads to slight retard of the relaxation process. The presence of the weak magnetic dipolar interaction between the objects leads to modest decrease of the relaxation time and the extent of the acceleration of the diffusion is intensified along with magnetic forces. - Highlights: • The combination of molecular dynamics and lattice Boltzmann method is utilized for the reveal of the role of hydrodynamic interaction in rotational dynamics of colloid particles. • The verification of the model parameters is done based on the comparison with the results of Langevin dynamics. • For the task of free rotational diffusion of the pair of colloid particles the influence of the hydrodynamic interactions on the relaxation time is examined in the case of nonmagnetic particles and at the presence of weak dipolar interaction.

  13. Light hadrons from lattice QCD with light (u,d), strange and charm dynamical quarks

    Energy Technology Data Exchange (ETDEWEB)

    Baron, R. [CEA, Centre de Saclay, 91 - Gif-sur-Yvette (France). IRFU/Service de Physique Nucleaire; Boucaud, P. [CNRS et Paris-Sud 11 Univ., 91 - Orsay (France). Lab. de Physique Theorique; Carbonell, J. [Lab. de Physique Subatomique et Cosmologie, 38 - Grenoble (FR)] (and others)

    2010-04-15

    We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (N{sub f}=2+1+1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at two values of the lattice spacing a {approx} 0:078 fm and a {approx}0.086 fm with lattice sizes ranging from L{approx}1.9 fm to L{approx}2.8 fm. We measure with high statistical precision the light pseudoscalar mass m{sub PS} and decay constant f{sub PS} in a range 270lattice spacing, several lattice sizes as well as different values of the light, strange and charm quark masses to explore the systematic effects. A first study of discretisation effects in light-quark observables and a comparison to N{sub f}=2 results are performed. (orig.)

  14. Light hadrons from lattice QCD with light (u,d), strange and charm dynamical quarks

    International Nuclear Information System (INIS)

    Baron, R.

    2010-04-01

    We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (N f =2+1+1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at two values of the lattice spacing a ∼ 0:078 fm and a ∼0.086 fm with lattice sizes ranging from L∼1.9 fm to L∼2.8 fm. We measure with high statistical precision the light pseudoscalar mass m PS and decay constant f PS in a range 270 PS 0 and anti l 3,4 of SU(2) chiral perturbation theory. We use the two values of the lattice spacing, several lattice sizes as well as different values of the light, strange and charm quark masses to explore the systematic effects. A first study of discretisation effects in light-quark observables and a comparison to N f =2 results are performed. (orig.)

  15. Dispersion and Solvation Effects on the Structure and Dynamics of N719 Adsorbed to Anatase Titania (101) Surfaces in Room-Temperature Ionic Liquids: An ab Initio Molecular Simulation Study

    KAUST Repository

    Byrne, Aaron; English, Niall J.; Schwingenschlö gl, Udo; Coker, David F.

    2015-01-01

    Ab initio, density functional theory (DFT)-based molecular dynamics (MD) has been carried out to investigate the effect of explicit solvation on the dynamical and structural properties of a [bmim][NTf2] room-temperature ionic liquid (RTIL

  16. Graph Theory Meets Ab Initio Molecular Dynamics: Atomic Structures and Transformations at the Nanoscale

    Science.gov (United States)

    Pietrucci, Fabio; Andreoni, Wanda

    2011-08-01

    Social permutation invariant coordinates are introduced describing the bond network around a given atom. They originate from the largest eigenvalue and the corresponding eigenvector of the contact matrix, are invariant under permutation of identical atoms, and bear a clear signature of an order-disorder transition. Once combined with ab initio metadynamics, these coordinates are shown to be a powerful tool for the discovery of low-energy isomers of molecules and nanoclusters as well as for a blind exploration of isomerization, association, and dissociation reactions.

  17. Nucleon structure in lattice QCD with dynamical domain-wall fermions quarks

    International Nuclear Information System (INIS)

    Huey-Wen Lin; Shigemi Ohta

    2006-01-01

    We report RBC and RBC/UKQCD lattice QCD numerical calculations of nucleon electroweak matrix elements with dynamical domain-wall fermions (DWF) quarks. The first, RBC, set of dynamical DWF ensembles employs two degenerate flavors of DWF quarks and the DBW2 gauge action. Three sea quark mass values of 0.04, 0.03 and 0.02 in lattice units are used with about 200 gauge configurations each. The lattice cutoff is about 1.7 GeV and the spatial volume is about (1.9 fm) 3 . Despite the small volume, the ratio of the isovector vector and axial charges g A /g V and that of structure function moments u-d / Δ u-Δ d are in agreement with experiment, and show only very mild quark mass dependence. The second, RBC/UK, set of ensembles employs one strange and two degenerate (up and down) dynamical DWF quarks and Iwasaki gauge action. The strange quark mass is set at 0.04, and three up/down mass values of 0.03, 0.02 and 0.01 in lattice units are used. The lattice cutoff is about 1.6 GeV and the spatial volume is about (3.0 fm) 3 . Even with preliminary statistics of 25-30 gauge configurations, the ratios g A /g V and u-d / Δu - Δd are consistent with experiment and show only very mild quark mass dependence. Another structure function moment, d 1 , though yet to be renormalized, appears small in both sets

  18. NUCLEON STRUCTURE IN LATTICE QCD WITH DYNAMICAL DOMAIN--WALL FERMIONS QUARKS

    International Nuclear Information System (INIS)

    LIN, H.W.; OHTA, S.

    2006-01-01

    We report RBC and RBC/UKQCD lattice QCD numerical calculations of nucleon electroweak matrix elements with dynamical domain-wall fermions (DWF) quarks. The first, RBC, set of dynamical DWF ensembles employs two degenerate flavors of DWF quarks and the DBW2 gauge action. Three sea quark mass values of 0.04, 0.03 and 0.02 in lattice units are used with 220 gauge configurations each. The lattice cutoff is a -1 ∼ 1.7GeV and the spatial volume is about (1.9fm) 3 . Despite the small volume, the ratio of the isovector vector and axial charges g A /g V and that of structure function moments u-d / Δu-Δd are in agreement with experiment, and show only very mild quark mass dependence. The second, RBC/UK, set of ensembles employs one strange and two degenerate (up and down) dynamical DWF quarks and Iwasaki gauge action. The strange quark mass is set at 0.04, and three up/down mass values of 0.03, 0.02 and 0.01 in lattice units are used. The lattice cutoff is a -1 ∼ 1.6GeV and the spatial volume is about (3.0fm) 3 . Even with preliminary statistics of 25-30 gauge configurations, the ratios g A /g V and u-d / Δu-Δd are consistent with experiment and show only very mild quark mass dependence. Another structure function moment, d 1 , though yet to be renormalized, appears small in both sets

  19. Molecular dynamics simulation of thin film interfacial strength dependency on lattice mismatch

    International Nuclear Information System (INIS)

    Yang, Zhou; Lian, Jie; Wang, Junlan

    2013-01-01

    Laser-induced thin film spallation experiments have been previously developed to characterize the intrinsic interfacial strength of thin films. In order to gain insights of atomic level thin film debonding processes and the interfacial strength dependence on film/substrate lattice structures, in this study, molecular dynamics simulations of thin film interfacial failure under laser-induced stress waves were performed. Various loading amplitudes and pulse durations were employed to identify the optimum simulation condition. Stress propagation as a function of time was revealed in conjunction with the interface structures. Parametric studies confirmed that while the interfacial strength between a thin film and a substrate does not depend on the film thickness and the duration of the laser pulse, a thicker film and a shorter duration do provide advantage to effectively load the interface to failure. With the optimized simulation condition, further studies were focused on bulk Au/Au bi-crystals with mismatched orientations, and Ni/Al, Cu/Al, Cu/Ag and Cu/Au bi-crystals with mismatched lattices. The interfacial strength was found to decrease with increasing orientation mismatch and lattice mismatch but more significantly dominated by the bonding elements' atomic structure and valence electron occupancy. - Highlights: • Molecular dynamics simulation was done on stress wave induced thin film spallation. • Atomic structure was found to be a primary strength determining factor. • Lattice mismatch was found to be a secondary strength determining factor

  20. Dielectric functions, pseudopotentials and applications to lattice dynamics

    International Nuclear Information System (INIS)

    Sinha, S.K.

    1975-01-01

    An attempt has been made to review the method of calculating the phonon spectra of crystals in terms of the basic electronic structure. Solids with defects, disordered solids and anharmonic effects have been excluded. The most general technique, viz. the Born-Oppenheimer perturbation theory has been discussed. The structure of the dynamic matrix has been discussed and the manifestations of the Fermi surface in the phonon spectrum explained. A pseudopotential concept for the free electron like metals has been justified and a brief account of these potentials from the point of view of the OPW method as well as from that of the phase shift analysis is included. The formalism of the basic results of the phenomenological dipolar models and their recent generalizations have been reviewed. It has pointed out that this could be derived from the microscopic theory by factorization approximation for the dielectric matrix, and the same method could lead even to more general models and the dielectric properties of the crystal could be obtained from such a microscopic theory. It is expected that the results may be applied to optical properties of the crystal. (K.B.)

  1. Semiempirical and ab initio calculations versus dynamic NMR on conformational analysis of cyclohexyl-N,N-dimethylcarbamate

    Directory of Open Access Journals (Sweden)

    Basso Ernani A.

    2001-01-01

    Full Text Available Axial-equatorial conformational proportions for cyclohexyl-N,N-dimethyl carbamate have been measured, for the first time, by the Eliel method, ¹H and 13C dynamic nuclear magnetic resonance (DNMR. The results were compared against those determined by theoretical calculations. By the Eliel method at least five experimentally independent measureables were used in CCl4, CDCl3 and CD3CN. The ¹H and 13C low temperature experiments were performed in CF2Br2/CD2Cl2 . Semiempirical methods MNDO, AM1 and PM3 and ab initio molecular orbital calculations at the HF/STO-3G and HF/6-31G(d,p levels have been performed on the axial and equatorial conformers populations. All applied methods correctly predict the equatorial conformer preference over the axial one. The resulting equatorial preferences determined by NMR data and theoretical calculations are in good agreement.

  2. Ab initio molecular dynamics simulations for the role of hydrogen in catalytic reactions of furfural on Pd(111)

    Science.gov (United States)

    Xue, Wenhua; Dang, Hongli; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu

    2014-03-01

    In the study of catalytic reactions of biomass, furfural conversion over metal catalysts with the presence of hydrogen has attracted wide attention. We report ab initio molecular dynamics simulations for furfural and hydrogen on the Pd(111) surface at finite temperatures. The simulations demonstrate that the presence of hydrogen is important in promoting furfural conversion. In particular, hydrogen molecules dissociate rapidly on the Pd(111) surface. As a result of such dissociation, atomic hydrogen participates in the reactions with furfural. The simulations also provide detailed information about the possible reactions of hydrogen with furfural. Supported by DOE (DE-SC0004600). This research used the supercomputer resources of the XSEDE, the NERSC Center, and the Tandy Supercomputing Center.

  3. Ab initio molecular dynamics study of the properties of cerium in liquid sodium at 1000 K temperature

    Energy Technology Data Exchange (ETDEWEB)

    Samin, Adib; Li, Xiang; Zhang, Jinsuo [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, Ohio 43210 (United States); Mariani, R. D. [Idaho National Laboratory, Materials and Fuels Complex, Idaho Falls, Idaho 83415 (United States); Unal, Cetin [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States)

    2015-12-21

    For liquid-sodium-cooled fast nuclear reactor systems, it is crucial to understand the behavior of lanthanides and other potential fission products in liquid sodium or other liquid metal solutions such as liquid cesium-sodium. In this study, we focus on lanthanide behavior in liquid sodium. Using ab initio molecular dynamics, we found that the solubility of cerium in liquid sodium at 1000 K was less than 0.78 at. %, and the diffusion coefficient of cerium in liquid sodium was calculated to be 5.57 × 10{sup −9} m{sup 2}/s. Furthermore, it was found that cerium in small amounts may significantly alter the heat capacity of the liquid sodium system. Our results are consistent with the experimental results for similar materials under similar conditions.

  4. Spatiotemporal dynamics of Bose-Einstein condensates in linear- and circular-chain optical lattices

    International Nuclear Information System (INIS)

    Tsukada, N.

    2002-01-01

    We investigate the spatiotemporal dynamics of Bose-Einstein condensates in optical lattices that have a linear-or a circular-chain configuration with the tunneling couplings between nearest-neighbor lattice sites. A discrete nonlinear Schroedinger equation has been solved for various initial conditions and for a definite range of repulsive and attractive interatomic interactions. It is shown that the diversity of the spatiotemporal dynamics of the atomic population distribution such as a macroscopic self-trapping, bright and dark solitons, and symmetry breaking is derived from the positive and negative interatomic interactions. For the circular-chain configuration, two types of rotational modes are obtained as we introduce a definite relation for the initial phase conditions

  5. Simple Navier’s slip boundary condition for the non-Newtonian Lattice Boltzmann fluid dynamics solver

    DEFF Research Database (Denmark)

    Svec, Oldrich; Skoček, Jan

    2013-01-01

    The ability of the Lattice Boltzmann method, as the fluid dynamics solver, to properly simulate macroscopic Navier’s slip boundary condition is investigated. An approximate equation relating the Lattice Boltzmann variable slip boundary condition with the macroscopic Navier’s slip boundary condition...

  6. Dynamically adaptive Lattice Boltzmann simulation of shallow water flows with the Peano framework

    KAUST Repository

    Neumann, Philipp

    2015-09-01

    © 2014 Elsevier Inc. All rights reserved. We present a dynamically adaptive Lattice Boltzmann (LB) implementation for solving the shallow water equations (SWEs). Our implementation extends an existing LB component of the Peano framework. We revise the modular design with respect to the incorporation of new simulation aspects and LB models. The basic SWE-LB implementation is validated in different breaking dam scenarios. We further provide a numerical study on stability of the MRT collision operator used in our simulations.

  7. Lattice dynamics and electronic properties of superconducting Nbsub(x)Vsub(1-x)N compounds

    International Nuclear Information System (INIS)

    Geibel, C.; Rietschel, H.; Pelizzone, M.; Junod, A.; Muller, J.

    1982-01-01

    The Nbsub(x)Vsub(1-x)N-system presents a pronounced minimum in Tsub(c) at the composition Nbsub(0.5)Vsub(0.5)N. We investigated the structural, the electronic properties and the lattice dynamics of these compounds to study whether this minimum is induced by structural defects, a decrease of the electron-phonon-coupling or by spin fluctuations. (orig.)

  8. An adaptive immune optimization algorithm with dynamic lattice searching operation for fast optimization of atomic clusters

    International Nuclear Information System (INIS)

    Wu, Xia; Wu, Genhua

    2014-01-01

    Highlights: • A high efficient method for optimization of atomic clusters is developed. • Its performance is studied by optimizing Lennard-Jones clusters and Ag clusters. • The method is proved to be quite efficient. • A new Ag 61 cluster with stacking-fault face-centered cubic motif is found. - Abstract: Geometrical optimization of atomic clusters is performed by a development of adaptive immune optimization algorithm (AIOA) with dynamic lattice searching (DLS) operation (AIOA-DLS method). By a cycle of construction and searching of the dynamic lattice (DL), DLS algorithm rapidly makes the clusters more regular and greatly reduces the potential energy. DLS can thus be used as an operation acting on the new individuals after mutation operation in AIOA to improve the performance of the AIOA. The AIOA-DLS method combines the merit of evolutionary algorithm and idea of dynamic lattice. The performance of the proposed method is investigated in the optimization of Lennard-Jones clusters within 250 atoms and silver clusters described by many-body Gupta potential within 150 atoms. Results reported in the literature are reproduced, and the motif of Ag 61 cluster is found to be stacking-fault face-centered cubic, whose energy is lower than that of previously obtained icosahedron

  9. Dynamic phase transitions and dynamic phase diagrams of the Ising model on the Shastry-Sutherland lattice

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Şeyma Akkaya, E-mail: sadeviren@nevsehir.edu.tr [Department of Science Education, Education Faculty, Nevsehir Hacı Bektaş Veli University, 50300 Nevşehir (Turkey); Deviren, Bayram [Department of Physics, Nevsehir Hacı Bektaş Veli University, 50300 Nevsehir (Turkey)

    2016-03-15

    The dynamic phase transitions and dynamic phase diagrams are studied, within a mean-field approach, in the kinetic Ising model on the Shastry-Sutherland lattice under the presence of a time varying (sinusoidal) magnetic field by using the Glauber-type stochastic dynamics. The time-dependence behavior of order parameters and the behavior of average order parameters in a period, which is also called the dynamic order parameters, as a function of temperature, are investigated. Temperature dependence of the dynamic magnetizations, hysteresis loop areas and correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic phase transitions as well as to obtain the dynamic phase transition temperatures. We present the dynamic phase diagrams in the magnetic field amplitude and temperature plane. The phase diagrams exhibit a dynamic tricritical point and reentrant phenomena. The phase diagrams also contain paramagnetic (P), Néel (N), Collinear (C) phases, two coexistence or mixed regions, (N+C) and (N+P), which strongly depend on interaction parameters. - Highlights: • Dynamic magnetization properties of spin-1/2 Ising model on SSL are investigated. • Dynamic magnetization, hysteresis loop area, and correlation have been calculated. • The dynamic phase diagrams are constructed in (T/|J|, h/|J|) plane. • The phase diagrams exhibit a dynamic tricritical point and reentrant phenomena.

  10. Ab initio molecular dynamics study of pressure-induced phase transition in ZnS

    International Nuclear Information System (INIS)

    Martinez, Israel; Durandurdu, Murat

    2006-01-01

    The pressure-induced phase transition in zinc sulfide is studied using a constant-pressure ab initio technique. The reversible phase transition from the zinc-blende structure to a rock-salt structure is successfully reproduced through the simulations. The transformation mechanism at the atomistic level is characterized and found to be due to a monoclinic modification of the simulation cell, similar to that obtained in SiC. This observation supports the universal transition state of high-pressure zinc-blende to rock-salt transition in semiconductor compounds. We also study the role of stress deviations on the transformation mechanism and find that the system follows the same transition pathway under nonhydrostatic compressions as well

  11. Lattice dynamics and electron/phonon interactions in epitaxial transition-metal nitrides

    Science.gov (United States)

    Mei, Antonio Rodolph Bighetti

    Transition metal (TM) nitrides, due to their unique combination of remarkable physical properties and simple NaCl structure, are presently utilized in a broad range of applications and as model systems in the investigation of complex phenomena. Group-IVB nitrides TiN, ZrN, and HfN have transport properties which include superconductivity and high electrical conductivity; consequentially, they have become technologically important as electrodes and contacts in the semiconducting and superconducting industries. The Group-VB nitride VN, which exhibits enhanced ductility, is a fundamental component in superhard and tough nanostructured hard coatings. In this thesis, I investigate the lattice dynamics responsible for controlling superconductivity and electrical conductivities in Group-IVB nitrides and elasticity and structural stability of the NaCl-structure Group-VB nitride VN. Our group has already synthesized high-quality epitaxial TiN, HfN, and CeN layers on MgO(001) substrates. By irradiating the growth surface with high ion fluxes at energies below the bulk lattice-atom displacement threshold, dense epitaxial single crystal TM nitride films with extremely smooth surfaces have been grown using ultra-high vacuum magnetically-unbalanced magnetron sputter deposition. Using this approach, I completed the Group-IVB nitride series by growing epitaxial ZrN/MgO(001) films and then grew Group-VB nitride VN films epitaxially on MgO(001), MgO(011), and MgO(111). The combination of high-resolution x-ray diffraction (XRD) reciprocal lattice maps (RLMs), high-resolution cross-sectional transmission electron microscopy (HR-XTEM), and selected-area electron diffraction (SAED) show that single-crystal stoichiometric ZrN films grown at 450 °C are epitaxially oriented cube-on-cube with respect to their MgO(001) substrates, (001) ZrN||(001)MgO and [100]ZrN||[100]MgO. The layers are essentially fully relaxed with a lattice parameter of 0.4575 nm. X-ray reflectivity results reveal that

  12. Initial Chemical Events in CL-20 Under Extreme Conditions: An Ab Initio Molecular Dynamics Study

    National Research Council Canada - National Science Library

    Isaev, Olexandr; Kholod, Yana; Gorb, Leonid; Qasim, Mohammad; Fredrickson, Herb; Leszczynski, Jerzy

    2006-01-01

    .... In the present study molecular structure, electrostatic potential, vibrational spectrum and dynamics of thermal decomposition of CL-20 have been investigated by static and dynamic methods of ab...

  13. Lattice dynamics and substrate-dependent transport properties of (In, Yb)-doped CoSb3 skutterudite thin films

    KAUST Repository

    Sarath Kumar, S. R.; Cha, Dong Kyu; Alshareef, Husam N.

    2011-01-01

    Lattice dynamics, low-temperature electrical transport, and high-temperature thermoelectric properties of (In, Yb)-doped CoSb3thin films on different substrates are reported. Pulsed laser deposition under optimized conditions yielded single

  14. Vibrational lifetimes of hydrogen on lead films: An ab initio molecular dynamics with electronic friction (AIMDEF) study

    Energy Technology Data Exchange (ETDEWEB)

    Saalfrank, Peter [Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam (Germany); Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Juaristi, J. I. [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián (Spain); Departamento de Física de Materiales, Facultad de Químicas UPV/EHU, Apartado 1072, 20018 Donostia-San Sebastián (Spain); Alducin, M.; Muiño, R. Díez [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián (Spain); Blanco-Rey, M. [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Departamento de Física de Materiales, Facultad de Químicas UPV/EHU, Apartado 1072, 20018 Donostia-San Sebastián (Spain)

    2014-12-21

    Using density functional theory and Ab Initio Molecular Dynamics with Electronic Friction (AIMDEF), we study the adsorption and dissipative vibrational dynamics of hydrogen atoms chemisorbed on free-standing lead films of increasing thickness. Lead films are known for their oscillatory behaviour of certain properties with increasing thickness, e.g., energy and electron spillout change in discontinuous manner, due to quantum size effects [G. Materzanini, P. Saalfrank, and P. J. D. Lindan, Phys. Rev. B 63, 235405 (2001)]. Here, we demonstrate that oscillatory features arise also for hydrogen when chemisorbed on lead films. Besides stationary properties of the adsorbate, we concentrate on finite vibrational lifetimes of H-surface vibrations. As shown by AIMDEF, the damping via vibration-electron hole pair coupling dominates clearly over the vibration-phonon channel, in particular for high-frequency modes. Vibrational relaxation times are a characteristic function of layer thickness due to the oscillating behaviour of the embedding surface electronic density. Implications derived from AIMDEF for frictional many-atom dynamics, and physisorbed species will also be given.

  15. Static, dynamic and electronic properties of expanded fluid mercury in the metal-nonmetal transition range. An ab initio study

    International Nuclear Information System (INIS)

    CalderIn, L; Gonzalez, L E; Gonzalez, D J

    2011-01-01

    Fluid Hg undergoes a metal-nonmetal (M-NM) transition when expanded toward a density of around 9 g cm -3 . We have performed ab initio molecular dynamics simulations for several thermodynamic states around the M-NM transition range and the associated static, dynamic and electronic properties have been analyzed. The calculated static structure shows a good agreement with the available experimental data. It is found that the volume expansion decreases the number of nearest neighbors from 10 (near the triple point) to around 8 at the M-NM transition region. Moreover, these neighbors are arranged into two subshells and the decrease in the number of neighbors occurs in the inner subshell. The calculated dynamic structure factors agree fairly well with their experimental counterparts obtained by inelastic x-ray scattering experiments, which display inelastic side peaks. The derived dispersion relation exhibits some positive dispersion for all the states, although its value around the M-NM transition region is not as marked as suggested by the experiment. We have also calculated the electronic density of states, which shows the appearance of a gap at a density of around 8.3 g cm -3 . (paper)

  16. Real-Time Dynamics in U(1 Lattice Gauge Theories with Tensor Networks

    Directory of Open Access Journals (Sweden)

    T. Pichler

    2016-03-01

    Full Text Available Tensor network algorithms provide a suitable route for tackling real-time-dependent problems in lattice gauge theories, enabling the investigation of out-of-equilibrium dynamics. We analyze a U(1 lattice gauge theory in (1+1 dimensions in the presence of dynamical matter for different mass and electric-field couplings, a theory akin to quantum electrodynamics in one dimension, which displays string breaking: The confining string between charges can spontaneously break during quench experiments, giving rise to charge-anticharge pairs according to the Schwinger mechanism. We study the real-time spreading of excitations in the system by means of electric-field and particle fluctuations. We determine a dynamical state diagram for string breaking and quantitatively evaluate the time scales for mass production. We also show that the time evolution of the quantum correlations can be detected via bipartite von Neumann entropies, thus demonstrating that the Schwinger mechanism is tightly linked to entanglement spreading. To present a variety of possible applications of this simulation platform, we show how one could follow the real-time scattering processes between mesons and the creation of entanglement during scattering processes. Finally, we test the quality of quantum simulations of these dynamics, quantifying the role of possible imperfections in cold atoms, trapped ions, and superconducting circuit systems. Our results demonstrate how entanglement properties can be used to deepen our understanding of basic phenomena in the real-time dynamics of gauge theories such as string breaking and collisions.

  17. Lattice constants of pure methane and carbon dioxide hydrates at low temperatures. Implementing quantum corrections to classical molecular dynamics studies

    Energy Technology Data Exchange (ETDEWEB)

    Costandy, Joseph; Michalis, Vasileios K.; Economou, Ioannis G., E-mail: i.tsimpanogiannis@qatar.tamu.edu, E-mail: ioannis.economou@qatar.tamu.edu [Chemical Engineering Program, Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Tsimpanogiannis, Ioannis N., E-mail: i.tsimpanogiannis@qatar.tamu.edu, E-mail: ioannis.economou@qatar.tamu.edu [Chemical Engineering Program, Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Environmental Research Laboratory, National Center for Scientific Research NCSR “Demokritos,” 15310 Aghia Paraskevi, Attikis (Greece); Stubos, Athanassios K. [Environmental Research Laboratory, National Center for Scientific Research NCSR “Demokritos,” 15310 Aghia Paraskevi, Attikis (Greece)

    2016-03-28

    We introduce a simple correction to the calculation of the lattice constants of fully occupied structure sI methane or carbon dioxide pure hydrates that are obtained from classical molecular dynamics simulations using the TIP4PQ/2005 water force field. The obtained corrected lattice constants are subsequently used in order to obtain isobaric thermal expansion coefficients of the pure gas hydrates that exhibit a trend that is significantly closer to the experimental behavior than previously reported classical molecular dynamics studies.

  18. On the room-temperature phase diagram of high pressure hydrogen: An ab initio molecular dynamics perspective and a diffusion Monte Carlo study

    International Nuclear Information System (INIS)

    Chen, Ji; Ren, Xinguo; Li, Xin-Zheng; Alfè, Dario; Wang, Enge

    2014-01-01

    The finite-temperature phase diagram of hydrogen in the region of phase IV and its neighborhood was studied using the ab initio molecular dynamics (MD) and the ab initio path-integral molecular dynamics (PIMD). The electronic structures were analyzed using the density-functional theory (DFT), the random-phase approximation, and the diffusion Monte Carlo (DMC) methods. Taking the state-of-the-art DMC results as benchmark, comparisons of the energy differences between structures generated from the MD and PIMD simulations, with molecular and dissociated hydrogens, respectively, in the weak molecular layers of phase IV, indicate that standard functionals in DFT tend to underestimate the dissociation barrier of the weak molecular layers in this mixed phase. Because of this underestimation, inclusion of the quantum nuclear effects (QNEs) in PIMD using electronic structures generated with these functionals leads to artificially dissociated hydrogen layers in phase IV and an error compensation between the neglect of QNEs and the deficiencies of these functionals in standard ab initio MD simulations exists. This analysis partly rationalizes why earlier ab initio MD simulations complement so well the experimental observations. The temperature and pressure dependencies for the stability of phase IV were also studied in the end and compared with earlier results

  19. Magnon and phonon dispersion, lifetime, and thermal conductivity of iron from spin-lattice dynamics simulations

    Science.gov (United States)

    Wu, Xufei; Liu, Zeyu; Luo, Tengfei

    2018-02-01

    In recent years, the fundamental physics of spin-lattice (e.g., magnon-phonon) interaction has attracted significant experimental and theoretical interests given its potential paradigm-shifting impacts in areas like spin-thermoelectrics, spin-caloritronics, and spintronics. Modelling studies of the transport of magnons and phonons in magnetic crystals are very rare. In this paper, we use spin-lattice dynamics (SLD) simulations to model ferromagnetic crystalline iron, where the spin and lattice systems are coupled through the atomic position-dependent exchange function, and thus the interaction between magnons and phonons is naturally considered. We then present a method combining SLD simulations with spectral energy analysis to calculate the magnon and phonon harmonic (e.g., dispersion, specific heat, and group velocity) and anharmonic (e.g., scattering rate) properties, based on which their thermal conductivity values are calculated. This work represents an example of using SLD simulations to understand the transport properties involving coupled magnon and phonon dynamics.

  20. Quantum many-body dynamics of ultracold atoms in optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, Stefan

    2014-04-15

    Ultracold atoms can be trapped in periodic intensity patterns of light created by counterpropagating laser beams, so-called optical lattices. In contrast to its natural counterpart, electrons in a solid state crystal, this man-made setup is very clean and highly isolated from environmental degrees of freedom. Moreover, to a large extent, the experimenter has dynamical control over the relevant system parameters: the interaction between atoms, the tunneling amplitude between lattice sites, and even the dimensionality of the lattice. These advantages render this system a unique platform for the simulation of quantum many-body dynamics for various lattice Hamiltonians as has been demonstrated in several experiments by now. The most significant step in recent times has arguably been the introduction of single-site detection of individual atoms in optical lattices. This technique, based on fluorescence microscopy, opens a new doorway for the study of quantum many-body states: the detection of the microscopic atom configuration. In this thesis, we theoretically explore the dynamics of ultracold atoms in optical lattices for various setups realized in present-day experiments. Our main focus lies on aspects that become experimentally accessible by (realistic extensions of) the novel single-site measurement technique. The first part deals with the expansion of initially confined atoms in a homogeneous lattice, which is one way to create atomic motion in experiments. We analyze the buildup of spatial correlations during the expansion of a finitely extended band insulating state in one dimension. The numerical simulation reveals the creation of remote spin-entangled fermions in the strongly interacting regime. We discuss the experimental observation of such spin-entangled pairs by means of a single-site measurement. Furthermore, we suggest studying the impact of observations on the expansion dynamics for the extreme case of a projective measurement in the spatial occupation

  1. Quantum many-body dynamics of ultracold atoms in optical lattices

    International Nuclear Information System (INIS)

    Kessler, Stefan

    2014-01-01

    Ultracold atoms can be trapped in periodic intensity patterns of light created by counterpropagating laser beams, so-called optical lattices. In contrast to its natural counterpart, electrons in a solid state crystal, this man-made setup is very clean and highly isolated from environmental degrees of freedom. Moreover, to a large extent, the experimenter has dynamical control over the relevant system parameters: the interaction between atoms, the tunneling amplitude between lattice sites, and even the dimensionality of the lattice. These advantages render this system a unique platform for the simulation of quantum many-body dynamics for various lattice Hamiltonians as has been demonstrated in several experiments by now. The most significant step in recent times has arguably been the introduction of single-site detection of individual atoms in optical lattices. This technique, based on fluorescence microscopy, opens a new doorway for the study of quantum many-body states: the detection of the microscopic atom configuration. In this thesis, we theoretically explore the dynamics of ultracold atoms in optical lattices for various setups realized in present-day experiments. Our main focus lies on aspects that become experimentally accessible by (realistic extensions of) the novel single-site measurement technique. The first part deals with the expansion of initially confined atoms in a homogeneous lattice, which is one way to create atomic motion in experiments. We analyze the buildup of spatial correlations during the expansion of a finitely extended band insulating state in one dimension. The numerical simulation reveals the creation of remote spin-entangled fermions in the strongly interacting regime. We discuss the experimental observation of such spin-entangled pairs by means of a single-site measurement. Furthermore, we suggest studying the impact of observations on the expansion dynamics for the extreme case of a projective measurement in the spatial occupation

  2. The lattice dynamical studies of rare earth compounds: electron-phonon interactions

    International Nuclear Information System (INIS)

    Jha, Prafulla K.; Sanyal, Sankar P.; Singh, R.K.

    2002-01-01

    During the last two decades chalcogenides and pnictides of rare earth (RE) atoms have drawn considerable attention of the solid state physicists because of their peculiar electronic, magnetic, optical and phonon properties. Some of these compounds e.g. sulphides and selenides of cerium (Ce), samarium (Sm), yttrium (Y), ytterbium (Yb), europium (Eu) and thulium (Tm) and their alloys show nonintegral valence (between 2 and 3), arising due to f-d electron hybridization at ambient temperature and pressure. The rare earth mixed valence compounds (MVC) reviewed in this article crystallize in simple cubic structure. Most of these compounds show the existence of strong electron-phonon coupling at half way to the zone boundary. This fact manifests itself through softening of the longitudinal acoustic mode, negative value of elastic constant C 12 etc. The purpose of this contribution is to review some of the recent activities in the fields of lattice dynamics and allied properties of rare earth compounds. The present article is primarily devoted to review the effect of electron-phonon interactions on the dynamical properties of rare earth compounds by using the lattice dynamical model theories based on charged density deformations and long-range many body forces. While the long range charge transfer effect arises due to f-d hybridization of nearly degenerate 4f-5d bands of rare earth ions, the density deformation comes into the picture of breathing motion of electron shells. These effects of charge transfer and charge density deformation when considered in the lattice dynamical models namely the three body force rigid ion model (TRM) and breathing shell model (BSM) are quite successful in explaining the phonon anomalies in these compounds and undoubtedly unraveled many important physical process governing the phonon anomalies in rare earth compounds

  3. Ab initio study on stacking sequences, free energy, dynamical stability and potential energy surfaces of graphite structures

    International Nuclear Information System (INIS)

    Anees, P; Valsakumar, M C; Chandra, Sharat; Panigrahi, B K

    2014-01-01

    Ab initio simulations have been performed to study the structure, energetics and stability of several plausible stacking sequences in graphite. These calculations suggest that in addition to the standard structures, graphite can also exist in AA-simple hexagonal, AB-orthorhombic and ABC-hexagonal type stacking. The free energy difference between these structures is very small (∼1 meV/atom), and hence all the structures can coexist from purely energetic considerations. Calculated x-ray diffraction patterns are similar to those of the standard structures for 2θ ⩽ 70°. Shear elastic constant C 44 is negative in AA-simple hexagonal, AB-orthorhombic and ABC-hexagonal structures, suggesting that these structures are mechanically unstable. Phonon dispersions show that the frequencies of some modes along the Γ–A direction in the Brillouin zone are imaginary in all of the new structures, implying that these structures are dynamically unstable. Incorporation of zero point vibrational energy via the quasi-harmonic approximation does not result in the restoration of dynamical stability. Potential energy surfaces for the unstable normal modes are seen to have the topography of a potential hill for all the new structures, confirming that all of the new structures are inherently unstable. The fact that the potential energy surface is not in the form of a double well implies that the structures are linearly as well as globally unstable. (paper)

  4. Vibrational circular dichroism from ab initio molecular dynamics and nuclear velocity perturbation theory in the liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Scherrer, Arne [Martin-Luther-Universität Halle-Wittenberg, Institut für Chemie, von-Danckelmann-Platz 4, 06120 Halle (Germany); Département de Chimie, École Normale supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, PASTEUR, 24 rue Lhomond, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris (France); Vuilleumier, Rodolphe, E-mail: rodolphe.vuilleumier@ens.fr [Département de Chimie, École Normale supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, PASTEUR, 24 rue Lhomond, 75005 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris (France); Sebastiani, Daniel, E-mail: daniel.sebastiani@chemie.uni-halle.de [Martin-Luther-Universität Halle-Wittenberg, Institut für Chemie, von-Danckelmann-Platz 4, 06120 Halle (Germany)

    2016-08-28

    We report the first fully ab initio calculation of dynamical vibrational circular dichroism spectra in the liquid phase using nuclear velocity perturbation theory (NVPT) derived electronic currents. Our approach is rigorous and general and thus capable of treating weak interactions of chiral molecules as, e.g., chirality transfer from a chiral molecule to an achiral solvent. We use an implementation of the NVPT that is projected along the dynamics to obtain the current and magnetic dipole moments required for accurate intensities. The gauge problem in the liquid phase is resolved in a twofold approach. The electronic expectation values are evaluated in a distributed origin gauge, employing maximally localized Wannier orbitals. In a second step, the gauge invariant spectrum is obtained in terms of a scaled molecular moments, which allows to systematically include solvent effects while keeping a significant signal-to-noise ratio. We give a thorough analysis and discussion of this choice of gauge for the liquid phase. At low temperatures, we recover the established double harmonic approximation. The methodology is applied to chiral molecules ((S)-d{sub 2}-oxirane and (R)-propylene-oxide) in the gas phase and in solution. We find an excellent agreement with the theoretical and experimental references, including the emergence of signals due to chirality transfer from the solute to the (achiral) solvent.

  5. Dynamics of Rydberg atom lattices in the presence of noise and dissipation

    International Nuclear Information System (INIS)

    Abdussalam, Wildan

    2017-01-01

    The work presented in this dissertation concerns dynamics of Rydberg atom lattices in the presence of noise and dissipation. Rydberg atoms possess a number of exaggerated properties, such as a strong van der Waals interaction. The interplay of that interaction, coherent driving and decoherence leads to intriguing non-equilibrium phenomena. Here, we study the non-equilibrium physics of driven atom lattices in the presence of decoherence caused by either laser phase noise or strong decay. In the first case, we compare between global and local noise and explore their effect on the number of excitations and the full counting statistics. We find that both types of noise give rise to a characteristic distribution of the Rydberg excitation number. The main method employed is the Langevin equation but for the sake of efficiency in certain regimes, we use a Markovian master equation and Monte Carlo rate equations, respectively. In the second case, we consider dissipative systems with more general power-law interactions. We determine the phase diagram in the steady state and analyse its generation dynamics using Monte Carlo rate equations. In contrast to nearest-neighbour models, there is no transition to long-range-ordered phases for realistic interactions and resonant driving. Yet, for finite laser detunings, we show that Rydberg atom lattices can undergo a dissipative phase transition to a long-range-ordered antiferromagnetic phase. We identify the advantages of Monte Carlo rate equations over mean field predictions. Having studied the dynamics of Rydberg atom lattices, we study an application of the strong interactions in such systems for quantum information processing. We investigate the coherent exchange of a single photon between a superconducting microwave cavity and a lattice of strongly interacting Rydberg atoms in the presence of local electric field fluctuations plaguing the cavity surface. We show that despite the increased sensitivity of Rydberg states to

  6. Dynamics of Rydberg atom lattices in the presence of noise and dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Abdussalam, Wildan

    2017-08-07

    The work presented in this dissertation concerns dynamics of Rydberg atom lattices in the presence of noise and dissipation. Rydberg atoms possess a number of exaggerated properties, such as a strong van der Waals interaction. The interplay of that interaction, coherent driving and decoherence leads to intriguing non-equilibrium phenomena. Here, we study the non-equilibrium physics of driven atom lattices in the presence of decoherence caused by either laser phase noise or strong decay. In the first case, we compare between global and local noise and explore their effect on the number of excitations and the full counting statistics. We find that both types of noise give rise to a characteristic distribution of the Rydberg excitation number. The main method employed is the Langevin equation but for the sake of efficiency in certain regimes, we use a Markovian master equation and Monte Carlo rate equations, respectively. In the second case, we consider dissipative systems with more general power-law interactions. We determine the phase diagram in the steady state and analyse its generation dynamics using Monte Carlo rate equations. In contrast to nearest-neighbour models, there is no transition to long-range-ordered phases for realistic interactions and resonant driving. Yet, for finite laser detunings, we show that Rydberg atom lattices can undergo a dissipative phase transition to a long-range-ordered antiferromagnetic phase. We identify the advantages of Monte Carlo rate equations over mean field predictions. Having studied the dynamics of Rydberg atom lattices, we study an application of the strong interactions in such systems for quantum information processing. We investigate the coherent exchange of a single photon between a superconducting microwave cavity and a lattice of strongly interacting Rydberg atoms in the presence of local electric field fluctuations plaguing the cavity surface. We show that despite the increased sensitivity of Rydberg states to

  7. Control dynamics of interaction quenched ultracold bosons in periodically driven lattices

    Science.gov (United States)

    Mistakidis, Simeon; Schmelcher, Peter; Group of Fundamental Processes in Quantum Physics Team

    2016-05-01

    The out-of-equilibrium dynamics of ultracold bosons following an interaction quench upon a periodically driven optical lattice is investigated. It is shown that an interaction quench triggers the inter-well tunneling dynamics, while for the intra-well dynamics breathing and cradle-like processes can be generated. In particular, the occurrence of a resonance between the cradle and tunneling modes is revealed. On the other hand, the employed periodic driving enforces the bosons in the mirror wells to oscillate out-of-phase and to exhibit a dipole mode, while in the central well the cloud experiences a breathing mode. The dynamical behaviour of the system is investigated with respect to the driving frequency revealing a resonant behaviour of the intra-well dynamics. To drive the system in a highly non-equilibrium state an interaction quench upon the driving is performed giving rise to admixtures of excitations in the outer wells, an enhanced breathing in the center and an amplification of the tunneling dynamics. As a result of the quench the system experiences multiple resonances between the inter- and intra-well dynamics at different quench amplitudes. Deutsche Forschungsgemeinschaft, SFB 925 ``Light induced dynamics and control of correlated quantum systems''.

  8. Slow quench dynamics of a one-dimensional Bose gas confined to an optical lattice.

    Science.gov (United States)

    Bernier, Jean-Sébastien; Roux, Guillaume; Kollath, Corinna

    2011-05-20

    We analyze the effect of a linear time variation of the interaction strength on a trapped one-dimensional Bose gas confined to an optical lattice. The evolution of different observables such as the experimentally accessible on site particle distribution are studied as a function of the ramp time by using time-dependent numerical techniques. We find that the dynamics of a trapped system typically displays two regimes: For long ramp times, the dynamics is governed by density redistribution, while at short ramp times, local dynamics dominates as the evolution is identical to that of an homogeneous system. In the homogeneous limit, we also discuss the nontrivial scaling of the energy absorbed with the ramp time.

  9. Spectroscopic study of uracil, 1-methyluracil and 1-methyl-4-thiouracil: Hydrogen bond interactions in crystals and ab-initio molecular dynamics

    Science.gov (United States)

    Brela, Mateusz Z.; Boczar, Marek; Malec, Leszek M.; Wójcik, Marek J.; Nakajima, Takahito

    2018-05-01

    Hydrogen bond networks in uracil, 1-methyluracil and 1-methyl-4-thiouracil were studied by ab initio molecular dynamics as well as analysis of the orbital interactions. The power spectra calculated by ab initio molecular dynamics for atoms involved in hydrogen bonds were analyzed. We calculated spectra by using anharmonic approximation based on the autocorrelation function of the atom positions obtained from the Born-Oppenheimer simulations. Our results show the differences between hydrogen bond networks in uracil and its methylated derivatives. The studied methylated derivatives, 1-methyluracil as well as 1-methyl-4-thiouracil, form dimeric structures in the crystal phase, while uracil does not form that kind of structures. The presence of sulfur atom instead oxygen atom reflects weakness of the hydrogen bonds that build dimers.

  10. Lattice dynamics, elasticity and magnetic abnormality in ordered crystalline alloys Fe3Pt at high pressures

    Science.gov (United States)

    Cheng, Tai-min; Yu, Guo-Liang; Su, Yong; Ge, Chong-Yuan; Zhang, Xin-Xin; Zhu, Lin; Li, Lin

    2018-05-01

    The ordered crystalline Invar alloy Fe3Pt is in a special magnetic critical state, under which the lattice dynamic stability of the system is extremely sensitive to external pressures. We studied the pressure dependence of enthalpy and magnetism of Fe3Pt in different crystalline alloys by using the first-principles projector augmented-wave method based on the density functional theory. Results show that the P4/mbm structure is the ground state structure and is more stable relative to other structures at pressures below 18.54 GPa. The total magnetic moments of L12, I4/mmm and DO22 structures decrease rapidly with pressure and oscillate near the ferromagnetic collapse critical pressure. At the pressure of 43 GPa, the ferrimagnetic property in DO22 structure becomes apparently strengthened and its volume increases rapidly. The lattice dynamics calculation for L12 structures at high pressures shows that the spontaneous magnetization of the system in ferromagnetic states induces the softening of the transverse acoustic phonon TA1 (M), and there exists a strong spontaneous volume magnetostriction at pressures below 26.95 GPa. Especially, the lattice dynamics stability is sensitive to pressure, in the pressure range between the ferromagnetic collapse critical pressure (41.9 GPa) and the magnetism completely disappearing pressure (57.25 GPa), and near the pressure of phase transition from L12 to P4/mbm structure (27.27 GPa). Moreover, the instability of magnetic structure leads to a prominent elastic modulus oscillation, and the spin polarizability of electrons near the Fermi level is very sensitive to pressures in that the pressure range. The pressure induces the stability of the phonon spectra of the system at pressures above 57.25 GPa.

  11. Electronic, Optical, and Lattice Dynamical Properties of Tetracalcium Trialuminate (Ca4Al6O13

    Directory of Open Access Journals (Sweden)

    Huayue Mei

    2018-03-01

    Full Text Available The electronic, optical, and lattice dynamical properties of tetracalcium trialuminate (Ca4Al6O13 with a special sodalite cage structure were calculated based on the density functional theory. Theoretical results show that Ca4Al6O13 is ductile and weakly anisotropic. The calculated Young’s modulus and Poisson ratio are 34.18 GPa and 0.32, respectively. Ca4Al6O13 is an indirect-gap semiconductor with a band gap of 5.41 eV. The top of the valence band derives from O 2p states, and the bottom of conduction band consists of Ca 3d states. Transitions from O 2p, 2s states to empty Ca 4s, 3d and Al 3s, 3p states constitute the major peaks of the imaginary part of the dielectric function. Ca4Al6O13 is a good UV absorber for photoelectric devices due to the high absorption coefficient and low reflectivity. The lattice vibration analysis reveals that O atoms contribute to the high-frequency portions of the phonon spectra, while Ca and Al atoms make important contributions to the middle- and low-frequency portions. At the center of the first Brillouin zone, lattice vibrations include the Raman active modes (E, A1, infrared active mode (T2, and silentmodes (T1, A2. Typical atomic displacement patterns were also investigated to understand the vibration modes more intuitively.

  12. Nonlinear stochastic interacting dynamics and complexity of financial gasket fractal-like lattice percolation

    Science.gov (United States)

    Zhang, Wei; Wang, Jun

    2018-05-01

    A novel nonlinear stochastic interacting price dynamics is proposed and investigated by the bond percolation on Sierpinski gasket fractal-like lattice, aim to make a new approach to reproduce and study the complexity dynamics of real security markets. Fractal-like lattices correspond to finite graphs with vertices and edges, which are similar to fractals, and Sierpinski gasket is a well-known example of fractals. Fractional ordinal array entropy and fractional ordinal array complexity are introduced to analyze the complexity behaviors of financial signals. To deeper comprehend the fluctuation characteristics of the stochastic price evolution, the complexity analysis of random logarithmic returns and volatility are preformed, including power-law distribution, fractional sample entropy and fractional ordinal array complexity. For further verifying the rationality and validity of the developed stochastic price evolution, the actual security market dataset are also studied with the same statistical methods for comparison. The empirical results show that this stochastic price dynamics can reconstruct complexity behaviors of the actual security markets to some extent.

  13. RVB signatures in the spin dynamics of the square-lattice Heisenberg antiferromagnet

    Science.gov (United States)

    Ghioldi, E. A.; Gonzalez, M. G.; Manuel, L. O.; Trumper, A. E.

    2016-03-01

    We investigate the spin dynamics of the square-lattice spin-\\frac{1}{2} Heisenberg antiferromagnet by means of an improved mean-field Schwinger boson calculation. By identifying both, the long-range Néel and the RVB-like components of the ground state, we propose an educated guess for the mean-field magnetic excitation consisting on a linear combination of local and bond spin flips to compute the dynamical structure factor. Our main result is that when this magnetic excitation is optimized in such a way that the corresponding sum rule is fulfilled, we recover the low- and high-energy spectral weight features of the experimental spectrum. In particular, the anomalous spectral weight depletion at (π,0) found in recent inelastic neutron scattering experiments can be attributed to the interference of the triplet bond excitations of the RVB component of the ground state. We conclude that the Schwinger boson theory seems to be a good candidate to adequately interpret the dynamic properties of the square-lattice Heisenberg antiferromagnet.

  14. Lattice dynamics study of low energy guest–host coupling in clathrate hydrate

    International Nuclear Information System (INIS)

    Yang Yuehai; Dong Shunle; Wang Lin

    2008-01-01

    Our lattice dynamics simulation of Xe-hydrate with four-site TIP4P oxygen-shell model can accurately reproduce each peak position in the inelastic incoherent neutron scattering spectrum at the acoustic band (below 15meV) and yield correct relative intensity. Based on the results, the uncertain profile at ∼6 meV is assigned to anharmonic guest modes coupled strongly to small cages. Blue shift is proposed in phonon dispersion sheet in the case of anticrossing and found to be an evident signal for guest-host coupling that explains the anomalous thermal conductivity of clathrate hydrate

  15. Renormalisation constants of quark bilinears in lattice QCD with four dynamical Wilson quarks

    International Nuclear Information System (INIS)

    Blossier, Benoit; Brinet, Mariane; Carrasco, Nuria

    2011-12-01

    We present preliminary results of the non-perturbative computation of the RI-MOM renormalization constants in a mass-independent scheme for the action with Iwasaki glue and four dynamical Wilson quarks employed by ETMC. Our project requires dedicated gauge ensembles with four degenerate sea quark flavours at three lattice spacings and at several values of the standard and twisted quark mass parameters. The RI-MOM renormalization constants are obtained from appropriate O(a) improved estimators extrapolated to the chiral limit. (orig.)

  16. Renormalisation constants of quark bilinears in lattice QCD with four dynamical Wilson quarks

    Energy Technology Data Exchange (ETDEWEB)

    Blossier, Benoit [CNRS et Paris-Sud 11 Univ., Orsay (France). Lab. de Physique Theorique; Brinet, Mariane [CNRS/IN2P3/UJF, Grenoble (France). Lab. de Physique Subatomique et de Cosmologie; Carrasco, Nuria [Valencia Univ., Burjassot (ES). Dept. de Fisica Teorica and IFC] (and others)

    2011-12-15

    We present preliminary results of the non-perturbative computation of the RI-MOM renormalization constants in a mass-independent scheme for the action with Iwasaki glue and four dynamical Wilson quarks employed by ETMC. Our project requires dedicated gauge ensembles with four degenerate sea quark flavours at three lattice spacings and at several values of the standard and twisted quark mass parameters. The RI-MOM renormalization constants are obtained from appropriate O(a) improved estimators extrapolated to the chiral limit. (orig.)

  17. Factorization of the hypergeometric-type difference equation on non-uniform lattices: dynamical algebra

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Nodarse, R [Departamento de Analisis Matematico, Universidad de Sevilla, Apdo. 1160, E-41080 Sevilla (Spain); Atakishiyev, N M [Instituto de Matematicas, UNAM, Apartado Postal 273-3, CP 62210 Cuernavaca, Morelos, Mexico (Germany); Costas-Santos, R S [Departamento de Matematicas, EPS, Universidad Carlos III de Madrid, Ave. Universidad 30, E-28911, Leganes, Madrid (Spain)

    2005-01-07

    We argue that one can factorize the difference equation of hypergeometric type on non-uniform lattices in the general case. It is shown that in the most cases of q-linear spectrum of the eigenvalues, this directly leads to the dynamical symmetry algebra su{sub q}(1, 1), whose generators are explicitly constructed in terms of the difference operators, obtained in the process of factorization. Thus all models with the q-linear spectrum (some of them, but not all, previously considered in a number of publications) can be treated in a unified form.

  18. Partially quenched lattice QCD with two degenerate dynamical light Wilson quarks

    International Nuclear Information System (INIS)

    De, Asit K.; Harindranath, A.; Maiti, Jyotirmoy

    2006-01-01

    We present our results of numerical studies of partially quenched latticed QCD with two degenerate flavors of dynamical quarks. Gauge configurations are generated with Wilson gauge action and tadpole improved Wilson fermions at β = 5.6 and K sea = 0.155, 0.156, 0.157 and 0.158. Suitably smeared gauge configurations are used to calculate the static interquark potential in order to set the physical scale. Mesonic propagators are calculated at above mentioned four different values of K val for each K sea . We present results for pion and rho masses. (author)

  19. Surface Solvation of Halogen Anions in Water Clusters: An ab initio Molecular Dynamics Study of the Cl-(H.sub.2./sub.O).sub.6./sub. Complex

    Czech Academy of Sciences Publication Activity Database

    Tobias, D. J.; Jungwirth, Pavel; Parrinello, M.

    2001-01-01

    Roč. 114, č. 16 (2001), s. 7036-7044 ISSN 0021-9606 R&D Projects: GA MŠk LN00A032 Grant - others:NATO Science Program(XE) CLG-974459 Institutional research plan: CEZ:AV0Z4040901 Keywords : cluster * ab initio molecular dynamics * anionic solvation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.147, year: 2001

  20. Ultrafast lattice dynamics in photoexcited nanostructures. Femtosecond X-ray diffraction with optimized evaluation schemes

    International Nuclear Information System (INIS)

    Schick, Daniel

    2013-01-01

    Within the course of this thesis, I have investigated the complex interplay between electron and lattice dynamics in nanostructures of perovskite oxides. Femtosecond hard X-ray pulses were utilized to probe the evolution of atomic rearrangement directly, which is driven by ultrafast optical excitation of electrons. The physics of complex materials with a large number of degrees of freedom can be interpreted once the exact fingerprint of ultrafast lattice dynamics in time-resolved X-ray diffraction experiments for a simple model system is well known. The motion of atoms in a crystal can be probed directly and in real-time by femtosecond pulses of hard X-ray radiation in a pump-probe scheme. In order to provide such ultrashort X-ray pulses, I have built up a laser-driven plasma X-ray source. The setup was extended by a stable goniometer, a two-dimensional X-ray detector and a cryogen-free cryostat. The data acquisition routines of the diffractometer for these ultrafast X-ray diffraction experiments were further improved in terms of signal-to-noise ratio and angular resolution. The implementation of a high-speed reciprocal-space mapping technique allowed for a two-dimensional structural analysis with femtosecond temporal resolution. I have studied the ultrafast lattice dynamics, namely the excitation and propagation of coherent phonons, in photoexcited thin films and superlattice structures of the metallic perovskite SrRuO 3 . Due to the quasi-instantaneous coupling of the lattice to the optically excited electrons in this material a spatially and temporally well-defined thermal stress profile is generated in SrRuO 3 . This enables understanding the effect of the resulting coherent lattice dynamics in time-resolved X-ray diffraction data in great detail, e.g. the appearance of a transient Bragg peak splitting in both thin films and superlattice structures of SrRuO 3 . In addition, a comprehensive simulation toolbox to calculate the ultrafast lattice dynamics and the

  1. Lattice dynamics of intercalation and layer compounds by 119Sn Moessbauer effect spectroscopy

    International Nuclear Information System (INIS)

    Herber, R.H.; Davis, R.F.

    1976-01-01

    Gamma ray resonance spectroscopy using the 28-keV radiation from 119 Sn was employed to study the lattice dynamics of layer compounds and their metal atom intercalates. It was found that in solids in which the ( 119 Sn) Moessbauer atom is held either as an ion or as an isolated atom in the structure, both the characteristic lattice temperature (THETA/sub M/) value calculated from the temperature dependence of the recoil-free fraction (evaluated in the high temperature limit where T is greater than THETA/2 and in the absence of significant anharmonic effects) and characteristic temperature (THETA/sub CT/) value calculated by the Craig-Taylor procedure give internally consistent values for the lattice temperature of the solid as probed by the Moessbauer atom. In cases where this probe atom is part of a covalently bonded structure, as for example in the extended polymeric SnS 2 , SnSe 2 and related solids, the difference between THETA/sub M/ and THETA/sub CT/ will be significant, and this difference should be useful in the elucidation of the intermolecular and bonding forces in such solids and their relationship to the solid state properties of these materials. It is noted that the experimental determination of a unique lattice temperature by Moessbauer spectroscopic methods provides the solid state physicist with an additional parameter which should be useful in the characterization of solids, and, more importantly, may serve as a diagnostic tool in the assessment of the effects of systematic changes (such as, for example, compositional variations, radiation damage effects, implantation, and intercalation consequences) brought about in such materials

  2. Ab initio dynamics and photoionization mass spectrometry reveal ion-molecule pathways from ionized acetylene clusters to benzene cation.

    Science.gov (United States)

    Stein, Tamar; Bandyopadhyay, Biswajit; Troy, Tyler P; Fang, Yigang; Kostko, Oleg; Ahmed, Musahid; Head-Gordon, Martin

    2017-05-23

    The growth mechanism of hydrocarbons in ionizing environments, such as the interstellar medium (ISM), and some combustion conditions remains incompletely understood. Ab initio molecular dynamics (AIMD) simulations and molecular beam vacuum-UV (VUV) photoionization mass spectrometry experiments were performed to understand the ion-molecule growth mechanism of small acetylene clusters (up to hexamers). A dramatic dependence of product distribution on the ionization conditions is demonstrated experimentally and understood from simulations. The products change from reactive fragmentation products in a higher temperature, higher density gas regime toward a very cold collision-free cluster regime that is dominated by products whose empirical formula is (C 2 H 2 ) n + , just like ionized acetylene clusters. The fragmentation products result from reactive ion-molecule collisions in a comparatively higher pressure and temperature regime followed by unimolecular decomposition. The isolated ionized clusters display rich dynamics that contain bonded C 4 H 4 + and C 6 H 6 + structures solvated with one or more neutral acetylene molecules. Such species contain large amounts (>2 eV) of excess internal energy. The role of the solvent acetylene molecules is to affect the barrier crossing dynamics in the potential energy surface (PES) between (C 2 H 2 ) n + isomers and provide evaporative cooling to dissipate the excess internal energy and stabilize products including the aromatic ring of the benzene cation. Formation of the benzene cation is demonstrated in AIMD simulations of acetylene clusters with n > 3, as well as other metastable C 6 H 6 + isomers. These results suggest a path for aromatic ring formation in cold acetylene-rich environments such as parts of the ISM.

  3. Ab initio dynamics and photoionization mass spectrometry reveal ion–molecule pathways from ionized acetylene clusters to benzene cation

    Science.gov (United States)

    Stein, Tamar; Bandyopadhyay, Biswajit; Troy, Tyler P.; Fang, Yigang; Kostko, Oleg

    2017-01-01

    The growth mechanism of hydrocarbons in ionizing environments, such as the interstellar medium (ISM), and some combustion conditions remains incompletely understood. Ab initio molecular dynamics (AIMD) simulations and molecular beam vacuum-UV (VUV) photoionization mass spectrometry experiments were performed to understand the ion–molecule growth mechanism of small acetylene clusters (up to hexamers). A dramatic dependence of product distribution on the ionization conditions is demonstrated experimentally and understood from simulations. The products change from reactive fragmentation products in a higher temperature, higher density gas regime toward a very cold collision-free cluster regime that is dominated by products whose empirical formula is (C2H2)n+, just like ionized acetylene clusters. The fragmentation products result from reactive ion–molecule collisions in a comparatively higher pressure and temperature regime followed by unimolecular decomposition. The isolated ionized clusters display rich dynamics that contain bonded C4H4+ and C6H6+ structures solvated with one or more neutral acetylene molecules. Such species contain large amounts (>2 eV) of excess internal energy. The role of the solvent acetylene molecules is to affect the barrier crossing dynamics in the potential energy surface (PES) between (C2H2)n+ isomers and provide evaporative cooling to dissipate the excess internal energy and stabilize products including the aromatic ring of the benzene cation. Formation of the benzene cation is demonstrated in AIMD simulations of acetylene clusters with n > 3, as well as other metastable C6H6+ isomers. These results suggest a path for aromatic ring formation in cold acetylene-rich environments such as parts of the ISM. PMID:28484019

  4. Ab initio molecular dynamics study of thermite reaction at Al and CuO nano-interfaces at different temperatures

    Science.gov (United States)

    Tang, Cui-Ming; Chen, Xiao-Xu; Cheng, Xin-Lu; Zhang, Chao-Yang; Lu, Zhi-Peng

    2018-05-01

    The thermite reaction at Al/CuO nano-interfaces is investigated with ab initio molecular dynamics calculations in canonical ensemble at 500 K, 800 K, 1200 K and 1500 K, respectively. The reaction process and reaction products are analyzed in terms of chemical bonds, average charge, time constants and total potential energy. The activity of the reactants enhances with increasing temperature, which induces a faster thermite reaction. The alloy reaction obviously expands outward at Cu-rich interface of Al/CuO system, and the reaction between Al and O atoms obviously expands outward at O-rich interface as temperature increases. Different reaction products are found at the outermost layer of different interfaces in the Al/CuO system. In generally, the average charge of the outer layer aluminum atoms (i.e., Al1, Al2, Al5 and Al6) increases with temperature. The potential energy of Al/CuO system decreases significantly, which indicates that drastic exothermic reaction occurs at the Al/CuO system. This research enhances fundamental understanding in temperature effect on the thermite reaction at atomic level, which can potentially open new possibilities for its industrial application.

  5. Ab initio molecular dynamics simulation of interstitial diffusion in Ni–Cr alloys and implications for radiation induced segregation

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, L., E-mail: lmbarnard@wisc.edu; Morgan, D., E-mail: ddmorgan@wisc.edu

    2014-06-01

    In this study, ab initio molecular dynamics, implemented via density functional theory, is used to simulate self-interstitial diffusion in pure Ni and in the Ni-18 at.% Cr model alloy. Interstitial tracer diffusivities are measured from simulation results for pure Ni and for both Ni and Cr in the Ni–18Cr alloy. An Arrhenius function fit to these tracer diffusivities is then used in a rate theory model for radiation induced segregation, along with the experimentally measured vacancy diffusivities. It is predicted that interstitial diffusion has a tendency to cause Cr enrichment near grain boundaries, partially counterbalancing the tendency for vacancy diffusion to cause Cr depletion. This results in more mild Cr depletion than would result if only the vacancy diffusion were accounted for, in better agreement with experiment. This physical description of RIS in Ni–Cr alloys, which invokes the effects of both vacancy and interstitial diffusion, is distinct from the conventional description which accounts only for the effect of vacancy diffusion.

  6. Hydration structures of U(III) and U(IV) ions from ab initio molecular dynamics simulations

    International Nuclear Information System (INIS)

    Leung, Kevin; Nenoff, Tina M.

    2012-01-01

    We apply DFT+U-based ab initio molecular dynamics simulations to study the hydration structures of U(III) and U(IV) ions, pertinent to redox reactions associated with uranium salts in aqueous media. U(III) is predicted to be coordinated to 8 water molecules, while U(IV) has a hydration number between 7 and 8. At least one of the innershell water molecules of the hydrated U(IV) complex becomes spontaneously deprotonated. As a result, the U(IV)–O pair correlation function exhibits a satellite peak at 2.15 Å associated with the shorter U(IV)–(OH − ) bond. This feature is not accounted for in analysis of extended x-ray absorption fine structure and x-ray adsorption near edge structure measurements, which yield higher estimates of U(IV) hydration numbers. This suggests that it may be useful to include the effect of possible hydrolysis in future interpretation of experiments, especially when the experimental pH is close to the reported hydrolysis equilibrium constant value.

  7. Modelling the local atomic structure of molybdenum in nuclear waste glasses with ab initio molecular dynamics simulations.

    Science.gov (United States)

    Konstantinou, Konstantinos; Sushko, Peter V; Duffy, Dorothy M

    2016-09-21

    The nature of chemical bonding of molybdenum in high level nuclear waste glasses has been elucidated by ab initio molecular dynamics simulations. Two compositions, (SiO 2 ) 57.5 -(B 2 O 3 ) 10 -(Na 2 O) 15 -(CaO) 15 -(MoO 3 ) 2.5 and (SiO 2 ) 57.3 -(B 2 O 3 ) 20 -(Na 2 O) 6.8 -(Li 2 O) 13.4 -(MoO 3 ) 2.5 , were considered in order to investigate the effect of ionic and covalent components on the glass structure and the formation of the crystallisation precursors (Na 2 MoO 4 and CaMoO 4 ). The coordination environments of Mo cations and the corresponding bond lengths calculated from our model are in excellent agreement with experimental observations. The analysis of the first coordination shell reveals two different types of molybdenum host matrix bonds in the lithium sodium borosilicate glass. Based on the structural data and the bond valence model, we demonstrate that the Mo cation can be found in a redox state and the molybdate tetrahedron can be connected with the borosilicate network in a way that inhibits the formation of crystalline molybdates. These results significantly extend our understanding of bonding in Mo-containing nuclear waste glasses and demonstrate that tailoring the glass composition to specific heavy metal constituents can facilitate incorporation of heavy metals at high concentrations.

  8. Proton affinity of the histidine-tryptophan cluster motif from the influenza A virus from ab initio molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bankura, Arindam; Klein, Michael L.; Carnevale, Vincenzo, E-mail: vincenzo.carnevale@temple.edu

    2013-08-30

    Highlights: • The estimated pK{sub a} is in agreement with the experimental one. • The affinity for protons is similar to that of a histidine residue in aqueous solution. • The electrostatic environment is responsible for the stabilization of the charged imidazolium moiety. - Abstract: Ab initio molecular dynamics calculations have been used to compare and contrast the deprotonation reaction of a histidine residue in aqueous solution with the situation arising in a histidine-tryptophan cluster. The latter is used as a model of the proton storage unit present in the pore of the M2 proton conducting ion channel. We compute potentials of mean force for the dissociation of a proton from the Nδ and N∊ positions of the imidazole group to estimate the pK{sub a}s. Anticipating our results, we will see that the estimated pK{sub a} for the first protonation event of the M2 channel is in good agreement with experimental estimates. Surprisingly, despite the fact that the histidine is partially desolvated in the M2 channel, the affinity for protons is similar to that of a histidine in aqueous solution. Importantly, the electrostatic environment provided by the indoles is responsible for the stabilization of the charged imidazolium.

  9. Ab initio molecular dynamics simulation of interstitial diffusion in Ni–Cr alloys and implications for radiation induced segregation

    International Nuclear Information System (INIS)

    Barnard, L.; Morgan, D.

    2014-01-01

    In this study, ab initio molecular dynamics, implemented via density functional theory, is used to simulate self-interstitial diffusion in pure Ni and in the Ni-18 at.% Cr model alloy. Interstitial tracer diffusivities are measured from simulation results for pure Ni and for both Ni and Cr in the Ni–18Cr alloy. An Arrhenius function fit to these tracer diffusivities is then used in a rate theory model for radiation induced segregation, along with the experimentally measured vacancy diffusivities. It is predicted that interstitial diffusion has a tendency to cause Cr enrichment near grain boundaries, partially counterbalancing the tendency for vacancy diffusion to cause Cr depletion. This results in more mild Cr depletion than would result if only the vacancy diffusion were accounted for, in better agreement with experiment. This physical description of RIS in Ni–Cr alloys, which invokes the effects of both vacancy and interstitial diffusion, is distinct from the conventional description which accounts only for the effect of vacancy diffusion

  10. Study on Exploration of Azeotropic Point of Pb-Sb Alloys by Vacuum Distillation and Ab Initio Molecular Dynamic Simulation

    Science.gov (United States)

    Song, Bingyi; Jiang, Wenlong; Yang, Bin; Chen, Xiumin; Xu, Baoqiang; Kong, Lingxin; Liu, Dachun; Dai, Yongnian

    2016-10-01

    The possibility of the separation of Pb-Sb alloys by vacuum distillation was investigated theoretically. The results show that Pb and Sb can be separated by vacuum distillation. However, the experimental results show that vacuum distillation technique does not provide clear separation. According to the literature, Pb-Sb alloys belong to azeotropic compounds under some certain temperature; the experiment and computer simulation were carried out based on the exceptional condition so as to analyze the reason from the experiment and microstructure of Pb-Sb alloys perspective. The separation of Pb-Sb alloys by vacuum distillation was experimentally carried out to probe the azeotropic point. Also, the functions, such as partial radial distributions functions, the structure factor, mean square displacement, and the density of state, were calculated by ab-initio molecular dynamics for the representation of the structure and properties of Pb-Sb alloys with different composition of Sb. The experimental results indicate that there exists common volatilization for Pb-Sb alloys when Sb content is 16.5 wt pct. On the other hand, the calculation results show that there is an intense interaction between Pb and Sb when Sb content is 22 wt pct, which supports the experimental results although Sb content is slightly deviation.

  11. Ab-initio study on the absorption spectrum of color change sapphire based on first-principles calculations with considering lattice relaxation-effect

    Science.gov (United States)

    Novita, Mega; Nagoshi, Hikari; Sudo, Akiho; Ogasawara, Kazuyoshi

    2018-01-01

    In this study, we performed an investigation on α-Al2O3: V3+ material, or the so-called color change sapphire, based on first-principles calculations without referring to any experimental parameter. The molecular orbital (MO) structure was estimated by the one-electron MO calculations using the discrete variational-Xα (DV-Xα) method. Next, the absorption spectra were estimated by the many-electron calculations using the discrete variational multi-electron (DVME) method. The effect of lattice relaxation on the crystal structures was estimated based on the first-principles band structure calculations. We performed geometry optimizations on the pure α-Al2O3 and with the impurity V3+ ion using Cambridge Serial Total Energy Package (CASTEP) code. The effect of energy corrections such as configuration dependence correction and correlation correction was also investigated in detail. The results revealed that the structural change on the α-Al2O3: V3+ resulted from the geometry optimization improved the calculated absorption spectra. By a combination of both the lattice relaxation-effect and the energy correction-effect improve the agreement to the experiment fact.

  12. Fast optimization of binary clusters using a novel dynamic lattice searching method

    International Nuclear Information System (INIS)

    Wu, Xia; Cheng, Wen

    2014-01-01

    Global optimization of binary clusters has been a difficult task despite of much effort and many efficient methods. Directing toward two types of elements (i.e., homotop problem) in binary clusters, two classes of virtual dynamic lattices are constructed and a modified dynamic lattice searching (DLS) method, i.e., binary DLS (BDLS) method, is developed. However, it was found that the BDLS can only be utilized for the optimization of binary clusters with small sizes because homotop problem is hard to be solved without atomic exchange operation. Therefore, the iterated local search (ILS) method is adopted to solve homotop problem and an efficient method based on the BDLS method and ILS, named as BDLS-ILS, is presented for global optimization of binary clusters. In order to assess the efficiency of the proposed method, binary Lennard-Jones clusters with up to 100 atoms are investigated. Results show that the method is proved to be efficient. Furthermore, the BDLS-ILS method is also adopted to study the geometrical structures of (AuPd) 79 clusters with DFT-fit parameters of Gupta potential

  13. Structural and lattice dynamics studies of microcrystals by means of the Moessbauer effect spectroscopy

    International Nuclear Information System (INIS)

    Pasternak, M.

    1978-05-01

    Moessbauer studies on 129 I, 57 Fe and 119 Sn were conducted in several disordered and microscopic systems in order to investigate properties of lattice dynamics, chemical bonding and phase transitions. The project included the following studies: (1) Granular crystals of Sn embedded in tin-oxide matrix; the nature of the superconductivity transition of very small grains of tin was investigated. (2) Lattice dynamics and characterization of amorphous tin oxide obtained by condensing atoms of Sn and O 2 gas on a 77 K substrate. The hyperfine interaction and the temperature dependence of the Debye-Waller factor were essential to determine the structure of the amorphous tin oxide. (3) The nature of the chemical bond of the alkaly halides ionic crystals and molecules; molecules of Li, Na, K, Rb and Cs iodides were trapped in agron matrices, and the isomer-shift values were obtained from absorption spectra. (4) Binding of single iron and tin atoms to CH 4 , NH 3 , H 2 and C 6 H 6 molecules, with samples at low temperatures between 2 and 77 K; conclusions were derived regarding the cryochemistry of these systems, as related to fundamental problems of catalysis, chemisorption and ''cracking'' of organic molecules

  14. A dynamic mesh refinement technique for Lattice Boltzmann simulations on octree-like grids

    KAUST Repository

    Neumann, Philipp

    2012-04-27

    In this contribution, we present our new adaptive Lattice Boltzmann implementation within the Peano framework, with special focus on nanoscale particle transport problems. With the continuum hypothesis not holding anymore on these small scales, new physical effects - such as Brownian fluctuations - need to be incorporated. We explain the overall layout of the application, including memory layout and access, and shortly review the adaptive algorithm. The scheme is validated by different benchmark computations in two and three dimensions. An extension to dynamically changing grids and a spatially adaptive approach to fluctuating hydrodynamics, allowing for the thermalisation of the fluid in particular regions of interest, is proposed. Both dynamic adaptivity and adaptive fluctuating hydrodynamics are validated separately in simulations of particle transport problems. The application of this scheme to an oscillating particle in a nanopore illustrates the importance of Brownian fluctuations in such setups. © 2012 Springer-Verlag.

  15. Spin-lattice dynamics simulation of external field effect on magnetic order of ferromagnetic iron

    Directory of Open Access Journals (Sweden)

    C. P. Chui

    2014-03-01

    Full Text Available Modeling of field-induced magnetization in ferromagnetic materials has been an active topic in the last dozen years, yet a dynamic treatment of distance-dependent exchange integral has been lacking. In view of that, we employ spin-lattice dynamics (SLD simulations to study the external field effect on magnetic order of ferromagnetic iron. Our results show that an external field can increase the inflection point of the temperature. Also the model provides a better description of the effect of spin correlation in response to an external field than the mean-field theory. An external field has a more prominent effect on the long range magnetic order than on the short range counterpart. Furthermore, an external field allows the magnon dispersion curves and the uniform precession modes to exhibit magnetic order variation from their temperature dependence.

  16. Lattice dynamics of Ru2FeX (X = Si, Ge) Full Heusler alloys

    Science.gov (United States)

    Rizwan, M.; Afaq, A.; Aneeza, A.

    2018-05-01

    In present work, the lattice dynamics of Ru2FeX (X = Si, Ge) full Heusler alloys are investigated using density functional theory (DFT) within generalized gradient approximation (GGA) in a plane wave basis, with norm-conserving pseudopotentials. Phonon dispersion curves and phonon density of states are obtained using first-principles linear response approach of density functional perturbation theory (DFPT) as implemented in Quantum ESPRESSO code. Phonon dispersion curves indicates for both Heusler alloys that there is no imaginary phonon in whole Brillouin zone, confirming dynamical stability of these alloys in L21 type structure. There is a considerable overlapping between acoustic and optical phonon modes predicting no phonon band gap exists in dispersion curves of alloys. The same result is shown by phonon density of states curves for both Heusler alloys. Reststrahlen band for Ru2FeSi is found smaller than Ru2FeGe.

  17. Crystallographic and dynamic aspects of solid-state NMR calibration compounds: towards ab initio NMR crystallography

    DEFF Research Database (Denmark)

    Li, Xiaozhou; Tapmeyer, Lukas; Bolte, Michael

    2016-01-01

    The excellent results of dispersion-corrected density functional theory (DFT-D) calculations for static systems have been well established over the past decade. The introduction of dynamics into DFT-D calculations is a target, especially for the field of molecular NMR crystallography. Four 13C ss...

  18. N = 1 SU(2) supersymmetric Yang-Mills theory on the lattice with light dynamical Wilson gluinos

    International Nuclear Information System (INIS)

    Demmouche, Kamel

    2009-01-01

    The supersymmetric Yang-Mills (SYM) theory with one supercharge (N=1) and one additional Majorana matter-field represents the simplest model of supersymmetric gauge theory. Similarly to QCD, this model includes gauge fields, gluons, with color gauge group SU(N c ) and fermion fields, describing the gluinos. The non-perturbative dynamical features of strongly coupled supersymmetric theories are of great physical interest. For this reason, many efforts are dedicated to their formulation on the lattice. The lattice regularization provides a powerful tool to investigate non-perturbatively the phenomena occurring in SYM such as confinement and chiral symmetry breaking. In this work we perform numerical simulations of the pure SU(2) SYM theory on large lattices with small Majorana gluino masses down to about m g approx 115 MeV with lattice spacing up to a ≅0.1 fm. The gluino dynamics is simulated by the Two-Step Multi-Boson (TSMB) and the Two-Step Polynomial Hybrid Monte Carlo (TS-PHMC) algorithms. Supersymmetry (SUSY) is broken explicitly by the lattice and the Wilson term and softly by the presence of a non-vanishing gluino mass m g ≠0. However, the recovery of SUSY is expected in the infinite volume continuum limit by tuning the bare parameters to the SUSY point in the parameter space. This scenario is studied by the determination of the low-energy mass spectrum and by means of lattice SUSY Ward-Identities (WIs). (orig.)

  19. Experimentally observed evolution between dynamic patterns and intrinsic localized modes in a driven nonlinear electrical cyclic lattice

    Science.gov (United States)

    Shige, S.; Miyasaka, K.; Shi, W.; Soga, Y.; Sato, M.; Sievers, A. J.

    2018-02-01

    Locked intrinsic localized modes (ILMs) and large amplitude lattice spatial modes (LSMs) have been experimentally measured for a driven 1-D nonlinear cyclic electric transmission line, where the nonlinear element is a saturable capacitor. Depending on the number of cells and electrical lattice damping an LSM of fixed shape can be tuned across the modal spectrum. Interestingly, by tuning the driver frequency away from this spectrum the LSM can be continuously converted into ILMs and vice versa. The differences in pattern formation between simulations and experimental findings are due to a low concentration of impurities. Through this novel nonlinear excitation and switching channel in cyclic lattices either energy balanced or unbalanced LSMs and ILMs may occur. Because of the general nature of these dynamical results for nonintegrable lattices applications are to be expected. The ultimate stability of driven aero machinery containing nonlinear periodic structures may be one example.

  20. Dynamic Phases in Driven Vortex Lattices in Superconductors with Periodic Pinning Arrays.

    Science.gov (United States)

    Reichhardt, C.; Olson, C. J.; Nori, F.

    1997-03-01

    In an extensive series of simulations of driven vortices interacting with periodic pinning arrays, an extremely rich variety of novel plastic flow phases, very distinct from those observed in random arrays, are found as a function of applied driving force. We show that signatures of the transitions between these different dynamical phases appear as pronounced jumps and dips in the I-V curves, coinciding with marked changes in the microscopic structure and flow behavior of the vortex lattice. When the number of vortices is greater than the number of pinning sites, we observe up to six distinct dynamical phases, including a pinned phase, a flow of interstitial vortices between pinned vortices, a disordered flow, a 1D flow along the pinning rows, and a homogeneous flow. By varying a wide range of microscopic pinning parameters, including pinning strength, size, density, and degree of ordering, as well as varying temperature and commensurability, we obtain a series of dynamic phase diagrams. nori>A short video will also be presented to highlight these different dynamic phases.

  1. Phase controllable dynamical localization of a quantum particle in a driven optical lattice

    International Nuclear Information System (INIS)

    Singh, Navinder

    2012-01-01

    The Dunlap–Kenkre (DK) result states that dynamical localization of a driven quantum particle in a periodic lattice happens when the ratio of the field magnitude to the field frequency of the diagonal drive is a root of the ordinary Bessel function of order 0. This has been experimentally verified. A generalization of the DK result is presented here. The hitherto considered DK model contains only the diagonal forcing. In the present extended version of the DK model we consider both off-diagonal and diagonal driving fields with different frequencies and a definite relative phase between them. We analytically show that new dynamical localizations conditions exist where an important role is played by the relative phase. In appropriate limits our results reduce to DK result. -- Highlights: ► We give a generalization of the Dunlap–Kenkre result on dynamical localization. ► We consider the case of both off-diagonal and diagonal fields with a relative phase. ► We show that new dynamical localizations conditions exist. ► An important role is played by the hitherto neglected relative phase.

  2. Vibrations of bioionic liquids by ab initio molecular dynamics and vibrational spectroscopy.

    Science.gov (United States)

    Tanzi, Luana; Benassi, Paola; Nardone, Michele; Ramondo, Fabio

    2014-12-26

    Density functional theory and vibrational spectroscopy are used to investigate a class of bioionic liquids consisting of a choline cation and carboxylate anions. Through quantum mechanical studies of motionless ion pairs and molecular dynamics of small portions of the liquid, we have characterized important structural features of the ionic liquid. Hydrogen bonding produces stable ion pairs in the liquid and induces vibrational features of the carboxylate groups comparable with experimental results. Infrared and Raman spectra of liquids have been measured, and main bands have been assigned on the basis of theoretical spectra.

  3. Ionic Diffusion in a Ternary Superionic Conductor: An {ital Ab Initio} Molecular Dynamics Study

    Energy Technology Data Exchange (ETDEWEB)

    Wengert, S.; Nesper, R.; Andreoni, W.; Parrinello, M. [Laboratorium fuer Anorganische Chemie, ETH Zuerich, 8092 Zuerich (Switzerland)]|[IBM Research Division, Zurich Research Laboratory, 8803 Rueschlikon (Switzerland)]|[Max-Planck-Institut fuer Festkoerperforschung, 70569 Stuttgart (Germany)

    1996-12-01

    We present Car-Parrinello molecular dynamics simulations of a novel superionic conductor, Li{sub 2{minus}2{ital x}}Mg{sub 1+{ital x}}Si ({ital x}{approximately}0.06), at different temperatures. The calculations clarify the nature of the ionic conduction and lead to the prediction of the first inorganic magnesium superionic conductor. In fact, both lithium and magnesium are found to act as charge carriers. The diffusion is fast and can be described as vacancy migration through directed jumps. The calculated diffusion constants for lithium are consistent with recent electrochemical measurements. {copyright} {ital 1996 The American Physical Society.}

  4. Ab initio molecular dynamics study of temperature and pressure-dependent infrared dielectric functions of liquid methanol

    Directory of Open Access Journals (Sweden)

    C. C. Wang

    2017-03-01

    Full Text Available The temperature and pressure-dependent dielectric functions of liquids are of great importance to the thermal radiation transfer and the diagnosis and control of fuel combustion. In this work, we apply the state-of-the-art ab initio molecular dynamics (AIMD method to calculate the infrared dielectric functions of liquid methanol at 183–573 K and 0.1–160 MPa in the spectral range 10−4000 cm−1, and study the temperature and pressure effects on the dielectric functions. The AIMD approach is validated by the Infrared Variable Angle Spectroscopic Ellipsometry (IR-VASE experimental measurements at 298 K and 0.1 MPa, and the proposed IR-VASE method is verified by comparison with paper data of distilled water. The results of the AIMD approach agrees well with the experimental values of IR-VASE. The experimental and theoretical analyses indicate that the temperature and pressure exert a noticeable influence on the infrared dielectric functions of liquid methanol. As temperature increases, the average molecular dipole moment decreases. The amplitudes of dominant absorption peaks reduce to almost one half as temperature increases from 183 to 333 K at 0.1 MPa and from 273 to 573 K at 160 MPa. The absorption peaks below 1500 cm–1 show a redshift, while those centered around 3200 cm–1 show a blueshift. Moreover, larger average dipole moments are observed as pressure increases. The amplitudes of dominant absorption peaks increase to almost two times as pressure increases from 1 to 160 MPa at 373 K.

  5. Ab initio theory of spin-orbit coupling for quantum bits in diamond exhibiting dynamic Jahn-Teller effect

    Science.gov (United States)

    Gali, Adam; Thiering, Gergő

    Dopants in solids are promising candidates for implementations of quantum bits for quantum computing. In particular, the high-spin negatively charged nitrogen-vacancy defect (NV) in diamond has become a leading contender in solid-state quantum information processing. The initialization and readout of the spin is based on the spin-selective decay of the photo-excited electron to the ground state which is mediated by spin-orbit coupling between excited states states and phonons. Generally, the spin-orbit coupling plays a crucial role in the optical spinpolarization and readout of NV quantum bit (qubit) and alike. Strong electron-phonon coupling in dynamic Jahn-Teller (DJT) systems can substantially influence the effective strength of spin-orbit coupling. Here we show by ab initio supercell density functional theory (DFT) calculations that the intrinsic spin-orbit coupling is strongly damped by DJT effect in the triplet excited state that has a consequence on the rate of non-radiative decay. This theory is applied to the ground state of silicon-vacancy (SiV) and germanium-vacancy (GeV) centers in their negatively charged state that can also act like qubits. We show that the intrinsic spin-orbit coupling in SiV and GeV centers is in the 100 GHz region, in contrast to the NV center of 10 GHz region. Our results provide deep insight in the nature of SiV and GeV qubits in diamond. EU FP7 DIADEMS project (Contract No. 611143).

  6. Asymmetrical distorted structure, dynamics, and reactions of the silacyclohexane and related radical cations: ESR and ab-initio MO study

    International Nuclear Information System (INIS)

    Komaguchi, Kenji; Shiotani, Masaru; Ishikawa, Mitsuo

    1995-01-01

    The σ-type radical cations generated by one electron oxidation of the saturated hydrocarbon have been attracted much attention because of their fundamental importance as primary reactant species in radiation chemistry. Our studies on σ-type radical cations were recently extended to the silacyclohexane (cSiC5), silacyclopentane (cSiC4), and silacyclobutane (cSiC3) radical cations. Their electronic structure, dynamics, and reactions were investigated by means of low temperature matrix isolation ESR technique combined with ionizing radiation (γ-rays from 60 Co). In the preceding paper, the 1-methylsilacyclohexane (1-Me-cSiC5) radical cation has been found to take an asymmetrically distorted C 1 structure with one of two Si-C bonds elongated in which the unpaired electron mainly resides ( 2 A in C 1 ). This conclusion was based on the 4.2 K ESR spectra of radical cations of selectively deuteriated and/or methylsubstituted silacyclohexanes, i.e., cSiC5-2,2,6,6-d 4 + , 1-Me-cSiC5 + , 1-Me-cSiC5-2,2-d 2 + , 1-Me-cSiC5-2,2,6,6-d 4 + , 1,1-Me 2 -cSiC5 + , and 4,4-Me 2 -cSiC5 + , in a frozen CF 3 -cC 6 F 11 matrix. Here we report further experimental and theoretical results on 1-methylsilacyclohexane radical cation, especially on the ab initio MO results and matrix effects on the structural distortion, as well as thermal reactions of the radical cations. The results will make it clear that the distorted C 1 structure of the 1-Me-cSiC5 + is the intrinsic nature at the ground electronic state. (J.P.N.)

  7. Time-Domain Ab Initio Analysis of Excitation Dynamics in a Quantum Dot/Polymer Hybrid: Atomistic Description Rationalizes Experiment.

    Science.gov (United States)

    Long, Run; Prezhdo, Oleg V

    2015-07-08

    Hybrid organic/inorganic polymer/quantum dot (QD) solar cells are an attractive alternative to the traditional cells. The original, simple models postulate that one-dimensional polymers have continuous energy levels, while zero-dimensional QDs exhibit atom-like electronic structure. A realistic, atomistic viewpoint provides an alternative description. Electronic states in polymers are molecule-like: finite in size and discrete in energy. QDs are composed of many atoms and have high, bulk-like densities of states. We employ ab initio time-domain simulation to model the experimentally observed ultrafast photoinduced dynamics in a QD/polymer hybrid and show that an atomistic description is essential for understanding the time-resolved experimental data. Both electron and hole transfers across the interface exhibit subpicosecond time scales. The interfacial processes are fast due to strong electronic donor-acceptor, as evidenced by the densities of the photoexcited states which are delocalized between the donor and the acceptor. The nonadiabatic charge-phonon coupling is also strong, especially in the polymer, resulting in rapid energy losses. The electron transfer from the polymer is notably faster than the hole transfer from the QD, due to a significantly higher density of acceptor states. The stronger molecule-like electronic and charge-phonon coupling in the polymer rationalizes why the electron-hole recombination inside the polymer is several orders of magnitude faster than in the QD. As a result, experiments exhibit multiple transfer times for the long-lived hole inside the QD, ranging from subpicoseconds to nanoseconds. In contrast, transfer of the short-lived electron inside the polymer does not occur beyond the first picosecond. The energy lost by the hole on its transit into the polymer is accommodated by polymer's high-frequency vibrations. The energy lost by the electron injected into the QD is accommodated primarily by much lower-frequency collective and

  8. Ab initio multiple spawning dynamics study of dimethylnitramine and dimethylnitramine-Fe complex to model their ultrafast nonadiabatic chemistry.

    Science.gov (United States)

    Bera, Anupam; Ghosh, Jayanta; Bhattacharya, Atanu

    2017-07-28

    Conical intersections are now firmly established to be the key features in the excited electronic state processes of polyatomic energetic molecules. In the present work, we have explored conical intersection-mediated nonadiabatic chemical dynamics of a simple analogue nitramine molecule, dimethylnitramine (DMNA, containing one N-NO 2 energetic group), and its complex with an iron atom (DMNA-Fe). For this task, we have used the ab initio multiple spawning (AIMS) dynamics simulation at the state averaged-complete active space self-consistent field(8,5)/6-31G(d) level of theory. We have found that DMNA relaxes back to the ground (S 0 ) state following electronic excitation to the S 1 excited state [which is an (n,π*) excited state] with a time constant of approximately 40 fs. This AIMS result is in very good agreement with the previous surface hopping-result and femtosecond laser spectroscopy result. DMNA does not dissociate during this fast internal conversion from the S 1 to the S 0 state. DMNA-Fe also undergoes extremely fast relaxation from the upper S 1 state to the S 0 state; however, this relaxation pathway is dissociative in nature. DMNA-Fe undergoes initial Fe-O, N-O, and N-N bond dissociations during relaxation from the upper S 1 state to the ground S 0 state through the respective conical intersection. The AIMS simulation reveals the branching ratio of these three channels as N-N:Fe-O:N-O = 6:3:1 (based on 100 independent simulations). Furthermore, the AIMS simulation reveals that the Fe-O bond dissociation channel exhibits the fastest (time constant 24 fs) relaxation, while the N-N bond dissociation pathway features the slowest (time constant 128 fs) relaxation. An intermediate time constant (30 fs) is found for the N-O bond dissociation channel. This is the first nonadiabatic chemical dynamics study of metal-contained energetic molecules through conical intersections.

  9. Ab initio multiple spawning dynamics study of dimethylnitramine and dimethylnitramine-Fe complex to model their ultrafast nonadiabatic chemistry

    Science.gov (United States)

    Bera, Anupam; Ghosh, Jayanta; Bhattacharya, Atanu

    2017-07-01

    Conical intersections are now firmly established to be the key features in the excited electronic state processes of polyatomic energetic molecules. In the present work, we have explored conical intersection-mediated nonadiabatic chemical dynamics of a simple analogue nitramine molecule, dimethylnitramine (DMNA, containing one N-NO2 energetic group), and its complex with an iron atom (DMNA-Fe). For this task, we have used the ab initio multiple spawning (AIMS) dynamics simulation at the state averaged-complete active space self-consistent field(8,5)/6-31G(d) level of theory. We have found that DMNA relaxes back to the ground (S0) state following electronic excitation to the S1 excited state [which is an (n,π*) excited state] with a time constant of approximately 40 fs. This AIMS result is in very good agreement with the previous surface hopping-result and femtosecond laser spectroscopy result. DMNA does not dissociate during this fast internal conversion from the S1 to the S0 state. DMNA-Fe also undergoes extremely fast relaxation from the upper S1 state to the S0 state; however, this relaxation pathway is dissociative in nature. DMNA-Fe undergoes initial Fe-O, N-O, and N-N bond dissociations during relaxation from the upper S1 state to the ground S0 state through the respective conical intersection. The AIMS simulation reveals the branching ratio of these three channels as N-N:Fe-O:N-O = 6:3:1 (based on 100 independent simulations). Furthermore, the AIMS simulation reveals that the Fe-O bond dissociation channel exhibits the fastest (time constant 24 fs) relaxation, while the N-N bond dissociation pathway features the slowest (time constant 128 fs) relaxation. An intermediate time constant (30 fs) is found for the N-O bond dissociation channel. This is the first nonadiabatic chemical dynamics study of metal-contained energetic molecules through conical intersections.

  10. Perovskite Quantum Dots Modeled Using ab Initio and Replica Exchange Molecular Dynamics

    KAUST Repository

    Buin, Andrei; Comin, Riccardo; Ip, Alexander H.; Sargent, Edward H.

    2015-01-01

    © 2015 American Chemical Society. Organometal halide perovskites have recently attracted tremendous attention at both the experimental and theoretical levels. Much of this work has been dedicated to bulk material studies, yet recent experimental work has shown the formation of highly efficient quantum-confined nanocrystals with tunable band edges. Here we investigate perovskite quantum dots from theory, predicting an upper bound of the Bohr radius of 45 Å that agrees well with literature values. When the quantum dots are stoichiometric, they are trap-free and have nearly symmetric contributions to confinement from the valence and conduction bands. We further show that surface-associated conduction bandedge states in perovskite nanocrystals lie below the bulk states, which could explain the difference in Urbach tails between mesoporous and planar perovskite films. In addition to conventional molecular dynamics (MD), we implement an enhanced phase-space sampling algorithm, replica exchange molecular dynamics (REMD). We find that in simulation of methylammonium orientation and global minima, REMD outperforms conventional MD. To the best of our knowledge, this is the first REMD implementation for realistic-sized systems in the realm of DFT calculations.

  11. Perovskite Quantum Dots Modeled Using ab Initio and Replica Exchange Molecular Dynamics

    KAUST Repository

    Buin, Andrei

    2015-06-18

    © 2015 American Chemical Society. Organometal halide perovskites have recently attracted tremendous attention at both the experimental and theoretical levels. Much of this work has been dedicated to bulk material studies, yet recent experimental work has shown the formation of highly efficient quantum-confined nanocrystals with tunable band edges. Here we investigate perovskite quantum dots from theory, predicting an upper bound of the Bohr radius of 45 Å that agrees well with literature values. When the quantum dots are stoichiometric, they are trap-free and have nearly symmetric contributions to confinement from the valence and conduction bands. We further show that surface-associated conduction bandedge states in perovskite nanocrystals lie below the bulk states, which could explain the difference in Urbach tails between mesoporous and planar perovskite films. In addition to conventional molecular dynamics (MD), we implement an enhanced phase-space sampling algorithm, replica exchange molecular dynamics (REMD). We find that in simulation of methylammonium orientation and global minima, REMD outperforms conventional MD. To the best of our knowledge, this is the first REMD implementation for realistic-sized systems in the realm of DFT calculations.

  12. Insights inot the atomic many-particle dynamics of scattering processes by ab-initio calculations

    International Nuclear Information System (INIS)

    Zapukhlyak, Myroslav

    2008-01-01

    The present thesis gives a theoretical contribution to the understanding of the many-particle dynamics in inelastic ion-atom collisions. Many-electron dynamics in ion-helium collisions and proton-sodium collisions was theoretically studied. The description is based on the semiclassical approximation with the straight orbit for the projectile motion. The ion-atom collision problem is by this reduced to a time-dependent many-electron problem and in the non-relativistic approximation described by the time-dependent Schroedinger equation. The solution of the many-electron problem pursues in the framework of the time-dependent density functional theory. The time-dependent Schroedinger equation for the interacting many-electron problem is transformed to the system of the time-dependent Kohn-Sham equations and solved by the two-center-basis generator method. The unknown time-dependent exchange-correlation one-particle potential forces different approximation int he time-dependent Kohn-Shan scheme. In this thesis the model of the independent electrons was applied as basis model, in which the electron-electron correlation is consistently neglected in all parts and in all steps. Differential cross sections for different one- and two-electron processes were calculated in the so-called eikonal approximation for the collisional systems p-He, He 2+ -He, and Ar q+ -He (q=15-18) [de

  13. Investigation of the binding mode of a novel cruzain inhibitor by docking, molecular dynamics, ab initio and MM/PBSA calculations

    Science.gov (United States)

    Martins, Luan Carvalho; Torres, Pedro Henrique Monteiro; de Oliveira, Renata Barbosa; Pascutti, Pedro Geraldo; Cino, Elio A.; Ferreira, Rafaela Salgado

    2018-05-01

    Chagas disease remains a major health problem in South America, and throughout the world. The two drugs clinically available for its treatment have limited efficacy and cause serious adverse effects. Cruzain is an established therapeutic target of Trypanosoma cruzi, the protozoan that causes Chagas disease. Our group recently identified a competitive cruzain inhibitor (compound 1) with an IC50 = 15 µM that is also more synthetically accessible than the previously reported lead, compound 2. Prior studies, however, did not propose a binding mode for compound 1, hindering understanding of the structure-activity relationship and optimization. Here, the cruzain binding mode of compound 1 was investigated using docking, molecular dynamics (MD) simulations with ab initio derived parameters, ab initio calculations, and MM/PBSA. Two ligand protonation states and four binding poses were evaluated. A careful ligand parameterization method was employed to derive more physically meaningful parameters than those obtained by automated tools. The poses of unprotonated 1 were unstable in MD, showing large conformational changes and diffusing away from the binding site, whereas the protonated form showed higher stability and interaction with negatively charged residues Asp161 and Cys25. MM/PBSA also suggested that these two residues contribute favorably to binding of compound 1. By combining results from MD, ab initio calculations, and MM/PBSA, a binding mode of 1 is proposed. The results also provide insights for further optimization of 1, an interesting lead compound for the development of new cruzain inhibitors.

  14. Lattice Boltzmann simulations for wall-flow dynamics in porous ceramic diesel particulate filters

    Science.gov (United States)

    Lee, Da Young; Lee, Gi Wook; Yoon, Kyu; Chun, Byoungjin; Jung, Hyun Wook

    2018-01-01

    Flows through porous filter walls of wall-flow diesel particulate filter are investigated using the lattice Boltzmann method (LBM). The microscopic model of the realistic filter wall is represented by randomly overlapped arrays of solid spheres. The LB simulation results are first validated by comparison to those from previous hydrodynamic theories and constitutive models for flows in porous media with simple regular and random solid-wall configurations. We demonstrate that the newly designed randomly overlapped array structures of porous walls allow reliable and accurate simulations for the porous wall-flow dynamics in a wide range of solid volume fractions from 0.01 to about 0.8, which is beyond the maximum random packing limit of 0.625. The permeable performance of porous media is scrutinized by changing the solid volume fraction and particle Reynolds number using Darcy's law and Forchheimer's extension in the laminar flow region.

  15. A dynamic lattice searching method with rotation operation for optimization of large clusters

    International Nuclear Information System (INIS)

    Wu Xia; Cai Wensheng; Shao Xueguang

    2009-01-01

    Global optimization of large clusters has been a difficult task, though much effort has been paid and many efficient methods have been proposed. During our works, a rotation operation (RO) is designed to realize the structural transformation from decahedra to icosahedra for the optimization of large clusters, by rotating the atoms below the center atom with a definite degree around the fivefold axis. Based on the RO, a development of the previous dynamic lattice searching with constructed core (DLSc), named as DLSc-RO, is presented. With an investigation of the method for the optimization of Lennard-Jones (LJ) clusters, i.e., LJ 500 , LJ 561 , LJ 600 , LJ 665-667 , LJ 670 , LJ 685 , and LJ 923 , Morse clusters, silver clusters by Gupta potential, and aluminum clusters by NP-B potential, it was found that both the global minima with icosahedral and decahedral motifs can be obtained, and the method is proved to be efficient and universal.

  16. Lattice dynamics of alkali hydrides and deuterides with the NaCl type structure

    International Nuclear Information System (INIS)

    Dyck, W.; Jex, H.

    1981-01-01

    The deformation dipole model, the shell model, and also extended versions of these models have been investigated for the lattice dynamics of LiH and LiD. A deformation dipole model with 13 adjustable parameters gave the best fit to the phonon dispersion of LiD known from neutron and Raman experiments. The model has been used to compute elastic and dielectric constants, Szigeti effective charges, phonon densities of states, Debye temperatures and second-order Raman spectra of LiD and LiH. Good agreement with the experimental data was obtained. The contributions of short-range three- and four-body forces to the model force constants are discussed. First calculations of the phonon dispersion curves of the hydrides and deuterides of Na, K, Rb and Cs, which are based on shell models, are presented. (author)

  17. Static and dynamical anomalies caused by chiral soliton lattice in molecular-based chiral magnets

    International Nuclear Information System (INIS)

    Kishine, Jun-ichiro; Inoue, Katsuya; Kikuchi, Koichi

    2007-01-01

    Interplay of crystallographic chirality and magnetic chirality has been of great interest in both chemist's and physicist's viewpoints. Crystals belonging to chiral space groups are eligible to stabilize macroscopic chiral magnetic order. This class of magnetic order is described by the chiral XY model, where the transverse magnetic field perpendicular to the chiral axis causes the chiral soliton lattice (CSL) formation. As a clear evidence of the chiral magnetic order, the temperature dependence of the transverse magnetization exhibits sharp cusp just below the mean field ferrimagnetic transition temperature, indicating the formation of the CSL. In addition to the static anomaly, we expect the CSL formation also causes dynamical anomalies such as induction of the spin supercurrent

  18. Quadrupole splitting and Eu partial lattice dynamics in europium orthophosphate EuPO {sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Klobes, B., E-mail: b.klobes@fz-juelich.de [JARA-FIT - Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS and Peter Grünberg Institute PGI (Germany); Arinicheva, Y., E-mail: y.arinicheva@fz-juelich.de; Neumeier, S., E-mail: s.neumeier@fz-juelich.de [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-6) Nuclear Waste Management and Reactor Safety (Germany); Simon, R. E., E-mail: r.simon@fz-juelich.de; Jafari, A., E-mail: a.jafari@fz-juelich.de [JARA-FIT - Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS and Peter Grünberg Institute PGI (Germany); Bosbach, D., E-mail: d.bosbach@fz-juelich.de [Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-6) Nuclear Waste Management and Reactor Safety (Germany); Hermann, R. P., E-mail: hermannrp@ornl.gov [JARA-FIT - Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS and Peter Grünberg Institute PGI (Germany)

    2016-12-15

    Hyperfine interactions in europium orthophosphate EuPO{sub 4} were investigated using {sup 151}Eu Mössbauer spectroscopy from 6 to 300 K. The value of the quadrupole splitting and the asymmetry parameter were refined and further substantiated by nuclear forward scattering data obtained at room temperature. The temperature dependence of the relative absorption was modeled with an Eu specific Debye temperature of 221(1) K. Eu partial lattice dynamics were probed by means of nuclear inelastic scattering and the mean force constant, the Lamb-Mössbauer factor, the internal energy, the vibrational entropy, the average phonon group velocity were calculated using the extracted density of phonon states. In general, Eu specific vibrations are characterized by rather small phonon energies and contribute strongly to the total entropy of the system. Although there is no classical Debye like behavior at low vibrational energies, the average phonon group velocity can be reasonably approximated using a linear fit.

  19. Structure and lattice dynamics in non-centrosymmetric borates; Struktur und Gitterdynamik in azentrischen Boraten

    Energy Technology Data Exchange (ETDEWEB)

    Stein, W.D.R.

    2007-04-23

    This thesis deals with a study of structural and lattice dynamical properties of some noncentrosymmetric borates with outstanding non-linear optical properties. The focus was on the compound bismuth triborate (BiB{sub 3}O{sub 6}). The structure of the tetraborates MB{sub 4}O{sub 7} (M=Pb,Sr,Ba) was also investigated. The structural investigations in bismuth triborate include powder and single crystal diffraction experiments on X-ray and neutron sources. The crystal structure was under examination in the temperature range from 100 K to room temperature and the lattice constants in the temperature range from 20 K to 800 K. The lattice constants show a nearly linear dependency from temperature. Our observations are in good agreement with investigations of the thermal expansion, which shows a strong anisotropy within the layer-like structure of bismuth triborate. Within the borate layers, along the polar axis a strong positive and in the orthogonal direction a negative thermal expansion is observed. This effect can be explained by a zig-zag effect within the borate layers. The lone electron pair at the bismuth atom is discussed to be possibly the origin of the temperature dependency of the coordination environment of the bismuth atom. The influence of the lone electron pair on the crystal structure is raising by lowering the temperature. At the bismuth atom distinct anharmonic effects are observed, where the maximum points along the direction of the polar axis and therefore along the direction of the lone electron pair. The phonon dispersion of bismuth triborate has been investigated by inelastic neutron scattering. The low symmetry of the crystal structure depicts to be a special challenge. The dispersion was observed along the three reciprocal lattice constants. Along the polar axis the dispersion could be characterized to a maximum energy of 20 THz. The low energy acoustic branch along the polar axis shows a softening at the zone boundary. In the orthogonal

  20. Dynamical Behavior of Multi-Robot Systems Using Lattice Gas Automata

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, S.M.; Robinett, R.; Stantz, K.M.; Trahan, M.W.; Wagner, J.S.

    1999-03-11

    Recent attention has been given to the deployment of an adaptable sensor array realized by multi-robotic systems. Our group has been studying the collective behavior of autonomous, multi-agent systems and their applications in the area of remote-sensing and emerging threats. To accomplish such tasks, an interdisciplinary research effort at Sandia National Laboratories are conducting tests in the fields of sensor technology, robotics, and multi-robotic and multi-agents architectures. Our goal is to coordinate a constellation of point sensors that optimizes spatial coverage and multivariate signal analysis using unmanned robotic vehicles (e.g., RATLERs, Robotic All-ten-sin Lunar Exploration Rover-class vehicles). Overall design methodology is to evolve complex collective behaviors realized through simple interaction (kinetic) physics and artificial intelligence to enable real-time operational responses to emerging threats. This paper focuses on our recent work understanding the dynamics of many-body systems using the physics-based hydrodynamic model of lattice gas automata. Three design features are investigated. One, for single-speed robots, a hexagonal nearest-neighbor interaction topology is necessary to preserve standard hydrodynamic flow. Two, adaptability, defined by the swarm's deformation rate, can be controlled through the hydrodynamic viscosity term, which, in turn, is defined by the local robotic interaction rules. Three, due to the inherent non-linearity of the dynamical equations describing large ensembles, development of stability criteria ensuring convergence to equilibrium states is developed by scaling information flow rates relative to a swarm's hydrodynamic flow rate. An initial test case simulates a swarm of twenty-five robots that maneuvers past an obstacle while following a moving target. A genetic algorithm optimizes applied nearest-neighbor forces in each of five spatial regions distributed over the simulation domain. Armed with

  1. Structural and vibrational study of 2-MethoxyEthylAmmonium Nitrate (2-OMeEAN): Interpretation of experimental results with ab initio molecular dynamics

    International Nuclear Information System (INIS)

    Campetella, M.; Caminiti, R.; Bencivenni, L.; Gontrani, L.; Bovi, D.; Guidoni, L.

    2016-01-01

    In this work we report an analysis of the bulk phase of 2-methoxyethylammonium nitrate based on ab initio molecular dynamics. The structural and dynamical features of the ionic liquid have been characterized and the computational findings have been compared with the experimental X-ray diffraction patterns, with infrared spectroscopy data, and with the results obtained from molecular dynamics simulations. The experimental infrared spectrum was interpreted with the support of calculated vibrational density of states as well as harmonic frequency calculations of selected gas phase clusters. Particular attention was addressed to the high frequency region of the cation (ω > 2000 cm −1 ), where the vibrational motions involve the NH 3 + group responsible for hydrogen bond formation, and to the frequency range 1200-1400 cm −1 where the antisymmetric stretching mode (ν 3 ) of nitrate is found. Its multiple absorption lines in the liquid arise from the removal of the degeneracy present in the D 3h symmetry of the isolated ion. Our ab initio molecular dynamics leads to a rationalization of the frequency shifts and splittings, which are inextricably related to the structural modifications induced by a hydrogen bonding environment. The DFT calculations lead to an inhomogeneous environment.

  2. Structural and vibrational study of 2-MethoxyEthylAmmonium Nitrate (2-OMeEAN): Interpretation of experimental results with ab initio molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Campetella, M.; Caminiti, R.; Bencivenni, L.; Gontrani, L., E-mail: lorenzo.gontrani@uniroma1.it [Dipartimento di Chimica, Università di Roma, “La Sapienza,” P. le Aldo Moro 5, I-00185 Roma (Italy); Bovi, D. [Dipartimento di Fisica, Università di Roma, “La Sapienza,” P. le Aldo Moro 5, I-00185 Roma (Italy); Guidoni, L. [Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, Coppito, I-67100 L’Aquila (Italy)

    2016-07-14

    In this work we report an analysis of the bulk phase of 2-methoxyethylammonium nitrate based on ab initio molecular dynamics. The structural and dynamical features of the ionic liquid have been characterized and the computational findings have been compared with the experimental X-ray diffraction patterns, with infrared spectroscopy data, and with the results obtained from molecular dynamics simulations. The experimental infrared spectrum was interpreted with the support of calculated vibrational density of states as well as harmonic frequency calculations of selected gas phase clusters. Particular attention was addressed to the high frequency region of the cation (ω > 2000 cm{sup −1}), where the vibrational motions involve the NH{sub 3}+ group responsible for hydrogen bond formation, and to the frequency range 1200-1400 cm{sup −1} where the antisymmetric stretching mode (ν{sub 3}) of nitrate is found. Its multiple absorption lines in the liquid arise from the removal of the degeneracy present in the D{sub 3h} symmetry of the isolated ion. Our ab initio molecular dynamics leads to a rationalization of the frequency shifts and splittings, which are inextricably related to the structural modifications induced by a hydrogen bonding environment. The DFT calculations lead to an inhomogeneous environment.

  3. Multiscale crystal defect dynamics: A coarse-grained lattice defect model based on crystal microstructure

    Science.gov (United States)

    Lyu, Dandan; Li, Shaofan

    2017-10-01

    Crystal defects have microstructure, and this microstructure should be related to the microstructure of the original crystal. Hence each type of crystals may have similar defects due to the same failure mechanism originated from the same microstructure, if they are under the same loading conditions. In this work, we propose a multiscale crystal defect dynamics (MCDD) model that models defects by considering its intrinsic microstructure derived from the microstructure or material genome of the original perfect crystal. The main novelties of present work are: (1) the discrete exterior calculus and algebraic topology theory are used to construct a scale-up (coarse-grained) dual lattice model for crystal defects, which may represent all possible defect modes inside a crystal; (2) a higher order Cauchy-Born rule (up to the fourth order) is adopted to construct atomistic-informed constitutive relations for various defect process zones, and (3) an hierarchical strain gradient theory based finite element formulation is developed to support an hierarchical multiscale cohesive (process) zone model for various defects in a unified formulation. The efficiency of MCDD computational algorithm allows us to simulate dynamic defect evolution at large scale while taking into account atomistic interaction. The MCDD model has been validated by comparing of the results of MCDD simulations with that of molecular dynamics (MD) in the cases of nanoindentation and uniaxial tension. Numerical simulations have shown that MCDD model can predict dislocation nucleation induced instability and inelastic deformation, and thus it may provide an alternative solution to study crystal plasticity.

  4. Spatiotemporal dynamics of a digital phase-locked loop based coupled map lattice system

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Tanmoy, E-mail: tbanerjee@phys.buruniv.ac.in; Paul, Bishwajit; Sarkar, B. C. [Department of Physics, University of Burdwan, Burdwan, West Bengal 713 104 (India)

    2014-03-15

    We explore the spatiotemporal dynamics of a coupled map lattice (CML) system, which is realized with a one dimensional array of locally coupled digital phase-locked loops (DPLLs). DPLL is a nonlinear feedback-controlled system widely used as an important building block of electronic communication systems. We derive the phase-error equation of the spatially extended system of coupled DPLLs, which resembles a form of the equation of a CML system. We carry out stability analysis for the synchronized homogeneous solutions using the circulant matrix formalism. It is shown through extensive numerical simulations that with the variation of nonlinearity parameter and coupling strength the system shows transitions among several generic features of spatiotemporal dynamics, viz., synchronized fixed point solution, frozen random pattern, pattern selection, spatiotemporal intermittency, and fully developed spatiotemporal chaos. We quantify the spatiotemporal dynamics using quantitative measures like average quadratic deviation and spatial correlation function. We emphasize that instead of using an idealized model of CML, which is usually employed to observe the spatiotemporal behaviors, we consider a real world physical system and establish the existence of spatiotemporal chaos and other patterns in this system. We also discuss the importance of the present study in engineering application like removal of clock-skew in parallel processors.

  5. Electronic structure and lattice dynamics of rhombohedral BiAlO_3 from first-principles

    International Nuclear Information System (INIS)

    Kaczkowski, J.

    2016-01-01

    The structural, elastic, electronic, dynamical (zone-center phonon modes and Born effective charge tensors), and ferroelectric properties of the rhombohedral BiAlO_3 were calculated within various exchange-correlation functionals. The standard local-density (LDA) and generalized gradient (GGA) approximations, and nonlocal hybrid Heyd-Scuseria-Ernzerhof (HSE) were used. We have also performed the electronic structure calculations with meta-GGA Tran-Blaha functional. BiAlO_3 is indirect band gap semiconductor with the value of band gap: 2.87 eV (GGA), 4.14 eV (HSE), and 3.78 eV (TB-mBJ). The calculated spontaneous polarization is 81 μC/cm"2 (87 μC/cm"2) for GGA (HSE). The vibrational spectrum including LO-TO splitting was calculated within GGA. The zone-center phonon modes with LO-TO splitting for BiAlO_3 were compared with those in isostructural BiFeO_3. - Highlights: • Electronic structure of the rhombohedral phase of BiAlO_3 were calculated. • Structural, elastic, dynamical, and ferroelectric properties were investigated. • Calculations were done within GGA, hybrid HSE, and TB-mBJ functionals. • The lattice dynamics with LO-TO splitting were investigated within GGA functional.

  6. Oxidation of ligand-protected aluminum clusters: An ab initio molecular dynamics study

    International Nuclear Information System (INIS)

    Alnemrat, Sufian; Hooper, Joseph P.

    2014-01-01

    We report Car-Parrinello molecular dynamics simulations of the oxidation of ligand-protected aluminum clusters that form a prototypical cluster-assembled material. These clusters contain a small aluminum core surrounded by a monolayer of organic ligand. The aromatic cyclopentadienyl ligands form a strong bond with surface Al atoms, giving rise to an organometallic cluster that crystallizes into a low-symmetry solid and is briefly stable in air before oxidizing. Our calculations of isolated aluminum/cyclopentadienyl clusters reacting with oxygen show minimal reaction between the ligand and O 2 molecules at simulation temperatures of 500 and 1000 K. In all cases, the reaction pathway involves O 2 diffusing through the ligand barrier, splitting into atomic oxygen upon contact with the aluminum, and forming an oxide cluster with aluminum/ligand bonds still largely intact. Loss of individual aluminum-ligand units, as expected from unimolecular decomposition calculations, is not observed except following significant oxidation. These calculations highlight the role of the ligand in providing a steric barrier against oxidizers and in maintaining the large aluminum surface area of the solid-state cluster material

  7. Ab initio molecular dynamics studies on effect of Zr on oxidation resistance of TiAlN coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pi, Jingwu [State Key Lab of Powder Metallurgy, Central South University, Changsha,Hunan 410083 (China); Kong, Yi, E-mail: yikong@csu.edu.cn [State Key Lab of Powder Metallurgy, Central South University, Changsha,Hunan 410083 (China); Chen, Li [State Key Lab of Powder Metallurgy, Central South University, Changsha,Hunan 410083 (China); Zhuzhou Cemented Carbide Cutting Tools Co., Ltd., Zhuzhou, Hunan 412007 (China); Du, Yong [State Key Lab of Powder Metallurgy, Central South University, Changsha,Hunan 410083 (China)

    2016-08-15

    Highlights: • The lowest bonding energy sequence for dimers in the vacuum: Zr−O < Ti−O < Al−O. • The lowest bonding energy sequence for oxygen above the surface: Ti−O < Zr−O < Al−O. • At 300 K, the addition of Zr benefitting the formation of vacancy and TiO{sub 2}. • At 1123 K, the addition of Zr leading to a more stable surface. • Our findings explain that the oxidation resistance of TiAlZrN superior to TiAlN at 1123 K as well as TiAlZrN at 300 K. - Abstract: It was demonstrated experimentally that doping Zr into TiAlN coatings at room temperature will detriment its oxidation resistance. On the other hand, there are evidences that doping Zr into TiAlN at high temperature will improve coating's oxidation resistance. In the present work, we address the effect of Zr on the oxidation resistance of TiAlN by means of ab initio molecular dynamics simulations. The TiAlN and TiAlZrN (1 Zr atom replacing 1 Ti atom) surfaces covered with 4 oxygen atoms at 300 K and 1123 K were simulated. Based on the analysis of the atomic motion, bond formation after relaxation, and the charge density difference maps we find that at 300 K, the addition of Zr induces escape of Ti atoms from the surface, resulting in formation of surface vacancies and subsequently TiO{sub 2}. Comparison of metal-oxygen dimers in the vacuum and above the TiAlZrN surface further shows that the addition of Zr in the TiAlN surface will change the lowest bonding energy sequence from Zr−O < Ti−O < Al−O in the vacuum to Ti−O < Zr−O < Al−O above the TiAlZrN surface. From Molecular Dynamics simulations at 1123 K, it is find that no Ti vacancies were generated in the surface. Moreover, less charge is transferred from metal to N atoms and the bond lengths between Ti and O atoms become shorter at 1123 K as compared with 300 K, suggesting that the addition of Zr atom promotes the interaction of Ti and O at TiAlZrN surface at 1123 K, leading to a more stable surface. Our simulation

  8. Communication: Influence of external static and alternating electric fields on water from long-time non-equilibrium ab initio molecular dynamics

    Science.gov (United States)

    Futera, Zdenek; English, Niall J.

    2017-07-01

    The response of water to externally applied electric fields is of central relevance in the modern world, where many extraneous electric fields are ubiquitous. Historically, the application of external fields in non-equilibrium molecular dynamics has been restricted, by and large, to relatively inexpensive, more or less sophisticated, empirical models. Here, we report long-time non-equilibrium ab initio molecular dynamics in both static and oscillating (time-dependent) external electric fields, therefore opening up a new vista in rigorous studies of electric-field effects on dynamical systems with the full arsenal of electronic-structure methods. In so doing, we apply this to liquid water with state-of-the-art non-local treatment of dispersion, and we compute a range of field effects on structural and dynamical properties, such as diffusivities and hydrogen-bond kinetics.

  9. Ab initio and Molecular Dynamic models of displacement damage in crystalline and turbostratic graphite

    Science.gov (United States)

    McKenna, Alice

    One of the functions of graphite is as a moderator in several nuclear reactor designs, including the Advanced Gas-cooled Reactor (AGR). In the reactor graphite is used to thermalise the neutrons produced in the fission reaction thus allowing a self-sustained reaction to occur. The graphite blocks, acting as the moderator, are constantly irradiated and consequently suffer damage. This thesis examines the types of damage caused using molecular dynamic (MD) simulations and ab intio calculations. Neutron damage starts with a primary knock-on atom (PKA), which is travelling so fast that it creates damage through electronic and thermal excitation (this is addressed with thermal spike simulations). When the PKA has lost energy the subsequent cascade is based on ballistic atomic displacement. These two types of simulations were performed on single crystal graphite and other carbon structures such as diamond and amorphous carbon as a comparison. The thermal spike in single crystal graphite produced results which varied from no defects to a small number of permanent defects in the structure. It is only at the high energy range that more damage is seen but these energies are less likely to occur in the nuclear reactor. The thermal spike does not create damage but it is possible that it can heal damaged sections of the graphite, which can be demonstrated with the motion of the defects when a thermal spike is applied. The cascade simulations create more damage than the thermal spike even though less energy is applied to the system. A new damage function is found with a threshold region that varies with the square root of energy in excess of the energy threshold. This is further broken down in to contributions from primary and subsequent knock-on atoms. The threshold displacement energy (TDE) is found to be Ed=25eV at 300K. In both these types of simulation graphite acts very differently to the other carbon structures. There are two types of polycrystalline graphite structures

  10. Free energy landscape of electrocatalytic CO2 reduction to CO on aqueous FeN4 center embedded graphene studied by ab initio molecular dynamics simulations

    Science.gov (United States)

    Sheng, Tian; Sun, Shi-Gang

    2017-11-01

    Experiments have found that the porphyrin-like FeN4 site in Fe-N-C materials is highly efficient for the electrochemical reduction of CO2 into CO. In this work, we investigated the reduction mechanisms on FeN4 embedded graphene layer catalyst with some explicit water molecules by combining the constrained ab initio molecular dynamics simulations and thermodynamic integrations. The reaction free energy and electron transfer in each elementary step were identified. The initial CO2 activation was identified to go through the first electron transfer to form adsorbed CO2- anion and the CO desorption was the rate limiting step in the overall catalytic cycle.

  11. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer

    Science.gov (United States)

    Martinez, Esteban A.; Muschik, Christine A.; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer

    2016-06-01

    Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman’s idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments—the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.

  12. Modelling and investigation of partial wetting surfaces for drop dynamics using lattice Boltzmann method

    Science.gov (United States)

    Pravinraj, T.; Patrikar, Rajendra

    2017-07-01

    Partial wetting surfaces and its influence on the droplet movement of micro and nano scale being contemplated for many useful applications. The dynamics of the droplet usually analyzed with a multiphase lattice Boltzmann method (LBM). In this paper, the influence of partial wetting surface on the dynamics of droplet is systematically analyzed for various cases. Splitting of droplets due to chemical gradient of the surface is studied and analyses of splitting time for various widths of the strips for different Weber numbers are computed. With the proposed model one can tune the splitting volume and time by carefully choosing a strip width and droplet position. The droplet spreading on chemically heterogeneous surfaces shows that the spreading can be controlled not only by parameters of Weber number but also by tuning strip width ratio. The transportation of the droplet from hydrophobic surface to hydrophilic surface due to chemical gradient is simulated and analyzed using our hybrid thermodynamic-image processing technique. The results prove that with the progress of time the surface free energy decreases with increase in spreading area. Finally, the transportation of a droplet on microstructure gradient is demonstrated. The model explains the temporal behaviour of droplet during the spreading, recoiling and translation along with tracking of contact angle hysteresis phenomenon.

  13. Probing the Chaotic Dynamics of Fluids using Insights from Coupled Map Lattices

    Science.gov (United States)

    Barbish, Johnathon; Xu, Mu; Paul, Mark

    2017-11-01

    Many difficult fluid challenges exhibit high-dimensional spatiotemporal chaos. Natural examples include the dynamics of the atmosphere and oceans. New insights have been gained by studying canonical fluid problems such as Rayleigh-Bénard convection where significant progress has been made using large-scale computations of the partial differential equations that describe the fluid flow. However, these computations remain very expensive which makes it difficult, if not currently impossible, to explore new ideas that require large sample sets, vast sweeps of parameter space, and long-time statistics. We study these questions using coupled map lattices (CML) in one and two dimensions. We compute the covariant Lyapunov vectors to probe fundamental features of the CML's including the Lyapunov spectrum, fractal dimension, and the principal angle between the stable and unstable manifolds. We are particularly interested in the role of a conservation law on the chaotic dynamics, the use of ideas from equilibrium thermodynamics to yield a coarse-grained representation, and in the development of reduced order models. This work is supported by NSF DMS-1622299.

  14. A method of recovering the initial vectors of globally coupled map lattices based on symbolic dynamics

    International Nuclear Information System (INIS)

    Sun Li-Sha; Kang Xiao-Yun; Zhang Qiong; Lin Lan-Xin

    2011-01-01

    Based on symbolic dynamics, a novel computationally efficient algorithm is proposed to estimate the unknown initial vectors of globally coupled map lattices (CMLs). It is proved that not all inverse chaotic mapping functions are satisfied for contraction mapping. It is found that the values in phase space do not always converge on their initial values with respect to sufficient backward iteration of the symbolic vectors in terms of global convergence or divergence (CD). Both CD property and the coupling strength are directly related to the mapping function of the existing CML. Furthermore, the CD properties of Logistic, Bernoulli, and Tent chaotic mapping functions are investigated and compared. Various simulation results and the performances of the initial vector estimation with different signal-to-noise ratios (SNRs) are also provided to confirm the proposed algorithm. Finally, based on the spatiotemporal chaotic characteristics of the CML, the conditions of estimating the initial vectors using symbolic dynamics are discussed. The presented method provides both theoretical and experimental results for better understanding and characterizing the behaviours of spatiotemporal chaotic systems. (general)

  15. A method of recovering the initial vectors of globally coupled map lattices based on symbolic dynamics

    Science.gov (United States)

    Sun, Li-Sha; Kang, Xiao-Yun; Zhang, Qiong; Lin, Lan-Xin

    2011-12-01

    Based on symbolic dynamics, a novel computationally efficient algorithm is proposed to estimate the unknown initial vectors of globally coupled map lattices (CMLs). It is proved that not all inverse chaotic mapping functions are satisfied for contraction mapping. It is found that the values in phase space do not always converge on their initial values with respect to sufficient backward iteration of the symbolic vectors in terms of global convergence or divergence (CD). Both CD property and the coupling strength are directly related to the mapping function of the existing CML. Furthermore, the CD properties of Logistic, Bernoulli, and Tent chaotic mapping functions are investigated and compared. Various simulation results and the performances of the initial vector estimation with different signal-to-noise ratios (SNRs) are also provided to confirm the proposed algorithm. Finally, based on the spatiotemporal chaotic characteristics of the CML, the conditions of estimating the initial vectors using symbolic dynamics are discussed. The presented method provides both theoretical and experimental results for better understanding and characterizing the behaviours of spatiotemporal chaotic systems.

  16. Nonequilibrium lattice-driven dynamics of stripes in nickelates using time-resolved x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.S.; Kung, Y.F.; Moritz, B.; Coslovich, G.; Kaindl, R.A.; Chuang, Y.D.; Moore, R.G.; Lu, D.H.; Kirchmann, P.S.; Robinson, J.S.; Minitti, M.P.; Dakovski, G.; Schlotter, W.F.; Turner, J.J.; Gerber, S.; Sasagawa, T.; Hussain, Z.; Shen, Z.X.; Devereaux, T.P.

    2017-03-13

    We investigate the lattice coupling to the spin and charge orders in the striped nickelate, La 1.75 Sr 0.25 NiO 4 , using time-resolved resonant x-ray scattering. Lattice-driven dynamics of both spin and charge orders are observed when the pump photon energy is tuned to that of an E u bond- stretching phonon. We present a likely scenario for the behavior of the spin and charge order parameters and its implications using a Ginzburg-Landau theory.

  17. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111)

    Energy Technology Data Exchange (ETDEWEB)

    Kroes, Geert-Jan, E-mail: g.j.kroes@chem.leidenuniv.nl; Pavanello, Michele [Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Blanco-Rey, María [Departamento de Física de Materiales, Facultad de Químicas UPV/EHU, Apartado 1072, 20080 Donostia-San Sebastián (Spain); Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Alducin, Maite [Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Centro de Física de Materiales, Centro Mixto CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián (Spain); Auerbach, Daniel J. [Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Max Planck Institute for Biophysical Chemistry, Göttingen (Germany); Institute for Physical Chemistry, Georg-August University of Göttingen, Göttingen (Germany)

    2014-08-07

    Energy loss from the translational motion of an atom or molecule impinging on a metal surface to the surface may determine whether the incident particle can trap on the surface, and whether it has enough energy left to react with another molecule present at the surface. Although this is relevant to heterogeneous catalysis, the relative extent to which energy loss of hot atoms takes place to phonons or electron-hole pair (ehp) excitation, and its dependence on the system's parameters, remain largely unknown. We address these questions for two systems that present an extreme case of the mass ratio of the incident atom to the surface atom, i.e., H + Cu(111) and H + Au(111), by presenting adiabatic ab initio molecular dynamics (AIMD) predictions of the energy loss and angular distributions for an incidence energy of 5 eV. The results are compared to the results of AIMDEFp calculations modeling energy loss to ehp excitation using an electronic friction (“EF”) model applied to the AIMD trajectories, so that the energy loss to the electrons is calculated “post” (“p”) the computation of the AIMD trajectory. The AIMD calculations predict average energy losses of 0.38 eV for Cu(111) and 0.13-0.14 eV for Au(111) for H-atoms that scatter from these surfaces without penetrating the surface. These energies closely correspond with energy losses predicted with Baule models, which is suggestive of structure scattering. The predicted adiabatic integral energy loss spectra (integrated over all final scattering angles) all display a lowest energy peak at an energy corresponding to approximately 80% of the average adiabatic energy loss for non-penetrative scattering. In the adiabatic limit, this suggests a way of determining the approximate average energy loss of non-penetratively scattered H-atoms from the integral energy loss spectrum of all scattered H-atoms. The AIMDEFp calculations predict that in each case the lowest energy loss peak should show additional energy

  18. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111).

    Science.gov (United States)

    Kroes, Geert-Jan; Pavanello, Michele; Blanco-Rey, María; Alducin, Maite; Auerbach, Daniel J

    2014-08-07

    Energy loss from the translational motion of an atom or molecule impinging on a metal surface to the surface may determine whether the incident particle can trap on the surface, and whether it has enough energy left to react with another molecule present at the surface. Although this is relevant to heterogeneous catalysis, the relative extent to which energy loss of hot atoms takes place to phonons or electron-hole pair (ehp) excitation, and its dependence on the system's parameters, remain largely unknown. We address these questions for two systems that present an extreme case of the mass ratio of the incident atom to the surface atom, i.e., H + Cu(111) and H + Au(111), by presenting adiabatic ab initio molecular dynamics (AIMD) predictions of the energy loss and angular distributions for an incidence energy of 5 eV. The results are compared to the results of AIMDEFp calculations modeling energy loss to ehp excitation using an electronic friction ("EF") model applied to the AIMD trajectories, so that the energy loss to the electrons is calculated "post" ("p") the computation of the AIMD trajectory. The AIMD calculations predict average energy losses of 0.38 eV for Cu(111) and 0.13-0.14 eV for Au(111) for H-atoms that scatter from these surfaces without penetrating the surface. These energies closely correspond with energy losses predicted with Baule models, which is suggestive of structure scattering. The predicted adiabatic integral energy loss spectra (integrated over all final scattering angles) all display a lowest energy peak at an energy corresponding to approximately 80% of the average adiabatic energy loss for non-penetrative scattering. In the adiabatic limit, this suggests a way of determining the approximate average energy loss of non-penetratively scattered H-atoms from the integral energy loss spectrum of all scattered H-atoms. The AIMDEFp calculations predict that in each case the lowest energy loss peak should show additional energy loss in the

  19. Modelling and investigation of partial wetting surfaces for drop dynamics using lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Pravinraj, T., E-mail: pravinraj1711@gmail.com; Patrikar, Rajendra

    2017-07-01

    Highlights: • A LBM model on partial wetting surface for droplet dynamics is presented by introducing a simple initial partial wetting boundary condition in SC model. • With our approach one can tune the splitting volume and time by carefully choosing strip width and position. • It is shown that the droplet spreading on chemically heterogeneous surfaces can be controlled not only by Weber number but also by tuning strip width ratio. • The directional transportation of a droplet due to chemical wetting gradient is simulated and analyzed using hybrid thermodynamic-image processing technique. • Microstructure surface and its influence on the directional wetting based transportation of droplet are demonstrated. - Abstract: Partial wetting surfaces and its influence on the droplet movement of micro and nano scale being contemplated for many useful applications. The dynamics of the droplet usually analyzed with a multiphase lattice Boltzmann method (LBM). In this paper, the influence of partial wetting surface on the dynamics of droplet is systematically analyzed for various cases. Splitting of droplets due to chemical gradient of the surface is studied and analyses of splitting time for various widths of the strips for different Weber numbers are computed. With the proposed model one can tune the splitting volume and time by carefully choosing a strip width and droplet position. The droplet spreading on chemically heterogeneous surfaces shows that the spreading can be controlled not only by parameters of Weber number but also by tuning strip width ratio. The transportation of the droplet from hydrophobic surface to hydrophilic surface due to chemical gradient is simulated and analyzed using our hybrid thermodynamic-image processing technique. The results prove that with the progress of time the surface free energy decreases with increase in spreading area. Finally, the transportation of a droplet on microstructure gradient is demonstrated. The model explains

  20. Measurement of the elastic tensor of SmScO3 and NdScO3 using resonant ultrasound spectroscopy with ab initio calculations

    Directory of Open Access Journals (Sweden)

    K. A. Pestka II

    2011-09-01

    Full Text Available The complete elastic tensors of SmScO3 and NdScO3 were measured using resonant ultrasound spectroscopy (RUS in combination with ab-initio calculations. Measurement of the elastic tensor of these recently synthesized single crystal RE scandates is essential for understanding dynamic lattice applications including phonon confinement, strain induced thin film growth and superlattice construction. On average, the experimental elastic constants differed by less than 5% of the theoretical values, further validating the accuracy of modern ab-initio calculations as a means of estimating the initial elastic constants used in RUS measurements.

  1. Dynamics of surface solitons at the edge of chirped optical lattices

    International Nuclear Information System (INIS)

    Kartashov, Yaroslav V.; Torner, Lluis; Vysloukh, Victor A.

    2007-01-01

    We address soliton formation at the edge of chirped optical lattices imprinted in Kerr-type nonlinear media. We find families of power thresholdless surface waves that do not exist at other types of lattice interfaces. Such solitons form due to combined action of internal reflection at the interface, distributed Bragg-type reflection, and focusing nonlinearity. Remarkably, we discover that surfaces of chirped lattices are soliton attractors: Below an energy threshold, solitons launched well within the lattice self-bend toward the interface, and then stick to it

  2. Ab initio molecular dynamics simulations reveal localization and time evolution dynamics of an excess electron in heterogeneous CO{sub 2}–H{sub 2}O systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ping; Zhao, Jing; Liu, Jinxiang; Zhang, Meng; Bu, Yuxiang, E-mail: byx@sdu.edu.cn [School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 (China)

    2014-01-28

    In view of the important implications of excess electrons (EEs) interacting with CO{sub 2}–H{sub 2}O clusters in many fields, using ab initio molecular dynamics simulation technique, we reveal the structures and dynamics of an EE associated with its localization and subsequent time evolution in heterogeneous CO{sub 2}–H{sub 2}O mixed media. Our results indicate that although hydration can increase the electron-binding ability of a CO{sub 2} molecule, it only plays an assisting role. Instead, it is the bending vibrations that play the major role in localizing the EE. Due to enhanced attraction of CO{sub 2}, an EE can stably reside in the empty, low-lying π{sup *} orbital of a CO{sub 2} molecule via a localization process arising from its initial binding state. The localization is completed within a few tens of femtoseconds. After EE trapping, the ∠OCO angle of the core CO{sub 2}{sup −} oscillates in the range of 127°∼142°, with an oscillation period of about 48 fs. The corresponding vertical detachment energy of the EE is about 4.0 eV, which indicates extreme stability of such a CO{sub 2}-bound solvated EE in [CO{sub 2}(H{sub 2}O){sub n}]{sup −} systems. Interestingly, hydration occurs not only on the O atoms of the core CO{sub 2}{sup −} through formation of O⋯H–O H–bond(s), but also on the C atom, through formation of a C⋯H–O H–bond. In the latter binding mode, the EE cloud exhibits considerable penetration to the solvent water molecules, and its IR characteristic peak is relatively red-shifted compared with the former. Hydration on the C site can increase the EE distribution at the C atom and thus reduce the C⋯H distance in the C⋯H–O H–bonds, and vice versa. The number of water molecules associated with the CO{sub 2}{sup −} anion in the first hydration shell is about 4∼7. No dimer-core (C{sub 2}O{sub 4}{sup −}) and core-switching were observed in the double CO{sub 2} aqueous media. This work provides molecular dynamics

  3. Ab initio molecular dynamics simulations reveal localization and time evolution dynamics of an excess electron in heterogeneous CO2-H2O systems.

    Science.gov (United States)

    Liu, Ping; Zhao, Jing; Liu, Jinxiang; Zhang, Meng; Bu, Yuxiang

    2014-01-28

    In view of the important implications of excess electrons (EEs) interacting with CO2-H2O clusters in many fields, using ab initio molecular dynamics simulation technique, we reveal the structures and dynamics of an EE associated with its localization and subsequent time evolution in heterogeneous CO2-H2O mixed media. Our results indicate that although hydration can increase the electron-binding ability of a CO2 molecule, it only plays an assisting role. Instead, it is the bending vibrations that play the major role in localizing the EE. Due to enhanced attraction of CO2, an EE can stably reside in the empty, low-lying π(*) orbital of a CO2 molecule via a localization process arising from its initial binding state. The localization is completed within a few tens of femtoseconds. After EE trapping, the ∠OCO angle of the core CO2 (-) oscillates in the range of 127°∼142°, with an oscillation period of about 48 fs. The corresponding vertical detachment energy of the EE is about 4.0 eV, which indicates extreme stability of such a CO2-bound solvated EE in [CO2(H2O)n](-) systems. Interestingly, hydration occurs not only on the O atoms of the core CO2 (-) through formation of O⋯H-O H-bond(s), but also on the C atom, through formation of a C⋯H-O H-bond. In the latter binding mode, the EE cloud exhibits considerable penetration to the solvent water molecules, and its IR characteristic peak is relatively red-shifted compared with the former. Hydration on the C site can increase the EE distribution at the C atom and thus reduce the C⋯H distance in the C⋯H-O H-bonds, and vice versa. The number of water molecules associated with the CO2 (-) anion in the first hydration shell is about 4∼7. No dimer-core (C2O4 (-)) and core-switching were observed in the double CO2 aqueous media. This work provides molecular dynamics insights into the localization and time evolution dynamics of an EE in heterogeneous CO2-H2O media.

  4. Insights inot the atomic many-particle dynamics of scattering processes by ab-initio calculations; Einblicke in die atomare Vielteilchendynamik von Streuprozessen durch ab-initio-Rechnungen

    Energy Technology Data Exchange (ETDEWEB)

    Zapukhlyak, Myroslav

    2008-12-05

    The present thesis gives a theoretical contribution to the understanding of the many-particle dynamics in inelastic ion-atom collisions. Many-electron dynamics in ion-helium collisions and proton-sodium collisions was theoretically studied. The description is based on the semiclassical approximation with the straight orbit for the projectile motion. The ion-atom collision problem is by this reduced to a time-dependent many-electron problem and in the non-relativistic approximation described by the time-dependent Schroedinger equation. The solution of the many-electron problem pursues in the framework of the time-dependent density functional theory. The time-dependent Schroedinger equation for the interacting many-electron problem is transformed to the system of the time-dependent Kohn-Sham equations and solved by the two-center-basis generator method. The unknown time-dependent exchange-correlation one-particle potential forces different approximation in the time-dependent Kohn-Shan scheme. In this thesis the model of the independent electrons was applied as basis model, in which the electron-electron correlation is consistently neglected in all parts and in all steps. Differential cross sections for different one- and two-electron processes were calculated in the so-called eikonal approximation for the collisional systems p-He, He{sup 2+}-He, and Ar{sup q+}-He (q=15-18). [German] Die vorliegende Arbeit leistet einen theoretischen Beitrag zum Verstaendnis der Vielteilchendynamik in inelastischen Ion-Atom-Stoessen. Vielelektronendynamik in Ion-Helium-Stoessen und Proton-Natrium-Stoessen wurde theoretisch untersucht. Die Beschreibung basiert auf der semiklassischen Naeherung mit der geraden Bahn fuer die Projektilbewegung. Das Ion-Atom- Stossproblem wird damit auf ein zeitabhaengiges Vielelektronenproblem reduziert und in der nichtrelativistischen Naeherung mit der zeitabhaengigen Schroedinger-Gleichung beschrieben. Die Loesung des Vielelektronenproblems erfolgt im

  5. Lattice overview

    International Nuclear Information System (INIS)

    Creutz, M.

    1984-01-01

    After reviewing some recent developments in supercomputer access, the author discusses a few areas where perturbation theory and lattice gauge simulations make contact. The author concludes with a brief discussion of a deterministic dynamics for the Ising model. This may be useful for numerical studies of nonequilibrium phenomena. 13 references

  6. Ground state structure of U2Mo: static and lattice dynamics study

    International Nuclear Information System (INIS)

    Mukherjee, D.; Sahoo, B.D.; Joshi, K.D.; Kaushik, T.C.

    2016-01-01

    According to experimental reports, the ground state stable structure of U 2 Mo is tetragonal. However, various theoretical studies performed in past do not get tetragonal phase as the stable structure at ambient conditions. Therefore, the ground state structure of U 2 Mo is still unresolved. In an attempt to understand the ground state properties of this system, we have carried out first principle electronic band structure calculations. The structural stability analysis carried out using evolutionary structure search algorithm in conjunction with ab-inito method shows that a hexagonal structure (space group P6/mmm) is the lowest enthalpy structure at ambient condition and remains stable upto 200 GPa. The elastic and lattice dynamical stability further supports the stability of this phase at ambient condition. Further, using the 0 K calculations in conjunction with finite temperature corrections, we have derived the isotherm and shock adiabat (Hugoniot) of this material. Various equilibrium properties such as ambient pressure volume, bulk modulus, pressure derivative of bulk modulus etc. are derived from equation of state. (author)

  7. Topological dynamics and current-induced motion in a skyrmion lattice

    Science.gov (United States)

    Martinez, J. C.; Jalil, M. B. A.

    2016-03-01

    We study the Thiele equation for current-induced motion in a skyrmion lattice through two soluble models of the pinning potential. Comprised by a Magnus term, a dissipative term and a pinning force, Thiele’s equation resembles Newton’s law but in virtue of the topological character to the first, it differs significantly from Newtonian mechanics and because the Magnus force is dominant, unlike its mechanical counterpart—the Coriolis force—skyrmion trajectories do not necessarily have mechanical counterparts. This is important if we are to understand skyrmion dynamics and tap into its potential for data-storage technology. We identify a pinning threshold velocity for the one-dimensional pinning potential and for a two-dimensional attractive potential we find a pinning point and the skyrmion trajectories toward that point are spirals whose frequency (compare Kepler’s second law) and amplitude-decay depend only on the Gilbert constant and potential at the pinning point. Other scenarios, e.g. other choices of initial spin velocity, a repulsive potential, etc are also investigated.

  8. Topological dynamics and current-induced motion in a skyrmion lattice

    International Nuclear Information System (INIS)

    Martinez, J C; Jalil, M B A

    2016-01-01

    We study the Thiele equation for current-induced motion in a skyrmion lattice through two soluble models of the pinning potential. Comprised by a Magnus term, a dissipative term and a pinning force, Thiele’s equation resembles Newton’s law but in virtue of the topological character to the first, it differs significantly from Newtonian mechanics and because the Magnus force is dominant, unlike its mechanical counterpart—the Coriolis force—skyrmion trajectories do not necessarily have mechanical counterparts. This is important if we are to understand skyrmion dynamics and tap into its potential for data-storage technology. We identify a pinning threshold velocity for the one-dimensional pinning potential and for a two-dimensional attractive potential we find a pinning point and the skyrmion trajectories toward that point are spirals whose frequency (compare Kepler’s second law) and amplitude-decay depend only on the Gilbert constant and potential at the pinning point. Other scenarios, e.g. other choices of initial spin velocity, a repulsive potential, etc are also investigated. (paper)

  9. Simulation of regimes of convection and plume dynamics by the thermal Lattice Boltzmann Method

    Science.gov (United States)

    Mora, Peter; Yuen, David A.

    2018-02-01

    We present 2D simulations using the Lattice Boltzmann Method (LBM) of a fluid in a rectangular box being heated from below, and cooled from above. We observe plumes, hot narrow upwellings from the base, and down-going cold chutes from the top. We have varied both the Rayleigh numbers and the Prandtl numbers respectively from Ra = 1000 to Ra =1010 , and Pr = 1 through Pr = 5 ×104 , leading to Rayleigh-Bénard convection cells at low Rayleigh numbers through to vigorous convection and unstable plumes with pronounced vortices and eddies at high Rayleigh numbers. We conduct simulations with high Prandtl numbers up to Pr = 50, 000 to simulate in the inertial regime. We find for cases when Pr ⩾ 100 that we obtain a series of narrow plumes of upwelling fluid with mushroom heads and chutes of downwelling fluid. We also present simulations at a Prandtl number of 0.7 for Rayleigh numbers varying from Ra =104 through Ra =107.5 . We demonstrate that the Nusselt number follows power law scaling of form Nu ∼Raγ where γ = 0.279 ± 0.002 , which is consistent with published results of γ = 0.281 in the literature. These results show that the LBM is capable of reproducing results obtained with classical macroscopic methods such as spectral methods, and demonstrate the great potential of the LBM for studying thermal convection and plume dynamics relevant to geodynamics.

  10. Ultrafast electron-lattice coupling dynamics in VO2 and V2O3 thin films

    Science.gov (United States)

    Abreu, Elsa; Gilbert Corder, Stephanie N.; Yun, Sun Jin; Wang, Siming; Ramírez, Juan Gabriel; West, Kevin; Zhang, Jingdi; Kittiwatanakul, Salinporn; Schuller, Ivan K.; Lu, Jiwei; Wolf, Stuart A.; Kim, Hyun-Tak; Liu, Mengkun; Averitt, Richard D.

    2017-09-01

    Ultrafast optical pump-optical probe and optical pump-terahertz probe spectroscopy were performed on vanadium dioxide (VO2) and vanadium sesquioxide (V2O3 ) thin films over a wide temperature range. A comparison of the experimental data from these two different techniques and two different vanadium oxides, in particular a comparison of the spectral weight oscillations generated by the photoinduced longitudinal acoustic modulation, reveals the strong electron-phonon coupling that exists in both materials. The low-energy Drude response of V2O3 appears more amenable than VO2 to ultrafast strain control. Additionally, our results provide a measurement of the temperature dependence of the sound velocity in both systems, revealing a four- to fivefold increase in VO2 and a three- to fivefold increase in V2O3 across the insulator-to-metal phase transition. Our data also confirm observations of strong damping and phonon anharmonicity in the metallic phase of VO2, and suggest that a similar phenomenon might be at play in the metallic phase of V2O3 . More generally, our simple table-top approach provides relevant and detailed information about dynamical lattice properties of vanadium oxides, paving the way to similar studies in other complex materials.

  11. Stable biexcitons in two-dimensional metal-halide perovskites with strong dynamic lattice disorder

    Science.gov (United States)

    Thouin, Félix; Neutzner, Stefanie; Cortecchia, Daniele; Dragomir, Vlad Alexandru; Soci, Cesare; Salim, Teddy; Lam, Yeng Ming; Leonelli, Richard; Petrozza, Annamaria; Kandada, Ajay Ram Srimath; Silva, Carlos

    2018-03-01

    With strongly bound and stable excitons at room temperature, single-layer, two-dimensional organic-inorganic hybrid perovskites are viable semiconductors for light-emitting quantum optoelectronics applications. In such a technological context, it is imperative to comprehensively explore all the factors—chemical, electronic, and structural—that govern strong multiexciton correlations. Here, by means of two-dimensional coherent spectroscopy, we examine excitonic many-body effects in pure, single-layer (PEA) 2PbI4 (PEA = phenylethylammonium). We determine the binding energy of biexcitons—correlated two-electron, two-hole quasiparticles—to be 44 ±5 meV at room temperature. The extraordinarily high values are similar to those reported in other strongly excitonic two-dimensional materials such as transition-metal dichalcogenides. Importantly, we show that this binding energy increases by ˜25 % upon cooling to 5 K. Our work highlights the importance of multiexciton correlations in this class of technologically promising, solution-processable materials, in spite of the strong effects of lattice fluctuations and dynamic disorder.

  12. Dynamics of interacting fermions under spin-orbit coupling in an optical lattice clock

    Science.gov (United States)

    Bromley, S. L.; Kolkowitz, S.; Bothwell, T.; Kedar, D.; Safavi-Naini, A.; Wall, M. L.; Salomon, C.; Rey, A. M.; Ye, J.

    2018-04-01

    Quantum statistics and symmetrization dictate that identical fermions do not interact via s-wave collisions. However, in the presence of spin-orbit coupling (SOC), fermions prepared in identical internal states with distinct momenta become distinguishable. The resulting strongly interacting system can exhibit exotic topological and pairing behaviours, many of which are yet to be observed in condensed matter systems. Ultracold atomic gases offer a promising pathway for simulating these rich phenomena, but until recently have been hindered by heating and losses. Here we enter a new regime of many-body interacting SOC in a fermionic optical lattice clock (OLC), where the long-lived electronic clock states mitigate unwanted dissipation. Using clock spectroscopy, we observe the precession of the collective magnetization and the emergence of spin-locking effects arising from an interplay between p-wave and SOC-induced exchange interactions. The many-body dynamics are well captured by a collective XXZ spin model, which describes a broad class of condensed matter systems ranging from superconductors to quantum magnets. Furthermore, our work will aid in the design of next-generation OLCs by offering a route for avoiding the observed large density shifts caused by SOC-induced exchange interactions.

  13. Dynamic Spin-Lattice Coupling and Nematic Fluctuations in NaFeAs

    Directory of Open Access Journals (Sweden)

    Yu Li

    2018-06-01

    Full Text Available We use inelastic neutron scattering to study acoustic phonons and spin excitations in single crystals of NaFeAs, a parent compound of iron-pnictide superconductors. NaFeAs exhibits a tetragonal-to-orthorhombic structural transition at T_{s}≈58  K and a collinear antiferromagnetic order at T_{N}≈45  K. While longitudinal and out-of-plane transverse acoustic phonons behave as expected, the in-plane transverse acoustic phonons reveal considerable softening on cooling to T_{s} and then harden on approaching T_{N} before saturating below T_{N}. In addition, we find that spin-spin correlation lengths of low-energy magnetic excitations within the FeAs layer and along the c axis increase dramatically below T_{s} and show a weak anomaly across T_{N}. These results suggest that the electronic nematic phase present in the paramagnetic tetragonal phase is closely associated with dynamic spin-lattice coupling, possibly arising from the one-phonon–two-magnon mechanism.

  14. Constraints on СS and Їј ¯ from lattice quantum chromo- dynamics

    Indian Academy of Sciences (India)

    Relevance of these results to estimates of б. ' /б is discussed. Keywords. Lattice QCD ... Their values depend on the QCD renormalization scale, and three quantitative approaches have been used to .... Numerical results show that, for a fixed value of the lattice scale, increasing N increases the coupling g¾ through vacuum ...

  15. Thermal conductivity prediction of nanoscale phononic crystal slabs using a hybrid lattice dynamics-continuum mechanics technique

    Directory of Open Access Journals (Sweden)

    Charles M. Reinke

    2011-12-01

    Full Text Available Recent work has demonstrated that nanostructuring of a semiconductor material to form a phononic crystal (PnC can significantly reduce its thermal conductivity. In this paper, we present a classical method that combines atomic-level information with the application of Bloch theory at the continuum level for the prediction of the thermal conductivity of finite-thickness PnCs with unit cells sized in the micron scale. Lattice dynamics calculations are done at the bulk material level, and the plane-wave expansion method is implemented at the macrosale PnC unit cell level. The combination of the lattice dynamics-based and continuum mechanics-based dispersion information is then used in the Callaway-Holland model to calculate the thermal transport properties of the PnC. We demonstrate that this hybrid approach provides both accurate and efficient predictions of the thermal conductivity.

  16. Lattice dynamics of Ba1-xKxBiO3 as studied by neutron scattering and computer simulation

    International Nuclear Information System (INIS)

    Belushkin, A.V.; Vagov, A.V.; Zemlyanov, M.G.; Parshin, P.P.

    1991-01-01

    A time-of-flight neutron inelastic scattering study of the lattice dynamics of Ba 1-x K x BiO 3 for x=0.0 and x=0.4 has been performed for the temperatures 10 K, 80 K and 290 K. No temperature effects were found for the generalized phonon density of states. The phonon spectrum of a superconducting sample reveals less in number van Hove singularities and softens in comparison with that of the nonsuperconducting one. On the basis of the simple model for interatomic potential the lattice dynamics of this system was calculated. Some features of the structural phase diagram and the optical spectroscopy data were explained using this model. The calculated phonon density of states was found to be in good agreement with experiment. 36 refs.; 3 figs

  17. Lattice dynamics and domain wall oscillations of morphotropic Pb(Zr,Ti)O.sub.3./sub. ceramics

    Czech Academy of Sciences Publication Activity Database

    Buixaderas, Elena; Bovtun, Viktor; Kempa, Martin; Nuzhnyy, Dmitry; Savinov, Maxim; Vaněk, Přemysl; Gregora, Ivan; Malic, B.

    2016-01-01

    Roč. 94, č. 5 (2016), 1-10, č. článku 054315. ISSN 1098-0121 R&D Projects: GA ČR(CZ) GA14-25639S; GA MŠk(CZ) LD15014 Institutional support: RVO:68378271 Keywords : PZT * phonon * lattice dynamics * dielectric response * Raman * infrared spectroscopy * broad-band spectroscopy * piezoelectrics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  18. All optical detection of picosecond spin-wave dynamics in 2D annular antidot lattice

    Science.gov (United States)

    Porwal, Nikita; Mondal, Sucheta; Choudhury, Samiran; De, Anulekha; Sinha, Jaivardhan; Barman, Anjan; Datta, Prasanta Kumar

    2018-02-01

    Novel magnetic structures with precisely controlled dimensions and shapes at the nanoscale have potential applications in spin logic, spintronics and other spin-based communication devices. We report the fabrication of 2D bi-structure magnonic crystal in the form of embedded nanodots in a periodic Ni80Fe20 antidot lattice structure (annular antidot) by focused ion-beam lithography. The spin-wave spectra of the annular antidot sample, studied for the first time by a time-resolved magneto-optic Kerr effect microscopy show a remarkable variation with bias field, which is important for the above device applications. The optically induced spin-wave spectra show multiple modes in the frequency range 14.7 GHz-3.5 GHz due to collective interactions between the dots and antidots as well as the annular elements within the whole array. Numerical simulations qualitatively reproduce the experimental results, and simulated mode profiles reveal the spatial distribution of the spin-wave modes and internal magnetic fields responsible for these observations. It is observed that the internal field strength increases by about 200 Oe inside each dot embedded within the hole of annular antidot lattice as compared to pure antidot lattice and pure dot lattice. The stray field for the annular antidot lattice is found to be significant (0.8 kOe) as opposed to the negligible values of the same for the pure dot lattice and pure antidot lattice. Our findings open up new possibilities for development of novel artificial crystals.

  19. Ab initio molecular dynamics study of lithium diffusion in tetragonal Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Andriyevsky, B., E-mail: bohdan.andriyevskyy@tu.koszalin.pl [Faculty of Electronics and Computer Sciences, Koszalin University of Technology, 2 Śniadeckich Str., PL-75-453, Koszalin (Poland); Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, D-89069, Ulm (Germany); Doll, K. [Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, D-89069, Ulm (Germany); Institute of Theoretical Chemistry, Pfaffenwaldring 55, D-70569, Stuttgart (Germany); Jacob, T. [Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, D-89069, Ulm (Germany); Helmholtz Institute Ulm (HIU) for Electrochemical Energy Storage, Albert-Einstein-Allee 11, D-89081, Ulm (Germany)

    2017-01-01

    Using ab initio density functional theory the thermally-stimulated migration of lithium ions in the garnet-type material Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} is investigated. The methods of ab initio molecular dynamics have been applied to calculate the lithium ion self-diffusion coefficient and the diffusion barriers as function of lithium ion concentration. The concentration of lithium in the initial Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} crystal unit cell is varied from 53 to 59 atoms, where 56 lithium atoms represent the stoichiometric concentration. Almost monotonous dependencies of the main characteristics on the number of lithium atoms N{sup (Li)} have been found, except for a non-monotonous peculiarity of the stoichiometric compound (N{sup (Li)} = 56). Finally, the influence of the unit cell volume change on lithium ion diffusion parameters as well as lithium ion hopping rates has been studied. - Highlights: • Partial lithium atoms subtraction from LLZO increases diffusion coefficient D{sup (Li)}. • Partial subtraction of lithium atoms from LLZO decreases activation energy E{sub a}{sup (Li)}. • Activation energy E{sub a}{sup (Li)} is the smallest for tetrahedral oxygen surrounding. • Compression of LLZO leads to a decrease of lithium ion diffusion coefficient D{sup (Li)}.

  20. Study of hydrogen-molecule guests in type II clathrate hydrates using a force-matched potential model parameterised from ab initio molecular dynamics

    Science.gov (United States)

    Burnham, Christian J.; Futera, Zdenek; English, Niall J.

    2018-03-01

    The force-matching method has been applied to parameterise an empirical potential model for water-water and water-hydrogen intermolecular interactions for use in clathrate-hydrate simulations containing hydrogen guest molecules. The underlying reference simulations constituted ab initio molecular dynamics (AIMD) of clathrate hydrates with various occupations of hydrogen-molecule guests. It is shown that the resultant model is able to reproduce AIMD-derived free-energy curves for the movement of a tagged hydrogen molecule between the water cages that make up the clathrate, thus giving us confidence in the model. Furthermore, with the aid of an umbrella-sampling algorithm, we calculate barrier heights for the force-matched model, yielding the free-energy barrier for a tagged molecule to move between cages. The barrier heights are reasonably large, being on the order of 30 kJ/mol, and are consistent with our previous studies with empirical models [C. J. Burnham and N. J. English, J. Phys. Chem. C 120, 16561 (2016) and C. J. Burnham et al., Phys. Chem. Chem. Phys. 19, 717 (2017)]. Our results are in opposition to the literature, which claims that this system may have very low barrier heights. We also compare results to that using the more ad hoc empirical model of Alavi et al. [J. Chem. Phys. 123, 024507 (2005)] and find that this model does very well when judged against the force-matched and ab initio simulation data.

  1. Increasing the efficiency and accuracy of time-resolved electronic spectra calculations with on-the-fly ab initio quantum dynamics methods

    Science.gov (United States)

    Vanicek, Jiri

    2014-03-01

    Rigorous quantum-mechanical calculations of coherent ultrafast electronic spectra remain difficult. I will present several approaches developed in our group that increase the efficiency and accuracy of such calculations: First, we justified the feasibility of evaluating time-resolved spectra of large systems by proving that the number of trajectories needed for convergence of the semiclassical dephasing representation/phase averaging is independent of dimensionality. Recently, we further accelerated this approximation with a cellular scheme employing inverse Weierstrass transform and optimal scaling of the cell size. The accuracy of potential energy surfaces was increased by combining the dephasing representation with accurate on-the-fly ab initio electronic structure calculations, including nonadiabatic and spin-orbit couplings. Finally, the inherent semiclassical approximation was removed in the exact quantum Gaussian dephasing representation, in which semiclassical trajectories are replaced by communicating frozen Gaussian basis functions evolving classically with an average Hamiltonian. Among other examples I will present an on-the-fly ab initio semiclassical dynamics calculation of the dispersed time-resolved stimulated emission spectrum of the 54-dimensional azulene. This research was supported by EPFL and by the Swiss National Science Foundation NCCR MUST (Molecular Ultrafast Science and Technology) and Grant No. 200021124936/1.

  2. Energetic and dynamical instability of spin-orbit coupled Bose-Einstein condensate in a deep optical lattice

    Science.gov (United States)

    Yu, Zi-Fa; Chai, Xu-Dan; Xue, Ju-Kui

    2018-05-01

    We investigate the energetic and dynamical instability of spin-orbit coupled Bose-Einstein condensate in a deep optical lattice via a tight-binding model. The stability phase diagram is completely revealed in full parameter space, while the dependence of superfluidity on the dispersion relation is illustrated explicitly. In the absence of spin-orbit coupling, the superfluidity only exists in the center of the Brillouin zone. However, the combination of spin-orbit coupling, Zeeman field, nonlinearity and optical lattice potential can modify the dispersion relation of the system, and change the position of Brillouin zone for generating the superfluidity. Thus, the superfluidity can appear in either the center or the other position of the Brillouin zone. Namely, in the center of the Brillouin zone, the system is either superfluid or Landau unstable, which depends on the momentum of the lowest energy. Therefore, the superfluidity can occur at optional position of the Brillouin zone by elaborating spin-orbit coupling, Zeeman splitting, nonlinearity and optical lattice potential. For the linear case, the system is always dynamically stable, however, the nonlinearity can induce the dynamical instability, and also expand the superfluid region. These predicted results can provide a theoretical evidence for exploring the superfluidity of the system experimentally.

  3. The pion form factor from lattice QCD with two dynamical flavours

    Energy Technology Data Exchange (ETDEWEB)

    Broemmel, D. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie]|[Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik; Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie; Goeckeler, M. [Regensburg Univ. (DE). Inst. fuer Physik 1 - Theoretische Physik] (and others)

    2006-08-15

    We compute the electromagnetic form factor of the pion using non-perturbatively O(a) improved Wilson fermions. The calculations are done for pion masses down to 400 MeV and for lattice spacings of 0.07-0.11 fm. We check for finite size effects by repeating some of the measurements on smaller lattices. The large number of lattice parameters we use allows us to extrapolate to the physical point. For the square of the charge radius we find left angle r{sup 2} right angle =0.440(19) fm{sup 2}, in good agreement with experiment. (orig.)

  4. First principle calculation of structure and lattice dynamics of Lu2Si2O7

    Directory of Open Access Journals (Sweden)

    Nazipov D.V.

    2017-01-01

    Full Text Available Ab initio calculations of crystal structure and Raman spectra has been performed for single crystal of lutetium pyrosilicate Lu2Si2O7. The types of fundamental vibrations, their frequencies and intensities in the Raman spectrum has been obtained for two polarizations. Calculations were made in the framework of density functional theory (DFT with hybrid functionals. The isotopic substitution was calculated for all inequivalent ions in cell. The results in a good agreement with experimental data.

  5. First-principles study of lattice dynamics, structural phase transition, and thermodynamic properties of barium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huai-Yong; Zhao, Ying-Qin; Lu, Qing [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Zeng, Zhao-Yi [Chongqing Normal Univ. (China). College of Physics and Electronic Engineering; Chinese Academy of Engineering Physics, Mianyang (China). National Key Laboratory for Shock Wave and Detonation Physics Research; Cheng, Yan [Sichuan Univ., Chengdu (China). Inst. of Atomic and Molecular Physics; Sichuan Univ., Chengdu (China). Key Laboratory of High Energy Density Physics and Technology of Ministry of Education

    2016-11-01

    Lattice dynamics, structural phase transition, and the thermodynamic properties of barium titanate (BaTiO{sub 3}) are investigated by using first-principles calculations within the density functional theory (DFT). It is found that the GGA-WC exchange-correlation functional can produce better results. The imaginary frequencies that indicate structural instability are observed for the cubic, tetragonal, and orthorhombic phases of BaTiO{sub 3} and no imaginary frequencies emerge in the rhombohedral phase. By examining the partial phonon density of states (PDOSs), we find that the main contribution to the imaginary frequencies is the distortions of the perovskite cage (Ti-O). On the basis of the site-symmetry consideration and group theory, we give the comparative phonon symmetry analysis in four phases, which is useful to analyze the role of different atomic displacements in the vibrational modes of different symmetry. The calculated optical phonon frequencies at Γ point for the four phases are in good agreement with other theoretical and experimental data. The pressure-induced phase transition of BaTiO{sub 3} among four phases and the thermodynamic properties of BaTiO{sub 3} in rhombohedral phase have been investigated within the quasi-harmonic approximation (QHA). The sequence of the pressure-induced phase transition is rhombohedral → orthorhombic → tetragonal → cubic, and the corresponding transition pressure is 5.17, 5.92, 6.65 GPa, respectively. At zero pressure, the thermal expansion coefficient α{sub V}, heat capacity C{sub V}, Grueneisen parameter γ, and bulk modulus B of the rhombohedral phase BaTiO{sub 3} are estimated from 0 K to 200 K.

  6. Lattice dynamics and thermal conductivity of lithium fluoride via first-principles calculations

    Science.gov (United States)

    Liang, Ting; Chen, Wen-Qi; Hu, Cui-E.; Chen, Xiang-Rong; Chen, Qi-Feng

    2018-04-01

    The lattice thermal conductivity of lithium fluoride (LiF) is accurately computed from a first-principles approach based on an iterative solution of the Boltzmann transport equation. Real-space finite-difference supercell approach is employed to generate the second- and third-order interatomic force constants. The related physical quantities of LiF are calculated by the second- and third- order potential interactions at 30 K-1000 K. The calculated lattice thermal conductivity 13.89 W/(m K) for LiF at room temperature agrees well with the experimental value, demonstrating that the parameter-free approach can furnish precise descriptions of the lattice thermal conductivity for this material. Besides, the Born effective charges, dielectric constants and phonon spectrum of LiF accord well with the existing data. The lattice thermal conductivities for the iterative solution of BTE are also presented.

  7. Dynamical control of matter-wave splitting using time-dependent optical lattices

    DEFF Research Database (Denmark)

    Park, Sung Jong; Andersen, Henrik Kjær; Mai, Sune

    2012-01-01

    We report on measurements of splitting Bose-Einstein condensates (BEC) by using a time-dependent optical lattice potential. First, we demonstrate the division of a BEC into a set of equally populated components by means of time-dependent control of Landau-Zener tunneling in a vertical lattice....... Finally, a combination of multiple Bragg reflections and Landau-Zener tunneling allows for the generation of macroscopic arrays of condensates with potential applications in atom optics and atom interferometry....

  8. Efficiency of rejection-free methods for dynamic Monte Carlo studies of off-lattice interacting particles

    KAUST Repository

    Guerra, Marta L.; Novotny, M. A.; Watanabe, Hiroshi; Ito, Nobuyasu

    2009-01-01

    We calculate the efficiency of a rejection-free dynamic Monte Carlo method for d -dimensional off-lattice homogeneous particles interacting through a repulsive power-law potential r-p. Theoretically we find the algorithmic efficiency in the limit of low temperatures and/or high densities is asymptotically proportional to ρ (p+2) /2 T-d/2 with the particle density ρ and the temperature T. Dynamic Monte Carlo simulations are performed in one-, two-, and three-dimensional systems with different powers p, and the results agree with the theoretical predictions. © 2009 The American Physical Society.

  9. Efficiency of rejection-free methods for dynamic Monte Carlo studies of off-lattice interacting particles

    KAUST Repository

    Guerra, Marta L.

    2009-02-23

    We calculate the efficiency of a rejection-free dynamic Monte Carlo method for d -dimensional off-lattice homogeneous particles interacting through a repulsive power-law potential r-p. Theoretically we find the algorithmic efficiency in the limit of low temperatures and/or high densities is asymptotically proportional to ρ (p+2) /2 T-d/2 with the particle density ρ and the temperature T. Dynamic Monte Carlo simulations are performed in one-, two-, and three-dimensional systems with different powers p, and the results agree with the theoretical predictions. © 2009 The American Physical Society.

  10. Soft mode characteristics of up-up-down-down spin chains: The role of exchange interactions on lattice dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y. J. [School of Physics and Electronic Engineering, Jiangsu Second Normal University, Nanjing 210013 (China); Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Gao, Y. J.; Ge, C. N [School of Physics and Electronic Engineering, Jiangsu Second Normal University, Nanjing 210013 (China); Guo, Y. Y. [College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003 (China); Yan, Z. B.; Liu, J.-M., E-mail: liujm@nju.edu.cn [Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-05-07

    In this work, the dynamics of a diatomic chain is investigated with ↑↑↓↓ spin order in which the dispersion relation characterizes the effect of magnetic interactions on the lattice dynamics. The optical or acoustic mode softening in the center or boundary of the Brillouin zone can be observed, indicating the transitions of ferroelectric state, antiferromagnetic state, or ferroelastic state. The coexistence of the multiferroic orders related to the ↑↑↓↓ spin order represents a type of intrinsic multiferroic with strong ferroelectric order and different microscopic mechanisms.

  11. Sound waves and dynamics of superfluid Fermi gases in optical lattices

    International Nuclear Information System (INIS)

    Zhang Aixia; Xue Jukui

    2009-01-01

    The sound waves, the stability of Bloch waves, the Bloch oscillation, and the self-trapping phenomenon in interacting two-component Fermi gases throughout the BEC-BCS crossover in one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) optical lattices are discussed in detail. Within the hydrodynamical theory and by using the perturbative and tight-binding approximation, sound speed in both weak and tight 1D, 2D, 3D optical lattices, and the criteria for occurrences of instability of Bloch waves and self-trapping of Fermi gases along the whole BEC-BCS crossover in tight 1D, 2D, 3D optical lattices are obtained analytically. The results show that the sound speed, the criteria for occurrences of instability of Bloch waves and self-trapping, and the destruction of Bloch oscillation are modified dramatically by the lattice parameters (lattice dimension and lattice strength), the atom density or atom number, and the atom interaction.

  12. Ab initio molecular dynamics simulations on the structural change of liquid eutectic alloy Si15Te85 from 673 to 1373 k

    International Nuclear Information System (INIS)

    Wang Yubing; Zhao Gang; Liu Changsong; Zhu Zhengang

    2010-01-01

    Using ab initio molecular dynamics simulations and inherent structure formalism, the local atomic structure and electronic properties of liquid Si 15 Te 85 alloy were studied at eight different temperatures from 673 to 1373 K. In comparison with available experimental data, our calculated structure factors are acceptable. With increasing temperature from 773 to 1173 K, the calculated total coordination number N Total increases gradually in contrast to the behavior of a classical isotropic fluid. Our results of pair-correlation functions, bond-angle distribution functions and angular limited triplet correlation functions suggest that the temperature-dependence of the preserved sp 3 hybridization of Si atoms and Peierls-type distorted local structure around Te atoms both play important roles in the structural change of Si 15 Te 85 characterized by thermodynamic anomalies.

  13. Ab initio molecular dynamics simulations on the structural change of liquid eutectic alloy Si{sub 15}Te{sub 85} from 673 to 1373 k

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yubing, E-mail: ybwang1985@gmail.co [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Post Office 1129, Hefei 230031 (China); Zhao Gang [Department of Physics and Electronic Engineering, Ludong University, Hongqi Road, No. 186, Yantai 264025 (China); Liu Changsong; Zhu Zhengang [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Post Office 1129, Hefei 230031 (China)

    2010-01-15

    Using ab initio molecular dynamics simulations and inherent structure formalism, the local atomic structure and electronic properties of liquid Si{sub 15}Te{sub 85} alloy were studied at eight different temperatures from 673 to 1373 K. In comparison with available experimental data, our calculated structure factors are acceptable. With increasing temperature from 773 to 1173 K, the calculated total coordination number N{sub Total} increases gradually in contrast to the behavior of a classical isotropic fluid. Our results of pair-correlation functions, bond-angle distribution functions and angular limited triplet correlation functions suggest that the temperature-dependence of the preserved sp{sup 3} hybridization of Si atoms and Peierls-type distorted local structure around Te atoms both play important roles in the structural change of Si{sub 15}Te{sub 85} characterized by thermodynamic anomalies.

  14. Origin of the reverse optical-contrast change of Ga-Sb phase-change materials—An ab initio molecular-dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, J. A.; Elliott, S. R., E-mail: sre1@cam.ac.uk [Department of Chemistry, University of Cambridge, Cambridge CB2 1EW (United Kingdom)

    2014-04-07

    A large number of phase-change materials (PCMs) have been developed experimentally; however, only Ge{sub 2}Sb{sub 2}Te{sub 5}-based PCMs have been significantly explored using ab initio molecular-dynamics (AIMD) simulations. We present an AIMD study of the full melt/quench/anneal PC cycle for Ga-Sb materials, namely, the stoichiometric composition, GaSb, and the near-eutectic alloy, Ga{sub 16}Sb{sub 84}. The calculated electronic densities of states and optical reflectivities are compared between the amorphous and crystalline phases for both compositions, and it is shown that the contrasting opto-electronic properties of each crystalline material can be attributed to different structural transformations of Ga and Sb on crystallization from the amorphous state.

  15. Efficient "on-the-fly" calculation of Raman spectra from ab-initio molecular dynamics: Application to hydrophobic/hydrophilic solutes in bulk water.

    Science.gov (United States)

    Partovi-Azar, Pouya; Kühne, Thomas D

    2015-11-05

    We present a novel computational method to accurately calculate Raman spectra from first principles. Together with an extension of the second-generation Car-Parrinello method of Kühne et al. (Phys. Rev. Lett. 2007, 98, 066401) to propagate maximally localized Wannier functions together with the nuclei, a speed-up of one order of magnitude can be observed. This scheme thus allows to routinely calculate finite-temperature Raman spectra "on-the-fly" by means of ab-initio molecular dynamics simulations. To demonstrate the predictive power of this approach we investigate the effect of hydrophobic and hydrophilic solutes in water solution on the infrared and Raman spectra. © 2015 Wiley Periodicals, Inc.

  16. An Insight into the Environmental Effects of the Pocket of the Active Site of the Enzyme. Ab initio ONIOM-Molecular Dynamics (MD) Study on Cytosine Deaminase

    International Nuclear Information System (INIS)

    Matsubara, Toshiaki; Dupuis, Michel; Aida, Misako

    2008-01-01

    We applied the ONIOM-molecular dynamics (MD) method to cytosine deaminase to examine the environmental effects of the amino acid residues in the pocket of the active site on the substrate taking account of their thermal motion. The ab initio ONIOM-MD simulations show that the substrate uracil is strongly perturbed by the amino acid residue Ile33, which sandwiches the uracil with His62, through the steric contact due to the thermal motion. As a result, the magnitude of the thermal oscillation of the potential energy and structure of the substrate uracil significantly increases. TM and MA were partly supported by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan.MD was supported by the Division of Chemical Sciences, Office of Basic Energy Sciences, and by the Office of Biological and Environmental Research of the U.S. Department of Energy DOE. Battelle operates Pacific Northwest National Laboratory for DOE

  17. Direct measurements of multi-photon induced nonlinear lattice dynamics in semiconductors via time-resolved x-ray scattering.

    Science.gov (United States)

    Williams, G Jackson; Lee, Sooheyong; Walko, Donald A; Watson, Michael A; Jo, Wonhuyk; Lee, Dong Ryeol; Landahl, Eric C

    2016-12-22

    Nonlinear optical phenomena in semiconductors present several fundamental problems in modern optics that are of great importance for the development of optoelectronic devices. In particular, the details of photo-induced lattice dynamics at early time-scales prior to carrier recombination remain poorly understood. We demonstrate the first integrated measurements of both optical and structural, material-dependent quantities while also inferring the bulk impulsive strain profile by using high spatial-resolution time-resolved x-ray scattering (TRXS) on bulk crystalline gallium arsenide. Our findings reveal distinctive laser-fluence dependent crystal lattice responses, which are not described by previous TRXS experiments or models. The initial linear expansion of the crystal upon laser excitation stagnates at a laser fluence corresponding to the saturation of the free carrier density before resuming expansion in a third regime at higher fluences where two-photon absorption becomes dominant. Our interpretations of the lattice dynamics as nonlinear optical effects are confirmed by numerical simulations and by additional measurements in an n-type semiconductor that allows higher-order nonlinear optical processes to be directly observed as modulations of x-ray diffraction lineshapes.

  18. Nonadiabatic ab initio molecular dynamics of photoisomerization reaction between 1,3-cyclohexadiene and 1,3,5-cis-hexatriene

    International Nuclear Information System (INIS)

    Ohta, Ayumi; Kobayashi, Osamu; Danielache, Sebastian O.; Nanbu, Shinkoh

    2015-01-01

    Highlights: • The photoisomerization between cyclohexadiene and hexatriene was simulated. • Nonadiabatic ab initio MD simulations were employed to elucidate the mechanism. • Each excitations to S_1 and S_2 were simulated using full-dimensional model. • Specific molecular motions at CoIns and molecular vibrations on S_1 PES were found. • The one-sided product branching ratio was obtained at the photoexcitation to S_2. - Abstract: The photoisomerization process between 1,3-cyclohexadiene (CHD) and 1,3,5-cis-hexatriene (HT) has been studied by nonadiabatic ab initio molecular dynamics based on trajectory surface-hopping approach with a full-dimensional reaction model. The quantum chemical calculations were treated at MS-MR-CASPT2 level for 8 electrons in 8 orbitals with the cc-pVDZ basis set. The Zhu–Nakamura formula was employed to evaluate nonadiabatic transition probabilities. S_1 and S_2 states were included in the photoisomerization dynamics. Lifetimes and CHD:HT branching ratios were computationally estimated on the basis of statistical analysis of multiple executed trajectories. The analysis of trajectories suggested that the nonadiabatic transitions at the S_0/S_1 and S_1/S_2 conical intersections (CoIn) are correlated to the Kekulé-type vibration and the C3–C4–C5 bending motion, respectively. The one-sided branching ratio was obtained by excitations to the S_2 state; 70:30. The critical branching process was found to be dominated by the location of CoIn in potential energy hypersurface of the excited state.

  19. Strong influence of coadsorbate interaction on CO desorption dynamics on Ru(0001) probed by ultrafast x-ray spectroscopy and ab initio simulations

    Energy Technology Data Exchange (ETDEWEB)

    Xin, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); LaRue, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Oberg, H. [Stockholm Univ., Stockholm (Sweden); Beye, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Dell' Angela, M. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Turner, J. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gladh, J. [Stockholm Univ., Stockholm (Sweden); Ng, M. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Sellberg, J. A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Kaya, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Mercurio, G. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Hieke, F. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Nordlund, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Schlotter, W. F. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dakovski, G. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Minitti, M. P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fohlisch, A. [Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Univ. Potsdam, Potsdam (Germany); Wolf, M. [Fritz-Haber Institute of the Max-Planck-Society, Berlin (Germany); Wurth, W. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); DESY Photon Science, Hamburg (Germany); Ogasawara, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Norskov, J. K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Ostrom, H. [Stockholm Univ., Stockholm (Sweden); Pettersson, L. G. M. [Stockholm Univ., Stockholm (Sweden); Nilsson, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stockholm Univ., Stockholm (Sweden); Ablid-Pedersen, F. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-04-16

    We show that coadsorbed oxygen atoms have a dramatic influence on the CO desorption dynamics from Ru(0001). In contrast to the precursor-mediated desorption mechanism on Ru(0001), the presence of surface oxygen modifies the electronic structure of Ru atoms such that CO desorption occurs predominantly via the direct pathway. This phenomenon is directly observed in an ultrafast pump-probe experiment using a soft x-ray free-electron laser to monitor the dynamic evolution of the valence electronic structure of the surface species. This is supported with the potential of mean force along the CO desorption path obtained from density-functional theory calculations. Charge density distribution and frozen-orbital analysis suggest that the oxygen-induced reduction of the Pauli repulsion, and consequent increase of the dative interaction between the CO 5σ and the charged Ru atom, is the electronic origin of the distinct desorption dynamics. Ab initio molecular dynamics simulations of CO desorption from Ru(0001) and oxygen-coadsorbed Ru(0001) provide further insights into the surface bond-breaking process.

  20. Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization

    Science.gov (United States)

    Seko, Atsuto; Togo, Atsushi; Hayashi, Hiroyuki; Tsuda, Koji; Chaput, Laurent; Tanaka, Isao

    2015-11-01

    Compounds of low lattice thermal conductivity (LTC) are essential for seeking thermoelectric materials with high conversion efficiency. Some strategies have been used to decrease LTC. However, such trials have yielded successes only within a limited exploration space. Here, we report the virtual screening of a library containing 54 779 compounds. Our strategy is to search the library through Bayesian optimization using for the initial data the LTC obtained from first-principles anharmonic lattice-dynamics calculations for a set of 101 compounds. We discovered 221 materials with very low LTC. Two of them even have an electronic band gap <1 eV , which makes them exceptional candidates for thermoelectric applications. In addition to those newly discovered thermoelectric materials, the present strategy is believed to be powerful for many other applications in which the chemistry of materials is required to be optimized.

  1. Inelastic neutron scattering and lattice dynamics of AlPO4

    International Nuclear Information System (INIS)

    Mittal, R.; Chaplot, S.L.; Kulshreshtha, S.K.; Kolesnikov, A.I.; Loong, C.K.; Jayakumar, O.D.

    2005-01-01

    A semi-empirical interatomic potential in AlPO 4 , previously determined using ab initio calculations has been widely used in studying the phase transitions among various polymorphs. We report here measurements of the phonon spectrum in low-cristobalite phase of AlPO 4 using High-Resolution Medium-Energy Chopper Spectrometer at ANL, USA in the energy transfer range 0-160 MeV. The calculated phonon spectra using the available potential shows a fair agreement with the experimental data. However the agreement between the two is improved by including the polarizability of the oxygen atoms in the framework of a shell model. (author)

  2. Lattice dynamics calculations based on density-functional perturbation theory in real space

    Science.gov (United States)

    Shang, Honghui; Carbogno, Christian; Rinke, Patrick; Scheffler, Matthias

    2017-06-01

    A real-space formalism for density-functional perturbation theory (DFPT) is derived and applied for the computation of harmonic vibrational properties in molecules and solids. The practical implementation using numeric atom-centered orbitals as basis functions is demonstrated exemplarily for the all-electron Fritz Haber Institute ab initio molecular simulations (FHI-aims) package. The convergence of the calculations with respect to numerical parameters is carefully investigated and a systematic comparison with finite-difference approaches is performed both for finite (molecules) and extended (periodic) systems. Finally, the scaling tests and scalability tests on massively parallel computer systems demonstrate the computational efficiency.

  3. Regions of tunneling dynamics for few bosons in an optical lattice subjected to a quench of the imposed harmonic trap

    Science.gov (United States)

    Mistakidis, Simeon; Koutentakis, Georgios; Schmelcher, Peter; Theory Group of Fundamental Processes in Quantum Physics Team

    2016-05-01

    Recent experimental advances have introduced an interplay in the trapping length scales of the lattice and the harmonic confinement. This fact motivates the investigation to prepare atomic gases at certain quantum states by utilizing a composite atomic trap consisting of a lattice potential that is embedded inside an overlying harmonic trap. In the present work, we examine how frequency modulations of the overlying harmonic trap stimulate the dynamics of an 1D few-boson gas. The gas is initially prepared at a highly confined state, and the subsequent dynamics induced by a quench of the harmonic trap frequency to a lower value is examined. It is shown that a non-interacting gas always diffuses to the outer sites. In contrast the response of the interacting system is more involved and is dominated by a resonance, which is induced by the bifurcation of the low-lying eigenstates. Our study reveals that the position of the resonance depends both on the atom number and the interaction coupling, manifesting its many body nature. The corresponding mean field treatment as well as the single-band approximation have been found to be inadequate for the description of the tunneling dynamics in the interacting case. Deutsche Forschungsgemeinschaft, SFB 925 ``Light induced dynamics and control of correlated quantum systems''.

  4. Non-conservative dynamics of lattice sites near a migrating interface in a diffusional phase transformation

    International Nuclear Information System (INIS)

    Yang, T.; Gao, Y.; Wang, D.; Shi, R.P.; Chen, Z.; Nie, J.F.; Li, J.; Wang, Y.

    2017-01-01

    Migration of phase boundaries in crystalline solids eliminates one set of lattice sites and establishes another. Using a combination of phase field crystal modeling and crystallographic analysis, we present here a complete atomistic description of the migration mechanism of a high-index planar interface during a diffusional hexagon to square phase transformation. In particular we show that a terrace-step interface advances macroscopically in the form of growth ledges, while microscopically its migration occurs by opposite shearing on the terraces and a one-to-two splitting of lattice sites, giving a new class of lattice site correspondence and superabundant vacancies. In addition, a new approach capable of finding a critical nucleus with atomic resolution is developed by combining the phase field crystal energetics with the free-end nudged elastic band algorithm.

  5. Anomalous thermodynamic behaviour of novel compounds: inelastic neutron scattering and lattice dynamics studies

    International Nuclear Information System (INIS)

    Mittal, R.

    2014-01-01

    The understanding of the thermodynamic properties of solids has important applications in diverse areas like condensed matter physics, materials science, mineralogy, geophysics, etc. We have been extensively investigating anomalous thermodynamic properties of compounds using the techniques of inelastic neutron scattering and lattice dynamics. We would present some of the results from our recent studies. Studies of materials exhibiting anomalous thermal expansion are of interest due to their fundamental scientific importance and potential applications in ceramic, optical and electronic industry etc. We have studied the thermodynamic properties of negative thermal expansion (NTE) compounds ZrW 2 O 8 , HfW 2 O 8 , ZrMo 2 O 8 , ZrV 2 O 7 , HfV 2 O 7 , Zn(CN) 2 , Cu 2 O, Ag 2 O, Ag 3 Co(CN) 6 and Ag 3 Fe(CN) 6 . Our calculations predicted that large softening of the phonon spectrum involving librational and translational modes below 10 MeV would be responsible for anomalous thermal expansion behaviour. High pressure inelastic neutron scattering experiments carried by us on cubic ZrW 2 O 8 , ZrMo 2 O 8 and Zn(CN) 2 confirmed the phonon softening. Our studies indicate that unusual phonon softening of low energy modes is able to account for the thermal expansion behaviour in these compounds. Superionic conduction in fluorite-structured (anti-fluorite, Li 2 O) oxides (MO 2 , M= U, Th) have applications in energy storage, conversion and nuclear industry. The possible role of phonon in initiation of diffusion has been studied in Li 2 O. We found that in the superionic regime lithium atoms may exhibit macroscopic movement along (100) direction. The microscopic modeling or simulation is found to play a pivotal role in understanding the conduction processes at high temperatures in Li 2 O. We have also studied zircon structured compounds MSiO 4 (M=Zr, Hf, Th, U), RPO 4 , (R=rare earth atom). The compounds are known to transform to the scheelite (body centered tetragonal, I4 1 /a

  6. Lattice dynamical study of omega phase formation in Zr-Al system

    International Nuclear Information System (INIS)

    Ghosh, P.S.; Arya, A.; Kulkarni, U.D.; Dey, G.K.

    2011-01-01

    The hexagonal ω phase occurs in the alloys in which the high temperature β phase (bcc) is stabilized with respect to the martensitic β -> ω transformation. The compositional ranges over which the ω phase can be stabilized is the characteristic of the alloy system under consideration. The formation of ordered ω (B8 2 -Zr 2 Al) phase, having space group P6 3 /mmc has been viewed in terms of a superimposition of displacive and replacive components of phase transformation. While the lattice collapse mechanism of β -> ω transformation is displacive in nature; a replacive transformation involving diffusion is required for decorating different sublattice sites by different atomic species. Although, the extent of overlap of these transformations in the formation of ordered ω phase has not been established so far; attempts have been made to explore this aspect by examining the sequential formation of several intermediate stable/metastable phases. The partial collapse of 2nd - 3rd and 5th - 6th planes along (111) direction leads to intermediate trigonal ω ' phase upto which the transformation is purely displacive in nature. A chemical ordering sets in after this step leading to B82 structure via ω'' structure. Density functional plane wave based calculations using the projector augmented wave (PAW) potentials are employed under the generalized gradient approximation to exchange and correlation to study (a) relative ground state stabilities of these phases, (b) variation of total energy as a function of displacement (z, z = 0 to 1/12) and (c) Frozen-phonon calculations for 2/3 longitudinal phonon along (111) direction. The energy-displacement curve for the B2 structure shows nearly harmonic behavior for small displacements but shows strong anharmonic behavior for large displacements making trigonal ω ' structure metastable with respect to this kind of transformations. The phonon dispersion of B2 structure exhibits imaginary frequencies along (111) making it a

  7. A study of lattice dynamics in iron-based superconductors by inelastic light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Um, Youngje

    2013-12-13

    After the discovery of high temperature (high T{sub c}) superconductivity in copper oxide-based materials (cuprates) in 1986, this phenomenon was a unique property of the cuprates for more than 20 years. The origin of high T{sub c} superconductivity is still under debate. In 2008, high T{sub c} superconductivity was discovered in iron-based compounds. This discovery presents new opportunities for the development of a fundamental understanding of high T{sub c} superconductivity. Density functional calculations indicate a weak electron-phonon coupling strength in iron-based superconductors and these suggest that superconductivity is not mediated by phonons. However, experimental report of a large isotope effect of the iron atoms on the superconductivity T{sub c} suggests that phonons play an important role in iron-based superconductors. Motivated by these findings, this thesis presents a Raman scattering study of the lattice dynamics of the iron-based superconductors Fe{sub 1+y}Te{sub 1-x}Se{sub x}, LiFeAs and NaFe{sub 1-x}Co{sub x}As as a function of chemical composition and temperature. In Fe{sub 1+y}Te{sub 1-x}Se{sub x}, an unconventional linewidth broadening of the c-axis polarized Fe phonon of B{sub 1g} symmetry is found with decreasing temperature, which indicates an unusual coupling between the phonon and iron excessinduced magnetic fluctuations in this compound. In LiFeAs, the Raman scattering data provide evidence for a weak electron-phonon coupling, which is consistent with non-phonon mediated Cooper pairing in this compound. In NaFe{sub 1-x}Co{sub x}As, upon cooling two features are observed: (i) an unconventional linewidth broadening of several phonons, which is indicative of spin fluctuation-phonon coupling, and (ii) a superconductivity-induced phonon lineshape renormalization, which can not be explained by standard model calculations.

  8. Ultrafast electron, lattice and spin dynamics on rare earth metal surfaces. Investigated with linear and nonlinear optical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Radu, I.E.

    2006-03-15

    This thesis presents the femtosecond laser-induced electron, lattice and spin dynamics on two representative rare-earth systems: The ferromagnetic gadolinium Gd(0001) and the paramagnetic yttrium Y(0001) metals. The employed investigation tools are the time-resolved linear reflectivity and second-harmonic generation, which provide complementary information about the bulk and surface/interface dynamics, respectively. The femtosecond laser excitation of the exchange-split surface state of Gd(0001) triggers simultaneously the coherent vibrational dynamics of the lattice and spin subsystems in the surface region at a frequency of 3 THz. The coherent optical phonon corresponds to the vibration of the topmost atomic layer against the underlying bulk along the normal direction to the surface. The coupling mechanism between phonons and magnons is attributed to the modulation of the exchange interaction J between neighbour atoms due to the coherent lattice vibration. This leads to an oscillatory motion of the magnetic moments having the same frequency as the lattice vibration. Thus these results reveal a new type of phonon-magnon coupling mediated by the modulation of the exchange interaction and not by the conventional spin-orbit interaction. Moreover, we show that coherent spin dynamics in the THz frequency domain is achievable, which is at least one order of magnitude faster than previously reported. The laser-induced (de)magnetization dynamics of the ferromagnetic Gd(0001) thin films have been studied. Upon photo-excitation, the nonlinear magneto-optics measurements performed in this work show a sudden drop in the spin polarization of the surface state by more than 50% in a <100 fs time interval. Under comparable experimental conditions, the time-resolved photoemission studies reveal a constant exchange splitting of the surface state. The ultrafast decrease of spin polarization can be explained by the quasi-elastic spin-flip scattering of the hot electrons among spin

  9. Ab Initio Predictions of Hexagonal Zr(B,C,N) Polymorphs for Coherent Interface Design

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Chongze [Univ. of Minnesota-Twin Cities, Minneapolis, MN (United States); Huang, Jingsong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sumpter, Bobby G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meletis, Efstathios [Univ. of Texas at Arlington, Arlington, TX (United States); Dumitrica, Traian [Univ. of Minnesota-Twin Cities, Minneapolis, MN (United States)

    2017-10-27

    Density functional theory calculations are used to explore hexagonal (HX) NiAs-like polymorphs of Zr(B,C,N) and compare with corresponding Zr(B,C,N) Hagg-like face-centered cubic rocksalt (B1) phases. While all predicted compounds are mechanically stable according to the Born-Huang criteria, only HX Zr(C,N) are found dynamically stable from ab initio molecular dynamics simulations and lattice dynamics calculations. HX ZrN emerges as a candidate structure with ground state energy, elastic constants, and extrinsic mechanical parameters comparable with those of B1 ZrN. Ab initio band structure and semi-classical Boltzmann transport calculations predict a metallic character and a monotonic increase in electrical conductivity with the number of valence electrons. Electronic structure calculations indicate that the HX phases gain their stability and mechanical attributes by Zr d- non-metal p hybridization and by broadening of Zr d bands. Furthermore, it is shown that the HX ZrN phase provides a low-energy coherent interface model for connecting B1 ZrN domains, with significant energetic advantage over an atomistic interface model derived from high resolution transmission electron microscopy images. The ab initio characterizations provided herein should aid the experimental identification of non-Hagg-like hard phases. Furthermore, the results can also enrich the variety of crystalline phases potentially available for designing coherent interfaces in superhard nanostructured materials and in materials with multilayer characteristics.

  10. Mechanistic Insights into Radical-Mediated Oxidation of Tryptophan from ab Initio Quantum Chemistry Calculations and QM/MM Molecular Dynamics Simulations.

    Science.gov (United States)

    Wood, Geoffrey P F; Sreedhara, Alavattam; Moore, Jamie M; Wang, John; Trout, Bernhardt L

    2016-05-12

    An assessment of the mechanisms of (•)OH and (•)OOH radical-mediated oxidation of tryptophan was performed using density functional theory calculations and ab initio plane-wave Quantum Mechanics/Molecular Mechanics (QM/MM) molecular dynamics simulations. For the (•)OH reactions, addition to the pyrrole ring at position 2 is the most favored site with a barrierless reaction in the gas phase. The subsequent degradation of this adduct through a H atom transfer to water was intermittently observed in aqueous-phase molecular dynamics simulations. For the (•)OOH reactions, addition to the pyrrole ring at position 2 is the most favored pathway, in contrast to the situation in the model system ethylene, where concerted addition to the double bond is preferred. From the (•)OOH position 2 adduct QM/MM simulations show that formation of oxy-3-indolanaline occurs readily in an aqueous environment. The observed transformation starts from an initial rupture of the O-O bond followed by a H atom transfer with the accompanying loss of an (•)OH radical to solution. Finally, classical molecular dynamics simulations were performed to equate observed differential oxidation rates of various tryptophan residues in monoclonal antibody fragments. It was found that simple parameters derived from simulation correlate well with the experimental data.

  11. Lattice dynamics of aluminium, lead and thorium on modified Bhatia's model

    International Nuclear Information System (INIS)

    Bertolo, L.A.; Shukla, M.M.

    1975-01-01

    Phonon dispersion relations along the three principal symmetry directions as well as lattice heat capacities of aluminium, lead and thorium have been calculated on the basis of modified Bathia's model. The calculated results are found to show reasonable agreements with the experimental observations

  12. A new approach to the problem of dynamical quarks in numerical simulations of lattice QCD

    International Nuclear Information System (INIS)

    Luescher, M.

    1993-11-01

    Lattice QCD with an even number of degenerate quark flavours is shown to be a limit of a local bosonic field theory. The action of the bosonic theory is real and bounded from below so that standard simulation algorithms can be expected to apply. The feasibility of such calculations is discussed, but no practical tests have yet been made. (orig.)

  13. Molecular dynamics simulations of the lattice thermal conductivity of thermoelectric material CuInTe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wei, J. [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong (Hong Kong); Liu, H.J., E-mail: phlhj@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Cheng, L.; Zhang, J.; Jiang, P.H.; Liang, J.H.; Fan, D.D.; Shi, J. [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2017-05-10

    Highlights: • A simple but effective Morse potential is constructed to accurately describe the interatomic interactions of CuInTe{sub 2}. • The lattice thermal conductivity of CuInTe{sub 2} predicted by MD agrees well with those measured experimentally, as well as those calculated from phonon BTE. • Introducing Cd impurity or Cu vacancy can effectively reduce the lattice thermal conductivity of CuInTe{sub 2} and thus further enhance its thermoelectric performance. - Abstract: The lattice thermal conductivity of thermoelectric material CuInTe{sub 2} is predicted using classical molecular dynamics simulations, where a simple but effective Morse-type interatomic potential is constructed by fitting first-principles total energy calculations. In a broad temperature range from 300 to 900 K, our simulated results agree well with those measured experimentally, as well as those obtained from phonon Boltzmann transport equation. By introducing the Cd impurity or Cu vacancy, the thermal conductivity of CuInTe{sub 2} can be effectively reduced to further enhance the thermoelectric performance of this chalcopyrite compound.

  14. Inelastic neutron scattering and lattice dynamics studies of AlPO4 and GaPO4

    International Nuclear Information System (INIS)

    Mittal, R.; Chaplot, S.L.; Kolesnikov, A.I.; Loong, C.-K.; Jayakumar, O.D.; Kulshreshtha, S.K.

    2006-01-01

    The compounds AlPO 4 and GaPO 4 show phase transitions at high pressure depending on the compressibility of the constituent tetrahedra. Semi-empirical interatomic potentials are available for AlPO 4 and GaPO 4 . Molecular dynamics simulations have been reported using these potentials to understand the nature of phase transitions in different polymorphs of these compounds. In order to check these potentials we have carried out lattice dynamical studies for AlPO 4 and GaPO 4 . The phonon density of states measurements from the polycrystalline samples of low-cristobalite phase of AlPO 4 and GaPO 4 are carried out using High-Resolution Medium-Energy Chopper Spectrometer at ANL in the energy transfer range 0-160 meV. The calculated phonon spectra for both the compounds using the available potentials show fair agreement with the experimental data. However, the agreement between the two is improved by including the polarizibility of the oxygen atoms in the framework of the shell model. The lattice dynamical model is used for the calculation of specific heat and thermal expansion

  15. Quantum measurement-induced dynamics of many-body ultracold bosonic and fermionic systems in optical lattices

    Science.gov (United States)

    Mazzucchi, Gabriel; Kozlowski, Wojciech; Caballero-Benitez, Santiago F.; Elliott, Thomas J.; Mekhov, Igor B.

    2016-02-01

    Trapping ultracold atoms in optical lattices enabled numerous breakthroughs uniting several disciplines. Coupling these systems to quantized light leads to a plethora of new phenomena and has opened up a new field of study. Here we introduce an unusual additional source of competition in a many-body strongly correlated system: We prove that quantum backaction of global measurement is able to efficiently compete with intrinsic short-range dynamics of an atomic system. The competition becomes possible due to the ability to change the spatial profile of a global measurement at a microscopic scale comparable to the lattice period without the need of single site addressing. In coherence with a general physical concept, where new competitions typically lead to new phenomena, we demonstrate nontrivial dynamical effects such as large-scale multimode oscillations, long-range entanglement, and correlated tunneling, as well as selective suppression and enhancement of dynamical processes beyond the projective limit of the quantum Zeno effect. We demonstrate both the breakup and protection of strongly interacting fermion pairs by measurement. Such a quantum optical approach introduces into many-body physics novel processes, objects, and methods of quantum engineering, including the design of many-body entangled environments for open systems.

  16. Dynamical mean field study of the Mott transition in the half-filled Hubbard model on a triangular lattice

    OpenAIRE

    Aryanpour, K.; Pickett, W. E.; Scalettar, R. T.

    2006-01-01

    We employ dynamical mean field theory (DMFT) with a Quantum Monte Carlo (QMC) atomic solver to investigate the finite temperature Mott transition in the Hubbard model with the nearest neighbor hopping on a triangular lattice at half-filling. We estimate the value of the critical interaction to be $U_c=12.0 \\pm 0.5$ in units of the hopping amplitude $t$ through the evolution of the magnetic moment, spectral function, internal energy and specific heat as the interaction $U$ and temperature $T$ ...

  17. High-pressure lattice dynamics and thermodynamic properties of zinc-blende BN from first-principles calculation

    International Nuclear Information System (INIS)

    Wang Huanyou; Xu Hui; Wang Xianchun; Jiang Chunzhi

    2009-01-01

    The density function perturbation theory (DFPT) is employed to study the lattice dynamics and thermodynamic properties (with quasiharmonic approximation) of zinc-blende BN. First we discuss the structural properties and compare the phonon spectrum with available Raman scattering experiments. Thereafter using the calculated phonon dispersions we obtain the PTV equation of state from the free energy. Our results for the above properties are generally speaking in good agreement with experiments and with similar theoretical calculations. Owing to the anharmonic effect at high temperature, the calculated linear thermal expansion coefficients (CTE) are low to experimental data.

  18. Nonequilibrium self-energy functional theory. Accessing the real-time dynamics of strongly correlated fermionic lattice systems

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Felix

    2016-07-05

    The self-energy functional theory (SFT) is extended to the nonequilibrium case and applied to the real-time dynamics of strongly correlated lattice-fermions. Exploiting the basic structure of the well established equilibrium theory the entire formalism is reformulated in the language of Keldysh-Matsubara Green's functions. To this end, a functional of general nonequilibrium self-energies is constructed which is stationary at the physical point where it moreover yields the physical grand potential of the initial thermal state. Nonperturbative approximations to the full self-energy can be constructed by reducing the original lattice problem to smaller reference systems and varying the functional on the space of the respective trial self-energies, which are parametrized by the reference system's one-particle parameters. Approximations constructed in this way can be shown to respect the macroscopic conservation laws related to the underlying symmetries of the original lattice model. Assuming thermal equilibrium, the original SFT is recovered from the extended formalism. However, in the general case, the nonequilibrium variational principle comprises functional derivatives off the physical parameter space. These can be carried out analytically to derive inherently causal conditional equations for the optimal physical parameters of the reference system and a computationally realizable propagation scheme is set up. As a benchmark for the numerical implementation the variational cluster approach is applied to the dynamics of a dimerized Hubbard model after fast ramps of its hopping parameters. Finally, the time-evolution of a homogeneous Hubbard model after sudden quenches and ramps of the interaction parameter is studied by means of a dynamical impurity approximation with a single bath site. Sharply separated by a critical interaction at which fast relaxation to a thermal final state is observed, two differing response regimes can be distinguished, where the

  19. Avoiding fractional electrons in subsystem DFT based ab-initio molecular dynamics yields accurate models for liquid water and solvated OH radical.

    Science.gov (United States)

    Genova, Alessandro; Ceresoli, Davide; Pavanello, Michele

    2016-06-21

    In this work we achieve three milestones: (1) we present a subsystem DFT method capable of running ab-initio molecular dynamics simulations accurately and efficiently. (2) In order to rid the simulations of inter-molecular self-interaction error, we exploit the ability of semilocal frozen density embedding formulation of subsystem DFT to represent the total electron density as a sum of localized subsystem electron densities that are constrained to integrate to a preset, constant number of electrons; the success of the method relies on the fact that employed semilocal nonadditive kinetic energy functionals effectively cancel out errors in semilocal exchange-correlation potentials that are linked to static correlation effects and self-interaction. (3) We demonstrate this concept by simulating liquid water and solvated OH(•) radical. While the bulk of our simulations have been performed on a periodic box containing 64 independent water molecules for 52 ps, we also simulated a box containing 256 water molecules for 22 ps. The results show that, provided one employs an accurate nonadditive kinetic energy functional, the dynamics of liquid water and OH(•) radical are in semiquantitative agreement with experimental results or higher-level electronic structure calculations. Our assessments are based upon comparisons of radial and angular distribution functions as well as the diffusion coefficient of the liquid.

  20. Avoiding fractional electrons in subsystem DFT based ab-initio molecular dynamics yields accurate models for liquid water and solvated OH radical

    International Nuclear Information System (INIS)

    Genova, Alessandro; Pavanello, Michele; Ceresoli, Davide

    2016-01-01

    In this work we achieve three milestones: (1) we present a subsystem DFT method capable of running ab-initio molecular dynamics simulations accurately and efficiently. (2) In order to rid the simulations of inter-molecular self-interaction error, we exploit the ability of semilocal frozen density embedding formulation of subsystem DFT to represent the total electron density as a sum of localized subsystem electron densities that are constrained to integrate to a preset, constant number of electrons; the success of the method relies on the fact that employed semilocal nonadditive kinetic energy functionals effectively cancel out errors in semilocal exchange–correlation potentials that are linked to static correlation effects and self-interaction. (3) We demonstrate this concept by simulating liquid water and solvated OH • radical. While the bulk of our simulations have been performed on a periodic box containing 64 independent water molecules for 52 ps, we also simulated a box containing 256 water molecules for 22 ps. The results show that, provided one employs an accurate nonadditive kinetic energy functional, the dynamics of liquid water and OH • radical are in semiquantitative agreement with experimental results or higher-level electronic structure calculations. Our assessments are based upon comparisons of radial and angular distribution functions as well as the diffusion coefficient of the liquid.

  1. Hydration and Ion Pairing in Aqueous Mg2+ and Zn2+ Solutions: Force-Field Description Aided by Neutron Scattering Experiments and Ab Initio Molecular Dynamics Simulations.

    Science.gov (United States)

    Duboué-Dijon, Elise; Mason, Philip E; Fischer, Henry E; Jungwirth, Pavel

    2018-04-05

    Magnesium and zinc dications possess the same charge and have an almost identical size, yet they behave very differently in aqueous solutions and play distinct biological roles. It is thus crucial to identify the origins of such different behaviors and to assess to what extent they can be captured by force-field molecular dynamics simulations. In this work, we combine neutron scattering experiments in a specific mixture of H 2 O and D 2 O (the so-called null water) with ab initio molecular dynamics simulations to probe the difference in the hydration structure and ion-pairing properties of chloride solutions of the two cations. The obtained data are used as a benchmark to develop a scaled-charge force field for Mg 2+ that includes electronic polarization in a mean field way. We show that using this electronic continuum correction we can describe aqueous magnesium chloride solutions well. However, in aqueous zinc chloride specific interaction terms between the ions need to be introduced to capture ion pairing quantitatively.

  2. Kondo lattice model: Unitary transformations, spin dynamics, strongly correlated charged modes, and vacuum instability

    OpenAIRE

    Prats, J. M.; Lopez-Aguilar, F.

    1996-01-01

    Using unitary transformations, we express the Kondo lattice Hamiltonian in terms of fermionic operators that annihilate the ground state of the interacting system and that represent the best possible approximations to the actual charged excitations. In this way, we obtain an effective Hamiltonian which, for small couplings, consists in a kinetic term for conduction electrons and holes, an RKKY-like term, and a renormalized Kondo interaction. The physical picture of the system implied by this ...

  3. Excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene. II. Ab initio multiple spawning simulations.

    Science.gov (United States)

    Glover, William J; Mori, Toshifumi; Schuurman, Michael S; Boguslavskiy, Andrey E; Schalk, Oliver; Stolow, Albert; Martínez, Todd J

    2018-04-28

    The excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene (BD), has long been the subject of controversy due to its strong coupling, ultrafast time scales and the difficulties that theory faces in describing the relevant electronic states in a balanced fashion. Here we apply Ab Initio Multiple Spawning (AIMS) using state-averaged complete active space multistate second order perturbation theory [SA-3-CAS(4/4)-MSPT2] which describes both static and dynamic electron correlation effects, providing a balanced description of both the initially prepared bright 1 1 B u (ππ*) state and non-adiabatically coupled dark 2 1 A g state of BD. Importantly, AIMS allows for on-the-fly calculations of experimental observables. We validate our approach by directly simulating the time resolved photoelectron-photoion coincidence spectroscopy results presented in Paper I [A. E. Boguslavskiy et al., J. Chem. Phys. 148, 164302 (2018)], demonstrating excellent agreement with experiment. Our simulations reveal that the initial excitation to the 1 1 B u state rapidly evolves via wavepacket dynamics that follow both bright- and dark-state pathways as well as mixtures of these. In order to test the sensitivity of the AIMS results to the relative ordering of states, we considered two hypothetical scenarios biased toward either the bright 1 B u or the dark 2 1 A g state. In contrast with AIMS/SA-3-CAS(4/4)-MSPT2 simulations, neither of these scenarios yields favorable agreement with experiment. Thus, we conclude that the excited state non-adiabatic dynamics in BD involves both of these ultrafast pathways.

  4. Excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene. II. Ab initio multiple spawning simulations

    Science.gov (United States)

    Glover, William J.; Mori, Toshifumi; Schuurman, Michael S.; Boguslavskiy, Andrey E.; Schalk, Oliver; Stolow, Albert; Martínez, Todd J.

    2018-04-01

    The excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene (BD), has long been the subject of controversy due to its strong coupling, ultrafast time scales and the difficulties that theory faces in describing the relevant electronic states in a balanced fashion. Here we apply Ab Initio Multiple Spawning (AIMS) using state-averaged complete active space multistate second order perturbation theory [SA-3-CAS(4/4)-MSPT2] which describes both static and dynamic electron correlation effects, providing a balanced description of both the initially prepared bright 11Bu (ππ*) state and non-adiabatically coupled dark 21Ag state of BD. Importantly, AIMS allows for on-the-fly calculations of experimental observables. We validate our approach by directly simulating the time resolved photoelectron-photoion coincidence spectroscopy results presented in Paper I [A. E. Boguslavskiy et al., J. Chem. Phys. 148, 164302 (2018)], demonstrating excellent agreement with experiment. Our simulations reveal that the initial excitation to the 11Bu state rapidly evolves via wavepacket dynamics that follow both bright- and dark-state pathways as well as mixtures of these. In order to test the sensitivity of the AIMS results to the relative ordering of states, we considered two hypothetical scenarios biased toward either the bright 1Bu or the dark 21Ag state. In contrast with AIMS/SA-3-CAS(4/4)-MSPT2 simulations, neither of these scenarios yields favorable agreement with experiment. Thus, we conclude that the excited state non-adiabatic dynamics in BD involves both of these ultrafast pathways.

  5. Quantum mechanical ab initio simulation of the electron screening effect in metal deuteride crystals

    Energy Technology Data Exchange (ETDEWEB)

    Huke, A.; Chun, S.M.; Biller, A.; Heide, P. [Technische Universitaet Berlin, Institut fuer Optik und Atomare Physik, Berlin (Germany); Czerski, K. [Technische Universitaet Berlin, Institut fuer Optik und Atomare Physik, Berlin (Germany); University of Szczecin, Institute of Physics, Szczecin (Poland)

    2008-02-15

    In antecedent experiments the electron screening energies of the d+d reactions in metallic environments have been determined to be enhanced by an order of magnitude in comparison to the case of gaseous deuterium targets. The analytical models describing averaged material properties have not been able to explain the experimental results so far. Therefore, a first effort has been undertaken to simulate the dynamics of reacting deuterons in a metallic lattice by means of an ab initio Hartree-Fock calculation of the total electrostatic force between the lattice and the successively approaching deuterons via path integration. The calculations have been performed for Li and Ta, clearly showing a migration of electrons from host metallic to the deuterium atoms. However, in order to avoid more of the necessary simplifications in the model the utilization of a massive parallel supercomputer would be required. (orig.) 3.

  6. A dynamic mesh refinement technique for Lattice Boltzmann simulations on octree-like grids

    KAUST Repository

    Neumann, Philipp; Neckel, Tobias

    2012-01-01

    computations in two and three dimensions. An extension to dynamically changing grids and a spatially adaptive approach to fluctuating hydrodynamics, allowing for the thermalisation of the fluid in particular regions of interest, is proposed. Both dynamic

  7. Ab initio pseudopotential theory

    International Nuclear Information System (INIS)

    Yin, M.T.; Cohen, M.L.

    1982-01-01

    The ab initio norm-conserving pseudopotential is generated from a reference atomic configuration in which the pseudoatomic eigenvalues and wave functions outside the core region agree with the corresponding ab initio all-electron results within the density-functional formalism. This paper explains why such pseudopotentials accurately reproduce the all-electron results in both atoms and in multiatomic systems. In particular, a theorem is derived to demonstrate the energy- and perturbation-independent properties of ab initio pseudopotentials

  8. Lattice-Boltzmann Method with Dynamic Grid Refinement for Simulating Particle Deposition on a Single Fibre

    Directory of Open Access Journals (Sweden)

    Helmut Schomburg

    2013-03-01

    Full Text Available In this work a numerical approach to predict the deposition behaviour of nano-scale particles on the surface of a single fibre by resolving the resulting dendrite-like particle structures in detail is presented. The gas flow simulation is carried out by a two-dimensional Lattice-Boltzmann method, which is coupled with a Lagrangian approach for the particle motion. To decrease calculation time and system requirements the Lattice-Boltzmann model is extended to allow for local grid refinement. Because of the a priori unknown location of deposition, the simulation procedure starts on a coarse mesh which is then locally refined in a fully adaptive way in regions of accumulated particles. After each deposition the fluid flow is recalculated in order to resolve the coupling of the flow with the growing particle structures correctly. For the purpose of avoiding unphysical blocking of flow by growing particle dendrites the Lattice-Boltzmann method is extended to permeable cells in these regions using the Brinkmann equation. This extended deposition model is compared to simpler approaches, where the deposit has no retroaction on the flow or is treated as a solid structure. It is clear that the permeable model is most realistic and allows considering the particle deposition on a fibre as two-dimensional problem. Comprehensive simulations were conducted for analysing the importance of different parameters, i.e. free-stream velocity and particle diameter on the deposit structure. The results of this sensitivity analysis agree qualitatively well with former published numerical and experimental results. Finally the structure of the particle deposit was quantitatively characterised by using a modified fractal dimension.

  9. Tunneling dynamics of superfluid Fermi gases in an accelerating optical lattice

    International Nuclear Information System (INIS)

    Tie Lu; Xue Jukui

    2010-01-01

    The nonlinear Landau-Zener tunneling and the nonlinear Rabi oscillations of superfluid Fermi gases between Bloch bands in an accelerating optical lattice are discussed. Within the hydrodynamic theory and a two-level model, the tunneling probability of superfluid Fermi gases between Bloch bands is obtained. We find that, as the system crosses from the Bose-Einstein condensation (BEC) side to the BCS side, the tunneling rate is closely related to the particle density: when the density is smaller (larger) than a critical value, the tunneling rate at unitarity is larger (smaller) than that in the BEC limit. This is well explained in terms of an effective interaction and an effective potential. Furthermore, the nonlinear Rabi oscillations of superfluid Fermi gases between the bands are discussed by imposing a periodic modulation on the level bias and the strength of the lattice. Analytical expressions of the critical density for suppressing or enhancing the Rabi oscillations are obtained. It is shown that, as the system crosses from the BEC side to the BCS side, the critical density strongly depends on the modulation parameters (i.e., the modulation amplitude and the modulation frequency). For a fixed density, a high-frequency or low-frequency modulation can suppress or enhance the Rabi oscillations both at unitarity and in the BEC limit. For an intermediate modulation frequency, the Rabi oscillations are chaotic along the entire BEC-BCS crossover, especially, on the BCS side. Interestingly, we find that the modulation of the lattice strength only with an intermediate modulation frequency has significant effect on the Rabi oscillations both in the BEC limit and at unitarity; that is, an intermediate-frequency modulation can enhance the Rabi oscillations, especially on the BCS side.

  10. Atomistic absorption spectra and non-adiabatic dynamics of the LH2 complex with a GPU-accelerated ab initio exciton model

    Science.gov (United States)

    Glowacki, David

    Recently, we outlined an efficient multi-tiered parallel excitonic framework that utilizes time dependent density functional theory (TDDFT) to calculate ground/excited state energies and gradients of large supramolecular complexes in atomistic detail. In this paper, we apply our ab initioexciton framework to the 27 coupled bacteriocholorophyll-a chromophores which make up the LH2 complex, using it to compute linear absorption spectra and short-time, on-the-fly nonadiabatic surface-hopping (SH) dynamics of electronically excited LH2. Our ab initio exciton model includes two key parameters whose values are determined by fitting to experiment: d, which is added to the diagonal elements, corrects for the error in TDDFT vertical excitation energies on a single chromophore; and e, which occurs on the off-diagonal matrix elements, describes the average dielectric screening of the inter-chromophore transition-dipole coupling. Using snapshots obtained from equilibrium molecular dynamics simulations (MD) of LH2, best-fit values of both d and e were obtained by fitting to the thermally broadened experimental absorption spectrum within the Frank-Condon approximation, providing a linear absorption spectrum that agrees reasonably well with the experimental observations. We follow the nonadiabatic dynamics using surface hopping to construct time-resolved visualizations of the EET dynamics in the sub-picosecond regime following photoexcitation. This provides some qualitative insight into the excitonic energy transfer (EET) that results from atomically resolved vibrational fluctuations of the chromophores. The dynamical picture that emerges is one of rapidly fluctuating eigenstates that are delocalized over multiple chromophores and undergo frequent crossing on a femtosecond timescale as a result of the underlying chromophore vibrational dynamics. The eigenstate fluctuations arise from disorder in both the diagonal chromophore site energies and the off-diagonal inter

  11. Coupled map lattice (CML) approach to power reactor dynamics (I) - preservation of normality

    International Nuclear Information System (INIS)

    Konno, H.

    1996-01-01

    An application of coupled map lattice (CML) model for simulating power fluctuations in nuclear power reactors is presented. (1) Preservation of Gaussianity in the point model is studied in a chaotic force driven Langevin equation in conjunction with the Gaussian-white noise driven Langevin equation. (2) Preservation of Guassianity is also studied in the space-dependent model with the use of a CML model near the onset of the Hopf bifurcation point. It is shown that the spatial dimensionality decreases as the maximum eigenvalue of the system increases. The result is consistent with the observation of neutron fluctuation in a BWR. (author)

  12. Lattice dynamics and central-mode phenomena in the dielectric response of ferroelectrics and related materials

    Czech Academy of Sciences Publication Activity Database

    Buixaderas, Elena; Kamba, Stanislav; Petzelt, Jan

    2004-01-01

    Roč. 308, - (2004), s. 131-192 ISSN 0015-0193 R&D Projects: GA ČR GA202/01/0612; GA AV ČR IAA1010213; GA MŠk OC 525.20 Institutional research plan: CEZ:AV0Z1010914 Keywords : phonons in crystal lattice * commensurate-incommensurate transitions * dielectric properties of solids and liquids * ferroelectricity and antiferroelectricity * niobates * tantantalates * PZT ceramics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.517, year: 2004

  13. Dynamic hyperfine interactions in {sup 111}In({sup 111}Cd)-doped ZnO semiconductor: PAC results supported by ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Emiliano L., E-mail: munoz@fisica.unlp.edu.ar [Departamento de Fisica and Instituto de Fisica La Plata (IFLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 67, 1900 La Plata (Argentina); Mercurio, Marcio E.; Cordeiro, Moacir R.; Pereira, Luciano F.D.; Carbonari, Artur W. [Instituto de Pesquisas Energeticas y Nucleares-IPEN-CNEN/SP, Sao Paulo (Brazil); Renteria, Mario [Departamento de Fisica and Instituto de Fisica La Plata (IFLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 67, 1900 La Plata (Argentina)

    2012-08-15

    In this work, we present results of Time-Differential {gamma}-{gamma} Perturbed-Angular-Correlations (PAC) experiments performed in {sup 111}Cd-doped ZnO semiconductor. The PAC technique has been applied in order to characterize the electric-field-gradient (EFG) tensor at ({sup 111}In (EC){yields}) {sup 111}Cd nuclei located, as was later demonstrated, at defect-free cation sites of the ZnO host structure. The PAC experiments were performed in the temperature range of 77-1075 K. At first glance, the unexpected presence of low-intensity dynamic hyperfine interactions was observed, which were analyzed with a perturbation factor based on the Baeverstam and Othaz model. The experimental EFG results were compared with ab initio calculations performed with the Full-Potential Augmented Plane Wave plus local orbital (FP-APW+lo) method, in the framework of the Density Functional Theory (DFT), using the Wien2K code. The presence of the dynamic hyperfine interactions has been analyzed enlightened by the FP-APW+lo calculations of the EFG performed as a function of the charge state of the cell. We could correlate the large strength of the dynamic hyperfine interaction with the strong variation of the EFG due to changes in the electronic charge distribution in the Cd vicinity during the time-window of the PAC measurement. It was also revealed that the Cd impurity decays to a final stable neutral charge state (Cd{sup 2+}) fast enough (in few ns) to produce the nearly undamped observed PAC spectra.

  14. Exploring Nuclear Photorelaxation of Pyranine in Aqueous Solution: an Integrated Ab-Initio Molecular Dynamics and Time Resolved Vibrational Analysis Approach.

    Science.gov (United States)

    Chiariello, Maria Gabriella; Rega, Nadia

    2018-03-22

    Advances in time-resolved vibrational spectroscopy techniques provided a new stimulus for understanding the transient molecular dynamics triggered by the electronic excitation. The detailed interpretation of such time-dependent spectroscopic signals is a challenging task from both experimental and theoretical points of view. We simulated and analyzed the transient photorelaxation of the pyranine photoacid in aqueous solution, with special focus on structural parameters and low frequency skeleton modes that are possibly preparatory for the photoreaction occurring at later time, as suggested by experimental spectroscopic studies. To this aim, we adopted an accurate computational protocol that combines excited state ab initio molecular dynamics within an hybrid quantum mechanical/molecular mechanics framework and a time-resolved vibrational analysis based on the Wavelet transform. According to our results, the main nuclear relaxation on the excited potential energy surface is completed in about 500 fs, in agreement with experimental data. The rearrangement of C-C bonds occurs according to a complex vibrational dynamics, showing oscillatory patterns that are out of phase and modulated by modes below 200 cm -1 . We also analyzed in both the ground and the excited state the evolution of some structural parameters involved in excited state proton transfer reaction, namely, those involving the pyranine and the water molecule hydrogen bonded to the phenolic O-H group. Both the hydrogen bond distance and the intermolecular orientation are optimized in the excited state, resulting in a tighter proton donor-acceptor couple. Indeed, we found evidence that collective low frequency skeleton modes, such as the out of plane wagging at 108 cm -1 and the deformation at 280 cm -1 , are photoactivated by the ultrafast part of the relaxation and modulate the pyranine-water molecule rearrangement, favoring the preparatory step for the photoreactivity.

  15. Effect of solute atoms on glass-forming ability for Fe–Y–B alloy: An ab initio molecular dynamics study

    International Nuclear Information System (INIS)

    Han, J.J.; Wang, W.Y.; Liu, X.J.; Wang, C.P.; Hui, X.D.; Liu, Z.K.

    2014-01-01

    The glass-forming abilities of Fe 78 B 22 , Fe 70 Y 6 B 24 , Fe 72 Y 6 B 22 and Fe 72.5 Y 3.5 B 24 alloys were characterized comprehensively using ab initio molecular dynamics simulations. The calculated results were correlated with the properties and atomic structures. It was found that the Fe 72 Y 6 B 22 alloy consists of both the most stable and the least deformed body centered cubic atomic packing structures in the supercooled liquid and glassy states. It was observed that the local compositions in the Fe 72 Y 6 B 22 alloy significantly deviate from the compositions of stable crystalline phases, indicating that the Fe 72 Y 6 B 22 alloy has the best glass-forming ability among the alloys studied. However, Fe 72 Y 6 B 22 alloy has two flaws in terms of glass-forming ability, i.e. relatively large atomic diffusivity and insufficiently close atomic packing. The best performance in these two aspects is observed in the Fe 72.5 Y 3.5 B 24 alloy. Thus, the theoretical study predicts that the best glass former for the Fe–Y–B system is within the compositional range of 22–24 at.% B and 3.5–6 at.% Y

  16. Effect of Si on the oxidation reaction of α-Ti(0 0 0 1) surface: ab initio molecular dynamics study.

    Science.gov (United States)

    Bhattacharya, Somesh Kr; Sahara, Ryoji; Ueda, Kyosuke; Narushima, Takayuki

    2017-01-01

    We present our ab initio molecular dynamics (MD) study of the effect of Si on the oxidation of α-Ti(0   0   0   1) surfaces. We varied the Si concentration in the first layer of the surface from 0 to 25 at.% and the oxygen coverage ( θ ) on the surface was varied up to 1 monolayer (ML). The MD was performed at 300, 600 and 973 K. For θ  = 0.5 ML, oxygen penetration into the slab was not observed after 16 ps of MD at 973 K while for θ  > 0.5 ML, oxygen penetration into the Ti slab was observed even at 300 K. From Bader charge analysis, we confirmed the formation of the oxide layer on the surface of the Ti slab. At higher temperatures, the Si atoms diffused from the first layer to the interior of the slab, while the Ti atoms moved from second layer to the first layer. The pair correlation function shows the formation of a disordered Ti-O network during the initial stage of oxidation. Si was found to have a strong influence on the penetration of oxygen in the Ti slab at high temperatures.

  17. Molecular dynamics simulation, ab initio calculation, and size-selected anion photoelectron spectroscopy study of initial hydration processes of calcium chloride.

    Science.gov (United States)

    He, Zhili; Feng, Gang; Yang, Bin; Yang, Lijiang; Liu, Cheng-Wen; Xu, Hong-Guang; Xu, Xi-Ling; Zheng, Wei-Jun; Gao, Yi Qin

    2018-06-14

    To understand the initial hydration processes of CaCl 2 , we performed molecular simulations employing the force field based on the theory of electronic continuum correction with rescaling. Integrated tempering sampling molecular dynamics were combined with ab initio calculations to overcome the sampling challenge in cluster structure search and refinement. The calculated vertical detachment energies of CaCl 2 (H 2 O) n - (n = 0-8) were compared with the values obtained from photoelectron spectra, and consistency was found between the experiment and computation. Separation of the Cl-Ca ion pair is investigated in CaCl 2 (H 2 O) n - anions, where the first Ca-Cl ionic bond required 4 water molecules, and both Ca-Cl bonds are broken when the number of water molecules is larger than 7. For neutral CaCl 2 (H 2 O) n clusters, breaking of the first Ca-Cl bond starts at n = 5, and 8 water molecules are not enough to separate the two ion pairs. Comparing with the observations on magnesium chloride, it shows that separating one ion pair in CaCl 2 (H 2 O) n requires fewer water molecules than those for MgCl 2 (H 2 O) n . Coincidentally, the solubility of calcium chloride is higher than that of magnesium chloride in bulk solutions.

  18. Atomistic insights into the nanosecond long amorphization and crystallization cycle of nanoscale G e2S b2T e5 : An ab initio molecular dynamics study

    Science.gov (United States)

    Branicio, Paulo S.; Bai, Kewu; Ramanarayan, H.; Wu, David T.; Sullivan, Michael B.; Srolovitz, David J.

    2018-04-01

    The complete process of amorphization and crystallization of the phase-change material G e2S b2T e5 is investigated using nanosecond ab initio molecular dynamics simulations. Varying the quench rate during the amorphization phase of the cycle results in the generation of a variety of structures from entirely crystallized (-0.45 K/ps) to entirely amorphized (-16 K/ps). The 1.5-ns annealing simulations indicate that the crystallization process depends strongly on both the annealing temperature and the initial amorphous structure. The presence of crystal precursors (square rings) in the amorphous matrix enhances nucleation/crystallization kinetics. The simulation data are used to construct a combined continuous-cooling-transformation (CCT) and temperature-time-transformation (TTT) diagram. The nose of the CCT-TTT diagram corresponds to the minimum time for the onset of homogenous crystallization and is located at 600 K and 70 ps. That corresponds to a critical cooling rate for amorphization of -4.5 K/ps. The results, in excellent agreement with experimental observations, suggest that a strategy that utilizes multiple quench rates and annealing temperatures may be used to effectively optimize the reversible switching speed and enable fast and energy-efficient phase-change memories.

  19. Effects of spin orbital coupling on atomic and electronic structures in Al2Cu and Al2Au crystal and liquid phases via ab initio molecular dynamics simulations

    International Nuclear Information System (INIS)

    Wang, Y.; Lu, Y.H.; Wang, X.D.; Cao, Q.P.; Zhang, D.X.; Jiang, J.Z.

    2014-01-01

    Highlights: • The SOC effect affects the cohesion energy of crystal phase. • The effect of SOC was reduced due to random local atomic structures in liquids. • The local geometrical structures also affect the melting points. • Both SOC effect and local atomic structures are important for melting point difference. - Abstract: The origin of different melting points between Al 2 Cu and Al 2 Au has been studied using ab initio molecular dynamics simulations. Cohesive energy, electronic structures and structure information of both crystal and liquid phases have been analyzed. It is found that spin orbital coupling (SOC) plays an important role on the cohesive energy of crystal phase, consistent with the different melting points of these two alloys. Whereas, it seems that SOC has no effect on the formation energy and structure of liquid phase. Possible mechanism of reduced SOC effect at liquid phase is proposed. Our results are helpful to understand the glass formation ability difference between Al 2 Cu and Al 2 Au

  20. Ab initio molecular dynamics model for density, elastic properties and short range order of Co-Fe-Ta-B metallic glass thin films

    International Nuclear Information System (INIS)

    Hostert, C; Music, D; Schneider, J M; Bednarcik, J; Keckes, J; Kapaklis, V; Hjörvarsson, B

    2011-01-01

    Density, elastic modulus and the pair distribution function of Co-Fe-Ta-B metallic glasses were obtained by ab initio molecular dynamics simulations and measured for sputtered thin films using x-ray reflectivity, nanoindentation and x-ray diffraction using high energy photons. The computationally obtained density of 8.19 g cm -3 for Co 43 Fe 20 Ta 5.5 B 31.5 and 8.42 g cm -3 for Co 45.5 Fe 24 Ta 6 B 24.5 , as well as the Young’s moduli of 273 and 251 GPa, respectively, are consistent with our experiments and literature data. These data, together with the good agreement between the theoretical and the experimental pair distribution functions, indicate that the model established here is useful to describe the density, elasticity and short range order of Co-Fe-Ta-B metallic glass thin films. Irrespective of the investigated variation in chemical composition, (Co, Fe)-B cluster formation and Co-Fe interactions are identified by density-of-states analysis. Strong bonds within the structural units and between the metallic species may give rise to the comparatively large stiffness. (paper)

  1. Ab initio molecular dynamics simulation of the effects of stacking faults on the radiation response of 3C-SiC.

    Science.gov (United States)

    Jiang, M; Peng, S M; Zhang, H B; Xu, C H; Xiao, H Y; Zhao, F A; Liu, Z J; Zu, X T

    2016-02-16

    In this study, an ab initio molecular dynamics method is employed to investigate how the existence of stacking faults (SFs) influences the response of SiC to low energy irradiation. It reveals that the C and Si atoms around the SFs are generally more difficult to be displaced than those in unfaulted SiC, and the corresponding threshold displacement energies for them are generally larger, indicative of enhanced radiation tolerance caused by the introduction of SFs, which agrees well with the recent experiment. As compared with the unfaulted state, more localized point defects are generated in faulted SiC. Also, the efficiency of damage production for Si recoils is generally higher than that of C recoils. The calculated potential energy increases for defect generation in SiC with intrinsic and extrinsic SFs are found to be higher than those in unfaulted SiC, due to the stronger screen-Coulomb interaction between the PKA and its neighbors. The presented results provide a fundamental insight into the underlying mechanism of displacement events in faulted SiC and will help to advance the understanding of the radiation response of SiC with and without SFs.

  2. An ab initio molecular dynamics study of thermal decomposition of 3,6-di(azido)-1,2,4,5-tetrazine.

    Science.gov (United States)

    Wu, Qiong; Zhu, Weihua; Xiao, Heming

    2014-10-21

    Ab initio molecular dynamics simulations were performed to study the thermal decomposition of isolated and crystal 3,6-di(azido)-1,2,4,5-tetrazine (DiAT). During unimolecular decomposition, the three different initiation mechanisms were observed to be N-N2 cleavage, ring opening, and isomerization, respectively. The preferential initial decomposition step is the homolysis of the N-N2 bond in the azido group. The release mechanisms of nitrogen gas are found to be very different in the early and later decomposition stages of crystal DiAT. In the early decomposition, DiAT decomposes very fast and drastically without forming any stable long-chains or heterocyclic clusters, and most of the nitrogen gases are released through rapid rupture of nitrogen-nitrogen and carbon-nitrogen bonds. But in the later decomposition stage, the release of nitrogen gas is inhibited due to low mobility, long distance from each other, and strong carbon-nitrogen bonds. To overcome the obstacles, the nitrogen gases are released through slow formation and disintegration of polycyclic networks. Our simulations suggest a new decomposition mechanism for the organic polyazido initial explosive at the atomistic level.

  3. Lattice dynamics and substrate-dependent transport properties of (In, Yb)-doped CoSb3 skutterudite thin films

    KAUST Repository

    Sarath Kumar, S. R.

    2011-10-24

    Lattice dynamics, low-temperature electrical transport, and high-temperature thermoelectric properties of (In, Yb)-doped CoSb3thin films on different substrates are reported. Pulsed laser deposition under optimized conditions yielded single-phase polycrystalline skutterudite films. Raman spectroscopy studies suggested that In and Yb dopants occupy the cage sites in the skutterudite lattice. Low-temperature electrical transport studies revealed the n-type semiconducting nature of the films with extrinsic and intrinsic conduction mechanisms, in sharp contrast to the degenerate nature reported for identical bulk samples. Calculations yielded a direct bandgap close to 50 meV with no evidence of an indirect gap. The carrier concentration of the films was identical to that reported for the bulk and increased with temperature beyond 250 K. The higher resistivity exhibited is attributed to the enhanced grain boundary scattering in films with a high concentration of grains. The maximum power factor of ∼0.68 W m−1 K−1 obtained at 660 K for the film on glass is found to be nearly four times smaller compared to that reported for the bulk. The observed difference in the power factors of the films on different substrates is explained on the basis of the diffusion of oxygen from the substrates and the formation of highly conducting CoSb2 phase upon the oxidation of CoSb3.

  4. On the absence of pentaquark states from dynamics in strongly coupled lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, Petrus Henrique Ribeiro dos [Universidade Federal de Goias (UFG), Goiania, GO (Brazil); Veiga, Paulo Afonso Faria da; O' Carroll, Michael [Universidade de Sao Paulo (USP), SP (Brazil); Francisco Neto, Antonio [Universidade Federal de Ouro Preto (UFOP), MG (Brazil)

    2011-07-01

    Full text: We consider an imaginary time functional integral formulation of a two-flavor, 3 + 1 lattice QCD model with Wilson's action and in the strong coupling regime (with a small hopping parameter, {kappa}0, and a much smaller plaquette coupling, {beta} = 1/g{sub 0}{sup 2}, so that the quarks and glueballs are heavy). The model has local SU(3){sub c} gauge and global SU(2){sub f} flavor symmetries, and incorporates the corresponding part of the eightfold way particles: baryons (mesons) of asymptotic mass -3ln{kappa}(-2 ln {kappa}). We search for pentaquark states as meson-baryon bound states in the energy-momentum spectrum of the model, using a lattice Bethe-Salpeter equation. This equation is solved within a ladder approximation, given by the lowest nonvanishing order in {kappa} and {beta} of the Bethe-Salpeter kernel. It includes order 2 contributions with a q-barq exchange potential together with a contribution that is a local-in-space, energy-dependent potential. The attractive or repulsive nature of the exchange interaction depends on the spin of the meson-baryon states. The Bethe-Salpeter equation presents integrable singularities, forcing the couplings to be above a threshold value for the meson and the baryon to bind in a pentaquark. We analyzed all the total isospin sectors, I = 1/2/3/2/ 5/2, for the system. For all I, the net attraction resulting from the two sources of interaction is not strong enough for the meson and the baryon to bind. Thus, within our approximation, these pentaquark states are not present up to near the free meson-baryon energy threshold of - 5 ln{kappa}. This result is to be contrasted with the spinless case for which our method detects meson-baryon bound states, as well as for Yukawa effective baryon and meson field models. A physical interpretation of our results emerges from an approximate correspondence between meson-baryon bound states and negative energy states of a one-particle lattice Schroedinger Hamiltonian

  5. Computer code for the atomistic simulation of lattice defects and dynamics

    International Nuclear Information System (INIS)

    Schiffgens, J.O.; Graves, N.J.; Oster, C.A.

    1980-04-01

    This document has been prepared to satisfy the need for a detailed, up-to-date description of a computer code that can be used to simulate phenomena on an atomistic level. COMENT was written in FORTRAN IV and COMPASS (CDC assembly language) to solve the classical equations of motion for a large number of atoms interacting according to a given force law, and to perform the desired ancillary analysis of the resulting data. COMENT is a dual-purpose intended to describe static defect configurations as well as the detailed motion of atoms in a crystal lattice. It can be used to simulate the effect of temperature, impurities, and pre-existing defects on radiation-induced defect production mechanisms, defect migration, and defect stability

  6. Computer code for the atomistic simulation of lattice defects and dynamics. [COMENT code

    Energy Technology Data Exchange (ETDEWEB)

    Schiffgens, J.O.; Graves, N.J.; Oster, C.A.

    1980-04-01

    This document has been prepared to satisfy the need for a detailed, up-to-date description of a computer code that can be used to simulate phenomena on an atomistic level. COMENT was written in FORTRAN IV and COMPASS (CDC assembly language) to solve the classical equations of motion for a large number of atoms interacting according to a given force law, and to perform the desired ancillary analysis of the resulting data. COMENT is a dual-purpose intended to describe static defect configurations as well as the detailed motion of atoms in a crystal lattice. It can be used to simulate the effect of temperature, impurities, and pre-existing defects on radiation-induced defect production mechanisms, defect migration, and defect stability.

  7. Thermodynamic Lattice Study for Preconformal Dynamics in Strongly Flavored Gauge Theory

    International Nuclear Information System (INIS)

    Miura, Kohtaroh

    2013-01-01

    By using the lattice Monte-Carlo simulation, we investigate the finite temperature chiral phase transition in color SU(3) gauge theories with various species of fundamental fermions, and discuss the signals of the (pre-)conformality at large N f (number of flavors) via their comparisons. With increasing N f , we confirm stronger fermion screening which results from a larger fermion multiplicity. We investigate a finite T step-scaling which is attributed to the uniqueness of the critical temperature (T c ) at each N f , then the vanishing step-scaling signals the emergence of the conformality around N* f ∼ 10−12. Further, motivated by the recent functional renormalization group analyses, we examine the N f dependence of T c , whose vanishing behavior indicates that the conformal phase sets in around N* f ∼ 9 − 10.

  8. Structure of layered C[sub 60] on Si(100) surface studied by ab initio and classical molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kawazoe, Yoshiyuki (Inst. for Materials Research, Tohoku Univ., Sendai (Japan)); Maruyama, Yutaka (Inst. for Materials Research, Tohoku Univ., Sendai (Japan)); Rafii-Tabar, H. (Inst. for Materials Research, Tohoku Univ., Sendai (Japan)); Ikeda, Makoto (Inst. for Materials Research, Tohoku Univ., Sendai (Japan)); Kamiyama, Hiroshi (Inst. for Materials Research, Tohoku Univ., Sendai (Japan)); Ohno, Kaoru (Inst. for Materials Research, Tohoku Univ., Sendai (Japan))

    1993-04-19

    The recent scanning tunnelling microscopy (STM) observations by Hashizume et al. concerning C[sub 60] buckeyballs deposited on an Si(100) surface revealed self-aligned c(4 x 4) and c(4 x 3) structures. Specific stripes on the buckeyballs in the STM images are also reported and this result proves that the buckeyballs on the Si surface are standing still, showing them to be pseudoatoms. A mixed-basis, all-electron calculation with the Car-Parinnello formalism has been introduced and performed to obtain a detailed understanding of the electronic states and dynamics of a single buckeyball. Based on the knowledge concerning a single buckeyball, a band structure calculation using the same formalism has been carried out and the experimental results have been explained clearly. A classical molecular dynamics simulation has also been performed to obtain the dynamics of the buckeyball motion on the Si surface. (orig.)

  9. Lattice calculation of heavy-light decay constants with two flavors of dynamical quarks

    International Nuclear Information System (INIS)

    Bernard, C.; Datta, S.; DeGrand, T.; DeTar, C.; Gottlieb, Steven; Heller, Urs M.; McNeile, C.; Orginos, K.; Sugar, R.; Toussaint, D.

    2002-01-01

    We present results for f B , f B s , f D , f D s and their ratios in the presence of two flavors of light sea quarks (N f =2). We use Wilson light valence quarks and Wilson and static heavy valence quarks; the sea quarks are simulated with staggered fermions. Additional quenched simulations with nonperturbatively improved clover fermions allow us to improve our control of the continuum extrapolation. For our central values the masses of the sea quarks are not extrapolated to the physical u, d masses; that is, the central values are ''partially quenched.'' A calculation using 'fat-link clover' valence fermions is also discussed but is not included in our final results. We find, for example, f B =190(7)( -17 +24 )( -2 +11 )( -0 +8 ) MeV, f B s /f B =1.16(1)(2)(2)( -0 +4 ), f D s =241(5)( -26 +27 )( -4 +9 )( -0 +5 ) MeV, and f B /f D s =0.79(2)( -4 +5 )(3)( -0 +5 ), where in each case the first error is statistical and the remaining three are systematic: the error within the partially quenched N f =2 approximation, the error due to the missing strange sea quark and to partial quenching, and an estimate of the effects of chiral logarithms at small quark mass. The last error, though quite significant in decay constant ratios, appears to be smaller than has been recently suggested by Kronfeld and Ryan, and Yamada. We emphasize, however, that as in other lattice computations to date, the lattice u,d quark masses are not very light and chiral log effects may not be fully under control

  10. Overtone vibrational spectroscopy in H2-H2O complexes: a combined high level theoretical ab initio, dynamical and experimental study.

    Science.gov (United States)

    Ziemkiewicz, Michael P; Pluetzer, Christian; Nesbitt, David J; Scribano, Yohann; Faure, Alexandre; van der Avoird, Ad

    2012-08-28

    First results are reported on overtone (v(OH) = 2 ← 0) spectroscopy of weakly bound H(2)-H(2)O complexes in a slit supersonic jet, based on a novel combination of (i) vibrationally mediated predissociation of H(2)-H(2)O, followed by (ii) UV photodissociation of the resulting H(2)O, and (iii) UV laser induced fluorescence on the nascent OH radical. In addition, intermolecular dynamical calculations are performed in full 5D on the recent ab initio intermolecular potential of Valiron et al. [J. Chem. Phys. 129, 134306 (2008)] in order to further elucidate the identity of the infrared transitions detected. Excellent agreement is achieved between experimental and theoretical spectral predictions for the most strongly bound van der Waals complex consisting of ortho (I = 1) H(2) and ortho (I = 1) H(2)O (oH(2)-oH(2)O). Specifically, two distinct bands are seen in the oH(2)-oH(2)O spectrum, corresponding to internal rotor states in the upper vibrational manifold of Σ and Π rotational character. However, none of the three other possible nuclear spin modifications (pH(2)-oH(2)O, pH(2)-pH(2)O, or oH(2)-pH(2)O) are observed above current signal to noise level, which for the pH(2) complexes is argued to arise from displacement by oH(2) in the expansion mixture to preferentially form the more strongly bound species. Direct measurement of oH(2)-oH(2)O vibrational predissociation in the time domain reveals lifetimes of 15(2) ns and <5(2) ns for the Σ and Π states, respectively. Theoretical calculations permit the results to be interpreted in terms of near resonant energy levels and intermolecular alignment of the H(2) and H(2)O wavefunctions, providing insight into predissociation dynamical pathways from these metastable levels.

  11. Diverging effects of isotopic fractionation upon molecular diffusion of noble gases in water: mechanistic insights through ab initio molecular dynamics simulations.

    Science.gov (United States)

    Pinto de Magalhães, Halua; Brennwald, Matthias S; Kipfer, Rolf

    2017-03-22

    Atmospheric noble gases are routinely used as natural tracers to analyze gas transfer processes in aquatic systems. Their isotopic ratios can be employed to discriminate between different physical transport mechanisms by comparison to the unfractionated atmospheric isotope composition. In many applications of aquatic systems molecular diffusion was thought to cause a mass dependent fractionation of noble gases and their isotopes according to the square root ratio of their masses. However, recent experiments focusing on isotopic fractionation within a single element challenged this broadly accepted assumption. The determined fractionation factors of Ne, Ar, Kr and Xe isotopes revealed that only Ar follows the prediction of the so-called square root relation, whereas within the Ne, Kr and Xe elements no mass-dependence was found. The reason for this unexpected divergence of Ar is not yet understood. The aim of our computational exercise is to establish the molecular-resolved mechanisms behind molecular diffusion of noble gases in water. We make the hypothesis that weak intermolecular interactions are relevant for the dynamical properties of noble gases dissolved in water. Therefore, we used ab initio molecular dynamics to explicitly account for the electronic degrees of freedom. Depending on the size and polarizability of the hydrophobic particles such as noble gases, their motion in dense and polar liquids like water is subject to different diffusive regimes: the inter-cavity hopping mechanism of small particles (He, Ne) breaks down if a critical particle size achieved. For the case of large particles (Kr, Xe), the motion through the water solvent is governed by mass-independent viscous friction leading to hydrodynamical diffusion. Finally, Ar falls in between the two diffusive regimes, where particle dispersion is propagated at the molecular collision time scale of the surrounding water molecules.

  12. Non-equilibrium lattice dynamics of one-dimensional In chains on Si(111 upon ultrafast optical excitation

    Directory of Open Access Journals (Sweden)

    T. Frigge

    2018-03-01

    Full Text Available The photoinduced structural dynamics of the atomic wire system on the Si(111-In surface has been studied by ultrafast electron diffraction in reflection geometry. Upon intense fs-laser excitation, this system can be driven in around 1 ps from the insulating (8×2 reconstructed low temperature phase to a metastable metallic (4×1 reconstructed high temperature phase. Subsequent to the structural transition, the surface heats up on a 6 times slower timescale as determined from a transient Debye-Waller analysis of the diffraction spots. From a comparison with the structural response of the high temperature (4×1 phase, we conclude that electron-phonon coupling is responsible for the slow energy transfer from the excited electron system to the lattice. The significant difference in timescales is evidence that the photoinduced structural transition is non-thermally driven.

  13. Dynamics and elastic interactions of the discrete multi-dark soliton solutions for the Kaup-Newell lattice equation

    Science.gov (United States)

    Liu, Nan; Wen, Xiao-Yong

    2018-03-01

    Under consideration in this paper is the Kaup-Newell (KN) lattice equation which is an integrable discretization of the KN equation. Infinitely, many conservation laws and discrete N-fold Darboux transformation (DT) for this system are constructed and established based on its Lax representation. Via the resulting N-fold DT, the discrete multi-dark soliton solutions in terms of determinants are derived from non-vanishing background. Propagation and elastic interaction structures of such solitons are shown graphically. Overtaking interaction phenomena between/among the two, three and four solitons are discussed. Numerical simulations are used to explore their dynamical behaviors of such multi-dark solitons. Numerical results show that their evolutions are stable against a small noise. Results in this paper might be helpful for understanding the propagation of nonlinear Alfvén waves in plasmas.

  14. Dynamic behaviour of Bose-Einstein condensates in optical lattices with two- and three-body interactions

    International Nuclear Information System (INIS)

    Chen Yan; Chen Yong; Zhang Kezhi

    2009-01-01

    We study the dynamic behaviour of Bose-Einstein condensates with two- and three-atom interactions in optical lattices with analytical and numerical methods. It is found that the steady-state relative population displays tuning-fork bifurcation when the system parameters are changed to certain critical values. In particular, the existence of the three-body interaction not only transforms the bifurcation point of the system but also greatly affects the macroscopic quantum self-trapping behaviours associated with the critically stable steady-state solution. In addition, we investigated the influence of the initial conditions, three-body interaction, and the energy bias on the macroscopic quantum self-trapping. Finally, by applying the periodic modulation on the energy bias, we observed that the relative population oscillation exhibits a process from order to chaos, via a series of period-doubling bifurcations.

  15. A Molecular Dynamics Study of the Epitaxial Growth of Metallic Nanoclusters Softly Deposited on Substrates with Very Different Lattice Parameter

    International Nuclear Information System (INIS)

    Jimenez-Saez, J C; Perez-MartIn, A M C; Jimenez-RodrIguez, J J

    2007-01-01

    The soft deposition of Cu and Au clusters on Au(001) and Cu(001) surfaces respectively is studied by constant-temperature molecular-dynamics simulations. The initial shape of the nanoclusters is icosahedral or truncated octahedral (Wulff type). Their number of atoms ranges between 12 and 1289 atoms. Bombardment energy is of the order of a few meV/atom. The atomic interactions are mimicked by a many-body potential based on the tightbinding model. The effect of the temperature as activation to get the complete epitaxy is analysed. We have found that Cu clusters manage to align their {002} planes with the substrate by increasing the temperature. However, there is not epitaxial growth in any case since the lattice becomes bcc or important stacking faults are generated. For Au clusters, the alignment of these planes is practically independent of the temperature

  16. Electronic structure and lattice dynamics of CaPd3B studied by first-principles methods

    International Nuclear Information System (INIS)

    Music, Denis; Ahuja, Rajeev; Schneider, Jochen M.

    2006-01-01

    Using first-principles methods, we have studied the electronic structure and lattice dynamics of CaPd 3 B and compared them to isostructural MgNi 3 C. CaPd 3 B possesses less electronic states at the Fermi level, but more phonon modes at low frequencies, than MgNi 3 C. According to the phonon density of states, low frequency acoustic modes are dominated by Pd states, corresponding to Ni in MgNi 3 C. Furthermore, these Pd modes show soft phonons, which may be significant for second-order phase transitions. Based on the comparison to MgNi 3 C, we suggest that the properties of these two compounds may be similar

  17. Lattice dynamics and vibration modes frequencies for substitutional impurities in InP, GaP and ZnS

    International Nuclear Information System (INIS)

    Vandevyver, Michel; Plumelle, Pierre.

    1977-01-01

    The model used is a rigid-ion model with an effective ionic charge including general interactions for nearest and next nearest neighbours and long range Coulomb interactions. It provides a good fit with available neutron data and with infrared absorption results for InP. In this model, no hypothesis is made a priori on the interatomic forces and the eleven parameters given by the model are used. A mathematical model which employs a Green's function technique in the mass defect and the nearest neighbour force constant defect approximation is used to calculate the lattice dynamics of the imperfect crystal. The frequencies of the local modes, the gap modes and the band modes, are given for isolated substitutional impurities. The same calculation is achieved for GaP and ZnS and the results are compared with infrared data [fr

  18. Lattice dynamics of {alpha} boron and of boron carbide; Proprietes vibrationnelles du bore {alpha} et du carbure de bore

    Energy Technology Data Exchange (ETDEWEB)

    Vast, N

    1999-07-01

    The atomic structure and the lattice dynamics of {alpha} boron and of B{sub 4}C boron carbide have been studied by Density Functional Theory (D.F.T.) and Density Functional Perturbation Theory (D.F.P.T.). The bulk moduli of the unit-cell and of the icosahedron have been investigated, and the equation of state at zero temperature has been determined. In {alpha} boron, Raman diffusion and infrared absorption have been studied under pressure, and the theoretical and experimental Grueneisen coefficients have been compared. In boron carbide, inspection of the theoretical and experimental vibrational spectra has led to the determination of the atomic structure of B{sub 4}C. Finally, the effects of isotopic disorder have been modeled by an exact method beyond the mean-field approximation, and the effects onto the Raman lines has been investigated. The method has been applied to isotopic alloys of diamond and germanium. (author)

  19. Magneto-structural coupling and harmonic lattice dynamics in CaFe2As2 probed by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Li Zhiwei; Ma Xiaoming; Pang Hua; Li Fashen

    2011-01-01

    In this paper we present a detailed Moessbauer spectroscopy study of the structural and magnetic properties of the undoped parent compound CaFe 2 As 2 single crystal. By fitting the temperature dependence of the hyperfine magnetic field we show that the magneto-structural phase transition is clearly first order in nature and we also deduce the compressibility of our sample to be 1.67 x 10 -2 GPa -1 . Within Landau's theory of phase transition, we further argue that the observed phase transition may stem from the strong magneto-structural coupling effect. The temperature dependence of the Lamb-Moessbauer factor shows that the paramagnetic phase and the antiferromagnetic phase exhibit similar lattice dynamics in high-frequency modes with very close Debye temperatures, Θ D ∼ 270 K.

  20. Lattice QCD

    International Nuclear Information System (INIS)

    Hasenfratz, P.

    1983-01-01

    The author presents a general introduction to lattice gauge theories and discusses non-perturbative methods in the gauge sector. He then shows how the lattice works in obtaining the string tension in SU(2). Lattice QCD at finite physical temperature is discussed. Universality tests in SU(2) lattice QCD are presented. SU(3) pure gauge theory is briefly dealt with. Finally, fermions on the lattice are considered. (Auth.)

  1. Polar lattice vibrations and phase transition dynamics in Pb(Zr.sub.1-x./sub.Ti.sub.x./sub.)O.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Buixaderas, Elena; Nuzhnyy, Dmitry; Petzelt, Jan; Jin, L.; Damjanović, D.

    2011-01-01

    Roč. 84, č. 18 (2011), 184302/1-184302/12 ISSN 1098-0121 R&D Projects: GA ČR GAP204/10/0616 Institutional research plan: CEZ:AV0Z10100520 Keywords : phonons * lattice dynamics * PZT * IR spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011

  2. Study of the Dynamics of a Condensing Bubble Using Lattice Boltzmann Method

    Directory of Open Access Journals (Sweden)

    Shahnawaz Ahmed

    2015-06-01

    Full Text Available Mesoscopic lattice Boltzmann method (LBM is used to discretize the governing equations for a steam bubble inside a tube filled with water. The bubbles are kept at higher temperature compared to its boiling point while the liquid is kept subcooled. Heat transfer is allowed to take place between the two phases by virtue of which the bubble will condense. Three separate probability distribution functions are used in LBM to handle continuity, momentum and energy equations separately. The interface is considered to be diffused within a narrow zone and it has been modeled using convective Cahn-Hillard equation. Combined diffused interface-LBM framework is adapted accordingly to handle complex interface separating two phases having high density ratio. Developed model is validated with respect to established correlations for instantaneous equivalent radius of a spherical condensing bubble. Numerical snapshots of the simulation depict that the bubble volume decreases faster for higher degree of superheat. The degrees of superheat are varied over a wide range to note its effect on bubble shape and size. Effect of initial volume of the bubble on the condensation rate is also studied. It has been observed that for a fixed degree of superheat, the condensation rate is not exactly proportional to its volume. Due to the variation in interfacial configuration for different sized bubbles, condensation rate changes drastically. Influence of gravity on the rate of condensation is also studied using the developed methodology.

  3. Computer code for the atomistic simulation of lattice defects and dynamics

    International Nuclear Information System (INIS)

    Schiffgens, J.O.; Graves, N.J.; Oster, C.A.

    1980-04-01

    The computer code COMENT used to simulate the effect of temperature, impurities, and pre-existing defects on radiation-induced defect production mechanisms, defect properties, defect migration, and defect stability. This report documents Version IV of COMENT (models, methods, and implementation) and defines current code options. Version IV of COMENT generates only face-centered-cubic (fcc) crystal lattices. However, an effort was made to structure COMENT to allow addition of new options with a minimum of change in the existing version of the code. This document describes the calling program and thirty-two user-defined subroutines. Fourteen subroutines (ALOYORD, DASPKA, DFCT, DSLOAN, DSLOIN, EXPAND, POT1, POT2, POT3, POT4, POT5, POT6, POT7, and THRMAL) are associated with the selection of program options; only a few of these are used in any given analysis. Seven of the other subroutines (CRYSTL, IEAF, INCBOX, LABLE, MINILAT, SPEFORS, and SQUEZ are used to establish a variety of arrays and conditions required for each analysis; most of them are used once in a given calculation. The remaining eleven subroutines (DAMP, DIRECT, IDDEF, NEAF, INBIN, FILBIN, FTBIN, PAC3, UNPAC3, PACF, and UNPACF) are used many times in each calculation; the last eight of these are used many times in each time step during the integration and, therefore, are written in COMPASS (CDC assembly language). The COMPASS subroutines are described in sufficient detail to permit easy conversion to some other assembly language or to FORTRAN

  4. Conformational Change in the Mechanism of Inclusion of Ketoprofen in β-Cyclodextrin: NMR Spectroscopy, Ab Initio Calculations, Molecular Dynamics Simulations, and Photoreactivity.

    Science.gov (United States)

    Guzzo, T; Mandaliti, W; Nepravishta, R; Aramini, A; Bodo, E; Daidone, I; Allegretti, M; Topai, A; Paci, M

    2016-10-11

    Inclusion of drugs in cyclodextrins (CDs) is a recognized tool for modifying several properties such as solubility, stability, bioavailability, and so on. The photoreactive behavior of the β-CD/ketoprofen (KP) complex upon UV exposure showed a significant increase in photodecarboxylation, whereas the secondary degradation products by hydroxylation of the benzophenone moiety were inhibited. The results may account for an improvement of KP photophysical properties upon inclusion, thus better fostering its topical use. To correlate the structural details of the inclusion with these results, an NMR spectroscopic study of KP upon inclusion in β-CD was performed. Effects of the magnetically anisotropic centers of KP, changing their orientations upon inclusion and giving chemical shift variations, were specifically correlated with the results of the molecular dynamic simulations and ab initio calculations. In the large variety of papers focusing on the structural analysis of β-CD complexes, this work represents one of the few examples in which a detailed analysis of these simultaneous upfield-downfield NMR shifts of the same aromatic molecule upon inclusion is reported. Interestingly, the results demonstrate that the observed upfield and downfield shifts upon inclusion are not related to any direct magnetic role of β-CD. The conformational change of KP upon the inclusion process consists of a slight reduction in the angle between the two phenyl rings and in a remarkable reduction in the mobility of the carboxyl group, the latter being one of the main contributions to the NMR resonance shifts. These structural details help in understanding the features of the inclusion complex and, eventually, the driving force for its formation.

  5. Ab Initio Molecular Dynamics of Uranium Incorporated in Goethite (α-FeOOH): Interpretation of X-ray Absorption Spectroscopy of Trace Polyvalent Metals.

    Science.gov (United States)

    Kerisit, Sebastien; Bylaska, Eric J; Massey, Michael S; McBriarty, Martin E; Ilton, Eugene S

    2016-11-21

    Incorporation of economically or environmentally consequential polyvalent metals into iron (oxyhydr)oxides has applications in environmental chemistry, remediation, and materials science. A primary tool for characterizing the local coordination environment of such metals, and therefore building models to predict their behavior, is extended X-ray absorption fine structure spectroscopy (EXAFS). Accurate structural information can be lacking yet is required to constrain and inform data interpretation. In this regard, ab initio molecular dynamics (AIMD) was used to calculate the local coordination environment of minor amounts of U incorporated in the structure of goethite (α-FeOOH). U oxidation states (VI, V, and IV) and charge compensation schemes were varied. Simulated trajectories were used to calculate the U L III -edge EXAFS function and fit experimental EXAFS data for U incorporated into goethite under reducing conditions. Calculations that closely matched the U EXAFS of the well-characterized mineral uraninite (UO 2 ), and constrained the S 0 2 parameter to be 0.909, validated the approach. The results for the U-goethite system indicated that U(V) substituted for structural Fe(III) in octahedral uranate coordination. Charge balance was achieved by the loss of one structural proton coupled to addition of one electron into the solid (-1 H + , +1 e - ). The ability of AIMD to model higher energy states thermally accessible at room temperature is particularly relevant for protonated systems such as goethite, where proton transfers between adjacent octahedra had a dramatic effect on the calculated EXAFS. Vibrational effects as a function of temperature were also estimated using AIMD, allowing separate quantification of thermal and configurational disorder. In summary, coupling AIMD structural modeling and EXAFS experiments enables modeling of the redox behavior of polyvalent metals that are incorporated in conductive materials such as iron (oxyhydr)oxides, with

  6. Vibrational mode frequencies of silica species in SiO2-H2O liquids and glasses from ab initio molecular dynamics.

    Science.gov (United States)

    Spiekermann, Georg; Steele-MacInnis, Matthew; Schmidt, Christian; Jahn, Sandro

    2012-04-21

    Vibrational spectroscopy techniques are commonly used to probe the atomic-scale structure of silica species in aqueous solution and hydrous silica glasses. However, unequivocal assignment of individual spectroscopic features to specific vibrational modes is challenging. In this contribution, we establish a connection between experimentally observed vibrational bands and ab initio molecular dynamics (MD) of silica species in solution and in hydrous silica glass. Using the mode-projection approach, we decompose the vibrations of silica species into subspectra resulting from several fundamental structural subunits: The SiO(4) tetrahedron of symmetry T(d), the bridging oxygen (BO) Si-O-Si of symmetry C(2v), the geminal oxygen O-Si-O of symmetry C(2v), the individual Si-OH stretching, and the specific ethane-like symmetric stretching contribution of the H(6)Si(2)O(7) dimer. This allows us to study relevant vibrations of these subunits in any degree of polymerization, from the Q(0) monomer up to the fully polymerized Q(4) tetrahedra. Demonstrating the potential of this approach for supplementing the interpretation of experimental spectra, we compare the calculated frequencies to those extracted from experimental Raman spectra of hydrous silica glasses and silica species in aqueous solution. We discuss observed features such as the double-peaked contribution of the Q(2) tetrahedral symmetric stretch, the individual Si-OH stretching vibrations, the origin of the experimentally observed band at 970 cm(-1) and the ethane-like vibrational contribution of the H(6)Si(2)O(7) dimer at 870 cm(-1).

  7. Elucidating the breathing of the metal-organic framework MIL-53(Sc) with ab initio molecular dynamics simulations and in situ X-ray powder diffraction experiments.

    Science.gov (United States)

    Chen, Linjiang; Mowat, John P S; Fairen-Jimenez, David; Morrison, Carole A; Thompson, Stephen P; Wright, Paul A; Düren, Tina

    2013-10-23

    Ab initio molecular dynamics (AIMD) simulations have been used to predict structural transitions of the breathing metal-organic framework (MOF) MIL-53(Sc) in response to changes in temperature over the range 100-623 K and adsorption of CO2 at 0-0.9 bar at 196 K. The method has for the first time been shown to predict successfully both temperature-dependent structural changes and the structural response to variable sorbate uptake of a flexible MOF. AIMD employing dispersion-corrected density functional theory accurately simulated the experimentally observed closure of MIL-53(Sc) upon solvent removal and the transition of the empty MOF from the closed-pore phase to the very-narrow-pore phase (symmetry change from P2(1)/c to C2/c) with increasing temperature, indicating that it can directly take into account entropic as well as enthalpic effects. We also used AIMD simulations to mimic the CO2 adsorption of MIL-53(Sc) in silico by allowing the MIL-53(Sc) framework to evolve freely in response to CO2 loadings corresponding to the two steps in the experimental adsorption isotherm. The resulting structures enabled the structure determination of the two CO2-containing intermediate and large-pore phases observed by experimental synchrotron X-ray diffraction studies with increasing CO2 pressure; this would not have been possible for the intermediate structure via conventional methods because of diffraction peak broadening. Furthermore, the strong and anisotropic peak broadening observed for the intermediate structure could be explained in terms of fluctuations of the framework predicted by the AIMD simulations. Fundamental insights from the molecular-level interactions further revealed the origin of the breathing of MIL-53(Sc) upon temperature variation and CO2 adsorption. These simulations illustrate the power of the AIMD method for the prediction and understanding of the behavior of flexible microporous solids.

  8. Effects of iron on the lattice thermal conductivity of Earth's deep mantle and implications for mantle dynamics.

    Science.gov (United States)

    Hsieh, Wen-Pin; Deschamps, Frédéric; Okuchi, Takuo; Lin, Jung-Fu

    2018-04-17

    Iron may critically influence the physical properties and thermochemical structures of Earth's lower mantle. Its effects on thermal conductivity, with possible consequences on heat transfer and mantle dynamics, however, remain largely unknown. We measured the lattice thermal conductivity of lower-mantle ferropericlase to 120 GPa using the ultrafast optical pump-probe technique in a diamond anvil cell. The thermal conductivity of ferropericlase with 56% iron significantly drops by a factor of 1.8 across the spin transition around 53 GPa, while that with 8-10% iron increases monotonically with pressure, causing an enhanced iron substitution effect in the low-spin state. Combined with bridgmanite data, modeling of our results provides a self-consistent radial profile of lower-mantle thermal conductivity, which is dominated by pressure, temperature, and iron effects, and shows a twofold increase from top to bottom of the lower mantle. Such increase in thermal conductivity may delay the cooling of the core, while its decrease with iron content may enhance the dynamics of large low shear-wave velocity provinces. Our findings further show that, if hot and strongly enriched in iron, the seismic ultralow velocity zones have exceptionally low conductivity, thus delaying their cooling.

  9. Renormalisation constants of quark bilinears in lattice QCD with four dynamical Wilson quarks

    NARCIS (Netherlands)

    Blossier, B.; Brinet, M.; Carrasco, N.; Dimopoulos, P.; Du, X.; Frezzotti, R.; Gimenez, V.; Herdoiza, G.; Jansen, K.; Lubicz, V.; Palao, D.; Pallante, E.; Pene, O.; Petrov, K.; Reker, S.; Rossi, G. C.; Sanfilippo, F.; Scorzato, L.; Simula, S.; Urbach, C.

    2011-01-01

    We present preliminary results of the non-perturbative computation of the RI-MOM renormalisation constants in a mass-independent scheme for the action with Iwasaki glue and four dynamical Wilson quarks employed by ETMC. Our project requires dedicated gauge ensembles with four degenerate sea quark

  10. Resolving the anomalous infrared spectrum of the MeCN-HCl molecular cluster using ab Initio molecular dynamics

    DEFF Research Database (Denmark)

    Bork, Nicolai Christian; Loukonen, Ville; Kjærgaard, Henrik Grum

    2014-01-01

    We present a molecular dynamics (MD) based study of the acetonitrile-hydrogen chloride molecular cluster in the gas phase, aimed at resolving the anomalous features often seen in infrared spectra of hydrogen bonded complexes. We find that the infrared spectrum obtained from the Fourier transform...... of the electric dipole moment autocorrelation function converges very slowly due to the floppy nature of the complex. Even after 55 picoseconds of simulation, significant differences in the modelled and experimental spectrum are seen, likely due to insufficient configurational sampling. Instead, we utilize the MD...... trajectory for a structural based analysis. We find that the most populated values of the N-H-Cl angle are around 162°. The global minimum energy conformation at 180.0° is essentially unpopulated. We re-model the spectrum by combining population data from the MD simulations with optimizations constraining...

  11. Ab initio molecular dynamics simulation of the liquid and amorphous structure of Mg65Cu25Gd10 alloy

    International Nuclear Information System (INIS)

    Gao, R.; Zhao, Y.F.; Liu, X.J.; Liu, Z.K.; Hui, X.

    2013-01-01

    The liquid and amorphous structures of Mg 65 Cu 25 Gd 10 alloy were studied by using molecular dynamics methods within the frame of density functional theory. The generalized and partial pair correlation functions, structure factors, coordination numbers and bond pairs for this alloy were analyzed. It is shown that this alloy exhibit typical characterization of liquid structure at the temperature higher than 750 K, and of amorphous structure with shoulders on the second diffuse peaks of the pair correlation functions curves at room temperature. The local short and medium range ordering tends to be increased with the decrease of temperature. Both the liquid and the amorphous structures are mainly composed of icosahedral type of bond pairs. Perfect and distorted icosahedra can be differentiated from the atomic configuration of the amorphous alloy

  12. Structure of the glass-forming metallic liquids by ab-initio and classical molecular dynamics, a case study: Quenching the Cu{sub 60}Ti{sub 20}Zr{sub 20} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Amokrane, S.; Ayadim, A.; Levrel, L. [Groupe “Physique des Liquides et Milieux Complexes,” Faculté des Sciences et Technologie, Université Paris-Est (Créteil), 61 av. du Général de Gaulle, 94010 Créteil Cedex (France)

    2015-11-21

    We consider the question of the amorphization of metallic alloys by melt quenching, as predicted by molecular dynamics simulations with semi-empirical potentials. The parametrization of the potentials is discussed on the example of the ternary Cu-Ti-Zr transition metals alloy, using the ab-initio simulation as a reference. The pair structure in the amorphous state is computed from a potential of the Stillinger-Weber form. The transferability of the parameters during the quench is investigated using two parametrizations: from solid state data, as usual and from a new parametrization on the liquid structure. When the adjustment is made on the pair structure of the liquid, a satisfactory transferability is found between the pure components and their alloys. The liquid structure predicted in this way agrees well with experiment, in contrast with the one obtained using the adjustment on the solid. The final structure, after quenches down to the amorphous state, determined with the new set of parameters is shown to be very close to the ab-initio one, the latter being in excellent agreement with recent X-rays diffraction experiments. The corresponding critical temperature of the glass transition is estimated from the behavior of the heat capacity. Discussion on the consistency between the structures predicted using semi-empirical potentials and ab-initio simulation, and comparison of different experimental data underlines the question of the dependence of the final structure on the thermodynamic path followed to reach the amorphous state.

  13. Prediction of B1 to B10 phase transition in LuN under pressure: An ab-initio investigation

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, B. D., E-mail: bdsahoo@barc.gov.in; Mukherjee, D.; Joshi, K. D.; Kaushik, T. C.; Gupta, Satish C. [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai, India 400085 (India)

    2016-05-23

    Ab-initio total energy calculations have been performed in lutetium nitride (LuN) as a function of hydrostatic compression to understand the high pressure behavior of this compound. Our calculations predict a phase transition from ambient rocksalt type structure (B1 phase) to a tetragonal structure (B10 phase) at ~ 240 GPa. The phase transition has been identified as first order in nature with volume discontinuity of ~ 6%. The predicted high pressure phase has been found to be stable up to at least 400 GPa, the maximum pressure up to which calculations have been performed.Further, to substantiate the results of static lattice calculations analysis of lattice dynamic stability of B1 and B10 phase has been carried out at different pressures. Apart from this, we have analyzed the lattice dynamic stability CsCl type (B2) phase around the 240 GPa, the pressure reported for B1 to B2 transition in previous all-electron calculations by Gupta et al. 2013. We find that the B2 structure is lattice dynamically unstable at this pressure and remains unstable up to ~ 400 GPa, ruling out the possibility of B1 to B2 phase transition at least up to ~ 400 GPa. Further, the theoretically determined equation of state has been utilized to derive various physical quantities such as zero pressure equilibrium volume, bulk modulus, and pressure derivative of bulk modulus of B1 phase at ambient conditions.

  14. Local-field correction in the lattice dynamics of b.b.c. transition metals

    International Nuclear Information System (INIS)

    Onwuagba, B.N.

    1984-01-01

    It is shown that the off-diagonal components of the inverse dielectric matrix which determine the local-field correction associated with s-d interactions, make contributions to the dynamical matrix for phonon dispersion in the body-centred cubic transition metals V, Nb and Ta which tend to cancel the Born-Mayer contribution, just as the diagonal components of the inverse dielectric matrix tend to cancel or screen the long-range (Coulombic) contribution. Numerical calculations show that the cancellation of the Born-Mayer contribution to the dynamical matrix by the local-field correction is such that the effective short-range interatomic potential turns out to be attractive rather than repulsive in these metals and accounts for some peculiar shapes of the major soft modes observed in these metals

  15. Dynamic aperture calculation for 100 GeV Au-Au and 250 GeV pp lattices with near third order resonance working point

    International Nuclear Information System (INIS)

    Gu, X.; Luo, Y.; Fischer, W.

    2010-01-01

    In the preparation for the 2011 RHIC 250 GeV polarized proton (pp) run, both experiment and simulation were carried out to investigate the possibility to accelerate the proton beam with a vertical tune near 2/3. It had been found experimentally in Run-9 that accelerating the proton beam with a vertical tune close to 2/3 will greatly benefit the transmission of the proton polarization. In this note, we report the calculated dynamic apertures with the 100 GeV Au run and 250 GeV proton run lattices with vertical tunes close to the third order resonance. We will compare the third order resonance band width between the beam experiment and the simulation with the 100 GeV Au lattices. And we also will compare the calculated resonance band width between the 100 GeV Au and 250 GeV proton run lattices.

  16. Single-particle dynamics in a nonlinear accelerator lattice: attaining a large tune spread with octupoles in IOTA

    International Nuclear Information System (INIS)

    Antipov, S.A.; Nagaitsev, S.; Valishev, A.

    2017-01-01

    Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R and D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually has both beneficial (improved Landau damping) and harmful properties, such as a resonant behavior and a reduction of the dynamic aperture. One of the research goals at the IOTA ring is to achieve a large betatron tune spread, while retaining a large dynamic aperture, using conventional octupole magnets in a special but realistic accelerator configuration. The configuration, although not integrable by design, approximates an autonomous 2D Hamiltonian system. In this paper, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for enhancing Landau damping in high intensity machines.

  17. Single-particle dynamics in a nonlinear accelerator lattice: attaining a large tune spread with octupoles in IOTA

    Science.gov (United States)

    Antipov, S. A.; Nagaitsev, S.; Valishev, A.

    2017-04-01

    Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually has both beneficial (improved Landau damping) and harmful properties, such as a resonant behavior and a reduction of the dynamic aperture. One of the research goals at the IOTA ring is to achieve a large betatron tune spread, while retaining a large dynamic aperture, using conventional octupole magnets in a special but realistic accelerator configuration. The configuration, although not integrable by design, approximates an autonomous 2D Hamiltonian system. In this paper, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for enhancing Landau damping in high intensity machines.

  18. Single-particle dynamics in a nonlinear accelerator lattice: attaining a large tune spread with octupoles in IOTA

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, S. A.; Nagaitsev, S.; Valishev, A.

    2017-04-01

    Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually lead to a resonant behavior and a reduction of the dynamic aperture. One of the goals of the IOTA research program is to achieve a high betatron tune spread, while retaining a large dynamic aperture using conventional octupole magnets in a special but realistic accelerator configuration. In this report, we present results of computer simulations of an electron beam in the IOTA by particle tracking and the Frequency Map Analysis. The results show that the ring's octupole magnets can be configured to provide a betatron tune shift of 0.08 (for particles at large amplitudes) with the dynamical aperture of over 20 beam sigma for a 150-MeV electron beam. The influence of the synchrotron motion, lattice errors, and magnet imperfections is insignificant for the parameters and levels of tolerances set by the design of the ring. The described octupole insert could be beneficial for suppression of space-charge induced instabilities in high intensity machines.

  19. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh

    2013-01-01

    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  20. Interplay of structural instability and lattice dynamics in Ni{sub 2}MnAl shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mehaddene, T.

    2007-02-12

    The work presented here is devoted to investigate the interplay of lattice dynamics and structural instability in Ni{sub 2}MnAl shape memory alloys. Inelastic neutron scattering is used to get more insight on the dynamic precursors of structural instability in Ni{sub 2}MnAl. Differential Scanning Calorimetry was used to characterise the martensitic transition in Ni{sub 2}MnAl alloys. Effects of composition and heat treatments have been investigated. The measured martensitic transition temperature in Ni-Mn-Al alloys depends linearly on the valence electron concentration. Two single crystals with different compositions have been succesfully grown using the Czochralski technique. Acoustic and optical phonon modes have been measured at room temperature in the high symmetry directions of the cubic B2 phase. The force constants have been fitted to the measured data using the Born-von Karman model. The character of the phonon softening measured in Ni{sub 2}MnAl corresponds to the pattern of atomic displacements of the modulations 2M, 10M, 12M and 14M observed in bulk and thin-films of Ni{sub 2}MnAl. The effect of the composition on the lattice instability has been investigated by measuring normal modes of vibration in two different crystals, Ni{sub 51}Mn{sub 18}Al{sub 31} and Ni{sub 53}Mn{sub 22}Al{sub 25}, with e/a ratios of 7.29 and 7.59 respectively. The stabilisation of a single L2{sub 1} phase in Ni{sub 2}MnAl by annealing a Ni{sub 51}Mn{sub 18}Al{sub 31} single crystal at 673 K during 45 days has been attempted. Despite of the long-time annealing, a single L2{sub 1} phase could not be stabilised because of either a slow diffusion kinetics or the establishment of an equilibrium between the L2{sub 1} and the B2 phases. Phonon measurements of the TA{sub 2}[{xi}{xi}0] branch in the annealed sample revealed a substantial effect. The wiggle, associated with the anomalous softening, is still present but the degree of softening is smaller below 673 K and changes

  1. Realization of prediction of materials properties by ab initio ...

    Indian Academy of Sciences (India)

    Unknown

    alization of the results of ab initio molecular dynamics simulation on atom insertion process to C60 and to carbon nanotube ... micro-clusters to estimate absolute highest occupied mo- .... To analyse the observed properties theoretically,.

  2. Possible in-lattice confinement fusion (LCF). Dynamic application of atomic and nuclear data

    International Nuclear Information System (INIS)

    Kawarasaki, Yuuki

    1995-01-01

    New scheme of a nuclear fusion reactor system is proposed, the basic concept of which comes from ingenious combination of hitherto developed techniques and verified facts; 1) so-called cold fusion (CF), 2) plasma of both magnetic confinement fusion (MCF) and inertial confinement fusion (ICF), and 3) accelerator-based D-T(D) neutron source. Details of the LCF reactor physics require dynamics of atomic data as well as nuclear data; interaction of ions with matters in solid and the problems of radiation damage. (author)

  3. Electron-Cloud Pinch Dynamics in Presence of Lattice Magnet Fields

    CERN Document Server

    Franchetti, G

    2011-01-01

    The pinch of the electron cloud due to a passing proton bunch was extensively studied in a field free region and in a dipolar magnetic field. For the latter study, a strong field approximation helped to formulate the equations of motion and to understand the complex electron pinch dynamics, which exhibited some similarities with the field-free situation. Here we extend the analysis to the case of electron pinch in quadrupoles and in sextupoles. We discuss the limits of validity for the strong field approximation and we evaluate the relative magnitude of the peak tune shift along the bunch expected for the different fields.

  4. Theory of spin and lattice wave dynamics excited by focused laser pulses

    Science.gov (United States)

    Shen, Ka; Bauer, Gerrit E. W.

    2018-06-01

    We develop a theory of spin wave dynamics excited by ultrafast focused laser pulses in a magnetic film. We take into account both the volume and surface spin wave modes in the presence of applied, dipolar and magnetic anisotropy fields and include the dependence on laser spot exposure size and magnetic damping. We show that the sound waves generated by local heating by an ultrafast focused laser pulse can excite a wide spectrum of spin waves (on top of a dominant magnon–phonon contribution). Good agreement with recent experiments supports the validity of the model.

  5. Generic dynamical phase transition in one-dimensional bulk-driven lattice gases with exclusion

    Science.gov (United States)

    Lazarescu, Alexandre

    2017-06-01

    Dynamical phase transitions are crucial features of the fluctuations of statistical systems, corresponding to boundaries between qualitatively different mechanisms of maintaining unlikely values of dynamical observables over long periods of time. They manifest themselves in the form of non-analyticities in the large deviation function of those observables. In this paper, we look at bulk-driven exclusion processes with open boundaries. It is known that the standard asymmetric simple exclusion process exhibits a dynamical phase transition in the large deviations of the current of particles flowing through it. That phase transition has been described thanks to specific calculation methods relying on the model being exactly solvable, but more general methods have also been used to describe the extreme large deviations of that current, far from the phase transition. We extend those methods to a large class of models based on the ASEP, where we add arbitrary spatial inhomogeneities in the rates and short-range potentials between the particles. We show that, as for the regular ASEP, the large deviation function of the current scales differently with the size of the system if one considers very high or very low currents, pointing to the existence of a dynamical phase transition between those two regimes: high current large deviations are extensive in the system size, and the typical states associated to them are Coulomb gases, which are highly correlated; low current large deviations do not depend on the system size, and the typical states associated to them are anti-shocks, consistently with a hydrodynamic behaviour. Finally, we illustrate our results numerically on a simple example, and we interpret the transition in terms of the current pushing beyond its maximal hydrodynamic value, as well as relate it to the appearance of Tracy-Widom distributions in the relaxation statistics of such models. , which features invited work from the best early-career researchers working

  6. A multispin algorithm for the Kob-Andersen stochastic dynamics on regular lattices

    Science.gov (United States)

    Boccagna, Roberto

    2017-07-01

    The aim of the paper is to propose an algorithm based on the Multispin Coding technique for the Kob-Andersen glassy dynamics. We first give motivations to speed up the numerical simulation in the context of spin glass models [M. Mezard, G. Parisi, M. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987)]; after defining the Markovian dynamics as in [W. Kob, H.C. Andersen, Phys. Rev. E 48, 4364 (1993)] as well as the related interesting observables, we extend it to the more general framework of random regular graphs, listing at the same time some known analytical results [C. Toninelli, G. Biroli, D.S. Fisher, J. Stat. Phys. 120, 167 (2005)]. The purpose of this work is a dual one; firstly, we describe how bitwise operators can be used to build up the algorithm by carefully exploiting the way data are stored on a computer. Since it was first introduced [M. Creutz, L. Jacobs, C. Rebbi, Phys. Rev. D 20, 1915 (1979); C. Rebbi, R.H. Swendsen, Phys. Rev. D 21, 4094 (1980)], this technique has been widely used to perform Monte Carlo simulations for Ising and Potts spin systems; however, it can be successfully adapted to more complex systems in which microscopic parameters may assume boolean values. Secondly, we introduce a random graph in which a characteristic parameter allows to tune the possible transition point. A consistent part is devoted to listing the numerical results obtained by running numerical simulations.

  7. Quantum dynamics of atoms in a resonator-generated optical lattice

    International Nuclear Information System (INIS)

    Maschler, C.; Ritsch, H.

    2005-01-01

    Full text: We investigate the quantum motion of coherently driven ultracold atoms in the field of a damped high-Q optical cavity mode. The laser field is chosen far detuned from the atomic transition but close to a cavity resonance, so that spontaneous emission is strongly suppressed but a coherent field builds up in the resonator by stimulated scattering. On one hand the shape of the atomic wave function determines the field dynamics via the magnitude of the scattering and the effective refractive index the atoms create for the mode. The mode intensity on the other hand determines the optical dipole force on the atoms.The system shows rich atom-field dynamics including self organization, self-trapping, cooling or heating. In the limit of deep trapping we are able to derive a system of closed, coupled equations for a finite set of atomic expectation values and the field. This allows us to determine the self-consistent ground state of the system as well as the eigenfrequencies and damping rates for excitations. To treat several atoms in more detail we introduce the Bose-Hubbard model. This allows us to investigate several aspects of the quantum motion of the atoms inside the cavity. (author)

  8. Dynamic mean field theory for lattice gas models of fluid mixtures confined in mesoporous materials.

    Science.gov (United States)

    Edison, J R; Monson, P A

    2013-11-12

    We present the extension of dynamic mean field theory (DMFT) for fluids in porous materials (Monson, P. A. J. Chem. Phys. 2008, 128, 084701) to the case of mixtures. The theory can be used to describe the relaxation processes in the approach to equilibrium or metastable equilibrium states for fluids in pores after a change in the bulk pressure or composition. It is especially useful for studying systems where there are capillary condensation or evaporation transitions. Nucleation processes associated with these transitions are emergent features of the theory and can be visualized via the time dependence of the density distribution and composition distribution in the system. For mixtures an important component of the dynamics is relaxation of the composition distribution in the system, especially in the neighborhood of vapor-liquid interfaces. We consider two different types of mixtures, modeling hydrocarbon adsorption in carbon-like slit pores. We first present results on bulk phase equilibria of the mixtures and then the equilibrium (stable/metastable) behavior of these mixtures in a finite slit pore and an inkbottle pore. We then use DMFT to describe the evolution of the density and composition in the pore in the approach to equilibrium after changing the state of the bulk fluid via composition or pressure changes.

  9. Dynamic magnetic properties of the mixed spin-1 and spin-3/2 Ising system on a two-layer square lattice

    International Nuclear Information System (INIS)

    Temizer, Ümüt

    2014-01-01

    In this study, the dynamic critical behavior of the mixed spin-1 and spin-3/2 Ising system on a bilayer square lattice is studied by using the Glauber-type stochastic dynamics for both ferromagnetic/ferromagnetic (FM/FM) and antiferromagnetic/ferromagnetic (AFM/FM) interactions in the presence of a time-varying external magnetic field. The dynamic equations describing the time-dependencies of the average magnetizations are derived from the Master equation. The phases in the system are obtained by solving these dynamic equations. The temperature dependence of the dynamic magnetizations is investigated in order to characterize the nature (first- or second-order) of the dynamic phase transitions and to obtain the dynamic phase transition temperatures. The dynamic phase diagrams are constructed in seven different planes for both FM/FM and AFM/FM interactions and the effects of the related interaction parameters on the dynamic phase diagrams are examined. It is found that the dynamic phase diagrams display many dynamic critical points, such as tricritical point, triple point (TP), quadruple point (QP), double critical end point (B), multicritical point (A) and tetracritical point (M). Moreover, the reentrant behavior is observed for AFM/FM interaction in the system. - Highlights: • The mixed spin (1, 3/2) Ising system is studied on a two-layer square lattice. • The Glauber transition rates are employed to construct the dynamic equations. • The dynamic phase diagrams are presented in seven different planes. • The system displays many dynamic critical points. • The reentrant behavior is observed for AFM/FM interaction

  10. First principles study on structural, lattice dynamical and thermal properties of BaCeO3

    Science.gov (United States)

    Zhang, Qingping; Ding, Jinwen; He, Min

    2017-09-01

    BaCeO3 exhibits impressive application potentials on solid oxide fuel cell electrolyte, hydrogen separation membrane and photocatalyst, owing to its unique ionic and electronic properties. In this article, the electronic structures, phonon spectra and thermal properties of BaCeO3 in orthorhombic, rhombohedral and cubic phases are investigated based on density functional theory. Comparisons with reported experimental results are also presented. The calculation shows that orthorhombic structure is both energetically and dynamically stable under ground state, which is supported by the experiment. Moreover, charge transfer between cations and anions accompanied with phase transition is observed, which is responsible for the softened phonon modes in rhombohedral and cubic phases. Besides, thermal properties are discussed. Oxygen atoms contribute most to the specific heat. The calculated entropy and specific heat at constant pressure fit well with the experimental ones within the measured temperature range.

  11. Combined experimental and theoretical assessments of the lattice dynamics and optoelectronics of TaON and Ta3N5

    KAUST Repository

    Nurlaela, Ela; Harb, Moussab; Del Gobbo, Silvano; Vashishta, Manish; Takanabe, Kazuhiro

    2015-01-01

    Presented herein is a detailed discussion of the properties of the lattice dynamic and optoelectronic properties of tantalum(V) oxynitride (TaON) and tantalum(V) nitride (Ta3N5), from experimental and theoretical standpoint. The active Raman and infra red (IR) frequencies of TaON and Ta3N5 were measured using confocal Raman and Fourier Transform Infrared spectroscopies (FTIR) and calculated using the linear response method within the density functional perturbation theory (DFPT). The detailed study leads to an exhaustive description of the spectra, including the symmetry of the vibrational modes. Electronic structures of these materials were computed using DFT within the range-separated hybrid HSE06 exchange–correlation formalism. Electronic and ionic contributions to the dielectric constant tensors of these materials were obtained from DFPT within the linear response method using the PBE functional. Furthermore, effective mass of photogenerated holes and electrons at the band edges of these compounds were computed from the electronic band structure obtained at the DFT/HSE06 level of theory. The results suggest that anisotropic nature in TaON and Ta3N5 is present in terms of dielectric constant and effective masses.

  12. First-principles model potentials for lattice-dynamical studies: general methodology and example of application to ferroic perovskite oxides.

    Science.gov (United States)

    Wojdeł, Jacek C; Hermet, Patrick; Ljungberg, Mathias P; Ghosez, Philippe; Íñiguez, Jorge

    2013-07-31

    We present a scheme to construct model potentials, with parameters computed from first principles, for large-scale lattice-dynamical simulations of materials. We mimic the traditional solid-state approach to the investigation of vibrational spectra, i.e., we start from a suitably chosen reference configuration of the compound and describe its energy as a function of arbitrary atomic distortions by means of a Taylor series. Such a form of the potential-energy surface is general, trivial to formulate for any material, and physically transparent. Further, such models involve clear-cut approximations, their precision can be improved in a systematic fashion, and their simplicity allows for convenient and practical strategies to compute/fit the potential parameters. We illustrate our scheme with two challenging cases in which the model potential is strongly anharmonic, namely, the ferroic perovskite oxides PbTiO3 and SrTiO3. Studying these compounds allows us to better describe the connection between the so-called effective-Hamiltonian method and ours (which may be seen as an extension of the former), and to show the physical insight and predictive power provided by our approach-e.g., we present new results regarding the factors controlling phase-transition temperatures, novel phase transitions under elastic constraints, an improved treatment of thermal expansion, etc.

  13. Combined experimental and theoretical assessments of the lattice dynamics and optoelectronics of TaON and Ta3N5

    KAUST Repository

    Nurlaela, Ela

    2015-06-15

    Presented herein is a detailed discussion of the properties of the lattice dynamic and optoelectronic properties of tantalum(V) oxynitride (TaON) and tantalum(V) nitride (Ta3N5), from experimental and theoretical standpoint. The active Raman and infra red (IR) frequencies of TaON and Ta3N5 were measured using confocal Raman and Fourier Transform Infrared spectroscopies (FTIR) and calculated using the linear response method within the density functional perturbation theory (DFPT). The detailed study leads to an exhaustive description of the spectra, including the symmetry of the vibrational modes. Electronic structures of these materials were computed using DFT within the range-separated hybrid HSE06 exchange–correlation formalism. Electronic and ionic contributions to the dielectric constant tensors of these materials were obtained from DFPT within the linear response method using the PBE functional. Furthermore, effective mass of photogenerated holes and electrons at the band edges of these compounds were computed from the electronic band structure obtained at the DFT/HSE06 level of theory. The results suggest that anisotropic nature in TaON and Ta3N5 is present in terms of dielectric constant and effective masses.

  14. Anomalous random correlations of force constants on the lattice dynamical properties of disordered Au-Fe alloys

    Science.gov (United States)

    Kangsabanik, Jiban; Chouhan, Rajiv K.; Johnson, D. D.; Alam, Aftab

    2017-09-01

    Gold iron (Au-Fe) alloys are of immense interest due to their biocompatibility, anomalous Hall conductivity, and applications in various medical treatments. However, irrespective of the method of preparation, they often exhibit a high level of disorder with properties sensitive to the thermal or magnetic annealing temperatures. We calculate the lattice dynamical properties of Au1 -xFex alloys using density functional theory methods where, being multisite properties, reliable interatomic force constant (IFC) calculations in disordered alloys remain a challenge. We follow a twofold approach: (1) an accurate IFC calculation in an environment with nominally zero chemical pair correlations to mimic the homogeneously disordered alloy and (2) a configurational averaging for the desired phonon properties (e.g., dispersion, density of states, and entropy). We find an anomalous change in the IFC's and phonon dispersion (split bands) near x =0.19 , which is attributed to the local stiffening of the Au-Au bonds when Au is in the vicinity of Fe. Other results based on mechanical and thermophysical properties reflect a similar anomaly: Phonon entropy, e.g., becomes negative below x =0.19 , suggesting a tendency for chemical unmixing, reflecting the onset of a miscibility gap in the phase diagram. Our results match fairly well with reported data wherever available.

  15. Lattice-dynamical estimation of atomic thermal parameters for silicates: Forsterite. alpha. -Mg sub 2 SiO sub 4

    Energy Technology Data Exchange (ETDEWEB)

    Pilati, T.; Bianchi, R. (Consiglio Nazionale delle Ricerche, Milan (Italy). Centro per lo Studio delle Relazioni tra Struttura e Reattivita' Chimica); Gramaccioli, C.M. (Milan Univ. (Italy). Dipt. di Scienze della Terra)

    1990-06-01

    As an example of extending harmonic lattice-dynamical procedures to silicates, the atomic thermal parameters for forsterite Mg{sub 2}SiO{sub 4}, an important constituent of earth's crust, have been calculated on this basis. For this purpose, Iishi's rigid-ion model was used, with slight modifications. Although such potentials were derived exclusively from fitting IR and Raman-active frequencies, the reproduction of the phonon-dispersion curves is good, and the calculation of thermodynamic functions such as entropy provides values which are near to calorimetric estimates. The calculated atomic thermal parameters are in good agreement with the experimental values reported by most authors. The calculations at various temperatures show the effect of zero-point motion very clearly: its contribution to temperature factors is about half of the total at room temperature. Bond-length corrections for thermal libration can be applied using the general-case formula: these amount to 0.003 A for the Si-O bonds at room temperature. Although the thermal parameters in the SiO{sub 4} group fit a rigid-body model, the correction obtained using the Schomaker-Trueblood procedure gives a significantly different result: this is essentially due to the weak librational character of the motion of silicate groups in the structure. (orig.).

  16. Lattice-dynamical estimation of atomic thermal parameters for silicates: Forsterite α-Mg2SiO4

    International Nuclear Information System (INIS)

    Pilati, T.; Bianchi, R.; Gramaccioli, C.M.

    1990-01-01

    As an example of extending harmonic lattice-dynamical procedures to silicates, the atomic thermal parameters for forsterite Mg 2 SiO 4 , an important constituent of earth's crust, have been calculated on this basis. For this purpose, Iishi's rigid-ion model was used, with slight modifications. Although such potentials were derived exclusively from fitting IR and Raman-active frequencies, the reproduction of the phonon-dispersion curves is good, and the calculation of thermodynamic functions such as entropy provides values which are near to calorimetric estimates. The calculated atomic thermal parameters are in good agreement with the experimental values reported by most authors. The calculations at various temperatures show the effect of zero-point motion very clearly: its contribution to temperature factors is about half of the total at room temperature. Bond-length corrections for thermal libration can be applied using the general-case formula: these amount to 0.003 A for the Si-O bonds at room temperature. Although the thermal parameters in the SiO 4 group fit a rigid-body model, the correction obtained using the Schomaker-Trueblood procedure gives a significantly different result: this is essentially due to the weak librational character of the motion of silicate groups in the structure. (orig.)

  17. Electronic structure and lattice dynamics at the interface of single layer FeSe and SrTiO3

    Science.gov (United States)

    Ahmed, Towfiq; Balatsky, Alexander; Zhu, Jian-Xin

    Recent discovery of high-temperature superconductivity with the superconducting energy gap opening at temperatures close to or above the liquid nitrogen boiling point in the single-layer FeSe grown on SrTiO3 has attracted significant interest. It suggests that the interface effects can be utilized to enhance the superconductivity. It has been shown recently that the coupling between the electrons in FeSe and vibrational modes at the interface play an important role. Here we report on a detailed study of electronic structure and lattice dynamics in the single-layer FeSe/SrTiO3 interface by using the state-of-art electronic structure method within the density functional theory. The nature of the vibrational modes at the interface and their coupling to the electronic degrees of freedom are analyzed. In addition, the effect of hole and electron doping in SrTiO3 on the electron-mode coupling strength is also considered. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. DOE at LANL under Contract No. DE-AC52-06NA25396, and was supported by the DOE Office of Basic Energy Sciences.

  18. Neutron scattering study on the spin dynamics of the two dimensional square lattice antiferromagnet, La2NiO4

    International Nuclear Information System (INIS)

    Nakajima, Kenji; Yamada, Kazuyoshi; Hosoya, Syoichi; Endoh, Yasuo; Omata, Tomoya; Arai, Masatoshi; Taylor, A.

    1993-01-01

    The spin dynamics of an S = 1, two dimensional (2D) square lattice antiferromagnet, La 2 NiO 4 was studied by neutron scattering experiments in wide energy (E N ), the spin wave excitations of La 2 NiO 4 are well described by a classical spin wave theory. The nearest-neighbor-exchange coupling constant, the in-plane and the out-of-plane anisotropy constants at 10 K were determined to be 28.7±0.7 meV, 0.10±0.02 meV and 1.26±0.12 meV, respectively. Above T N , the 2D spin fluctuation was observed over 600 K. The critical slowing down behavior of the fluctuation was observed in the enhancement of the low energy component toward T N . On the other hand, the high energy component is hardly affected by the three dimensional magnetic transition and still exists even at T N as observed in La 2 CuO 4 . The spin correlation length and the static structure factor at the 2D zone center were measured and compared with theoretical calculations for 2D Heisenberg antiferromagnets. (author)

  19. Lattice Dynamics of Magnesium; Dynamique de Reseau du Magnesium; Dinamika reshetki magniya; Dinamica Reticular del Magnesio

    Energy Technology Data Exchange (ETDEWEB)

    Iyengar, P. K.; Venkataraman, G.; Vuayaraghavan, P. R.; Roy, A. P. [Atomic Energy Establishment Trombay, Bombay (India)

    1965-04-15

    A group theoretical analysis of modes of vibrations in hexagonal close-packed lattices has been made. The results have been used to classify the phonons at some special points in the Brillouin zone and factorized the secular determinant. Dispersion relations for phonons in magnesium along the two symmetry directions [0001] and [0110] have been measured (at room temperature) more accurately than reported earlier. The measurements have been made using a triple-axis spectrometer and a ''window filter'' spectrometer, both operated in the ''constant-Q'' mode. The results are compared with calculations based on three- and four-neighbour axially symmetric models. It is observed that the four-neighbour model gives a reasonably good description of the data. Even better agreement is obtained with a four-neighbour tensor force model. The force constants derived from the experiment have been used to compute the frequency distribution. (author) [French] Les auteurs ont procede a une analyse theorique par groupe des niodes de vibration dans les reseaux a structure hexagonale compacte. Ils ont utilise les resultats pour classer les phonons en des points particuliers de la zone de Brillouin et analyser mathematiquement le determinant seculaire. Afin d'etablir les relations de dispersion pour les phonons du magnesium dans les deux directions de symetrie [0001] et [0110] (a la temperature ambiante), ils ont fait des mesures plus precises que celles qui ont ete signalees jusqu'a present. A cet effet, ils ont utilise un spectrometre triaxial et un spectrometre avec 'filtre a fenetre', l'un et l'autre dans le mode de 'Q constant'. Ils ont compare les resultats aux calculs fondes sur des modeles a symetrie axiale faisant intervenir les troisieme et quatrieme voisins. Ils ont constate que le deuxieme de ces modeles fournit une assez bonne description des donnees. Un modele de forces tensorielles englobant le quatrieme voisin assure une concordance encore meilleure. Les auteurs ont

  20. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics – a Comparative Study with Gallium Nitride

    Science.gov (United States)

    Wu, Xufei; Lee, Jonghoon; Varshney, Vikas; Wohlwend, Jennifer L.; Roy, Ajit K.; Luo, Tengfei

    2016-01-01

    Wurtzite Zinc-Oxide (w-ZnO) is a wide bandgap semiconductor that holds promise in power electronics applications, where heat dissipation is of critical importance. However, large discrepancies exist in the literature on the thermal conductivity of w-ZnO. In this paper, we determine the thermal conductivity of w-ZnO using first-principles lattice dynamics and compare it to that of wurtzite Gallium-Nitride (w-GaN) – another important wide bandgap semiconductor with the same crystal structure and similar atomic masses as w-ZnO. However, the thermal conductivity values show large differences (400 W/mK of w-GaN vs. 50 W/mK of w-ZnO at room temperature). It is found that the much lower thermal conductivity of ZnO originates from the smaller phonon group velocities, larger three-phonon scattering phase space and larger anharmonicity. Compared to w-GaN, w-ZnO has a smaller frequency gap in phonon dispersion, which is responsible for the stronger anharmonic phonon scattering, and the weaker interatomic bonds in w-ZnO leads to smaller phonon group velocities. The thermal conductivity of w-ZnO also shows strong size effect with nano-sized grains or structures. The results from this work help identify the cause of large discrepancies in w-ZnO thermal conductivity and will provide in-depth understanding of phonon dynamics for the design of w-ZnO-based electronics. PMID:26928396

  1. Dynamic compensation temperature in the kinetic spin-1 Ising model in an oscillating external magnetic field on alternate layers of a hexagonal lattice

    International Nuclear Information System (INIS)

    Temizer, Umuet; Keskin, Mustafa; Canko, Osman

    2009-01-01

    The dynamic behavior of a two-sublattice spin-1 Ising model with a crystal-field interaction (D) in the presence of a time-varying magnetic field on a hexagonal lattice is studied by using the Glauber-type stochastic dynamics. The lattice is formed by alternate layers of spins σ=1 and S=1. For this spin arrangement, any spin at one lattice site has two nearest-neighbor spins on the same sublattice, and four on the other sublattice. The intersublattice interaction is antiferromagnetic. We employ the Glauber transition rates to construct the mean-field dynamical equations. Firstly, we study time variations of the average magnetizations in order to find the phases in the system, and the temperature dependence of the average magnetizations in a period, which is also called the dynamic magnetizations, to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (continuous and discontinuous) of transitions. Then, the behavior of the total dynamic magnetization as a function of the temperature is investigated to find the types of the compensation behavior. Dynamic phase diagrams are calculated for both DPT points and dynamic compensation effect. Phase diagrams contain the paramagnetic (p) and antiferromagnetic (af) phases, the p+af and nm+p mixed phases, nm is the non-magnetic phase, and the compensation temperature or the L-type behavior that strongly depend on the interaction parameters. For D 0 >3.8275, H 0 is the magnetic field amplitude, the compensation effect does not appear in the system.

  2. Dynamic compensation temperature in the kinetic spin-1 Ising model in an oscillating external magnetic field on alternate layers of a hexagonal lattice

    Energy Technology Data Exchange (ETDEWEB)

    Temizer, Umuet [Department of Physics, Bozok University, 66100 Yozgat (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr; Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2009-10-15

    The dynamic behavior of a two-sublattice spin-1 Ising model with a crystal-field interaction (D) in the presence of a time-varying magnetic field on a hexagonal lattice is studied by using the Glauber-type stochastic dynamics. The lattice is formed by alternate layers of spins {sigma}=1 and S=1. For this spin arrangement, any spin at one lattice site has two nearest-neighbor spins on the same sublattice, and four on the other sublattice. The intersublattice interaction is antiferromagnetic. We employ the Glauber transition rates to construct the mean-field dynamical equations. Firstly, we study time variations of the average magnetizations in order to find the phases in the system, and the temperature dependence of the average magnetizations in a period, which is also called the dynamic magnetizations, to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (continuous and discontinuous) of transitions. Then, the behavior of the total dynamic magnetization as a function of the temperature is investigated to find the types of the compensation behavior. Dynamic phase diagrams are calculated for both DPT points and dynamic compensation effect. Phase diagrams contain the paramagnetic (p) and antiferromagnetic (af) phases, the p+af and nm+p mixed phases, nm is the non-magnetic phase, and the compensation temperature or the L-type behavior that strongly depend on the interaction parameters. For D<2.835 and H{sub 0}>3.8275, H{sub 0} is the magnetic field amplitude, the compensation effect does not appear in the system.

  3. The dissociation mechanism and thermodynamic properties of HCl(aq) in hydrothermal fluids (to 700 °C, 60 kbar) by ab initio molecular dynamics simulations

    Science.gov (United States)

    Mei, Yuan; Liu, Weihua; Brugger, Joël; Sherman, David M.; Gale, Julian D.

    2018-04-01

    HCl is one of the most significant volatiles in the Earth's crust. It is well established that chloride activity and acidity (pH) play important roles in controlling the solubility of metals in aqueous hydrothermal fluids. Thus, quantifying the dissociation of HCl in aqueous solutions over a wide range of temperature and pressure is crucial for the understanding and numerical modeling of element mobility in hydrothermal fluids. Here we have conducted ab initio molecular dynamics (MD) simulations to investigate the mechanism of HCl(aq) dissociation and to calculate the thermodynamic properties for the dissociation reaction at 25-700 °C, 1 bar to 60 kbar, i.e. including high temperature and pressure conditions that are geologically important, but difficult to investigate via experiments. Our results predict that HCl(aq) tends to associate with increasing temperature, and dissociate with increasing pressure. In particular, HCl(aq) is highly dissociated at extremely high pressures, even at high temperatures (e.g., 60 kbar, 600-700 °C). At 25 °C, the calculated logKd values (6.79 ± 0.81) are close to the value (7.0) recommended by IUPAC (International Union of Pure and Applied Chemistry) and some previous experimental and theoretical studies (Simonson et al.., 1990; Sulpizi and Sprik, 2008, 2010). The MD simulations indicate full dissociation of HCl at low temperature; in contrast, some experiments were interpreted assuming significant association at high HCl concentrations (≥1 m HCltot) even at room T (logKd ∼0.7; e.g., Ruaya and Seward, 1987; Sretenskaya, 1992; review in Tagirov et al., 1997). This discrepancy is most likely the result of difficulties in the experimental determination of minor (if any) concentration of associated HCl(aq) under ambient conditions, and thus reflects differences in the activity models used for the interpretation of the experiments. With increasing temperature, the discrepancy between our MD results and previous experimental

  4. He atom surface spectroscopy: Surface lattice dynamics of insulators, metals and metal overlayers

    International Nuclear Information System (INIS)

    1990-01-01

    During the first three years of this grant (1985--1988) the effort was devoted to the construction of a state-of-the-art He atom scattering (HAS) instrument which would be capable of determining the structure and dynamics of metallic, semiconductor or insulator crystal surfaces. The second three year grant period (1988--1991) has been dedicated to measurements. The construction of the instrument went better than proposed; it was within budget, finished in the proposed time and of better sensitivity and resolution than originally planned. The same success has been carried over to the measurement phase where the concentration has been on studies of insulator surfaces, as discussed in this paper. The experiments of the past three years have focused primarily on the alkali halides with a more recent shift to metal oxide crystal surfaces. Both elastic and inelastic scattering experiments were carried out on LiF, NaI, NaCl, RbCl, KBr, RbBr, RbI, CsF, CsI and with some preliminary work on NiO and MgO

  5. Accurate quantum dynamics calculations using symmetrized Gaussians on a doubly dense Von Neumann lattice

    International Nuclear Information System (INIS)

    Halverson, Thomas; Poirier, Bill

    2012-01-01

    In a series of earlier articles [B. Poirier, J. Theor. Comput. Chem. 2, 65 (2003); B. Poirier and A. Salam, J. Chem. Phys. 121, 1690 (2004); and ibid. 121, 1704 (2004)], a new method was introduced for performing exact quantum dynamics calculations. The method uses a “weylet” basis set (orthogonalized Weyl-Heisenberg wavelets) combined with phase space truncation, to defeat the exponential scaling of CPU effort with system dimensionality—the first method ever able to achieve this long-standing goal. Here, we develop another such method, which uses a much more convenient basis of momentum-symmetrized Gaussians. Despite being non-orthogonal, symmetrized Gaussians are collectively local, allowing for effective phase space truncation. A dimension-independent code for computing energy eigenstates of both coupled and uncoupled systems has been created, exploiting massively parallel algorithms. Results are presented for model isotropic uncoupled harmonic oscillators and coupled anharmonic oscillators up to 27 dimensions. These are compared with the previous weylet calculations (uncoupled harmonic oscillators up to 15 dimensions), and found to be essentially just as efficient. Coupled system results are also compared to corresponding exact results obtained using a harmonic oscillator basis, and also to approximate results obtained using first-order perturbation theory up to the maximum dimensionality for which the latter may be feasibly obtained (four dimensions).

  6. Accurate quantum dynamics calculations using symmetrized Gaussians on a doubly dense Von Neumann lattice

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Thomas; Poirier, Bill [Department of Chemistry and Biochemistry and Department of Physics, Texas Tech University, P.O. Box 41061, Lubbock, Texas 79409-1061 (United States)

    2012-12-14

    In a series of earlier articles [B. Poirier, J. Theor. Comput. Chem. 2, 65 (2003); B. Poirier and A. Salam, J. Chem. Phys. 121, 1690 (2004); and ibid. 121, 1704 (2004)], a new method was introduced for performing exact quantum dynamics calculations. The method uses a 'weylet' basis set (orthogonalized Weyl-Heisenberg wavelets) combined with phase space truncation, to defeat the exponential scaling of CPU effort with system dimensionality-the first method ever able to achieve this long-standing goal. Here, we develop another such method, which uses a much more convenient basis of momentum-symmetrized Gaussians. Despite being non-orthogonal, symmetrized Gaussians are collectively local, allowing for effective phase space truncation. A dimension-independent code for computing energy eigenstates of both coupled and uncoupled systems has been created, exploiting massively parallel algorithms. Results are presented for model isotropic uncoupled harmonic oscillators and coupled anharmonic oscillators up to 27 dimensions. These are compared with the previous weylet calculations (uncoupled harmonic oscillators up to 15 dimensions), and found to be essentially just as efficient. Coupled system results are also compared to corresponding exact results obtained using a harmonic oscillator basis, and also to approximate results obtained using first-order perturbation theory up to the maximum dimensionality for which the latter may be feasibly obtained (four dimensions).

  7. Effects of guest atomic species on the lattice thermal conductivity of type-I silicon clathrate studied via classical molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Tomohisa, E-mail: kumagai@criepi.denken.or.jp; Nakamura, Kaoru; Yamada, Susumu; Ohnuma, Toshiharu [Materials Science Research Laboratory, Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196 (Japan)

    2016-08-14

    The effects of guest atomic species in Si clathrates on the lattice thermal conductivity were studied using classical molecular dynamics calculations. The interaction between a host atom and a guest atom was described by the Morse potential function while that between host atoms was described by the Tersoff potential. The parameters of the potentials were newly determined for this study such that the potential curves obtained from first-principles calculations for the insertion of a guest atom into a Si cage were successfully reproduced. The lattice thermal conductivities were calculated by using the Green-Kubo method. The experimental lattice thermal conductivity of Ba{sub 8}Ga{sub 16}Si{sub 30} can be successfully reproduced using the method. As a result, the lattice thermal conductivities of type-I Si clathrates, M{sub 8}Si{sub 46} (M = Na, Mg, K, Ca Rb, Sr, Cs, or Ba), were obtained. It is found that the lattice thermal conductivities of M{sub 8}Si{sub 46}, where M is IIA elements (i.e., M = Mg, Ca, Sr, or Ba) tend to be lower than those of M{sub 8}Si{sub 46}, where M is IA elements (i.e., M = Na, K, Rb, or Cs). Those of {sup m}M{sub 8}Si{sub 46}, where m was artificially modified atomic weight were also obtained. The obtained lattice thermal conductivity can be regarded as a function of a characteristic frequency, f{sub c}. That indicates minimum values around f{sub c}=2-4 THz, which corresponds to the center of the frequencies of the transverse acoustic phonon modes associated with Si cages.

  8. 2D-HB-Network at the air-water interface: A structural and dynamical characterization by means of ab initio and classical molecular dynamics simulations

    Science.gov (United States)

    Pezzotti, Simone; Serva, Alessandra; Gaigeot, Marie-Pierre

    2018-05-01

    Following our previous work where the existence of a special 2-Dimensional H-Bond (2D-HB)-Network was revealed at the air-water interface [S. Pezzotti et al., J. Phys. Chem. Lett. 8, 3133 (2017)], we provide here a full structural and dynamical characterization of this specific arrangement by means of both Density Functional Theory based and Force Field based molecular dynamics simulations. We show in particular that water at the interface with air reconstructs to maximize H-Bonds formed between interfacial molecules, which leads to the formation of an extended and non-interrupted 2-Dimensional H-Bond structure involving on average ˜90% of water molecules at the interface. We also show that the existence of such an extended structure, composed of H-Bonds all oriented parallel to the surface, constrains the reorientional dynamics of water that is hence slower at the interface than in the bulk. The structure and dynamics of the 2D-HB-Network provide new elements to possibly rationalize several specific properties of the air-water interface, such as water surface tension, anisotropic reorientation of interfacial water under an external field, and proton hopping.

  9. Lattice dynamics of cubic Cs2NaLnX6 and CsNaLn1-xLn'xX6 elpasolites

    International Nuclear Information System (INIS)

    Acevedo, R.; Poblete, V.; Alzamora, R.; Venegas, R.; Navarro, G.; Henriquez, C.

    1999-01-01

    Crystal lattice dynamics of stoichiometric Cs 2 NaLnX 6 and nonstoichiometric CsNaLn 1-x Ln' x X 6 , 0.01 ≤ x ≤ 0.10, Ln and Ln' are trivalent positive lanthanide ions and X is chlorine or bromine, were studied.. Phonon dispersion relations were computed for similar compound, Cs 2 UBr 6 , and vibronic absorption spectra with reduced number of required input parameters are considered on the basis of proposed model. (author)

  10. Towards the confirmation of QCD on the lattice. Improved actions and algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Krieg, Stefan F.

    2009-07-01

    Lattice Quantum Chromodynamics has made tremendous progress over the last decade. New and improved simulation algorithms and lattice actions enable simulations of the theory with unprecedented accuracy. In the first part of this thesis, novel simulation algorithms for dynamical overlap fermions are presented. The generic Hybrid Monte Carlo algorithm is adapted to treat the singularity in the Molecular Dynamics force, to increase the tunneling rate between different topological sectors and to improve the overall volume scaling of the combined algorithm. With this new method, simulations with dynamical overlap fermions can reach smaller lattice spacings, larger volumes, smaller quark masses, and therefore higher precision than had previously been possible. The second part of this thesis is focused on a large scale simulation aiming to compute the light hadron mass spectrum. This simulation is based on a tree-level Symanzik improved gauge and tree-level improved stout-smeared Wilson clover action. The efficiency of the combination of this action and the improved simulation algorithms used allows to completely control all systematic errors. Therefore, this simulation provides a highly accurate ab initio calculation of the masses of the light hadrons, such as the proton, responsible for 95% of the mass of the visible universe, and confirms Lattice QCD in the light hadron sector. (orig.)

  11. Towards the confirmation of QCD on the lattice. Improved actions and algorithms

    International Nuclear Information System (INIS)

    Krieg, Stefan F.

    2009-01-01

    Lattice Quantum Chromodynamics has made tremendous progress over the last decade. New and improved simulation algorithms and lattice actions enable simulations of the theory with unprecedented accuracy. In the first part of this thesis, novel simulation algorithms for dynamical overlap fermions are presented. The generic Hybrid Monte Carlo algorithm is adapted to treat the singularity in the Molecular Dynamics force, to increase the tunneling rate between different topological sectors and to improve the overall volume scaling of the combined algorithm. With this new method, simulations with dynamical overlap fermions can reach smaller lattice spacings, larger volumes, smaller quark masses, and therefore higher precision than had previously been possible. The second part of this thesis is focused on a large scale simulation aiming to compute the light hadron mass spectrum. This simulation is based on a tree-level Symanzik improved gauge and tree-level improved stout-smeared Wilson clover action. The efficiency of the combination of this action and the improved simulation algorithms used allows to completely control all systematic errors. Therefore, this simulation provides a highly accurate ab initio calculation of the masses of the light hadrons, such as the proton, responsible for 95% of the mass of the visible universe, and confirms Lattice QCD in the light hadron sector. (orig.)

  12. Computation of transitional flow past a circular cylinder using multiblock lattice Boltzmann method with a dynamic subgrid scale model

    International Nuclear Information System (INIS)

    Premnath, Kannan N; Pattison, Martin J; Banerjee, Sanjoy

    2013-01-01

    Lattice Boltzmann method (LBM) is a kinetic based numerical scheme for the simulation of fluid flow. While the approach has attracted considerable attention during the last two decades, there is a need for systematic investigation of its applicability for complex canonical turbulent flow problems of engineering interest, where the nature of the numerical properties of the underlying scheme plays an important role for their accurate solution. In this paper, we discuss and evaluate a LBM based on a multiblock approach for efficient large eddy simulation of three-dimensional external flow past a circular cylinder in the transitional regime characterized by the presence of multiple scales. For enhanced numerical stability at higher Reynolds numbers, a multiple relaxation time formulation is considered. The effect of subgrid scales is represented by means of a Smagorinsky eddy-viscosity model, where the model coefficient is computed locally by means of a dynamic procedure, providing better representation of flow physics with reduced empiricism. Simulations are performed for a Reynolds number of 3900 based on the free stream velocity and cylinder diameter for which prior data is available for comparison. The presence of laminar boundary layer which separates into a pair of shear layers that evolve into turbulent wakes impose particular challenge for numerical methods for this condition. The relatively low numerical dissipation introduced by the inherently parallel and second-order accurate LBM is an important computational asset in this regard. Computations using five different grid levels, where the various blocks are suitably aligned to resolve multiscale flow features show that the structure of the recirculation region is well reproduced and the statistics of the mean flow and turbulent fluctuations are in satisfactory agreement with prior data. (paper)

  13. Computation of transitional flow past a circular cylinder using multiblock lattice Boltzmann method with a dynamic subgrid scale model

    Energy Technology Data Exchange (ETDEWEB)

    Premnath, Kannan N [Department of Mechanical Engineering, University of Colorado Denver, 1200 Larimer Street, Denver, CO 80217 (United States); Pattison, Martin J [HyPerComp Inc., 2629 Townsgate Road, Suite 105, Westlake Village, CA 91361 (United States); Banerjee, Sanjoy, E-mail: kannan.premnath@ucdenver.edu, E-mail: kannan.np@gmail.com [Department of Chemical Engineering, City College of New York, City University of New York, New York, NY 10031 (United States)

    2013-10-15

    Lattice Boltzmann method (LBM) is a kinetic based numerical scheme for the simulation of fluid flow. While the approach has attracted considerable attention during the last two decades, there is a need for systematic investigation of its applicability for complex canonical turbulent flow problems of engineering interest, where the nature of the numerical properties of the underlying scheme plays an important role for their accurate solution. In this paper, we discuss and evaluate a LBM based on a multiblock approach for efficient large eddy simulation of three-dimensional external flow past a circular cylinder in the transitional regime characterized by the presence of multiple scales. For enhanced numerical stability at higher Reynolds numbers, a multiple relaxation time formulation is considered. The effect of subgrid scales is represented by means of a Smagorinsky eddy-viscosity model, where the model coefficient is computed locally by means of a dynamic procedure, providing better representation of flow physics with reduced empiricism. Simulations are performed for a Reynolds number of 3900 based on the free stream velocity and cylinder diameter for which prior data is available for comparison. The presence of laminar boundary layer which separates into a pair of shear layers that evolve into turbulent wakes impose particular challenge for numerical methods for this condition. The relatively low numerical dissipation introduced by the inherently parallel and second-order accurate LBM is an important computational asset in this regard. Computations using five different grid levels, where the various blocks are suitably aligned to resolve multiscale flow features show that the structure of the recirculation region is well reproduced and the statistics of the mean flow and turbulent fluctuations are in satisfactory agreement with prior data. (paper)

  14. Electronic structure, lattice dynamics, and optical properties of a novel van der Waals semiconductor heterostructure: InGaSe2

    Science.gov (United States)

    Ibarra-Hernández, Wilfredo; Elsayed, Hannan; Romero, Aldo H.; Bautista-Hernández, Alejandro; Olguín, Daniel; Cantarero, Andrés

    2017-07-01

    There is a growing interest in the property dependence of transition metal dichalcogenides as a function of the number of layers and formation of heterostructures. Depending on the stacking, doping, edge effects, and interlayer distance, the properties can be modified, which opens the door to novel applications that require a detailed understanding of the atomic mechanisms responsible for those changes. In this work, we analyze the electronic properties and lattice dynamics of a heterostructure constructed by simultaneously stacking InSe layers and GaSe layers bounded by van der Waals forces. We have assumed the same space group of GaSe, P 6 ¯m 2 as it becomes the lower energy configuration for other considered stackings. The structural, vibrational, and optical properties of this layered compound have been calculated using density functional theory. The structure is shown to be energetically, thermally, and elastically stable, which indicates its possible chemical synthesis. A correlation of the theoretical physical properties with respect to its parent compounds is extensively discussed. One of the most interesting properties is the low thermal conductivity, which indicates its potential use in thermolectric applications. Additionally, we discuss the possibility of using electronic gap engineering methods, which can help us to tune the optical emission in a variable range close to that used in the field of biological systems (NIR). Finally, the importance of considering properly van der Waals dispersion in layered materials has been emphasized as included in the exchange correlation functional. As for the presence of atoms with important spin-orbit coupling, relativistic corrections have been included.

  15. Lattice modes of hexamethylbenzene studied by inelastic neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Stride, J.A. [Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France)], E-mail: stride@ill.fr; Adams, J.M. [Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); Johnson, M.R. [Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France)

    2005-10-31

    The combination of inelastic neutron scattering and detailed ab initio calculations has been used to arrive at accurate assignments of the low energy lattice mode region of hexamethylbenzene (HMB) across the low temperature first order phase transition at 117.5 K. This was also extended well into the mid-infrared spectral region and a good agreement was found between observed and calculated frequencies, which were also confirmed with isotopically substituted d-HMB. At low temperature, the lattice region is dominated by the methyl group torsions around 15 and 20 meV, which soften dramatically on passing into the higher temperature phase. The lowest energy methyl torsion corresponds to a coherent gear wheel motion, observed here for the first time and predicted in previous numerical studies of HMB. The three acoustic phonons lie to lower energy, centered around 6-7 meV, whilst the three optic phonons are very close in energy to the lowest methyl torsions. Other assignments are found to be in accord with literature values and so an unambiguous assignment of all spectral modes has been obtained for the first time. We conclude that due to the behaviour of the lattice modes either side of the phase transition, its nature is predominantly that of a thermally activated dynamic order-disorder transition.

  16. Lattice modes of hexamethylbenzene studied by inelastic neutron scattering

    International Nuclear Information System (INIS)

    Stride, J.A.; Adams, J.M.; Johnson, M.R.

    2005-01-01

    The combination of inelastic neutron scattering and detailed ab initio calculations has been used to arrive at accurate assignments of the low energy lattice mode region of hexamethylbenzene (HMB) across the low temperature first order phase transition at 117.5 K. This was also extended well into the mid-infrared spectral region and a good agreement was found between observed and calculated frequencies, which were also confirmed with isotopically substituted d-HMB. At low temperature, the lattice region is dominated by the methyl group torsions around 15 and 20 meV, which soften dramatically on passing into the higher temperature phase. The lowest energy methyl torsion corresponds to a coherent gear wheel motion, observed here for the first time and predicted in previous numerical studies of HMB. The three acoustic phonons lie to lower energy, centered around 6-7 meV, whilst the three optic phonons are very close in energy to the lowest methyl torsions. Other assignments are found to be in accord with literature values and so an unambiguous assignment of all spectral modes has been obtained for the first time. We conclude that due to the behaviour of the lattice modes either side of the phase transition, its nature is predominantly that of a thermally activated dynamic order-disorder transition

  17. Inelastic neutron scattering and lattice dynamics of ZrO2, Y2O3 and ThSiO4

    International Nuclear Information System (INIS)

    Bose, Preyoshi P.; Mittal, R.; Choudhury, N.; Chaplot, S.L.

    2008-01-01

    Zirconia (ZrO 2 ), yttria (Y 2 O 3 ) and thorite (ThSiO 4 ) are ceramic materials used for a wide range of industrial applications. The dynamical properties of these materials are of interest as they exhibit numerous interesting phase transitions at high temperature and pressure. Using a combination of inelastic neutron scattering and theoretical lattice dynamics we have studied the phonon spectra and thermodynamic properties of these compounds. The experimental data validate the theoretical model, while the model enables microscopic interpretations of the observed data. The calculated thermodynamic properties are in good agreement with the experimental data. (author)

  18. Lattice dynamical and thermodynamical properties of ReB2, RuB2, and OsB2 compounds in the ReB2 structure

    International Nuclear Information System (INIS)

    Deligoz, E.; Colakoglu, K.; Ciftci, Y. O.

    2012-01-01

    Structural and lattice dynamical properties of ReB 2 , RuB 2 , and OsB 2 in the ReB 2 structure are studied in the framework of density functional theory within the generalized gradient approximation. The present results show that these compounds are dynamically stable for the considered structure. The temperature-dependent behaviors of thermodynamical properties such as internal energy, free energy, entropy, and heat capacity are also presented. The obtained results are in good agreement with the available experimental and theoretical data

  19. Speed-up of ab initio hybrid Monte Carlo and ab initio path integral hybrid Monte Carlo simulations by using an auxiliary potential energy surface

    International Nuclear Information System (INIS)

    Nakayama, Akira; Taketsugu, Tetsuya; Shiga, Motoyuki

    2009-01-01

    Efficiency of the ab initio hybrid Monte Carlo and ab initio path integral hybrid Monte Carlo methods is enhanced by employing an auxiliary potential energy surface that is used to update the system configuration via molecular dynamics scheme. As a simple illustration of this method, a dual-level approach is introduced where potential energy gradients are evaluated by computationally less expensive ab initio electronic structure methods. (author)

  20. Heterogeneous nucleation of solid Al from the melt by TiB2 and Al3Ti: An ab initio molecular dynamics study

    KAUST Repository

    Wang, Junsheng

    2010-11-16

    The nucleation of solid Al from the melt by TiB2 is well established and is believed to involve the formation of Al3Ti. Since the atomic-scale mechanisms involved are not fully understood, we look to computer simulation to provide insight. As there is an absence of suitable potentials for all of this complex system we have performed large-scale density-functional-theory molecular dynamics simulations of the nucleation of solid Al from the melt on TiB2 and Al3Ti substrates at undercoolings of around 2 K. Using periodic boundary conditions, we find limited ordering and no signs of incipient growth in the liquid Al close to the B-terminated surface of TiB2. By contrast, we see fcc-like ordering near the Ti-terminated surface, with growth being frustrated by the lattice mismatch between bulk Al and the TiB2 substrate. The Al interatomic distances at the Ti-terminated surface are similar to distances found in Al3Ti; we suggest that the layer encasing TiB2 observed experimentally may be strained Al on a Ti-terminated surface rather than Al3Ti. For the Al3Ti substrate, fcc-like structures are observed on both sides which extend rapidly into the melt. Periodic boundaries introduce unphysical stresses which we removed by introducing a vacuum region to separate the liquid from the solid at one of the interfaces. We see ordering in the Al on both the B-terminated (0001) surface of TiB2, and on Al3Ti(112), with the ordering able to be stronger on the Al3Ti substrate. However, we cannot draw strong conclusions as these simulations need more time to allow long-ranged fluctuations in the liquid Al to dampen out. The huge computational cost restricted the range and duration of simulations that was possible.