International Nuclear Information System (INIS)
Thompson, K.; Martinez, T.J.
1999-01-01
We present a new approach to first-principles molecular dynamics that combines a general and flexible interpolation method with ab initio evaluation of the potential energy surface. This hybrid approach extends significantly the domain of applicability of ab initio molecular dynamics. Use of interpolation significantly reduces the computational effort associated with the dynamics over most of the time scale of interest, while regions where potential energy surfaces are difficult to interpolate, for example near conical intersections, are treated by direct solution of the electronic Schroedinger equation during the dynamics. We demonstrate the concept through application to the nonadiabatic dynamics of collisional electronic quenching of Li(2p). Full configuration interaction is used to describe the wave functions of the ground and excited electronic states. The hybrid approach agrees well with full ab initio multiple spawning dynamics, while being more than an order of magnitude faster. copyright 1999 American Institute of Physics
Large-scale ab initio configuration interaction calculations for light nuclei
International Nuclear Information System (INIS)
Maris, Pieter; Potter, Hugh; Vary, James P; Aktulga, H Metin; Ng, Esmond G; Yang Chao; Caprio, Mark A; Çatalyürek, Ümit V; Saule, Erik; Oryspayev, Dossay; Sosonkina, Masha; Zhou Zheng
2012-01-01
In ab-initio Configuration Interaction calculations, the nuclear wavefunction is expanded in Slater determinants of single-nucleon wavefunctions and the many-body Schrodinger equation becomes a large sparse matrix problem. The challenge is to reach numerical convergence to within quantified numerical uncertainties for physical observables using finite truncations of the infinite-dimensional basis space. We discuss strategies for constructing and solving the resulting large sparse matrix eigenvalue problems on current multicore computer architectures. Several of these strategies have been implemented in the code MFDn, a hybrid MPI/OpenMP Fortran code for ab-initio nuclear structure calculations that can scale to 100,000 cores and more. Finally, we will conclude with some recent results for 12 C including emerging collective phenomena such as rotational band structures using SRG evolved chiral N3LO interactions.
International Nuclear Information System (INIS)
Fink, R.F.; Pfister, J.; Schneider, A.; Zhao, H.; Engels, B.
2008-01-01
We present new, generally applicable protocols for the computation of the coupling parameter, J, of excitation energy transfer with quantum chemical ab initio methods. The protocols allow to select the degree of approximation and computational demand such that they are applicable for realistic systems and still allow to control the quality of the approach. We demonstrate the capabilities of the different protocols using the CO dimer as a first example. Correlation effects are found to scale J by a factor of about 0.7 which is in good agreement to earlier results obtained for the ethene dimer. The various levels of the protocol allow to assess the influence of ionic configurations and the polarisation within the dimer. Further, the interplay between the Foerster and Dexter contribution to J is investigated. The computations also show error compensation within approximations that are widely used for extended systems as in particular the transition density cube method
Energy Technology Data Exchange (ETDEWEB)
Fink, R.F. [University of Wuerzburg, Institute of Organic Chemistry, Am Hubland, D-97074 Wuerzburg (Germany)], E-mail: reinhold.fink@rub.de; Pfister, J.; Schneider, A.; Zhao, H.; Engels, B. [University of Wuerzburg, Institute of Organic Chemistry, Am Hubland, D-97074 Wuerzburg (Germany)
2008-01-29
We present new, generally applicable protocols for the computation of the coupling parameter, J, of excitation energy transfer with quantum chemical ab initio methods. The protocols allow to select the degree of approximation and computational demand such that they are applicable for realistic systems and still allow to control the quality of the approach. We demonstrate the capabilities of the different protocols using the CO dimer as a first example. Correlation effects are found to scale J by a factor of about 0.7 which is in good agreement to earlier results obtained for the ethene dimer. The various levels of the protocol allow to assess the influence of ionic configurations and the polarisation within the dimer. Further, the interplay between the Foerster and Dexter contribution to J is investigated. The computations also show error compensation within approximations that are widely used for extended systems as in particular the transition density cube method.
International Nuclear Information System (INIS)
Palmer, Michael H.; Ridley, Trevor; Hoffmann, Søren Vrønning; Jones, Nykola C.; Coreno, Marcello; Simone, Monica de; Grazioli, Cesare; Biczysko, Malgorzata; Baiardi, Alberto
2015-01-01
New valence electron photoelectron spectra of iodobenzene obtained using synchrotron radiation have been recorded. Ionization energies (IEs) determined using multi-configuration SCF calculation (MCSCF) procedures confirmed the adiabatic IE order as: X 2 B 1
Interpretation of the photoelectron, ultraviolet, and vacuum ultraviolet photoabsorption spectra of bromobenzene by ab initio configuration interaction and DFT computations
Energy Technology Data Exchange (ETDEWEB)
Palmer, Michael H., E-mail: m.h.palmer@ed.ac.uk; Ridley, Trevor, E-mail: t.ridley@ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it, E-mail: kipeters@wsu.edu [School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, Scotland (United Kingdom); Hoffmann, Søren Vrønning, E-mail: t.ridley@ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it, E-mail: kipeters@wsu.edu; Jones, Nykola C., E-mail: t.ridley@ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it, E-mail: kipeters@wsu.edu [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Coreno, Marcello, E-mail: t.ridley@ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it, E-mail: kipeters@wsu.edu [CNR-IMIP, Montelibretti, c/o Laboratorio Elettra, Trieste (Italy); Simone, Monica de, E-mail: t.ridley@ed.ac.uk, E-mail: vronning@phys.au.dk, E-mail: nykj@phys.au.dk, E-mail: marcello.coreno@elettra.eu, E-mail: desimone@iom.cnr.it, E-mail: malgorzata.biczysko@sns.it, E-mail: kipeters@wsu.edu [CNR-IOM Laboratorio TASC, Trieste (Italy); Grazioli, Cesare [CNR-IOM Laboratorio TASC, Trieste (Italy); Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste (Italy); Zhang, Teng [Department of Physics and Astronomy, University of Uppsala, Uppsala (Sweden); and others
2015-10-28
New photoelectron, ultraviolet (UV), and vacuum UV (VUV) spectra have been obtained for bromobenzene by synchrotron study with higher sensitivity and resolution than previous work. This, together with use of ab initio calculations with both configuration interaction and time dependent density functional theoretical methods, has led to major advances in interpretation. The VUV spectrum has led to identification of a considerable number of Rydberg states for the first time. The Franck-Condon (FC) analyses including both hot and cold bands lead to identification of the vibrational structure of both ionic and electronically excited states including two Rydberg states. The UV onset has been interpreted in some detail, and an interpretation based on the superposition of FC and Herzberg-Teller contributions has been performed. In a similar way, the 6 eV absorption band which is poorly resolved is analysed in terms of the presence of two ππ* states of {sup 1}A{sub 1} (higher oscillator strength) and {sup 1}B{sub 2} (lower oscillator strength) symmetries, respectively. The detailed analysis of the vibrational structure of the 2{sup 2}B{sub 1} ionic state is particularly challenging, and the best interpretation is based on equation-of-motion-coupled cluster with singles and doubles computations. A number of equilibrium structures of the ionic and singlet excited states show that the molecular structure is less subject to variation than corresponding studies for iodobenzene. The equilibrium structures of the 3b{sub 1}3s and 6b{sub 2}3s (valence shell numbering) Rydberg states have been obtained and compared with the corresponding ionic limit structures.
DEFF Research Database (Denmark)
Palmer, Michael H.; Hoffmann, Søren Vrønning; Jones, Nykola C.
2011-01-01
The Rydberg states in the vacuum ultraviolet photoabsorption spectrum of 1,2,3-triazole have been measured and analyzed with the aid of comparison to the UV valence photoelectron ionizations and the results of ab initio configuration interaction (CI) calculations. Calculated electronic ionization...... and excitation energies for singlet, triplet valence, and Rydberg states were obtained using multireference multiroot CI procedures with an aug-cc-pVTZ [5s3p3d1f] basis set and a set of Rydberg [4s3p3d3f] functions. Adiabatic excitation energies obtained for several electronic states using coupled...... are the excitations consistent with an f-series....
DEFF Research Database (Denmark)
Palmer, Michael H.; Camp, Philip J.; Hoffmann, Søren Vrønning
2012-01-01
The first vacuum ultraviolet absorption spectrum of a 1,2,4-triazole has been obtained and analyzed in detail, with assistance from both an enhanced UV photoelectron spectroscopic study and ab initio multi-reference multi-root configuration interaction procedures. For both 1H- and 1-methyl-1,2...
International Nuclear Information System (INIS)
Honjou, Nobumitsu
2006-01-01
The energetics and electronic structure of the 1-5 2 Σ + and 1-3 2 Π states of CS + at and around the equilibrium internuclear distance R e for the CS X 1 Σ + state are studied by carrying out ab initio configuration interaction (CI) calculations. The spectroscopic constants of T e , ω e , and R e for the 1-4 2 Σ + , 1 2 Π, and 3 2 Π states are evaluated from the CI potential energy curves (PECs). The avoided crossing between the 2-3 2 Σ + PECs causes the 3 2 Σ + minimum and explains the observed high intensities for the photoionization from the CS X 1 Σ + state to both the 2-3 2 Σ + states. The avoided crossing between the 3-4 2 Σ + PECs produces the 3 2 Σ + maximum and 4 2 Σ + well minimum. The avoided crossing between the 2-3 2 Π PECs results in the 3 2 Π minimum and a small minimum spacing (0.14 eV) between the PECs
Kramers Pairs in configuration interaction
DEFF Research Database (Denmark)
Avery, John Scales; Avery, James Emil
2003-01-01
The theory of symmetry-preserving Kramers pair creation operators is reviewed and formulas for applying these operators to configuration interaction calculations are derived. A new and more general type of symmetry-preserving pair creation operator is proposed and shown to commute with the total ...
Industrial requirements for interactive product configurators
DEFF Research Database (Denmark)
Queva, Matthieu Stéphane Benoit; Probst, Christian W.; Vikkelsøe, Per
2009-01-01
The demand for highly customized products at low cost is driving the industry towards Mass Customization. Interactive product configurators play an essential role in this new trend, and must be able to support more and more complex features. The purpose of this paper is, firstly, to identify...... requirements for modern interactive configurators. Existing modeling and solving technologies for configuration are then reviewed and their limitations discussed. Finally, a proposition for a future product configuration system is described....
Interactive Cost Configuration Over Decision Diagrams
DEFF Research Database (Denmark)
Andersen, Henrik Reif; Hadzic, Tarik; Pisinger, David
2010-01-01
interaction online. In particular,binary decision diagrams (BDDs) have been successfully used as a compilation target for product and service configuration. In this paper we discuss how to extend BDD-based configuration to scenarios involving cost functions which express user preferences. We first show...... that an efficient, robust and easy to implement extension is possible if the cost function is additive, and feasible solutions are represented using multi-valued decision diagrams (MDDs). We also discuss the effect on MDD size if the cost function is non-additive or if it is encoded explicitly into MDD. We...... then discuss interactive configuration in the presence of multiple cost functions. We prove that even in its simplest form, multiple-cost configuration is NP-hard in the input MDD. However, for solving two-cost configuration we develop a pseudo-polynomial scheme and a fully polynomial approximation scheme...
Co-Configuration in Interaction Work
DEFF Research Database (Denmark)
Fischer, Louise Harder; Pries-Heje, Lene
2015-01-01
How to increase knowledge workers productivity is still a puzzle. While knowledge work has become increasingly virtual, collaborative and interactive, we still witness challenges in the area of productivity. We challenge the widespread perception of the causal relationship between high autonomy...... and high productivity in knowledge work and the fact that configuration and standardization for improving productivity is logical impossible. With a hermeneutical approach we describe and interpret “what is going on” in two different context of interaction knowledge work. Findings suggests that knowledge...... workers often feel caught in counter-productive practices with technology, due to the autonomous use of Interaction-IT and the challenge of configuring work. We witness different behaviors related to “the autonomy paradox” and we see something interesting happening, when introducing Interaction IT. While...
Pushing configuration-interaction to the limit
DEFF Research Database (Denmark)
Vogiatzis, Konstantinos D.; Ma, Dongxia; Olsen, Jeppe
2017-01-01
A new large-scale parallel multiconfigurational self-consistent field (MCSCF) implementation in the open-source NWChem computational chemistry code is presented. The generalized active space (GAS) approach is used to partition large configuration interaction (CI) vectors and generate a sufficient...
Improving the Performance of Interactive Configuration with Regular String Constraints
DEFF Research Database (Denmark)
Hansen, Esben Rune; Tiedemann, Peter
2008-01-01
A generalization of the problem of interactive configuration has previously been presented in [1]. This generalization utilized decomposition to extend the standard finite domain interactive configuration framework to deal with unbounded string variables and provided features such as prefix auto...
Ab Initio Calculation of Hyperfine Interaction Parameters: Recent Evolutions, Recent Examples
International Nuclear Information System (INIS)
Cottenier, Stefaan; Vanhoof, Veerle; Torumba, Doru; Bellini, Valerio; Cakmak, Mehmet; Rots, Michel
2004-01-01
For some years already, ab initio calculations based on Density Functional Theory (DFT) belong to the toolbox of the field of hyperfine interaction studies. In this paper, the standard ab initio approach is schematically sketched. New features, methods and possibilities that broke through during the past few years are listed, and their relation to the standard approach is explained. All this is illustrated by some highlights of recent ab initio work done by the Nuclear Condensed Matter Group at the K.U.Leuven.
Amino acids interacting with defected carbon nanotubes: ab initio calculations
Directory of Open Access Journals (Sweden)
M. Darvish Ganji
2016-09-01
Full Text Available The adsorption of a number of amino acids on a defected single-walled carbon nanotube (SWCNT is investigated by using the density-functional theory (DFT calculations. The adsorption energies and equilibrium distances are calculated for various configurations such as amino acid attaching to defect sites heptagon, pentagon and hexagon in defective tube and also for several molecular orientations with respect to the nanotube surface. The results showed that amino acids prefer to be physisorbed on the outer surface of the defected nanotube with different interaction strength following the hierarchy histidine > glycine > phenylalanine > cysteine. Comparing these findings with those obtained for perfect SWCNTs reveals that the adsorption energy of the amino acids increase for adsorption onto defected CNTs. The adsorption nature has also been evaluated by means of electronics structures analysis within the Mulliken population and DOS spectra for the interacting entities.
Ab initio calculation of molecular energies including parity violating interactions
International Nuclear Information System (INIS)
Bakasov, A.; Ha Taekyu; Quack, M.
1995-01-01
A new approach, RHF-CIS, based on the perturbation of the ground state RHF wave function by the CIS excitations, has been implemented for evaluation of energy of parity violating interaction in molecules, E pv . The earlier approach, RHF-SDE, was based on the perturbation of the RHF ground states by the single-determinant ''excitations'' (SDE). The results obtained show the dramatic difference between E pv values in the RHF-CIS framework and those in the RHF-SDE framework: the E pv values of the RHF-CIS formalism are more than one order of magnitude greater compared to the RHF-SDE formalism as well as the corresponding tensor components. The maximal total value obtained for hydrogen peroxide in the RHF-CIS framework is 3.661 X 10 -19 E H (DZ ** basis set) while the maximal E pv value for the RHF-SDE formalism is just 3.635 X 10 -20 E H (TZ basis set). It is remarkable that both in the RFH-CIS and in the RHF-SDE approaches the diagonal tensor components of E pv strictly follow the geometry of a molecule and are always different from zero at chiral conformations. The zeros of the total E pv at chiral geometries are now found to be the results of the interplay between the diagonal tensor components values. We have carried out exhaustive analysis of the RHF-SDE formalism and found that it is not sufficiently accurate for studies of E pv . To this end, we have completely reproduced the previous work, which has been done in the RHF-SDE frame-work, and developed it further, studying how the RHF-SDE results vary when changing size and quality of basis sets. This last resource does not save the RHF-SDE formalism for evaluations of E pv from the general failure. Packages of FORTRAN routines called ENWEAK/RHFSDE-93 and ENWEAK/RHFCIS-94 have been developed which run on top of an ab initio MO package. We used 6-31G and 6-31G**, DZ and DZ**, TZ and TZ**, and (10s, 6p,**) basis sets. We will discuss the importance of the present results for possible measurement of the parity
Energy Technology Data Exchange (ETDEWEB)
Schoof, Tim
2017-03-08
The reliable quantum mechanical description of thermodynamic properties of fermionic many-body systems at high densities and strong degeneracy is of increasing interest due to recent experimental progress in generating systems that exhibit a non-trivial interplay of quantum, temperature, and coupling effects. While quantum Monte Carlo methods are among the most accurate approaches for the description of the ground state, finite-temperature path integral Monte Carlo (PIMC) simulations cannot correctly describe weakly to moderately coupled and strongly degenerate Fermi systems due to the so-called fermion sign problem. By switching from the coordinate representation to a basis of anti-symmetric Slater-determinants, the Configuration Path Integral Monte Carlo (CPIMC) approach greatly reduces the sign problem and allows for the exact computation of thermodynamic properties in this regime. During this work, the CPIMC algorithm was greatly improved in terms of efficiency and accessible observables. The first successful implementation of the diagrammatic worm algorithm for a general Hamiltonian in Fock space with arbitrary pair interactions gives direct access to the Matsubara Green function. This allows for the reconstruction of dynamic properties from simulations in thermodynamic equilibrium and significantly reduces the statistical variance of derived estimators, such as the one-particle density. The strongly improved MC sampling, the much more efficient calculation of update probabilities, and the successful parallelization to thousands of CPU cores, which have been achieved as part of the new implementation, are essential for the subsequent application of the method to much larger systems than in previous works. This thesis demonstrates the capabilities of the CPIMC approach for a model system of Coulomb interacting fermions in a two-dimensional harmonic trap. The correctness of the CPIMC implementation is verified by rigorous comparisons with an exact
Ab initio study of Cr interactions with point defects in bcc Fe
International Nuclear Information System (INIS)
Olsson, P.; Domain, Ch.; Wallenius, J.
2008-01-01
Full text of publication follows. Ferritic martensitic steels are candidate structural materials for fast neutron reactors, and in particular high-Cr reduced-activation steels. In Fe-Cr alloys, Cr plays a major role in the radiation-induced evolution of the mechanical properties. Using ab initio calculations based on density functional theory, the properties of Cr in α-Fe have been investigated. The intrinsic point defect formation energies were found to be larger in model bcc Cr as compared to those in ferromagnetic bcc Fe. The interactions of Cr with point defects (vacancy and self interstitials) have been characterised. Single Cr atoms interact weakly with vacancies but significantly with self-interstitial atoms. Mixed interstitials of any interstitial symmetry are bound. Configurations where two Cr atoms are in nearest neighbour position are generally unfavourable in bcc Fe except when they are a part of a interstitial complex. Mixed interstitials do not have as strong directional stability as pure Fe interstitials have. The effects on the results using the atom description scheme of either the ultrasoft pseudo-potential (USPP) or the projector augmented wave (PAW) formalisms are connected to the differences in local magnetic moments that the two methods predict. As expected for the Fe-Cr system, the results obtained using the PAW method are more reliable than the ones obtained with USPP. (authors)
Spin--orbit configuration-interaction study of valence and Rydberg states of LiBe
International Nuclear Information System (INIS)
Marino, M.M.; Ermler, W.C.; Kern, C.W.; Bondybey, V.E.
1992-01-01
Ab initio spin--orbit full configuration-interaction calculations in the context of relativistic effective core potentials are reported for the weakly bound metal dimer LiBe, a three-valence-electron system. The effects of basis set on the energies of valence and Rydberg states of the cluster are discussed, as are the effects of configuration space selection on the energy of the latter states. Results at the dissociative limit are compared to the experimental atomic spectra. Potential-energy curves and spectroscopic constants are presented for the ground state and fourteen excited states, which includes the Li and Be 2p valence states, the Li 3s, 3p, 3d, and 4s Rydberg states, as well as three low-lying states of the molecular cation
Ab initio calculation atomics ground state wave function for interactions Ion- Atom
International Nuclear Information System (INIS)
Shojaee, F.; Bolori zadeh, M. A.
2007-01-01
Ab initio calculation atomics ground state wave function for interactions Ion- Atom Atomic wave function expressed in a Slater - type basis obtained within Roothaan- Hartree - Fock for the ground state of the atoms He through B. The total energy is given for each atom.
Collective rotation from ab initio theory
International Nuclear Information System (INIS)
Caprio, M.A.; Maris, P.; Vary, J.P.; Smith, R.
2015-01-01
Through ab initio approaches in nuclear theory, we may now seek to quantitatively understand the wealth of nuclear collective phenomena starting from the underlying internucleon interactions. No-core configuration interaction (NCCI) calculations for p-shell nuclei give rise to rotational bands, as evidenced by rotational patterns for excitation energies, electromagnetic moments and electromagnetic transitions. In this review, NCCI calculations of 7–9 Be are used to illustrate and explore ab initio rotational structure, and the resulting predictions for rotational band properties are compared with experiment. We highlight the robustness of ab initio rotational predictions across different choices for the internucleon interaction. (author)
International Nuclear Information System (INIS)
Matsushita, Y.; Murakawa, T.; Shimamura, K.; Oishi, M.; Ohyama, T.; Kurita, N.
2015-01-01
The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA
Energy Technology Data Exchange (ETDEWEB)
Matsushita, Y., E-mail: kurita@cs.tut.ac.jp; Murakawa, T., E-mail: kurita@cs.tut.ac.jp; Shimamura, K., E-mail: kurita@cs.tut.ac.jp; Oishi, M., E-mail: kurita@cs.tut.ac.jp; Ohyama, T., E-mail: kurita@cs.tut.ac.jp; Kurita, N., E-mail: kurita@cs.tut.ac.jp [Department of Computer Science and Engineering, Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi, 441-8580 (Japan)
2015-02-27
The catabolite activator protein (CAP) is one of the regulatory proteins controlling the transcription mechanism of gene. Biochemical experiments elucidated that the complex of CAP with cyclic AMP (cAMP) is indispensable for controlling the mechanism, while previous molecular simulations for the monomer of CAP+cAMP complex revealed the specific interactions between CAP and cAMP. However, the effect of cAMP-binding to CAP on the specific interactions between CAP and DNA is not elucidated at atomic and electronic levels. We here considered the ternary complex of CAP, cAMP and DNA in solvating water molecules and investigated the specific interactions between them at atomic and electronic levels using ab initio molecular simulations based on classical molecular dynamics and ab initio fragment molecular orbital methods. The results highlight the important amino acid residues of CAP for the interactions between CAP and cAMP and between CAP and DNA.
The interaction of MnH(X 7Sigma+) with He: ab initio potential energy surface and bound states.
Turpin, Florence; Halvick, Philippe; Stoecklin, Thierry
2010-06-07
The potential energy surface of the ground state of the He-MnH(X (7)Sigma(+)) van der Waals complex is presented. Within the supermolecular approach of intermolecular energy calculations, a grid of ab initio points was computed at the multireference configuration interaction level using the aug-cc-pVQZ basis set for helium and hydrogen and the relativistic aug-cc-pVQZ-DK basis set for manganese. The potential energy surface was then fitted to a global analytical form which main features are discussed. As a first application of this potential energy surface, we present accurate calculations of bound energy levels of the (3)He-MnH and (4)He-MnH complexes.
The interaction of MnH(X 7Σ+) with He: Ab initio potential energy surface and bound states
Turpin, Florence; Halvick, Philippe; Stoecklin, Thierry
2010-06-01
The potential energy surface of the ground state of the He-MnH(X Σ7+) van der Waals complex is presented. Within the supermolecular approach of intermolecular energy calculations, a grid of ab initio points was computed at the multireference configuration interaction level using the aug-cc-pVQZ basis set for helium and hydrogen and the relativistic aug-cc-pVQZ-DK basis set for manganese. The potential energy surface was then fitted to a global analytical form which main features are discussed. As a first application of this potential energy surface, we present accurate calculations of bound energy levels of the H3e-MnH and H4e-MnH complexes.
Wang, Yi-Siang; Yin, Chih-Chien; Chao, Sheng D
2014-10-07
We perform an ab initio computational study of molecular complexes with the general formula CF3X-B that involve one trifluorohalomethane CF3X (X = Cl or Br) and one of a series of Lewis bases B in the gas phase. The Lewis bases are so chosen that they provide a range of electron-donating abilities for comparison. Based on the characteristics of their electron pairs, we consider the Lewis bases with a single n-pair (NH3 and PH3), two n-pairs (H2O and H2S), two n-pairs with an unsaturated bond (H2CO and H2CS), and a single π-pair (C2H4) and two π-pairs (C2H2). The aim is to systematically investigate the influence of the electron pair characteristics and the central atom substitution effects on the geometries and energetics of the formed complexes. The counterpoise-corrected supermolecule MP2 and coupled-cluster single double with perturbative triple [CCSD(T)] levels of theory have been employed, together with a series of basis sets up to aug-cc-pVTZ. The angular and radial configurations, the binding energies, and the electrostatic potentials of the stable complexes have been compared and discussed as the Lewis base varies. For those complexes where halogen bonding plays a significant role, the calculated geometries and energetics are consistent with the σ-hole model. Upon formation of stable complexes, the C-X bond lengths shorten, while the C-X vibrational frequencies increase, thus rendering blueshifting halogen bonds. The central atom substitution usually enlarges the intermolecular bond distances while it reduces the net charge transfers, thus weakening the bond strengths. The analysis based on the σ-hole model is grossly reliable but requires suitable modifications incorporating the central atom substitution effects, in particular, when interaction components other than electrostatic contributions are involved.
Scribano, Yohann; Lauvergnat, David M; Benoit, David M
2010-09-07
In this paper, we couple a numerical kinetic-energy operator approach to the direct-vibrational self-consistent field (VSCF)/vibrational configuration interaction (VCI) method for the calculation of vibrational anharmonic frequencies. By combining this with fast-VSCF, an efficient direct evaluation of the ab initio potential-energy surface (PES), we introduce a general formalism for the computation of vibrational bound states of molecular systems exhibiting large-amplitude motion such as methyl-group torsion. We validate our approach on an analytical two-dimensional model and apply it to the methanol molecule. We show that curvilinear coordinates lead to a significant improvement in the VSCF/VCI description of the torsional frequency in methanol, even for a simple two-mode coupling expansion of the PES. Moreover, we demonstrate that a curvilinear formulation of the fast-VSCF/VCI scheme improves its speed by a factor of two and its accuracy by a factor of 3.
Configuration interaction wave functions: A seniority number approach
International Nuclear Information System (INIS)
Alcoba, Diego R.; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E.; Oña, Ofelia B.
2014-01-01
This work deals with the configuration interaction method when an N-electron Hamiltonian is projected on Slater determinants which are classified according to their seniority number values. We study the spin features of the wave functions and the size of the matrices required to formulate states of any spin symmetry within this treatment. Correlation energies associated with the wave functions arising from the seniority-based configuration interaction procedure are determined for three types of molecular orbital basis: canonical molecular orbitals, natural orbitals, and the orbitals resulting from minimizing the expectation value of the N-electron seniority number operator. The performance of these bases is analyzed by means of numerical results obtained from selected N-electron systems of several spin symmetries. The comparison of the results highlights the efficiency of the molecular orbital basis which minimizes the mean value of the seniority number for a state, yielding energy values closer to those provided by the full configuration interaction procedure
Configuration interaction wave functions: A seniority number approach
Energy Technology Data Exchange (ETDEWEB)
Alcoba, Diego R. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Torre, Alicia; Lain, Luis, E-mail: qfplapel@lg.ehu.es [Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, E-48080 Bilbao (Spain); Massaccesi, Gustavo E. [Departamento de Ciencias Exactas, Ciclo Básico Común, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Oña, Ofelia B. [Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, CCT La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Diag. 113 y 64 (S/N), Sucursal 4, CC 16, 1900 La Plata (Argentina)
2014-06-21
This work deals with the configuration interaction method when an N-electron Hamiltonian is projected on Slater determinants which are classified according to their seniority number values. We study the spin features of the wave functions and the size of the matrices required to formulate states of any spin symmetry within this treatment. Correlation energies associated with the wave functions arising from the seniority-based configuration interaction procedure are determined for three types of molecular orbital basis: canonical molecular orbitals, natural orbitals, and the orbitals resulting from minimizing the expectation value of the N-electron seniority number operator. The performance of these bases is analyzed by means of numerical results obtained from selected N-electron systems of several spin symmetries. The comparison of the results highlights the efficiency of the molecular orbital basis which minimizes the mean value of the seniority number for a state, yielding energy values closer to those provided by the full configuration interaction procedure.
Proper construction of ab initio global potential surfaces with accurate long-range interactions
International Nuclear Information System (INIS)
Ho, Tak-San; Rabitz, Herschel
2000-01-01
An efficient procedure based on the reproducing kernel Hilbert space interpolation method is presented for constructing intermolecular potential energy surfaces (PES) using not only calculated ab initio data but also a priori information on long-range interactions. Explicitly, use of the reciprocal power reproducing kernel on the semiinfinite interval [0,∞) yields a set of exact linear relations between dispersion (multipolar) coefficients and PES data points at finite internuclear separations. Consequently, given a combined set of ab initio data and the values of dispersion (multipolar) coefficients, the potential interpolation problem subject to long-range interaction constraints can be solved to render globally smooth, asymptotically accurate ab initio potential energy surfaces. Very good results have been obtained for the one-dimensional He-He potential curve and the two-dimensional Ne-CO PES. The construction of the Ne-CO PES was facilitated by invoking a new reproducing kernel for the angular coordinate based on the optimally stable and shape-preserving Bernstein basis functions. (c) 2000 American Institute of Physics
Photodissociation of NaK: Ab initio spin-orbit interaction of the Na (32S) and K (42Pj) manifold
International Nuclear Information System (INIS)
Manaa, M.R.
1999-01-01
The relevant interstate b 3 II, A 1 Σ + , c 3 Σ + , and B 1 II spin-orbit induced matrix elements, arising from the Ma (3 2 S) K (4 2 P j ) manifold are treated within the full microscopic Breit-Pauli approximation based on ab initio configuration interaction (CI) wave functions. The determination of these couplings as a function of the internuclear distance of NaK should permit a full treatment of the fine-structure branching ratio K*(4 2 P 1/2 (D 1 ))/Kasterisk(4 2 P 3/2 (D 2 )) in manifold-meditated photodissociation and in the treatment of interstate perturbations
Configuration interaction in LTE spectra of heavy elements
International Nuclear Information System (INIS)
Bar-Shalom, A.; Oreg, J.; Goldstein, W.
1992-11-01
We present a method for including the effects of configuration interaction (CI) between relativistic subconfigurations of an electron configuration in the calculation of emission and absorption spectra of plasmas in local thermodynamic equilibrium (LTE). Analytical expressions for the correction to the intensities, owing to Cl, of an unresolved transition array (UTA) and of a supertransition array (STA) are obtained when the correction is small compared to the spin-orbit splitting, bypassing the need to diagonalize energy matrices. These expressions serve as working formulas in the STA model and, in addition, reveal a priori the conditions under which CI effects are significant. Examples of the effect are presented
Spin-orbit interaction effects in zincblende semiconductors: Ab initio pseudopotential calculations
International Nuclear Information System (INIS)
Li, Ming-Fu; Surh, M.P.; Louie, S.G.
1988-06-01
Ab initio band structure calculations have been performed for the spin-orbit interaction effects at the top of the valence bands for GaAs and InSb. Relativistic, norm-conserving pseudopotentials are used with no correction made for the gaps from the local density approximation. The spin-orbit splitting at Γ and linear terms in the /rvec char/k dependence of the splitting are found to be in excellent agreement with existing experiments and previous theoretical results. The effective mass and the cubic splitting terms are also examined. 6 refs., 1 fig., 2 tabs
Barbosa, Marcelo
A review about the nuclear properties, namely the nuclear moments (magnetic dipole moment and electric quadrupole moment) and their interaction with electromagnetic fields external to the nucleus (hyperfine interactions), as well as the angular distribution of radiation produced by $\\gamma$-decay, is presented. A detailed description about the theory of Perturbed Angular Correlations was done, including the comparison between $\\gamma-\\gamma$- correlations and $e^{-}- \\gamma$ correlations. For dynamic nuclear interactions, an introduction to the theory of stochastic states in PAC was performed. We focused on ab-initio implementation of observables for analyzing fluctuating quadrupole hyperfine interactions on time dependent perturbed angular correlations experiments. The development of computacional codes solving the full problem, adapted to fit data obtained on single crystals or polycrystals for two-state transient fields with any axial symmetry and orientation was the main purpose of this work. The final pa...
You, Y.; Yan, M. F.
2013-05-01
C and N atoms are the most frequent foreign interstitial atoms (FIAs), and often incorporated into the surface layers of steels to enhance their properties by thermochemical treatments. Al, Si, Ti, V, Cr, Mn, Co, Ni, Cu, Nb and Mo are the most common alloying elements in steels, also can be called foreign substitutional atoms (FSAs). The FIA and FSA interactions play an important role in the diffusion of C and N atoms, and the microstructures and mechanical properties of surface modified layers. Ab initio calculations based on the density functional theory are carried out to investigate FIA interactions with FSA in ferromagnetic bcc iron. The FIA-FSA interactions are analyzed systematically from five aspects, including interaction energies, density of states (DOS), bond populations, electron density difference maps and local magnetic moments.
International Nuclear Information System (INIS)
Wang, Yimin; Bowman, Joel M.; Kamarchik, Eugene
2016-01-01
We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na + H 2 O, F − H 2 O, and Cl − H 2 O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H 2 O potentials are permutationally invariant fits to roughly 20 000 coupled cluster CCSD(T) energies (awCVTZ basis for Na + and aVTZ basis for Cl − and F − ), over a large range of distances and H 2 O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.
Energy Technology Data Exchange (ETDEWEB)
Wang, Yimin, E-mail: yimin.wang@emory.edu; Bowman, Joel M., E-mail: jmbowma@emory.edu [Department of Chemistry, Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States); Kamarchik, Eugene, E-mail: eugene.kamarchik@gmail.com [Quantum Pomegranate, LLC, 2604 Kings Lake Court NE, Atlanta, Georgia 30345 (United States)
2016-03-21
We report full-dimensional, ab initio-based potentials and dipole moment surfaces for NaCl, NaF, Na{sup +}H{sub 2}O, F{sup −}H{sub 2}O, and Cl{sup −}H{sub 2}O. The NaCl and NaF potentials are diabatic ones that dissociate to ions. These are obtained using spline fits to CCSD(T)/aug-cc-pV5Z energies. In addition, non-linear least square fits using the Born-Mayer-Huggins potential are presented, providing accurate parameters based strictly on the current ab initio energies. The long-range behavior of the NaCl and NaF potentials is shown to go, as expected, accurately to the point-charge Coulomb interaction. The three ion-H{sub 2}O potentials are permutationally invariant fits to roughly 20 000 coupled cluster CCSD(T) energies (awCVTZ basis for Na{sup +} and aVTZ basis for Cl{sup −} and F{sup −}), over a large range of distances and H{sub 2}O intramolecular configurations. These potentials are switched accurately in the long range to the analytical ion-dipole interactions, to improve computational efficiency. Dipole moment surfaces are fits to MP2 data; for the ion-ion cases, these are well described in the intermediate- and long-range by the simple point-charge expression. The performance of these new fits is examined by direct comparison to additional ab initio energies and dipole moments along various cuts. Equilibrium structures, harmonic frequencies, and electronic dissociation energies are also reported and compared to direct ab initio results. These indicate the high fidelity of the new PESs.
Configuration interaction calculations of positron binding to Be(3P )
International Nuclear Information System (INIS)
Bromley, M.W.J.; Mitroy, J.
2006-01-01
The configuration interaction method is applied to investigate the possibility of positron binding to the metastable beryllium (1s 2 2s2p 3 P ) state. The largest calculation obtained an estimated energy that was unstable by 0.00014 Hartree with respect to the Ps + Be + (2s) lowest dissociation channel. It is likely that positron binding to parent states with non-zero angular momentum is inhibited by centrifugal barriers
Configuration mixing in the sdg interacting boson model
International Nuclear Information System (INIS)
Bouldjedri, A; Van Isacker, P; Zerguine, S
2005-01-01
A wavefunction analysis of the strong-coupling limits of the sdg interacting boson model is presented. The analysis is carried out for two-boson states and allows us to characterize the boson configuration mixing in the different limits. Based on these results and those of a shell-model analysis of the sdg IBM, qualitative conclusions are drawn about the range of applicability of each limit
Configuration mixing in the sdg interacting boson model
Energy Technology Data Exchange (ETDEWEB)
Bouldjedri, A [Department of Physics, Faculty of Science, University of Batna, Avenue Boukhelouf M El Hadi, 05000 Batna (Algeria); Van Isacker, P [GANIL, BP 55027, F-14076 Caen cedex 5 (France); Zerguine, S [Department of Physics, Faculty of Science, University of Batna, Avenue Boukhelouf M El Hadi, 05000 Batna (Algeria)
2005-11-01
A wavefunction analysis of the strong-coupling limits of the sdg interacting boson model is presented. The analysis is carried out for two-boson states and allows us to characterize the boson configuration mixing in the different limits. Based on these results and those of a shell-model analysis of the sdg IBM, qualitative conclusions are drawn about the range of applicability of each limit.
Effects of configuration interaction on photoabsorption spectra in the continuum
International Nuclear Information System (INIS)
Komninos, Yannis; Nicolaides, Cleanthes A.
2004-01-01
It is pointed out that the proper interpretation of a recently published experimental spectrum from the multilaser photoionization of Sr [Eichmann et al., Phys. Rev. Lett. 90, 233004 (2003)] must account for a radiative transition between two autoionizing states. The application of orthonormality selection rules and of configuration-interaction theory involving the continuous spectrum and the quasicontinuum of the upper part of Rydberg series explains quantitatively the appearance, the shape, and the variation of heights of the observed peaks of resonances
Electric dipole moment of diatomic molecules by configuration interaction. IV.
Green, S.
1972-01-01
The theory of basis set dependence in configuration interaction calculations is discussed, taking into account a perturbation model which is valid for small changes in the self-consistent field orbitals. It is found that basis set corrections are essentially additive through first order. It is shown that an error found in a previously published dipole moment calculation by Green (1972) for the metastable first excited state of CO was indeed due to an inadequate basis set as claimed.
International Nuclear Information System (INIS)
Rubin, Yu.V.; Belous, L.F.
2012-01-01
Self-associates of nucleic acid components (stacking trimers and tetramers of the base pairs of nucleic acids) and short fragments of nucleic acids are nanoparticles (linear sizes of these particles are more than 10 A). Modern quantum-mechanical methods and softwares allow one to perform ab initio calculations of the systems consisting of 150-200 atoms with enough large basis sets (for example, 6-31G * ). The aim of this work is to reveal the peculiarities of molecular and electronic structures, as well as the energy features of nanoparticles of nucleic acid components. We had carried out ab initio calculations of the molecular structure and interactions in the stacking dimer, trimer, and tetramer of nucleic base pairs and in the stacking (TpG)(ApC) dimer and (TpGpC) (ApCpG) trimer of nucleotides, which are small DNA fragments. The performed calculations of molecular structures of dimers and trimers of nucleotide pairs showed that the interplanar distance in the structures studied is equal to 3.2 A on average, and the helical angle in a trimer is approximately equal to 30 o : The distance between phosphor atoms in neighboring chains is 13.1 A. For dimers and trimers under study, we calculated the horizontal interaction energies. The analysis of interplanar distances and angles between nucleic bases and their pairs in the calculated short oligomers of nucleic acid base pairs (stacking dimer, trimer, and tetramer) has been carried out. Studies of interactions in the calculated short oligomers showed a considerable role of the cross interaction in the stabilization of the structures. The contribution of cross interactions to the horizontal interactions grows with the length of an oligomer. Nanoparticle components get electric charges in nanoparticles. Longwave low-intensity bands can appear in the electron spectra of nanoparticles.
Determination of orbitals for use in configuration interaction calculations
International Nuclear Information System (INIS)
Dunning, T.H. Jr.; Davidson, E.R.; Ruedenberg, K.; Hinze, J.
1978-01-01
For a full configuration interaction (CI) calculation the choice of orbitals is completely irrelevant, i.e., the calculated wavefunction is unaffected by an arbitrary unitary transformation of the orbitals; it depends only on the space spanned by the original basis set. For most chemical systems it is not possible to realistically carry out a full CI calculation, so that specification of the orbital set is important. Even for less-than-full CI calculations, it can be shown, however, that for certain types of calculations the wavefunction is unaffected by restricted transformations among the orbital set. For example, for CI calculations based on a single configuration plus a complete set of excitations of a given type (single, double, etc.), the calculated wavefunction is independent of transformations among the set of occupied orbitals and among the set of virtual orbitals. The wavefunction does, however, depend on transformations which mix the occupied and virtual orbitals
Ab initio pseudopotential theory
International Nuclear Information System (INIS)
Yin, M.T.; Cohen, M.L.
1982-01-01
The ab initio norm-conserving pseudopotential is generated from a reference atomic configuration in which the pseudoatomic eigenvalues and wave functions outside the core region agree with the corresponding ab initio all-electron results within the density-functional formalism. This paper explains why such pseudopotentials accurately reproduce the all-electron results in both atoms and in multiatomic systems. In particular, a theorem is derived to demonstrate the energy- and perturbation-independent properties of ab initio pseudopotentials
Mutual influence between triel bond and cation-π interactions: an ab initio study
Esrafili, Mehdi D.; Mousavian, Parisasadat
2017-12-01
Using ab initio calculations, the cooperative and solvent effects on cation-π and B...N interactions are studied in some model ternary complexes, where these interactions coexist. The nature of the interactions and the mechanism of cooperativity are investigated by means of quantum theory of atoms in molecules (QTAIM), noncovalent interaction (NCI) index and natural bond orbital analysis. The results indicate that all cation-π and B...N binding distances in the ternary complexes are shorter than those of corresponding binary systems. The QTAIM analysis reveals that ternary complexes have higher electron density at their bond critical points relative to the corresponding binary complexes. In addition, according to the QTAIM analysis, the formation of cation-π interaction increases covalency of B...N bonds. The NCI analysis indicates that the cooperative effects in the ternary complexes make a shift in the location of the spike associated with each interaction, which can be regarded as an evidence for the reinforcement of both cation-π and B...N interactions in these systems. Solvent effects on the cooperativity of cation-π and B...N interactions are also investigated.
Nuclear deformation in the configuration-interaction shell model
Alhassid, Y.; Bertsch, G. F.; Gilbreth, C. N.; Mustonen, M. T.
2018-02-01
We review a method that we recently introduced to calculate the finite-temperature distribution of the axial quadrupole operator in the laboratory frame using the auxiliary-field Monte Carlo technique in the framework of the configuration-interaction shell model. We also discuss recent work to determine the probability distribution of the quadrupole shape tensor as a function of intrinsic deformation β,γ by expanding its logarithm in quadrupole invariants. We demonstrate our method for an isotope chain of samarium nuclei whose ground states describe a crossover from spherical to deformed shapes.
Variational configuration interaction methods and comparison with perturbation theory
International Nuclear Information System (INIS)
Pople, J.A.; Seeger, R.; Krishnan, R.
1977-01-01
A configuration interaction (CI) procedure which includes all single and double substitutions from an unrestricted Hartree-Fock single determinant is described. This has the feature that Moller-Plesset perturbation results to second and third order are obtained in the first CI iterative cycle. The procedure also avoids the necessity of a full two-electron integral transformation. A simple expression for correcting the final CI energy for lack of size consistency is proposed. Finally, calculations on a series of small molecules are presented to compare these CI methods with perturbation theory
Gauge-Invariant Formulation of Time-Dependent Configuration Interaction Singles Method
Directory of Open Access Journals (Sweden)
Takeshi Sato
2018-03-01
Full Text Available We propose a gauge-invariant formulation of the channel orbital-based time-dependent configuration interaction singles (TDCIS method [Phys. Rev. A, 74, 043420 (2006], one of the powerful ab initio methods to investigate electron dynamics in atoms and molecules subject to an external laser field. In the present formulation, we derive the equations of motion (EOMs in the velocity gauge using gauge-transformed time-dependent, not fixed, orbitals that are equivalent to the conventional EOMs in the length gauge using fixed orbitals. The new velocity-gauge EOMs avoid the use of the length-gauge dipole operator, which diverges at large distance, and allows us to exploit computational advantages of the velocity-gauge treatment over the length-gauge one, e.g., a faster convergence in simulations with intense and long-wavelength lasers, and the feasibility of exterior complex scaling as an absorbing boundary. The reformulated TDCIS method is applied to an exactly solvable model of one-dimensional helium atom in an intense laser field to numerically demonstrate the gauge invariance. We also discuss the consistent method for evaluating the time derivative of an observable, which is relevant, e.g., in simulating high-harmonic generation.
Configuration interaction calculations for the region of 76Ge
Brown, Alex
2017-09-01
I will present a short history of the configuration interaction Hamiltonians that have been developed for the (0f5 / 2 , 1p3 / 2 , 1p1 / 2 , 0g9 / 2) (jj 44) model space. This model space is appropriate for the region of nuclei bounded by the nickel isotopes for Z = 28 and the isotones with N = 50 . I will discuss results for the double-beta decay of 76Ge that lies in the jj 44 region. I will show results for the structure of nuclei around 76Ge for some selected data from gamma decay, Gamow-Teller beta decay, charge-exchange reactions, one-nucleon transfer reactions, and two-nucleon transfer reactions. This work was supported by NSF Grant PHY-1404442.
Accelerating Full Configuration Interaction Calculations for Nuclear Structure
International Nuclear Information System (INIS)
Yang, Chao; Sternberg, Philip; Maris, Pieter; Ng, Esmond; Sosonkina, Masha; Le, Hung Viet; Vary, James; Yang, Chao
2008-01-01
One of the emerging computational approaches in nuclear physics is the full configuration interaction (FCI) method for solving the many-body nuclear Hamiltonian in a sufficiently large single-particle basis space to obtain exact answers - either directly or by extrapolation. The lowest eigenvalues and corresponding eigenvectors for very large, sparse and unstructured nuclear Hamiltonian matrices are obtained and used to evaluate additional experimental quantities. These matrices pose a significant challenge to the design and implementation of efficient and scalable algorithms for obtaining solutions on massively parallel computer systems. In this paper, we describe the computational strategies employed in a state-of-the-art FCI code MFDn (Many Fermion Dynamics - nuclear) as well as techniques we recently developed to enhance the computational efficiency of MFDn. We will demonstrate the current capability of MFDn and report the latest performance improvement we have achieved. We will also outline our future research directions
Watermelon configurations with wall interaction: exact and asymptotic results
Energy Technology Data Exchange (ETDEWEB)
Krattenthaler, C [Institut Camille Jordan, Universite Claude Bernard Lyon-I, 21, avenue Claude Bernard, F-69622 Villeurbanne Cedex (France)
2006-06-15
We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature.
Watermelon configurations with wall interaction: exact and asymptotic results
International Nuclear Information System (INIS)
Krattenthaler, C
2006-01-01
We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature
Watermelon configurations with wall interaction: exact and asymptotic results
Krattenthaler, C.
2006-06-01
We perform an exact and asymptotic analysis of the model of n vicious walkers interacting with a wall via contact potentials, a model introduced by Brak, Essam and Owczarek. More specifically, we study the partition function of watermelon configurations which start on the wall, but may end at arbitrary height, and their mean number of contacts with the wall. We improve and extend the earlier (partially nonrigorous) results by Brak, Essam and Owczarek, providing new exact results, and more precise and more general asymptotic results, in particular full asymptotic expansions for the partition function and the mean number of contacts. Furthermore, we relate this circle of problems to earlier results in the combinatorial and statistical literature.
Particle-two particle interaction in configuration space
International Nuclear Information System (INIS)
Kuzmichev, V.E.
1982-07-01
The problem if three indentical particles with zero-range two-particle interaction is considered. An explicit expression for the effective potential between one particle and the remaining two-particle system is obtained in the coordinate representation. It is shown that for arbitrary energies, at small and, for zero energy, at large distances rho between the one particle and centre of mass of the other two particles the diagonal matrix element of the effective potential is attractive and proportional to 1/rho 2 . This property of the effective potenial explains both the Thomas singularity and the Efimov effect. In the case of zero total energy of the system the general form of the solution of the three-particle integral equation is found in configuration space. (orig.)
Configuration interaction in charge exchange spectra of tin and xenon
D'Arcy, R.; Morris, O.; Ohashi, H.; Suda, S.; Tanuma, H.; Fujioka, S.; Nishimura, H.; Nishihara, K.; Suzuki, C.; Kato, T.; Koike, F.; O'Sullivan, G.
2011-06-01
Charge-state-specific extreme ultraviolet spectra from both tin ions and xenon ions have been recorded at Tokyo Metropolitan University. The electron cyclotron resonance source spectra were produced from charge exchange collisions between the ions and rare gas target atoms. To identify unknown spectral lines of tin and xenon, atomic structure calculations were performed for Sn14+-Sn17+ and Xe16+-Xe20+ using the Hartree-Fock configuration interaction code of Cowan (1981 The Theory of Atomic Structure and Spectra (Berkeley, CA: University of California Press)). The energies of the capture states involved in the single-electron process that occurs in these slow collisions were estimated using the classical over-barrier model.
Ab initio study of interaction of helium with edge and screw dislocations in tungsten
Energy Technology Data Exchange (ETDEWEB)
Bakaev, Alexander, E-mail: bakaev_vic@mail.ru [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol 2400 (Belgium); Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 29 Polytekhnicheskaya str., 195251 St. Petersburg (Russian Federation); Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden (Germany); Terentyev, Dmitry [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol 2400 (Belgium); Grigorev, Petr [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, Mol 2400 (Belgium); Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 29 Polytekhnicheskaya str., 195251 St. Petersburg (Russian Federation); Ghent University, Applied Physics EA17 FUSION-DC, St. Pietersnieuwstraat, 41 B4, B-9000 Gent (Belgium); Posselt, Matthias [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden (Germany); Zhurkin, Evgeny E. [Department of Experimental Nuclear Physics K-89, Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, 29 Polytekhnicheskaya str., 195251 St. Petersburg (Russian Federation)
2017-02-15
Highlights: • Both screw (SD) and edge dislocations (ED) offer trapping sites for He in tungsten. • He atom is attracted to SD and ED with the interaction energy of ~1.3 and ~3.0 eV, respectively. • The attraction of He to dislocations can contribute to the nucleation of He clusters at high T. - Abstract: The interaction of a single He atom with edge and screw dislocations in tungsten has been studied using ab initio calculations. It was revealed that He is strongly attracted to the core of both dislocations with the interaction energy of −1.3 and −3.0 eV for screw and edge dislocations, respectively, which corresponds to the detrapping temperature in thermal desorption spectroscopy experiments of about 500 K and 1050 K, respectively. The lowest energy positions for He around the dislocation cores are identified and the atomic structures are rationalized on the basis of elasticity theory considerations. Both types of dislocations exhibit a higher binding energy for He as compared to the He-He binding (known as self-trapping) and are weaker traps as compared to a single vacancy. It is, thus, concluded that the strong attraction to dislocation lines can contribute to the nucleation of He clusters in the temperature range which already excludes He self-trapping.
Ab initio study of He-He interactions in homogeneous electron gas
Energy Technology Data Exchange (ETDEWEB)
Wang, Jinlong; Niu, Liang-Liang; Zhang, Ying, E-mail: zhyi@buaa.edu.cn
2017-02-15
Highlights: • Helium atoms interact via the He induced Friedel oscillations of electron densities. • He-He global binding energy minimum of ∼−0.09 eV is reached at an optimal electron density of 0.04 e/Å{sup 3}, corresponding to an optimal He-He separation of ∼1.7 Å. • The present results can qualitatively interpret the well-known He self-trapping behavior in metals. - Abstract: We have investigated the immersion energy of a single He and the He-He interactions in homogeneous electron gas using ab initio calculations. It is found that He dislikes electrons and He-He interact via the He induced Friedel oscillations of electron densities. A critical electron density at which the global binding energy extremum shifts from the first minimum to the second one is identified. We also discover that the He-He global binding energy minimum of ∼−0.09 eV is reached at an optimal electron density of 0.04 e/Å{sup 3}, corresponding to an optimal He-He separation of ∼1.7 Å. Further, the He atoms are found to gain a trivial amount of 2s and 2p states from the free electrons, inducing a hybridization between the He s- and p-states. The present results can qualitatively interpret the well-known He self-trapping behavior in metals.
Ab initio study of interaction of helium with edge and screw dislocations in tungsten
International Nuclear Information System (INIS)
Bakaev, Alexander; Terentyev, Dmitry; Grigorev, Petr; Posselt, Matthias; Zhurkin, Evgeny E.
2017-01-01
Highlights: • Both screw (SD) and edge dislocations (ED) offer trapping sites for He in tungsten. • He atom is attracted to SD and ED with the interaction energy of ~1.3 and ~3.0 eV, respectively. • The attraction of He to dislocations can contribute to the nucleation of He clusters at high T. - Abstract: The interaction of a single He atom with edge and screw dislocations in tungsten has been studied using ab initio calculations. It was revealed that He is strongly attracted to the core of both dislocations with the interaction energy of −1.3 and −3.0 eV for screw and edge dislocations, respectively, which corresponds to the detrapping temperature in thermal desorption spectroscopy experiments of about 500 K and 1050 K, respectively. The lowest energy positions for He around the dislocation cores are identified and the atomic structures are rationalized on the basis of elasticity theory considerations. Both types of dislocations exhibit a higher binding energy for He as compared to the He-He binding (known as self-trapping) and are weaker traps as compared to a single vacancy. It is, thus, concluded that the strong attraction to dislocation lines can contribute to the nucleation of He clusters in the temperature range which already excludes He self-trapping.
Hydrogen interaction with ferrite/cementite interface: ab initio calculations and thermodynamics
Mirzoev, A. A.; Verkhovykh, A. V.; Okishev, K. Yu.; Mirzaev, D. A.
2018-02-01
The paper presents the results of ab initio modelling of the interaction of hydrogen atoms with ferrite/cementite interfaces in steels and thermodynamic assessment of the ability of interfaces to trap hydrogen atoms. Modelling was performed using the density functional theory with generalised gradient approximation (GGA'96), as implemented in WIEN2k package. An Isaichev-type orientation relationship between the two phases was accepted, with a habit plane (101)c ∥ (112)α. The supercell contained 64 atoms (56 Fe and 8 C). The calculated formation energies of ferrite/cementite interface were 0.594 J/m2. The calculated trapping energy at cementite interstitial was 0.18 eV, and at the ferrite/cementite interface - 0.30 eV. Considering calculated zero-point energy, the trapping energies at cementite interstitial and ferrite/cementite interface become 0.26 eV and 0.39 eV, respectively. The values are close to other researchers' data. These results were used to construct a thermodynamic description of ferrite/cementite interface-hydrogen interaction. Absorption calculations using the obtained trapping energy values showed that even thin lamellar ferrite/cementite mixture with an interlamellar spacing smaller than 0.1 μm has noticeable hydrogen trapping ability at a temperature below 400 K.
Leadership Class Configuration Interaction Code - Status and Opportunities
Vary, James
2011-10-01
With support from SciDAC-UNEDF (www.unedf.org) nuclear theorists have developed and are continuously improving a Leadership Class Configuration Interaction Code (LCCI) for forefront nuclear structure calculations. The aim of this project is to make state-of-the-art nuclear structure tools available to the entire community of researchers including graduate students. The project includes codes such as NuShellX, MFDn and BIGSTICK that run a range of computers from laptops to leadership class supercomputers. Codes, scripts, test cases and documentation have been assembled, are under continuous development and are scheduled for release to the entire research community in November 2011. A covering script that accesses the appropriate code and supporting files is under development. In addition, a Data Base Management System (DBMS) that records key information from large production runs and archived results of those runs has been developed (http://nuclear.physics.iastate.edu/info/) and will be released. Following an outline of the project, the code structure, capabilities, the DBMS and current efforts, I will suggest a path forward that would benefit greatly from a significant partnership between researchers who use the codes, code developers and the National Nuclear Data efforts. This research is supported in part by DOE under grant DE-FG02-87ER40371 and grant DE-FC02-09ER41582 (SciDAC-UNEDF).
Relativistic configuration interaction treatment of generalized oscillator strength for krypton
International Nuclear Information System (INIS)
Wang Huangchun; Qu Yizhi; Liu Chunhua
2007-01-01
A fully relativistic configuration interaction method is developed to investigate the transition energies and general oscillator strengths of the lower lying states of krypton, for both optically allowed and optically forbidden transitions. The calculated results are in agreement with the recent experimental measurements. The calculated transition energies for the 5s and 5s' transitions are 9.970 and 10.717 eV, which agree with the experimental data of 10.033 and 10.643 eV. The calculated oscillator strengths are 0.211 and 0.170, comparable with the experimental results 0.214(±0.012) and 0.194 (±0.012), respectively. The momentum transfer positions (K 2 in a.u.) of the minimum and maximum GOSs in the 4s 2 4p 6 →4s 2 4p 5 (5s + 5s') transitions are 1.105 and 2.225, comparable with the measurements results 1.24 and 2.97. (authors)
A sparse matrix based full-configuration interaction algorithm
International Nuclear Information System (INIS)
Rolik, Zoltan; Szabados, Agnes; Surjan, Peter R.
2008-01-01
We present an algorithm related to the full-configuration interaction (FCI) method that makes complete use of the sparse nature of the coefficient vector representing the many-electron wave function in a determinantal basis. Main achievements of the presented sparse FCI (SFCI) algorithm are (i) development of an iteration procedure that avoids the storage of FCI size vectors; (ii) development of an efficient algorithm to evaluate the effect of the Hamiltonian when both the initial and the product vectors are sparse. As a result of point (i) large disk operations can be skipped which otherwise may be a bottleneck of the procedure. At point (ii) we progress by adopting the implementation of the linear transformation by Olsen et al. [J. Chem Phys. 89, 2185 (1988)] for the sparse case, getting the algorithm applicable to larger systems and faster at the same time. The error of a SFCI calculation depends only on the dropout thresholds for the sparse vectors, and can be tuned by controlling the amount of system memory passed to the procedure. The algorithm permits to perform FCI calculations on single node workstations for systems previously accessible only by supercomputers
Relativistic Configuration Interaction Treatment of Generalized Oscillator Strength for Krypton
Institute of Scientific and Technical Information of China (English)
WANG Huang-Chun; QU Yi-Zhi; LIU Chun-Hua
2007-01-01
A fully relativistic configuration interaction method is developed to investigate the transition energies and general oscillator strengths of the lower lying states of krypton, for both optically allowed and optically forbidden transitions. The calculated results are in agreement with the recent experimental measurements. The calculated transition energies for the 5s and 5s' transitions are 9.970 and 10.717eV, which agree with the experimental data of 10.033 and 10.643 eV. The calculated oscillator strengths are 0.211 and 0.170, comparable with the experimental results 0.214(±0.012) and 0.194 (±0.012), respectively. The momentum transfer positions ( K2 in a.u.) of the minimum and maximum GOSs in the 4s24p6 → 4s24p5 (5s + 5s') transitions are 1.105 and 2.225, comparable with the measurements results 1.24 and 2.97 [Phys. Rev. A 67 (2003) 062708].
Zhang, Wei; Gan, Jie; Li, Qian; Gao, Kun; Sun, Jian; Xu, Ning; Ying, Zhifeng; Wu, Jiada
2011-06-01
The self-diffusion dynamics of Cu adatoms on Cu(1 0 0) surface has been studied based on the calculation of the energy barriers for various hopping events using lattice-gas based approach and a modified model. To simplify the description of the interactions and the calculation of the energy barrier, a three-tier hierarchy of description of atomic configurations was conceived in which the active adatom and its nearest atoms were chosen to constitute basic configuration and taken as a whole to study many-body interactions of the atoms in various atomic configurations, whereas the impacts of the next nearest atoms on the diffusion of the active adatom were considered as multi-site interactions. Besides the simple hopping of single adatoms, the movements of dimers and trimers as the results of multiple hopping events have also been examined. Taking into account the hopping events of all adatoms, the stability of atomic configurations has been examined and the evolution of atomic configurations has also been analyzed.
International Nuclear Information System (INIS)
Zhang Wei; Gan Jie; Li Qian; Gao Kun; Sun Jian; Xu Ning; Ying Zhifeng; Wu Jiada
2011-01-01
The self-diffusion dynamics of Cu adatoms on Cu(1 0 0) surface has been studied based on the calculation of the energy barriers for various hopping events using lattice-gas based approach and a modified model. To simplify the description of the interactions and the calculation of the energy barrier, a three-tier hierarchy of description of atomic configurations was conceived in which the active adatom and its nearest atoms were chosen to constitute basic configuration and taken as a whole to study many-body interactions of the atoms in various atomic configurations, whereas the impacts of the next nearest atoms on the diffusion of the active adatom were considered as multi-site interactions. Besides the simple hopping of single adatoms, the movements of dimers and trimers as the results of multiple hopping events have also been examined. Taking into account the hopping events of all adatoms, the stability of atomic configurations has been examined and the evolution of atomic configurations has also been analyzed.
Photoabsorption in sodium clusters: first principles configuration interaction calculations
Priya, Pradip Kumar; Rai, Deepak Kumar; Shukla, Alok
2017-05-01
We present systematic and comprehensive correlated-electron calculations of the linear photoabsorption spectra of small neutral closed- and open-shell sodium clusters (Nan, n = 2 - 6), as well as closed-shell cation clusters (Nan+, n = 3, 5). We have employed the configuration interaction (CI) methodology at the full CI (FCI) and quadruple CI (QCI) levels to compute the ground, and the low-lying excited states of the clusters. For most clusters, besides the minimum energy structures, we also consider their energetically close isomers. The photoabsorption spectra were computed under the electric-dipole approximation, employing the dipole-matrix elements connecting the ground state with the excited states of each isomer. Our calculations were tested rigorously for convergence with respect to the basis set, as well as with respect to the size of the active orbital space employed in the CI calculations. These calculations reveal that as far as electron-correlation effects are concerned, core excitations play an important role in determining the optimized ground state geometries of various clusters, thereby requiring all-electron correlated calculations. But, when it comes to low-lying optical excitations, only valence electron correlation effects play an important role, and excellent agreement with the experimental results is obtained within the frozen-core approximation. For the case of Na6, the largest cluster studied in this work, we also discuss the possibility of occurrence of plasmonic resonance in the optical absorption spectrum. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-70728-3
A High Performance Block Eigensolver for Nuclear Configuration Interaction Calculations
International Nuclear Information System (INIS)
Aktulga, Hasan Metin; Afibuzzaman, Md.; Williams, Samuel; Buluc, Aydin; Shao, Meiyue
2017-01-01
As on-node parallelism increases and the performance gap between the processor and the memory system widens, achieving high performance in large-scale scientific applications requires an architecture-aware design of algorithms and solvers. We focus on the eigenvalue problem arising in nuclear Configuration Interaction (CI) calculations, where a few extreme eigenpairs of a sparse symmetric matrix are needed. Here, we consider a block iterative eigensolver whose main computational kernels are the multiplication of a sparse matrix with multiple vectors (SpMM), and tall-skinny matrix operations. We then present techniques to significantly improve the SpMM and the transpose operation SpMM T by using the compressed sparse blocks (CSB) format. We achieve 3-4× speedup on the requisite operations over good implementations with the commonly used compressed sparse row (CSR) format. We develop a performance model that allows us to correctly estimate the performance of our SpMM kernel implementations, and we identify cache bandwidth as a potential performance bottleneck beyond DRAM. We also analyze and optimize the performance of LOBPCG kernels (inner product and linear combinations on multiple vectors) and show up to 15× speedup over using high performance BLAS libraries for these operations. The resulting high performance LOBPCG solver achieves 1.4× to 1.8× speedup over the existing Lanczos solver on a series of CI computations on high-end multicore architectures (Intel Xeons). We also analyze the performance of our techniques on an Intel Xeon Phi Knights Corner (KNC) processor.
Robust and Efficient Spin Purification for Determinantal Configuration Interaction.
Fales, B Scott; Hohenstein, Edward G; Levine, Benjamin G
2017-09-12
The limited precision of floating point arithmetic can lead to the qualitative and even catastrophic failure of quantum chemical algorithms, especially when high accuracy solutions are sought. For example, numerical errors accumulated while solving for determinantal configuration interaction wave functions via Davidson diagonalization may lead to spin contamination in the trial subspace. This spin contamination may cause the procedure to converge to roots with undesired ⟨Ŝ 2 ⟩, wasting computer time in the best case and leading to incorrect conclusions in the worst. In hopes of finding a suitable remedy, we investigate five purification schemes for ensuring that the eigenvectors have the desired ⟨Ŝ 2 ⟩. These schemes are based on projection, penalty, and iterative approaches. All of these schemes rely on a direct, graphics processing unit-accelerated algorithm for calculating the S 2 c matrix-vector product. We assess the computational cost and convergence behavior of these methods by application to several benchmark systems and find that the first-order spin penalty method is the optimal choice, though first-order and Löwdin projection approaches also provide fast convergence to the desired spin state. Finally, to demonstrate the utility of these approaches, we computed the lowest several excited states of an open-shell silver cluster (Ag 19 ) using the state-averaged complete active space self-consistent field method, where spin purification was required to ensure spin stability of the CI vector coefficients. Several low-lying states with significant multiply excited character are predicted, suggesting the value of a multireference approach for modeling plasmonic nanomaterials.
Isotope shift and configuration interaction in U I
International Nuclear Information System (INIS)
King, W.H.
1979-01-01
Recent calculations by Rajnak and Fred (J. Opt. Soc. Am.; 67:1314 (1977)) show that the transitions studied by Gagne et al (J. Opt. Soc. Am.; 66:1415 (1976)) have upper levels of mixed configurations. The amount of mixing and the probability of mass shifts due to 5f electrons is discussed. (author)
Hernández Velázquez, J D; Barroso-Flores, J; Gama Goicochea, A
2016-11-23
Two of the most commonly encountered friction-reducing agents used in plastic sheet production are the amides known as erucamide and behenamide, which despite being almost identical chemically, lead to markedly different values of the friction coefficient. To understand the origin of this contrasting behavior, in this work we model brushes made of these two types of linear-chain molecules using quantum mechanical numerical simulations under the density functional theory at the B97D/6-31G(d,p) level of theory. Four chains of erucamide and behenamide were linked to a 2 × 10 zigzag graphene sheet and optimized both in vacuum and in continuous solvent using the SMD implicit solvation model. We find that erucamide chains tend to remain closer together through π-π stacking interactions arising from the double bonds located at C13-C14, a feature behenamide lacks, and thus a more spread configuration is obtained with the latter. It is argued that this arrangement of the erucamide chains is responsible for the lower friction coefficient of erucamide brushes, compared with behenamide brushes, which is a macroscopic consequence of cooperative quantum mechanical interactions. While only quantum level interactions are modeled here, we show that behenamide chains are more spread out in the brush than erucamide chains as a consequence of those interactions. The spread-out configuration allows more solvent particles to penetrate the brush, leading in turn to more friction, in agreement with macroscopic measurements and mesoscale simulations of the friction coefficient reported in the literature.
All electron ab initio investigations of the electronic states of the FeC molecule
DEFF Research Database (Denmark)
Shim, Irene; Gingerich, Karl A.
1999-01-01
The low lying electronic states of the molecule FeC have been investigated by performing all electron ab initio multi-configuration self-consistent-field (CASSCF) and multi reference configuration interaction (MRCI) calculations. The relativistic corrections for the one electron Darwin contact term...
Convergence of configuration-interaction single-center calculations of positron-atom interactions
International Nuclear Information System (INIS)
Mitroy, J.; Bromley, M. W. J.
2006-01-01
The configuration interaction (CI) method using orbitals centered on the nucleus has recently been applied to calculate the interactions of positrons interacting with atoms. Computational investigations of the convergence properties of binding energy, phase shift, and annihilation rate with respect to the maximum angular momentum of the orbital basis for the e + Cu and PsH bound states, and the e + -H scattering system were completed. The annihilation rates converge very slowly with angular momentum, and moreover the convergence with radial basis dimension appears to be slower for high angular momentum. A number of methods of completing the partial wave sum are compared; an approach based on a ΔX J =a(J+(1/2)) -n +b(J+(1/2)) -(n+1) form [with n=4 for phase shift (or energy) and n=2 for the annihilation rate] seems to be preferred on considerations of utility and underlying physical justification
International Nuclear Information System (INIS)
Shepherd, James J.; Henderson, Thomas M.; Scuseria, Gustavo E.
2016-01-01
Over the past few years, pair coupled cluster doubles (pCCD) has shown promise for the description of strong correlation. This promise is related to its apparent ability to match results from doubly occupied configuration interaction (DOCI), even though the latter method has exponential computational cost. Here, by modifying the full configuration interaction quantum Monte Carlo algorithm to sample only the seniority zero sector of Hilbert space, we show that the DOCI and pCCD energies are in agreement for a variety of 2D Hubbard models, including for systems well out of reach for conventional configuration interaction algorithms. Our calculations are aided by the sign problem being much reduced in the seniority zero space compared with the full space. We present evidence for this and then discuss the sign problem in terms of the wave function of the system which appears to have a simplified sign structure.
Parallel multireference configuration interaction calculations on mini-β-carotenes and β-carotene
Kleinschmidt, Martin; Marian, Christel M.; Waletzke, Mirko; Grimme, Stefan
2009-01-01
We present a parallelized version of a direct selecting multireference configuration interaction (MRCI) code [S. Grimme and M. Waletzke, J. Chem. Phys. 111, 5645 (1999)]. The program can be run either in ab initio mode or as semiempirical procedure combined with density functional theory (DFT/MRCI). We have investigated the efficiency of the parallelization in case studies on carotenoids and porphyrins. The performance is found to depend heavily on the cluster architecture. While the speed-up on the older Intel Netburst technology is close to linear for up to 12-16 processes, our results indicate that it is not favorable to use all cores of modern Intel Dual Core or Quad Core processors simultaneously for memory intensive tasks. Due to saturation of the memory bandwidth, we recommend to run less demanding tasks on the latter architectures in parallel to two (Dual Core) or four (Quad Core) MRCI processes per node. The DFT/MRCI branch has been employed to study the low-lying singlet and triplet states of mini-n-β-carotenes (n =3, 5, 7, 9) and β-carotene (n =11) at the geometries of the ground state, the first excited triplet state, and the optically bright singlet state. The order of states depends heavily on the conjugation length and the nuclear geometry. The B1u+ state constitutes the S1 state in the vertical absorption spectrum of mini-3-β-carotene but switches order with the 2 A1g- state upon excited state relaxation. In the longer carotenes, near degeneracy or even root flipping between the B1u+ and B1u- states is observed whereas the 3 A1g- state is found to remain energetically above the optically bright B1u+ state at all nuclear geometries investigated here. The DFT/MRCI method is seen to underestimate the absolute excitation energies of the longer mini-β-carotenes but the energy gaps between the excited states are reproduced well. In addition to singlet data, triplet-triplet absorption energies are presented. For β-carotene, where these transition
Kleinschmidt, Martin; Marian, Christel M; Waletzke, Mirko; Grimme, Stefan
2009-01-28
We present a parallelized version of a direct selecting multireference configuration interaction (MRCI) code [S. Grimme and M. Waletzke, J. Chem. Phys. 111, 5645 (1999)]. The program can be run either in ab initio mode or as semiempirical procedure combined with density functional theory (DFT/MRCI). We have investigated the efficiency of the parallelization in case studies on carotenoids and porphyrins. The performance is found to depend heavily on the cluster architecture. While the speed-up on the older Intel Netburst technology is close to linear for up to 12-16 processes, our results indicate that it is not favorable to use all cores of modern Intel Dual Core or Quad Core processors simultaneously for memory intensive tasks. Due to saturation of the memory bandwidth, we recommend to run less demanding tasks on the latter architectures in parallel to two (Dual Core) or four (Quad Core) MRCI processes per node. The DFT/MRCI branch has been employed to study the low-lying singlet and triplet states of mini-n-beta-carotenes (n=3, 5, 7, 9) and beta-carotene (n=11) at the geometries of the ground state, the first excited triplet state, and the optically bright singlet state. The order of states depends heavily on the conjugation length and the nuclear geometry. The (1)B(u) (+) state constitutes the S(1) state in the vertical absorption spectrum of mini-3-beta-carotene but switches order with the 2 (1)A(g) (-) state upon excited state relaxation. In the longer carotenes, near degeneracy or even root flipping between the (1)B(u) (+) and (1)B(u) (-) states is observed whereas the 3 (1)A(g) (-) state is found to remain energetically above the optically bright (1)B(u) (+) state at all nuclear geometries investigated here. The DFT/MRCI method is seen to underestimate the absolute excitation energies of the longer mini-beta-carotenes but the energy gaps between the excited states are reproduced well. In addition to singlet data, triplet-triplet absorption energies are
New developments in multireference and complete configuration interaction calculations
International Nuclear Information System (INIS)
Knowles, P.J.; Werner, H.J.
1987-01-01
Some recently developed techniques for the calculation of Hamiltonian matrix elements in molecular electronic structure calculations are described. These techniques allow the very rapid calculation, in any desired order, of one particle coupling coefficients between spin symmetry adapted basis functions of arbitrary structure. The matrix elements that are required, for either internally contracted multireference CI calculations, or full CI calculations, are then obtainable from suitable summations over resolutions of the identity, which has been shown previously to be rather efficient; this is especially true on vector computers, since all arithmetic can be formulated as matrix multiplications. These ideas have culminated in the preparation of a new multireference CI program which is capable of handling very large numbers of reference configurations. Application of the new techniques to full CI calculations are also presented
Configurable Input Devices for 3D Interaction using Optical Tracking
A.J. van Rhijn (Arjen)
2007-01-01
textabstractThree-dimensional interaction with virtual objects is one of the aspects that needs to be addressed in order to increase the usability and usefulness of virtual reality. Human beings have difficulties understanding 3D spatial relationships and manipulating 3D user interfaces, which
Configurable input devices for 3D interaction using optical tracking
Rhijn, van A.J.
2007-01-01
Three-dimensional interaction with virtual objects is one of the aspects that needs to be addressed in order to increase the usability and usefulness of virtual reality. Human beings have difficulties understanding 3D spatial relationships and manipulating 3D user interfaces, which require the
An Interaction Measure for Control Configuration Selection for Multivariable Bilinear Systems
DEFF Research Database (Denmark)
Shaker, Hamid Reza; Stoustrup, Jakob
2013-01-01
are needed to be controlled, are nonlinear and linear models are insufficient to describe the behavior of the processes. The focus of this paper is on the problem of control configuration selection for a class of nonlinear systems which is known as bilinear systems. A gramian-based interaction measure...... for control configuration selection of MIMO bilinear processes is described. In general, most of the results on the control configuration selection, which have been proposed so far, can only support linear systems. The proposed gramian-based interaction measure not only supports bilinear processes but also...
Chemical interactions and configurational disorder in silicate melts
Directory of Open Access Journals (Sweden)
G. Ottonello
2005-06-01
Full Text Available The Thermodynamics of quasi-chemical and polymeric models are briefly reviewed. It is shown that the two classes are mutually consistent, and that opportune conversion of the existing quasi-chemical parameterization of binary interactions in MO-SiO2 joins to polymeric models may be afforded without substantial loss of precision. It is then shown that polymeric models are extremely useful in deciphering the structural and reactive properties of silicate melts and glasses. They not only allow the Lux-Flood character of the dissolved oxides to be established, but also discriminate subordinate strain energy contributions to the Gibbs free energy of mixing from the dominant chemical interaction terms. This discrimination means that important information on the short-, medium- and long-range periodicity of this class of substances can be retrieved from thermodynamic analysis. Lastly, it is suggested that an important step forward in deciphering the complex topology of the inhomogeneity ranges observed at high SiO2 content can be performed by applying SCMF theory and, particularly, Matsen-Schick spectral analysis, hitherto applied only to rubberlike materials.
An Activity-Centric Approach to Configuration Work in Distributed Interaction
DEFF Research Database (Denmark)
Houben, Steven
The widespread introduction of new types of computing devices, such as smartphones, tablet computers, large interactive displays or even wearable devices, has led to setups in which users are interacting with a rich ecology of devices. These new device ecologies have the potential to introduce...... and captures the problems and challenges of distributed interaction. Using both empirical data and related work, I argue that configuration work is composed of: curation work, task resumption lag, mobility work, physical handling and articulation work. Using configuration work as a problem description, I...
Cr interaction in the formation of nano cluster of Y, Ti and O in bcc Fe an ab initio study
International Nuclear Information System (INIS)
Murali, D.; Panigrahi, B.K.; Valsakumar, M.C.; Chandra, Sharath; Sundar, C.S.
2008-01-01
Nanostructured ferritic alloys containing highly stable fine dispersion of yttrium oxide nano particles, produced by mechanical alloying, are promising structural materials for fast fission and fusion environments. Formation of Cr depleted and O enriched Y-Ti-O nanoclusters are observed in the atom probe analysis. Ab initio calculations based on density functional theory are carried out to understand the role of Cr atom interactions with other solute atoms (Y, Ti, O) and vacancies in the formation of nanocluster. The binding energy of clusters of Y-Ti-O in bcc Fe is found to be very high in the presence of vacancies. Our calculations are consistent with the atom probe observation of depletion of Cr atoms and enrichment of O atoms in the nanoclusters. (author)
DEFF Research Database (Denmark)
Møgelhøj, Andreas; Kelkkanen, Kari André; Wikfeldt, K Thor
2011-01-01
The structure of liquid water at ambient conditions is studied in ab initio molecular dynamics simulations in the NVE ensemble using van der Waals (vdW) density-functional theory, i.e., using the new exchange-correlation functionals optPBE-vdW and vdW-DF2, where the latter has softer nonlocal...... protocol could cause the deviation. An O-O PCF consisting of a linear combination of 70% from vdW-DF2 and 30% from low-density liquid water, as extrapolated from experiments, reproduces near-quantitatively the experimental O-O PCF for ambient water. This suggests the possibility that the new functionals...... shows some resemblance with experiment for high-density water ( Soper , A. K. and Ricci , M. A. Phys. Rev. Lett. 2000 , 84 , 2881 ), but not directly with experiment for ambient water. Considering the accuracy of the new functionals for interaction energies, we investigate whether the simulation...
Control configuration selection for bilinear systems via generalised Hankel interaction index array
DEFF Research Database (Denmark)
Shaker, Hamid Reza; Tahavori, Maryamsadat
2015-01-01
configuration selection. It is well known that a suitable control configuration selection is an important prerequisite for a successful industrial control. In this paper the problem of control configuration selection for multiple-input and multiple-output (MIMO) bilinear processes is addressed. First...... way, an iterative method for solving the generalised Sylvester equation is proposed. The generalised cross-gramian is used to form the generalised Hankel interaction index array. The generalised Hankel interaction index array is used for control configuration selection of MIMO bilinear processes. Most......Decentralised and partially decentralised control strategies are very popular in practice. To come up with a suitable decentralised or partially decentralised control structure, it is important to select the appropriate input and output pairs for control design. This procedure is called control...
A hybrid configuration interaction treatment based on seniority number and excitation schemes
International Nuclear Information System (INIS)
Alcoba, Diego R.; Capuzzi, Pablo; Torre, Alicia; Lain, Luis; Oña, Ofelia B.; Van Raemdonck, Mario; Bultinck, Patrick; Van Neck, Dimitri
2014-01-01
We present a configuration interaction method in which the Hamiltonian of an N-electron system is projected on Slater determinants selected according to the seniority-number criterion along with the traditional excitation-based procedure. This proposed method is especially useful to describe systems which exhibit dynamic (weak) correlation at determined geometric arrangements (where the excitation-based procedure is more suitable) but show static (strong) correlation at other arrangements (where the seniority-number technique is preferred). The hybrid method amends the shortcomings of both individual determinant selection procedures, yielding correct shapes of potential energy curves with results closer to those provided by the full configuration interaction method
A hybrid configuration interaction treatment based on seniority number and excitation schemes
Energy Technology Data Exchange (ETDEWEB)
Alcoba, Diego R.; Capuzzi, Pablo [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Torre, Alicia; Lain, Luis, E-mail: qfplapel@lg.ehu.es [Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644 E-48080 Bilbao (Spain); Oña, Ofelia B. [Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Universidad Nacional de La Plata, CCT La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Diag. 113 y 64 (S/N), Sucursal 4, CC 16, 1900 La Plata (Argentina); Van Raemdonck, Mario; Bultinck, Patrick [Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S3), 9000 Gent (Belgium); Van Neck, Dimitri [Center for Molecular Modelling, Ghent University, Technologiepark 903, 9052 Zwijnaarde (Belgium)
2014-12-28
We present a configuration interaction method in which the Hamiltonian of an N-electron system is projected on Slater determinants selected according to the seniority-number criterion along with the traditional excitation-based procedure. This proposed method is especially useful to describe systems which exhibit dynamic (weak) correlation at determined geometric arrangements (where the excitation-based procedure is more suitable) but show static (strong) correlation at other arrangements (where the seniority-number technique is preferred). The hybrid method amends the shortcomings of both individual determinant selection procedures, yielding correct shapes of potential energy curves with results closer to those provided by the full configuration interaction method.
CONFIGURATION-INTERACTION IN NI METAL AND NI-ALLOYS AND HIGH-ENERGY SPECTROSCOPY
TANAKA, A; JO, T; SAWATZKY, GA
We discuss the electronic state of Ni atoms in Ni metal and of Ni impurity in Cu and Au metals from the viewpoint of 3d configuration interaction (CI) using the Anderson impurity model including atomic multiplets. On the basis of the discussion, we give an interpretation for the Ni 2p-core X-ray
Higher-order resonant electronic recombination as a manifestation of configuration interaction
International Nuclear Information System (INIS)
Beilmann, C; Amaro, P; Tashenov, S; Bekker, H; Harman, Z; Crespo López-Urrutia, J R
2013-01-01
Theoretical and experimental investigations of higher-order electron–ion recombination resonances including inter-shell excitations are presented for L-shell ions of Kr with the aim of examining details of atomic structure calculations. The particular importance of electron–electron interaction and configuration mixing effects for these recombination processes enables their use for detailed tests of electron correlation effects. A test of the required level of considered mixing configurations is presented and further experiments involving higher-order recombination channels are motivated. (paper)
Varadwaj, Pradeep Risikrishna
2010-05-01
Spin-restricted DFT (X3LYP and B3LYP) and ab initio (MP2(fc) and CCSD(fc)) calculations in conjunction with the Aug-CC-pVDZ and Aug-CC-pVTZ basis sets were performed on a series of hydrogen bonded complexes PN...HX (X = F, Cl, Br) to examine the variations of their equilibrium gas phase structures, energetic stabilities, electronic properties, and vibrational characteristics in their electronic ground states. In all cases the complexes were predicted to be stable with respect to the constituent monomers. The interaction energy (Delta E) calculated using a super-molecular model is found to be in this order: PN...HF > PN...HCl > PN...HBr in the series examined. Analysis of various physically meaningful contributions arising from the Kitaura-Morokuma (KM) and reduced variational space self-consistent-field (RVS-SCF) energy decomposition procedures shows that the electrostatic energy has significant contribution to the over-all interaction energy. Dipole moment enhancement (Delta mu) was observed in these complexes expected of predominant dipole-dipole electrostatic interaction and was found to follow the trend PN...HF > PN...HCl > PN...HBr at the CCSD level. However, the DFT (X3LYP and B3LYP) and MP2 levels less accurately determined these values (in this order HF 0, nabla(2)rho(c) > 0 and H(c) > 0 at the BCP) whilst the bonds in PN (rho(c) > 0, nabla(2)rho(c) > 0 and H(c) 0, nabla(2)rho(c) BD*(HX) delocalization.
International Nuclear Information System (INIS)
Mo, Shang-Di; Ching, W. Y.
2001-01-01
Ab initio calculation of the XANSE/ELNES spectra for α quartz and stishovite were carried out using a large-supercell approach that includes the electron - core - hole interaction. Excellent agreements with experimental spectra were obtained for Si - K, Si - L 2,3 , and O - K edges. The usual interpretation using orbital-resolved local density of states in the conduction band is unsatisfactory. [copyright] 2001 American Institute of Physics
Probing the Interaction of Ionic Liquids with CO2: A Raman Spectroscopy and Ab Initio Study
National Research Council Canada - National Science Library
Eucker, IV, William
2008-01-01
...) with selected ionic liquids (ILs). Raman spectroscopy and first principle quantum mechanical calculations were performed on selected IL solvents in contact with CO2 in the effort to discover how the solvents interact with the gas. ILs are salts...
Attractive PHHP interactions revealed by state-of-the-art ab initio calculations.
Yourdkhani, Sirous; Jabłoński, Mirosław; Echeverría, Jorge
2017-10-25
We report in this work a combined structural and state-of-the-art computational study of homopolar P-HH-P intermolecular contacts. Database surveys have shown the abundance of such surprisingly unexplored contacts, which are usually accompanied by other weak interactions in the solid state. By means of a detailed theoretical study utilizing SAPT(DFT), MP2, SCS-MP2, MP2C and CCSD(T) methods and both aug-cc-pVXZ and aug-cc-pCVXZ (X = D, T, Q, 5) basis sets as well as extrapolation to the CBS limit, we have shown that P-HH-P contacts are indeed attractive and considerably strong. SAPT(DFT) calculations have revealed the dispersive nature of the P-HH-P interaction with only minor contribution of the inductive term, whereas the first-order electrostatic term is clearly overbalanced by the first-order exchange energy. In general the computed interaction energies follow the trend: E ≈ E < E < E. Our results have also shown that the aug-cc-pVDZ (or aug-cc-pCVDZ) basis set is not yet well balanced and that the second-order dispersion energy term is the slowest converging among all SAPT(DFT) energy components. Compared to aug-cc-pVXZ basis sets, their core-correlation counterparts have a modest influence on all supermolecular interaction energies and a negligible influence on both the SAPT(DFT) interaction energy and its components.
Energy Technology Data Exchange (ETDEWEB)
Orimoto, Yuuichi; Xie, Peng; Liu, Kai [Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580 (Japan); Yamamoto, Ryohei [Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580 (Japan); Imamura, Akira [Hiroshima Kokusai Gakuin University, 6-20-1 Nakano, Aki-ku, Hiroshima 739-0321 (Japan); Aoki, Yuriko, E-mail: aoki.yuriko.397@m.kyushu-u.ac.jp [Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580 (Japan); Japan Science and Technology Agency, CREST, 4-1-8 Hon-chou, Kawaguchi, Saitama 332-0012 (Japan)
2015-03-14
An Elongation-counterpoise (ELG-CP) method was developed for performing accurate and efficient interaction energy analysis and correcting the basis set superposition error (BSSE) in biosystems. The method was achieved by combining our developed ab initio O(N) elongation method with the conventional counterpoise method proposed for solving the BSSE problem. As a test, the ELG-CP method was applied to the analysis of the DNAs’ inter-strands interaction energies with respect to the alkylation-induced base pair mismatch phenomenon that causes a transition from G⋯C to A⋯T. It was found that the ELG-CP method showed high efficiency (nearly linear-scaling) and high accuracy with a negligibly small energy error in the total energy calculations (in the order of 10{sup −7}–10{sup −8} hartree/atom) as compared with the conventional method during the counterpoise treatment. Furthermore, the magnitude of the BSSE was found to be ca. −290 kcal/mol for the calculation of a DNA model with 21 base pairs. This emphasizes the importance of BSSE correction when a limited size basis set is used to study the DNA models and compare small energy differences between them. In this work, we quantitatively estimated the inter-strands interaction energy for each possible step in the transition process from G⋯C to A⋯T by the ELG-CP method. It was found that the base pair replacement in the process only affects the interaction energy for a limited area around the mismatch position with a few adjacent base pairs. From the interaction energy point of view, our results showed that a base pair sliding mechanism possibly occurs after the alkylation of guanine to gain the maximum possible number of hydrogen bonds between the bases. In addition, the steps leading to the A⋯T replacement accompanied with replications were found to be unfavorable processes corresponding to ca. 10 kcal/mol loss in stabilization energy. The present study indicated that the ELG-CP method is promising for
Energy Technology Data Exchange (ETDEWEB)
Bross, David H.; Parmar, Payal; Peterson, Kirk A., E-mail: kipeters@wsu.edu [Department of Chemistry, Washington State University, Pullman, Washington 99164-4630 (United States)
2015-11-14
The first 6 ionization potentials (IPs) of the uranium atom have been calculated using multireference configuration interaction (MRCI+Q) with extrapolations to the complete basis set limit using new all-electron correlation consistent basis sets. The latter was carried out with the third-order Douglas-Kroll-Hess Hamiltonian. Correlation down through the 5s5p5d electrons has been taken into account, as well as contributions to the IPs due to the Lamb shift. Spin-orbit coupling contributions calculated at the 4-component Kramers restricted configuration interaction level, as well as the Gaunt term computed at the Dirac-Hartree-Fock level, were added to the best scalar relativistic results. The final ionization potentials are expected to be accurate to at least 5 kcal/mol (0.2 eV) and thus more reliable than the current experimental values of IP{sub 3} through IP{sub 6}.
Nuclear structure calculations in $^{20}$Ne with No-Core Configuration-Interaction model
Konieczka, Maciej; Satuła, Wojciech
2016-01-01
Negative parity states in $^{20}$Ne and Gamow-Teller strength distribution for the ground-state beta-decay of $^{20}$Na are calculated for the very first time using recently developed No-Core Configuration-Interaction model. The approach is based on multi-reference density functional theory involving isospin and angular-momentum projections. Advantages and shortcomings of the method are briefly discussed.
International Nuclear Information System (INIS)
Warner, R.C.; Joshi, G.C.
1979-01-01
A simple rule is presented for calculating the contributions to the interaction potentials between constituent particles for a family of multiquark states, due to the presence of a semi-classical gauge field configuration which exists in a single SU(2) subgroup of colour SU(3). In multiquark states beyond the baryon many-body potential terms are found. The static (Wilson loop) limit is sufficient to elucidate the dependence of the potential on the colour structure of the multiquark state
Configuration interaction calculations of positron binding to Be({sup 3}P )
Energy Technology Data Exchange (ETDEWEB)
Bromley, M.W.J. [Department of Physics, San Diego State University, San Diego, CA 92182 (United States)]. E-mail: mbromley@physics.sdsu.edu; Mitroy, J. [Faculty of Technology, Charles Darwin University, Darwin, NT 0909 (Australia)]. E-mail: jxm107@rsphysse.anu.edu.au
2006-06-15
The configuration interaction method is applied to investigate the possibility of positron binding to the metastable beryllium (1s{sup 2}2s2p {sup 3}P ) state. The largest calculation obtained an estimated energy that was unstable by 0.00014 Hartree with respect to the Ps + Be{sup +}(2s) lowest dissociation channel. It is likely that positron binding to parent states with non-zero angular momentum is inhibited by centrifugal barriers.
International Nuclear Information System (INIS)
Cheng, K.T.; Chen, M.H.; Johnson, W.R.
1994-04-01
A new relativistic configuration-interaction (CI) method using B-spline basis functions has been developed to study the correlation energies of two-electron heliumlike ions. Based on the relativistic no-pair Hamiltonian, the CI equation leads to a symmetric eigenvalue problem involving large, dense matrices. Davidson's method is used to obtain the lowest few eigenenergies and eigenfunctions. Results on transition energies and finite structure splittings for heliumlike ions are in very good agreement with experiment throughout the periodic table
Bierer, Julie Arenberg
2007-03-01
The efficacy of cochlear implants is limited by spatial and temporal interactions among channels. This study explores the spatially restricted tripolar electrode configuration and compares it to bipolar and monopolar stimulation. Measures of threshold and channel interaction were obtained from nine subjects implanted with the Clarion HiFocus-I electrode array. Stimuli were biphasic pulses delivered at 1020 pulses/s. Threshold increased from monopolar to bipolar to tripolar stimulation and was most variable across channels with the tripolar configuration. Channel interaction, quantified by the shift in threshold between single- and two-channel stimulation, occurred for all three configurations but was largest for the monopolar and simultaneous conditions. The threshold shifts with simultaneous tripolar stimulation were slightly smaller than with bipolar and were not as strongly affected by the timing of the two channel stimulation as was monopolar. The subjects' performances on clinical speech tests were correlated with channel-to-channel variability in tripolar threshold, such that greater variability was related to poorer performance. The data suggest that tripolar channels with high thresholds may reveal cochlear regions of low neuron survival or poor electrode placement.
Tubman, Norm; Whaley, Birgitta
The development of exponential scaling methods has seen great progress in tackling larger systems than previously thought possible. One such technique, full configuration interaction quantum Monte Carlo, allows exact diagonalization through stochastically sampling of determinants. The method derives its utility from the information in the matrix elements of the Hamiltonian, together with a stochastic projected wave function, which are used to explore the important parts of Hilbert space. However, a stochastic representation of the wave function is not required to search Hilbert space efficiently and new deterministic approaches have recently been shown to efficiently find the important parts of determinant space. We shall discuss the technique of Adaptive Sampling Configuration Interaction (ASCI) and the related heat-bath Configuration Interaction approach for ground state and excited state simulations. We will present several applications for strongly correlated Hamiltonians. This work was supported through the Scientific Discovery through Advanced Computing (SciDAC) program funded by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences.
Dimensionality and magnetic interactions in CaFe2As2: An ab initio study
International Nuclear Information System (INIS)
Tompsett, D.A.; Lonzarich, G.G.
2010-01-01
We present detailed electronic structure calculations for CaFe 2 As 2 . We investigate in particular the 'collapsed' tetragonal and orthorhombic regions of the temperature-pressure phase diagram and find properties that distinguish CaFe 2 As 2 from other Fe-pnictide compounds. In contrast to the tetragonal phase of other Fe-pnictides the electronic structure in the 'collapsed' tetragonal phase of CaFe 2 As 2 is found to be strongly 3D. By an analysis of the non-interacting susceptibility, χ 0 (q), of CaFe 2 As 2 and LaFePO we discuss the role of magnetic interactions in iron-pnictides. From this we propose an intuitive explanation for the outstanding question relating to why the predicted antiferromagnetic moment depends strongly on coordinate relaxation and the choice of correlation functional.
Brela, Mateusz Z.; Boczar, Marek; Malec, Leszek M.; Wójcik, Marek J.; Nakajima, Takahito
2018-05-01
Hydrogen bond networks in uracil, 1-methyluracil and 1-methyl-4-thiouracil were studied by ab initio molecular dynamics as well as analysis of the orbital interactions. The power spectra calculated by ab initio molecular dynamics for atoms involved in hydrogen bonds were analyzed. We calculated spectra by using anharmonic approximation based on the autocorrelation function of the atom positions obtained from the Born-Oppenheimer simulations. Our results show the differences between hydrogen bond networks in uracil and its methylated derivatives. The studied methylated derivatives, 1-methyluracil as well as 1-methyl-4-thiouracil, form dimeric structures in the crystal phase, while uracil does not form that kind of structures. The presence of sulfur atom instead oxygen atom reflects weakness of the hydrogen bonds that build dimers.
High pressure studies of configuration interaction and crystal field effects in Sm2+
International Nuclear Information System (INIS)
Shen, Y.; Bray, K.L.
1998-01-01
Full text: Divalent rare earth ions are interesting luminescence centres because of the low energy of the excited 4f n-1 5d 1 configuration relative to the 4f n ground configuration. The low energy difference between these two configurations leads to two principle effects which distinguish the luminescence properties of divalent rare earth ions from those of trivalent rare earth ions. First, a significant amount of 5d state mixing into the electronic states of the 4f n configuration occurs and second, the thermal activation barrier to 4f n → 4f n-1 5d 1 crossing is greatly reduced. The first effect introduces opposite parity character into the emitting levels of divalent rare earth ions and acts to shorten lifetimes and increase f-f luminescence intensity, while the second effect acts to enhance thermal quenching of 4f n excited electronic states closest in energy to the 4f n-1 5d 1 configuration. The interaction between the 4f n and 4f n-1 5d 1 configurations and crystal field properties are typically studied by considering the luminescence properties of divalent rare earth ions in a series of host crystals. We are currently developing a new approach, based on high pressure luminescence spectroscopy, for understanding con-figuration interaction and crystal field properties of divalent rare earth ions. The strategy of our approach is to use high pressure as a tool of structural perturbation. By applying hydrostatic pressure to solids, we have an opportunity to continuously vary the nearest neighbour coordination environment of divalent rare earth dopants. Our general goal is to correlate pressure-induced changes in local structure with pressure-induced changes in luminescence properties in an attempt to better understand structure-property-composition relations in solid state luminescent materials. In this paper we present recent results on Sm 2+ in a series of MFCl (M = Sr, Ba, Ca) host lattices. Luminescence spectra and decay properties as a function of
Ab initio study of interstitial cluster interaction with Re, Os, and Ta in W
Energy Technology Data Exchange (ETDEWEB)
Setyawan, Wahyu, E-mail: wahyu.setyawan@pnnl.gov; Nandipati, Giridhar; Kurtz, Richard J.
2017-02-15
The stability of tungsten self-interstitial atom (SIA) clusters is studied using first-principles methods. Clusters from one to seven SIAs are systematically explored from 1264 unique configurations. Finite-size effect of the simulation cell is corrected based on the scaling of formation energy versus inverse volume cell. Furthermore, the accuracy of the calculations is improved by treating the 5p semicore states as valence states. Configurations of the three most stable clusters in each cluster size n are presented, which consist of parallel [111] dumbbells. The evolution of these clusters leading to small dislocation loops is discussed. The binding energy of size-n clusters is analyzed relative to an n → (n-1) + 1 dissociation and is shown to increase with size. Extrapolation for n > 7 is presented using a dislocation loop model. In addition, the interaction of these clusters with a substitutional Re, Os, or Ta solute is explored by replacing one of the dumbbells with the solute. Re and Os strongly attract these clusters, but Ta strongly repels. The strongest interaction is found when the solute is located on the periphery of the cluster rather than in the middle. The magnitude of this interaction decreases with cluster size. Empirical fits to describe the trend of the solute binding energy are presented. - Highlights: • Systematic DFT exploration of tungsten SIA clusters from 1264 configurations. • Detailed structures of several most stable clusters are presented. • Novel finding of the trend of solute binding of Re, Os, and Ta with SIA clusters. • Empirical models that describe the trends of the solute binding energies.
Ab initio study of interstitial cluster interaction with Re, Os, and Ta in W
International Nuclear Information System (INIS)
Setyawan, Wahyu; Nandipati, Giridhar; Kurtz, Richard J.
2017-01-01
The stability of tungsten self-interstitial atom (SIA) clusters is studied using first-principles methods. Clusters from one to seven SIAs are systematically explored from 1264 unique configurations. Finite-size effect of the simulation cell is corrected based on the scaling of formation energy versus inverse volume cell. Furthermore, the accuracy of the calculations is improved by treating the 5p semicore states as valence states. Configurations of the three most stable clusters in each cluster size n are presented, which consist of parallel [111] dumbbells. The evolution of these clusters leading to small dislocation loops is discussed. The binding energy of size-n clusters is analyzed relative to an n → (n-1) + 1 dissociation and is shown to increase with size. Extrapolation for n > 7 is presented using a dislocation loop model. In addition, the interaction of these clusters with a substitutional Re, Os, or Ta solute is explored by replacing one of the dumbbells with the solute. Re and Os strongly attract these clusters, but Ta strongly repels. The strongest interaction is found when the solute is located on the periphery of the cluster rather than in the middle. The magnitude of this interaction decreases with cluster size. Empirical fits to describe the trend of the solute binding energy are presented. - Highlights: • Systematic DFT exploration of tungsten SIA clusters from 1264 configurations. • Detailed structures of several most stable clusters are presented. • Novel finding of the trend of solute binding of Re, Os, and Ta with SIA clusters. • Empirical models that describe the trends of the solute binding energies.
Saravanan, A. V. Sai; Abishek, B.; Anantharaj, R.
2018-04-01
The fundamental natures of the molecular level interaction and charge transfer between specific radioactive elements and ionic liquids of 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ([BMIM]+[NTf2]-), 1-Butyl-3-methylimidazolium ethylsulfate ([BMIM]+[ES]-) and 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]+[BF4]-) were investigated utilising HF theory and B3LYP hybrid DFT. The ambiguity in reaction mechanism of the interacting species dictates to employ Effective Core Potential (ECP) basis sets such as UGBS, SDD, and SDDAll to account for the relativistic effects of deep core electrons in the system involving potential, heavy and hazardous radioactive elements present in nuclear waste. The SCF energy convergence of each system validates the characterisation of the molecular orbitals as a linear combination of atomic orbitals utilising fixed MO coefficients and the optimized geometry of each system is visualised based on which Mulliken partial charge analysis is carried out to account for the polarising behaviour of the radioactive element and charge transfer between the IL phase by comparison with the bare IL species.
International Nuclear Information System (INIS)
Gonis, A.; Zhang, X.h.; Freeman, A.J.; Turchi, P.; Stocks, G.M.; Nicholson, D.M.
1987-01-01
The determination of configurational energies in terms of effective cluster interactions in substitutionally disordered alloys from a knowledge of the alloy electronic structure is examined within the methods of concentration waves (CW) and the generalized perturbation method (GPM), and for the first time within the embedded-cluster method (ECM). It is shown that the ECM provides the exact summation to all orders of the effective cluster interaction expansions obtained in the partially renormalized GPM. The connection between the various methods (CW, GPM, and ECM) is discussed and illustrated by means of numerical calculations for model one-dimensional tight-binding (TB) systems and for TB Hamiltonians chosen to describe Pd-V alloys. These calculations, and the formal considerations presented in the body of the paper, show the complete equivalence of converged GPM summations within specific clusters and the ECM. In addition, it is shown that an exact expansion of the configurational energy can be obtained in terms of fully renormalized effective cluster interactions. In principle, these effective cluster interactions can be used in conjunction with statistical models to determine stable ordered structures at low temperatures and alloy phase diagrams
Fales, B Scott; Levine, Benjamin G
2015-10-13
Methods based on a full configuration interaction (FCI) expansion in an active space of orbitals are widely used for modeling chemical phenomena such as bond breaking, multiply excited states, and conical intersections in small-to-medium-sized molecules, but these phenomena occur in systems of all sizes. To scale such calculations up to the nanoscale, we have developed an implementation of FCI in which electron repulsion integral transformation and several of the more expensive steps in σ vector formation are performed on graphical processing unit (GPU) hardware. When applied to a 1.7 × 1.4 × 1.4 nm silicon nanoparticle (Si72H64) described with the polarized, all-electron 6-31G** basis set, our implementation can solve for the ground state of the 16-active-electron/16-active-orbital CASCI Hamiltonian (more than 100,000,000 configurations) in 39 min on a single NVidia K40 GPU.
Understanding and improving the efficiency of full configuration interaction quantum Monte Carlo.
Vigor, W A; Spencer, J S; Bearpark, M J; Thom, A J W
2016-03-07
Within full configuration interaction quantum Monte Carlo, we investigate how the statistical error behaves as a function of the parameters which control the stochastic sampling. We define the inefficiency as a measure of the statistical error per particle sampling the space and per time step and show there is a sizeable parameter regime where this is minimised. We find that this inefficiency increases sublinearly with Hilbert space size and can be reduced by localising the canonical Hartree-Fock molecular orbitals, suggesting that the choice of basis impacts the method beyond that of the sign problem.
Understanding and improving the efficiency of full configuration interaction quantum Monte Carlo
Energy Technology Data Exchange (ETDEWEB)
Vigor, W. A.; Bearpark, M. J. [Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Spencer, J. S. [Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Thom, A. J. W. [Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW (United Kingdom)
2016-03-07
Within full configuration interaction quantum Monte Carlo, we investigate how the statistical error behaves as a function of the parameters which control the stochastic sampling. We define the inefficiency as a measure of the statistical error per particle sampling the space and per time step and show there is a sizeable parameter regime where this is minimised. We find that this inefficiency increases sublinearly with Hilbert space size and can be reduced by localising the canonical Hartree–Fock molecular orbitals, suggesting that the choice of basis impacts the method beyond that of the sign problem.
Energy Technology Data Exchange (ETDEWEB)
Schriber, Jeffrey B.; Evangelista, Francesco A. [Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States)
2016-04-28
We introduce a new procedure for iterative selection of determinant spaces capable of describing highly correlated systems. This adaptive configuration interaction (ACI) determines an optimal basis by an iterative procedure in which the determinant space is expanded and coarse grained until self-consistency. Two importance criteria control the selection process and tune the ACI to a user-defined level of accuracy. The ACI is shown to yield potential energy curves of N{sub 2} with nearly constant errors, and it predicts singlet-triplet splittings of acenes up to decacene that are in good agreement with the density matrix renormalization group.
International Nuclear Information System (INIS)
Dodson, B.W.
1986-01-01
A classical potential incorporating two- and three-body interaction terms has recently been introduced by Stillinger and Weber (SW) for simulation of the liquefaction transition of silicon. The equilibrium mechanical properties of this potential are determined and found to agree well with experimental values. The potential also seems to be adequate for problems involving computation of defect energies, such as the stability of strained-layer superlattice interfaces. However, inadequate treatment of configurations with low coordination number makes modeling of the epitaxial growth of (111) silicon impossible. Simple modifications of the SW potential form do allow for (111) epitaxial growth, but the earliest stages of growth then become unphysical
Non-orthogonal configuration interaction for the calculation of multielectron excited states
Energy Technology Data Exchange (ETDEWEB)
Sundstrom, Eric J., E-mail: eric.jon.sundstrom@berkeley.edu; Head-Gordon, Martin [Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)
2014-03-21
We apply Non-orthogonal Configuration Interaction (NOCI) to molecular systems where multielectron excitations, in this case double excitations, play a substantial role: the linear polyenes and β-carotene. We demonstrate that NOCI when applied to systems with extended conjugation, provides a qualitatively correct wavefunction at a fraction of the cost of many other multireference treatments. We also present a new extension to this method allowing for purification of higher-order spin states by utilizing Generalized Hartree-Fock Slater determinants and the details for computing 〈S{sup 2}〉 for the ground and excited states.
International Nuclear Information System (INIS)
Luthi, Berengere
2017-01-01
In order to improve our understanding of alloy plasticity, it is important to describe at the atomic scale the dislocation-solute interactions and their effect on the dislocation mobility. This work focuses on the body-centered cubic (BCC) transition metals in presence of interstitial solute atoms, in particular the Fe-C system. Using Density Functional Theory (DFT) calculations, the core structure of the screw dislocation of Burgers vector b=1/2<111> was investigated in iron in presence of boron, carbon, nitrogen and oxygen solute atoms, and in BCC metals from group 5 (V, Nb, Ta) and 6 (Mo, W) in presence of carbon solutes. A core reconstruction is evidenced in iron and group 6 metals, along with a strong attractive dislocation-solute interaction energy: the dislocation goes from easy to hard configuration where the solute atoms are at the center of trigonal prisms along the dislocation line. A different behavior is observed in group 5 metals, for which the most stable configuration for the carbon atom is an octahedral site in the vicinity of the dislocation, without any core reconstruction. This group tendency is linked to the structure of mono-carbides. Consequences of the strongly attractive dislocation-solute interactions in Fe(C) were then investigated. First the equilibrium segregation close to the dislocation core was studied using a mean-field model and Monte Carlo simulations. Over a wide temperature range, from 200 to 700 K, a strong segregation is predicted with every other prismatic site occupied by a carbon atom. Then, the mobility of the dislocation in presence of carbon atoms was investigated by modeling the double-kink mechanism with DFT, in relation with experimental data obtained with transmission electron microscopy. The activation energy obtained for this atomic scale mechanism is in good agreement with experimental values for the dynamic strain aging. (author) [fr
Electronic spectra of DyF studied by four-component relativistic configuration interaction methods
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, Shigeyoshi, E-mail: syamamot@lets.chukyo-u.ac.jp [School of International Liberal Studies, Chukyo University, 101-2 Yagoto-Honmachi, Showa-ku, Nagoya 466-8666 (Japan); Tatewaki, Hiroshi [Institute of Advanced Studies in Artificial Intelligence, Chukyo University, Toyota 470-0393 (Japan); Graduate School of Natural Sciences, Nagoya City University, Aichi 467-8501 (Japan)
2015-03-07
The electronic states of the DyF molecule below 3.0 eV are studied using 4-component relativistic CI methods. Spinors generated by the average-of-configuration Hartree-Fock method with the Dirac-Coulomb Hamiltonian were used in CI calculations by the KRCI (Kramers-restricted configuration interaction) program. The CI reference space was generated by distributing 11 electrons among the 11 Kramers pairs composed mainly of Dy [4f], [6s], [6p] atomic spinors, and double excitations are allowed from this space to the virtual molecular spinors. The CI calculations indicate that the ground state has the dominant configuration (4f{sup 9})(6s{sup 2})(Ω = 7.5). Above this ground state, 4 low-lying excited states (Ω = 8.5, 7.5, 7.5, 7.5) are found with dominant configurations (4f{sup 10})(6s). These results are consistent with the experimental studies of McCarthy et al. Above these 5 states, 2 states were observed at T{sub 0} = 2.39 eV, 2.52 eV by McCarthy et al. and were named as [19.3]8.5 and [20.3]8.5. McCarthy et al. proposed that both states have dominant configurations (4f{sup 9})(6s)(6p), but these configurations are not consistent with the large R{sub e}’s (∼3.9 a.u.) estimated from the observed rotational constants. The present CI calculations provide near-degenerate states of (4f{sup 10})(6p{sub 3/2,1/2}), (4f{sup 10})(6p{sub 3/2,3/2}), and (4f{sup 9})(6s)(6p{sub 3/2,1/2}) at around 3 eV. The former two states have larger R{sub e} (3.88 a.u.) than the third, so that it is reasonable to assign (4f{sup 10})(6p{sub 3/2,1/2}) to [19.3]8.5 and (4f{sup 10})(6p{sub 3/2,3/2}) to [20.3]8.5.
Ab initio study of H + + H 2 collisions: Elastic/inelastic and charge transfer processes
Saieswari, A.; Kumar, Sanjay
2007-12-01
An ab initio full configuration interaction study has been undertaken to obtain the global potential energy surfaces for the ground and the first excited electronic state of the H + + H 2 system employing Dunning's cc-pVQZ basis set. Using the ab initio approach the corresponding quasi-diabatic potential energy surfaces and coupling potentials have been obtained. A time-independent quantum mechanical study has been also undertaken for both the inelastic and charge transfer processes at the experimental collision energy Ec.m. = 20.0 eV and the preliminary results show better agreement with the experimental data as compared to the earlier available theoretical studies.
Ramos, Patrícia; Schmitz, Marcos; Filgueira, Daza; Votto, Ana Paula; Durruthy, Michael; Gelesky, Marcos; Ruas, Caroline; Yunes, João; Tonel, Mariana; Fagan, Solange; Monserrat, José
2017-07-01
Saxitoxins (STXs) are potent neurotoxins that also induce cytotoxicity through the generation of reactive oxygen species. Carbon nanotubes (CNTs) are nanomaterials that can promote a Trojan horse effect, facilitating the entry of toxic molecules to cells when adsorbed to nanomaterials. The interaction of pristine single-walled (SW)CNTs and carboxylated (SWCNT-COOH) nanotubes with STX was evaluated by ab initio simulation and bioassays using the cell line HT-22. Cells (5 × 10 4 cells/mL) were exposed to SWCNT and SWCNT-COOH (5 μg mL -1 ), STX (200 μg L -1 ), SWCNT+STX, and SWCNT-COOH+STX for 30 min or 24 h. Results of ab initio simulation showed that the interaction between SWCNT and SWCNT-COOH with STX occurs in a physisorption. The interaction of SWCNT+STX induced a decrease in cell viability. Cell proliferation was not affected in any treatment after 30 min or 24 h of exposure (p > 0.05). Treatment with SWCNT-COOH induced high reactive oxygen species levels, an effect attenuated in SWCNT-COOH+STX treatment. In terms of cellular oxygen consumption, both CNTs when coexposed with STX antagonize the toxin effect. Based on these results, it can be concluded that the results obtained in vitro corroborate the semiempirical evidence found using density functional theory ab initio simulation. Environ Toxicol Chem 2017;36:1728-1737. © 2016 SETAC. © 2016 SETAC.
Directory of Open Access Journals (Sweden)
Udo Alexander Ernst
2016-10-01
Full Text Available Processing natural scenes requires the visual system to integrate local features into global object descriptions. To achieve coherent representations, the human brain uses statistical dependencies to guide weighting of local feature conjunctions. Pairwise interactions among feature detectors in early visual areas may form the early substrate of these local feature bindings. To investigate local interaction structures in visual cortex, we combined psychophysical experiments with computational modeling and natural scene analysis. We first measured contrast thresholds for 2x2 grating patch arrangements (plaids, which differed in spatial frequency composition (low, high or mixed, number of grating patch co-alignments (0, 1 or 2, and inter-patch distances (1° and 2° of visual angle. Contrast thresholds for the different configurations were compared to the prediction of probability summation (PS among detector families tuned to the four retinal positions. For 1° distance the thresholds for all configurations were larger than predicted by PS, indicating inhibitory interactions. For 2° distance, thresholds were significantly lower compared to PS when the plaids were homogeneous in spatial frequency and orientation, but not when spatial frequencies were mixed or there was at least one misalignment. Next, we constructed a neural population model with horizontal laminar structure, which reproduced the detection thresholds after adaptation of connection weights. Consistent with prior work, contextual interactions were medium-range inhibition and long-range, orientation-specific excitation. However, inclusion of orientation-specific, inhibitory interactions between populations with different spatial frequency preferences were crucial for explaining detection thresholds. Finally, for all plaid configurations we computed their likelihood of occurrence in natural images. The likelihoods turned out to be inversely related to the detection thresholds obtained
Energy Technology Data Exchange (ETDEWEB)
Lara-Castells, M. P. de, E-mail: delara@iff.csic.es; Aguirre, N. F., E-mail: delara@iff.csic.es; Delgado-Barrio, G., E-mail: delara@iff.csic.es; Villarreal, P., E-mail: delara@iff.csic.es [Instituto de Física Fundamental (CSIC), Serrano 123, 28006 Madrid (Spain); Mitrushchenkov, A. O. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France)
2015-01-22
An efficient full-configuration-interaction 'nuclear orbital' treatment was developed as a benchmark quantum-chemistry-like method to calculate, ground and excited, fermionic 'solvent' wave-functions and applied to {sup 3}He{sub N} clusters with atomic or molecular impurities [J. Chem. Phys. (Communication) 125, 221101 (2006)]. The main difficulty in handling doped {sup 3}He{sub N} clusters lies in the Fermi-Dirac nuclear statistics, the wide amplitudes of the He-dopant and He-He motions, and the hard-core He-He interaction at short distances. This paper overviews the theoretical approach and its recent applications to energetic, structural and spectroscopic aspects of different dopant-{sup 3}He{sub N} clusters. Preliminary results by using the latest version of the FCI-NO computational implementation, to bosonic Cl{sub 2}(X)-({sup 4}He){sub N} clusters, are also shown.
Ota, Shintaro; Fujimori, Mitsuki; Ishimura, Hiromi; Shulga, Sergiy; Kurita, Noriyuki
2017-10-01
Accumulation of amyloid-β (Aβ) peptides in a brain is closely related with the pathogenesis of Alzheimer's disease. To suppress the production of Aβ peptides, we propose novel curcumin derivatives and investigate their binding properties with the amyloid precursor protein (APP), using protein-ligand docking as well as ab initio molecular simulations. Our proposed derivative (curcumin XIV) is found to have a large binding energy with APP and interacts strongly with the cleavage site Ala19 by secretase. It is thus expected that curcumin XIV can protect APP from the secretase attack and be a potent inhibitor against the production of Aβ peptides.
LENUS (Irish Health Repository)
Casey, Fergal
2011-08-22
Abstract Background Gene and protein interactions are commonly represented as networks, with the genes or proteins comprising the nodes and the relationship between them as edges. Motifs, or small local configurations of edges and nodes that arise repeatedly, can be used to simplify the interpretation of networks. Results We examined triplet motifs in a network of quantitative epistatic genetic relationships, and found a non-random distribution of particular motif classes. Individual motif classes were found to be associated with different functional properties, suggestive of an underlying biological significance. These associations were apparent not only for motif classes, but for individual positions within the motifs. As expected, NNN (all negative) motifs were strongly associated with previously reported genetic (i.e. synthetic lethal) interactions, while PPP (all positive) motifs were associated with protein complexes. The two other motif classes (NNP: a positive interaction spanned by two negative interactions, and NPP: a negative spanned by two positives) showed very distinct functional associations, with physical interactions dominating for the former but alternative enrichments, typical of biochemical pathways, dominating for the latter. Conclusion We present a model showing how NNP motifs can be used to recognize supportive relationships between protein complexes, while NPP motifs often identify opposing or regulatory behaviour between a gene and an associated pathway. The ability to use motifs to point toward underlying biological organizational themes is likely to be increasingly important as more extensive epistasis mapping projects in higher organisms begin.
Energy Technology Data Exchange (ETDEWEB)
El-Maaref, A.A., E-mail: ahmed.maaref@azhar.edu.eg; Saddeek, Y.B.; Abou halaka, M.M.
2017-02-15
Highlights: • Fine-structure calculations of sulfurlike Mn have been performed using configuration interaction technique, CI. • The relativistic effects, Breit-Pauli Hameltonian, have been correlated to the CI calculations. • Excitation rates by electron impact of the Mn X ion have been evaluated up to ionization potential. - Abstract: Fine-structure calculations of energies and transition parameters have been performed using the configuration interaction technique (CI) as implemented in CIV3 code for sulfurlike manganese, Mn X. The calculations are executed in an intermediate coupling scheme using the Breit-Pauli Hamiltonian. As well as, energy levels and oscillator strengths are calculated using LANL code, where the calculations by LANL have been used to estimate the accuracy of the present CI calculations. The calculated energy levels, oscillator strengths, and lifetimes are in reasonable agreement with the published experimental and theoretical values. Electron impact excitation rates of the transitions emit soft X-ray and extreme ultraviolet (EUV) wavelengths have been evaluated. The level population densities are calculated using the collisional radiative model (CRM), as well. The collisional excitation rates and collision strengths have been calculated in the electron temperature range ≤ the ionization potential, ∼1–250 eV.
Parallel implementation and performance optimization of the configuration-interaction method
Energy Technology Data Exchange (ETDEWEB)
Shan, H; Williams, S; Johnson, C; McElvain, K; Ormand, WE
2015-11-20
The configuration-interaction (CI) method, long a popular approach to describe quantum many-body systems, is cast as a very large sparse matrix eigenpair problem with matrices whose dimension can exceed one billion. Such formulations place high demands on memory capacity and memory bandwidth - - two quantities at a premium today. In this paper, we describe an efficient, scalable implementation, BIGSTICK, which, by factorizing both the basis and the interaction into two levels, can reconstruct the nonzero matrix elements on the fly, reduce the memory requirements by one or two orders of magnitude, and enable researchers to trade reduced resources for increased computational time. We optimize BIGSTICK on two leading HPC platforms - - the Cray XC30 and the IBM Blue Gene/Q. Specifically, we not only develop an empirically-driven load balancing strategy that can evenly distribute the matrix-vector multiplication across 256K threads, we also developed techniques that improve the performance of the Lanczos reorthogonalization. Combined, these optimizations improved performance by 1.3-8× depending on platform and configuration.
International Nuclear Information System (INIS)
Thomas, Robert E.; Overy, Catherine; Opalka, Daniel; Alavi, Ali; Knowles, Peter J.; Booth, George H.
2015-01-01
Unbiased stochastic sampling of the one- and two-body reduced density matrices is achieved in full configuration interaction quantum Monte Carlo with the introduction of a second, “replica” ensemble of walkers, whose population evolves in imaginary time independently from the first and which entails only modest additional computational overheads. The matrices obtained from this approach are shown to be representative of full configuration-interaction quality and hence provide a realistic opportunity to achieve high-quality results for a range of properties whose operators do not necessarily commute with the Hamiltonian. A density-matrix formulated quasi-variational energy estimator having been already proposed and investigated, the present work extends the scope of the theory to take in studies of analytic nuclear forces, molecular dipole moments, and polarisabilities, with extensive comparison to exact results where possible. These new results confirm the suitability of the sampling technique and, where sufficiently large basis sets are available, achieve close agreement with experimental values, expanding the scope of the method to new areas of investigation
Shao, Meiyue; Aktulga, H. Metin; Yang, Chao; Ng, Esmond G.; Maris, Pieter; Vary, James P.
2018-01-01
We describe a number of recently developed techniques for improving the performance of large-scale nuclear configuration interaction calculations on high performance parallel computers. We show the benefit of using a preconditioned block iterative method to replace the Lanczos algorithm that has traditionally been used to perform this type of computation. The rapid convergence of the block iterative method is achieved by a proper choice of starting guesses of the eigenvectors and the construction of an effective preconditioner. These acceleration techniques take advantage of special structure of the nuclear configuration interaction problem which we discuss in detail. The use of a block method also allows us to improve the concurrency of the computation, and take advantage of the memory hierarchy of modern microprocessors to increase the arithmetic intensity of the computation relative to data movement. We also discuss the implementation details that are critical to achieving high performance on massively parallel multi-core supercomputers, and demonstrate that the new block iterative solver is two to three times faster than the Lanczos based algorithm for problems of moderate sizes on a Cray XC30 system.
Green, S.
1972-01-01
Previous accurate dipole moment calculation techniques are modified to be applicable to higher excited states of symmetry. The self-consistent fields and configuration interactions are calculated for the X(2)Sigma(+) and B(2)Sigma(+) states of CN. Spin hyperfine constants and spin density at the nucleus are considered in the context of one-electron operator properties. The values of the self-consistent field and configuration interaction for the spin density are compared with experimental values for several diatomic molecules.
Energy Technology Data Exchange (ETDEWEB)
Seibt, Joachim; Sláma, Vladislav; Mančal, Tomáš, E-mail: mancal@karlov.mff.cuni.cz
2016-12-20
Highlights: • Standard Frenkel exciton model is extended to include inter-band coupling. • It is formally linked with configuration interaction method of quantum chemistry. • Spectral shifts due to inter-band coupling are found in molecular aggregates. • Effects of peak amplitude redistribution in two-dimensional spectra are found. - Abstract: Standard application of the Frenkel exciton model neglects resonance coupling between collective molecular aggregate states with different number of excitations. These inter-band coupling terms are, however, of the same magnitude as the intra-band coupling between singly excited states. We systematically derive the Frenkel exciton model from quantum chemical considerations, and identify it as a variant of the configuration interaction method. We discuss all non-negligible couplings between collective aggregate states, and provide compact formulae for their calculation. We calculate absorption spectra of molecular aggregate of carotenoids and identify significant band shifts as a result of inter-band coupling. The presence of inter-band coupling terms requires renormalization of the system–bath coupling with respect to standard formulation, but renormalization effects are found to be weak. We present detailed discussion of molecular dimer and calculate its time-resolved two-dimensional Fourier transformed spectra to find weak but noticeable effects of peak amplitude redistribution due to inter-band coupling.
Energy Technology Data Exchange (ETDEWEB)
Makarewicz, Jan, E-mail: jama@amu.edu.pl; Shirkov, Leonid [Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań (Poland)
2016-05-28
The pyridine-Ar (PAr) van der Waals (vdW) complex is studied using a high level ab initio method. Its structure, binding energy, and intermolecular vibrational states are determined from the analytical potential energy surface constructed from interaction energy (IE) values computed at the coupled cluster level of theory with single, double, and perturbatively included triple excitations with the augmented correlation consistent polarized valence double-ζ (aug-cc-pVDZ) basis set complemented by midbond functions. The structure of the complex at its global minimum with Ar at a distance of 3.509 Å from the pyridine plane and shifted by 0.218 Å from the center of mass towards nitrogen agrees well with the corresponding equilibrium structure derived previously from the rotational spectrum of PAr. The PAr binding energy D{sub e} of 392 cm{sup −1} is close to that of 387 cm{sup −1} calculated earlier at the same ab initio level for the prototypical benzene-Ar (BAr) complex. However, under an extension of the basis set, D{sub e} for PAr becomes slightly lower than D{sub e} for BAr. The ab initio vdW vibrational energy levels allow us to estimate the reliability of the methods for the determination of the vdW fundamentals from the rotational spectra. To disclose the character of the intermolecular interaction in PAr, the symmetry-adapted perturbation theory (SAPT) is employed for the analysis of different physical contributions to IE. It is found that SAPT components of IE can be approximately expressed in the binding region by only two of them: the exchange repulsion and dispersion energy. The total induction effect is negligible. The interrelations between various SAPT components found for PAr are fulfilled for a few other complexes involving aromatic molecules and Ar or Ne, which indicates that they are valid for all rare gas (Rg) atoms and aromatics.
Vosmeer, C Ruben; Kooi, Derk P; Capoferri, Luigi; Terpstra, Margreet M; Vermeulen, Nico P E; Geerke, Daan P
2016-01-01
Recently an iterative method was proposed to enhance the accuracy and efficiency of ligand-protein binding affinity prediction through linear interaction energy (LIE) theory. For ligand binding to flexible Cytochrome P450s (CYPs), this method was shown to decrease the root-mean-square error and standard deviation of error prediction by combining interaction energies of simulations starting from different conformations. Thereby, different parts of protein-ligand conformational space are sampled in parallel simulations. The iterative LIE framework relies on the assumption that separate simulations explore different local parts of phase space, and do not show transitions to other parts of configurational space that are already covered in parallel simulations. In this work, a method is proposed to (automatically) detect such transitions during the simulations that are performed to construct LIE models and to predict binding affinities. Using noise-canceling techniques and splines to fit time series of the raw data for the interaction energies, transitions during simulation between different parts of phase space are identified. Boolean selection criteria are then applied to determine which parts of the interaction energy trajectories are to be used as input for the LIE calculations. Here we show that this filtering approach benefits the predictive quality of our previous CYP 2D6-aryloxypropanolamine LIE model. In addition, an analysis is performed of the gain in computational efficiency that can be obtained from monitoring simulations using the proposed filtering method and by prematurely terminating simulations accordingly.
Weak interactions in Graphane/BN systems under static electric fields—A periodic ab-initio study.
Steinkasserer, Lukas Eugen Marsoner; Gaston, Nicola; Paulus, Beate
2015-04-21
Ab-initio calculations via periodic Hartree-Fock (HF) and local second-order Møller-Plesset perturbation theory (LMP2) are used to investigate the adsorption properties of combined Graphane/boron nitride systems and their response to static electric fields. It is shown how the latter can be used to alter both structural as well as electronic properties of these systems.
Ab initio interaction potentials for X and B excited states of He-I2 for studying dynamics
International Nuclear Information System (INIS)
Prosmiti, Rita; Garcia-Gutierrez, Leonor; Delgado-Tellez, Laura; Valdes, Alvaro; Villarreal, Pablo; Delgado-Barrio, Gerardo
2009-01-01
Ab initio CCSD(T) and MRCI approaches were employed to construct potential energy surfaces of the ground and the B electronic excited states of He-I 2 complex, while full quantum mechanical methods were applied to study its spectroscopy and dynamics. A description of the approach adopted, together with the results obtained and their comparison with recent experimental data, as well as further improvements are presented.
Czech Academy of Sciences Publication Activity Database
Čurík, Roman; Šulc, M.
2010-01-01
Roč. 43, č. 17 (2010), s. 175205 ISSN 0953-4075 R&D Projects: GA MŠk(CZ) OC10046; GA MŠk OC09079; GA AV ČR KJB400400803; GA ČR GA202/08/0631 Institutional research plan: CEZ:AV0Z40400503 Keywords : Ab initio calculations * Commonly used * DFT potential Subject RIV: CF - Physical ; The oretical Chemistry Impact factor: 1.902, year: 2010
Niazazari, Naser; Zatikyan, Ashkhen L.; Markarian, Shiraz A.
2013-06-01
The hydrogen bonding of 1:1 complexes formed between L-ascorbic acid (LAA) and dimethylsulfoxide (DMSO) has been studied by means of ab initio and density functional theory (DFT) calculations. Solutions of L-ascorbic acid (AA) in dimethylsulfoxide (DMSO) have been studied by means of both FT-IR (4000-220 cm-1) and FT-Raman spectroscopy. Ab initio Hartree-Fock (HF) and DFT methods have been used to determine the structure and energies of stable conformers of various types of L-AA/DMSO complexes in gas phase and solution. The basis sets 6-31++G∗∗ and 6-311+G∗ were used to describe the structure, energy, charges and vibrational frequencies of interacting complexes in the gas phase. The optimized geometric parameters and interaction energies for various complexes at different theories have been estimated. Binding energies have been corrected for basis set superposition error (BSSE) and harmonic vibrational frequencies of the structures have been calculated to obtain the stable forms of the complexes. The self-consistent reaction field (SCRF) has been used to calculate the effect of DMSO as the solvent on the geometry, energy and charges of complexes. The solvent effect has been studied using the Onsager models. It is shown that the polarity of the solvent plays an important role on the structures and relative stabilities of different complexes. The results obtained show that there is a satisfactory correlation between experimental and theoretical predictions.
Interaction of ICRF power and edge plasma in Tore Supra ergodic divertor configuration
International Nuclear Information System (INIS)
Nguyen, F.; Grosman, A.; Basiuk, V.; Fraboulet, D.; Beaumont, B.; Becoulet, A.; Ghendrih, Ph.; Ladurelle, L.; Meslin, B.
2000-01-01
The coupling of ICRF power to plasma is a crucial problem in Tore Supra for high power and long pulse operations and depends greatly on the edge parameters, in particular on the edge density. Conversely, the behaviour of the bulk plasma is related to the edge conditions and the injection of RF power also induces major modifications on the edge plasma. Moreover, the Ergodic Divertor (ED) of Tore Supra imposes a complex configuration at the edge due to the presence of the magnetic perturbation. Several diagnostics are available to study the interaction of ICRF power with the edge plasma: Langmuir probes on the ED modules, infra red (IR) cameras, charge exchange neutral analysers. In minority heating scheme, the edge density is very sensitive to any perturbation in the high recycling regime which is always found in the ED configuration for relevant plasma parameters. Partially detached regimes, with or without inhomogeneities of density and temperature induced by the flux tubes of the laminar layer, are obtained for high resistance coupling values. The coupling is then not very robust and feedback control or antenna automatic matching techniques are developed. In fast wave electron heating scheme with ED, various fast wave absorption mechanisms (minority heating, Mode Conversion, Alfven resonance) are present at the plasma edge due to the large size of the plasma. The ICRF coupling is difficult due to the low fast wave direct electron damping, even with high hydrogen minority scheme. An increase of the injected ICRF power could improve this situation
Interaction of Fast Ions with Global Plasma Modes in the C-2 Field Reversed Configuration Experiment
Smirnov, Artem; Dettrick, Sean; Clary, Ryan; Korepanov, Sergey; Thompson, Matthew; Trask, Erik; Tuszewski, Michel
2012-10-01
A high-confinement operating regime [1] with plasma lifetimes significantly exceeding past empirical scaling laws was recently obtained by combining plasma gun edge biasing and tangential Neutral Beam Injection (NBI) in the C-2 field-reversed configuration (FRC) experiment [2, 3]. We present experimental and computational results on the interaction of fast ions with the n=2 rotational and n=1 wobble modes in the C-2 FRC. It is found that the n=2 mode is similar to quadrupole magnetic fields in its detrimental effect on the fast ion transport due to symmetry breaking. The plasma gun generates an inward radial electric field, thus stabilizing the n=2 rotational instability without applying the quadrupole magnetic fields. The resultant FRCs are nearly axisymmetric, which enables fast ion confinement. The NBI further suppresses the n=2 mode, improves the plasma confinement characteristics, and increases the plasma configuration lifetime [4]. The n=1 wobble mode has relatively little effect on the fast ion transport, likely due to the approximate axisymmetry about the displaced plasma column. [4pt] [1] M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012).[0pt] [2] M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010).[0pt] [3] H.Y. Guo et al., Phys. Plasmas 18, 056110 (2011).[0pt] [4] M. Tuszewski et al., Phys. Plasmas 19, 056108 (2012)
An excited-state approach within full configuration interaction quantum Monte Carlo
International Nuclear Information System (INIS)
Blunt, N. S.; Smart, Simon D.; Booth, George H.; Alavi, Ali
2015-01-01
We present a new approach to calculate excited states with the full configuration interaction quantum Monte Carlo (FCIQMC) method. The approach uses a Gram-Schmidt procedure, instantaneously applied to the stochastically evolving distributions of walkers, to orthogonalize higher energy states against lower energy ones. It can thus be used to study several of the lowest-energy states of a system within the same symmetry. This additional step is particularly simple and computationally inexpensive, requiring only a small change to the underlying FCIQMC algorithm. No trial wave functions or partitioning of the space is needed. The approach should allow excited states to be studied for systems similar to those accessible to the ground-state method due to a comparable computational cost. As a first application, we consider the carbon dimer in basis sets up to quadruple-zeta quality and compare to existing results where available
International Nuclear Information System (INIS)
Barbatti, M.; Paier, J.; Lischka, H.
2004-01-01
Multireference configuration interaction with singles and doubles (MR-CISD) calculations have been performed for the optimization of conical intersections and stationary points on the ethylene excited-state energy surfaces using recently developed methods for the computation of analytic gradients and nonadiabatic coupling terms. Basis set dependence and the effect of various choices of reference spaces for the MR-CISD calculations have been investigated. The crossing seam between the S 0 and S 1 states has been explored in detail. This seam connects all conical intersections presently known for ethylene. Major emphasis has been laid on the hydrogen-migration path. Starting in the V state of twisted-orthogonal ethylene, a barrierless path to ethylidene was found. The feasibility of ethylidene formation will be important for the explanation of the relative yield of cis and trans H 2 elimination
International Nuclear Information System (INIS)
Overy, Catherine; Blunt, N. S.; Shepherd, James J.; Booth, George H.; Cleland, Deidre; Alavi, Ali
2014-01-01
Properties that are necessarily formulated within pure (symmetric) expectation values are difficult to calculate for projector quantum Monte Carlo approaches, but are critical in order to compute many of the important observable properties of electronic systems. Here, we investigate an approach for the sampling of unbiased reduced density matrices within the full configuration interaction quantum Monte Carlo dynamic, which requires only small computational overheads. This is achieved via an independent replica population of walkers in the dynamic, sampled alongside the original population. The resulting reduced density matrices are free from systematic error (beyond those present via constraints on the dynamic itself) and can be used to compute a variety of expectation values and properties, with rapid convergence to an exact limit. A quasi-variational energy estimate derived from these density matrices is proposed as an accurate alternative to the projected estimator for multiconfigurational wavefunctions, while its variational property could potentially lend itself to accurate extrapolation approaches in larger systems
Coupled-Cluster and Configuration-Interaction Calculations for Heavy Nuclei
International Nuclear Information System (INIS)
Horoi, M.; Gour, J. R.; Wloch, M.; Lodriguito, M. D.; Brown, B. A.; Piecuch, P.
2007-01-01
We compare coupled-cluster (CC) and configuration-interaction (CI) results for 56 Ni obtained in the pf-shell basis, focusing on practical CC approximations that can be applied to systems with dozens or hundreds of correlated fermions. The weight of the reference state and the strength of correlation effects are controlled by the gap between the f 7/2 orbit and the f 5/2 , p 3/2 , p 1/2 orbits. Independent of the gap, the CC method with 1p-1h and 2p-2h clusters and a noniterative treatment of 3p-3h clusters is as accurate as the more demanding CI approach truncated at the 4p-4h level
Hylleraas-Configuration Interaction study of the 1S ground state of the negative Li ion.
Sims, James S
2017-12-28
In a previous work Sims and Hagstrom [J. Chem. Phys. 140, 224312 (2014)] reported Hylleraas-Configuration Interaction (Hy-CI) method variational calculations for the neutral atom and positive ion 1 S ground states of the beryllium isoelectronic sequence. The Li - ion, nominally the first member of this series, has a decidedly different electronic structure. This paper reports the results of a large, comparable calculation for the Li - ground state to explore how well the Hy-CI method can represent the more diffuse L shell of Li - which is representative of the Be(2sns) excited states as well. The best non-relativistic energy obtained was -7.500 776 596 hartree, indicating that 10 - 20 nh accuracy is attainable in Hy-CI and that convergence of the r 12 r 34 double cusp is fast and that this correlation type can be accurately represented within the Hy-CI model.
On the performance of atomic natural orbital basis sets: A full configuration interaction study
International Nuclear Information System (INIS)
Illas, F.; Ricart, J.M.; Rubio, J.; Bagus, P.S.
1990-01-01
The performance of atomic natural orbital (ANO) basis sets has been studied by comparing self-consistant field (SCF) and full configuration interaction (CI) results obtained for the first row atoms and hydrides. The ANO results have been compared with those obtained using a segmented basis set containing the same number of contracted basis functions. The total energies obtained with the ANO basis sets are always lower than the one obtained by using the segmented one. However, for the hydrides, differential electronic correlation energy obtained with the ANO basis set may be smaller than the one recovered with the segmented set. We relate this poorer differential correlation energy for the ANO basis set to the fact that only one contracted d function is used for the ANO and segmented basis sets
Large-dimension configuration-interaction calculations of positron binding to the group-II atoms
International Nuclear Information System (INIS)
Bromley, M. W. J.; Mitroy, J.
2006-01-01
The configuration-interaction (CI) method is applied to the calculation of the structures of a number of positron binding systems, including e + Be, e + Mg, e + Ca, and e + Sr. These calculations were carried out in orbital spaces containing about 200 electron and 200 positron orbitals up to l=12. Despite the very large dimensions, the binding energy and annihilation rate converge slowly with l, and the final values do contain an appreciable correction obtained by extrapolating the calculation to the l→∞ limit. The binding energies were 0.00317 hartree for e + Be, 0.0170 hartree for e + Mg, 0.0189 hartree for e + Ca, and 0.0131 hartree for e + Sr
Closser, Kristina Danielle
This thesis presents new developments in excited state electronic structure theory. Contrasted with the ground state, the electronically excited states of atoms and molecules often are unstable and have short lifetimes, exhibit a greater diversity of character and are generally less well understood. The very unusual excited states of helium clusters motivated much of this work. These clusters consist of large numbers of atoms (experimentally 103--109 atoms) and bands of nearly degenerate excited states. For an isolated atom the lowest energy excitation energies are from 1s → 2s and 1s → 2 p transitions, and in clusters describing the lowest energy band minimally requires four states per atom. In the ground state the clusters are weakly bound by van der Waals interactions, however in the excited state they can form well-defined covalent bonds. The computational cost of quantum chemical calculations rapidly becomes prohibitive as the size of the systems increase. Standard excited-state methods such as configuration interaction singles (CIS) and time-dependent density functional theory (TD-DFT) can be used with ≈100 atoms, and are optimized to treat only a few states. Thus, one of our primary aims is to develop a method which can treat these large systems with large numbers of nearly degenerate excited states. Additionally, excited states are generally formed far from their equilibrium structures. Vertical excitations from the ground state induce dynamics in the excited states. Thus, another focus of this work is to explore the results of these forces and the fate of the excited states. Very little was known about helium cluster excited states when this work began, thus we first investigated the excitations in small helium clusters consisting of 7 or 25 atoms using CIS. The character of these excited states was determined using attachment/detachment density analysis and we found that in the n = 2 manifold the excitations could generally be interpreted as
International Nuclear Information System (INIS)
Belvedere, Riccardo; Pugliese, Daniela; Rueda, Jorge A.; Ruffini, Remo; Xue, She-Sheng
2012-01-01
We formulate the equations of equilibrium of neutron stars taking into account strong, weak, electromagnetic, and gravitational interactions within the framework of general relativity. The nuclear interactions are described by the exchange of the σ, ω, and ρ virtual mesons. The equilibrium conditions are given by our recently developed theoretical framework based on the Einstein–Maxwell–Thomas–Fermi equations along with the constancy of the general relativistic Fermi energies of particles, the “Klein potentials”, throughout the configuration. The equations are solved numerically in the case of zero temperatures and for selected parameterizations of the nuclear models. The solutions lead to a new structure of the star: a positively charged core at supranuclear densities surrounded by an electronic distribution of thickness ∼ℏ/(m e c)∼10 2 ℏ/(m π c) of opposite charge, as well as a neutral crust at lower densities. Inside the core there is a Coulomb potential well of depth ∼m π c 2 /e. The constancy of the Klein potentials in the transition from the core to the crust, imposes the presence of an overcritical electric field ∼(m π /m e ) 2 E c , the critical field being E c =m e 2 c 3 /(eℏ). The electron chemical potential and the density decrease, in the boundary interface, until values μ e crust e core and ρ crust core . For each central density, an entire family of core–crust interface boundaries and, correspondingly, an entire family of crusts with different mass and thickness, exist. The configuration with ρ crust =ρ drip ∼4.3×10 11 gcm −3 separates neutron stars with and without inner crust. We present here the novel neutron star mass–radius for the especial case ρ crust =ρ drip and compare and contrast it with the one obtained from the traditional Tolman–Oppenheimer–Volkoff treatment.
International Nuclear Information System (INIS)
Hellmann, Robert
2009-01-01
Thermophysical properties of the pure gases helium, neon, methane and water vapor were calculated for low densities over wide temperature ranges. Statistical thermodynamics was used for the determination of the pressure virial coefficients. The kinetic theory of gases was utilized for the calculation of the transport and relaxation properties. So far kinetic theory was limited to linear molecules and has now been extended to molecules of arbitrary geometry to enable calculations on methane and water vapor. The interaction potentials, which are needed for all computations, were determined for helium, neon and methane from the supermolecular approach using quantum chemical ab initio methods. For water the interaction potentials were taken from the literature. The calculated values of the thermophysical properties for the four gases show very good agreement with the best experimental data. At very low and very high temperatures the theoretical values are more accurate than experimental data. (orig.)
Sadlej-Sosnowska, N
2014-08-28
We have used electronic density calculations to study neutral complexes of Li with aromatic hydrocarbons. The charge transferred between a Li atom and benzene, coronene, circumcoronene, and circumcircumcoronene has been studied by ab initio methods (at the HF and MP2 level). Toward this aim, the method of integrating electron density in two cuboid fragments of space was applied. One of the fragments was constructed so that it enclosed the bulk of the electron density of lithium; the second, the bulk of the electron density of hydrocarbon. It was found that for each complex two conformations were identified: the most stable with a greater vertical Li-hydrocarbon distance, on the order of 2.5 Å, and another of higher energy with a corresponding distance less than 2 Å. In all cases the transfer of a fractional number, 0.1-0.3 electrons, between Li and hydrocarbon was found; however, the direction of the transfer was not the same in all complexes investigated. The structures of complexes of the first configuration could be represented as Li(σ-)···AH(σ+), whereas the opposite direction of charge transfer was found for complexes of the second configuration, with higher energy. The directions of the dipole moments in the complexes supported these conclusions because they directly measure the redistribution of electron density in a complex with respect to substrates.
Dao, Arik-Quang V.; Martin, Lynne; Mohlenbrink, Christoph; Bienert, Nancy; Wolte, Cynthia; Gomez, Ashley; Claudatos, Lauren; Mercer, Joey
2017-01-01
The purpose of this paper is to report on a human factors evaluation of ground control station design concepts for interacting with an unmanned traffic management system. The data collected for this paper comes from recent field tests for NASA's Unmanned Traffic Management (UTM) project, and covers the following topics; workload, situation awareness, as well as flight crew communication, coordination, and procedures. The goal of this evaluation was to determine if the various software implementations for interacting with the UTM system can be described and classified into design concepts to provide guidance for the development of future UTM interfaces. We begin with a brief description of NASA's UTM project, followed by a description of the test range configuration related to a second development phase. We identified (post hoc) two classes in which the ground control stations could be grouped. This grouping was based on level of display integration. The analysis was exploratory and informal. It was conducted to compare ground stations across those two classes and against the aforementioned topics. Herein, we discuss the results.
Rabi like angular splitting in Surface Plasmon Polariton - Exciton interaction in ATR configuration
Hassan, Heba; Abdallah, T.; Negm, S.; Talaat, H.
2018-05-01
We have studied the coupling of propagating Surface Plasmon Polaritons (SPP) on silver films and excitons in CdS quantum dots (QDs). We employed the Kretschmann-Raether configuration of the attenuated total reflection (ATR) to propagate the SPP on silver film of thickness 47.5 nm at three different wavelengths. The CdS QD have been chemically synthesized with particular size such that its exciton of energy would resonate with SPP. High resolution transmission electron microscopy (HRTEM) and scan tunneling microscopy (STM) were used to measure the corresponding QDs size and confirm its shape. Further confirmation of the size has been performed by the effective mass approximation (EMA) model utilizing the band gap of the prepared QDs. The band gaps have been measured through UV-vis absorption spectra as well as scan tunneling spectroscopy (STS). The coupling has been observed as two branching dips in the ATR spectra indicating Rabi like splitting. To the best of our knowledge, this is the first time that Rabi interaction is directly observed in an ATR angular spectra. This observation is attributed to the use a high resolution angular scan (±0.005°), in addition to the Doppler width of the laser line as well as the energy distribution of the excitons. The effect of three different linker molecules (TOPO, HDA), (Pyridine) and (Tri-butylamine) as surface ligands, on SPP-Exciton interaction has been examined.
Energy Technology Data Exchange (ETDEWEB)
Van de Wiele, Ben [Department of Electrical Energy, Systems and Automation, Ghent University, Technologiepark 913, B-9052 Ghent-Zwijnaarde (Belgium); Fin, Samuele [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, 44122 Ferrara (Italy); Pancaldi, Matteo [CIC nanoGUNE, E-20018 Donostia-San Sebastian (Spain); Vavassori, Paolo [CIC nanoGUNE, E-20018 Donostia-San Sebastian (Spain); IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao (Spain); Sarella, Anandakumar [Physics Department, Mount Holyoke College, 211 Kendade, 50 College St., South Hadley, Massachusetts 01075 (United States); Bisero, Diego [Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, 44122 Ferrara (Italy); CNISM, Unità di Ferrara, 44122 Ferrara (Italy)
2016-05-28
Various proposals for future magnetic memories, data processing devices, and sensors rely on a precise control of the magnetization ground state and magnetization reversal process in periodically patterned media. In finite dot arrays, such control is hampered by the magnetostatic interactions between the nanomagnets, leading to the non-uniform magnetization state distributions throughout the sample while reversing. In this paper, we evidence how during reversal typical geometric arrangements of dots in an identical magnetization state appear that originate in the dominance of either Global Configurational Anisotropy or Nearest-Neighbor Magnetostatic interactions, which depends on the fields at which the magnetization reversal sets in. Based on our findings, we propose design rules to obtain the uniform magnetization state distributions throughout the array, and also suggest future research directions to achieve non-uniform state distributions of interest, e.g., when aiming at guiding spin wave edge-modes through dot arrays. Our insights are based on the Magneto-Optical Kerr Effect and Magnetic Force Microscopy measurements as well as the extensive micromagnetic simulations.
Sivalingam, Kantharuban; Krupicka, Martin; Auer, Alexander A.; Neese, Frank
2016-08-01
Multireference (MR) methods occupy an important class of approaches in quantum chemistry. In many instances, for example, in studying complex magnetic properties of transition metal complexes, they are actually the only physically satisfactory choice. In traditional MR approaches, single and double excitations are performed with respect to all reference configurations (or configuration state functions, CSFs), which leads to an explosive increase of computational cost for larger reference spaces. This can be avoided by the internal contraction scheme proposed by Meyer and Siegbahn, which effectively reduces the number of wavefunction parameters to their single-reference counterpart. The "fully internally contracted" scheme (FIC) is well known from the popular CASPT2 approach. An even shorter expansion of the wavefunction is possible with the "strong contraction" (SC) scheme proposed by Angeli and Malrieu in their NEVPT2 approach. Promising multireference configuration interaction formulations (MRCI) employing internal contraction and strong contraction have been reported by several authors. In this work, we report on the implementation of the FIC-MRCI and SC-MRCI methodologies, using a computer assisted implementation strategy. The methods are benchmarked against the traditional uncontracted MRCI approach for ground and excited states of small molecules (N2, O2, CO, CO+, OH, CH, and CN). For ground states, the comparison includes the "partially internally contracted" MRCI based on the Celani-Werner ansatz (PC-MRCI). For the three contraction schemes, the average errors range from 2% to 6% of the uncontracted MRCI correlation energies. Excitation energies are reproduced with ˜0.2 eV accuracy. In most cases, the agreement is better than 0.2 eV, even in cases with very large differential correlation contributions as exemplified for the d-d and ligand-to-metal charge transfer transitions of a Cu [NH 3 ] 4 2 + model complex. The benchmark is supplemented with the
International Nuclear Information System (INIS)
Sakane, Shinichi; Yezdimer, Eric M.; Liu, Wenbin; Barriocanal, Jose A.; Doren, Douglas J.; Wood, Robert H.
2000-01-01
The ab initio/classical free energy perturbation (ABC-FEP) method proposed previously by Wood et al. [J. Chem. Phys. 110, 1329 (1999)] uses classical simulations to calculate solvation free energies within an empirical potential model, then applies free energy perturbation theory to determine the effect of changing the empirical solute-solvent interactions to corresponding interactions calculated from ab initio methods. This approach allows accurate calculation of solvation free energies using an atomistic description of the solvent and solute, with interactions calculated from first principles. Results can be obtained at a feasible computational cost without making use of approximations such as a continuum solvent or an empirical cavity formation energy. As such, the method can be used far from ambient conditions, where the empirical parameters needed for approximate theories of solvation may not be available. The sources of error in the ABC-FEP method are the approximations in the ab initio method, the finite sample of configurations, and the classical solvent model. This article explores the accuracy of various approximations used in the ABC-FEP method by comparing to the experimentally well-known free energy of hydration of water at two state points (ambient conditions, and 973.15 K and 600 kg/m3). The TIP4P-FQ model [J. Chem. Phys. 101, 6141 (1994)] is found to be a reliable solvent model for use with this method, even at supercritical conditions. Results depend strongly on the ab initio method used: a gradient-corrected density functional theory is not adequate, but a localized MP2 method yields excellent agreement with experiment. Computational costs are reduced by using a cluster approximation, in which ab initio pair interaction energies are calculated between the solute and up to 60 solvent molecules, while multi-body interactions are calculated with only a small cluster (5 to 12 solvent molecules). Sampling errors for the ab initio contribution to
DEFF Research Database (Denmark)
Shim, Irene; Kingcade, Joseph E. , Jr.; Gingerich, Karl A.
1986-01-01
In the present work we present all-electron ab initio Hartree–Fock (HF) and configuration interaction (CI) calculations of six electronic states of the PdGe molecule. The molecule is predicted to have a 3Pi ground state and two low-lying excited states 3Sigma− and 1Sigma+. The electronic structure...
Hernández Vera, Mario; Yurtsever, Ersin; Wester, Roland; Gianturco, Franco A.
2018-05-01
We present an extensive range of accurate ab initio calculations, which map in detail the spatial electronic potential energy surface that describes the interaction between the molecular anion NH2 - (1A1) in its ground electronic state and the He atom. The time-independent close-coupling method is employed to generate the corresponding rotationally inelastic cross sections, and then the state-changing rates over a range of temperatures from 10 to 30 K, which is expected to realistically represent the experimental trapping conditions for this ion in a radio frequency ion trap filled with helium buffer gas. The overall evolutionary kinetics of the rotational level population involving the molecular anion in the cold trap is also modelled during a photodetachment experiment and analyzed using the computed rates. The present results clearly indicate the possibility of selectively detecting differences in behavior between the ortho- and para-anions undergoing photodetachment in the trap.
Wang, Huihui; Bokarev, Sergey I.; Aziz, Saadullah G.; Kühn, Oliver
2017-08-01
Recent developments in attosecond spectroscopy yield access to the correlated motion of electrons on their intrinsic timescales. Spin-flip dynamics is usually considered in the context of valence electronic states, where spin-orbit coupling is weak and processes related to the electron spin are usually driven by nuclear motion. However, for core-excited states, where the core-hole has a nonzero angular momentum, spin-orbit coupling is strong enough to drive spin-flips on a much shorter timescale. Using density matrix-based time-dependent restricted active space configuration interaction including spin-orbit coupling, we address an unprecedentedly short spin-crossover for the example of L-edge (2p→3d) excited states of a prototypical Fe(II) complex. This process occurs on a timescale, which is faster than that of Auger decay (∼4 fs) treated here explicitly. Modest variations of carrier frequency and pulse duration can lead to substantial changes in the spin-state yield, suggesting its control by soft X-ray light.
Energy Technology Data Exchange (ETDEWEB)
Aktulga, Hasan Metin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Buluc, Aydin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yang, Chao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2014-08-14
Obtaining highly accurate predictions on the properties of light atomic nuclei using the configuration interaction (CI) approach requires computing a few extremal Eigen pairs of the many-body nuclear Hamiltonian matrix. In the Many-body Fermion Dynamics for nuclei (MFDn) code, a block Eigen solver is used for this purpose. Due to the large size of the sparse matrices involved, a significant fraction of the time spent on the Eigen value computations is associated with the multiplication of a sparse matrix (and the transpose of that matrix) with multiple vectors (SpMM and SpMM-T). Existing implementations of SpMM and SpMM-T significantly underperform expectations. Thus, in this paper, we present and analyze optimized implementations of SpMM and SpMM-T. We base our implementation on the compressed sparse blocks (CSB) matrix format and target systems with multi-core architectures. We develop a performance model that allows us to understand and estimate the performance characteristics of our SpMM kernel implementations, and demonstrate the efficiency of our implementation on a series of real-world matrices extracted from MFDn. In particular, we obtain 3-4 speedup on the requisite operations over good implementations based on the commonly used compressed sparse row (CSR) matrix format. The improvements in the SpMM kernel suggest we may attain roughly a 40% speed up in the overall execution time of the block Eigen solver used in MFDn.
A deterministic alternative to the full configuration interaction quantum Monte Carlo method
Energy Technology Data Exchange (ETDEWEB)
Tubman, Norm M.; Lee, Joonho; Takeshita, Tyler Y.; Head-Gordon, Martin; Whaley, K. Birgitta [University of California, Berkeley, Berkeley, California 94720 (United States)
2016-07-28
Development of exponentially scaling methods has seen great progress in tackling larger systems than previously thought possible. One such technique, full configuration interaction quantum Monte Carlo, is a useful algorithm that allows exact diagonalization through stochastically sampling determinants. The method derives its utility from the information in the matrix elements of the Hamiltonian, along with a stochastic projected wave function, to find the important parts of Hilbert space. However, the stochastic representation of the wave function is not required to search Hilbert space efficiently, and here we describe a highly efficient deterministic method that can achieve chemical accuracy for a wide range of systems, including the difficult Cr{sub 2} molecule. We demonstrate for systems like Cr{sub 2} that such calculations can be performed in just a few cpu hours which makes it one of the most efficient and accurate methods that can attain chemical accuracy for strongly correlated systems. In addition our method also allows efficient calculation of excited state energies, which we illustrate with benchmark results for the excited states of C{sub 2}.
International Nuclear Information System (INIS)
Suo, Bingbing; Yu, Yan-Mei; Han, Huixian
2015-01-01
We present the fully relativistic multi-reference configuration interaction calculations of the ground and low-lying excited electronic states of IrO for individual spin-orbit component. The lowest-lying state is calculated for Ω = 1/2, 3/2, 5/2, and 7/2 in order to clarify the ground state of IrO. Our calculation suggests that the ground state is of Ω = 1/2, which is highly mixed with 4 Σ − and 2 Π states in Λ − S notation. The two low-lying states 5/2 and 7/2 are nearly degenerate with the ground state and locate only 234 and 260 cm −1 above, respectively. The equilibrium bond length 1.712 Å and the harmonic vibrational frequency 903 cm −1 of the 5/2 state are close to the experimental measurement of 1.724 Å and 909 cm −1 , which suggests that the 5/2 state should be the low-lying state that contributes to the experimental spectra. Moreover, the electronic states that give rise to the observed transition bands are assigned for Ω = 5/2 and 7/2 in terms of the obtained excited energies and oscillator strengths
Böhm, Karl-Heinz; Auer, Alexander A; Espig, Mike
2016-06-28
In this proof-of-principle study, we apply tensor decomposition techniques to the Full Configuration Interaction (FCI) wavefunction in order to approximate the wavefunction parameters efficiently and to reduce the overall computational effort. For this purpose, the wavefunction ansatz is formulated in an occupation number vector representation that ensures antisymmetry. If the canonical product format tensor decomposition is then applied, the Hamiltonian and the wavefunction can be cast into a multilinear product form. As a consequence, the number of wavefunction parameters does not scale to the power of the number of particles (or orbitals) but depends on the rank of the approximation and linearly on the number of particles. The degree of approximation can be controlled by a single threshold for the rank reduction procedure required in the algorithm. We demonstrate that using this approximation, the FCI Hamiltonian matrix can be stored with N(5) scaling. The error of the approximation that is introduced is below Millihartree for a threshold of ϵ = 10(-4) and no convergence problems are observed solving the FCI equations iteratively in the new format. While promising conceptually, all effort of the algorithm is shifted to the required rank reduction procedure after the contraction of the Hamiltonian with the coefficient tensor. At the current state, this crucial step is the bottleneck of our approach and even for an optimistic estimate, the algorithm scales beyond N(10) and future work has to be directed towards reduction-free algorithms.
Energy Technology Data Exchange (ETDEWEB)
Ramakrishnan, Raghunathan, E-mail: r.ramakrishnan@unibas.ch [Institute of Physical Chemistry, National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Nest, Mathias [Theoretische Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching (Germany)
2015-01-13
Highlights: • We model electron dynamics across cyano alkanethiolates attached to gold cluster. • We present electron transfer time scales from TD-DFT and TD-CI based simulations. • Both DFT and CI methods qualitatively predict the trend in time scales. • TD-CI predicts the experimental relative time scale very accurately. - Abstract: We employ wavepacket simulations based on many-body time-dependent configuration interaction (TD-CI), and single active electron theories, to predict the ultrafast molecule/metal electron transfer time scales, in cyano alkanethiolates bonded to model gold clusters. The initial states represent two excited states where a valence electron is promoted to one of the two virtual π{sup ∗} molecular orbitals localized on the cyanide fragment. The ratio of the two time scales indicate the efficiency of one charge transfer channel over the other. In both our one-and many-electron simulations, this ratio agree qualitatively with each other as well as with the previously reported experimental time scales (Blobner et al., 2012), measured for a macroscopic metal surface. We study the effect of cluster size and the description of electron correlation on the charge transfer process.
Babbush, Ryan; Berry, Dominic W.; Sanders, Yuval R.; Kivlichan, Ian D.; Scherer, Artur; Wei, Annie Y.; Love, Peter J.; Aspuru-Guzik, Alán
2018-01-01
We present a quantum algorithm for the simulation of molecular systems that is asymptotically more efficient than all previous algorithms in the literature in terms of the main problem parameters. As in Babbush et al (2016 New Journal of Physics 18, 033032), we employ a recently developed technique for simulating Hamiltonian evolution using a truncated Taylor series to obtain logarithmic scaling with the inverse of the desired precision. The algorithm of this paper involves simulation under an oracle for the sparse, first-quantized representation of the molecular Hamiltonian known as the configuration interaction (CI) matrix. We construct and query the CI matrix oracle to allow for on-the-fly computation of molecular integrals in a way that is exponentially more efficient than classical numerical methods. Whereas second-quantized representations of the wavefunction require \\widetilde{{ O }}(N) qubits, where N is the number of single-particle spin-orbitals, the CI matrix representation requires \\widetilde{{ O }}(η ) qubits, where η \\ll N is the number of electrons in the molecule of interest. We show that the gate count of our algorithm scales at most as \\widetilde{{ O }}({η }2{N}3t).
Seniority and orbital symmetry as tools for establishing a full configuration interaction hierarchy.
Bytautas, Laimutis; Henderson, Thomas M; Jiménez-Hoyos, Carlos A; Ellis, Jason K; Scuseria, Gustavo E
2011-07-28
We explore the concept of seniority number (defined as the number of unpaired electrons in a determinant) when applied to the problem of electron correlation in atomic and molecular systems. Although seniority is a good quantum number only for certain model Hamiltonians (such as the pairing Hamiltonian), we show that it provides a useful partitioning of the electronic full configuration interaction (FCI) wave function into rapidly convergent Hilbert subspaces whose weight diminishes as its seniority number increases. The primary focus of this study is the adequate description of static correlation effects. The examples considered are the ground states of the helium, beryllium, and neon atoms, the symmetric dissociation of the N(2) and CO(2) molecules, as well as the symmetric dissociation of an H(8) hydrogen chain. It is found that the symmetry constraints that are normally placed on the spatial orbitals greatly affect the convergence rate of the FCI expansion. The energy relevance of the seniority zero sector (determinants with all paired electrons) increases dramatically if orbitals of broken spatial symmetry (as those commonly used for Hubbard Hamiltonian studies) are allowed in the wave function construction. © 2011 American Institute of Physics
Energy Technology Data Exchange (ETDEWEB)
Subbotin, O.; Belosludov, V.; Adamova, T. [Russian Academy of Science, Novosibirsk (Russian Federation). Nikolaev Inst. of Inorganic Chemistry; Belosludov, R.; Kawazoe, Y. [Tohoku Univ., Aoba-ku, Sendai (Japan). Inst. for Materials Research; Kudoh, J.I. [Tohoku Univ., Aoba-ku, Sendai (Japan). Center for Northeast Asia Studies
2008-07-01
This paper presented a newly developed method to accurately predict the thermodynamic properties of clathrate hydrates, particularly their structural phase transitions under pressure. The method is based on the theory of Van-der-Waals and Platteeuw with some modifications that include the influence of guest molecules on the host lattice. The model was used to explain the exception from the established rule that small guest molecules form structure s1 and large molecules form structure s2 hydrates. In this study, the thermodynamic properties of argon (Ar) hydrate and methane hydrate, each in both cubic structure s1 and s2 were modelled. The model showed that two competing factors play a role in the formation of inclusions, notably the intermolecular interaction of guest molecules with water molecules, and the configuration entropy. Competition of these 2 factors determines the structure of hydrate formed at different pressures. The model provides an accurate description of the thermodynamic properties of gas hydrates and how they behave under pressure. For the argon hydrates, the structural phase transition from structure s2 to s1 at high pressure was predicted, while methane hydrates were predicted to be metastable in the s2 structure. The model can be used for other inclusion compounds with the same type of composition such as clathrate silicon, zeolites, and inclusion compounds of semiconductor elements. 17 refs., 5 figs.
Energy Technology Data Exchange (ETDEWEB)
Lötstedt, Erik, E-mail: lotstedt@chem.s.u-tokyo.ac.jp; Kato, Tsuyoshi; Yamanouchi, Kaoru [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)
2016-04-21
An approximate implementation of the multiconfiguration time-dependent Hartree-Fock method is proposed, in which the matrix of configuration-interaction coefficients is decomposed into a product of matrices of smaller dimension. The applicability of this method in which all the configurations are kept in the expansion of the wave function, while the configuration-interaction coefficients are approximately calculated, is discussed by showing the results on three model systems: a one-dimensional model of a beryllium atom, a one-dimensional model of a carbon atom, and a one-dimensional model of a chain of four hydrogen atoms. The time-dependent electronic dynamics induced by a few-cycle, long-wavelength laser pulse is found to be well described at a lower computational cost compared to the standard multiconfiguration time-dependent Hartree-Fock treatment. Drawbacks of the method are also discussed.
DEFF Research Database (Denmark)
Silva-Junior, Mario R.; Schreiber, Marko; Sauer, Stephan P. A.
2008-01-01
Time-dependent density functional theory (TD-DFT) and DFT-based multireference configuration interaction (DFT/MRCI) calculations are reported for a recently proposed benchmark set of 28 medium-sized organic molecules. Vertical excitation energies, oscillator strengths, and excited-state dipole...
Criticality in the configuration-mixed interacting boson model: (1) U(5)-Q(χ)Q(χ) mixing
International Nuclear Information System (INIS)
Hellemans, V.; Van Isacker, P.; De Baerdemacker, S.; Heyde, K.
2007-01-01
The case of U(5)-Q(χ)Q(χ) mixing in the configuration-mixed interacting boson model is studied in its mean-field approximation. Phase diagrams with analytical and numerical solutions are constructed and discussed. Indications for first-order and second-order shape phase transitions can be obtained from binding energies and from critical exponents, respectively
DEFF Research Database (Denmark)
Knecht, Stefan; Jensen, Hans Jørgen Aagaard; Fleig, Timo
2008-01-01
We present a parallel implementation of a string-driven general active space configuration interaction program for nonrelativistic and scalar-relativistic electronic-structure calculations. The code has been modularly incorporated in the DIRAC quantum chemistry program package. The implementation...
Klinkusch, Stefan; Tremblay, Jean Christophe
2016-05-14
In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.
Energy Technology Data Exchange (ETDEWEB)
Klinkusch, Stefan; Tremblay, Jean Christophe [Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, D-14195 Berlin (Germany)
2016-05-14
In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.
An atomistic geometrical model of the B-DNA configuration for DNA-radiation interaction simulations
Bernal, M. A.; Sikansi, D.; Cavalcante, F.; Incerti, S.; Champion, C.; Ivanchenko, V.; Francis, Z.
2013-12-01
In this paper, an atomistic geometrical model for the B-DNA configuration is explained. This model accounts for five organization levels of the DNA, up to the 30 nm chromatin fiber. However, fragments of this fiber can be used to construct the whole genome. The algorithm developed in this work is capable to determine which is the closest atom with respect to an arbitrary point in space. It can be used in any application in which a DNA geometrical model is needed, for instance, in investigations related to the effects of ionizing radiations on the human genetic material. Successful consistency checks were carried out to test the proposed model. Catalogue identifier: AEPZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPZ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1245 No. of bytes in distributed program, including test data, etc.: 6574 Distribution format: tar.gz Programming language: FORTRAN. Computer: Any. Operating system: Multi-platform. RAM: 2 Gb Classification: 3. Nature of problem: The Monte Carlo method is used to simulate the interaction of ionizing radiation with the human genetic material in order to determine DNA damage yields per unit absorbed dose. To accomplish this task, an algorithm to determine if a given energy deposition lies within a given target is needed. This target can be an atom or any other structure of the genetic material. Solution method: This is a stand-alone subroutine describing an atomic-resolution geometrical model of the B-DNA configuration. It is able to determine the closest atom to an arbitrary point in space. This model accounts for five organization levels of the human genetic material, from the nucleotide pair up to the 30 nm chromatin fiber. This subroutine carries out a series of coordinate transformations
Dovzhenko, D S; Ryabchuk, S V; Rakovich, Yu P; Nabiev, I R
2018-02-22
Resonance interaction between a molecular transition and a confined electromagnetic field can reach the coupling regime where coherent exchange of energy between light and matter becomes reversible. In this case, two new hybrid states separated in energy are formed instead of independent eigenstates, which is known as Rabi splitting. This modification of the energy spectra of the system offers new possibilities for controlled impact on various fundamental properties of coupled matter (such as the rate of chemical reactions and the conductivity of organic semiconductors). To date, the strong coupling regime has been demonstrated in many configurations under different ambient conditions. However, there is still no comprehensive approach to determining parameters for achieving the strong coupling regime for a wide range of practical applications. In this review, a detailed analysis of various systems and corresponding conditions for reaching strong coupling is carried out and their advantages and disadvantages, as well as the prospects for application, are considered. The review also summarizes recent experiments in which the strong coupling regime has led to new interesting results, such as the possibility of collective strong coupling between X-rays and matter excitation in a periodic array of Fe isotopes, which extends the applications of quantum optics; a strong amplification of the Raman scattering signal from a coupled system, which can be used in surface-enhanced and tip-enhanced Raman spectroscopy; and more efficient second-harmonic generation from the low polaritonic state, which is promising for nonlinear optics. The results reviewed demonstrate great potential for further practical applications of strong coupling in the fields of photonics (low-threshold lasers), quantum communications (switches), and biophysics (molecular fingerprinting).
Konieczka, M.; Kortelainen, M.; Satuła, W.
2018-03-01
Background: The atomic nucleus is a unique laboratory in which to study fundamental aspects of the electroweak interaction. This includes a question concerning in medium renormalization of the axial-vector current, which still lacks satisfactory explanation. Study of spin-isospin or Gamow-Teller (GT) response may provide valuable information on both the quenching of the axial-vector coupling constant as well as on nuclear structure and nuclear astrophysics. Purpose: We have performed a seminal calculation of the GT response by using the no-core configuration-interaction approach rooted in multireference density functional theory (DFT-NCCI). The model treats properly isospin and rotational symmetries and can be applied to calculate both the nuclear spectra and transition rates in atomic nuclei, irrespectively of their mass and particle-number parity. Methods: The DFT-NCCI calculation proceeds as follows: First, one builds a configuration space by computing relevant, for a given physical problem, (multi)particle-(multi)hole Slater determinants. Next, one applies the isospin and angular-momentum projections and performs the isospin and K mixing in order to construct a model space composed of linearly dependent states of good angular momentum. Eventually, one mixes the projected states by solving the Hill-Wheeler-Griffin equation. Results: The method is applied to compute the GT strength distribution in selected N ≈Z nuclei including the p -shell 8Li and 8Be nuclei and the s d -shell well-deformed nucleus 24Mg. In order to demonstrate a flexibility of the approach we present also a calculation of the superallowed GT β decay in doubly-magic spherical 100Sn and the low-spin spectrum in 100In. Conclusions: It is demonstrated that the DFT-NCCI model is capable of capturing the GT response satisfactorily well by using a relatively small configuration space, exhausting simultaneously the GT sum rule. The model, due to its flexibility and broad range of applicability, may
Butail, Sachit; Polverino, Giovanni; Phamduy, Paul; Del Sette, Fausto; Porfiri, Maurizio
2014-03-01
We explore fish-robot interactions in a comprehensive set of experiments designed to highlight the effects of speed and configuration of bioinspired robots on live zebrafish. The robot design and movement is inspired by salient features of attraction in zebrafish and includes enhanced coloration, aspect ratio of a fertile female, and carangiform/subcarangiformlocomotion. The robots are autonomously controlled to swim in circular trajectories in the presence of live fish. Our results indicate that robot configuration significantly affects both the fish distance to the robots and the time spent near them.
Ab initio nuclear structure - the large sparse matrix eigenvalue problem
Energy Technology Data Exchange (ETDEWEB)
Vary, James P; Maris, Pieter [Department of Physics, Iowa State University, Ames, IA, 50011 (United States); Ng, Esmond; Yang, Chao [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sosonkina, Masha, E-mail: jvary@iastate.ed [Scalable Computing Laboratory, Ames Laboratory, Iowa State University, Ames, IA, 50011 (United States)
2009-07-01
The structure and reactions of light nuclei represent fundamental and formidable challenges for microscopic theory based on realistic strong interaction potentials. Several ab initio methods have now emerged that provide nearly exact solutions for some nuclear properties. The ab initio no core shell model (NCSM) and the no core full configuration (NCFC) method, frame this quantum many-particle problem as a large sparse matrix eigenvalue problem where one evaluates the Hamiltonian matrix in a basis space consisting of many-fermion Slater determinants and then solves for a set of the lowest eigenvalues and their associated eigenvectors. The resulting eigenvectors are employed to evaluate a set of experimental quantities to test the underlying potential. For fundamental problems of interest, the matrix dimension often exceeds 10{sup 10} and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. We survey recent results and advances in solving this large sparse matrix eigenvalue problem. We also outline the challenges that lie ahead for achieving further breakthroughs in fundamental nuclear theory using these ab initio approaches.
Ab initio nuclear structure - the large sparse matrix eigenvalue problem
International Nuclear Information System (INIS)
Vary, James P; Maris, Pieter; Ng, Esmond; Yang, Chao; Sosonkina, Masha
2009-01-01
The structure and reactions of light nuclei represent fundamental and formidable challenges for microscopic theory based on realistic strong interaction potentials. Several ab initio methods have now emerged that provide nearly exact solutions for some nuclear properties. The ab initio no core shell model (NCSM) and the no core full configuration (NCFC) method, frame this quantum many-particle problem as a large sparse matrix eigenvalue problem where one evaluates the Hamiltonian matrix in a basis space consisting of many-fermion Slater determinants and then solves for a set of the lowest eigenvalues and their associated eigenvectors. The resulting eigenvectors are employed to evaluate a set of experimental quantities to test the underlying potential. For fundamental problems of interest, the matrix dimension often exceeds 10 10 and the number of nonzero matrix elements may saturate available storage on present-day leadership class facilities. We survey recent results and advances in solving this large sparse matrix eigenvalue problem. We also outline the challenges that lie ahead for achieving further breakthroughs in fundamental nuclear theory using these ab initio approaches.
Chen, Jia; An, Chunsheng; Chen, Hong
2018-02-01
We investigate mixing of the lowest-lying qqq configurations with JP = 1/2- caused by the hyperfine interactions between quarks mediated by Goldstone Boson Exchange, One Gluon Exchange, and both Goldstone Boson and One Gluon exchange, respectively. The first orbitally excited nucleon, Σ, Λ and Ξ states are considered. Contributions of both the contact term and tensor term are taken into account. Our numerical results show that mixing of the studied configurations in the two employed hyperfine interaction models are very different. Therefore, the present results, which should affect the strong and electromagnetic decays of baryon resonances, may be used to examine the present employed hyperfine interaction models. Supported by National Natural Science Foundation of China (11675131,11645002), Chongqing Natural Science Foundation (cstc2015jcyjA00032) and Fundamental Research Funds for the Central Universities (SWU115020)
International Nuclear Information System (INIS)
Morcos, A.; Taylor, H. S.
1989-01-01
This paper will briefly discuss the reason for and content of configuration management both for new plants and, when adapted, for older plants. It will then address three types of activities a utility may undertake as part of a nuclear CAM program and with which Sargent and Leyden has been actively involved. The first activity is a methodology for preparing design-basis documentation. The second is the identification of essential data required to be kept by the utility in support of the operation of a nuclear plant. The third activity is a computerized classification system of plant components, allowing ready identification of plant functional and physical characteristics. Plant configuration documentation describes plant components, the ways they arranged to interact, and the ways they are enabled to interact. Configuration management, on the other hand, is more than the control of such documentation. It is a dynamic process for ensuring that a plant configuration meets all relevant requirements for safety and economy, even while the configuration changes and even while the requirements change. Configuration management for a nuclear plant is so complex that it must be implemented in phases and modules. It takes advantage of and integrates existing programs. Managing complexity and streamlining the change process become important additional objectives of configuration management. The example activities fulfill essential goals of an overall CAM program: definition of design baseline, definition of essential plant data, and classification of plant components
Energy Technology Data Exchange (ETDEWEB)
Munoz, E. L., E-mail: munoz@fisica.unlp.edu.ar; Richard, D. [Departamento de Fisica and Instituto de Fisica La Plata (IFLP, CCT La Plata, CONICET) (Argentina); Carbonari, A. W. [Instituto de Pesquisas Energeticas y Nucleares-IPEN-CNEN/SP (Brazil); Errico, L. A.; Renteria, M. [Departamento de Fisica and Instituto de Fisica La Plata (IFLP, CCT La Plata, CONICET) (Argentina)
2010-04-15
Time-Differential {gamma}-{gamma} Perturbed-Angular-Correlation (PAC) measurements were performed in {sup 111}In-difussed Sc{sub 2}O{sub 3} polycrystals in order to characterize the electric-field-gradient tensor at {sup 111}Cd nuclei located at the two non-equivalent cation sites of the host lattice. The experimental data were compared with ab initio calculations performed using the Full-Potential Augmented Plane Wave plus local orbital (FP-APW+lo) method in the framework of the Density Functional Theory. The PAC experiments were carried out in air in the temperature range 10-900 K. The spectra present a strong damping below 650 K. This damping is associated with dynamic hyperfine interactions that were analyzed with the perturbation factor proposed by Baeverstam et al.. A model based in the population of impurity levels that are introduced by the Cd probes (supported by FP-APW+lo results) is proposed in order to explain the origin of the observed dynamic interactions.
International Nuclear Information System (INIS)
Freed, K.F.; Herman, M.F.; Yeager, D.L.
1980-01-01
A description is provided of the common conceptual origins of many-body equations of motion and Green's function methods in Liouville operator formulations of the quantum mechanics of atomic and molecular electronic structure. Numerical evidence is provided to show the inadequacies of the traditional strictly perturbative approaches to these methods. Nonperturbative methods are introduced by analogy with techniques developed for handling large configuration interaction calculations and by evaluating individual matrix elements to higher accuracy. The important role of higher excitations is exhibited by the numerical calculations, and explicit comparisons are made between converged equations of motion and configuration interaction calculations for systems where a fundamental theorem requires the equality of the energy differences produced by these different approaches. (Auth.)
Contreras, José
2015-01-01
In this paper I describe classroom experiences with pre-service secondary mathematics teachers (PSMTs) investigating and extending patterns embedded in the Pythagorean configuration. This geometric figure is a fruitful source of mathematical tasks to help students, including PSMTs, further develop habits of mind such as visualization,…
International Nuclear Information System (INIS)
Gilles, D; Busquet, M; Gilleron, F; Pain, J-C; Klapisch, M
2016-01-01
We have recently shown that iron and nickel open M-shell opacity spectra, up to Δn = 2 are very sensitive to Configuration Interaction (CI) treatments at temperature around 15 eV and for various densities. To do so we had compared extensive CI calculations obtained with two opacity codes HULLAC-v9 and SCO-RCG. In this work we extend these comparisons to a first evaluation of CI effects on Rosseland and Planck means. (paper)
International Nuclear Information System (INIS)
Tourniaire, B.; Spindler, B.
2005-01-01
The frame of this work is the validation of the TOLBIAC-ICB code which is devoted to the simulation of Molten Core-Concrete Interaction (MCCI) for reactor safety analysis. Attention focuses here on the validation of TOLBIAC-ICB in configurations expected to be representative of the long term phase of MCCI i.e. during an interaction between an oxide/metal stratified corium melt and a concrete structure. Up to now the BETA tests performed at the Forschungszentrum Karlsruhe (FzK) are the only tests available to study such kind of interaction. The BETA tests are first described and the operating conditions are reminded. The TOLBIAC-ICB code is then briefly described, with emphasis on the models used for stratified configurations. The results of the simulations are discussed. A sensitivity study is also performed with the power generated in the oxide layer instead of the metal layer as in the test. This last calculation shows that the large axial ablation observed in the tests is probably due to the peculiar configuration of the test with input power in the bottom metal layer. Since in the reactor case the residual power would be mainly concentrated in the upper oxide layer, the conclusions of the BETA tests for the reactor applications, in term of axial ablation, must be derived with caution. (author)
Das, Koyeli; Roy, Milan Chandra; Rajbanshi, Biplab; Roy, Mahendra Nath
2017-11-01
Qualitative and quantitative analysis of molecular interaction prevailing in tyrosine and tryptophan in aqueous solution of vitamin C have been probed by thermophysical properties. The apparent molar volume (ϕV), viscosity B-coefficient, molal refraction (RM) of tyrosine and tryptophan have been studied in aqueous vitamin C solutions at diverse temperatures via Masson equation which deduced solute-solvent and solute-solute interactions, respectively. Spectroscopic study along with physicochemical and computational techniques provides lots of interesting and highly significant insights of the model biological systems. The overall results established strong solute-solvent interactions between studied amino acids and vitamin C mixture in the ternary solutions.
Energy Technology Data Exchange (ETDEWEB)
Munoz, Emiliano L., E-mail: munoz@fisica.unlp.edu.ar [Departamento de Fisica and Instituto de Fisica La Plata (IFLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 67, 1900 La Plata (Argentina); Mercurio, Marcio E.; Cordeiro, Moacir R.; Pereira, Luciano F.D.; Carbonari, Artur W. [Instituto de Pesquisas Energeticas y Nucleares-IPEN-CNEN/SP, Sao Paulo (Brazil); Renteria, Mario [Departamento de Fisica and Instituto de Fisica La Plata (IFLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 67, 1900 La Plata (Argentina)
2012-08-15
In this work, we present results of Time-Differential {gamma}-{gamma} Perturbed-Angular-Correlations (PAC) experiments performed in {sup 111}Cd-doped ZnO semiconductor. The PAC technique has been applied in order to characterize the electric-field-gradient (EFG) tensor at ({sup 111}In (EC){yields}) {sup 111}Cd nuclei located, as was later demonstrated, at defect-free cation sites of the ZnO host structure. The PAC experiments were performed in the temperature range of 77-1075 K. At first glance, the unexpected presence of low-intensity dynamic hyperfine interactions was observed, which were analyzed with a perturbation factor based on the Baeverstam and Othaz model. The experimental EFG results were compared with ab initio calculations performed with the Full-Potential Augmented Plane Wave plus local orbital (FP-APW+lo) method, in the framework of the Density Functional Theory (DFT), using the Wien2K code. The presence of the dynamic hyperfine interactions has been analyzed enlightened by the FP-APW+lo calculations of the EFG performed as a function of the charge state of the cell. We could correlate the large strength of the dynamic hyperfine interaction with the strong variation of the EFG due to changes in the electronic charge distribution in the Cd vicinity during the time-window of the PAC measurement. It was also revealed that the Cd impurity decays to a final stable neutral charge state (Cd{sup 2+}) fast enough (in few ns) to produce the nearly undamped observed PAC spectra.
International Nuclear Information System (INIS)
Machado, F.B.C.
1985-01-01
The use of the configuration (CI) method for the calculation of very accurate potential energy curves and dipole moment functions, and then their use in the comprehension of spectroscopic properties of diatomic molecules is presented. The spectroscopic properties of CH + and CD + such as: vibrational levels, spectroscopic constants, averaged dipole moments for all vibrational levels, radiative transition probabilities for emission and absorption, and radiative lifetimes are verificated. (M.J.C.) [pt
Energy Technology Data Exchange (ETDEWEB)
Xin, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); LaRue, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Oberg, H. [Stockholm Univ., Stockholm (Sweden); Beye, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Dell' Angela, M. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Turner, J. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gladh, J. [Stockholm Univ., Stockholm (Sweden); Ng, M. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Sellberg, J. A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Kaya, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Mercurio, G. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Hieke, F. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Nordlund, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Schlotter, W. F. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dakovski, G. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Minitti, M. P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fohlisch, A. [Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Univ. Potsdam, Potsdam (Germany); Wolf, M. [Fritz-Haber Institute of the Max-Planck-Society, Berlin (Germany); Wurth, W. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); DESY Photon Science, Hamburg (Germany); Ogasawara, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Norskov, J. K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Ostrom, H. [Stockholm Univ., Stockholm (Sweden); Pettersson, L. G. M. [Stockholm Univ., Stockholm (Sweden); Nilsson, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stockholm Univ., Stockholm (Sweden); Ablid-Pedersen, F. [SLAC National Accelerator Lab., Menlo Park, CA (United States)
2015-04-16
We show that coadsorbed oxygen atoms have a dramatic influence on the CO desorption dynamics from Ru(0001). In contrast to the precursor-mediated desorption mechanism on Ru(0001), the presence of surface oxygen modifies the electronic structure of Ru atoms such that CO desorption occurs predominantly via the direct pathway. This phenomenon is directly observed in an ultrafast pump-probe experiment using a soft x-ray free-electron laser to monitor the dynamic evolution of the valence electronic structure of the surface species. This is supported with the potential of mean force along the CO desorption path obtained from density-functional theory calculations. Charge density distribution and frozen-orbital analysis suggest that the oxygen-induced reduction of the Pauli repulsion, and consequent increase of the dative interaction between the CO 5σ and the charged Ru atom, is the electronic origin of the distinct desorption dynamics. Ab initio molecular dynamics simulations of CO desorption from Ru(0001) and oxygen-coadsorbed Ru(0001) provide further insights into the surface bond-breaking process.
International Nuclear Information System (INIS)
Kucas, S.; Jonauskas, V.; Karazija, R.
1997-01-01
For pt.III see ibid., vol.52, p.639, 1995. Changes of the moments of atomic spectrum due to configuration interaction (CI), the CI strength, the average shift of the energy of a level due to its interaction with all levels of distant configuration and other global characteristics of CI effects in atoms are systematised and their expressions presented. The results of the calculation of those characteristics for the energy level spectra of the 3s3p 3 + 3s 2 3p3d configurations in Si isoelectronic series, 3p 5 3d N + 3p 6 3d N-2 4p + 3p 6 3d N-2 4f (N = 5, 6, 7, 8) in Cr, Mn, Fe and Co isoelectronic series, ns 2 np N + np N+2 at n = 2 - 5 and N = 2 - 4 in neutral atoms as well as for the characteristic emission spectra corresponding to the 3p 5 3d 9 + 3d 7 4p → 3d 8 transitions as well as for the Auger M 4.3 N 1 N 2.3 spectra in Kr and N 4.5 O 1 O 2.3 in Xe are given and compared with the same characteristics of the more complete experimental spectra. (orig.)
Nanomechanics modeling of carbon nanotubes interacting with surfaces in various configurations
Wu, Yu-Chiao
Carbon nanotubes (CNTs) have been widely used as potential components in reported nanoelectromechanical (NEM) devices due to their excellent mechanical and electrical properties. This thesis models the experiments by the continuum mechanics in two distinct scenarios. In the first situation, measurements are made of CNT configurations after manipulations. Modeling is then used to determine the interfacial properties during the manipulation which led to the observed configuration. This technique is used to determine the shear stress between a SWNT bundle and other materials. During manipulation, a SWNT bundle slipped on two micro-cantilevers. According to the slack due to the slippage after testing and the device configuration, the shear stress between a SWNT bundle and other materials can be determined. In another model, the work of adhesion was determined on two accidentally fabricated devices. Through the configuration of two SWNT adhered bundles and the force-distance curves measured by an atomic force microscope (AFM), modeling was used to determine the work of adhesion between two bundles and the shear stress at the SWNT-substrate interface. In the second situation, modeling is used in a more traditional fashion to make theoretical predictions as to how a device will operate. Using this technique, the actuation mechanism of a single-trench SWNT-based switch was investigated. During the actuation, the deflection-induced tension causes the SWNT bundle to slip on both platforms and to be partially peeled from two side recessed electrodes. These effects produce a slack which reduces the threshold voltages subsequent to the first actuation. The result shows excellent agreement between the theory and the measurement. Furthermore, the operation of a double-trenched SWNT-based switch was investigated. A slack is produced in the 1st actuated trench region by the slip and peeling effects. This slack reduces the 2nd actuation voltage in the neighbor trench. Finally, the
Bauzá, Antonio; Frontera, Antonio
2017-08-18
In this study, several σ-type and π-hole bonding complexes between PO 2 . radicals and electron-rich entities have been optimized at the RI-MP2/aug-cc-pVQZ level of theory. We have used Cl - , Br - , I - anions, and ethene, ethyne, HCN, HF, and H 2 O as Lewis bases. In addition, we have performed natural bond orbital (NBO) and Mulliken spin density analyses, highlighting the donor-acceptor nature of the interaction. Moreover, an interesting retro-donation from the single electron lone pair of the PO 2 . radical to the Lewis base also contributes to the stabilization of the complexes studied herein. Finally, the Bader's atoms-in-molecules (AIM) analysis of several complexes has been performed to further characterize the interactions discussed herein. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analytic ab initio-based molecular interaction potential for the BrO⋅H{sub 2}O complex
Energy Technology Data Exchange (ETDEWEB)
Hoehn, Ross D.; Kais, Sabre [Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 (United States); Qatar Environment and Energy Research Institute, HBKU, Doha (Qatar); Yeole, Sachin D. [Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 (United States); Francisco, Joseph S., E-mail: jfrancisco3@unl.edu [Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 (United States); Departments of Chemistry, University of Nebraska, Lincoln, Nebraska 68588 (United States)
2016-05-28
Radical halogen oxide species play important roles within atmospheric processes, specifically those responsible for the removal of O{sub 3}. To facilitate future investigations on this family of compounds, RCCSD(T)/aug-cc-pVQZ-level electronic structure calculations were employed to generate individual-molecule optimized geometries, as well as to determine the global minimum energy structure for the BrO⋅H{sub 2}O complex. This information facilitated the generation of several one-dimensional potential energy surface (PES) scans for the BrO⋅H{sub 2}O complex. Scans were performed for both the ground state and the first excited state; this inclusion is due to a low-lying first electronic excited-state energy. These rigid-geometry PES scans were used both to generate a novel analytic interaction potential by modifying the existing Thole-type model used for water and to the fitted potential function. This interaction potential features anisotropic atomic polarizabilities facilitating appropriate modeling of the physics regarding the unpaired electron residing within the p-orbitals of the oxygen atom of the bromine oxide radical. The intention of this work is to facilitate future molecular dynamics simulations involving the interaction between the BrO radical and water clusters as a first step in devising possible novel chemistries taking place at the water interface of clouds within the atmosphere.
Vortex configuration and vortex-vortex interaction in nano-structured superconductors
International Nuclear Information System (INIS)
Kato, Masaru; Niwa, Yuhei; Suematsu, Hisataka; Ishida, Takekazu
2012-01-01
We study the vortex structures and quasi-particle structures in nano-structured superconductors. We used the Bogoliubov-de Gennes equation and the finite element method and obtained stable magnetic flux structures and the quasi-particle states. We found the vortex configurations are affected by the interference of the quasi-particle bound states around the vortices. In order to clarify the interference between the quasi-particle wave-functions around two vortices we have developed a numerical method using the elliptic coordinates and the Mathieu functions. We apply this method to two singly quantized vortex state in a conventional s-wave superconductor and a pair of half-quantum vortices in a chiral p-wave superconductor.
Directory of Open Access Journals (Sweden)
Ridwana Rifan
2018-01-01
The results of this study indicate that: (1 the relationship of spatial configuration to social interaction level in Jatinegara Barat flats can be positive or negative. (2 Positive relationships are found on the1st and 2ndfloor areas. High configuration values with high interaction levels are found in shared spaces on the 1st and 2nd floors with characteristics such as open space, large space, and availability of interaction supporting elements, while low configuration values with low interaction levels are found in more confined spaces such as private spaces and narrow corridors. (3 Negative relationships are found in the corridor and shared space in front of the elevator on each typical floors. Shared space in front of the elevator that has high spatial configuration value with large area show a low level of social interaction. While corridor with lower configuration value with the narrow area but have supporting elements such as chairs, mats, and shops have a higher level of social interaction. (4 This study shows that in the case of the relationship between spatial configuration and social interaction, availability of interaction supporting elements has greater influence rather than any other spatial factors.
International Nuclear Information System (INIS)
Nakayama, Akira; Taketsugu, Tetsuya; Shiga, Motoyuki
2009-01-01
Efficiency of the ab initio hybrid Monte Carlo and ab initio path integral hybrid Monte Carlo methods is enhanced by employing an auxiliary potential energy surface that is used to update the system configuration via molecular dynamics scheme. As a simple illustration of this method, a dual-level approach is introduced where potential energy gradients are evaluated by computationally less expensive ab initio electronic structure methods. (author)
International Nuclear Information System (INIS)
Çakır, D; Gülseren, O
2012-01-01
We have systematically investigated the growth behavior and stability of small stoichiometric (TiO 2 ) n (n = 1-10) clusters as well as their structural, electronic and magnetic properties by using the first-principles plane wave pseudopotential method within density functional theory. In order to find out the ground state geometries, a large number of initial cluster structures for each n has been searched via total energy calculations. Generally, the ground state structures for the case of n = 1-9 clusters have at least one monovalent O atom, which only binds to a single Ti atom. However, the most stable structure of the n = 10 cluster does not have any monovalent O atom. On the other hand, Ti atoms are at least fourfold coordinated for the ground state structures for n ≥ 4 clusters. Our calculations have revealed that clusters prefer to form three-dimensional structures. Furthermore, all these stoichiometric clusters have nonmagnetic ground state. The formation energy and the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap for the most stable structure of (TiO 2 ) n clusters for each n have also been calculated. The formation energy and hence the stability increases as the cluster size grows. In addition, the interactions between the ground state structure of the (TiO 2 ) n cluster and a single water molecule have been studied. The binding energy (E b ) of the H 2 O molecule exhibits an oscillatory behavior with the size of the clusters. A single water molecule preferably binds to the cluster Ti atom through its oxygen atom, resulting an average binding energy of 1.1 eV. We have also reported the interaction of the selected clusters (n = 3, 4, 10) with multiple water molecules. We have found that additional water molecules lead to a decrease in the binding energy of these molecules to the (TiO 2 ) n clusters. Finally, the adsorption of transition metal (TM) atoms (V, Co and Pt) on the n = 10 cluster has been
Directory of Open Access Journals (Sweden)
Loay A. Elalfy
2013-01-01
Full Text Available Density functional theory calculations using B3LYP/3-21G level of theory have been implemented on 6 carbon nanotubes (CNTs structures (3 zigzag and 3 armchair CNTs to study the energetics of the reverse osmosis during water desalination process. Calculations of the band gap, interaction energy, highest occupied molecular orbital, lowest unoccupied molecular orbital, electronegativity, hardness, and pressure of the system are discussed. The calculations showed that the water molecule that exists inside the CNT is about 2-3 Å away from its wall. The calculations have proven that the zigzag CNTs are more efficient for reverse osmosis water desalination process than armchair CNTs as the reverse osmosis process requires pressure of approximately 200 MPa for armchair CNTs, which is consistent with the values used in molecular dynamics simulations, while that needed when using zigzag CNTs was in the order of 60 MPa.
International Nuclear Information System (INIS)
Closser, Kristina D.; Head-Gordon, Martin; Gessner, Oliver
2014-01-01
The dynamics resulting from electronic excitations of helium clusters were explored using ab initio molecular dynamics. The simulations were performed with configuration interaction singles and adiabatic classical dynamics coupled to a state-following algorithm. 100 different configurations of He 7 were excited into the 2s and 2p manifold for a total of 2800 trajectories. While the most common outcome (90%) was complete fragmentation to 6 ground state atoms and 1 excited state atom, 3% of trajectories yielded bound, He 2 * , and <0.5% yielded an excited helium trimer. The nature of the dynamics, kinetic energy release, and connections to experiments are discussed
Liao, Chuan-Chieh; Hsiao, Wen-Wei; Lin, Ting-Yu; Lin, Chao-An
2015-06-01
Numerical investigations are carried out for the drafting, kissing and tumbling (DKT) phenomenon of two freely falling spheres within a long container by using an immersed-boundary method. The method is first validated with flows induced by a sphere settling under gravity in a small container for which experimental data are available. The hydrodynamic interactions of two spheres are then studied with different sizes and initial configurations. When a regular sphere is placed below the larger one, the duration of kissing decreases in pace with the increase in diameter ratio. On the other hand, the time duration of the kissing stage increases in tandem with the increase in diameter ratio as the large sphere is placed below the regular one, and there is no DKT interactions beyond threshold diameter ratio. Also, the gap between homogeneous spheres remains constant at the terminal velocity, whereas the gaps between the inhomogeneous spheres increase due to the differential terminal velocity.
Interactive ultrasonic field simulations for complex non-destructive testing configurations
International Nuclear Information System (INIS)
Chouh, Hamza
2016-01-01
In order to fulfill increasing reliability and safety requirements, non-destructive testing techniques are constantly evolving and so does their complexity. Consequently, simulation is an essential part of their design. We developed a tool for the simulation of the ultrasonic field radiated by any planar probes into non-destructive testing configurations involving meshed geometries without prominent edges, isotropic and anisotropic, homogeneous and heterogeneous materials, and wave trajectories that can include reflections and transmissions. We approximate the ultrasonic wave fronts by using polynomial interpolators that are local to ultrasonic ray pencils. They are obtained using a surface research algorithm based on pencil tracing and successive subdivisions. Their interpolators enable the computation of the necessary quantities for the impulse responses on each point of a sampling of the transducer surface that fulfills the Shannon criterion. By doing so, we can compute a global impulse response which, when convolved with the excitation signal of the transducer, results in the ultrasonic field. The usage of task parallelism and of SIMD instructions on the most computationally expensive steps yields an important performance boost. Finally, we developed a tool for progressive visualization of field images. It benefits from an image reconstruction technique and schedules field computations in order to accelerate convergence towards the final image. (author) [fr
Garnier, Romain; Odunlami, Marc; Le Bris, Vincent; Bégué, Didier; Baraille, Isabelle; Coulaud, Olivier
2016-05-01
A new variational algorithm called adaptive vibrational configuration interaction (A-VCI) intended for the resolution of the vibrational Schrödinger equation was developed. The main advantage of this approach is to efficiently reduce the dimension of the active space generated into the configuration interaction (CI) process. Here, we assume that the Hamiltonian writes as a sum of products of operators. This adaptive algorithm was developed with the use of three correlated conditions, i.e., a suitable starting space, a criterion for convergence, and a procedure to expand the approximate space. The velocity of the algorithm was increased with the use of a posteriori error estimator (residue) to select the most relevant direction to increase the space. Two examples have been selected for benchmark. In the case of H2CO, we mainly study the performance of A-VCI algorithm: comparison with the variation-perturbation method, choice of the initial space, and residual contributions. For CH3CN, we compare the A-VCI results with a computed reference spectrum using the same potential energy surface and for an active space reduced by about 90%.
Electron correlation effects on the N2--N2 interaction
International Nuclear Information System (INIS)
Hay, P.J.; Pack, R.T.; Martin, R.L.
1984-01-01
Ab initio self-consistent field, configuration interaction, and many-body perturbation theory methods are used to calculate the intermolecular potential between two nitrogen molecules. The emphasis is placed on the repulsive region important at the temperatures and pressures encountered in detonations. In addition, electron gas calculations are employed to fit and extend the ab initio data. We also generate effective spherical potentials which fit dilute gas virial, viscosity, and differential scattering data while being constrained by Hugoniot or ab initio data in the repulsive region. Finally, we discuss the roles of electron correlation and of many-body effects on the N 2 --N 2 interaction. Comparisons are also made to the Ar 2 potential where similar ab initio calculations are compared to an accurate empirical potential
Palmer, Michael H.; Vrønning Hoffmann, Søren; Jones, Nykola C.; Coreno, Marcello; de Simone, Monica; Grazioli, Cesare
2018-06-01
The vacuum ultraviolet (VUV) spectrum for CH2F2 from a new synchrotron study has been combined with earlier data and subjected to detailed scrutiny. The onset of absorption, band I and also band IV, is resolved into broad vibrational peaks, which contrast with the continuous absorption previously claimed. A new theoretical analysis, using a combination of time dependent density functional theory (TDDFT) calculations and complete active space self-consistent field, leads to a major new interpretation. Adiabatic excitation energies (AEEs) and vertical excitation energies, evaluated by these methods, are used to interpret the spectra in unprecedented detail using theoretical vibronic analysis. This includes both Franck-Condon (FC) and Herzberg-Teller (HT) effects on cold and hot bands. These results lead to the re-assignment of several known excited states and the identification of new ones. The lowest calculated AEE sequence for singlet states is 11B1 ˜ 11A2 expected; the onset of the 15.5 eV band shows a set of vibrational peaks, but the vibration frequency does not correspond to any of the photoelectron spectral (PES) structure and is clearly valence in nature. The routine use of PES footprints to detect Rydberg states in VUV spectra is shown to be inadequate. The combined effects of FC and HT in the VUV spectral bands lead to additional vibrations when compared with the PES.
DEFF Research Database (Denmark)
Shim, Irene; Baba, M. Sai; Gingerich, K.A.
2002-01-01
The low-lying states of the molecule Ge-2 and of the ion Ge-2(-) have been investigated by all electron ab initio multiconfiguration self-consistent field (CASSCF) and multi-reference configuration interaction (MRCI) calculations. The relativistic corrections for the Darwin contact term and for t......The low-lying states of the molecule Ge-2 and of the ion Ge-2(-) have been investigated by all electron ab initio multiconfiguration self-consistent field (CASSCF) and multi-reference configuration interaction (MRCI) calculations. The relativistic corrections for the Darwin contact term...... excited states are presented. Thermal functions based on the theoretically determined molecular parameters were used to derive the thermodynamic properties of the Ge-2 molecule from new mass spectrometric equilibrium data. The literature value for the dissociation energy of Ge-2 has been re...
Indian Academy of Sciences (India)
mechanisms of two molecular crystals: An ab initio molecular dynamics ... for Computation in Molecular and Materials Science and Department of Chemistry, School of ..... NSAF Foundation of National Natural Science Foun- ... Matter 14 2717.
Tsuchimochi, Takashi
2015-10-14
Spin-flip approaches capture static correlation with the same computational scaling as the ordinary single reference methods. Here, we extend spin-flip configuration interaction singles (SFCIS) by projecting out intrinsic spin-contamination to make it spin-complete, rather than by explicitly complementing it with spin-coupled configurations. We give a general formalism of spin-projection for SFCIS, applicable to any spin states. The proposed method is viewed as a natural unification of SFCIS and spin-projected CIS to achieve a better qualitative accuracy at a low computational cost. While our wave function ansatz is more compact than previously proposed spin-complete SF approaches, it successfully offers more general static correlation beyond biradicals without sacrificing good quantum numbers. It is also shown that our method is invariant with respect to open-shell orbital rotations, due to the uniqueness of spin-projection. We will report benchmark calculations to demonstrate its qualitative performance on strongly correlated systems, including conical intersections that appear both in ground-excited and excited-excited degeneracies.
Two-electron states of a group-V donor in silicon from atomistic full configuration interactions
Tankasala, Archana; Salfi, Joseph; Bocquel, Juanita; Voisin, Benoit; Usman, Muhammad; Klimeck, Gerhard; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.; Rogge, Sven; Rahman, Rajib
2018-05-01
Two-electron states bound to donors in silicon are important for both two-qubit gates and spin readout. We present a full configuration interaction technique in the atomistic tight-binding basis to capture multielectron exchange and correlation effects taking into account the full band structure of silicon and the atomic-scale granularity of a nanoscale device. Excited s -like states of A1 symmetry are found to strongly influence the charging energy of a negative donor center. We apply the technique on subsurface dopants subjected to gate electric fields and show that bound triplet states appear in the spectrum as a result of decreased charging energy. The exchange energy, obtained for the two-electron states in various confinement regimes, may enable engineering electrical control of spins in donor-dot hybrid qubits.
Klinkusch, Stefan; Saalfrank, Peter; Klamroth, Tillmann
2009-09-21
We report simulations of laser-pulse driven many-electron dynamics by means of a simple, heuristic extension of the time-dependent configuration interaction singles (TD-CIS) approach. The extension allows for the treatment of ionizing states as nonstationary states with a finite, energy-dependent lifetime to account for above-threshold ionization losses in laser-driven many-electron dynamics. The extended TD-CIS method is applied to the following specific examples: (i) state-to-state transitions in the LiCN molecule which correspond to intramolecular charge transfer, (ii) creation of electronic wave packets in LiCN including wave packet analysis by pump-probe spectroscopy, and, finally, (iii) the effect of ionization on the dynamic polarizability of H(2) when calculated nonperturbatively by TD-CIS.
Energy Technology Data Exchange (ETDEWEB)
Hellmann, Robert
2009-06-16
Thermophysical properties of the pure gases helium, neon, methane and water vapor were calculated for low densities over wide temperature ranges. Statistical thermodynamics was used for the determination of the pressure virial coefficients. The kinetic theory of gases was utilized for the calculation of the transport and relaxation properties. So far kinetic theory was limited to linear molecules and has now been extended to molecules of arbitrary geometry to enable calculations on methane and water vapor. The interaction potentials, which are needed for all computations, were determined for helium, neon and methane from the supermolecular approach using quantum chemical ab initio methods. For water the interaction potentials were taken from the literature. The calculated values of the thermophysical properties for the four gases show very good agreement with the best experimental data. At very low and very high temperatures the theoretical values are more accurate than experimental data. (orig.)
Zilz, D. E.
1985-01-01
A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 2 of 2: Wind Tunnel Test Force and Moment Data Report.
Ab initio study of vibronic transitions between x2π and 12Σ+ electronic states of HCP+ ion
Directory of Open Access Journals (Sweden)
Stojanović Ljiljana
2013-01-01
Full Text Available The ground and low-lying excited doublet electronic states of the HCP+ ion were studied by means of multireference configuration interaction method. Vibronic energy levels of the X2Π state of Σ, Π, Δ, and Φ symmetry, up to the 2500 cm-1, have been calculated variationally, employing previously developed ab initio methods which take into account vibronic and spin-orbit interactions. Obtained vibronic wave functions were used to estimate transition moments between vibronic energy levels of the X2Π and 12Σ+ electronic states. Results were compared to available experimental and theoretical data. [Projekat Ministarstva nauke Republike Srbije, br. 172040
Chiao, Chuan-Chin; Chubb, Charles; Hanlon, Roger T
2007-07-01
Disruptive body coloration is a primary camouflage tactic of cuttlefish. Because rapid changeable coloration of cephalopods is guided visually, we can present different visual backgrounds (e.g., computer-generated, two-dimensional prints) and video record the animal's response by describing and grading its body pattern. We showed previously that strength of cuttlefish disruptive patterning depends on the size, contrast, and density of discrete light elements on a homogeneous dark background. Here we report five experiments on the interactions of these and other features. Results show that Weber contrast of light background elements is--in combination with element size--a powerful determinant of disruptive response strength. Furthermore, the strength of disruptive patterning decreases with increasing mean substrate intensity (with other factors held constant). Interestingly, when element size, Weber contrast and mean substrate intensity are kept constant, strength of disruptive patterning depends on the configuration of clusters of small light elements. This study highlights the interactions of multiple features of natural microhabitats that directly influence which camouflage pattern a cuttlefish will choose.
Energy Technology Data Exchange (ETDEWEB)
Tachikawa, Masanori [Quantum Chemistry Division, Graduate School of NanoBioScience, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama 236-0027 (Japan)
2015-12-31
To theoretically demonstrate the binding of a positron to small polarized molecules, we have calculated the vibrational averaged positron affinity (PA) values along the local vibrational contribution with the configuration interaction level of multi-component molecular orbital method. This method can take the electron-positron correlation contribution into account through single electronic - single positronic excitation configurations. The PA values are enhanced by including the local vibrational contribution from vertical PA values due to the anharmonicity of the potential.
Ab Initio Predictions of Structures and Densities of Energetic Solids
National Research Council Canada - National Science Library
Rice, Betsy M; Sorescu, Dan C
2004-01-01
We have applied a powerful simulation methodology known as ab initio crystal prediction to assess the ability of a generalized model of CHNO intermolecular interactions to predict accurately crystal...
International Nuclear Information System (INIS)
Brooks, B.R.
1979-09-01
The Graphical Unitary Group Approach (GUGA) was cast into an extraordinarily powerful form by restructuring the Hamiltonian in terms of loop types. This restructuring allows the adoption of the loop-driven formulation which illuminates vast numbers of previously unappreciated relationships between otherwise distinct Hamiltonian matrix elements. The theoretical/methodological contributions made here include the development of the loop-driven formula generation algorithm, a solution of the upper walk problem used to develop a loop breakdown algorithm, the restriction of configuration space employed to the multireference interacting space, and the restructuring of the Hamiltonian in terms of loop types. Several other developments are presented and discussed. Among these developments are the use of new segment coefficients, improvements in the loop-driven algorithm, implicit generation of loops wholly within the external space adapted within the framework of the loop-driven methodology, and comparisons of the diagonalization tape method to the direct method. It is also shown how it is possible to implement the GUGA method without the time-consuming full (m 5 ) four-index transformation. A particularly promising new direction presented here involves the use of the GUGA methodology to obtain one-electron and two-electron density matrices. Once these are known, analytical gradients (first derivatives) of the CI potential energy are easily obtained. Several test calculations are examined in detail to illustrate the unique features of the method. Also included is a calculation on the asymmetric 2 1 A' state of SO 2 with 23,613 configurations to demonstrate methods for the diagonalization of very large matrices on a minicomputer. 6 figures, 6 tables
Energy Technology Data Exchange (ETDEWEB)
Deng, Banglin, E-mail: banglindeng@yahoo.cn [Department of Applied Physics, Chengdu University of Technology, Chengdu 610059, Sichuan (China); Jiang, Gang [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, Sichuan (China); Zhang, Chuanyu [Department of Applied Physics, Chengdu University of Technology, Chengdu 610059, Sichuan (China)
2014-09-15
In this work, the multi-configuration Dirac–Fock and relativistic configuration-interaction methods have been used to calculate the transition wavelengths, electric dipole transition probabilities, line strengths, and absorption oscillator strengths for the 2s–3p, 2p–3s, and 2p–3d transitions in Li-like ions with nuclear charge Z=7–30. Our calculated values are in good agreement with previous experimental and theoretical results. We took the contributions from Breit interaction, finite nuclear mass corrections, and quantum electrodynamics corrections to the initial and final levels into account, and also found that the contributions from Breit interaction, self-energy, and vacuum polarization grow fast with increasing nuclear charge for a fixed configuration. The ratio of the velocity to length form of the transition rate (A{sub v}/A{sub l}) was used to estimate the accuracy of our calculations.
H3+: Ab initio calculation of the vibration spectrum
International Nuclear Information System (INIS)
Carney, G.D.; Porter, R.N.
1976-01-01
The vibration spectrum of H 3 + is calculated from the representation of a previously reported [J. Chem Phys. 60, 4251 (1974)] ab initio potential-energy surface in a fifth degree Simons--Parr--Finlan (SPF) expansion. Morse- and harmonic-oscillator basis functions are used to describe the motions of the three oscillators and the Harris--Engerholm--Gwinn quadrature technique is used to obtain matrix elements of the Hamiltonian in the basis of vibrational configurations. Our variational method is thus analogous to configuration--interaction calculations for electronic states. The ground state is found to have a zero-point energy of 4345 cm -1 and a vibrationally averaged geometry of R 1 =R 2 =0.91396 A, theta=60.0012degree, where theta is the angle between the two equivalent bonds. The transition frequencies for the E and A 1 fundamentals are nu-bar/sub E/=2516 cm -1 and nu-bar/sub A/=3185 cm -1 and those for the corresponding first overtones of the bending mode are 2nu-bar/sub E/=5004 +- 4 cm -1 and 2nu-bar/sub A/=4799 cm -1 . The first overtone of the breathing mode is 6264 cm -1 . The first-excited A 1 vibration state is metastable with a dipole--radiation lifetime of 3 sec. Transition frequencies, Einstein coefficients, and lifetimes are reported for a total of 21 transitions. Analysis of results for Dunham number and normal-coordinate expansions in comparison with those for SPF expansion show the latter to be superior for ab initio vibrational calculations. A scheme for possible direct measurement of the fundamental A 1 and E vibrational bands is suggested
Ruggeri, Michele; Luo, Hongjun; Alavi, Ali
Full Configuration Interaction Quantum Monte Carlo (FCIQMC) is able to give remarkably accurate results in the study of atoms and molecules. The study of the uniform electron gas (UEG) on the other hand has proven to be much harder, particularly in the low density regime. The source of this difficulty comes from the strong interparticle correlations that arise at low density, and essentially forbid the study of the electron gas in proximity of Wigner crystallization. We extend a previous study on the three dimensional electron gas computing the energy of a fully polarized gas for N=27 electrons at high and medium density (rS = 0 . 5 to 5 . 0). We show that even when dealing with a polarized UEG the computational cost of the study of systems with rS > 5 . 0 is prohibitive; in order to deal with correlations and to extend the density range that to be studied we introduce a basis of localized states and an effective transcorrelated Hamiltonian.
International Nuclear Information System (INIS)
Savukov, I. M.; Filin, D. V.
2014-01-01
Many applications are in need of accurate photoionization cross sections, especially in the case of complex atoms. Configuration-interaction relativistic-many-body-perturbation theory (CI-RMBPT) has been successful in predicting atomic energies, matrix elements between discrete states, and other properties, which is quite promising, but it has not been applied to photoionization problems owing to extra complications arising from continuum states. In this paper a method that will allow the conversion of discrete CI-(R)MPBT oscillator strengths (OS) to photoionization cross sections with minimal modifications of the codes is introduced and CI-RMBPT cross sections of Ne, Ar, Kr, and Xe are calculated. A consistent agreement with experiment is found. RMBPT corrections are particularly significant for Ar, Kr, and Xe and improve agreement with experimental results compared to the particle-hole CI method. As a result, the demonstrated conversion method can be applied to CI-RMBPT photoionization calculations for a large number of multivalence atoms and ions
International Nuclear Information System (INIS)
Zhang, Xing; Herbert, John M.
2014-01-01
We revisit the calculation of analytic derivative couplings for configuration interaction singles (CIS), and derive and implement these couplings for its spin-flip variant for the first time. Our algorithm is closely related to the CIS analytic energy gradient algorithm and should be straightforward to implement in any quantum chemistry code that has CIS analytic energy gradients. The additional cost of evaluating the derivative couplings is small in comparison to the cost of evaluating the gradients for the two electronic states in question. Incorporation of an exchange-correlation term provides an ad hoc extension of this formalism to time-dependent density functional theory within the Tamm-Dancoff approximation, without the need to invoke quadratic response theory or evaluate third derivatives of the exchange-correlation functional. Application to several different conical intersections in ethylene demonstrates that minimum-energy crossing points along conical seams can be located at substantially reduced cost when analytic derivative couplings are employed, as compared to use of a branching-plane updating algorithm that does not require these couplings. Application to H 3 near its D 3h geometry demonstrates that correct topology is obtained in the vicinity of a conical intersection involving a degenerate ground state
Hermann, Gunter; Pohl, Vincent; Tremblay, Jean Christophe
2017-10-30
In this contribution, we extend our framework for analyzing and visualizing correlated many-electron dynamics to non-variational, highly scalable electronic structure method. Specifically, an explicitly time-dependent electronic wave packet is written as a linear combination of N-electron wave functions at the configuration interaction singles (CIS) level, which are obtained from a reference time-dependent density functional theory (TDDFT) calculation. The procedure is implemented in the open-source Python program detCI@ORBKIT, which extends the capabilities of our recently published post-processing toolbox (Hermann et al., J. Comput. Chem. 2016, 37, 1511). From the output of standard quantum chemistry packages using atom-centered Gaussian-type basis functions, the framework exploits the multideterminental structure of the hybrid TDDFT/CIS wave packet to compute fundamental one-electron quantities such as difference electronic densities, transient electronic flux densities, and transition dipole moments. The hybrid scheme is benchmarked against wave function data for the laser-driven state selective excitation in LiH. It is shown that all features of the electron dynamics are in good quantitative agreement with the higher-level method provided a judicious choice of functional is made. Broadband excitation of a medium-sized organic chromophore further demonstrates the scalability of the method. In addition, the time-dependent flux densities unravel the mechanistic details of the simulated charge migration process at a glance. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
The 3d8-(3d74p + 3p53d9) transitions in Br X: A striking case of configuration interaction
International Nuclear Information System (INIS)
Kleef, T.A.M. van; Uylings, P.H.M.; Ryabtsev, A.N.; Podobedova, L.I.; Joshi, Y.N.
1988-01-01
The spectrum of nine times ionized bromine (Br X) was photographed in the 90-120 A wavelength region on a variety of grazing incidence spectrographs using an open spark and a triggered spark as light sources. The analysis of the 3d 8 -(3d 7 4p + 3p 5 3d 9 ) transitions has resulted in establishing all 9 levels of the 3d 8 configuration, all 12 levels of the 3p 5 3d 9 configuration and 99 out of 110 levels of the 3d 7 4p configuration. The excitation probability of the 3p inner-shell electron increases with nuclear charge and in Br X is comparable with the excitation probability of the optical electrons resulting in a very strong configuration interaction between the 3p 5 3d 9 and 3d 7 4p configurations. Parametric calculations treating these configurations as one super configuration support the analysis. Two hundred and thirty two lines have been classified in this spectrum. (orig.)
Narula, Chaitanya K; Allard, Lawrence F; Wu, Zili
2017-07-24
The ab initio density functional theoretical studies show that energetics favor CO oxidation on single Pd atoms supported on θ-alumina. The diffuse reflectance infra-red spectroscopy (DRIFTS) results show that carbonates are formed as intermediates when single supported Pd atoms are exposed to a gaseous mixture of CO + O 2 . The rapid agglomeration of Pd atoms under CO oxidation conditions even at 6 °C leads to the presence of Pd particles along with single atoms during CO oxidation experiments. Thus, the observed CO oxidation has contributions from both single Pd atoms and Pd particles.
Lumbroso, H.; Liégeois, C.; Pappalardo, G. C.; Grassi, A.
From the ab initio molecular energies of the possible conformers and from a classical dipole moment analysis of 2-oxopyrrolidin-l-ylacetamide (μ = 4.02 D in dioxan at 30.0°C), the preferred conformation in solution of this novel nootropic agent has been determined. The exocyclic N-CH 2 bond is rotated in one sense by 90° and the exocyclic CH 2-C bond rotated in the same sense by 120° from the "planar" ( OO)- cis conformation. The structures of the two enantiomers in solution differ from that of the crystalline molecule.
Theoretical studies of molecular interactions
Energy Technology Data Exchange (ETDEWEB)
Lester, W.A. Jr. [Univ. of California, Berkeley (United States)
1993-12-01
This research program is directed at extending fundamental knowledge of atoms and molecules including their electronic structure, mutual interaction, collision dynamics, and interaction with radiation. The approach combines the use of ab initio methods--Hartree-Fock (HF) multiconfiguration HF, configuration interaction, and the recently developed quantum Monte Carlo (MC)--to describe electronic structure, intermolecular interactions, and other properties, with various methods of characterizing inelastic and reaction collision processes, and photodissociation dynamics. Present activity is focused on the development and application of the QMC method, surface catalyzed reactions, and reorientation cross sections.
Ab initio modeling of Al adsorption on CaF2 surfaces
International Nuclear Information System (INIS)
Barzilai, S.; Argaman, N.; Froumin, N.; Fuks, D.; Frage, N.
2008-01-01
Ab initio simulations of the adsorption of Al atoms on CaF 2 (0 0 1) and (1 1 1) surfaces have been performed for supercells with 7 different atomic configurations, using density functional theory. For (1 1 1) surfaces, a repulsive interaction was observed for most configurations, while a weak attraction was obtained when the Al atom was placed above F atoms. For the Ca-terminated (0 0 1) surface, the adsorption energy was about 5 times larger, whereas for the F-terminated (0 0 1) surface it was about 20 times greater. The comparative analysis indicates that the (0 0 1) surfaces are reactive and have a strong Al adatom bonding (chemisorption), especially for the F-terminated substrate. On the contrary, the (1 1 1) plane may be considered as non-reactive (physisorption), having a weak bonding of the Al adatom above the F site
DEFF Research Database (Denmark)
Knecht, Stefan; Jensen, Hans Jørgen Aagaard; Fleig, Timo
2010-01-01
We present a parallel implementation of a large-scale relativistic double-group configuration interaction CIprogram. It is applicable with a large variety of two- and four-component Hamiltonians. The parallel algorithm is based on a distributed data model in combination with a static load balanci...
Hellemans, V; De Baerdemacker, S; Heyde, K
2008-01-01
The case of U(5)--$\\hat{Q}(\\chi)\\cdot\\hat{Q}(\\chi)$ mixing in the configuration-mixed Interacting Boson Model is studied in its mean-field approximation. Phase diagrams with analytical and numerical solutions are constructed and discussed. Indications for first-order and second-order shape phase transitions can be obtained from binding energies and from critical exponents, respectively.
Energy Technology Data Exchange (ETDEWEB)
Arulmozhiraja, Sundaram, E-mail: raja@cat.hokudai.ac.jp; Coote, Michelle L. [ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, The Australian National University, Canberra, 2601 ACT (Australia); Hasegawa, Jun-ya [Institute for Catalysis, Hokkaido University, Kita 21, Nishi 10, Kita-Ku, Sapporo 001-0021 (Japan)
2015-11-28
Electronic structures of azaindole were studied using symmetry-adapted cluster configuration interaction theory utilizing Dunning’s cc-pVTZ basis set augmented with appropriate Rydberg spd functions on carbon and nitrogen atoms. The results obtained in the present study show good agreement with the available experimental values. Importantly, and contrary to previous theoretical studies, the excitation energy calculated for the important n–π{sup ∗} state agrees well with the experimental value. A recent study by Pratt and co-workers concluded that significant mixing of π-π{sup ∗} and n-π{sup ∗} states leads to major change in the magnitude and direction of the dipole moment of the upper state vibrational level in the 0,0 + 280 cm{sup −1} band in the S{sub 1}←S{sub 0} transition when compared to that of the zero-point level of the S{sub 1} state. The present study, however, shows that all the four lowest lying excited states, {sup 1}L{sub b} π-π{sup ∗}, {sup 1}L{sub a} π-π{sup ∗}, n-π{sup ∗}, and π-σ{sup ∗}, cross each other in one way or another, and hence, significant state mixing between them is likely. The upper state vibrational level in the 0,0 + 280 cm{sup −1} band in the S{sub 1}←S{sub 0} transition benefits from this four-state mixing and this can explain the change in magnitude and direction of the dipole moment of the S{sub 1} excited vibrational level. This multistate mixing, and especially the involvement of π-σ{sup ∗} state in mixing, could also provide a route for hydrogen atom detachment reactions. The electronic spectra of benzimidazole, a closely related system, were also investigated in the present study.
International Nuclear Information System (INIS)
Wang Jie-Min; Liu Qiang
2013-01-01
The potential energy curves (PECs) of four electronic states (X 1 Σ g + , e 3 Δ u , a 3 Σ u − , and d 3 Π g ) of an As 2 molecule are investigated employing the complete active space self-consistent field (CASSCF) method followed by the valence internally contracted multireference configuration interaction (MRCI) approach in conjunction with the correlation-consistent aug-cc-pV5Z basis set. The effect on PECs by the relativistic correction is taken into account. The way to consider the relativistic correction is to employ the second-order Douglas-Kroll Hamiltonian approximation. The correction is made at the level of a cc-pV5Z basis set. The PECs of the electronic states involved are extrapolated to the complete basis set limit. With the PECs, the spectroscopic parameters (T e , R e , ω e , ω e x e , ω e y e , α e , β e , γ e , and B e ) of these electronic states are determined and compared in detail with those reported in the literature. Excellent agreement is found between the present results and the experimental data. The first 40 vibrational states are studied for each electronic state when the rotational quantum number J equals zero. In addition, the vibrational levels, inertial rotation and centrifugal distortion constants of d 3 Π g electronic state are reported which are in excellent agreement with the available measurements. Comparison with the experimental data shows that the present results are both reliable and accurate. (atomic and molecular physics)
Saitow, Masaaki; Kurashige, Yuki; Yanai, Takeshi
2013-07-28
We report development of the multireference configuration interaction (MRCI) method that can use active space scalable to much larger size references than has previously been possible. The recent development of the density matrix renormalization group (DMRG) method in multireference quantum chemistry offers the ability to describe static correlation in a large active space. The present MRCI method provides a critical correction to the DMRG reference by including high-level dynamic correlation through the CI treatment. When the DMRG and MRCI theories are combined (DMRG-MRCI), the full internal contraction of the reference in the MRCI ansatz, including contraction of semi-internal states, plays a central role. However, it is thought to involve formidable complexity because of the presence of the five-particle rank reduced-density matrix (RDM) in the Hamiltonian matrix elements. To address this complexity, we express the Hamiltonian matrix using commutators, which allows the five-particle rank RDM to be canceled out without any approximation. Then we introduce an approximation to the four-particle rank RDM by using a cumulant reconstruction from lower-particle rank RDMs. A computer-aided approach is employed to derive the exceedingly complex equations of the MRCI in tensor-contracted form and to implement them into an efficient parallel computer code. This approach extends to the size-consistency-corrected variants of MRCI, such as the MRCI+Q, MR-ACPF, and MR-AQCC methods. We demonstrate the capability of the DMRG-MRCI method in several benchmark applications, including the evaluation of single-triplet gap of free-base porphyrin using 24 active orbitals.
International Nuclear Information System (INIS)
Darriba, G. N.; Muñoz, E. L.; Eversheim, P. D.; Rentería, M.
2010-01-01
We report perturbed-angular-correlation (PAC) experiments on 181 Hf (→ 181 Ta)-implanted corundum α-Fe 2 O 3 single crystal in order to determine the magnitude, symmetry and orientation of the electric-field-gradient (EFG) tensor at Ta donor impurity sites of this semiconductor. These results are analyzed in the framework of ab initio full-potential augmented-plane wave plus local orbital (FP-APW+lo) calculations. This combined analysis enables us to quantify the magnitude of the lattice relaxations induced by the presence of the impurity and to determine the charge state of the impurity donor level introduced by Ta in the band gap of the semiconductor.
Many-body perturbation theory for ab initio nuclear structure
International Nuclear Information System (INIS)
Tichai, Alexander
2017-01-01
The solution of the quantum many-body problem for medium-mass nuclei using realistic nuclear interactions poses a superbe challenge for nuclear structure research. Because an exact solution can only be provided for the lightest nuclei, one has to rely on approximate solutions when proceeding to heavier systems. Over the past years, tremendous progress has been made in the development and application of systematically improvable expansion methods and an accurate description of nuclear observables has become viable up to mass number A ∼ 100. While closed-shell systems are consistently described via a plethora of different many-body methods, the extension to genuine open-shell systems still remains a major challenge and up to now there is no ab initio many-body method which applies equally well to systems with even and odd mass numbers. The goal of this thesis is the development and implementation of innovative perturbative approaches with genuine open-shell capabilities. This requires the extension of well-known single-reference approaches to more general vacua. In this work we choose two complementary routes for the usage of generalized reference states. First, we derive a new ab initio approach based on multi-configurational reference states that are conveniently derived from a prior no-core shell model calculation. Perturbative corrections are derived via second-order many-body perturbation theory, thus, merging configuration interaction and many-body perturbation theory. The generality of this ansatz enables for a treatment of medium-mass systems with arbitrary mass number, as well as the extension to low-lying excited states such that ground and excited states are treated on an equal footing. In a complementary approach, we use reference states that break a symmetry of the underlying Hamiltonian. In the simplest case this corresponds to the expansion around a particle-number-broken Hartree-Fock-Bogolyubov vacuum which is obtained from a mean-field calculation
International Nuclear Information System (INIS)
Smeyers, Y.G.; Delgado-Barrio, G.
1976-01-01
The half-projected Hartree--Fock function for singlet states (HPHF) is analyzed in terms of natural electronic configurations. For this purpose the HPHF spinless density matrix and its natural orbitals are first deduced. It is found that the HPHF function does not contain any contribution from odd-times excited configurations. It is seen in addition, in the case of the singlet ground states, this function is approximately equivalent to two closed-shell configurations, although the nature of the excited one depends on the nuclear geometry. An example is given in the case of the LiH ground state. Finally, the application of this model for studying systems of more than two atoms is criticized
Energy Technology Data Exchange (ETDEWEB)
Brown, F B; Shavitt, I; Shepard, R
1984-03-23
Multiconfiguration self-consistent fields (SCF) and multireference configurational interaction (CI) calculations have been performed for the H/sub 2/O molecule in a double-zeta basis for four symmetric geometries, for comparison with full CI results. Unlike single-reference results, the energy errors are almost independent of geometry, allowing unbiased treatments of potential energy surfaces. 35 references, 1 figure, 2 tables.
Ab initio intermolecular potential energy surface and thermophysical properties of nitrous oxide.
Crusius, Johann-Philipp; Hellmann, Robert; Hassel, Egon; Bich, Eckard
2015-06-28
We present an analytical intermolecular potential energy surface (PES) for two rigid nitrous oxide (N2O) molecules derived from high-level quantum-chemical ab initio calculations. Interaction energies for 2018 N2O-N2O configurations were computed utilizing the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory using basis sets up to aug-cc-pVQZ supplemented with bond functions. A site-site potential function with seven sites per N2O molecule was fitted to the pair interaction energies. We validated our PES by computing the second virial coefficient as well as shear viscosity and thermal conductivity in the dilute-gas limit. The values of these properties are substantiated by the best experimental data.
International Nuclear Information System (INIS)
Gurzynski, Lukasz; Puszko, Aniela; Makowski, Mariusz; Makowska, Joanna; Chmurzynski, Lech
2006-01-01
By using the potentiometric method, acidity constants have been determined in systems of tri- and tetra-substituted pyridine N-oxides. The potentiometric measurements in systems of four 4-chloropyridine N-oxide derivatives containing the chlorine atom at position 4 to the NO 2 group and four bromine counterparts were carried out in polar non-aqueous solvents, viz. amphiprotic methanol (MeOH) and aprotic protophilic dimethyl sulfoxide (DMSO). It was found that in all the systems studied the pK a values were readily determinable (as indicated by small standard deviations) in MeOH, whereas in DMSO large standard deviations were obtained making the pK a values either hardly determinable or indeterminable from potentiometric measurements. Furthermore, it was demonstrated that the acidity constants of protonated N-oxides studied in MeOH changed according to the sequence of their acidity constants in water. It was also found that in the polar solvents studied, i.e. in the amphiprotic methanol and the highly basic aprotic dimethyl sulfoxide, the cationic homo-conjugation equlibrium constants could not be determined using potentiometric method. Also, by using ab initio methods at the RHF and MP2 levels and the PCM model, utilizing the Gaussian 6-31++G** basis set, energies and Gibbs free energies of the protonation reactions of the N-oxides have been determined. The energy parameters have been compared with acidity constants of the protonated N-oxides determined by potentiometric titration in methanol to establish a correlation between these approaches
Energy Technology Data Exchange (ETDEWEB)
Gurzynski, Lukasz [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Puszko, Aniela [Department of Organic Chemistry, School of Economics, Wroclaw (Poland); Makowski, Mariusz [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Makowska, Joanna [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Chmurzynski, Lech [Department of General Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland)]. E-mail: lech@chem.univ.gda.pl
2006-12-15
By using the potentiometric method, acidity constants have been determined in systems of tri- and tetra-substituted pyridine N-oxides. The potentiometric measurements in systems of four 4-chloropyridine N-oxide derivatives containing the chlorine atom at position 4 to the NO{sub 2} group and four bromine counterparts were carried out in polar non-aqueous solvents, viz. amphiprotic methanol (MeOH) and aprotic protophilic dimethyl sulfoxide (DMSO). It was found that in all the systems studied the pK {sub a} values were readily determinable (as indicated by small standard deviations) in MeOH, whereas in DMSO large standard deviations were obtained making the pK {sub a} values either hardly determinable or indeterminable from potentiometric measurements. Furthermore, it was demonstrated that the acidity constants of protonated N-oxides studied in MeOH changed according to the sequence of their acidity constants in water. It was also found that in the polar solvents studied, i.e. in the amphiprotic methanol and the highly basic aprotic dimethyl sulfoxide, the cationic homo-conjugation equlibrium constants could not be determined using potentiometric method. Also, by using ab initio methods at the RHF and MP2 levels and the PCM model, utilizing the Gaussian 6-31++G** basis set, energies and Gibbs free energies of the protonation reactions of the N-oxides have been determined. The energy parameters have been compared with acidity constants of the protonated N-oxides determined by potentiometric titration in methanol to establish a correlation between these approaches.
Ab Initio Molecular Dynamics Simulations of Furfural at the Liquid-Solid Interface
Sanwu Wang; Hongli Dang; Wenhua Xue; Darwin Shields; Xin Liu; Friederike C. Jentoft; Daniel E. Resasco
2013-01-01
The bonding configuration and the heat of adsorption of a furfural molecule on the Pd(111) surface were determined by ab initio density-functional-theory calculations. The dynamics of pure liquid water, the liquid-solid interface formed by liquid water and the Pd(111) surface, as well as furfural at the water-Pd interface, were investigated by ab initio molecular dynamics simulations at finite temperatures. Calculations and simulations suggest that the bonding configurati...
International Nuclear Information System (INIS)
Bogdanovich, P; Karpuškienė, R; Kisielius, R
2015-01-01
The ab initio quasirelativistic Hartree–Fock method developed specifically for the calculation of spectral parameters of heavy atoms and highly charged ions is used to derive spectral data for the 4s 2 4p 5 , 4s 2 4p 4 4d and 4s4p 6 configurations of the multicharged tungsten ion W 39+ . The relativistic effects are taken into account in the Breit–Pauli approximation for the quasirelativistic Hartree–Fock radial orbitals. The configuration interaction method is applied to include the electron correlation effects. Produced data are compared with existing experimental measurements and theoretical calculations. (paper)
Energy level properties of 4p64d3, 4p64d24f, and 4p54d4 configurations of the W35+ ion
International Nuclear Information System (INIS)
Bogdanovich, P.; Kisielius, R.
2014-01-01
The ab initio quasirelativistic Hartree–Fock method developed specifically for the calculation of spectroscopic parameters of heavy atoms and highly charged ions was used to derive spectral data for the multicharged tungsten ion W 35+ . The configuration interaction method was applied to include the electron-correlation effects. The relativistic effects were taken into account in the Breit–Pauli approximation for quasirelativistic Hartree–Fock radial orbitals. The energy level spectra, radiative lifetimes τ, and Lande g-factors have been calculated for the 4p 6 4d 3 , 4p 6 4d 2 4f, and 4p 5 4d 4 configurations of the W 35+ ion
DEFF Research Database (Denmark)
Shim, Irene; Gingerich, K. A.
2000-01-01
The three lowest-lying electronic states of RuC, (1)Sigma(+), (3)Delta, and (1)Delta, have been investigated by performing all-electron ab initio multi-configuration self-consistent-field (CASSCF) and multi-reference configuration interaction (MRCI) calculations including relativistic corrections....... The electronic ground state is derived as (1)Sigma(+) with the spectroscopic constants r(e) = 1.616 Angstrom and omega(e) = 1085 cm(-1). The lowest-lying excited state, (3)Delta, has r(e) = 1.632 Angstrom, omega(e) = 1063 cm(-1), and T-e = 912 cm(-1). These results are consistent with recent spectroscopic values....... The chemical bonds in all three lowest-lying states are triple bonds composed of one sigma and two pi bonds. (C) 2000 Elsevier Science B.V. All rights reserved....
Energy Technology Data Exchange (ETDEWEB)
Davydov, Arkadiy; Sanna, Antonio; Sharma, Sangeeta; Dewhurst, John Kay; Gross, E.K.U. [Max Planck Institute of Microstructure Physics, Halle (Saale) (Germany)
2016-07-01
In standard Eliashberg methods the Coulomb interaction is usually restricted to the use of a single phenomenological parameter μ{sup *} adjusted to give the right superconducting critical temperature (T{sub c}). In this work we present a parameter-free Eliashberg approach, in which we treat the screened Coulomb interaction within the random phase approximation (RPA) in its static and full dynamic limit. The full energy range of the Coulomb interaction is taken into account, which becomes computationally affordable with the introduction of a suitable isotropic approximation. We have tested the method on a set of conventional superconductors. We will discuss the reliability of the predicted T{sub c} both by using a static and a dynamic Coulomb interaction.
Ab initio quantum chemistry in parallel-portable tools and applications
International Nuclear Information System (INIS)
Harrison, R.J.; Shepard, R.; Kendall, R.A.
1991-01-01
In common with many of the computational sciences, ab initio chemistry faces computational constraints to which a partial solution is offered by the prospect of highly parallel computers. Ab initio codes are large and complex (O(10 5 ) lines of FORTRAN), representing a significant investment of communal effort. The often conflicting requirements of portability and efficiency have been successfully resolved on vector computers by reliance on matrix oriented kernels. This proves inadequate even upon closely-coupled shared-memory parallel machines. We examine the algorithms employed during a typical sequence of calculations. Then we investigate how efficient portable parallel implementations may be derived, including the complex multi-reference singles and doubles configuration interaction algorithm. A portable toolkit, modeled after the Intel iPSC and the ANL-ACRF PARMACS, is developed, using shared memory and TCP/IP sockets. The toolkit is used as an initial platform for programs portable between LANS, Crays and true distributed-memory MIMD machines. Timings are presented. 53 refs., 4 tabs
International Nuclear Information System (INIS)
Bouzon Capelo, Silvia; Baranowska-Laczkowska, Angelika; Fernandez, Berta
2011-01-01
Graphical abstract: CO-Ne IPES. Highlights: → From the LPol, MLPol, and aug-pc-2 bases we obtained new bases for the evaluation of CO-Ne interaction energies. → We checked the bases on the evaluation of the rovibrational spectrum. → The results were satisfactory, being the new bases more efficient than those previously available. - Abstract: Recently we have derived new efficient basis sets for the evaluation of interaction energies in the X-Y (X, Y = He, Ne, Ar) van der Waals complexes. Here we extend the study to the CO-Ne complex. For this, we start with a systematic basis set study, where the LPol, MLPol and Jensen's aug-pc-2 basis sets are considered as starting point (for the Ne atom LPol bases are developed). As reference we take interaction energy results obtained with Dunning's augmented correlation consistent polarized valence basis sets. In all cases we test extensions with different sets of midbond functions. With the selected bases we evaluate CCSD(T) interaction potentials, and to check the potentials further, we obtain the ro-vibrational spectrum of the complex. The results are compared to the available experimental data.
Dos, Alexandra; Schimming, Volkmar; Tosoni, Sergio; Limbach, Hans-Heinrich
2008-12-11
The interactions of the 15N-labeled amino groups of dry solid poly-L-lysine (PLL) with various halogen and oxygen acids HX and the relation to the secondary structure have been studied using solid-state 15N and 13C CPMAS NMR spectroscopy (CP = cross polarization and MAS = magic angle spinning). For comparison, 15N NMR spectra of an aqueous solution of PLL were measured as a function of pH. In order to understand the effects of protonation and hydration on the 15N chemical shifts of the amino groups, DFT and chemical shielding calculations were performed on isolated methylamine-acid complexes and on periodic halide clusters of the type (CH3NH3(+)X(-))n. The combined experimental and computational results reveal low-field shifts of the amino nitrogens upon interaction with the oxygen acids HX = HF, H2SO4, CH3COOH, (CH3)2POOH, H3PO4, HNO3, and internal carbamic acid formed by reaction of the amino groups with gaseous CO2. Evidence is obtained that only hydrogen-bonded species of the type (Lys-NH2***H-X)n are formed in the absence of water. 15N chemical shifts are maximum when H is located in the hydrogen bond center and then decrease again upon full protonation, as found for aqueous solution at low pH. By contrast, halogen acids interact in a different way. They form internal salts of the type (Lys-NH3(+)X(-))n via the interaction of many acid-base pairs. This salt formation is possible only in the beta-sheet conformation. By contrast, the formation of hydrogen-bonded complexes can occur both in beta-sheet domains as well as in alpha-helical domains. The 15N chemical shifts of the protonated ammonium groups increase when the size of the interacting halogen anions is increased from chloride to iodide and when the number of the interacting anions is increased. Thus, the observed high-field 15N shift of ammonium groups upon hydration is the consequence of replacing interacting halogen atoms by oxygen atoms.
International Nuclear Information System (INIS)
Tehranian, F.
1995-01-01
Materials in the form of particle beds have been considered for shielding and tritium breeding as well as neutron multiplication in many of the conceptual reactor design studies. As the level of effort of the fusion blanket community in the area of out-of-pile and in-pile (ITER) testing of integrated test modules increases, so does the need for modelling capability for predicting the thermomechanical responses of the test modules under reactor environment.In this study, the thermomechanical responses of a particle bed-structural wall system in a layered configuration, subjected to bed temperature rise and/or external coolant pressure, were considered. Equations were derived which represent the dependence of the particle-to-particle and particle-to-wall contact forces and areas on the structural wall deformations and in turn on the thermomechanical loads. Using the derived equations, parametric analyses were performed to study the variations in the thermomechanical response quantities of a beryllium particle bed-stainless steel structural wall when subjected to thermomechanical loads. The results are presented in two parts. In Part I, presented in this paper, the derivation of the analytical equations and the effects of bed temperature rise are discussed. In Part II of this study, also presented in this symposium, the effects of external coolant pressure as well as the combined effects of bed temperature rise and coolant pressure on the thermomechanical responses are given.It is shown that, depending on the stiffness of the structural walls, uniform bed temperature rises in the range 100-400 C result in non-uniform effective thermal properties through the prticle bed and could increase the bed effective thermal conductivity by a factor of 2-5 and the bed-wall interface thermal conductance by even a larger factor. (orig.)
International Nuclear Information System (INIS)
Yamamoto, S.; Yamaguchi, K.; Nasu, K.
1990-01-01
Ab initio molecular-orbital calculations for CuO 6 clusters have been performed to elucidate the electronic structures of undoped and doped copper oxides, which are of current interest in relation to high-T c superconductivity. The electron correlation effects for these species are thoroughly investigated by the full-valence configuration-interaction method and the complete-active-space self-consistent-field method. The electron correlation effect is relatively simple for the A g state (σ hole), whereas pair excitations and spin-flip excitations give sizable contributions to the configuration-interaction wave function for the B state (in-plane π hole). Implications of these results are discussed in relation to the mechanisms of the high-T c superconductivity
Ab initio study of phase equilibria in TiCx
DEFF Research Database (Denmark)
Korzhavyi, P.A.; Pourovskii, L.V.; Hugosson, H.W.
2002-01-01
The phase diagram for the vacancy-ordered structures in the substoichiometric TiCx (x = 0.5-1.0) has been established from Monte Carlo simulations with the long-range pair and multisite effective interactions obtained from ab initio calculations. Three ordered superstructures of vacancies (Ti2C, Ti...
Thiessen, P. A.; Treder, H.-J.
Der gegenwärtige Stand der physikalischen Erkenntnis, in Sonderheit die Atomistik und die Quantentheorie, ermöglicht (in wohldefinierten Energie-Bereichen) eine ab initio-Berechnung aller physikalischen und chemischen Prozesse und Strukturen. Die Schrödinger-Gleichung erlaubt zusammen mit den Prinzipien der Quantenstatistik (Pauli-Prinzip) aus dem Planckschen Wirkungsquantum h und den atomischen Konstanten die Berechnung aller Energieumsätze, Zeitabläufe etc., die insbesondere die chemische Physik bestimmen. Die Rechenresultate gelten auch quantitativ bis auf die unvermeidliche Stochastik.Die ab initio-Berechnungen korrespondieren einerseits und sind andererseits komplementär zu den auf den Methoden der theoretischen Chemie und der klassischen Thermodynamik beruhenden Ergebnissen ex eventu. Die theoretische Behandlung ab initio führt zu mathematischen Experimenten, die die Laboratoriums-Experimente ergänzen oder auch substituieren.Translated AbstractAb initio vel ex eventuThe present state of physical knowledge, in peculiar atomistic and quantum theory, makes an ab initio calculation of all physical and chemical processes and structures possible (in well defined reaches of energy). The Schrödinger equation together with the principles of quantum statistics (Pauli principle) permits from the Planck and atomistic constants to calculate all exchanges of energy, courses of time, etc. which govern chemical physics. The calculated results are valid even quantitatively apart from the unavoidable stochastics.These ab initio calculations on the one hand correspond and are on the other complimentary to results ex eventu based on the methods of theoretical chemistry and classical thermodynamics. Theoretical treatment ab initio leads to mathematical experiments which add to or even substitute experiments in the laboratory.
International Nuclear Information System (INIS)
Beavers, R.R.; Sumiec, K.F.
1989-01-01
Increasing regulatory and industry attention has been focused on properly controlling electrical design changes. These changes can be controlled by using configuration management techniques. Typically, there are ongoing modifications to various process systems or additions due to new requirements at every power plant. Proper control of these changes requires that an organized method be used to ensure that all important parameters of the electrical auxiliary systems are analyzed and that these parameters are evaluated accurately. This process, commonly referred to as configuration management, is becoming more important on both fossil and nuclear plants. Recent NRC- and utility-initiated inspections have identified problems due to incomplete analysis of changes to electrical auxiliary systems at nuclear stations
Castillo, Matias Soto
Using carbon nanotubes for electrical conduction applications at the macroscale has been shown to be a difficult task for some time now, mainly, due to defects and impurities present, and lack of uniform electronic properties in synthesized carbon nanotube bundles. Some researchers have suggested that growing only metallic armchair nanotubes and arranging them with an ideal contact length could lead to the ultimate electrical conductivity; however, such recipe presents too high of a cost to pay. A different route is to learn to manage the defects, impurities, and the electronic properties of carbon nanotubes present in bundles grown by current state-of-the-art reactors, so that the electrical conduction of a bundle or even wire may be enhanced. In our work, we have used first-principles density functional theory calculations to study the effect of interwall interaction, defects and doping on the electronic structure of metallic, semi-metal and semiconducting single- and double-walled carbon nanotubes in order to gain a clear picture of their properties. The electronic band gap for a range of zigzag single-walled carbon nanotubes with chiral indices (5,0) - (30,0) was obtained. Their properties were used as a stepping stone in the study of the interwall interaction in double-walled carbon nanotubes, from which it was found that the electronic band gap depends on the type of inner and outer tubes, average diameter, and interwall distance. The effect of vacancy defects was also studied for a range of single-walled carbon nanotubes. It was found that the electronic band gap is reduced for the entire range of zigzag carbon nanotubes, even at vacancy defects concentrations of less than 1%. Finally, interaction potentials obtained via first-principles calculations were generalized by developing mathematical models for the purpose of running simulations at a larger length scale using molecular dynamics of the adsorption doping of diatomic iodine. An ideal adsorption site
International Nuclear Information System (INIS)
Shalabi, A.S.; Abdel Aal, S.; Kamel, M.A.; Taha, H.O.; Ammar, H.Y.; Abdel Halim, W.S.
2006-01-01
The oxidation states of Thallium in F A1 Tl +n (n = 1, 3) color centers at the (1 0 0) surface of NaCl play important role in laser light generation and adsorbate-substrate interactions. Double-well potentials at these surfaces are investigated by using quantum mechanical ab initio methods. Quantum clusters of variable sizes were embedded in the simulated Coulomb fields that closely approximate the Madelung fields of the host surfaces, and ions that were the nearest neighbors to the F A1 Tl +n (n 1, 3) defect site were allowed to relax to equilibrium.The calculated Stokes shifts suggest that laser light generation is sensitive to the oxidation states of Thallium. The relaxed excited states of the defect-containing surface were deep below the lower edge of the conduction bands of the ground state defect-free surface, suggesting that the F A1 Tl +n (n = 1, 3) centers are suitable laser defects. The dependence of the orientational destruction and recording sensitivity on the oxidation state of Thallium is clarified. The Glasner-Tompkins empirical rule is generalized to include the oxidation state of the impurity cation. The adsorption energies of CO and OC over NaCl(1 0 0) was found to be sensitive to the oxidation state of the impurity cation. F A1 Tl +n (n = 1, 3) centers changed the physical adsorption of CO to chemical adsorption. While the artificial flow of charge was significant in the case of Tl +1 impurity, it was negligible in the case of Tl +3 impurity, and the results were explained in terms of the electrostatic potential curves
International Nuclear Information System (INIS)
Dos Santos, Renato B; Mota, F de Brito; Rivelino, R; Kakanakova-Georgieva, A; Gueorguiev, G K
2016-01-01
Graphite-like hexagonal AlN (h-AlN) multilayers have been experimentally manifested and theoretically modeled. The development of any functional electronics applications of h-AlN would most certainly require its integration with other layered materials, particularly graphene. Here, by employing vdW-corrected density functional theory calculations, we investigate structure, interaction energy, and electronic properties of van der Waals stacking sequences of few-layer h-AlN with graphene. We find that the presence of a template such as graphene induces enough interlayer charge separation in h-AlN, favoring a graphite-like stacking formation. We also find that the interface dipole, calculated per unit cell of the stacks, tends to increase with the number of stacked layers of h-AlN and graphene. (paper)
International Nuclear Information System (INIS)
Fukuda, Ryoichi; Ehara, Masahiro
2015-01-01
The effects from solvent environment are specific to the electronic states; therefore, a computational scheme for solvent effects consistent with the electronic states is necessary to discuss electronic excitation of molecules in solution. The PCM (polarizable continuum model) SAC (symmetry-adapted cluster) and SAC-CI (configuration interaction) methods are developed for such purposes. The PCM SAC-CI adopts the state-specific (SS) solvation scheme where solvent effects are self-consistently considered for every ground and excited states. For efficient computations of many excited states, we develop a perturbative approximation for the PCM SAC-CI method, which is called corrected linear response (cLR) scheme. Our test calculations show that the cLR PCM SAC-CI is a very good approximation of the SS PCM SAC-CI method for polar and nonpolar solvents
Ab initio and Gordon--Kim intermolecular potentials for two nitrogen molecules
International Nuclear Information System (INIS)
Ree, F.H.; Winter, N.W.
1980-01-01
Both ab initio MO--LCAO--SCF and the electron-gas (or Gordon--Kim) methods have been used to compute the intermolecular potential (Phi) of N 2 molecules for seven different N 2 --N 2 orientations. The ab initio calculations were carried out using a [4s3p] contracted Gaussian basis set with and without 3d polarization functions. The larger basis set provides adequate results for Phi>0.002 hartree or intermolecular separations less than 6.5--7 bohr. We use a convenient analytic expression to represent the ab initio data in terms of the intermolecular distance and three angles defining the orientations of the two N 2 molecules. The Gordon--Kim method with Rae's self-exchange correction yields Phi, which agrees reasonably well over a large repulsive range. However, a detailed comparison of the electron kinetic energy contributions shows a large difference between the ab initio and the Gordon--Kim calculations. Using the ab initio data we derive an atom--atom potential of the two N 2 molecules. Although this expression does not accurately fit the data at some orientations, its spherical average agrees with the corresponding average of the ab initio Phi remarkably well. The spherically averaged ab initio Phi is also compared with the corresponding quantities derived from experimental considerations. The approach of the ab initio Phi to the classical quadrupole--quadrupole interaction at large intermolecular separation is also discussed
DEFF Research Database (Denmark)
Pawlowski, F; Jorgensen, P; Olsen, Jeppe
2002-01-01
A detailed study is carried out of the accuracy of molecular equilibrium geometries obtained from least-squares fits involving experimental rotational constants B(0) and sums of ab initio vibration-rotation interaction constants alpha(r)(B). The vibration-rotation interaction constants have been...... calculated for 18 single-configuration dominated molecules containing hydrogen and first-row atoms at various standard levels of ab initio theory. Comparisons with the experimental data and tests for the internal consistency of the calculations show that the equilibrium structures generated using Hartree......-Fock vibration-rotation interaction constants have an accuracy similar to that obtained by a direct minimization of the CCSD(T) energy. The most accurate vibration-rotation interaction constants are those calculated at the CCSD(T)/cc-pVQZ level. The equilibrium bond distances determined from these interaction...
Symmetries of cluster configurations
International Nuclear Information System (INIS)
Kramer, P.
1975-01-01
A deeper understanding of clustering phenomena in nuclei must encompass at least two interrelated aspects of the subject: (A) Given a system of A nucleons with two-body interactions, what are the relevant and persistent modes of clustering involved. What is the nature of the correlated nucleon groups which form the clusters, and what is their mutual interaction. (B) Given the cluster modes and their interaction, what systematic patterns of nuclear structure and reactions emerge from it. Are there, for example, families of states which share the same ''cluster parents''. Which cluster modes are compatible or exclude each other. What quantum numbers could characterize cluster configurations. There is no doubt that we can learn a good deal from the experimentalists who have discovered many of the features relevant to aspect (B). Symmetries specific to cluster configurations which can throw some light on both aspects of clustering are discussed
Ab initio adiabatic and quasidiabatic potential energy surfaces of H ...
Indian Academy of Sciences (India)
by protons and electrons has been studied to rational- ize the cosmic ... reference configuration interaction (icMRCI) to study .... total number of contracted configurations was 292058 .... numerical integration of dynamical equations. To cir-.
Directory of Open Access Journals (Sweden)
Stéphane Fartoukh
2015-12-01
Full Text Available Colliding bunch trains in a circular collider demands a certain crossing angle in order to separate the two beams transversely after the collision. The magnitude of this crossing angle is a complicated function of the bunch charge, the number of long-range beam-beam interactions, of β^{*} and type of optics (flat or round, and possible compensation or additive effects between several low-β insertions in the ring depending on the orientation of the crossing plane at each interaction point. About 15 years ago, the use of current bearing wires was proposed at CERN in order to mitigate the long-range beam-beam effects [J. P. Koutchouk, CERN Report No. LHC-Project-Note 223, 2000], therefore offering the possibility to minimize the crossing angle with all the beneficial effects this might have: on the luminosity performance by reducing the need for crab-cavities or lowering their voltage, on the required aperture of the final focus magnets, on the strength of the orbit corrector involved in the crossing bumps, and finally on the heat load and radiation dose deposited in the final focus quadrupoles. In this paper, a semianalytical approach is developed for the compensation of the long-range beam-beam interactions with current wires. This reveals the possibility of achieving optimal correction through a careful adjustment of the aspect ratio of the β functions at the wire position. We consider the baseline luminosity upgrade plan of the Large Hadron Collider (HL-LHC project, and compare it to alternative scenarios, or so-called “configurations,” where modifications are applied to optics, crossing angle, or orientation of the crossing plane in the two low-β insertions of the ring. For all these configurations, the beneficial impact of beam-beam compensation devices is then demonstrated on the tune footprint, the dynamical aperture, and/or the frequency map analysis of the nonlinear beam dynamics as the main figures of merit.
Energy Technology Data Exchange (ETDEWEB)
Roemelt, Michael; Maganas, Dimitrios; Neese, Frank [Max-Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Muelheim an der Ruhr (Germany); DeBeer, Serena [Max-Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Muelheim an der Ruhr (Germany); Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853 (United States)
2013-05-28
A novel restricted-open-shell configuration interaction with singles (ROCIS) approach for the calculation of transition metal L-edge X-ray absorption spectra is introduced. In this method, one first calculates the ground state and a number of excited states of the non-relativistic Hamiltonian. By construction, the total spin is a good quantum number in each of these states. For a ground state with total spin S excited states with spin S Prime = S, S - 1, and S + 1 are constructed. Using Wigner-Eckart algebra, all magnetic sublevels with M{sub S}= S, Horizontal-Ellipsis , -S for each multiplet of spin S are obtained. The spin-orbit operator is represented by a mean-field approximation to the full Breit-Pauli spin-orbit operator and is diagonalized over this N-particle basis. This is equivalent to a quasi-degenerate treatment of the spin-orbit interaction to all orders. Importantly, the excitation space spans all of the molecular multiplets that arise from the atomic Russell-Saunders terms. Hence, the method represents a rigorous first-principles approach to the complicated low-symmetry molecular multiplet problem met in L-edge X-ray absorption spectroscopy. In order to gain computational efficiency, as well as additional accuracy, the excitation space is restricted to single excitations and the configuration interaction matrix is slightly parameterized in order to account for dynamic correlation effects in an average way. To this end, it is advantageous to employ Kohn-Sham rather than Hartree-Fock orbitals thus defining the density functional theory/ROCIS method. However, the method can also be used in an entirely non-empirical fashion. Only three global empirical parameters are introduced and have been determined here for future application of the method to any system containing any transition metal. The three parameters were carefully calibrated using the L-edge X-ray absorption spectroscopy spectra of a test set of coordination complexes containing first row
Ab initio potential for solids
DEFF Research Database (Denmark)
Chetty, N.; Stokbro, Kurt; Jacobsen, Karsten Wedel
1992-01-01
. At the most approximate level, the theory is equivalent to the usual effective-medium theory. At all levels of approximation, every term in the total-energy expression is calculated ab initio, that is, without any fitting to experiment or to other calculations. Every step in the approximation procedure can...
Faas, S.; Snijders, Jaap; van Lenthe, J.H.; HernandezLaguna, A; Maruani, J; McWeeny, R; Wilson, S
2000-01-01
In this paper we present the first application of the ZORA (Zeroth Order Regular Approximation of the Dirac Fock equation) formalism in Ab Initio electronic structure calculations. The ZORA method, which has been tested previously in the context of Density Functional Theory, has been implemented in
van Meer, R; Gritsenko, O V; Baerends, E J
2018-03-14
Almost all functionals that are currently used in density matrix functional theory have been created by some a priori ansatz that generates approximations to the second-order reduced density matrix (2RDM). In this paper, a more consistent approach is used: we analyze the 2RDMs (in the natural orbital basis) of rather accurate multi-reference configuration interaction expansions for several small molecules (CH 4 , NH 3 , H 2 O, FH, and N 2 ) and use the knowledge gained to generate new functionals. The analysis shows that a geminal-like structure is present in the 2RDMs, even though no geminal theory has been applied from the onset. It is also shown that the leading non-geminal dynamical correlation contributions are generated by a specific set of double excitations. The corresponding determinants give rise to non-JKL (non Coulomb/Exchange like) multipole-multipole dispersive attractive terms between geminals. Due to the proximity of the geminals, these dispersion terms are large and cannot be omitted, proving pure JKL functionals to be essentially deficient. A second correction emerges from the observation that the "normal" geminal-like exchange between geminals breaks down when one breaks multiple bonds. This problem can be fixed by doubling the exchange between bond broken geminals, effectively restoring the often physically correct high-spin configurations on the bond broken fragments. Both of these corrections have been added to the commonly used antisymmetrized product of strongly orthogonal geminals functional. The resulting non-JKL functional Extended Löwdin-Shull Dynamical-Multibond is capable of reproducing complete active space self-consistent field curves, in which one active orbital is used for each valence electron.
van Meer, R.; Gritsenko, O. V.; Baerends, E. J.
2018-03-01
Almost all functionals that are currently used in density matrix functional theory have been created by some a priori ansatz that generates approximations to the second-order reduced density matrix (2RDM). In this paper, a more consistent approach is used: we analyze the 2RDMs (in the natural orbital basis) of rather accurate multi-reference configuration interaction expansions for several small molecules (CH4, NH3, H2O, FH, and N2) and use the knowledge gained to generate new functionals. The analysis shows that a geminal-like structure is present in the 2RDMs, even though no geminal theory has been applied from the onset. It is also shown that the leading non-geminal dynamical correlation contributions are generated by a specific set of double excitations. The corresponding determinants give rise to non-JKL (non Coulomb/Exchange like) multipole-multipole dispersive attractive terms between geminals. Due to the proximity of the geminals, these dispersion terms are large and cannot be omitted, proving pure JKL functionals to be essentially deficient. A second correction emerges from the observation that the "normal" geminal-like exchange between geminals breaks down when one breaks multiple bonds. This problem can be fixed by doubling the exchange between bond broken geminals, effectively restoring the often physically correct high-spin configurations on the bond broken fragments. Both of these corrections have been added to the commonly used antisymmetrized product of strongly orthogonal geminals functional. The resulting non-JKL functional Extended Löwdin-Shull Dynamical-Multibond is capable of reproducing complete active space self-consistent field curves, in which one active orbital is used for each valence electron.
All Electron ab initio Investigations of the Electronic States of the MoN Molecule
DEFF Research Database (Denmark)
Shim, Irene; Gingerich, Karl A.
1999-01-01
The low lying electronic states of the molecule MoN have been investigated by performing all electron ab initio multi-configuration self-consistent-field (CASSCF) calculations. The relativistic corrections for the one electron Darwin contact term and the relativistic mass-velocity correction have...
All-electron ab initio investigations of the electronic states of the NiC molecule
DEFF Research Database (Denmark)
Shim, Irene; Gingerich, Karl. A.
1999-01-01
The low-lying electronic states of NiC are investigated by all-electron ab initio multi-configuration self-consistent-field (CASSCF) calculations including relativistic corrections. The electronic structure of NiC is interpreted as perturbed antiferromagnetic couplings of the localized angular...
Semiempirical study of the interacting potentials for H+ + CO and H+ + NO+
International Nuclear Information System (INIS)
Canuto, S.
1983-01-01
Semiempirical INDO molecular orbital calculations of the minimum energy path for the formation of HCO + , HOC + , HNO ++ and HON ++ from the proton reactions H + + CO and H + + NO + are presented. Energy barriers, geometry relaxations and stabilization energies are given. Comparisons with ab initio SCF (Self-Consistent Field) and CI (Configuration Interaction) calculations are performed in order to assess the reliability of the calculations. (Author) [pt
Mishra, S N
2009-03-18
Applying the time differential perturbed angular correlation (TDPAC) technique we have measured electric and magnetic hyperfine fields of the (111)Cd impurity in equi-atomic rare-earth intermetallic alloys RScGe (R = Ce, Pr and Gd) showing antiferro- and ferromagnetism with unusually high ordering temperatures. The Cd nuclei occupying the Sc site show high magnetic hyperfine fields with saturation values B(hf)(0) = 21 kG, 45 kG and 189 kG in CeScGe, PrScGe and GdScGe, respectively. By comparing the results with the hyperfine field data of Cd in rare-earth metals and estimations from the RKKY model, we find evidence for the presence of additional spin density at the probe nucleus, possibly due to spin polarization of Sc d band electrons. The principal electric field gradient component V(zz) in CeScGe, PrScGe and GdScGe has been determined to be 5.3 × 10(21) V m(-2), 5.5 × 10(21) V m(-2) and 5.6 × 10(21) V m(-2), respectively. Supplementing the experimental measurements, we have carried out ab initio calculations for pure and Cd-doped RScGe compounds with R = Ce, Pr, Nd and Gd using the full potential linearized augmented plane wave (FLAPW) method based on density functional theory (DFT). From the total energies calculated with and without spin polarization we find ferrimagnetic ground states for CeScGe and PrScGe while NdScGe and GdScGe are ferromagnetic. In addition, we find a sizable magnetic moment at the Sc site, increasing from ≈0.10 μ(B) in CeScGe to ≈0.3 μ(B) in GdScGe, confirming the spin polarization of Sc d band electrons. The calculated electric field gradient and magnetic hyperfine fields of the Cd impurity closely agree with the experimental values. We believe spin polarization of Sc 3d band electrons, strongly hybridized with spin polarized 5d band electrons of the rare-earth, enables a long range Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between RE 4f moments which in turn leads to high magnetic ordering temperatures in
Perspective: Ab initio force field methods derived from quantum mechanics
Xu, Peng; Guidez, Emilie B.; Bertoni, Colleen; Gordon, Mark S.
2018-03-01
It is often desirable to accurately and efficiently model the behavior of large molecular systems in the condensed phase (thousands to tens of thousands of atoms) over long time scales (from nanoseconds to milliseconds). In these cases, ab initio methods are difficult due to the increasing computational cost with the number of electrons. A more computationally attractive alternative is to perform the simulations at the atomic level using a parameterized function to model the electronic energy. Many empirical force fields have been developed for this purpose. However, the functions that are used to model interatomic and intermolecular interactions contain many fitted parameters obtained from selected model systems, and such classical force fields cannot properly simulate important electronic effects. Furthermore, while such force fields are computationally affordable, they are not reliable when applied to systems that differ significantly from those used in their parameterization. They also cannot provide the information necessary to analyze the interactions that occur in the system, making the systematic improvement of the functional forms that are used difficult. Ab initio force field methods aim to combine the merits of both types of methods. The ideal ab initio force fields are built on first principles and require no fitted parameters. Ab initio force field methods surveyed in this perspective are based on fragmentation approaches and intermolecular perturbation theory. This perspective summarizes their theoretical foundation, key components in their formulation, and discusses key aspects of these methods such as accuracy and formal computational cost. The ab initio force fields considered here were developed for different targets, and this perspective also aims to provide a balanced presentation of their strengths and shortcomings. Finally, this perspective suggests some future directions for this actively developing area.
Bryce, Richard A.; Vincent, Mark A.; Malcolm, Nathaniel O. J.; Hillier, Ian H.; Burton, Neil A.
1998-08-01
A new hybrid quantum mechanical/molecular mechanical model of solvation is developed and used to describe the structure and dynamics of small fluoride/water clusters, using an ab initio wave function to model the ion and a fluctuating charge potential to model the waters. Appropriate parameters for the water-water and fluoride-water interactions are derived, with the fluoride anion being described by density functional theory and a large Gaussian basis. The role of solvent polarization in determining the structure and energetics of F(H2O)4- clusters is investigated, predicting a slightly greater stability of the interior compared to the surface structure, in agreement with ab initio studies. An extended Lagrangian treatment of the polarizable water, in which the water atomic charges fluctuate dynamically, is used to study the dynamics of F(H2O)4- cluster. A simulation using a fixed solvent charge distribution indicates principally interior, solvated states for the cluster. However, a preponderance of trisolvated configurations is observed using the polarizable model at 300 K, which involves only three direct fluoride-water hydrogen bonds. Ab initio calculations confirm this trisolvated species as a thermally accessible state at room temperature, in addition to the tetrasolvated interior and surface structures. Extension of this polarizable water model to fluoride clusters with five and six waters gave less satisfactory agreement with experimental energies and with ab initio geometries. However, our results do suggest that a quantitative model of solvent polarization is fundamental for an accurate understanding of the properties of anionic water clusters.
Ab-initio perturbed-cluster study of carbon monoxide adsorption at a stepped LiF(001) surface
Pisani, C.; Corà, F.; Orlando, R.; Nada, R.
1993-02-01
The perturbed-cluster ab-initio Hartree-Fock approach to the study of local defects in crystals [J. Chem. Phys. 92(1990)7448] is applied to the study of CO adsorption at a stepped LiF(001) surface. The step is simulated by a tablet of four ions superimposed on an infinite LiF(001) monolayer. The geometry of the step is first optimized, and corresponds to an important relaxation of cations and anions of the tablet inwards and outwards, respectively. The equilibrium configuration, adsorption energy and vibrational frequency of CO at a corner of the tablet occupied by a lithium cation are calculated. With respect to adsorption at a perfect (100) face, there is a large increase in interaction energy, especially when adsorption occurs via the oxygen atom. This difference is essentially related to modifications of the electrostatic field experienced by the adsorbed molecule.
Driving spin transition at interface: Role of adsorption configurations
Zhang, Yachao
2018-01-01
A clear insight into the electrical manipulation of molecular spins at interface is crucial to the design of molecule-based spintronic devices. Here we report on the electrically driven spin transition in manganocene physisorbed on a metallic surface in two different adsorption configurations predicted by ab initio techniques, including a Hubbard-U correction at the manganese site and accounting for the long-range van der Waals interactions. We show that the application of an electric field at the interface induces a high-spin to low-spin transition in the flat-lying manganocene, while it could hardly alter the high-spin ground state of the standing-up molecule. This phenomenon cannot be explained by either the molecule-metal charge transfer or the local electron correlation effects. We demonstrate a linear dependence of the intra-molecular spin-state splitting on the energy difference between crystal-field splitting and on-site Coulomb repulsion. After considering the molecule-surface binding energy shifts upon spin transition, we reproduce the obtained spin-state energetics. We find that the configuration-dependent responses of the spin-transition originate from the binding energy shifts instead of the variation of the local ligand field. Through these analyses, we obtain an intuitive understanding of the effects of molecule-surface contact on spin-crossover under electrical bias.
Multiple time step integrators in ab initio molecular dynamics
International Nuclear Information System (INIS)
Luehr, Nathan; Martínez, Todd J.; Markland, Thomas E.
2014-01-01
Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy
Optical absorption spectra and g factor of MgO: Mn2+explored by ab initio and semi empirical methods
Andreici Eftimie, E.-L.; Avram, C. N.; Brik, M. G.; Avram, N. M.
2018-02-01
In this paper we present a methodology for calculations of the optical absorption spectra, ligand field parameters and g factor for the Mn2+ (3d5) ions doped in MgO host crystal. The proposed technique combines two methods: the ab initio multireference (MR) and the semi empirical ligand field (LF) in the framework of the exchange charge model (ECM) respectively. Both methods of calculations are applied to the [MnO6]10-cluster embedded in an extended point charge field of host matrix ligands based on Gellé-Lepetit procedure. The first step of such investigations was the full optimization of the cubic structure of perfect MgO crystal, followed by the structural optimization of the doped of MgO:Mn2+ system, using periodic density functional theory (DFT). The ab initio MR wave functions approaches, such as complete active space self-consistent field (CASSCF), N-electron valence second order perturbation theory (NEVPT2) and spectroscopy oriented configuration interaction (SORCI), are used for the calculations. The scalar relativistic effects have also been taken into account through the second order Douglas-Kroll-Hess (DKH2) procedure. Ab initio ligand field theory (AILFT) allows to extract all LF parameters and spin-orbit coupling constant from such calculations. In addition, the ECM of ligand field theory (LFT) has been used for modelling theoptical absorption spectra. The perturbation theory (PT) was employed for the g factor calculation in the semi empirical LFT. The results of each of the aforementioned types of calculations are discussed and the comparisons between the results obtained and the experimental results show a reasonable agreement, which justifies this new methodology based on the simultaneous use of both methods. This study establishes fundamental principles for the further modelling of larger embedded cluster models of doped metal oxides.
Energy Technology Data Exchange (ETDEWEB)
Kleinschmidt, Martin; Marian, Christel M., E-mail: Christel.Marian@hhu.de [Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf (Germany); Wüllen, Christoph van [Fachbereich Chemie and Forschungszentrum OPTIMAS, Technical University of Kaiserslautern, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern (Germany)
2015-03-07
We have employed combined density functional theory and multi-reference configuration interaction methods including spin–orbit coupling (SOC) effects to investigate the photophysics of the green phosphorescent emitter fac-tris-(2-phenylpyridine)iridium (fac-Ir(ppy){sub 3}). A critical evaluation of our quantum chemical approaches shows that a perturbational treatment of SOC is the method of choice for computing the UV/Vis spectrum of this heavy transition metal complex while multi-reference spin–orbit configuration interaction is preferable for calculating the phosphorescence rates. The particular choice of the spin–orbit interaction operator is found to be of minor importance. Intersystem crossing (ISC) rates have been determined by Fourier transformation of the time correlation function of the transition including Dushinsky rotations. In the electronic ground state, fac-Ir(ppy){sub 3} is C{sub 3} symmetric. The calculated UV/Vis spectrum is in excellent agreement with experiment. The effect of SOC is particularly pronounced for the metal-to-ligand charge transfer (MLCT) band in the visible region of the absorption spectrum which does not only extend its spectral onset towards longer wavelengths but also experiences a blue shift of its maximum. Pseudo-Jahn-Teller interaction leads to asymmetric coordinate displacements in the lowest MLCT states. Substantial electronic SOC and a small energy gap make ISC an ultrafast process in fac-Ir(ppy){sub 3}. For the S{sub 1}↝T{sub 1} non-radiative transition, we compute a rate constant of k{sub ISC} = 6.9 × 10{sup 12} s{sup −1} which exceeds the rate constant of radiative decay to the electronic ground state by more than six orders of magnitude, in agreement with the experimental observation of a subpicosecond ISC process and a triplet quantum yield close to unity. As a consequence of the geometric distortion in the T{sub 1} state, the T{sub 1} → S{sub 0} transition densities are localized on one of the
International Nuclear Information System (INIS)
Hirata, So
2003-01-01
We develop a symbolic manipulation program and program generator (Tensor Contraction Engine or TCE) that automatically derives the working equations of a well-defined model of second-quantized many-electron theories and synthesizes efficient parallel computer programs on the basis of these equations. Provided an ansatz of a many-electron theory model, TCE performs valid contractions of creation and annihilation operators according to Wick's theorem, consolidates identical terms, and reduces the expressions into the form of multiple tensor contractions acted by permutation operators. Subsequently, it determines the binary contraction order for each multiple tensor contraction with the minimal operation and memory cost, factorizes common binary contractions (defines intermediate tensors), and identifies reusable intermediates. The resulting ordered list of binary tensor contractions, additions, and index permutations is translated into an optimized program that is combined with the NWChem and UTChem computational chemistry software packages. The programs synthesized by TCE take advantage of spin symmetry, Abelian point-group symmetry, and index permutation symmetry at every stage of calculations to minimize the number of arithmetic operations and storage requirement, adjust the peak local memory usage by index range tiling, and support parallel I/O interfaces and dynamic load balancing for parallel executions. We demonstrate the utility of TCE through automatic derivation and implementation of parallel programs for various models of configuration-interaction theory (CISD, CISDT, CISDTQ), many-body perturbation theory[MBPT(2), MBPT(3), MBPT(4)], and coupled-cluster theory (LCCD, CCD, LCCSD, CCSD, QCISD, CCSDT, and CCSDTQ)
Energy Technology Data Exchange (ETDEWEB)
Schönborn, Jan Boyke; Saalfrank, Peter; Klamroth, Tillmann, E-mail: klamroth@uni-potsdam.de [Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam-Golm (Germany)
2016-01-28
We combine the stochastic pulse optimization (SPO) scheme with the time-dependent configuration interaction singles method in order to control the high frequency response of a simple molecular model system to a tailored femtosecond laser pulse. For this purpose, we use H{sub 2} treated in the fixed nuclei approximation. The SPO scheme, as similar genetic algorithms, is especially suited to control highly non-linear processes, which we consider here in the context of high harmonic generation. Here, we will demonstrate that SPO can be used to realize a “non-harmonic” response of H{sub 2} to a laser pulse. Specifically, we will show how adding low intensity side frequencies to the dominant carrier frequency of the laser pulse and stochastically optimizing their contribution can create a high-frequency spectral signal of significant intensity, not harmonic to the carrier frequency. At the same time, it is possible to suppress the harmonic signals in the same spectral region, although the carrier frequency is kept dominant during the optimization.
Directory of Open Access Journals (Sweden)
Michael G. Walsh
2015-01-01
Full Text Available Ebola virus disease (EVD is an emerging infectious disease of zoonotic origin that has been responsible for high mortality and significant social disruption in West and Central Africa. Zoonotic transmission of EVD requires contact between susceptible human hosts and the reservoir species for Ebolaviruses, which are believed to be fruit bats. Nevertheless, features of the landscape that may facilitate such points of contact have not yet been adequately identified. Nor have spatial dependencies between zoonotic EVD transmission and landscape structures been delineated. This investigation sought to describe the spatial relationship between zoonotic EVD transmission events, or spillovers, and population density and vegetation cover. An inhomogeneous Poisson process model was fitted to all precisely geolocated zoonotic transmissions of EVD in West and Central Africa. Population density was strongly associated with spillover; however, there was significant interaction between population density and green vegetation cover. In areas of very low population density, increasing vegetation cover was associated with a decrease in risk of zoonotic transmission, but as population density increased in a given area, increasing vegetation cover was associated with increased risk of zoonotic transmission. This study showed that the spatial dependencies of Ebolavirus spillover were associated with the distribution of population density and vegetation cover in the landscape, even after controlling for climate and altitude. While this is an observational study, and thus precludes direct causal inference, the findings do highlight areas that may be at risk for zoonotic EVD transmission based on the spatial configuration of important features of the landscape.
Regeta, Khrystyna; Bannwarth, Christoph; Grimme, Stefan; Allan, Michael
2015-06-28
The technique of low energy (0-30 eV) electron impact spectroscopy, originally developed for gas phase molecules, is applied to room temperature ionic liquids (IL). Electron energy loss (EEL) spectra recorded near threshold, by collecting 0-2 eV electrons, are largely continuous, assigned to excitation of a quasi-continuum of high overtones and combination vibrations of low-frequency modes. EEL spectra recorded by collecting 10 eV electrons show predominantly discrete vibrational and electronic bands. The vibrational energy-loss spectra correspond well to IR spectra except for a broadening (∼0.04 eV) caused by the liquid surroundings, and enhanced overtone activity indicating a contribution from resonant excitation mechanism. The spectra of four representative ILs were recorded in the energy range of electronic excitations and compared to density functional theory multireference configuration interaction (DFT/MRCI) calculations, with good agreement. The spectra up to about 8 eV are dominated by π-π* transitions of the aromatic cations. The lowest bands were identified as triplet states. The spectral region 2-8 eV was empty in the case of a cation without π orbitals. The EEL spectrum of a saturated solution of methylene green in an IL band showed the methylene green EEL band at 2 eV, indicating that ILs may be used as a host to study nonvolatile compounds by this technique in the future.
International Nuclear Information System (INIS)
Curtiss, L.A.; Raghavachari, K.; Pople, J.A.
1995-01-01
The performance of Gaussian-2 theory is investigated when higher level theoretical methods are included for correlation effects, geometries, and zero-point energies. A higher level of correlation treatment is examined using Brueckner doubles [BD(T)] and coupled cluster [CCSD(T)] methods rather than quadratic configuration interaction [QCISD(T)]. The use of geometries optimized at the QCISD level rather than the second-order Moller--Plesset level (MP2) and the use of scaled MP2 zero-point energies rather than scaled Hartree--Fock (HF) zero-point energies have also been examined. The set of 125 energies used for validation of G2 theory [J. Chem. Phys. 94, 7221 (1991)] is used to test out these variations of G2 theory. Inclusion of higher levels of correlation treatment has little effect except in the cases of multiply-bonded systems. In these cases better agreement is obtained in some cases and poorer agreement in others so that there is no improvement in overall performance. The use of QCISD geometries yields significantly better agreement with experiment for several cases including the ionization potentials of CS and O 2 , electron affinity of CN, and dissociation energies of N 2 , O 2 , CN, and SO 2 . This leads to a slightly better agreement with experiment overall. The MP2 zero-point energies gives no overall improvement. These methods may be useful for specific systems
Kagenov, Anuar; Glazunov, Anatoliy; Kostyushin, Kirill; Eremin, Ivan; Shuvarikov, Vladimir
2017-10-01
This paper presents the results of numerical investigations of the interaction with the Mars surface of four supersonic jets of ExoMars landing platform propulsion system. The cases of impingement of supersonic jets on a curved surface are considered depending on the values of propulsion system thrust. According to the results of numerical studies are obtained the values of normal stresses on the surface of Mars at altitudes of 1.0, 0.5 and 0.3 meter to the surface of the landing. To define the occurring shear stresses Mohr-Coulomb theory was used. The maximum values of shear stresses were defined for the following types of soil of Mars: drift material, crusty to cloddy material, blocky material, sand and Mojave Mars simulant. The conducted evaluations showed, regardless of the propulsion system configuration, that when the final stage of the controlled landing of the ExoMars landing platform, the erosion of the Mars regolith would be insignificant. The estimates are consistent with the available data from previous Mars missions.
Directory of Open Access Journals (Sweden)
Elena - Mădălina VĂTĂMĂNESCU
2014-10-01
Full Text Available The paper approaches the common identity and common bond theories in analyzing the group patterns of interaction, their causes, processes and outcomes from a managerial perspective. The distinction between identity and bond referred to people’s different reasons for being in a group, stressing out whether they like the group as a whole — identity-based attachment, or they like individuals in the group — bond-based attachment. While members of the common identity groups reported feeling more attached to their group as a whole than to their fellow group members and tended to perceive others in the group as interchangeable, in bond-based attachment, people felt connected to each other and less to the group as a whole, loyalty or attraction to the group stemming from their attraction primarily to certain members in the group. At this level, the main question concerned with the particularities of common identity-based or common bond-based groups regarding social interaction, the participatory architecture of the group, the levels of personal and work engagement in acting like a cohesive group. In order to address pertinently this issue, the current work was focused on a qualitative research which comprised in-depth (semi-structured interviews with several project coordinators from non-governmental organizations (NGOs. Also, to make the investigation more complex and clear, the research relied on the social network analysis which was indicative of the group dynamics and configuration, highlighting the differences between common identity-based and common bond-based groups.
Ab Initio Calculations Of Light-Ion Reactions
International Nuclear Information System (INIS)
Navratil, P.; Quaglioni, S.; Roth, R.; Horiuchi, W.
2012-01-01
The exact treatment of nuclei starting from the constituent nucleons and the fundamental interactions among them has been a long-standing goal in nuclear physics. In addition to the complex nature of nuclear forces, one faces the quantum-mechanical many-nucleon problem governed by an interplay between bound and continuum states. In recent years, significant progress has been made in ab initio nuclear structure and reaction calculations based on input from QCD employing Hamiltonians constructed within chiral effective field theory. In this contribution, we present one of such promising techniques capable of describing simultaneously both bound and scattering states in light nuclei. By combining the resonating-group method (RGM) with the ab initio no-core shell model (NCSM), we complement a microscopic cluster approach with the use of realistic interactions and a microscopic and consistent description of the clusters. We discuss applications to light nuclei scattering, radiative capture and fusion reactions.
Ab initio study of the adducts of carbon monoxide with alkaline cations
Ferrari, A. M.; Ugliengo, P.; Garrone, E.
1996-09-01
The interaction between CO (either via the C or the O end) and the alkaline cations (Li+, Na+, K+, Rb+, and Cs+) has been studied by means of six ab initio methods, featuring the classical Hartree-Fock, the second order Møller-Plesset treatment of electron correlation, one local density functional and two gradient-corrected methods as well as a quadratic configuration interaction inclusive of single and double substitutions with a noniterative triples contribution to the energy. Basis sets adopted for CO, Li+, Na+, and K+ and the corresponding adducts are of triple-ζ valence quality augmented with a double set of polarization functions (d on C and O; p on the cations). For Rb+ and Cs+, Hay-Wadt effective core potential basis sets have been adopted. Calculated features are the binding energy, the frequency and intensity of the CO stretch, the bending mode, the cation-carbon (or oxygen) stretch, and the equilibrium geometry. Gradient-corrected density functional methods yield results nearly as good as the most expensive correlated method based on configurations interaction. A number of correlations are established among the observables. The role of electrostatics in the interaction is analyzed both by studying the molecular electrostatic potential of CO and by replacing the cation with a proton in the same position. Binding through the C end is invariably preferred, though, with increasing size of the cation, binding through the O end become progressively less unfavored. Experimental data concerning alkaline-cation substituted zeolites are compared with computational results, and an overall agreement is observed.
International Nuclear Information System (INIS)
Bogdanovich, P.; Kisielius, R.
2012-01-01
The ab initio quasirelativistic Hartree–Fock method developed specifically for the calculation of spectral parameters of heavy atoms and highly charged ions was applied to determine atomic data for tungsten ions. The correlation effects were included by adopting the configuration interaction method. The Breit–Pauli approximation for quasirelativistic Hartree–Fock radial orbitals was employed to take into account relativistic effects. The energy level spectra, radiative lifetimes, Lande factors g were calculated for the 4p 6 4d, 4p 6 4f and 4p 5 4d 2 configurations of W 37+ ion. The atomic data, namely, the transition wavelengths, spontaneous emission rates and oscillator strengths for the electric dipole, electric quadrupole and magnetic dipole transitions among and within the levels of these configurations are tabulated.
Casanova, David
2012-08-28
The restricted active space spin-flip CI (RASCI-SF) performance is tested in the electronic structure computation of the ground and the lowest electronically excited states in the presence of near-degeneracies. The feasibility of the method is demonstrated by analyzing the avoided crossing between the ionic and neutral singlet states of LiF along the molecular dissociation. The two potential energy surfaces (PESs) are explored by means of the energies of computed adiabatic and approximated diabatic states, dipole moments, and natural orbital electronic occupancies of both states. The RASCI-SF methodology is also used to study the ground and first excited singlet surface crossing involved in the double bond isomerization of ethylene, as a model case. The two-dimensional PESs of the ground (S(0)) and excited (S(1)) states are calculated for the complete configuration space of torsion and pyramidalization molecular distortions. The parameters that define the state energetics in the vicinity of the S(0)/S(1) conical intersection region are compared to complete active space self-consistent field (CASSCF) results. These examples show that it is possible to describe strongly correlated electronic states using a single reference methodology without the need to expand the wavefunction to high levels of collective excitations. Finally, RASCI is also examined in the electronic structure characterization of the ground and 2(1)A(g)(-), 1(1)B(u)(+), 1(1)B(u)(-), and 1(3)B(u)(-) states of all-trans polyenes with two to seven double bonds and beyond. Transition energies are compared to configuration interaction singles, time-dependent density functional theory (TDDFT), CASSCF, and its second-order perturbation correction calculations, and to experimental data. The capability of RASCI-SF to describe the nature and properties of each electronic state is discussed in detail. This example is also used to expose the properties of different truncations of the RASCI wavefunction and to
DEFF Research Database (Denmark)
Shim, Irene; Kingcade, Joseph E.; Gingerich, Karl A.
1988-01-01
-lying electronic states of the NiGe molecule have all been characterized by the symmetry of the hole in the 3d shell of Ni. The dissociation energy of the NiGe molecule has been determined from our high temperature mass spectrometric equilibrium data in combination with the theoretical results as D [open circle] 0...... =286.8±10.9 kJ mol−1. The standard heat of formation of the NiGe molecule has been obtained as DeltaH [open circle] f,298 =514±12 kJ mol−1. The Journal of Chemical Physics is copyrighted by The American Institute of Physics....
Karpuškienė, R.; Bogdanovich, P.; Kisielius, R.
2017-05-01
The ab initio quasirelativistic approach developed specifically for the calculation of spectral parameters of highly charged ions was used to derive transition data for the tungsten ion W34+. The configuration interaction method was applied to include electron correlation effects. The relativistic effects were taken into account in the Breit-Pauli approximation. The level energies, radiative lifetimes τ, Landé g-factors are determined for the ground configuration 4p64d4 and two excited configurations 4p64d34f and 4p54d5. The radiative transition wavelengths λ and emission transition probabilities A for the electric dipole, electric quadrupole, electric octupole, magnetic dipole, and magnetic quadrupole transitions among the levels of these configurations are produced.
International Nuclear Information System (INIS)
Childs, W.J.; Goodman, L.S.; Pfeufer, V.
1983-01-01
Although the hyperfine structure (hfs) of many-electron atoms has been studied intensively in recent years, it is still difficult to distinguish between the competing effects of relativity and configuration interaction. The 4f/sup N/6s 2 configuration of the neutral rare earths is of particular interest because (a) the low-lying terms are relatively free of configuration interaction, and (b) trends can be examined systematically as one proceeds through the long 4f-shell. The procedure is to deduce, from the measured hfs constants of low levels, the underlying hyperfine radial integrals for comparison with ab initio predictions. Since some of these integrals are extremely sensitive to any configuration interaction and others are not, it is possible to determine both the extent and type of configuration interaction present in some cases. Prior to the start of the present research no precise hfs information existed for the entire second half of the 4f shell of the rare earths. The present measurements were designed both to provide such data and to make possible a systematic study of the hfs throughout the 4f shell. The atomic-beam, laser-rf, double-resonance method was used for the measurements. With this technique, the occurrence of a radiofrequency transition between atomic hfs levels is detected by noting an increase in the laser-induced fluorescence
International Nuclear Information System (INIS)
Ehara, Masahiro; Piecuch, Piotr; Lutz, Jesse J.; Gour, Jeffrey R.
2012-01-01
Graphical abstract: Electronically excited states of CuCl 4 2- and CuBr 4 2- are determined using the scalar relativistic symmetry-adapted-cluster configuration-interaction and equation-of-motion coupled-cluster calculations. The results are compared with experimental spectra. Highlights: ► Electronic spectra of CuCl 4 2- and CuBr 4 2- are examined by SAC-CI and EOMCC methods. ► Relativistic SAC-CI and EOMCC results are compared with experimental spectra. ► An assignment of bands in the CuCl 4 2- and CuBr 4 2- absorption spectra is obtained. ► Relativistic effects affect excitation energies and ground-state geometries. ► The effect of relativity on the oscillator strengths is generally small. - Abstract: The valence excitation spectra of the copper tetrachloride and copper tetrabromide open-shell dianions, CuCl 4 2- and CuBr 4 2- , respectively, are investigated by a variety of symmetry-adapted-cluster configuration-interaction (SAC-CI) and equation-of-motion coupled-cluster (EOMCC) methods. The valence excited states of the CuCl 4 2- and CuBr 4 2- species that correspond to transitions from doubly occupied molecular orbitals (MOs) to a singly occupied MO (SOMO), for which experimental spectra are available, are examined with the ionized (IP) variants of the SAC-CI and EOMCC methods. The higher-energy excited states of CuCl 4 2- and CuBr 4 2- that correspond to transitions from SOMO to unoccupied MOs, which have not been characterized experimentally, are determined using the electron-attached (EA) SAC-CI and EOMCC approaches. An emphasis is placed on the scalar relativistic SAC-CI and EOMCC calculations based on the spin-free part of the second-order Douglass–Kroll–Hess Hamiltonian (DKH2) and on a comparison of the results of the IP and EA SAC-CI and EOMCC calculations with up to 2-hole-1-particle (2h-1p) and 2-particle-1-hole (2p-1h) excitations, referred to as the IP-SAC-CI SD-R and IP-EOMCCSD(2h-1p) methods in the IP case and EA-SAC-CI SD-R and EA
International Nuclear Information System (INIS)
Luppi, Eleonora; Head-Gordon, Martin
2013-01-01
We study the role of Rydberg bound-states and continuum levels in the field-induced electronic dynamics associated with the High-Harmonic Generation (HHG) spectroscopy of the hydrogen atom. Time-dependent configuration-interaction (TD-CI) is used with very large atomic orbital (AO) expansions (up to L= 4 with sextuple augmentation and off-center functions) to describe the bound Rydberg levels, and some continuum levels. To address the lack of ionization losses in TD-CI with finite AO basis sets, we employed a heuristic lifetime for energy levels above the ionization potential. The heuristic lifetime model is compared against the conventional atomic orbital treatment (infinite lifetimes), and a third approximation which is TD-CI using only the bound levels (continuum lifetimes go to zero). The results suggest that spectra calculated using conventional TD-CI do not converge with increasing AO basis set size, while the zero lifetime and heuristic lifetime models converge to qualitatively similar spectra, with implications for how best to apply bound state electronic structure methods to simulate HHG. The origin of HHG spectral features including the cutoff and extent of interference between peaks is uncovered by separating field-induced coupling between different types of levels (ground state, bound Rydberg levels, and continuum) in the simulated electronic dynamics. Thus the origin of deviations between the predictions of the semi-classical three step model and the full simulation can be associated with particular physical contributions, which helps to explain both the successes and the limitations of the three step model
Directory of Open Access Journals (Sweden)
Takanori Kiguchi, Kenta Aoyagi, Yoshitaka Ehara, Hiroshi Funakubo, Tomoaki Yamada, Noritaka Usami and Toyohiko J Konno
2011-01-01
Full Text Available We have studied the strain field around the 90° domains and misfit dislocations in PbTiO3/SrTiO3 (001 epitaxial thin films, at the nanoscale, using the geometric phase analysis (GPA combined with high-resolution transmission electron microscopy (HRTEM and high-angle annular dark field––scanning transmission electron microscopy (HAADF-STEM. The films typically contain a combination of a/c-mixed domains and misfit dislocations. The PbTiO3 layer was composed from the two types of the a-domain (90° domain: a typical a/c-mixed domain configuration where a-domains are 20–30 nm wide and nano sized domains with a width of about 3 nm. In the latter case, the nano sized a-domain does not contact the film/substrate interface; it remains far from the interface and stems from the misfit dislocation. Strain maps obtained from the GPA of HRTEM images show the elastic interaction between the a-domain and the dislocations. The normal strain field and lattice rotation match each other between them. Strain maps reveal that the a-domain nucleation takes place at the misfit dislocation. The lattice rotation around the misfit dislocation triggers the nucleation of the a-domain; the normal strains around the misfit dislocation relax the residual strain in a-domain; then, the a-domain growth takes place, accompanying the introduction of the additional dislocation perpendicular to the misfit dislocation and the dissociation of the dislocations into two pairs of partial dislocations with an APB, which is the bottom boundary of the a-domain. The novel mechanism of the nucleation and growth of 90° domain in PbTiO3/SrTiO3 epitaxial system has been proposed based on above the results.
DEFF Research Database (Denmark)
Shim, Irene; Gingerich, K. A.
1984-01-01
In the present study we present all-electron ab initio Hartree–Fock (HF) and configuration interaction (CI) calculations of the 2Sigma+ ground state as well as of 16 excited states of the RhC molecule. The calculated spectroscopic constants of the lowest lying states are in good agreement...... with the experimental data. The chemical bond in the electronic ground state is mainly due to interaction of the 4d orbitals of Rh with the 2s and 2p orbitals of C. The bond is a triple bond composed of two pi bonds and one sigma bond. The 5s electron of Rh hardly participates in the bond formation. It is located...
Ab Initio Symmetry-Adapted No-Core Shell Model
International Nuclear Information System (INIS)
Draayer, J P; Dytrych, T; Launey, K D
2011-01-01
A multi-shell extension of the Elliott SU(3) model, the SU(3) symmetry-adapted version of the no-core shell model (SA-NCSM), is described. The significance of this SA-NCSM emerges from the physical relevance of its SU(3)-coupled basis, which – while it naturally manages center-of-mass spuriosity – provides a microscopic description of nuclei in terms of mixed shape configurations. Since typically configurations of maximum spatial deformation dominate, only a small part of the model space suffices to reproduce the low-energy nuclear dynamics and hence, offers an effective symmetry-guided framework for winnowing of model space. This is based on our recent findings of low-spin and high-deformation dominance in realistic NCSM results and, in turn, holds promise to significantly enhance the reach of ab initio shell models.
Virtual synthesis of crystals using ab initio MD: Case study on LiFePO4
Mishra, S. B.; Nanda, B. R. K.
2017-05-01
Molecular dynamics simulation technique is fairly successful in studying the structural aspects and dynamics of fluids. Here we study the ability of ab initio molecular dynamics (ab initio MD) to carry out virtual experiments to synthesize new crystalline materials and to predict their structures. For this purpose the olivine phosphate LiFePO4 (LFPO) is used as an example. As transition metal oxides in general are stabilized with layered geometry, we carried out ab initio MD simulations over a hypothetical layered configuration consisting of alternate LiPO2 and FeO2 layers. With intermittent steps of electron minimization, the resulted equilibrium lattice consist of PO4 tetrahedra and distorted Fe-O complexes similar to the one observed in the experimental lattice.
Chudnovsky, A.; Dolgopolsky, A.; Kachanov, M.
1987-01-01
The elastic interactions of a two-dimensional configuration consisting of a crack with an array of microcracks located near the tip are studied. The general form of the solution is based on the potential representations and approximations of tractions on the microcracks by polynomials. In the second part, the technique is applied to two simple two-dimensional configurations involving one and two microcracks. The problems of stress shielding and stress amplification (the reduction or increase of the effective stress intensity factor due to the presence of microcracks) are discussed, and the refinements introduced by higher order polynomial approximations are illustrated.
Augmented wave ab initio EFG calculations: some methodological warnings
International Nuclear Information System (INIS)
Errico, Leonardo A.; Renteria, Mario; Petrilli, Helena M.
2007-01-01
We discuss some accuracy aspects inherent to ab initio electronic structure calculations in the understanding of nuclear quadrupole interactions. We use the projector augmented wave method to study the electric-field gradient (EFG) at both Sn and O sites in the prototype cases SnO and SnO 2 . The term ab initio is used in the standard context of the also called first principles methods in the framework of the Density Functional Theory. As the main contributions of EFG calculations to problems in condensed matter physics are related to structural characterizations on the atomic scale, we discuss the 'state of the art' on theoretical EFG calculations and make a brief critical review on the subject, calling attention to some fundamental theoretical aspects
Augmented wave ab initio EFG calculations: some methodological warnings
Energy Technology Data Exchange (ETDEWEB)
Errico, Leonardo A. [Departamento de Fisica-IFLP (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC67 (1900) La Plata (Argentina); Renteria, Mario [Departamento de Fisica-IFLP (CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC67 (1900) La Plata (Argentina); Petrilli, Helena M. [Instituto de Fisica-DFMT, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil)]. E-mail: hmpetril@macbeth.if.usp.br
2007-02-01
We discuss some accuracy aspects inherent to ab initio electronic structure calculations in the understanding of nuclear quadrupole interactions. We use the projector augmented wave method to study the electric-field gradient (EFG) at both Sn and O sites in the prototype cases SnO and SnO{sub 2}. The term ab initio is used in the standard context of the also called first principles methods in the framework of the Density Functional Theory. As the main contributions of EFG calculations to problems in condensed matter physics are related to structural characterizations on the atomic scale, we discuss the 'state of the art' on theoretical EFG calculations and make a brief critical review on the subject, calling attention to some fundamental theoretical aspects.
Maganas, Dimitrios; DeBeer, Serena; Neese, Frank
2018-02-08
In this work, the efficiency of first-principles calculations of X-ray absorption spectra of large chemical systems is drastically improved. The approach is based on the previously developed restricted open-shell configuration interaction singles (ROCIS) method and its parametrized version, based on a density functional theory (DFT) ground-state determinant ROCIS/DFT. The combination of the ROCIS or DFT/ROCIS methods with the well-known machinery of the pair natural orbitals (PNOs) leads to the new PNO-ROCIS and PNO-ROCIS/DFT variants. The PNO-ROCIS method can deliver calculated metal K-, L-, and M-edge XAS spectra orders of magnitude faster than ROCIS while maintaining an accuracy with calculated spectral parameters better than 1% relative to the original ROCIS method (referred to as canonical ROCIS). The method is of a black box character, as it does not require any user adjustments, while it scales quadratically with the system size. It is shown that for large systems, the size of the virtual molecular orbital (MO) space is reduced by more than 90% with respect to the canonical ROCIS method. This allows one to compute the X-ray absorption spectra of a variety of large "real-life" chemical systems featuring hundreds of atoms using a first-principles wave-function-based approach. Examples chosen from the fields of bioinorganic and solid-state chemistry include the Co K-edge XAS spectrum of aquacobalamin [H 2 OCbl] + , the Fe L-edge XAS spectrum of deoxymyoglobin (DMb), the Ti L-edge XAS spectrum of rutile TiO 2 , and the Fe M-edge spectrum of α-Fe 2 O 3 hematite. In the largest calculations presented here, molecules with more than 700 atoms and cluster models with more than 50 metal centers were employed. In all the studied cases, very good to excellent agreement with experiment is obtained. It will be shown that the PNO-ROCIS method provides an unprecedented performance of wave-function-based methods in the field of computational X-ray spectroscopy.
Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes
Energy Technology Data Exchange (ETDEWEB)
Draayer, Jerry P. [Louisiana State Univ., Baton Rouge, LA (United States)
2014-09-28
We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).
Ab Initio Nuclear Structure and Reaction Calculations for Rare Isotopes
International Nuclear Information System (INIS)
Draayer, Jerry P.
2014-01-01
We have developed a novel ab initio symmetry-adapted no-core shell model (SA-NCSM), which has opened the intermediate-mass region for ab initio investigations, thereby providing an opportunity for first-principle symmetry-guided applications to nuclear structure and reactions for nuclear isotopes from the lightest p-shell systems to intermediate-mass nuclei. This includes short-lived proton-rich nuclei on the path of X-ray burst nucleosynthesis and rare neutron-rich isotopes to be produced by the Facility for Rare Isotope Beams (FRIB). We have provided ab initio descriptions of high accuracy for low-lying (including collectivity-driven) states of isotopes of Li, He, Be, C, O, Ne, Mg, Al, and Si, and studied related strong- and weak-interaction driven reactions that are important, in astrophysics, for further understanding stellar evolution, X-ray bursts and triggering of s, p, and rp processes, and in applied physics, for electron and neutrino-nucleus scattering experiments as well as for fusion ignition at the National Ignition Facility (NIF).
Energy Technology Data Exchange (ETDEWEB)
Darriba, G. N., E-mail: darriba@fisica.unlp.edu.ar; Munoz, E. L. [Universidad Nacional de La Plata, Departamento de Fisica e Instituto de Fisica La Plata (IFLP, CCT La Plata, CONICET), Facultad de Ciencias Exactas (Argentina); Eversheim, P. D. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik (H-ISKP) (Germany); Renteria, M., E-mail: renteria@fisica.unlp.edu.ar [Universidad Nacional de La Plata, Departamento de Fisica e Instituto de Fisica La Plata (IFLP, CCT La Plata, CONICET), Facultad de Ciencias Exactas (Argentina)
2010-04-15
We report perturbed-angular-correlation (PAC) experiments on {sup 181}Hf ({yields}{sup 181}Ta)-implanted corundum {alpha}-Fe{sub 2}O{sub 3} single crystal in order to determine the magnitude, symmetry and orientation of the electric-field-gradient (EFG) tensor at Ta donor impurity sites of this semiconductor. These results are analyzed in the framework of ab initio full-potential augmented-plane wave plus local orbital (FP-APW+lo) calculations. This combined analysis enables us to quantify the magnitude of the lattice relaxations induced by the presence of the impurity and to determine the charge state of the impurity donor level introduced by Ta in the band gap of the semiconductor.
Ab initio modeling of plasticity in HCP metals: pure zirconium and titanium and effect of oxygen
International Nuclear Information System (INIS)
Chaari, Nermine
2015-01-01
We performed atomistic simulations to determine screw dislocations properties in pure zirconium and titanium and to explain the hardening effect attributed to oxygen alloying in both hexagonal close-packed transition metals. We used two energetic models: ab initio calculations based on the density functional theory and calculations with an empirical potential. The complete energetic profile of the screw dislocation when gliding in the different slip planes is obtained in pure Zr. Our calculations reveal the existence of a metastable configuration of the screw dislocation partially spread in the first order pyramidal plane. This configuration is responsible for the cross slip of screw dislocations from prismatic planes, the easiest glide planes, to pyramidal or basal planes. This energy profile is affected by oxygen addition. Ab initio calculations reveal two main effects: oxygen enhances pyramidal cross slip by modifying the dislocation core structure, and pins the dislocation in its metastable sessile configuration. The same modeling approach is applied to titanium. In pure Ti, the same configurations of the screw dislocation in Zr are obtained, but with different energy levels. This leads to a different gliding mechanism. The same way as in Zr, oxygen enhances pyramidal glide in Ti by modifying the dislocation core structure. Besides, oxygen atom lowers the energy of the metastable configuration but not enough to pin the dislocation in this sessile configuration. (author) [fr
Ab-initio approach to the effect of Fe on the diffusion in hcp Zr
International Nuclear Information System (INIS)
Perez, Rodolfo Ariel; Weissmann, Mariana
2008-01-01
The role of Fe in the hcp Zr diffusion process is analyzed, given its ultra-fast diffusion (up to nine orders of magnitude higher than the self-diffusion in the temperature range 779-1128 K) and the enhancement observed in the self and substitutional diffusion induced by its unavoidable presence as impurity. Ab-initio calculations using SIESTA and WIEN2K codes were performed in order to find the actual Fe minimum energy configuration within the hcp Zr matrix and its interaction with vacancies. Several off-centre quasi-interstitial positions with energies similar to substitutional Fe were encountered. The comparison with diffusion coefficient measurements and Moessbauer experiments allows us to discard the substitutional position of the Fe atom as well as to affirm that its presence creates a considerable lattice distortion together with an increment in the number of vacancies. The above effects could be responsible for the enhancement in the self and substitutional diffusion, whereas the large amount of quasi-interstitial positions for Fe could be, at least partially, responsible for the ultra-fast Fe diffusion
A nonlocal, ab initio model of dissociative electron attachment and vibrational excitation of NO
International Nuclear Information System (INIS)
Trevisan, Cynthia S.; Houfek, Karel; Zhang, Zhiyong; Orel, Ann E.; McCurdy, C. William; Rescigno, Thomas N.
2005-01-01
We present the results of an ab initio study of elastic scattering and vibrational excitation of NO by electron impact in the loW--energy (0-2 eV) region where the cross sections are dominated by resonance contributions. The 3Sigma-, 1Delta and 1Sigma+ NO- resonance lifetimes are taken from our earlier study [Phys. Rev. A 69, 062711 (2004)], but the resonance energies used here are obtained from new configuration-interaction studies. Here we employ a more elaborate nonlocal treatment of the nuclear dynamics, which is found to remedy the principal deficiencies of the local complex potential model we employed in our earlier study, and gives cross sections in better agreement with the most recent experiments. We also present cross sections for dissociative electron attachment to NO leading to groundstate products. The calculations show that, while the peak cross sections starting from NO in its ground vibrational state are very small, the cross sections are extremely sensitive to vibrational excitation of the target and should be readily observable for target NO molecules excited to v = 10 and above
Software configuration management
International Nuclear Information System (INIS)
Arribas Peces, E.; Martin Faraldo, P.
1993-01-01
Software Configuration Management is directed towards identifying system configuration at specific points of its life cycle, so as to control changes to the configuration and to maintain the integrity and traceability of the configuration throughout its life. SCM functions and tasks are presented in the paper
Conceptualizing Embedded Configuration
DEFF Research Database (Denmark)
Oddsson, Gudmundur Valur; Hvam, Lars; Lysgaard, Ole
2006-01-01
and services. The general idea can be named embedded configuration. In this article we intend to conceptualize embedded configuration, what it is and is not. The difference between embedded configuration, sales configuration and embedded software is explained. We will look at what is needed to make embedded...... configuration systems. That will include requirements to product modelling techniques. An example with consumer electronics will illuminate the elements of embedded configuration in settings that most can relate to. The question of where embedded configuration would be relevant is discussed, and the current...
Hokanson, K. J.; Devito, K.; Mendoza, C. A.
2017-12-01
The Boreal Plain (BP) region of Canada, a landscape characterized by low-relief, a sub-humid climate and heterogeneous glacial landforms, is experiencing unprecedented anthropogenic and natural disturbance, including climate change and oil & gas operations. Understanding the controls on and the natural variability of water table position, and subsequently predicting changes in water table position under varying physical and climatic scenarios will become important as water security becomes increasingly threatened. The BP is composed of a mosaic of forestland, wetland, and aquatic land covers that contrast in dominant vegetation cover, evapotranspiration, and soil storage that, in turn, influence water table configurations. Additionally, these land-covers overlie heterogeneous glacial landforms with large contrasts in storage and hydraulic properties which, when coupled with wet-dry climate cycles, result in complex water table distributions in time and space. Several forestland-wetland-pond complexes were selected at the Utikuma Research Study Area (URSA) over three distinct surficial geologic materials (glacial fluvial outwash, stagnant ice moraine, lacustrine clay plain) to explore the roles of climate (cumulative departure from the long term yearly mean precipitation), geology, topographic position, and land cover on water table configurations over 15 years (2002 - 2016). In the absence of large groundwater flow systems, local relief and shallow low conductivity substrates promote the formation of near-surface water tables that are less susceptible to climate variation, regardless of topography. Furthermore, in areas of increased storage, wet and dry climate conditions can result in appreciably different water table configurations over time, ranging from mounds to hydraulic depressions, depending on the arrangement of land-covers, dominant surficial geology, and substrate layering.
Energy Technology Data Exchange (ETDEWEB)
Bernard, S.; Jollet, F.; Jomard, G.; Siberchicot, B.; Torrent, M.; Zerah, G.; Amadon, B.; Bouchet, J.; Richard, N.; Robert, G. [CEA Bruyeres-le-Chatel, 91 (France)
2005-07-01
The determination of equations of states of heavy metals through ab initio calculation, i.e. without any adjustable parameter, allows to access to pressure and temperature thermodynamic conditions sometimes inaccessible to experiment. To perform such calculations, density functional theory (DFT) is a good starting point: when electronic densities are homogeneous enough, the local density approximation (LDA) remarkably accounts for thermodynamic properties of heavy metals, such as tantalum, or the light actinides, as well for static properties - equilibrium volume, elastic constants - as for dynamical quantities like phonon spectra. For heavier elements, like neptunium or plutonium, relativistic effects and strong electronic interactions must be taken into account, which requires more sophisticated theoretical approaches. (authors)
Ab Initio Calculations of Oxosulfatovanadates
DEFF Research Database (Denmark)
Frøberg, Torben; Johansen, Helge
1996-01-01
Restricted Hartree-Fock and multi-configurational self-consistent-field calculations together with secondorder perturbation theory have been used to study the geometry, the electron density, and the electronicspectrum of (VO2SO4)-. A bidentate sulphate attachment to vanadium was found to be stabl...
A Force Balanced Fragmentation Method for ab Initio Molecular Dynamic Simulation of Protein
Directory of Open Access Journals (Sweden)
Mingyuan Xu
2018-05-01
Full Text Available A force balanced generalized molecular fractionation with conjugate caps (FB-GMFCC method is proposed for ab initio molecular dynamic simulation of proteins. In this approach, the energy of the protein is computed by a linear combination of the QM energies of individual residues and molecular fragments that account for the two-body interaction of hydrogen bond between backbone peptides. The atomic forces on the caped H atoms were corrected to conserve the total force of the protein. Using this approach, ab initio molecular dynamic simulation of an Ace-(ALA9-NME linear peptide showed the conservation of the total energy of the system throughout the simulation. Further a more robust 110 ps ab initio molecular dynamic simulation was performed for a protein with 56 residues and 862 atoms in explicit water. Compared with the classical force field, the ab initio molecular dynamic simulations gave better description of the geometry of peptide bonds. Although further development is still needed, the current approach is highly efficient, trivially parallel, and can be applied to ab initio molecular dynamic simulation study of large proteins.
International Nuclear Information System (INIS)
Burgess, M.
1994-06-01
A high level description language is presented for the purpose of automatically configuring large heterogeneous networked unix environments, based on class-oriented abstractions. The configuration engine is portable and easily extensible
International Nuclear Information System (INIS)
Fink, Reinhold F.
2009-01-01
The retaining the excitation degree (RE) partitioning [R.F. Fink, Chem. Phys. Lett. 428 (2006) 461(20 September)] is reformulated and applied to multi-reference cases with complete active space (CAS) reference wave functions. The generalised van Vleck perturbation theory is employed to set up the perturbation equations. It is demonstrated that this leads to a consistent and well defined theory which fulfils all important criteria of a generally applicable ab initio method: The theory is proven numerically and analytically to be size-consistent and invariant with respect to unitary orbital transformations within the inactive, active and virtual orbital spaces. In contrast to most previously proposed multi-reference perturbation theories the necessary condition for a proper perturbation theory to fulfil the zeroth order perturbation equation is exactly satisfied with the RE partitioning itself without additional projectors on configurational spaces. The theory is applied to several excited states of the benchmark systems CH 2 , SiH 2 , and NH 2 , as well as to the lowest states of the carbon, nitrogen and oxygen atoms. In all cases comparisons are made with full configuration interaction results. The multi-reference (MR)-RE method is shown to provide very rapidly converging perturbation series. Energy differences between states of similar configurations converge even faster
Ab initio calculations of 3H(d,n)4He fusion
International Nuclear Information System (INIS)
Navratil, Petr; Quaglioni, Sofia
2012-01-01
We build a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the ab initio no-core shell model. In this way, we complement a microscopic-cluster technique with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. We will present the first results of the d- 3 H and d- 3 He fusion calculation obtained within our ab initio approach. We will also discuss our d- 4 He, 3 H- 4 He and 3 H- 3 H scattering calculations and the outline of the extension of the formalism to include three-cluster final states with the goal to calculate the 3 H( 3 H,2n) 4 He cross section
MICROCONTROLLER PIN CONFIGURATION TOOL
Bhaskar Joshi; F. Mohammed Rizwan; Dr. Rajashree Shettar
2012-01-01
Configuring the micro controller with large number of pins is tedious. Latest Infine on microcontroller contains more than 200 pins and each pin has classes of signals. Therefore the complexity of the microcontroller is growing. It evolves looking into thousands of pages of user manual. For a user it will take days to configure the microcontroller with the peripherals. We need an automated tool to configure the microcontroller so that the user can configure the microcontroller without having ...
Operational Dynamic Configuration Analysis
Lai, Chok Fung; Zelinski, Shannon
2010-01-01
Sectors may combine or split within areas of specialization in response to changing traffic patterns. This method of managing capacity and controller workload could be made more flexible by dynamically modifying sector boundaries. Much work has been done on methods for dynamically creating new sector boundaries [1-5]. Many assessments of dynamic configuration methods assume the current day baseline configuration remains fixed [6-7]. A challenging question is how to select a dynamic configuration baseline to assess potential benefits of proposed dynamic configuration concepts. Bloem used operational sector reconfigurations as a baseline [8]. The main difficulty is that operational reconfiguration data is noisy. Reconfigurations often occur frequently to accommodate staff training or breaks, or to complete a more complicated reconfiguration through a rapid sequence of simpler reconfigurations. Gupta quantified a few aspects of airspace boundary changes from this data [9]. Most of these metrics are unique to sector combining operations and not applicable to more flexible dynamic configuration concepts. To better understand what sort of reconfigurations are acceptable or beneficial, more configuration change metrics should be developed and their distribution in current practice should be computed. This paper proposes a method to select a simple sequence of configurations among operational configurations to serve as a dynamic configuration baseline for future dynamic configuration concept assessments. New configuration change metrics are applied to the operational data to establish current day thresholds for these metrics. These thresholds are then corroborated, refined, or dismissed based on airspace practitioner feedback. The dynamic configuration baseline selection method uses a k-means clustering algorithm to select the sequence of configurations and trigger times from a given day of operational sector combination data. The clustering algorithm selects a simplified
Fukuda, Ryoichi; Ehara, Masahiro; Nakatsuji, Hiroshi; Kishimoto, Naoki; Ohno, Koichi
2010-02-28
Valence ionized states of iron pentacarbonyl Fe(CO)(5) and eta(5)-cyclopentadienyl cobalt dicarbonyl Co(eta(5)-C(5)H(5))(CO)(2) have been studied by ultraviolet photoelectron spectroscopy, two-dimensional Penning ionization electron spectroscopy (2D-PIES), and symmetry-adapted cluster-configuration interaction calculations. Theory provided reliable assignments for the complex ionization spectra of these molecules, which have metal-carbonyl bonds. Theoretical ionization energies agreed well with experimental observations and the calculated wave functions could explain the relative intensities of PIES spectra. The collision-energy dependence of partial ionization cross sections (CEDPICS) was obtained by 2D-PIES. To interpret these CEDPICS, the interaction potentials between the molecules and a Li atom were examined in several coordinates by calculations. The relation between the slope of the CEDPICS and the electronic structure of the ionized states, such as molecular symmetry and the spatial distribution of ionizing orbitals, was analyzed. In Fe(CO)(5), an attractive interaction was obtained for the equatorial CO, while the interaction for the axial CO direction was repulsive. For Co(eta(5)-C(5)H(5))(CO)(2), the interaction potential in the direction of both Co-C-O and Co-Cp ring was attractive. These anisotropic interactions and ionizing orbital distributions consistently explain the relative slopes of the CEDPICS.
HLT configuration management system
Daponte, Vincenzo
2015-01-01
The CMS High Level Trigger (HLT) is implemented running a streamlined version of the CMS offline reconstruction software running on thousands of CPUs. The CMS software is written mostly in C++, using Python as its configuration language through an embedded CPython interpreter. The configuration of each process is made up of hundreds of modules, organized in sequences and paths. As an example, the HLT configurations used for 2011 data taking comprised over 2200 different modules, organized in more than 400 independent trigger paths. The complexity of the HLT configurations and the large number of configuration produced require the design of a suitable data management system. The present work describes the designed solution to manage the considerable number of configurations developed and to assist the editing of new configurations. The system is required to be remotely accessible and OS-independent as well as easly maintainable easy to use. To meet these requirements a three-layers architecture has been choose...
Ab initio model of porous periclase
International Nuclear Information System (INIS)
Drummond, Neil D.; Swift, Damian C.; Ackland, Graeme J.
2004-01-01
A two-phase equilibrium equation of state (EOS) for periclase (MgO) was constructed using ab initio quantum mechanics, including a rigorous calculation of quasiharmonic phonon modes. Much of the shock wave data reported for periclase is on porous material. We compared the theoretical EOS with porous data using a simple 'snowplough' treatment and also a model using finite equilibration rates suitable for continuum mechanics simulations. (This model has been applied previously to various heterogeneous explosives as well as other porous materials.) The results were consistent and matched the data well at pressures above the regime affected by strength - and ramp-wave formation - during compaction. Ab initio predictions of the response of porous material have been cited recently as a novel and advanced capability; we feel that this is a fairly routine extension to established ab initio techniques
Ab initio valence calculations in chemistry
Cook, D B
1974-01-01
Ab Initio Valence Calculations in Chemistry describes the theory and practice of ab initio valence calculations in chemistry and applies the ideas to a specific example, linear BeH2. Topics covered include the Schrödinger equation and the orbital approximation to atomic orbitals; molecular orbital and valence bond methods; practical molecular wave functions; and molecular integrals. Open shell systems, molecular symmetry, and localized descriptions of electronic structure are also discussed. This book is comprised of 13 chapters and begins by introducing the reader to the use of the Schrödinge
International Nuclear Information System (INIS)
Krönke, Sven; Cao, Lushuai; Schmelcher, Peter; Vendrell, Oriol
2013-01-01
We develop and apply the multi-layer multi-configuration time-dependent Hartree method for bosons, which represents an ab initio method for investigating the non-equilibrium quantum dynamics of multi-species bosonic systems. Its multi-layer feature allows for tailoring the wave function ansatz to describe intra- and inter-species correlations accurately and efficiently. To demonstrate the beneficial scaling and efficiency of the method, we explored the correlated tunneling dynamics of two species with repulsive intra- and inter-species interactions, to which a third species with vanishing intra-species interaction was weakly coupled. The population imbalances of the first two species can feature a temporal equilibration and their time evolution significantly depends on the coupling to the third species. Bosons of the first and second species exhibit a bunching tendency, whose strength can be influenced by their coupling to the third species. (paper)
Bridging a gap between continuum-QCD and ab initio predictions of hadron observables
Energy Technology Data Exchange (ETDEWEB)
Binosi, Daniele [European Centre for Theoretical Studies in Nuclear Physics and Related Areas - ECT* and Fondazione Bruno Kessler, Villa Tambosi, Strada delle Tabarelle 286, I-38123 Villazzano (Italy); Chang, Lei [CSSM, School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005 (Australia); Papavassiliou, Joannis [Department of Theoretical Physics and IFIC, University of Valencia and CSIC, E-46100, Valencia (Spain); Roberts, Craig D., E-mail: cdroberts@anl.gov [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)
2015-03-06
Within contemporary hadron physics there are two common methods for determining the momentum-dependence of the interaction between quarks: the top-down approach, which works toward an ab initio computation of the interaction via direct analysis of the gauge-sector gap equations; and the bottom-up scheme, which aims to infer the interaction by fitting data within a well-defined truncation of those equations in the matter sector that are relevant to bound-state properties. We unite these two approaches by demonstrating that the renormalisation-group-invariant running-interaction predicted by contemporary analyses of QCD's gauge sector coincides with that required in order to describe ground-state hadron observables using a nonperturbative truncation of QCD's Dyson–Schwinger equations in the matter sector. This bridges a gap that had lain between nonperturbative continuum-QCD and the ab initio prediction of bound-state properties.
Energy Technology Data Exchange (ETDEWEB)
Liu, Hanchao; Wang, Yimin; Bowman, Joel M. [Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322 (United States)
2015-05-21
The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H{sub 2}O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm{sup −1} is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.
International Nuclear Information System (INIS)
Liu, Hanchao; Wang, Yimin; Bowman, Joel M.
2015-01-01
The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H 2 O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 0–4000 cm −1 is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band
Czech Academy of Sciences Publication Activity Database
Hostaš, Jiří; Jakubec, Dávid; Laskowski, R. A.; Gnanasekaran, Ramachandran; Řezáč, Jan; Vondrášek, Jiří; Hobza, Pavel
2015-01-01
Roč. 11, č. 9 (2015), s. 4086-4092 ISSN 1549-9618 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : basis set limit * noncovalent interactions * interaction energies Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.301, year: 2015
Software configuration management
Keyes, Jessica
2004-01-01
Software Configuration Management discusses the framework from a standards viewpoint, using the original DoD MIL-STD-973 and EIA-649 standards to describe the elements of configuration management within a software engineering perspective. Divided into two parts, the first section is composed of 14 chapters that explain every facet of configuration management related to software engineering. The second section consists of 25 appendices that contain many valuable real world CM templates.
Ab Initio Liquid Water Dynamics in Aqueous TMAO Solution.
Usui, Kota; Hunger, Johannes; Sulpizi, Marialore; Ohto, Tatsuhiko; Bonn, Mischa; Nagata, Yuki
2015-08-20
Ab initio molecular dynamics (AIMD) simulations in trimethylamine N-oxide (TMAO)-D2O solution are employed to elucidate the effects of TMAO on the reorientational dynamics of D2O molecules. By decomposing the O-D groups of the D2O molecules into specific subensembles, we reveal that water reorientational dynamics are retarded considerably in the vicinity of the hydrophilic TMAO oxygen (O(TMAO)) atom, due to the O-D···O(TMAO) hydrogen-bond. We find that this reorientational motion is governed by two distinct mechanisms: The O-D group rotates (1) after breaking the O-D···O(TMAO) hydrogen-bond, or (2) together with the TMAO molecule while keeping this hydrogen-bond intact. While the orientational slow-down is prominent in the AIMD simulation, simulations based on force field models exhibit much faster dynamics. The simulated angle-resolved radial distribution functions illustrate that the O-D···O(TMAO) hydrogen-bond has a strong directionality through the sp(3) orbital configuration in the AIMD simulation, and this directionality is not properly accounted for in the force field simulation. These results imply that care must be taken when modeling negatively charged oxygen atoms as single point charges; force field models may not adequately describe the hydration configuration and dynamics.
Ab initio study of point defects in magnesium oxide
International Nuclear Information System (INIS)
Gilbert, C. A.; Kenny, S. D.; Smith, R.; Sanville, E.
2007-01-01
Energetics of a variety of point defects in MgO have been considered from an ab initio perspective using density functional theory. The considered defects are isolated Schottky and Frenkel defects and interstitial pairs, along with a number of Schottky defects and di-interstitials. Comparisons were made between the density functional theory results and results obtained from empirical potential simulations and these generally showed good agreement. Both methodologies predicted the first nearest neighbor Schottky defects to be the most energetically favorable of the considered Schottky defects and that the first, second, and fifth nearest neighbor di-interstitials were of similar energy and were favored over the other di-interstitial configurations. Relaxed structures of the defects were analyzed, which showed that empirical potential simulations were accurately predicting the displacements of atoms surrounding di-interstitials, but were overestimating O atom displacement for Schottky defects. Transition barriers were computed for the defects using the nudged elastic band method. Vacancies and Schottky defects were found to have relatively high energy barriers, the majority of which were over 2 eV, in agreement with conclusions reached using empirical potentials. The lowest barriers for di-interstitial transitions were found to be for migration into a first nearest neighbor configuration. Charges were calculated using a Bader analysis and this found negligible charge transfer during the defect transitions and only small changes in the charges on atoms surrounding defects, indicating why fixed charge models work as well as they do
Configurational isomerism in polyoxovanadates
Energy Technology Data Exchange (ETDEWEB)
Mahnke, Lisa K.; Naether, Christian; Bensch, Wolfgang [Institut fuer Anorganische Chemie, Christian-Albrechts-Universitaet, Kiel (Germany); Kondinski, Aleksandar; Van Leusen, Jan; Monakhov, Kirill Yu.; Koegerler, Paul [Institut fuer Anorganische Chemie, RWTH Aachen University (Germany); Warzok, Ulrike; Schalley, Christoph A. [Institut fuer Chemie und Biochemie, Freie Universitaet Berlin (Germany)
2018-03-05
A water-soluble derivative of the polyoxovanadate {V_1_5E_6O_4_2} (E=semimetal) archetype enables the study of cluster shell rearrangements driven by supramolecular interactions. A reaction unique to E=Sb, induced exclusively by ligand metathesis in peripheral [Ni(ethylenediamine){sub 3}]{sup 2+} counterions, results in the formation of the metastable α{sub 1}* configurational isomer of the {V_1_4Sb_8O_4_2} cluster type. Contrary to all other polyoxovanadate shell architectures, this isomer comprises an inward-oriented vanadyl group and is ca. 50 and 12 kJ mol{sup -1} higher in energy than the previously isolated α and β isomers, respectively. We discuss this unexpected reaction in light of supramolecular Sb-O..V and Sb-O..Sb contacts manifested in {V_1_4Sb_8O_4_2}{sub 2} dimers detected in the solid state. ESI MS experiments confirm the stability of these dimers also in solution and in the gas phase. DFT calculations indicate that other, as of yet elusive isomers of {V_1_4Sb_8}, might be accessible as well. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)
International Nuclear Information System (INIS)
Alsaed, A.
2004-01-01
''The Disposal Criticality Analysis Methodology Topical Report'' prescribes an approach to the methodology for performing postclosure criticality analyses within the monitored geologic repository at Yucca Mountain, Nevada. An essential component of the methodology is the ''Configuration Generator Model for In-Package Criticality'' that provides a tool to evaluate the probabilities of degraded configurations achieving a critical state. The configuration generator model is a risk-informed, performance-based process for evaluating the criticality potential of degraded configurations in the monitored geologic repository. The method uses event tree methods to define configuration classes derived from criticality scenarios and to identify configuration class characteristics (parameters, ranges, etc.). The probabilities of achieving the various configuration classes are derived in part from probability density functions for degradation parameters. The NRC has issued ''Safety Evaluation Report for Disposal Criticality Analysis Methodology Topical Report, Revision 0''. That report contained 28 open items that required resolution through additional documentation. Of the 28 open items, numbers 5, 6, 9, 10, 18, and 19 were concerned with a previously proposed software approach to the configuration generator methodology and, in particular, the k eff regression analysis associated with the methodology. However, the use of a k eff regression analysis is not part of the current configuration generator methodology and, thus, the referenced open items are no longer considered applicable and will not be further addressed
Ansible configuration management
Hall, Daniel
2013-01-01
Ansible Configuration Management"" is a step-by-step tutorial that teaches the use of Ansible for configuring Linux machines.This book is intended for anyone looking to understand the basics of Ansible. It is expected that you will have some experience of how to set up and configure Linux machines. In parts of the book we cover configuration files of BIND, MySQL, and other Linux daemons, therefore a working knowledge of these would be helpful but are certainly not required.
Configuration management at NEK
International Nuclear Information System (INIS)
Podhraski, M.
1999-01-01
Configuration Management (CM) objectives at NEK are to ensure consistency between Design Requirements, Physical Plant Configuration and Configuration Information. Software applications, supporting Design Change, Work Control and Document Control Processes, are integrated in one module-oriented Management Information System (MIS). Master Equipment Component List (MECL) database is central MIS module. Through a combination of centralized database and process migrated activities it is ensured that the CM principles and requirements (accurate, current design data matching plant's physical configuration while complying to applicable requirements), are followed and fulfilled.(author)
AUTHOR|(SzGeCERN)390904; Papaphilippou, Yannis; Shatilov, Dmitry
2015-01-01
Colliding bunch trains in a circular collider demands a certain crossing angle in order to separate the two beams transversely after the collision. The magnitude of this crossing angle is a complicated function of the bunch charge, the number of long-range beam-beam interactions, of β* and type of optics (flat or round), and possible compensation or additive effects between several low-β insertions in the ring depending on the orientation of the crossing plane at each interaction point. About 15 years ago, the use of current bearing wires was proposed at CERN in order to mitigate the longrange beam-beam effects, therefore offering the possibility to minimize the crossing angle with all the beneficial effects this might have: on the luminosity performance by reducing the need for crab-cavities or lowering their voltage, on the required aperture of the final focus magnets, on the strength of the orbit corrector involved in the crossing bumps, and finally on the heat load and radiation dose deposited in the fi...
Ab Initio molecular dynamics with excited electrons
Alavi, A.; Kohanoff, J.; Parrinello, M.; Frenkel, D.
1994-01-01
A method to do ab initio molecular dynamics suitable for metallic and electronically hot systems is described. It is based on a density functional which is costationary with the finite-temperature functional of Mermin, with state being included with possibly fractional occupation numbers.
Indian Academy of Sciences (India)
The photophysical behaviour of N-(2-hydroxy benzylidene) aniline or most commonly known as salicylideneaniline (SA) has been investigated using the ab initio and DFT levels of theory. The quantum chemical calculations show that the optimized non planar enol (1) form of the SA molecule is the most stable conformer ...
A Initio Theoretical Studies of Surfaces of Semiconductors
Wang, Jing
1993-01-01
The first semiconductor which we study with these techniques is the archetypal elemental semiconductor, silicon. We present the first extensive study of point defects on Si(100). We identify the principal defects and two primary mechanisms responsible for their dominance: the need to eliminate dangling bonds on the surface and the need to compensate the strain induced by topological effects. Furthermore, we present evidence that the presence of point defects on the Si(100) surface is not intrinsic to the ground state of the surface as a stress relieving mechanism but rather is due merely to thermal fluctuations. We address materials issues associated with the identification of the lowest energy surfaces of GaAs and the determination of the geometric structure of a GaAs crystallite growing freely in three dimensions. The fracture energies associated with (110), (100) and (111) interface planes are calculated and a Wulff construction indicates that an ideal stoichiometric GaAs crystal should be terminated with (110) surfaces. We investigate the more complex issues that arise on surfaces when aspects of these two semiconductors are mixed. We investigate the problem of growing GaAs on the Si(100) surface and demonstrate how and why the most fundamental properties of the resulting bulk GaAs material, such as its crystalline orientation, may depend sensitively on the interplay between growth conditions such as temperature and the properties of the Si surface. For stepped Si(100) -As, we show that the growth of As directly on top of the Si surface produces a metastable state, while the replacement of the original top Si layer leads to a lower energy configuration, with the rearrangement of the surface driven by the relaxation of stress by surface steps. Finally, we study delta -doping, where one attempts to grow a single layer of Si on a GaAs surface before continuing with the growth of bulk GaAs. We shall employ a slightly different modality of the ab initio approach. We
Simulator configuration maintenance
International Nuclear Information System (INIS)
2006-01-01
Requirements and recommendations of this section defines NPP personnel activity aimed to the provision of the simulator configuration compliance with the current configuration of the power-generating unit-prototype, standard and technical requirements and describe a monitoring procedure for a set of simulator software and hardware, training, organizational and technical documents
PIV Logon Configuration Guidance
Energy Technology Data Exchange (ETDEWEB)
Lee, Glen Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-03-04
This document details the configurations and enhancements implemented to support the usage of federal Personal Identity Verification (PIV) Card for logon on unclassified networks. The guidance is a reference implementation of the configurations and enhancements deployed at the Los Alamos National Laboratory (LANL) by Network and Infrastructure Engineering – Core Services (NIE-CS).
Business Model Process Configurations
DEFF Research Database (Denmark)
Taran, Yariv; Nielsen, Christian; Thomsen, Peter
2015-01-01
, by developing (inductively) an ontological classification framework, in view of the BM process configurations typology developed. Design/methodology/approach – Given the inconsistencies found in the business model studies (e.g. definitions, configurations, classifications) we adopted the analytical induction...
Is HO3 minimum cis or trans? An analytic full-dimensional ab initio isomerization path.
Varandas, A J C
2011-05-28
The minimum energy path for isomerization of HO(3) has been explored in detail using accurate high-level ab initio methods and techniques for extrapolation to the complete basis set limit. In agreement with other reports, the best estimates from both valence-only and all-electron single-reference methods here utilized predict the minimum of the cis-HO(3) isomer to be deeper than the trans-HO(3) one. They also show that the energy varies by less than 1 kcal mol(-1) or so over the full isomerization path. A similar result is found from valence-only multireference configuration interaction calculations with the size-extensive Davidson correction and a correlation consistent triple-zeta basis, which predict the energy difference between the two isomers to be of only Δ = -0.1 kcal mol(-1). However, single-point multireference calculations carried out at the optimum triple-zeta geometry with basis sets of the correlation consistent family but cardinal numbers up to X = 6 lead upon a dual-level extrapolation to the complete basis set limit of Δ = (0.12 ± 0.05) kcal mol(-1). In turn, extrapolations with the all-electron single-reference coupled-cluster method including the perturbative triples correction yield values of Δ = -0.19 and -0.03 kcal mol(-1) when done from triple-quadruple and quadruple-quintuple zeta pairs with two basis sets of increasing quality, namely cc-cpVXZ and aug-cc-pVXZ. Yet, if added a value of 0.25 kcal mol(-1) that accounts for the effect of triple and perturbative quadruple excitations with the VTZ basis set, one obtains a coupled cluster estimate of Δ = (0.14 ± 0.08) kcal mol(-1). It is then shown for the first time from systematic ab initio calculations that the trans-HO(3) isomer is more stable than the cis one, in agreement with the available experimental evidence. Inclusion of the best reported zero-point energy difference (0.382 kcal mol(-1)) from multireference configuration interaction calculations enhances further the relative
Risk-based configuration control
International Nuclear Information System (INIS)
Szikszai, T.
1997-01-01
The presentation discusses the following issues: The Configuration Control; The Risk-based Configuration Control (during power operation mode, and during shutdown mode). PSA requirements. Use of Risk-based Configuration Control System. Configuration Management (basic elements, benefits, information requirements)
International Nuclear Information System (INIS)
Bieber, T.
2012-01-01
The issue of the interaction wall-plasma is important in thermonuclear devices. The purpose of this work is to design a very low pressure atomic plasma source in order to study chemical etching of carbon surfaces in the same conditions as edge plasma in tokamaks. The experimental work has consisted in 2 stages: first, the characterisation of the new helicon configuration reactor developed for this research and secondly the atomic hydrogen source used for the chemical etching. The first chapter recalls what thermonuclear fusion is. The helicon configuration reactor as well as its diagnostics (optical emission spectroscopy, laser induced fluorescence - LIF, and Langmuir probe) are described in the second chapter. The third chapter deals with the different coupling modes (RF power and plasma) identified in pure argon plasmas and how they are obtained by setting experimental parameters such as injected RF power, magnetic fields or pressure. The fourth chapter is dedicated to the study of the difference in behavior between the electronic density and the relative density of metastable Ar"+ ions. The last chapter presents the results in terms of mass losses of the carbon material surfaces obtained with the atomic hydrogen source. (A.C.)
International Nuclear Information System (INIS)
Kucas, S; Karazija, R; Jonauskas, V; Momkauskaite, A
2009-01-01
The strong interaction of 4p 5 4d N+1 + 4p 6 4d N-1 4f configurations and its influence on the photoexcitation and emission spectra corresponding to the excitations from the ground level of 4p 6 4d N have been considered. The results are presented for the isoelectronic sequences from the ionization degree q = 5 up to q = 29-37 as well as for the isonuclear sequences of Sn q+ and W q+ . It is shown that depending on the number of 4d electrons, the variation of spectra in the isoelectronic sequences corresponds to three different types. At N = 4 and N = 6-9, the strong concentration of lines takes place in the whole isoelectronic sequence, except for small ionization degrees. At N ≤ 3, the width of photoexcitation and emission spectra also obtains a relatively larger value at small ionization degrees, decreases with ionization degree rising, but tends to increase again at large ionization degrees. In the whole isoelectronic sequence, a very narrow group of a few intense lines is obtained for N = 5. The transitions from the excited levels mainly proceed to the lowest level of the ground configuration; it is the reason for the similarity of photoexcitation and emission spectra. The quenching of many lines and the concentration of line strengths in a few transitions indicate the existence of some wavefunction basis with strict selection rules for dipole transitions.
A comparative ab initio study of Br2*- and Br2 water clusters.
Pathak, A K; Mukherjee, T; Maity, D K
2006-01-14
The work presents ab initio results on structure and electronic properties of Br2*-.nH2O(n=1-10) and Br2.nH2O(n=1-8) hydrated clusters to study the effects of an excess electron on the microhydration of the halide dimer. A nonlocal density functional, namely, Becke's half-and-half hybrid exchange-correlation functional is found to perform well on the present systems with a split valence 6-31++G(d,p) basis function. Geometry optimizations for all the clusters are carried out with several initial guess structures and without imposing any symmetry restriction. Br2*-.nH2O clusters prefer to have symmetrical double hydrogen-bonding structures. Results on Br2.nH2O(n>or=2) cluster show that the O atom of one H2O is oriented towards one Br atom and the H atom of another H2O is directed to other Br atom making Br2 to exist as Br+-Br- entity in the cluster. The binding and solvation energies are calculated for the Br2*-.nH2O and Br2.nH2O clusters. Calculations of the vibrational frequencies show that the formation of Br2*- and Br2 water clusters induces significant shifts from the normal modes of isolated water. Excited-state calculations are carried out on Br2*-.nH2O clusters following configuration interaction with single electron excitation procedure and UV-VIS absorption profiles are simulated. There is an excellent agreement between the present theoretical UV-VIS spectra of Br2*-.10H2O cluster and the reported transient optical spectra for Br2*- in aqueous solution.
An ab initio model of electron transport in hematite (a-Fe2O3) basal planes
International Nuclear Information System (INIS)
Rosso, Kevin M.; Smith, Dayle MA; Dupuis, Michel
2003-01-01
Transport of conduction electrons through basal planes of the hematite lattice was modeled as a valence alternation of iron cations using ab initio molecular orbital calculations and electron transfer theory. A cluster approach was successfully implemented to compute electron transfer rate-controlling quantities such as the reorganization energy and electronic coupling matrix element. Localization of a conduction electron at an iron lattice site is accompanied by large iron/oxygen bond length increases that give rise to a large inner-sphere component of the reorganization energy. The interaction between the reactant and product electronic states in the crossing?point configuration is substantial and leads to an adiabatic electron transfer system. Electron transfer is predicted to possess a small positive activation energy that turns out to be in excellent agreement with values deduced from conductivity measurements. Measured electron mobility can be explained in terms of nearest neighbor electron hops without significant contribution from iron atoms further away. Comparison of the predicted maximum polaron binding energy with the predicted half bandwidth indicates compliance with the small polaron condition. Therefore the localized electron treatment is appropriate to describe electron transport in this system
International Nuclear Information System (INIS)
Saha, H.P.
1993-01-01
The multiconfiguration Hartree-Fock method for continuum wave functions has been used to calculate the scattering length and phase shifts over extremely low energies ranging from 0 to 1 eV very accurately for electron-helium scattering. The scattering length is calculated very accurately with wave functions computed exactly at zero energy, resulting in an upper bound of 1.1784. The electron correlation and polarization of the target by the scattering electron, which are very important in these calculations, have been taken into account in an accurate ab initio manner through the configuration-interaction procedure by optimizing both bound and continuum orbitals simultaneously at each kinetic energy of the scattered electron. Detailed results for scattering length, differential, total, and momentum-transfer cross sections obtained from the phase shifts are presented. The present scattering length is found to be in excellent agreement with the experimental result of Andrick and Bitsch [J. Phys. B 8, 402 (1975)] and the theoretical result of O'Malley, Burke, and Berrington [J. Phys. B 12, 953 (1979)]. There is excellent agreement between the present total cross sections and the corresponding experimental measurements of Buckman and Lohmann [J. Phys. B 19, 2547 (1986)]. The present momentum-transfer cross sections also show remarkable agreement with the experimental results of Crompton, Elford, and Robertson [Aust. J. Phys. 23, 667 (1970)
Bisri, Satria Zulkarnaen; Degoli, Elena; Spallanzani, Nicola; Krishnan, Gopi; Kooi, Bart Jan; Ghica, Corneliu; Yarema, Maksym; Heiss, Wolfgang; Pulci, Olivia; Ossicini, Stefano; Loi, Maria Antonietta
2014-08-27
Colloidal nanocrystals electronic energy levels are determined by strong size-dependent quantum confinement. Understanding the configuration of the energy levels of nanocrystal superlattices is vital in order to use them in heterostructures with other materials. A powerful method is reported to determine the energy levels of PbS nanocrystal assemblies by combining the utilization of electric-double-layer-gated transistors and advanced ab-initio theory. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li Manni, Giovanni; Smart, Simon D; Alavi, Ali
2016-03-08
A novel stochastic Complete Active Space Self-Consistent Field (CASSCF) method has been developed and implemented in the Molcas software package. A two-step procedure is used, in which the CAS configuration interaction secular equations are solved stochastically with the Full Configuration Interaction Quantum Monte Carlo (FCIQMC) approach, while orbital rotations are performed using an approximated form of the Super-CI method. This new method does not suffer from the strong combinatorial limitations of standard MCSCF implementations using direct schemes and can handle active spaces well in excess of those accessible to traditional CASSCF approaches. The density matrix formulation of the Super-CI method makes this step independent of the size of the CI expansion, depending exclusively on one- and two-body density matrices with indices restricted to the relatively small number of active orbitals. No sigma vectors need to be stored in memory for the FCIQMC eigensolver--a substantial gain in comparison to implementations using the Davidson method, which require three or more vectors of the size of the CI expansion. Further, no orbital Hessian is computed, circumventing limitations on basis set expansions. Like the parent FCIQMC method, the present technique is scalable on massively parallel architectures. We present in this report the method and its application to the free-base porphyrin, Mg(II) porphyrin, and Fe(II) porphyrin. In the present study, active spaces up to 32 electrons and 29 orbitals in orbital expansions containing up to 916 contracted functions are treated with modest computational resources. Results are quite promising even without accounting for the correlation outside the active space. The systems here presented clearly demonstrate that large CASSCF calculations are possible via FCIQMC-CASSCF without limitations on basis set size.
Timko, Jeff; Kuyucak, Serdar
2012-11-28
Polarization is an important component of molecular interactions and is expected to play a particularly significant role in inhomogeneous environments such as pores and interfaces. Here we investigate the effects of polarization in the gramicidin A ion channel by performing quantum mechanics/molecular mechanics molecular dynamics (MD) simulations and comparing the results with those obtained from classical MD simulations with non-polarizable force fields. We consider the dipole moments of backbone carbonyl groups and channel water molecules as well as a number of structural quantities of interest. The ab initio results show that the dipole moments of the carbonyl groups and water molecules are highly sensitive to the hydrogen bonds (H-bonds) they participate in. In the absence of a K(+) ion, water molecules in the channel are quite mobile, making the H-bond network highly dynamic. A central K(+) ion acts as an anchor for the channel waters, stabilizing the H-bond network and thereby increasing their average dipole moments. In contrast, the K(+) ion has little effect on the dipole moments of the neighboring carbonyl groups. The weakness of the ion-peptide interactions helps to explain the near diffusion-rate conductance of K(+) ions through the channel. We also address the sampling issue in relatively short ab initio MD simulations. Results obtained from a continuous 20 ps ab initio MD simulation are compared with those generated by sampling ten windows from a much longer classical MD simulation and running each window for 2 ps with ab initio MD. Both methods yield similar results for a number of quantities of interest, indicating that fluctuations are fast enough to justify the short ab initio MD simulations.
Directory of Open Access Journals (Sweden)
Anyang Li
2012-01-01
Full Text Available Ab initio potential energy surfaces for the ground (X̃1A′ and excited (A˜A′′1 electronic states of HSiBr were obtained by using the single and double excitation coupled-cluster theory with a noniterative perturbation treatment of triple excitations and the multireference configuration interaction with Davidson correction, respectively, employing an augmented correlation-consistent polarized valence quadruple zeta basis set. The calculated vibrational energy levels of HSiBr and DSiBr of the ground and excited electronic states are in excellent agreement with the available experimental band origins. In addition, the absorption and emission spectra of HSiBr and DSiBr were calculated using an efficient single Lanczos propagation method and are in good agreement with the available experimental observations.
Kłos, Jacek; Alexander, Millard H.; Kumar, Praveen; Poirier, Bill; Jiang, Bin; Guo, Hua
2016-05-01
We report new and more accurate adiabatic potential energy surfaces (PESs) for the ground X˜ 1A1 and electronically excited C˜ 1B2(21A') states of the SO2 molecule. Ab initio points are calculated using the explicitly correlated internally contracted multi-reference configuration interaction (icMRCI-F12) method. A second less accurate PES for the ground X ˜ state is also calculated using an explicitly correlated single-reference coupled-cluster method with single, double, and non-iterative triple excitations [CCSD(T)-F12]. With these new three-dimensional PESs, we determine energies of the vibrational bound states and compare these values to existing literature data and experiment.
Ouk, Chanda-Malis; Zvereva-Loëte, Natalia; Scribano, Yohann; Bussery-Honvault, Béatrice
2012-10-30
Multireference single and double configuration interaction (MRCI) calculations including Davidson (+Q) or Pople (+P) corrections have been conducted in this work for the reactants, products, and extrema of the doublet ground state potential energy surface involved in the N((2)D) + CH(4) reaction. Such highly correlated ab initio calculations are then compared with previous PMP4, CCSD(T), W1, and DFT/B3LYP studies. Large relative differences are observed in particular for the transition state in the entrance channel resolving the disagreement between previous ab initio calculations. We confirm the existence of a small but positive potential barrier (3.86 ± 0.84 kJ mol(-1) (MR-AQCC) and 3.89 kJ mol(-1) (MRCI+P)) in the entrance channel of the title reaction. The correlation is seen to change significantly the energetic position of the two minima and five saddle points of this system together with the dissociation channels but not their relative order. The influence of the electronic correlation into the energetic of the system is clearly demonstrated by the thermal rate constant evaluation and it temperature dependance by means of the transition state theory. Indeed, only MRCI values are able to reproduce the experimental rate constant of the title reaction and its behavior with temperature. Similarly, product branching ratios, evaluated by means of unimolecular RRKM theory, confirm the NH production of Umemoto et al., whereas previous works based on less accurate ab initio calculations failed. We confirm the previous findings that the N((2)D) + CH(4) reaction proceeds via an insertion-dissociation mechanism and that the dominant product channels are CH(2)NH + H and CH(3) + NH. Copyright © 2012 Wiley Periodicals, Inc.
A configural dominant account of contextual cueing: Configural cues are stronger than colour cues.
Kunar, Melina A; John, Rebecca; Sweetman, Hollie
2014-01-01
Previous work has shown that reaction times to find a target in displays that have been repeated are faster than those for displays that have never been seen before. This learning effect, termed "contextual cueing" (CC), has been shown using contexts such as the configuration of the distractors in the display and the background colour. However, it is not clear how these two contexts interact to facilitate search. We investigated this here by comparing the strengths of these two cues when they appeared together. In Experiment 1, participants searched for a target that was cued by both colour and distractor configural cues, compared with when the target was only predicted by configural information. The results showed that the addition of a colour cue did not increase contextual cueing. In Experiment 2, participants searched for a target that was cued by both colour and distractor configuration compared with when the target was only cued by colour. The results showed that adding a predictive configural cue led to a stronger CC benefit. Experiments 3 and 4 tested the disruptive effects of removing either a learned colour cue or a learned configural cue and whether there was cue competition when colour and configural cues were presented together. Removing the configural cue was more disruptive to CC than removing colour, and configural learning was shown to overshadow the learning of colour cues. The data support a configural dominant account of CC, where configural cues act as the stronger cue in comparison to colour when they are presented together.
Simple synthesis, structure and ab initio study of 1,4-benzodiazepine-2,5-diones
Jadidi, Khosrow; Aryan, Reza; Mehrdad, Morteza; Lügger, Thomas; Ekkehardt Hahn, F.; Ng, Seik Weng
2004-04-01
A simple procedure for the synthesis of pyrido[2,1-c][1,4] benzodiazepine-6,12-dione ( 1) and 1,4-benzodiazepine-2,5-diones ( 2a- 2d), using microwave irradiation and/or conventional heating is reported. The configuration of 1 was determined by single-crystal X-ray diffraction. A detailed ab initio B3LYP/6-31G* calculation of structural parameters and substituent effects on ring inversion barriers (Δ G#) and also free energy differences (Δ G0) for benzodiazepines are reported.
Exploring proton transfer in 1,2,3-triazole-triazolium dimer with ab initio method
Li, Ailin; Yan, Tianying; Shen, Panwen
Ab initio calculations are utilized to search for transition state structures for proton transfer in the 1,2,3-triazole-triazolium complexes on the basis of optimized dimers. The result suggests six transition state structures for single proton transfer in the complexes, most of which are coplanar. The energy barriers, between different stable and transition states structures with zero point energy (ZPE) corrections, show that proton transfer occurs at room temperature with coplanar configuration that has the lowest energy. The results clearly support that reorientation gives triazole flexibility for proton transfer.
Exploring proton transfer in 1,2,3-triazole-triazolium dimer with ab initio method
Energy Technology Data Exchange (ETDEWEB)
Li, Ailin; Yan, Tianying; Shen, Panwen [Department of Material Chemistry, Institute of New Energy Material Chemistry, Nankai University, Tianjin, 300071 (China)
2011-02-01
Ab initio calculations are utilized to search for transition state structures for proton transfer in the 1,2,3-triazole-triazolium complexes on the basis of optimized dimers. The result suggests six transition state structures for single proton transfer in the complexes, most of which are coplanar. The energy barriers, between different stable and transition states structures with zero point energy (ZPE) corrections, show that proton transfer occurs at room temperature with coplanar configuration that has the lowest energy. The results clearly support that reorientation gives triazole flexibility for proton transfer. (author)
The LHCb configuration database
Abadie, Lana; Gaspar, Clara; Jacobsson, Richard; Jost, Beat; Neufeld, Niko
2005-01-01
The Experiment Control System (ECS) will handle the monitoring, configuration and operation of all the LHCb experimental equipment. All parameters required to configure electronics equipment under the control of the ECS will reside in a configuration database. The database will contain two kinds of information: 1.\tConfiguration properties about devices such as hardware addresses, geographical location, and operational parameters associated with particular running modes (dynamic properties). 2.\tConnectivity between devices : this consists of describing the output and input connections of a device (static properties). The representation of these data using tables must be complete so that it can provide all the required information to the ECS and must cater for all the subsystems. The design should also guarantee a fast response time, even if a query results in a large volume of data being loaded from the database into the ECS. To fulfil these constraints, we apply the following methodology: Determine from the d...
Drupal 8 configuration management
Borchert, Stefan
2015-01-01
Drupal 8 Configuration Management is intended for people who use Drupal 8 to build websites, whether you are a hobbyist using Drupal for the first time, a long-time Drupal site builder, or a professional web developer.
Configuration by Modularisation
DEFF Research Database (Denmark)
Riitahuhta, Asko; Andreasen, Mogens Myrup
1998-01-01
Globally operating companies have realized that locally customized products and services are today the prerequisite for the success. The capability or the paradigm to act locally in global markets is called Mass Customization [Victor 1997]. The prerequisite for Mass Customization is Configuration...... Management and i Configuration Management the most important means is Modularisation.The goal of this paper is to show Configuration Management as a contribution to the Mass Customisation and Modularisation as a contribution to the industrialisation of the design area [Andreasen 1997]. A basic model...... for the creation of a structured product family is presented and examples are given. The concepts of a novel Dynamic Modularisation method, Metrics for Modularisation and Design for Configurability are presented....
Configuration Management Automation (CMA) -
Department of Transportation — Configuration Management Automation (CMA) will provide an automated, integrated enterprise solution to support CM of FAA NAS and Non-NAS assets and investments. CMA...
Quantitative verification of ab initio self-consistent laser theory.
Ge, Li; Tandy, Robert J; Stone, A D; Türeci, Hakan E
2008-10-13
We generalize and test the recent "ab initio" self-consistent (AISC) time-independent semiclassical laser theory. This self-consistent formalism generates all the stationary lasing properties in the multimode regime (frequencies, thresholds, internal and external fields, output power and emission pattern) from simple inputs: the dielectric function of the passive cavity, the atomic transition frequency, and the transverse relaxation time of the lasing transition.We find that the theory gives excellent quantitative agreement with full time-dependent simulations of the Maxwell-Bloch equations after it has been generalized to drop the slowly-varying envelope approximation. The theory is infinite order in the non-linear hole-burning interaction; the widely used third order approximation is shown to fail badly.
Ab initio methods for electron-molecule collisions
International Nuclear Information System (INIS)
Collins, L.A.; Schneider, B.I.
1987-01-01
This review concentrates on the recent advances in treating the electronic aspect of the electron-molecule interaction and leaves to other articles the description of the rotational and vibrational motions. Those methods which give the most complete treatment of the direct, exchange, and correlation effects are focused on. Such full treatments are generally necessary at energies below a few Rydbergs (≅ 60 eV). This choice unfortunately necessitates omission of those active and vital areas devoted to the development of model potentials and approximate scattering formulations. The ab initio and model approaches complement each other and are both extremely important to the full explication of the electron-scattering process. Due to the rapid developments of recent years, the approaches that provide the fullest treatment are concentrated on. 81 refs
Ab initio Eliashberg Theory: Making Genuine Predictions of Superconducting Features
Sanna, Antonio; Flores-Livas, José A.; Davydov, Arkadiy; Profeta, Gianni; Dewhurst, Kay; Sharma, Sangeeta; Gross, E. K. U.
2018-04-01
We present an application of Eliashberg theory of superconductivity to study a set of novel superconducting systems with a wide range of structural and chemical properties. The set includes three intercalated group-IV honeycomb layered structures, SH3 at 200 GPa (the superconductor with the highest measured critical temperature), the similar system SeH3 at 150 GPa, and a lithium doped mono-layer of black phosphorus. The theoretical approach we adopt is a recently developed, fully ab initio Eliashberg approach that takes into account the Coulomb interaction in a full energy-resolved fashion avoiding any free parameters like μ*. This method provides reasonable estimations of superconducting properties, including TC and the excitation spectra of superconductors.
Computer software configuration management
International Nuclear Information System (INIS)
Pelletier, G.
1987-08-01
This report reviews the basic elements of software configuration management (SCM) as defined by military and industry standards. Several software configuration management standards are evaluated given the requirements of the nuclear industry. A survey is included of available automated tools for supporting SCM activities. Some information is given on the experience of establishing and using SCM plans of other organizations that manage critical software. The report concludes with recommendations of practices that would be most appropriate for the nuclear power industry in Canada
Legrain, Fleur; Carrete, Jesús; van Roekeghem, Ambroise; Madsen, Georg K H; Mingo, Natalio
2018-01-18
Machine learning (ML) is increasingly becoming a helpful tool in the search for novel functional compounds. Here we use classification via random forests to predict the stability of half-Heusler (HH) compounds, using only experimentally reported compounds as a training set. Cross-validation yields an excellent agreement between the fraction of compounds classified as stable and the actual fraction of truly stable compounds in the ICSD. The ML model is then employed to screen 71 178 different 1:1:1 compositions, yielding 481 likely stable candidates. The predicted stability of HH compounds from three previous high-throughput ab initio studies is critically analyzed from the perspective of the alternative ML approach. The incomplete consistency among the three separate ab initio studies and between them and the ML predictions suggests that additional factors beyond those considered by ab initio phase stability calculations might be determinant to the stability of the compounds. Such factors can include configurational entropies and quasiharmonic contributions.
Dominant Modes in Light Nuclei - Ab Initio View of Emergent Symmetries
International Nuclear Information System (INIS)
Draayer, J P; Dytrych, T; Launey, K D; Dreyfuss, A C; Langr, D
2015-01-01
An innovative symmetry-guided concept is discussed with a focus on emergent symmetry patterns in complex nuclei. In particular, the ab initio symmetry-adapted no-core shell model (SA-NCSM), which capitalizes on exact as well as partial symmetries that underpin the structure of nuclei, provides remarkable insight into how simple symmetry patterns emerge in the many-body nuclear dynamics from first principles. This ab initio view is complemented by a fully microscopic no-core symplectic shell-model framework (NCSpM), which, in turn, informs key features of the primary physics responsible for the emergent phenomena of large deformation and alpha-cluster substructures in studies of the challenging Hoyle state in Carbon-12 and enhanced collectivity in intermediate-mass nuclei. Furthermore, by recognizing that deformed configurations often dominate the low-energy regime, the SA-NCSM provides a strategy for determining the nature of bound states of nuclei in terms of a relatively small subspace of the symmetry-reorganized complete model space, which opens new domains of nuclei for ab initio investigations, namely, the intermediate-mass region, including isotopes of Ne, Mg, and Si
Towards hydrogen metallization: an Ab initio approach
International Nuclear Information System (INIS)
Bernard, St.
1998-01-01
The quest for metallic hydrogen is a major goal for both theoretical and experimental condensed matter physics. Hydrogen and deuterium have been compressed up to 200 GPa in diamond anvil cells, without any clear evidence for a metallic behaviour. Loubeyere has recently suggested that hydrogen could metallize, at pressures within experimental range, in a new Van der Waals compound: Ar(H 2 ) 2 which is characterized at ambient pressure by an open and anisotropic sublattice of hydrogen molecules, stabilized by an argon skeleton. This thesis deals with a detailed ab initio investigation, by Car-Parrinello molecular dynamics methods, of the evolution under pressure of this compound. In a last chapter, we go to much higher pressures and temperatures, in order to compare orbital and orbital free ab initio methods for the dense hydrogen plasma. (author)
Highly scalable Ab initio genomic motif identification
Marchand, Benoit; Bajic, Vladimir B.; Kaushik, Dinesh
2011-01-01
We present results of scaling an ab initio motif family identification system, Dragon Motif Finder (DMF), to 65,536 processor cores of IBM Blue Gene/P. DMF seeks groups of mutually similar polynucleotide patterns within a set of genomic sequences and builds various motif families from them. Such information is of relevance to many problems in life sciences. Prior attempts to scale such ab initio motif-finding algorithms achieved limited success. We solve the scalability issues using a combination of mixed-mode MPI-OpenMP parallel programming, master-slave work assignment, multi-level workload distribution, multi-level MPI collectives, and serial optimizations. While the scalability of our algorithm was excellent (94% parallel efficiency on 65,536 cores relative to 256 cores on a modest-size problem), the final speedup with respect to the original serial code exceeded 250,000 when serial optimizations are included. This enabled us to carry out many large-scale ab initio motiffinding simulations in a few hours while the original serial code would have needed decades of execution time. Copyright 2011 ACM.
Control Configuration Selection for Multivariable Descriptor Systems
DEFF Research Database (Denmark)
Shaker, Hamid Reza; Stoustrup, Jakob
2012-01-01
Control configuration selection is the procedure of choosing the appropriate input and output pairs for the design of SISO (or block) controllers. This step is an important prerequisite for a successful industrial control strategy. In industrial practices it is often the case that the system, whi...... is that it can be used to propose a richer sparse or block diagonal controller structure. The interaction measure is used for control configuration selection of the linearized CSTR model with descriptor from....
International Nuclear Information System (INIS)
Taguchi, M.; Braicovich, L.; Tagliaferri, A.; Dallera, C.; Giarda, K.; Ghiringhelli, G.; Brookes, N.B.; Borgatti, F.
2001-03-01
We consider the X-Ray Resonant Raman Scattering (RRS) in La in the whole M 4,5 region ending with a state with a 4p hole, along the sequence 3d 10 4f 0 →3d 9 4f 1 →3d 10 4p 5 4f 1 . The final state configuration mixes with that with two 4d holes i.e. 3d 10 4d 8 4f n+2 having almost the same energy. Thus RRS must be described by introducing final state Configuration Interaction (CI) between states with one 4p hole and with two 4d holes. This approach allows detailed experimental data on La-metal to be interpreted on the basis of a purely ionic approach. It is shown that the inclusion of CI is crucial and has very clear effects. The calculations with the Kramers-Heisenberg formula describe all measured spectral features appearing in the strict Raman regime i.e. dispersing with the incident photon energy. In the experiment also a nondispersive component is present when the excitation energy is greater than about 2 eV above the M 5 peak. The shape and position of this component is well accounted for by a model based on all possible partitions of the excitation energy between localised and extended states. However, the intensity of the nondispersive component is greater in the measurements, suggesting a rearrangement in the intermediate excited state. The comparison of ionic calculations with the metal measurements is legitimate, as shown by the comparison between the measurements on La-metal and on LaF 3 with M 5 excitation, giving the same spectrum within the experimental accuracy. Moreover, the experiment shows that the final lifetime broadening is much greater in the final states corresponding to lower outgoing photon energies than in the states corresponding to higher outgoing photon energies. (author)
Reference frame for Product Configuration
DEFF Research Database (Denmark)
Ladeby, Klaes Rohde; Oddsson, Gudmundur Valur
2011-01-01
a reference frame for configuration that permits 1) a more precise understanding of a configuration system, 2) a understanding of how the configuration system relate to other systems, and 3) a definition of the basic concepts in configuration. The total configuration system, together with the definition...
DEFF Research Database (Denmark)
Tao, Kun; Stepanyuk, V.S.; Bruno, P.
2008-01-01
The state of the art ab initio calculations reveal the effect of a scanning tunneling microscopy tip on magnetic properties and conductance of a benzene-adatom sandwich on Cu(001). We concentrate on a benzene-Co system interacting with a Cr tip. Our studies give a clear evidence that magnetism...
Remembering facial configurations.
Bruce, V; Doyle, T; Dench, N; Burton, M
1991-02-01
Eight experiments are reported showing that subjects can remember rather subtle aspects of the configuration of facial features to which they have earlier been exposed. Subjects saw several slightly different configurations (formed by altering the relative placement of internal features of the face) of each of ten different faces, and they were asked to rate the apparent age and masculinity-femininity of each. Afterwards, subjects were asked to select from pairs of faces the configuration which was identical to one previously rated. Subjects responded strongly to the central or "prototypical" configuration of each studied face where this was included as one member of each test pair, whether or not it had been studied (Experiments 1, 2 and 4). Subjects were also quite accurate at recognizing one of the previously encountered extremes of the series of configurations that had been rated (Experiment 3), but when unseen prototypes were paired with seen exemplars subjects' performance was at chance (Experiment 5). Prototype learning of face patterns was shown to be stronger than that for house patterns, though both classes of patterns were affected equally by inversion (Experiment 6). The final two experiments demonstrated that preferences for the prototype could be affected by instructions at study and by whether different exemplars of the same face were shown consecutively or distributed through the study series. The discussion examines the implications of these results for theories of the representation of faces and for instance-based models of memory.
Allen, B. Danette; Alexandrov, Natalia
2016-01-01
Incremental approaches to air transportation system development inherit current architectural constraints, which, in turn, place hard bounds on system capacity, efficiency of performance, and complexity. To enable airspace operations of the future, a clean-slate (ab initio) airspace design(s) must be considered. This ab initio National Airspace System (NAS) must be capable of accommodating increased traffic density, a broader diversity of aircraft, and on-demand mobility. System and subsystem designs should scale to accommodate the inevitable demand for airspace services that include large numbers of autonomous Unmanned Aerial Vehicles and a paradigm shift in general aviation (e.g., personal air vehicles) in addition to more traditional aerial vehicles such as commercial jetliners and weather balloons. The complex and adaptive nature of ab initio designs for the future NAS requires new approaches to validation, adding a significant physical experimentation component to analytical and simulation tools. In addition to software modeling and simulation, the ability to exercise system solutions in a flight environment will be an essential aspect of validation. The NASA Langley Research Center (LaRC) Autonomy Incubator seeks to develop a flight simulation infrastructure for ab initio modeling and simulation that assumes no specific NAS architecture and models vehicle-to-vehicle behavior to examine interactions and emergent behaviors among hundreds of intelligent aerial agents exhibiting collaborative, cooperative, coordinative, selfish, and malicious behaviors. The air transportation system of the future will be a complex adaptive system (CAS) characterized by complex and sometimes unpredictable (or unpredicted) behaviors that result from temporal and spatial interactions among large numbers of participants. A CAS not only evolves with a changing environment and adapts to it, it is closely coupled to all systems that constitute the environment. Thus, the ecosystem that
Ab initio modelling of transition metals in diamond
International Nuclear Information System (INIS)
Watkins, M; Mainwood, A
2003-01-01
Transition metals (TM) from the first transition series are commonly used as solvent catalysts in the synthesis of diamond by high pressure, high temperature processes. Ab initio calculations on these metals, in finite clusters of tetrahedrally coordinated carbon, enable us to investigate trends in their stability and properties. By carrying out systematic studies of interstitial, substitutional and semi-vacancy TM defects, we show that the electronic structure of the TMs is complicated by the presence of 'dangling bonds' when the TM disrupts the crystal lattice: interstitial defects conform to the Ludwig-Woodbury (LW) model, whilst substitutional and semi-vacancy defects move from approximating the LW model early in the transition series to approaching the vacancy model for the heavier metals. Multi-configurational self-consistent field methods allow genuine many-electron states to be modelled; for neutral interstitial, and all substitutional TMs, the crystal fields are found to exceed the exchange energies in strength. Consequently, low spin states are found for these defects. We find substitutional defects to be the most stable, but that semi-vacancy TMs are very similar in energy to the substitutional defects late in the transition series; interstitial defects are only metastable in diamond. Given appropriate charge compensators neutral and positively charged interstitial TM defects were stable, while negatively charged species appeared to be strongly disfavoured
Wang, Qingfeng Kee; Bowman, Joel M.
2017-10-01
We report an ab initio, full-dimensional, potential energy surface (PES) for CO2—H2O, in which two-body interaction energies are fit using a basis of permutationally invariant polynomials and combined with accurate potentials for the non-interacting monomers. This approach which we have termed "plug and play" is extended here to improve the precision of the 2-body fit in the long range. This is done by combining two separate fits. One is a fit to 47 593 2-body energies in the region of strong interaction and approaching the long range, and the second one is a fit to 6244 2-body energies in the long range. The two fits have a region of overlap which permits a smooth switch from one to the other. All energies are obtained at the CCSD(T)-F12b/aug-cc-pVTZ level of theory. Properties of the full PES, i.e., stationary points, harmonic frequencies of the global minimum, etc., are shown to be in excellent agreement with direct CCSD(T)-F12b/aug-cc-pVTZ results. Diffusion Monte Carlo calculations of the dimer zero-point energy (ZPE) are performed, and a dissociation energy, D0, of 787 cm-1 is obtained using that ZPE, De, and the rigorous ZPEs of the monomers. Using a benchmark De, D0 is 758 cm-1. Vibrational self-consistent field (VSCF)/virtual state configuration interaction (VCI) MULTIMODE calculations of intramolecular fundamentals are reported and are in good agreement with available experimental results. Finally, the full dimer PES is combined with an existing ab initio water potential to develop a potential for the CO2 hydrate clathrate CO2(H2O)20(512 water cage). A full normal-mode analysis of this hydrate clathrate is reported as are local-monomer VSCF/VCI calculations of the fundamentals of CO2.
Wang, Qingfeng Kee; Bowman, Joel M
2017-10-28
We report an ab initio, full-dimensional, potential energy surface (PES) for CO 2 -H 2 O, in which two-body interaction energies are fit using a basis of permutationally invariant polynomials and combined with accurate potentials for the non-interacting monomers. This approach which we have termed "plug and play" is extended here to improve the precision of the 2-body fit in the long range. This is done by combining two separate fits. One is a fit to 47 593 2-body energies in the region of strong interaction and approaching the long range, and the second one is a fit to 6244 2-body energies in the long range. The two fits have a region of overlap which permits a smooth switch from one to the other. All energies are obtained at the CCSD(T)-F12b/aug-cc-pVTZ level of theory. Properties of the full PES, i.e., stationary points, harmonic frequencies of the global minimum, etc., are shown to be in excellent agreement with direct CCSD(T)-F12b/aug-cc-pVTZ results. Diffusion Monte Carlo calculations of the dimer zero-point energy (ZPE) are performed, and a dissociation energy, D 0 , of 787 cm -1 is obtained using that ZPE, D e , and the rigorous ZPEs of the monomers. Using a benchmark D e , D 0 is 758 cm -1 . Vibrational self-consistent field (VSCF)/virtual state configuration interaction (VCI) MULTIMODE calculations of intramolecular fundamentals are reported and are in good agreement with available experimental results. Finally, the full dimer PES is combined with an existing ab initio water potential to develop a potential for the CO 2 hydrate clathrate CO 2 (H 2 O) 20 (5 12 water cage). A full normal-mode analysis of this hydrate clathrate is reported as are local-monomer VSCF/VCI calculations of the fundamentals of CO 2 .
Beltramello, O
In order to enable Technical Coordination to manage the detector configuration and to be aware of all changes in this configuration, a baseline of the envelopes has been created in April 2001. Fifteen system and multi-system envelope drawings have been approved and baselined. An EDMS file is associated with each approved envelope, which provides a list of the current known unsolved conflicts related to the envelope and a list of remaining drawing inconsistencies to be corrected. The envelope status with the associated drawings and EDMS file can be found on the web at this adress: http://atlasinfo.cern.ch/Atlas/TCOORD/Activities/Installation/Configuration/ Any modification in the baseline has to be requested via the Engineering Change Requests. The procedure can be found under: http://atlasinfo.cern.ch/Atlas/TCOORD/Activities/TcOffice/Quality/ECR/ TC will review all the systems envelopes in the near future and manage conflict resolution with the collaboration of the systems.
The LHCb configuration database
Abadie, L; Van Herwijnen, Eric; Jacobsson, R; Jost, B; Neufeld, N
2005-01-01
The aim of the LHCb configuration database is to store information about all the controllable devices of the detector. The experiment's control system (that uses PVSS ) will configure, start up and monitor the detector from the information in the configuration database. The database will contain devices with their properties, connectivity and hierarchy. The ability to store and rapidly retrieve huge amounts of data, and the navigability between devices are important requirements. We have collected use cases to ensure the completeness of the design. Using the entity relationship modelling technique we describe the use cases as classes with attributes and links. We designed the schema for the tables using relational diagrams. This methodology has been applied to the TFC (switches) and DAQ system. Other parts of the detector will follow later. The database has been implemented using Oracle to benefit from central CERN database support. The project also foresees the creation of tools to populate, maintain, and co...
Czech Academy of Sciences Publication Activity Database
Li, X.; Hopmann, K. H.; Hudecová, Jana; Stensen, W.; Novotná, J.; Urbanová, M.; Svendsen, J. S.; Bouř, Petr; Ruud, K.
2012-01-01
Roč. 116, č. 10 (2012), s. 2554-2563 ISSN 1089-5639 R&D Projects: GA ČR GAP208/11/0105; GA MŠk(CZ) LH11033 Grant - others:AV ČR(CZ) M200550902 Institutional research plan: CEZ:AV0Z40550506 Keywords : cyclic dipeptide * vibrational otpical activity * density functional theory * dispersion * electronic circular dichroism Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.771, year: 2012
Oxygen configurations in silica
International Nuclear Information System (INIS)
Chelikowsky, James R.; Chadi, D. J.; Binggeli, N.
2000-01-01
We propose a transition state for oxygen in silica. This state is produced by the insertion of an oxygen molecule into the Si-O-Si bond, i.e., it consists of producing a Si-O-O-O-Si bond. This state allows molecular oxygen diffusion in silica without breaking the molecular O 2 bond and it is energetically more stable than a peroxy configuration. This configuration may allow for exchange of molecular oxygen with the oxygen in the silica framework. (c) 2000 The American Physical Society
Control of divertor configuration in JT-60
International Nuclear Information System (INIS)
Yoshino, R.; Kukuchi, M.; Ninomiya, H.; Yoshida, H.; Tsuji, S.; Hosogane, N.; Seki, S.
1985-01-01
The control algorithm of JT-60 divertor configuration is presented. JT-60 has five types of poloidal magnetic field coil with each power supply in order to regulate the control objectives mentioned above. However, if one controls each objective by each coil current independently, there must inevitably occur large interaction between control objectives. Because the relation between control objectives and coil currents is complicated. This situation may be the same with a fusion reactor device. For making it possible to control each objective independently without causing large interaction, the authors adopt the noninteracting control algorithm. Hence, this report demonstrates the availability of this method to the control of JT-60 divertor configuration
Stirling Engine Configuration Selection
Directory of Open Access Journals (Sweden)
Jose Egas
2018-03-01
Full Text Available Unlike internal combustion engines, Stirling engines can be designed to work with many drive mechanisms based on the three primary configurations, alpha, beta and gamma. Hundreds of different combinations of configuration and mechanical drives have been proposed. Few succeed beyond prototypes. A reason for poor success is the use of inappropriate configuration and drive mechanisms, which leads to low power to weight ratio and reduced economic viability. The large number of options, the lack of an objective comparison method, and the absence of a selection criteria force designers to make random choices. In this article, the pressure—volume diagrams and compression ratios of machines of equal dimensions, using the main (alpha, beta and gamma crank based configurations as well as rhombic drive and Ross yoke mechanisms, are obtained. The existence of a direct relation between the optimum compression ratio and the temperature ratio is derived from the ideal Stirling cycle, and the usability of an empirical low temperature difference compression ratio equation for high temperature difference applications is tested using experimental data. It is shown that each machine has a different compression ratio, making it more or less suitable for a specific application, depending on the temperature difference reachable.
Global Value Chain Configuration
DEFF Research Database (Denmark)
Hernandez, Virginia; Pedersen, Torben
2017-01-01
modes chosen and the different ways of coordinating them. We also examine the outcomes of a global value chain configuration in terms of performance and upgrading. Our aim is to review the state of the art of these issues, identify research gaps and suggest new lines for future research that would...
Inclusive Services Innovation Configuration
Holdheide, Lynn R.; Reschly, Daniel J.
2011-01-01
Teacher preparation to deliver inclusive services to students with disabilities is increasingly important because of changes in law and policy emphasizing student access to, and achievement in, the general education curriculum. This innovation configuration identifies the components of inclusive services that should be incorporated in teacher…
Ansible configuration management
Hall, Daniel
2015-01-01
This book is intended for anyone who wants to learn Ansible starting from the basics. Some experience of how to set up and configure Linux machines and a working knowledge of BIND, MySQL, and other Linux daemons is expected.
Phase diagrams from ab-initio calculations: Re-W and Fe-B
Energy Technology Data Exchange (ETDEWEB)
Hammerschmidt, Thomas; Bialon, Arthur; Palumbo, Mauro; Fries, Suzana G.; Drautz, Ralf [ICAMS, Ruhr-Universitaet Bochum (Germany)
2011-07-01
The CALPHAD (CaLculation of Phase Diagrams) method relies on Gibbs energy databases and is of limited predictive power in cases where only limited experimental data is available for constructing the Gibbs energy databases. This is problematic for, e.g., the calculation of the phase transformation kinetics within phase field simulations that not only require the thermodynamic equilibrium data but also information on metastable phases. Such information is difficult to obtain directly from experiment but ab-initio calculations may supplement experimental databases as they comprise metastable phases and arbitrary chemical compositions. We present simulations for two prototypical systems: Re-W and Fe-B. For both systems we calculate the heat of formation for an extensive set of structures using ab-initio calculations and employ the total energies in CALPHAD in order to determine the corresponding phase diagrams. We account for the configurational entropy within the Bragg-Williams approximation and neglect the phenomenological excess-term that is commonly used in CALPHAD as well as the contribution of phonons and electronic excitations to the free energy. According to our calculations the complex intermetallic phases in Re-W are stabilized by the configurational entropy. For Fe-B, we calculate metastable and stable phase diagrams including recently predicted new stable phases.
Ab‐initio study of germanium di-interstitial using a hybrid functional (HSE)
Energy Technology Data Exchange (ETDEWEB)
Igumbor, E., E-mail: elgumuk@gmail.com [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Department of Mathematics and Physical Sciences, Samuel Adegboyega University, Km 1 Ogwa/Ehor Rd, Ogwa, Edo State (Nigeria); Ouma, C.N.M.; Webb, G. [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Meyer, W.E., E-mail: wmeyer@up.ac.za [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa)
2016-01-01
In this work, we present ab‐initio calculation results of Ge di-interstitials (I{sub 2(Ge)}) in the framework of the density functional theory (DFT) using the Heyd, Scuseria, and Ernzerhof (HSE) hybrid functional. The formation energy, transition levels and minimum energy configurations were obtained for I{sub 2(Ge)} −2, −1, 0, +1 and +2 charge states. The calculated formation energies show that for all charge states of I{sub 2(Ge)}, the double tetrahedral (T) configuration formed the most stable defect with a binding energy of 1.24 eV in the neutral state. We found the (+2/+1) charge state transition level for the T lying below the conduction band minimum and (+2/+1) for the split[110]-tetrahedral configuration lying deep at 0.41 eV above the valence band maximum. The di-interstitials in Ge exhibited the properties of both shallow and deep donor levels at (+2/+1) within the band gap and depending on the configurations. I{sub 2(Ge)} gave rise to negative-U, with effective-U values of −0.61 and −1.6 eV in different configurations. We have compared our results with calculations of di-interstitials in silicon and available experimental data.
International Nuclear Information System (INIS)
Deb, N C; Hibbert, A
2008-01-01
Accurate oscillator strengths and Einstein A-coefficients for some El and E2 transitions among 3d 6 , 3d 5 4s and 3d 5 4p levels of FeIII are presented and compared with other available results. The present results comprise by far the largest configuration interaction calculation for this astrophysically important ion, and include relativistic effects through the Breit-Pauli operator. The core-valence effects from a large number of 3d 6 and 3d 5 cores are carefully treated by optimising 4d, 4f, 5s, 5p, 5d, 5f and 6p orbitals either as a correction or as a correlation orbital while 1s, 2s, 2p, 3s, 3p and 3d Hartree-Fock functions are used. The 4s and 4p functions are optimised as spectroscopic orbitals. Fine-tuning of the ab initio energies was done through adjusting by a small amount some diagonal elements of the Hamiltonian matrix. It is found that for many of the relatively strong dipole transitions, our calculated oscillator strengths agree with available calculations, while for the weaker transitions our results often disagree with the previously determined results. We also present gA values for five E2 transitions for the multiplets 3d 6 5 DJ → 3d 5 ( 6 S)4s 5 S 2. The present results for these transitions show a 30-40% increase over the results previously published.
Configuring the development space for conceptualization
DEFF Research Database (Denmark)
Brønnum, Louise; Clausen, Christian
2013-01-01
This paper addresses issues of conceptualization in the early stages of concept development noted as the Front End of Innovation [FEI]. We examine this particular development space as a socio technical space where a diversity of technological knowledge, user perspectives and organizational agendas...... meet and interact. Based on a case study from an industrial medical company, the paper addresses and analyses the configuration of the development space in a number of projects aiming to take up user oriented perspectives in their activities. It presents insights on how the FEI was orchestrated...... and staged and how different elements and objects contributed to the configuration of the space in order to make it perform in a certain way. The analysis points at the importance of the configuration processes and indicate how these configurations often may act as more or less hidden limitations on concept...
Ab Initio Many-Body Calculations Of Nucleon-Nucleus Scattering
Energy Technology Data Exchange (ETDEWEB)
Quaglioni, S; Navratil, P
2008-12-17
We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and Pauli principle. We outline technical details and present phase shift results for neutron scattering on {sup 3}H, {sup 4}He and {sup 10}Be and proton scattering on {sup 3,4}He, using realistic nucleon-nucleon (NN) potentials. Our A = 4 scattering results are compared to earlier ab initio calculations. We find that the CD-Bonn NN potential in particular provides an excellent description of nucleon-{sup 4}He S-wave phase shifts. We demonstrate that a proper treatment of the coupling to the n-{sup 10}Be continuum is successful in explaining the parity-inverted ground state in {sup 11}Be.
Electronic properties of liquid Hg-In alloys : Ab-initio molecular dynamics study
International Nuclear Information System (INIS)
Sharma, Nalini; Ahluwalia, P. K.; Thakur, Anil
2016-01-01
Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Three liquid Hg-In alloys (Hg_1_0In_9_0, Hg_3_0In_7_0_,_. Hg_5_0In_5_0, Hg_7_0In_3_0, and Hg_9_0Pb_1_0) at 299 K are considered. The calculated results for liquid Hg (l-Hg) and lead (l-In) are also drawn. Along with the calculated results of considered five liquid alloys of Hg-In alloy. The results obtained from electronic properties namely total density of state and partial density of states help to find the local arrangement of Hg and In atoms and the presence of liquid state in the considered five alloys.
Song, Lingchun; Han, Jaebeom; Lin, Yen-lin; Xie, Wangshen; Gao, Jiali
2009-10-29
The explicit polarization (X-Pol) method has been examined using ab initio molecular orbital theory and density functional theory. The X-Pol potential was designed to provide a novel theoretical framework for developing next-generation force fields for biomolecular simulations. Importantly, the X-Pol potential is a general method, which can be employed with any level of electronic structure theory. The present study illustrates the implementation of the X-Pol method using ab initio Hartree-Fock theory and hybrid density functional theory. The computational results are illustrated by considering a set of bimolecular complexes of small organic molecules and ions with water. The computed interaction energies and hydrogen bond geometries are in good accord with CCSD(T) calculations and B3LYP/aug-cc-pVDZ optimizations.
Analyzing Visibility Configurations.
Dachsbacher, C
2011-04-01
Many algorithms, such as level of detail rendering and occlusion culling methods, make decisions based on the degree of visibility of an object, but do not analyze the distribution, or structure, of the visible and occluded regions across surfaces. We present an efficient method to classify different visibility configurations and show how this can be used on top of existing methods based on visibility determination. We adapt co-occurrence matrices for visibility analysis and generalize them to operate on clusters of triangular surfaces instead of pixels. We employ machine learning techniques to reliably classify the thus extracted feature vectors. Our method allows perceptually motivated level of detail methods for real-time rendering applications by detecting configurations with expected visual masking. We exemplify the versatility of our method with an analysis of area light visibility configurations in ray tracing and an area-to-area visibility analysis suitable for hierarchical radiosity refinement. Initial results demonstrate the robustness, simplicity, and performance of our method in synthetic scenes, as well as real applications.
Mechanical configuration and maintenance
International Nuclear Information System (INIS)
Brown, T.G.; Casini, G.; Churakov, G.F.
1982-01-01
The INTOR engineering design has been strongly influenced by considerations for assembly and maintenance. A maintenance philosophy was established at the outset of the conceptual design to insure that the tokamak configuration would be developed to accommodate maintenance requirements. The main features of the INTOR design are summarized in this paper with primary emphasis on the impact of maintenance considerations. The most apparent configuration design feature is the access provided for torus maintenance. Particular attention was given to the size and location of superconducting magnets and the location of vacuum boundaries. All of the poloidal field (PF) coils are placed outside of the bore of the toroidal field (TF) coils and located above and below an access opening between adjacent TF coils through which torus sectors are removed. A magnet structural configuration consisting of mechanically attached reinforcing members has been designed which facilitates the open access space for torus sector removal. For impurity control, a single null poloidal divertor was selected over a double null design in order to maintain sufficient access for pumping and maintenance of the collector. A double null divertor was found to severely limit access to the torus with the addition of divertor collectors and pumping at the top. For this reason, a single null concept was selected in spite of the more difficult design problems associated with the required asymmetric PF system and higher particle loadings
Ab initio lattice dynamics of metal surfaces
International Nuclear Information System (INIS)
Heid, R.; Bohnen, K.-P.
2003-01-01
Dynamical properties of atoms on surfaces depend sensitively on their bonding environment and thus provide valuable insight into the local geometry and chemical binding at the boundary of a solid. Density-functional theory provides a unified approach to the calculation of structural and dynamical properties from first principles. Its high accuracy and predictive power for lattice dynamical properties of semiconductor surfaces has been demonstrated in a previous article by Fritsch and Schroeder (Phys. Rep. 309 (1999) 209). In this report, we review the state-of-the-art of these ab initio approaches to surface dynamical properties of metal surfaces. We give a brief introduction to the conceptual framework with focus on recent advances in computational procedures for the ab initio linear-response approach, which have been a prerequisite for an efficient treatment of surface dynamics of noble and transition metals. The discussed applications to clean and adsorbate-covered surfaces demonstrate the high accuracy and reliability of this approach in predicting detailed microscopic properties of the phonon dynamics for a wide range of metallic surfaces
Lessons Learned in Designing User-configurable Modular Robotics
DEFF Research Database (Denmark)
Lund, Henrik Hautop
2013-01-01
User-configurable robotics allows users to easily configure robotic systems to perform task-fulfilling behaviors as desired by the users. With a user configurable robotic system, the user can easily modify the physical and func-tional aspect in terms of hardware and software components of a robotic...... with the semi-autonomous com-ponents of the user-configurable robotic system in interaction with the given environment. Components constituting such a user-configurable robotic system can be characterized as modules in a modular robotic system. Several factors in the definition and implementation...
Computational methods for stellerator configurations
International Nuclear Information System (INIS)
Betancourt, O.
1992-01-01
This project had two main objectives. The first one was to continue to develop computational methods for the study of three dimensional magnetic confinement configurations. The second one was to collaborate and interact with researchers in the field who can use these techniques to study and design fusion experiments. The first objective has been achieved with the development of the spectral code BETAS and the formulation of a new variational approach for the study of magnetic island formation in a self consistent fashion. The code can compute the correct island width corresponding to the saturated island, a result shown by comparing the computed island with the results of unstable tearing modes in Tokamaks and with experimental results in the IMS Stellarator. In addition to studying three dimensional nonlinear effects in Tokamaks configurations, these self consistent computed island equilibria will be used to study transport effects due to magnetic island formation and to nonlinearly bifurcated equilibria. The second objective was achieved through direct collaboration with Steve Hirshman at Oak Ridge, D. Anderson and R. Talmage at Wisconsin as well as through participation in the Sherwood and APS meetings
Valence configurations in 214Rn
International Nuclear Information System (INIS)
Dracoulis, G.D.; Byrne, A.P.; Stuchbery, A.E.; Bark, R.A.; Poletti, A.R.
1987-01-01
Excited states of 214 Rn, up to spins of ≅ 24 ℎ have been studied using γ-ray and electron spectroscopy following the 208 Pb( 9 Be,3n) 214 Rn reaction. The level scheme (which differs substantially from earlier work) is compared with the results of a semi-empirical shell model calculation. The availability of high-spin orbitals for the four valence protons and two valence neutrons, and the effect of the attractive proton-neutron interaction, leads to the prediction of high-spin states at an unusually low excitation energy. Experimentally, the high level density leads to difficulties in the level scheme assignments at high spin. Nevertheless, configuration assignments, supported by transition strengths deduced from the measured lifetimes (in the nanosecond region) are suggested for the main yrast states. The decay properties also suggest that configuration mixing is important. The possibility of a gradual transition to octupole deformation, implied by the decay properties of the 11 - and 10 + yrast states is also discussed. (orig.)
Ab-initio calculations for dilute magnetic semiconductors
Energy Technology Data Exchange (ETDEWEB)
Belhadji, Brahim
2008-03-03
This thesis focusses on ab-initio calculations for the electronic structure and the magnetic properties of dilute magnetic semiconductors (DMS). In particular we aim at the understanding of the complex exchange interactions in these systems. Our calculations are based on density functional theory, being ideally suited for a description of the material specific properties of the considered DMS. Moreover we use the KKR Green function method in connection with the coherent potential approximation (CPA), which allows to include the random substitutional disorder in a mean field-like approximation for the electronic structure. Finally we calculate the exchange coupling constants J{sub ij} between two impurities in a CPA medium by using the Lichtenstein formula and from this calculate the Curie temperature by a numerically exact Monte Carlo method. Based on this analysis we found and investigated four different exchange mechanisms being of importance in DMS systems: Double exchange, p-d exchange, antiferromagnetic superexchanges, and ferromagnetic superexchange. A second topic we have investigated in this thesis is the pressure dependence of the exchange interactions and the Curie temperatures in (Ga,Mn)As and (In,Mn)As, using the LDA and the LDA+U approximations. Exact calculations of T{sub C} by Monte Carlo simulations show a somehow different behavior. (orig.)
Ab initio modelling of methane hydrate thermophysical properties.
Jendi, Z M; Servio, P; Rey, A D
2016-04-21
The key thermophysical properties of methane hydrate were determined using ab initio modelling. Using density functional theory, the second-order elastic constants, heat capacity, compressibility, and thermal expansion coefficient were calculated. A wide and relevant range of pressure-temperature conditions were considered, and the structures were assessed for stability using the mean square displacement and radial distribution functions. Methane hydrate was found to be elastically isotropic with a linear dependence of the bulk modulus on pressure. Equally significant, multi-body interactions were found to be important in hydrates, and water-water interactions appear to strongly influence compressibility like in ice Ih. While the heat capacity of hydrate was found to be higher than that of ice, the thermal expansion coefficient was significantly lower, most likely due to the lower rigidity of hydrates. The mean square displacement gave important insight into stability, heat capacity, and elastic moduli, and the radial distribution functions further confirmed stability. The presented results provide a much needed atomistic thermoelastic characterization of methane hydrates and are essential input for the large-scale applications of hydrate detection and production.
Ab initio theory of magnetic interactions at surfaces
International Nuclear Information System (INIS)
Sousa, C; Graaf, C de; Lopez, N; Harrison, N M; Illas, F
2004-01-01
The low to high spin energy transition of Ni adsorbed on regular and defective sites of MgO(100) and the relative strengths of bulk and surface magnetic coupling constants of first row transition metal oxides (MnO, FeO, CoO, NiO and CuO) are taken as examples to illustrate some deficiencies of density functional theory (DFT). For these ionic systems a cluster/periodic comparison within the same computational method (either DFT or Hartree-Fock) is used to establish that embedded cluster models provide an adequate representation. The cluster model approach is then used to obtain accurate values for the magnetic properties of interest by using explicitly correlated wavefunction methods which handle the electronic open shell rigorously as spin eigenfunctions
Ab initio theory of magnetic interactions at surfaces
Energy Technology Data Exchange (ETDEWEB)
Sousa, C [Departament de Quimica Fisica i Centre de Recerca en Quimica Teorica, Universitat de Barcelona i Parc Cientific de Barcelona, C/ MartI i Franques 1, E-08028 Barcelona (Spain); Graaf, C de [Departament de Quimica Fisica i Inorganica, Universitat Rovira i Virgili, P. Imperial Tarraco 1, E-43005 Tarragona (Spain); Lopez, N [Departament de Quimica Fisica i Centre de Recerca en Quimica Teorica, Universitat de Barcelona i Parc Cientific de Barcelona, C/ Marti i Franques 1, E-08028 Barcelona (Spain); Harrison, N M [Department of Chemistry, Imperial College of Science, Technology and Medicine, London SW7 2AY (United Kingdom); Illas, F [Departament de Quimica Fisica i Centre de Recerca en Quimica Teorica, Universitat de Barcelona i Parc Cientific de Barcelona, C/ Marti i Franques 1, E-08028 Barcelona (Spain)
2004-07-07
The low to high spin energy transition of Ni adsorbed on regular and defective sites of MgO(100) and the relative strengths of bulk and surface magnetic coupling constants of first row transition metal oxides (MnO, FeO, CoO, NiO and CuO) are taken as examples to illustrate some deficiencies of density functional theory (DFT). For these ionic systems a cluster/periodic comparison within the same computational method (either DFT or Hartree-Fock) is used to establish that embedded cluster models provide an adequate representation. The cluster model approach is then used to obtain accurate values for the magnetic properties of interest by using explicitly correlated wavefunction methods which handle the electronic open shell rigorously as spin eigenfunctions.
Formation of Field-reversed-Configuration Plasma with Punctuated-betatron-orbit Electrons
International Nuclear Information System (INIS)
Welch, D.R.; Cohen, S.A.; Genoni, T.C.; Glasser, A.H.
2010-01-01
We describe ab initio, self-consistent, 3D, fully electromagnetic numerical simulations of current drive and field-reversed-configuration plasma formation by odd-parity rotating magnetic fields (RMFo). Magnetic-separatrix formation and field reversal are attained from an initial mirror configuration. A population of punctuated-betatron-orbit electrons, generated by the RMFo, carries the majority of the field-normal azimuthal electrical current responsible for field reversal. Appreciable current and plasma pressure exist outside the magnetic separatrix whose shape is modulated by the RMFo phase. The predicted plasma density and electron energy distribution compare favorably with RMFo experiments.
Configuration Management Program Plan
International Nuclear Information System (INIS)
1991-01-01
Westinghouse Savannah River Company (WSRC) has established a configuration management (CM) plan to execute the SRS CM Policy and the requirements of the DOE Order 4700.1. The Reactor Restart Division (RRD) has developed its CM Plan under the SRS CM Program and is implementing it via the RRD CM Program Plan and the Integrated Action Plan. The purpose of the RRD CM program is to improve those processes which are essential to the safe and efficient operation of SRS production reactors. This document provides details of this plan
Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.
Yang, Lina; Minnich, Austin J
2017-03-14
Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.
Ab initio derivation of model energy density functionals
International Nuclear Information System (INIS)
Dobaczewski, Jacek
2016-01-01
I propose a simple and manageable method that allows for deriving coupling constants of model energy density functionals (EDFs) directly from ab initio calculations performed for finite fermion systems. A proof-of-principle application allows for linking properties of finite nuclei, determined by using the nuclear nonlocal Gogny functional, to the coupling constants of the quasilocal Skyrme functional. The method does not rely on properties of infinite fermion systems but on the ab initio calculations in finite systems. It also allows for quantifying merits of different model EDFs in describing the ab initio results. (letter)
Ames Optimized TCA Configuration
Cliff, Susan E.; Reuther, James J.; Hicks, Raymond M.
1999-01-01
Configuration design at Ames was carried out with the SYN87-SB (single block) Euler code using a 193 x 49 x 65 C-H grid. The Euler solver is coupled to the constrained (NPSOL) and the unconstrained (QNMDIF) optimization packages. Since the single block grid is able to model only wing-body configurations, the nacelle/diverter effects were included in the optimization process by SYN87's option to superimpose the nacelle/diverter interference pressures on the wing. These interference pressures were calculated using the AIRPLANE code. AIRPLANE is an Euler solver that uses a unstructured tetrahedral mesh and is capable of computations about arbitrary complete configurations. In addition, the buoyancy effects of the nacelle/diverters were also included in the design process by imposing the pressure field obtained during the design process onto the triangulated surfaces of the nacelle/diverter mesh generated by AIRPLANE. The interference pressures and nacelle buoyancy effects are added to the final forces after each flow field calculation. Full details of the (recently enhanced) ghost nacelle capability are given in a related talk. The pseudo nacelle corrections were greatly improved during this design cycle. During the Ref H and Cycle 1 design activities, the nacelles were only translated and pitched. In the cycle 2 design effort the nacelles can translate vertically, and pitch to accommodate the changes in the lower surface geometry. The diverter heights (between their leading and trailing edges) were modified during design as the shape of the lower wing changed, with the drag of the diverter changing accordingly. Both adjoint and finite difference gradients were used during optimization. The adjoint-based gradients were found to give good direction in the design space for configurations near the starting point, but as the design approached a minimum, the finite difference gradients were found to be more accurate. Use of finite difference gradients was limited by the
Ab initio electronic stopping power in materials
International Nuclear Information System (INIS)
Shukri, Abdullah-Atef
2015-01-01
The average energy loss of an ion per unit path length when it is moving through the matter is named the stopping power. The knowledge of the stopping power is essential for a variety of contemporary applications which depend on the transport of ions in matter, especially ion beam analysis techniques and ion implantation. Most noticeably, the use of proton or heavier ion beams in radiotherapy requires the knowledge of the stopping power. Whereas experimental data are readily available for elemental solids, the data are much more scarce for compounds. The linear response dielectric formalism has been widely used in the past to study the electronic stopping power. In particular, the famous pioneering calculations due to Lindhard evaluate the electronic stopping power of a free electron gas. In this thesis, we develop a fully ab initio scheme based on linear response time-dependent density functional theory to predict the impact parameter averaged quantity named the random electronic stopping power (RESP) of materials without any empirical fitting. The purpose is to be capable of predicting the outcome of experiments without any knowledge of target material besides its crystallographic structure. Our developments have been done within the open source ab initio code named ABINIT, where two approximations are now available: the Random-Phase Approximation (RPA) and the Adiabatic Local Density Approximation (ALDA). Furthermore, a new method named 'extrapolation scheme' have been introduced to overcome the stringent convergence issues we have encountered. These convergence issues have prevented the previous studies in literature from offering a direct comparison to experiment. First of all, we demonstrate the importance of describing the realistic ab initio electronic structure by comparing with the historical Lindhard stopping power evaluation. Whereas the Lindhard stopping power provides a first order description that captures the general features of the
Ab initio theories of electric transport in solid systems with reduced dimensions
International Nuclear Information System (INIS)
Weinberger, Peter
2003-01-01
Ab initio theories of electric transport in solid systems with reduced dimensions, i.e., systems that at best are characterized by two-dimensional translational invariance, are reviewed in terms of a fully relativistic description of the Kubo-Greenwood equation. As the use of this equation requires concepts such as collinearity and non-collinearity in order to properly define resistivities or resistances corresponding to particular magnetic configurations, respective consequences of the (local) density functional theory are recalled in quite a detailed manner. Furthermore, since theoretical descriptions of solid systems with reduced dimensions require quantum mechanical methods different from bulk systems (three-dimensional periodicity), the so-called Screened Korringa-Kohn-Rostoker (SKKR-) method for layered systems is introduced together with a matching coherent potential approximation (inhomogeneous CPA). The applications shown are mainly meant to illustrate various aspects of electric transport in solid systems with reduced dimensions and comprise not only current-in-plane (CIP) experiments, but also current perpendicular to the planes of atoms geometries, consequences of tunneling, and finite nanostructures at or on metallic substrates. In order to give a more complete view of available ab initio methods also a non-relativistic approach based on the Tight Binding Linear Combination of muffin tin orbitals (TB-LMTO-) method and the so-called Kubo-Landauer equation in terms of transmission and reflection matrices is presented. A compilation of references with respect to ab-initio type approaches not explicitly discussed in here finally concludes the discussion of electric properties in solid systems with reduced dimensions
Iron -chromium alloys and free surfaces: from ab initio calculations to thermodynamic modeling
International Nuclear Information System (INIS)
Levesque, M.
2010-11-01
Ferritic steels possibly strengthened by oxide dispersion are candidates as structural materials for generation IV and fusion nuclear reactors. Their use is limited by incomplete knowledge of the iron-chromium phase diagram at low temperatures and of the phenomena inducing preferential segregation of one element at grain boundaries or at surfaces. In this context, this work contributes to the multi-scale study of the model iron-chromium alloy and their free surfaces by numerical simulations. This study begins with ab initio calculations of properties related to the mixture of atoms of iron and chromium. We highlight complex dependency of the magnetic moments of the chromium atoms on their local chemical environment. Surface properties are also proving sensitive to magnetism. This is the case of impurity segregation of chromium in iron and of their interactions near the surface. In a second step, we construct a simple energy model for high numerical efficiency. It is based on pair interactions on a rigid lattice to which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that we compare to Monte Carlo simulations. The last step of our work is to introduce free surfaces in our model. We then study the effect of ab initio calculated bulk and surface properties on surface segregation.Finally, we calculate segregation isotherms. We therefore propose an evolution model of surface composition of iron-chromium alloys as a function of bulk composition. which are given local chemical environment and temperature dependencies. With this model, we reproduce the ab initio results at zero temperature and experimental results at high temperature. We also deduce the solubility limits at all intermediate temperatures with mean field approximations that
Buenker, Robert J; Liebermann, Heinz-Peter
2012-07-15
Ab initio multireference single- and double-excitation configuration interaction calculations have been performed to compute potential curves for ground and excited states of the CaO and SrO molecules and their positronic complexes, e(+)CaO, and e(+)SrO. The adiabatic dissociation limit for the (2)Σ(+) lowest states of the latter systems consists of the positive metal ion ground state (M(+)) and the OPs complex (e(+)O(-)), although the lowest energy limit is thought to be e(+)M + O. Good agreement is found between the calculated and experimental spectroscopic constants for the neutral diatomics wherever available. The positron affinity of the closed-shell X (1)Σ(+) ground states of both systems is found to lie in the 0.16-0.19 eV range, less than half the corresponding values for the lighter members of the alkaline earth monoxide series, BeO and MgO. Annihilation rates (ARs) have been calculated for all four positronated systems for the first time. The variation with bond distance is generally similar to what has been found earlier for the alkali monoxide series of positronic complexes, falling off gradually from the OPs AR value at their respective dissociation limits. The e(+)SrO system shows some exceptional behavior, however, with its AR value reaching a minimum at a relatively large bond distance and then rising to more than twice the OPs value close to its equilibrium distance. Copyright © 2012 Wiley Periodicals, Inc.
Vlahos, Vasilios; Booske, John H.; Morgan, Dane
2010-02-01
Microwave, x-ray, and radio-frequency radiation sources require a cathode emitting electrons into vacuum. Thermionic B-type dispenser cathodes consist of BaxOz coatings on tungsten (W), where the surface coatings lower the W work function and enhance electron emission. The new and promising class of scandate cathodes modifies the B-type surface through inclusion of Sc, and their superior emissive properties are also believed to stem from the formation of a low work function surface alloy. In order to better understand these cathode systems, density-functional theory (DFT)-based ab initio modeling is used to explore the stability and work function of BaxScyOz on W(001) monolayer-type surface structures. It is demonstrated how surface depolarization effects can be calculated easily using ab initio calculations and fitted to an analytic depolarization equation. This approach enables the rapid extraction of the complete depolarization curve (work function versus coverage relation) from relatively few DFT calculations, useful for understanding and characterizing the emitting properties of novel cathode materials. It is generally believed that the B-type cathode has some concentration of Ba-O dimers on the W surface, although their structure is not known. Calculations suggest that tilted Ba-O dimers are the stable dimer surface configuration and can explain the observed work function reduction corresponding to various dimer coverages. Tilted Ba-O dimers represent a new surface coating structure not previously proposed for the activated B-type cathode. The thermodynamically stable phase of Ba and O on the W surface was identified to be the Ba0.25O configuration, possessing a significantly lower Φ value than any of the Ba-O dimer configurations investigated. The identification of a more stable Ba0.25O phase implies that if Ba-O dimers cover the surface of emitting B-type cathodes, then a nonequilibrium steady state must dominate the emitting surface. The identification of
Gas/liquid flow configurations
International Nuclear Information System (INIS)
Bonin, Jacques; Fitremann, J.-M.
1978-01-01
Prediction of flow configurations (morphology) for gas/liquid or liquid/vapour mixtures is an important industrial problem which is not yet fully understood. The ''Flow Configurations'' Seminar of Societe Hydrotechnique de France has framed recommendations for investigation of potential industrial applications for flow configurations [fr
Software Configurable Multichannel Transceiver
Freudinger, Lawrence C.; Cornelius, Harold; Hickling, Ron; Brooks, Walter
2009-01-01
Emerging test instrumentation and test scenarios increasingly require network communication to manage complexity. Adapting wireless communication infrastructure to accommodate challenging testing needs can benefit from reconfigurable radio technology. A fundamental requirement for a software-definable radio system is independence from carrier frequencies, one of the radio components that to date has seen only limited progress toward programmability. This paper overviews an ongoing project to validate the viability of a promising chipset that performs conversion of radio frequency (RF) signals directly into digital data for the wireless receiver and, for the transmitter, converts digital data into RF signals. The Software Configurable Multichannel Transceiver (SCMT) enables four transmitters and four receivers in a single unit the size of a commodity disk drive, programmable for any frequency band between 1 MHz and 6 GHz.
Configuring the autism epidemic
DEFF Research Database (Denmark)
Seeberg, Jens; Christensen, Fie Lund Lindegaard
2017-01-01
Autism has been described as an epidemic, but this claim is contested and may point to an awareness epidemic, i.e. changes in the definition of what autism is and more attention being invested in diagnosis leading to a rise in registered cases. The sex ratio of children diagnosed with autism...... is skewed in favour of boys, and girls with autism tend to be diagnosed much later than boys. Building and further developing the notion of ‘configuration’ of epidemics, this article explores the configuration of autism in Denmark, with a particular focus on the health system and social support to families...... with children diagnosed with autism, seen from a parental perspective. The article points to diagnostic dynamics that contribute to explaining why girls with autism are not diagnosed as easily as boys. We unfold these dynamics through the analysis of a case of a Danish family with autism....
Deployable reflector configurations
Meinel, A. B.; Meinel, M. P.; Woolf, N. J.
Both the theoretical reasons for considering a non-circular format for the Large Deployable Reflector, and a potentially realizable concept for such a device, are discussed. The optimum systems for diffraction limited telescopes with incoherent detection have either a single filled aperture, or two such apertures as an interferometer to synthesize a larger aperture. For a single aperture of limited area, a reflector in the form of a slot can be used to give increased angular resolution. It is shown how a 20 x 8 meter telescope can be configured to fit the Space Shuttle bay, and deployed with relatively simple operations. The relationship between the sunshield design and the inclination of the orbit is discussed. The possible use of the LDR as a basic module to permit the construction of supergiant space telescopes and interferometers both for IR/submm studies and for the entire ultraviolet through mm wave spectral region is discussed.
A Configuration Model of Organizational Culture
Directory of Open Access Journals (Sweden)
Daniel Dauber
2012-01-01
Full Text Available The article proposes a configuration model of organizational culture, which explores dynamic relationships between organizational culture, strategy, structure, and operations of an organization (internal environment and maps interactions with the external environment (task and legitimization environment. A major feature of the configuration model constitutes its well-defined processes, which connect the elements of the model systematically to each other, such as single- and double-loop learning, operationalization of strategies, legitimization management, and so on. The model is grounded in a large review of literature in different research areas and builds on widely recognized models in the field of organization and culture theory. It constitutes a response to the call for new models, which are able to explain and facilitate the exploration of the empirical complexity that organizations face today. The configuration model of organizational culture is of particular interest to scholars who investigate into cultural phenomena and change over time.
Realization of prediction of materials properties by ab initio ...
Indian Academy of Sciences (India)
Unknown
alization of the results of ab initio molecular dynamics simulation on atom insertion process to C60 and to carbon nanotube ... micro-clusters to estimate absolute highest occupied mo- .... To analyse the observed properties theoretically,.
Ab Initio Atomistic Thermodynamics for Surfaces: A Primer
National Research Council Canada - National Science Library
Rogal, Jutta; Reuter, Karsten
2006-01-01
.... These techniques are referred to as first-principles (or in latin: ab initio) to indicate that they do not rely on empirical or fitted parameters, which then makes them applicable for a wide range of realistic conditions...
Ab initio molecular crystal structures, spectra, and phase diagrams.
Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni
2014-09-16
Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling
Ab initio study of weakly bound halogen complexes: RX⋯PH3.
Georg, Herbert C; Fileti, Eudes E; Malaspina, Thaciana
2013-01-01
Ab initio calculations were employed to study the role of ipso carbon hybridization in halogenated compounds RX (R=methyl, phenyl, acetyl, H and X=F, Cl, Br and I) and its interaction with a phosphorus atom, as occurs in the halogen bonded complex type RX⋯PH3. The analysis was performed using ab initio MP2, MP4 and CCSD(T) methods. Systematic energy analysis found that the interaction energies are in the range -4.14 to -11.92 kJ mol(-1) (at MP2 level without ZPE correction). Effects of electronic correlation levels were evaluated at MP4 and CCSD(T) levels and a reduction of up to 27% in interaction energy obtained in MP2 was observed. Analysis of the electrostatic maps confirms that the PhCl⋯PH3 and all MeX⋯PH3 complexes are unstable. NBO analysis suggested that the charge transfer between the moieties is bigger when using iodine than bromine and chlorine. The electrical properties of these complexes (dipole and polarizability) were determined and the most important observed aspect was the systematic increase at the dipole polarizability, given by the interaction polarizability. This increase is in the range of 0.7-6.7 u.a. (about 3-7%).
Application of Configurators in Networks
DEFF Research Database (Denmark)
Malis, Martin; Hvam, Lars
2003-01-01
Shorter lead-time, improved quality of product specifications and better communication with customers and suppliers are benefits derived from the application of configurators. Configurators are knowledge-based IT-systems that can be applied to deal with product knowledge and to support different...... processes in a company. Traditionally, configurators have been used as an internal tool. In this paper focus will be on the application of configurators in a network of companies, and a procedure for developing product configurators in a network of companies will be presented. The aim is to present...... a structured guideline, tools and methods on how to successfully develop configurators in a network perspective. Findings presented in this paper are supported by research in a case company. The results from the empirical work show a huge potential for the application of configurators in networks of companies....
DEFF Research Database (Denmark)
Jochum, Elizabeth; Borggreen, Gunhild; Murphey, TD
This paper considers the impact of visual art and performance on robotics and human-computer interaction and outlines a research project that combines puppetry and live performance with robotics. Kinesics—communication through movement—is the foundation of many theatre and performance traditions ...
Directory of Open Access Journals (Sweden)
Dunja Gustinčič
2018-05-01
Full Text Available The adsorption of imidazole, triazole, and tetrazole—used as simple models of azole corrosion inhibitors—on various Cu 2 O(111- and Cu 2 O(110-type surfaces was characterized using density functional theory (DFT calculations with the focus on lateral intermolecular interactions and the thermodynamic stability of various adsorption structures. To this end, an ab initio thermodynamics approach was used to construct two-dimensional phase diagrams for all three molecules. The impact of van der Waals dispersion interactions on molecular adsorption bonding was also addressed. Lateral intermolecular interactions were found to be the most repulsive for imidazole and the least for tetrazole, for which they are usually even slightly attractive. Both non-dissociative and dissociative adsorption modes were considered and although dissociated molecules bind to surfaces more strongly, none of the considered structures that involve dissociated molecules appear on the phase diagrams. Our results show that the three azole molecules display a strong tendency to preferentially adsorb at reactive coordinatively unsaturated (CUS Cu surface sites and stabilize them. According to the calculated phase diagrams for Cu 2 O(111-type surfaces, the three azole molecules adsorb to specific CUS sites, designated as Cu CUS , under all conditions at which molecular adsorption is stable. This tentatively suggests that their corrosion inhibition capability may stem, at least in part, from their ability to passivate reactive surface sites. We further comment on a specific drawback due to neglect of configurational entropy that is usually utilized within the ab initio thermodynamics approach. We analyze the issue for Langmuir and Frumkin adsorption models and show that when configurational entropy is neglected, the ab initio thermodynamics approach is too hasty to predict phase-transition like behavior.
Integrating configuration workflows with project management system
International Nuclear Information System (INIS)
Nilsen, Dimitri; Weber, Pavel
2014-01-01
The complexity of the heterogeneous computing resources, services and recurring infrastructure changes at the GridKa WLCG Tier-1 computing center require a structured approach to configuration management and optimization of interplay between functional components of the whole system. A set of tools deployed at GridKa, including Puppet, Redmine, Foreman, SVN and Icinga, provides the administrative environment giving the possibility to define and develop configuration workflows, reduce the administrative effort and improve sustainable operation of the whole computing center. In this presentation we discuss the developed configuration scenarios implemented at GridKa, which we use for host installation, service deployment, change management procedures, service retirement etc. The integration of Puppet with a project management tool like Redmine provides us with the opportunity to track problem issues, organize tasks and automate these workflows. The interaction between Puppet and Redmine results in automatic updates of the issues related to the executed workflow performed by different system components. The extensive configuration workflows require collaboration and interaction between different departments like network, security, production etc. at GridKa. Redmine plugins developed at GridKa and integrated in its administrative environment provide an effective way of collaboration within the GridKa team. We present the structural overview of the software components, their connections, communication protocols and show a few working examples of the workflows and their automation.
Ab initio study of the EFG at the N sites in imidazole
Energy Technology Data Exchange (ETDEWEB)
Brown Goncalves, Marcos, E-mail: browngon@if.usp.br [Universidade de Sao Paulo, Instituto de Fisica (Brazil); Di Felice, R. [National Center on Nanostructures and Biosystems at Surfaces (S3) of INFM-CNR (Italy); Poleshchuk, O. Kh. [Tomsk State Pedagogical University (Russian Federation); Petrilli, H. M. [Universidade de Sao Paulo, Instituto de Fisica (Brazil)
2008-01-15
We study the nuclear quadrupole interaction at the nitrogen sites in the molecular and crystalline phases of the imidazole compound. We use PAW which is a state-of-the-art method to calculate the electronic structure and electric field gradient at the nucleus in the framework of the density functional theory. The quadrupole frequencies at both imino and amino N sites are in excellent agreement with measurements. This is the first time that the electric field gradient at crystalline imidazole is correctly treated by an ab initio theoretical approach.
Adaptive jump barrier height in Monte Carlo configuration kinetics.
Energy Technology Data Exchange (ETDEWEB)
Leitner, Martin; Pfeiler, Wolfgang; Pueschl, Wolfgang [Dynamics of Condensed Systems, Faculty of Physics, University of Vienna, Strudlhofgasse 4, A-1090 Wien (Austria); Vogtenhuber, Doris [Computational Materials Science, Faculty of Physics, University of Vienna, Sensengasse 8, A-1090 Wien (Austria)
2008-07-01
In usual MC simulations of configuration kinetics atom jump probabilities are calculated from energies of the initial and/or final bound states of the moving atom, leaving aside the exact energy of the intermediate saddle point state. This energy may however be critically influenced by the local atomic environment. We propose a strategy to explicitly take account of this influence. The basis is ab initio calculation of representative jump paths in the framework of the nudged elastic band method. From these results, an influence function is derived which modifies the energy of the saddle point and therefore the effective jump barrier height as calculated from the initial and final states according to a cluster expansion scheme. The overall effect is demonstrated on the NiAl system.
Configuration space Faddeev calculations
International Nuclear Information System (INIS)
Payne, G.L.; Klink, W.H.; Ployzou, W.N.
1991-01-01
The detailed study of few-body systems provides one of the most precise tools for studying the dynamics of nuclei. Our research program consists of a careful theoretical study of the nuclear few-body systems. During the past year we have completed several aspects of this program. We have continued our program of using the trinucleon system to investigate the validity of various realistic nucleon-nucleon potentials. Also, the effects of meson-exchange currents in nuclear systems have been studied. Initial calculations using the configuration-space Faddeev equations for nucleon-deuteron scattering have been completed. With modifications to treat relativistic systems, few-body methods can be applied to phenomena that are sensitive to the structure of the individual hadrons. We have completed a review of Relativistic Hamiltonian Dynamics in Nuclear and Particle Physics for Advances in Nuclear Physics. Although it is called a review, it is a large document that contains a significant amount of new research
Simulator configuration management system
International Nuclear Information System (INIS)
Faulent, J.; Brooks, J.G.
1990-01-01
The proposed revisions to ANS 3.5-1985 (Section 5) require Utilities to establish a simulator Configuration Management System (CMS). The proposed CMS must be capable of: Establishing and maintaining a simulator design database. Identifying and documenting differences between the simulator and its reference plant. Tracking the resolution of identified differences. Recording data to support simulator certification, testing and maintenance. This paper discusses a CMS capable of meeting the proposed requirements contained in ANS 3.5. The system will utilize a personal computer and a relational database management software to construct a simulator design database. The database will contain records to all reference nuclear plant data used in designing the simulator, as well as records identifying all the software, hardware and documentation making up the simulator. Using the relational powers of the database management software, reports will be generated identifying the impact of reference plant changes on the operation of the simulator. These reports can then be evaluated in terms of training needs to determine if changes are required for the simulator. If a change is authorized, the CMS will track the change through to its resolution and then incorporate the change into the simulator design database
Ab initio theory for current-induced molecular switching: Melamine on Cu(001)
Ohto, Tatsuhiko
2013-05-28
Melamine on Cu(001) is mechanically unstable under the current of a scanning tunneling microscope tip and can switch among configurations. However, these are not equally accessible, and the switching critical current depends on the bias polarity. In order to explain such rich phenomenology, we have developed a scheme to evaluate the evolution of the reaction paths and activation barriers as a function of bias, which is rooted in the nonequilibrium Green\\'s function method implemented within density functional theory. This, combined with the calculation of the inelastic electron tunneling spectroscopy signal, allows us to identify the vibrational modes promoting the observed molecular conformational changes. Finally, once our ab initio results are used within a resonance model, we are able to explain the details of the switching behavior, such as its dependence on the bias polarity, and the noninteger power relation between the reaction rate constants and both the bias voltage and the electric current. © 2013 American Physical Society.
Ab initio theory for current-induced molecular switching: Melamine on Cu(001)
Ohto, Tatsuhiko; Rungger, Ivan; Yamashita, Koichi; Nakamura, Hisao; Sanvito, Stefano
2013-01-01
Melamine on Cu(001) is mechanically unstable under the current of a scanning tunneling microscope tip and can switch among configurations. However, these are not equally accessible, and the switching critical current depends on the bias polarity. In order to explain such rich phenomenology, we have developed a scheme to evaluate the evolution of the reaction paths and activation barriers as a function of bias, which is rooted in the nonequilibrium Green's function method implemented within density functional theory. This, combined with the calculation of the inelastic electron tunneling spectroscopy signal, allows us to identify the vibrational modes promoting the observed molecular conformational changes. Finally, once our ab initio results are used within a resonance model, we are able to explain the details of the switching behavior, such as its dependence on the bias polarity, and the noninteger power relation between the reaction rate constants and both the bias voltage and the electric current. © 2013 American Physical Society.
Ground state analytical ab initio intermolecular potential for the Cl2-water system
International Nuclear Information System (INIS)
Hormain, Laureline; Monnerville, Maurice; Toubin, Céline; Duflot, Denis; Pouilly, Brigitte; Briquez, Stéphane; Bernal-Uruchurtu, Margarita I.; Hernández-Lamoneda, Ramón
2015-01-01
The chlorine/water interface is of crucial importance in the context of atmospheric chemistry. Modeling the structure and dynamics at this interface requires an accurate description of the interaction potential energy surfaces. We propose here an analytical intermolecular potential that reproduces the interaction between the Cl 2 molecule and a water molecule. Our functional form is fitted to a set of high level ab initio data using the coupled-cluster single double (triple)/aug-cc-p-VTZ level of electronic structure theory for the Cl 2 − H 2 O complex. The potential fitted to reproduce the three minima structures of 1:1 complex is validated by the comparison of ab initio results of Cl 2 interacting with an increasing number of water molecules. Finally, the model potential is used to study the physisorption of Cl 2 on a perfectly ordered hexagonal ice slab. The calculated adsorption energy, in the range 0.27 eV, shows a good agreement with previous experimental results
Ab initio lattice stability of fcc and hcp Fe-Mn random alloys
International Nuclear Information System (INIS)
Gebhardt, T; Music, D; Hallstedt, B; Schneider, J M; Ekholm, M; Abrikosov, I A; Vitos, L
2010-01-01
We have studied the lattice stability of face centred cubic (fcc) versus hexagonal close packed (hcp) Fe-Mn random alloys using ab initio calculations. In the calculations we considered the antiferromagnetic order of local moments, which for fcc alloys models the magnetic configuration of this phase at room temperature (below its Neel temperature) as well as their complete disorder, corresponding to paramagnetic fcc and hcp alloys. For both cases, the results are consistent with our thermodynamic calculations, obtained within the Calphad approach. For the room temperature magnetic configuration, the cross-over of the total energies of the hcp phase and the fcc phase of Fe-Mn alloys is at the expected Mn content, whereas for the magnetic configuration above the fcc Neel temperature, the hcp lattice is more stable within the whole composition range studied. The increase of the total energy difference between hcp and antiferromagnetic fcc due to additions of Mn as well as the stabilizing effect of antiferromagnetic ordering on the fcc phase are well displayed. These results are of relevance for understanding the deformation mechanisms of these random alloys.
Ab initio lattice stability of fcc and hcp Fe-Mn random alloys
Energy Technology Data Exchange (ETDEWEB)
Gebhardt, T; Music, D; Hallstedt, B; Schneider, J M [Materials Chemistry, RWTH Aachen University, D-52056 Aachen (Germany); Ekholm, M; Abrikosov, I A [Department of Physics, Chemistry and Biology (IFM), Linkoeping University, SE-581 83 Linkoeping (Sweden); Vitos, L, E-mail: gebhardt@mch.rwth-aachen.d [Department of Materials Science and Engineering, Applied Materials Physics, oyal Institute of Technology, SE-10044 Stockholm (Sweden)
2010-07-28
We have studied the lattice stability of face centred cubic (fcc) versus hexagonal close packed (hcp) Fe-Mn random alloys using ab initio calculations. In the calculations we considered the antiferromagnetic order of local moments, which for fcc alloys models the magnetic configuration of this phase at room temperature (below its Neel temperature) as well as their complete disorder, corresponding to paramagnetic fcc and hcp alloys. For both cases, the results are consistent with our thermodynamic calculations, obtained within the Calphad approach. For the room temperature magnetic configuration, the cross-over of the total energies of the hcp phase and the fcc phase of Fe-Mn alloys is at the expected Mn content, whereas for the magnetic configuration above the fcc Neel temperature, the hcp lattice is more stable within the whole composition range studied. The increase of the total energy difference between hcp and antiferromagnetic fcc due to additions of Mn as well as the stabilizing effect of antiferromagnetic ordering on the fcc phase are well displayed. These results are of relevance for understanding the deformation mechanisms of these random alloys.
Ab initio calculation of the electronic absorption spectrum of liquid water
International Nuclear Information System (INIS)
Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa
2014-01-01
The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase
Phonocatalysis. An ab initio simulation experiment
Directory of Open Access Journals (Sweden)
Kwangnam Kim
2016-06-01
Full Text Available Using simulations, we postulate and show that heterocatalysis on large-bandgap semiconductors can be controlled by substrate phonons, i.e., phonocatalysis. With ab initio calculations, including molecular dynamic simulations, the chemisorbed dissociation of XeF6 on h-BN surface leads to formation of XeF4 and two surface F/h-BN bonds. The reaction pathway and energies are evaluated, and the sorption and reaction emitted/absorbed phonons are identified through spectral analysis of the surface atomic motion. Due to large bandgap, the atomic vibration (phonon energy transfer channels dominate and among them is the match between the F/h-BN covalent bond stretching and the optical phonons. We show that the chemisorbed dissociation (the pathway activation ascent requires absorption of large-energy optical phonons. Then using progressively heavier isotopes of B and N atoms, we show that limiting these high-energy optical phonons inhibits the chemisorbed dissociation, i.e., controllable phonocatalysis.
Study of wide band-gap crystal LiCaAlF6 by IR-reflection spectroscopy and ab initio calculations
International Nuclear Information System (INIS)
Novikova, N.N.; Klimin, S.A.; Mavrin, B.N.
2017-01-01
Polarized IR-reflection spectra and results of ab initio calculations of vibrational and electronic properties of LiCaAlF6 single crystal are presented. It is shown that the crystal band gap is direct. Experimental and theoretical parameters are obtained for dipole-active and all phonons, respectively, including silent modes. Experimental IR-reflection and Raman spectra are well described in the frame of results obtained by ab initio calculations. The peculiarities are discussed concerning the structure of electronic bands, the interatomic interactions, the character of lattice vibrations, and the phonon dispersion.
Configurable software for satellite graphics
Energy Technology Data Exchange (ETDEWEB)
Hartzman, P D
1977-12-01
An important goal in interactive computer graphics is to provide users with both quick system responses for basic graphics functions and enough computing power for complex calculations. One solution is to have a distributed graphics system in which a minicomputer and a powerful large computer share the work. The most versatile type of distributed system is an intelligent satellite system in which the minicomputer is programmable by the application user and can do most of the work while the large remote machine is used for difficult computations. At New York University, the hardware was configured from available equipment. The level of system intelligence resulted almost completely from software development. Unlike previous work with intelligent satellites, the resulting system had system control centered in the satellite. It also had the ability to reconfigure software during realtime operation. The design of the system was done at a very high level using set theoretic language. The specification clearly illustrated processor boundaries and interfaces. The high-level specification also produced a compact, machine-independent virtual graphics data structure for picture representation. The software was written in a systems implementation language; thus, only one set of programs was needed for both machines. A user can program both machines in a single language. Tests of the system with an application program indicate that is has very high potential. A major result of this work is the demonstration that a gigantic investment in new hardware is not necessary for computing facilities interested in graphics.
Configuration studies of LHD plasmas
International Nuclear Information System (INIS)
Okamoto, M.
1997-01-01
Configuration studies are performed on the plasmas of The Large Helical Device (LHD), the construction of which is almost completed at the National Institute for Fusion Science. The LHD has flexibility as an experimental device and can have various configurations by changing the poloidal magnetic fields, the pitch of the helical coils (pitch parameter), and the ratio of currents flowing in the two helical coils. Characteristics of the plasma are investigated for the standard configuration, the change in the pitch parameter, and the helical axis configuration
Configuration studies of LHD plasmas
Energy Technology Data Exchange (ETDEWEB)
Okamoto, Masao
1997-03-01
Configuration studies are performed on the plasmas of The Large Helical Device (LHD), the construction of which is almost completed at the National Institute for Fusion Science. The LHD has flexibility as an experimental device and can have various configurations by changing the poloidal magnetic fields, the pitch of the helical coils (pitch parameter), and the ratio of currents flowing in the two helical coils. Characteristics of the plasma are investigated for the standard configuration, the change in the pitch parameter, and the helical axis configuration. (author)
Configuration space Faddeev calculations
International Nuclear Information System (INIS)
Payne, G.L.; Klink, W.H.; Polyzou, W.N.
1989-01-01
The detailed study of few-body systems provides one of the most effective means for studying nuclear physics at subnucleon distance scales. For few-body systems the model equations can be solved numerically with errors less than the experimental uncertainties. We have used such systems to investigate the size of relativistic effects, the role of meson-exchange currents, and the importance of quark degrees of freedom in the nucleus. Complete calculations for momentum-dependent potentials have been performed, and the properties of the three-body bound state for these potentials have been studied. Few-body calculations of the electromagnetic form factors of the deuteron and pion have been carried out using a front-form formulation of relativistic quantum mechanics. The decomposition of the operators transforming convariantly under the Poincare group into kinematical and dynamical parts has been studies. New ways for constructing interactions between particles, as well as interactions which lead to the production of particles, have been constructed in the context of a relativistic quantum mechanics. To compute scattering amplitudes in a nonperturbative way, classes of operators have been generated out of which the phase operator may be constructed. Finally, we have worked out procedures for computing Clebsch-Gordan and Racah coefficients on a computer, as well as giving procedures for dealing with the multiplicity problem
Moradian, Rostam; Behzad, Somayeh; Chegel, Raad
2008-10-01
By using ab initio density functional theory the structural and electronic properties of isolated and bundled (8,0) and (6,6) silicon carbide nanotubes (SiCNTs) are investigated. Our results show that for such small diameter nanotubes the inter-tube interaction causes a very small radial deformation, while band splitting and reduction of the semiconducting energy band gap are significant. We compared the equilibrium interaction energy and inter-tube separation distance of (8,0) SiCNT bundle with (10,0) carbon nanotube (CNT) bundle where they have the same radius. We found that there is a larger inter-tube separation and weaker inter-tube interaction in the (8,0) SiCNT bundle with respect to (10,0) CNT bundle, although they have the same radius.
International Nuclear Information System (INIS)
Moradian, Rostam; Behzad, Somayeh; Chegel, Raad
2008-01-01
By using ab initio density functional theory the structural and electronic properties of isolated and bundled (8,0) and (6,6) silicon carbide nanotubes (SiCNTs) are investigated. Our results show that for such small diameter nanotubes the inter-tube interaction causes a very small radial deformation, while band splitting and reduction of the semiconducting energy band gap are significant. We compared the equilibrium interaction energy and inter-tube separation distance of (8,0) SiCNT bundle with (10,0) carbon nanotube (CNT) bundle where they have the same radius. We found that there is a larger inter-tube separation and weaker inter-tube interaction in the (8,0) SiCNT bundle with respect to (10,0) CNT bundle, although they have the same radius
Vargas-Hernandez, Rodrigo A.; v Krems, Roman
2017-04-01
We examine the application of kernel methods of machine learning for constructing potential energy surfaces (PES) of polyatomic molecules. In particular, we illustrate the application of Bayesian optimization with Gaussian processes as an efficient method for sampling the configuration space of polyatomic molecules. Bayesian optimization relies on two key components: a prior over an objective function and a mechanism for sampling the configuration space. We use Gaussian processes to model the objective function and various acquisition functions commonly used in computer science to quantify the accuracy of sampling. The PES is obtained through an iterative process of adding ab initio points at the locations maximizing the acquisition function and re-trainig the Gaussian process with new points added. We sample different PESs with one or many acquisition functions and show how the acquisition functions affect the construction of the PESs.
International Nuclear Information System (INIS)
Sumant, A. V.; Grierson, D. S.; Carpick, R. W.; Gerbi, J. E.; Carlisle, J. A.; Auciello, O.
2007-01-01
We present a comprehensive study of surface composition and nanotribology for ultrananocrystalline diamond (UNCD) surfaces, including the influence of film nucleation on these properties. We describe a methodology to characterize the underside of the films as revealed by sacrificial etching of the underlying substrate. This enables the study of the morphology and composition resulting from the nucleation and initial growth of the films, as well as the characterization of nanotribological properties which are relevant for applications including micro-/nanoelectromechanical systems. We study the surface chemistry, bonding configuration, and nanotribological properties of both the topside and the underside of the film with synchrotron-based x-ray absorption near-edge structure spectroscopy to identify the bonding state of the carbon atoms, x-ray photoelectron spectroscopy to determine the surface chemical composition, Auger electron spectroscopy to further verify the composition and bonding configuration, and quantitative atomic force microscopy to study the nanoscale topography and nanotribological properties. The films were grown on SiO 2 after mechanically polishing the surface with detonation synthesized nanodiamond powder, followed by ultrasonication in a methanol solution containing additional nanodiamond powder. The sp 2 fraction, morphology, and chemistry of the as-etched underside are distinct from the topside, exhibiting a higher sp 2 fraction, some oxidized carbon, and a smoother morphology. The nanoscale single-asperity work of adhesion between a diamond nanotip and the as-etched UNCD underside is far lower than for a silicon-silicon interface (59.2±2 vs 826±186 mJ/m 2 , respectively). Exposure to atomic hydrogen dramatically reduces nanoscale adhesion to 10.2±0.4 mJ/m 2 , at the level of van der Waals' interactions and consistent with recent ab initio calculations. Friction is substantially reduced as well, demonstrating a direct link between the
Configurational entropy of glueball states
Energy Technology Data Exchange (ETDEWEB)
Bernardini, Alex E., E-mail: alexeb@ufscar.br [Departamento de Física, Universidade Federal de São Carlos, PO Box 676, 13565-905, São Carlos, SP (Brazil); Braga, Nelson R.F., E-mail: braga@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RJ 21941-972 (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [CMCC, Universidade Federal do ABC, UFABC, 09210-580, Santo André (Brazil)
2017-02-10
The configurational entropy of glueball states is calculated using a holographic description. Glueball states are represented by a supergravity dual picture, consisting of a 5-dimensional graviton–dilaton action of a dynamical holographic AdS/QCD model. The configurational entropy is studied as a function of the glueball spin and of the mass, providing information about the stability of the glueball states.
The benefits of ITER for the portfolio of fusion configurations
International Nuclear Information System (INIS)
Goldston, R.J.
2002-01-01
Recent plasma science challenges are 1) what limits the pressure in plasmas? (macroscopic stability), 2) how do hot particles and plasma waves interact in the non-linear regime? (wave-particle interactions), 3) what causes plasma transport? (microscopic turbulence and transport) and 4) how can high-temperature plasma and material surface co-exist? (plasma-material interactions). This fusion plasma science is addressed using a 'Portfolio' of configurations, like Stellarator, Tokamak, Spherical Torus, Reversed Field Pinch, Spheromak, and Field Reversed Configuration. Namely, the scientific results from one configuration benefit progress in others. Recent example of this effort can be found in NCSX, NSTX and RFP. ITER will provide very significant benefits to the development of the full fusion portfolio; macroscopic stability, wave-particle interactions, microturbulence and transport, plasma-material interactions, and technical demonstration of an integrated fusion system. (author)
The benefits of ITER for the portfolio of fusion configurations
Energy Technology Data Exchange (ETDEWEB)
Goldston, R.J. [Princeton Plasma Physics Lab., NJ (United States)
2002-10-01
Recent plasma science challenges are 1) what limits the pressure in plasmas? (macroscopic stability), 2) how do hot particles and plasma waves interact in the non-linear regime? (wave-particle interactions), 3) what causes plasma transport? (microscopic turbulence and transport) and 4) how can high-temperature plasma and material surface co-exist? (plasma-material interactions). This fusion plasma science is addressed using a 'Portfolio' of configurations, like Stellarator, Tokamak, Spherical Torus, Reversed Field Pinch, Spheromak, and Field Reversed Configuration. Namely, the scientific results from one configuration benefit progress in others. Recent example of this effort can be found in NCSX, NSTX and RFP. ITER will provide very significant benefits to the development of the full fusion portfolio; macroscopic stability, wave-particle interactions, microturbulence and transport, plasma-material interactions, and technical demonstration of an integrated fusion system. (author)
Ab Initio Values of the Thermophysical Properties of Helium as Standards
Hurly, John J.; Moldover, Michael R.
2000-01-01
Recent quantum mechanical calculations of the interaction energy of pairs of helium atoms are accurate and some include reliable estimates of their uncertainty. We combined these ab initio results with earlier published results to obtain a helium-helium interatomic potential that includes relativistic retardation effects over all ranges of interaction. From this potential, we calculated the thermophysical properties of helium, i.e., the second virial coefficients, the dilute-gas viscosities, and the dilute-gas thermal conductivities of 3He, 4He, and their equimolar mixture from 1 K to 104 K. We also calculated the diffusion and thermal diffusion coefficients of mixtures of 3He and 4He. For the pure fluids, the uncertainties of the calculated values are dominated by the uncertainties of the potential; for the mixtures, the uncertainties of the transport properties also include contributions from approximations in the transport theory. In all cases, the uncertainties are smaller than the corresponding experimental uncertainties; therefore, we recommend the ab initio results be used as standards for calibrating instruments relying on these thermophysical properties. We present the calculated thermophysical properties in easy-to-use tabular form. PMID:27551630
International Nuclear Information System (INIS)
Marks, N.A.; Goringe, C.M.; McKenzie, D.R.; McCulloch, D.G.; Royal Melbourne Institute of Technology University, Melbourne, VIC
2000-01-01
Full text: Silicon is often described as the prototype covalent material, and when it comes to developing atomistic models this situation is well described by the sentiment that 'everything works for silicon'. The same cannot be said for carbon though, where the interaction potential has always proved problematical, be it with empirical, tight-binding or ab initio methods. Thus far the most decisive contributions to understanding amorphous carbon networks have come from ab initio simulations using the Car-Parrinello method, where the fully quantum treatment of the valence electrons has provided unexpected insight into the local structure. However such first principles calculations are restricted spatially and temporally to systems with approximately 100 atoms and times of order one picosecond. There is therefore demand for less expensive techniques capable of resolving important questions whose solution can only to found with larger simulations running for longer times. In the case of tetrahedral amorphous carbon, such issues include the release of compressive stress through annealing, the origin of graphitic surface layers and the nature of the film growth process and thermal spike. Against this background tight-binding molecular dynamics has emerged as a popular alternative to first principles methods, and our group has an ongoing program to understand film growth using one of the efficient variants of tight-binding. Another direction of research is a new empirical potential based on the Environment Dependent Interaction Potential (EDIP) recently developed for silicon. The EDIP approach represents a promising direction for empirical potentials through its use of ab initio data to motivate the functional form as well as the more conventional parametrisation. By inverting ab initio cohesive energy curves the authors of EDIP arrived at a pair potential expression which reduces to the well-known Stillinger-Weber form at integer coordination, while providing
Byrne, Aaron
2015-12-24
Ab initio, density functional theory (DFT)-based molecular dynamics (MD) has been carried out to investigate the effect of explicit solvation on the dynamical and structural properties of a [bmim][NTf2] room-temperature ionic liquid (RTIL), solvating a N719 sensitizing dye adsorbed onto an anatase titania (101) surface. The effect of explicit dispersion on the properties of this dye-sensitized solar cell (DSC) interface has also been studied. Upon inclusion of dispersion interactions in simulations of the solvated system, the average separation between the cations and anions decreases by 0.6 Å; the mean distance between the cations and the surface decreases by about 0.5 Å; and the layering of the RTIL is significantly altered in the first layer surrounding the dye, with the cation being on average 1.5 Å further from the center of the dye. Inclusion of dispersion effects when a solvent is not explicitly included (to dampen longer-range interactions) can result in unphysical "kinking" of the adsorbed dye\\'s configuration. The inclusion of solvent shifts the HOMO and LUMO levels of the titania surface by +3 eV. At this interface, the interplay between the effects of dispersion and solvation combines in ways that are often subtle, such as enhancement or inhibition of specific vibrational modes. © 2015 American Chemical Society.
Moon, Jiwon; Kim, Joonghan
2016-09-29
Density functional theory (DFT) and ab initio calculations, including spin-orbit coupling (SOC), were performed to investigate the spin-orbit (SO) effect on the molecular properties of tellurium halides, TeXn (X = F, Cl, Br, and I; n = 1, 2, and 4). SOC elongates the Te-X bond and slightly reduces the vibrational frequencies. Consideration of SOC leads to better agreement with experimental values. Møller-Plesset second-order perturbation theory (MP2) seriously underestimates the Te-X bond lengths. In contrast, B3LYP significantly overestimates them. SO-PBE0 and multireference configuration interactions with the Davidson correction (MRCI+Q), which include SOC via a state-interaction approach, give the Te-I bond length of TeI2 that matches the experimental value. On the basis of the calculated thermochemical energy and optimized molecular structure, TeI4 is unlikely to be stable. The use of PBE0 including SOC is strongly recommended for predicting the molecular properties of Te-containing compounds.
Lithium Insertion In Silicon Nanowires: An ab Initio Study
Zhang, Qianfan
2010-09-08
The ultrahigh specific lithium ion storage capacity of Si nanowires (SiNWs) has been demonstrated recently and has opened up exciting opportunities for energy storage. However, a systematic theoretical study on lithium insertion in SiNWs remains a challenge, and as a result, understanding of the fundamental interaction and microscopic dynamics during lithium insertion is still lacking. This paper focuses on the study of single Li atom insertion into SiNWs with different sizes and axis orientations by using full ab initio calculations. We show that the binding energy of interstitial Li increases as the SiNW diameter grows. The binding energies at different insertion sites, which can be classified as surface, intermediate, and core sites, are quite different. We find that surface sites are energetically the most favorable insertion positions and that intermediate sites are the most unfavorable insertion positions. Compared with the other growth directions, the [110] SiNWs with different diameters always present the highest binding energies on various insertion locations, which indicates that [110] SiNWs are more favorable by Li doping. Furthermore, we study Li diffusion inside SiNWs. The results show that the Li surface diffusion has a much higher chance to occur than the surface to core diffusion, which is consistent with the experimental observation that the Li insertion in SiNWs is layer by layer from surface to inner region. After overcoming a large barrier crossing surface-to-intermediate region, the diffusion toward center has a higher possibility to occur than the inverse process. © 2010 American Chemical Society.
Viscous Design of TCA Configuration
Krist, Steven E.; Bauer, Steven X. S.; Campbell, Richard L.
1999-01-01
The goal in this effort is to redesign the baseline TCA configuration for improved performance at both supersonic and transonic cruise. Viscous analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between overset grids. Viscous designs are conducted with OVERDISC, a script which couples OVERFLOW with the Constrained Direct Iterative Surface Curvature (CDISC) inverse design method. The successful execution of any computational fluid dynamics (CFD) based aerodynamic design method for complex configurations requires an efficient method for regenerating the computational grids to account for modifications to the configuration shape. The first section of this presentation deals with the automated regridding procedure used to generate overset grids for the fuselage/wing/diverter/nacelle configurations analysed in this effort. The second section outlines the procedures utilized to conduct OVERDISC inverse designs. The third section briefly covers the work conducted by Dick Campbell, in which a dual-point design at Mach 2.4 and 0.9 was attempted using OVERDISC; the initial configuration from which this design effort was started is an early version of the optimized shape for the TCA configuration developed by the Boeing Commercial Airplane Group (BCAG), which eventually evolved into the NCV design. The final section presents results from application of the Natural Flow Wing design philosophy to the TCA configuration.
Use of ab initio quantum chemical methods in battery technology
Energy Technology Data Exchange (ETDEWEB)
Deiss, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1997-06-01
Ab initio quantum chemistry can nowadays predict physical and chemical properties of molecules and solids. An attempt should be made to use this tool more widely for predicting technologically favourable materials. To demonstrate the use of ab initio quantum chemistry in battery technology, the theoretical energy density (energy per volume of active electrode material) and specific energy (energy per mass of active electrode material) of a rechargeable lithium-ion battery consisting of a graphite electrode and a nickel oxide electrode has been calculated with this method. (author) 1 fig., 1 tab., 7 refs.
Qualtiy Issues in Project configured Supply Chains
DEFF Research Database (Denmark)
Koch, Christian; Larsen, Casper Schultz
by configuration by project. In such a setting creating value for the customers and the enterprises becomes dependent of the ability to organise and coordinate in the supply chains. That the configuration is not always successful can be demonstrated by studying the emergence of failures occurring in the supply...... observation period. These were compiled and analysed. The economic consequences are calculated to be 8% of the production costs. The analysis of relations in the supply chain both show relations to materials and knowledge chains and their interaction. Most of the failures were generated in the knowledge...... stream and then occasionally transform into the material stream. The paper proposes initiatives to strengthen partnerships in supply chains and especially at engineer to order production. The contradiction between the permanent enterprise organisation potentially capable of handling purchasing...
Stable configurations in social networks
Bronski, Jared C.; DeVille, Lee; Ferguson, Timothy; Livesay, Michael
2018-06-01
We present and analyze a model of opinion formation on an arbitrary network whose dynamics comes from a global energy function. We study the global and local minimizers of this energy, which we call stable opinion configurations, and describe the global minimizers under certain assumptions on the friendship graph. We show a surprising result that the number of stable configurations is not necessarily monotone in the strength of connection in the social network, i.e. the model sometimes supports more stable configurations when the interpersonal connections are made stronger.
A Software Configuration Management Course
DEFF Research Database (Denmark)
Asklund, U.; Bendix, Lars Gotfred
2003-01-01
Software Configuration Management has been a big success in research and creation of tools. There are also many vendors in the market of selling courses to companies. However, in the education sector Software Configuration Management has still not quite made it - at least not into the university...... curriculum. It is either not taught at all or is just a minor part of a general course in software engineering. In this paper, we report on our experience with giving a full course entirely dedicated to Software Configuration Management topics and start a discussion of what ideally should be the goal...
Device configuration-management system
International Nuclear Information System (INIS)
Nowell, D.M.
1981-01-01
The Fusion Chamber System, a major component of the Magnetic Fusion Test Facility, contains several hundred devices which report status to the Supervisory Control and Diagnostic System for control and monitoring purposes. To manage the large number of diversity of devices represented, a device configuration management system was required and developed. Key components of this software tool include the MFTF Data Base; a configuration editor; and a tree structure defining the relationships between the subsystem devices. This paper will describe how the configuration system easily accomodates recognizing new devices, restructuring existing devices, and modifying device profile information
Energy Technology Data Exchange (ETDEWEB)
Ventelon, L
2008-11-15
The various methods appropriate for the simulation of dislocations within first-principles calculations have been set up, improved and compared between them. They have been applied to study screw dislocations in body-centered cubic iron using the SIESTA code. A non-degenerate core structure is obtained; its detailed analysis reveals a dilatation effect. Taking it into account in an anisotropic elasticity model, allows explaining the cell-size dependence of the energetics, obtained within the dipole approach. The Peierls potential obtained in ab initio suggests that the metastable core configuration at halfway position in the Peierls barrier, predicted by empirical potential, does not exist. We show how to construct tri-periodic cells optimized to study kinked dislocations. Using empirical potential, we demonstrate the feasibility of ab initio calculations of Peierls stress and kink formation. (author)
International Nuclear Information System (INIS)
Li, Jun; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H.; Xie, Daiqian; Guo, Hua
2015-01-01
We report a permutationally invariant global potential energy surface (PES) for the H + CH 4 system based on ∼63 000 data points calculated at a high ab initio level (UCCSD(T)-F12a/AVTZ) using the recently proposed permutation invariant polynomial-neural network method. The small fitting error (5.1 meV) indicates a faithful representation of the ab initio points over a large configuration space. The rate coefficients calculated on the PES using tunneling corrected transition-state theory and quasi-classical trajectory are found to agree well with the available experimental and previous quantum dynamical results. The calculated total reaction probabilities (J tot = 0) including the abstraction and exchange channels using the new potential by a reduced dimensional quantum dynamic method are essentially the same as those on the Xu-Chen-Zhang PES [Chin. J. Chem. Phys. 27, 373 (2014)
Disordered crystals from first principles I: Quantifying the configuration space
Kühne, Thomas D.; Prodan, Emil
2018-04-01
This work represents the first chapter of a project on the foundations of first-principle calculations of the electron transport in crystals at finite temperatures. We are interested in the range of temperatures, where most electronic components operate, that is, room temperature and above. The aim is a predictive first-principle formalism that combines ab-initio molecular dynamics and a finite-temperature Kubo-formula for homogeneous thermodynamic phases. The input for this formula is the ergodic dynamical system (Ω , G , dP) defining the thermodynamic crystalline phase, where Ω is the configuration space for the atomic degrees of freedom, G is the space group acting on Ω and dP is the ergodic Gibbs measure relative to the G-action. The present work develops an algorithmic method for quantifying (Ω , G , dP) from first principles. Using the silicon crystal as a working example, we find the Gibbs measure to be extremely well characterized by a multivariate normal distribution, which can be quantified using a small number of parameters. The latter are computed at various temperatures and communicated in the form of a table. Using this table, one can generate large and accurate thermally-disordered atomic configurations to serve, for example, as input for subsequent simulations of the electronic degrees of freedom.
Airport Configuration Prediction, Phase I
National Aeronautics and Space Administration — There is presently poor knowledge throughout the National Airspace System (NAS) of the airport configurations currently in use at each airport. There is even less...
Belene NPP project configuration management
International Nuclear Information System (INIS)
Matveev, A.
2009-01-01
The configuration management includes: change identification; change assessment; change coordination; change approval or rejection; Change introduction. One of the main tasks while implementing the above processes is the analysis of the effect of one change upon all the related elements
DEFF Research Database (Denmark)
Cybulski, Hubert; Fernandez, Berta; Henriksen, Christian
2012-01-01
to the axis perpendicular to the phenylacetylene plane and containing the center of mass. The calculated interaction energy is -418.9 cm(-1). To check further the potential, we obtain the rovibrational spectrum of the complex and the results are compared to the available experimental data. (C) 2012 American......We evaluate the phenylacetylene-argon intermolecular potential energy surface by fitting a representative number of ab initio interaction energies to an analytic function. These energies are calculated at a grid of intermolecular geometries, using the CCSD(T) method and the aug-cc-pVDZ basis set...... extended with a series of 3s3p2d1flg midbond functions. The potential is characterized by two equivalent global minima where the Ar atom is located above and below the phenylacetylene plane at a distance of 3.5781 angstrom from the molecular center of mass and at an angle of 9.08 degrees with respect...
Directory of Open Access Journals (Sweden)
Abid Hussain
2017-09-01
Full Text Available Ab initio quantum chemistry calculations have been performed to probe the influence of hydrogen bonding on the electronic structure of hydrogen cyanide (HCN. Our calculations determine the origin of nitrogen-specific Raman spectral features from resonant inelastic X-ray scattering occurring in the presence of a water molecule and an electric dipole field. The similarity of the two interactions in altering the electronic structure of the nitrogen atom differs only in the covalent contributions from the water molecule. The CN stretching mode as a structural probe was also investigated to study the electronic origin of the anomalous frequency shift of the nitrile group when subjected to hydrogen bonding and an electrostatic dipole field. The major changes in the electronic structure of HCN are electrostatic in nature and originate from dipole-dipole interactions. The relative shifts of the CN stretching frequency are in good agreement with those experimentally observed.
SGO: A fast engine for ab initio atomic structure global optimization by differential evolution
Chen, Zhanghui; Jia, Weile; Jiang, Xiangwei; Li, Shu-Shen; Wang, Lin-Wang
2017-10-01
As the high throughout calculations and material genome approaches become more and more popular in material science, the search for optimal ways to predict atomic global minimum structure is a high research priority. This paper presents a fast method for global search of atomic structures at ab initio level. The structures global optimization (SGO) engine consists of a high-efficiency differential evolution algorithm, accelerated local relaxation methods and a plane-wave density functional theory code running on GPU machines. The purpose is to show what can be achieved by combining the superior algorithms at the different levels of the searching scheme. SGO can search the global-minimum configurations of crystals, two-dimensional materials and quantum clusters without prior symmetry restriction in a relatively short time (half or several hours for systems with less than 25 atoms), thus making such a task a routine calculation. Comparisons with other existing methods such as minima hopping and genetic algorithm are provided. One motivation of our study is to investigate the properties of magnetic systems in different phases. The SGO engine is capable of surveying the local minima surrounding the global minimum, which provides the information for the overall energy landscape of a given system. Using this capability we have found several new configurations for testing systems, explored their energy landscape, and demonstrated that the magnetic moment of metal clusters fluctuates strongly in different local minima.
Ab initio study of C14 laves phases in Fe-based systems
Directory of Open Access Journals (Sweden)
Pavlu J.
2012-01-01
Full Text Available Structural properties and energetics of Fe-based C14 Laves phases at various compositions (i.e. Fe2Fe, Fe2X, X2Fe, X2X, where X stands for Si, Cr, Mo, W, Ta were investigated using the pseudopotential VASP (Vienna Ab initio Simulation Package code employing the PAW-PBE (Projector Augmented Wave - Perdew Burke-Ernzerhof pseudopotentials. Full relaxation was performed for all structures studied including the reference states of elemental constituents and the equilibrium structure parameters as well as bulk moduli were found. The structure parameters of experimentally found structures were very well reproduced by our calculations. It was also found that the lattice parameters and volumes of the unit cell decrease with increasing molar fraction of iron. Thermodynamic analysis shows that the Fe2X configurations of Laves phases are more stable than the X2Fe ones. Some of the X2Fe configurations are even unstable with respect to the weighted average of the Laves phases of elemental constituents. Our calculations predict the stability of Fe2Ta. On the other hand, Fe2Mo and Fe2W are slightly unstable (3.19 and 0.68 kJ.mol-1, respectively and hypothetical structures Fe2Cr and Fe2Si are found unstable as well.
Ab initio study of stability and migration of H and He in hcp-Sc
International Nuclear Information System (INIS)
Yang, L; Zu, X T; Peng, S M; Long, X G; Gao, F; Heinisch, H L; Kurtz, R J
2011-01-01
Ab initio calculations based on density functional theory have been performed to determine the relative stabilities and migration of H and He atoms in hcp-Sc. The results show that the formation energy of an interstitial H or He atom is smaller than that of a corresponding substitutional atom. The tetrahedral (T) interstitial position is more stable than an octahedral (O) position for both He and H interstitials. The nudged elastic band method has been used to study the migration of interstitial H and He atoms in hcp-Sc. It is found that the migration energy barriers for H interstitials in hcp-Sc are significantly different from those for He interstitials, but their migration mechanisms are similar. In addition, the formation energies of five different configurations of a H-H pair were determined, revealing that the most stable configuration consists of two H atoms located at the second-neighbor tetrahedral interstitial sites along the hexagonal direction. The formation and relative stabilities of some small He clusters have also been investigated.
Configurational Information as Potentially Negative Entropy: The Triple Helix Model
Directory of Open Access Journals (Sweden)
Loet Leydesdorff
2008-10-01
Full Text Available Configurational information is generated when three or more sources of variance interact. The variations not only disturb each other relationally, but by selecting upon each other, they are also positioned in a configuration. A configuration can be stabilized and/or globalized. Different stabilizations can be considered as second-order variation, and globalization as a second-order selection. The positive manifestations and the negative selections operate upon one another by adding and reducing uncertainty, respectively. Reduction of uncertainty in a configuration can be measured in bits of information. The variables can also be considered as dimensions of the probabilistic entropy in the system(s under study. The configurational information then provides us with a measure of synergy within a complex system. For example, the knowledge base of an economy can be considered as such a synergy in the otherwise virtual (that is, fourth dimension of a regime
Bayesian image restoration, using configurations
Thorarinsdottir, Thordis
2006-01-01
In this paper, we develop a Bayesian procedure for removing noise from images that can be viewed as noisy realisations of random sets in the plane. The procedure utilises recent advances in configuration theory for noise free random sets, where the probabilities of observing the different boundary configurations are expressed in terms of the mean normal measure of the random set. These probabilities are used as prior probabilities in a Bayesian image restoration approach. Estimation of the re...
Koo, Chi-Kin; Wong, Ka-Leung; Lau, Kai-Cheung; Wong, Wai-Yeung; Lam, Michael Hon-Wah
2009-08-03
The bis(diphenylphosphino)methane (dppm)-bridged dinuclear cycloplatinated complex {[Pt(L)](2)(mu-dppm)}(2+) (Pt(2)dppm; HL: 2-phenyl-6-(1H-pyrazol-3-yl)-pyridine) demonstrates interesting reversible "pivot-hinge"-like intramolecular motions in response to the protonation/deprotonation of L. In its protonated "closed" configuration, the two platinum(II) centers are held in position by intramolecular d(8)-d(8) Pt-Pt interaction. In its deprotonated "open" configuration, such Pt-Pt interaction is cleaved. To further understand the mechanism behind this hingelike motion, an analogous dinuclear cycloplatinated complex, {[Pt(L)](2)(mu-dchpm)}(2+) (Pt(2)dchpm) with bis(dicyclohexylphosphino)methane (dchpm) as the bridging ligand, was synthesized. From its protonation/deprotonation responses, it was revealed that aromatic pi-pi interactions between the phenyl moieties of the mu-dppm and the deprotonated pyrazolyl rings of L was essential to the reversible cleavage of the intramolecular Pt-Pt interaction in Pt(2)dppm. In the case of Pt(2)dchpm, spectroscopic and spectrofluorometric titrations as well as X-ray crystallography indicated that the distance between the two platinum(II) centers shrank upon deprotonation, thus causing a redshift in its room-temperature triplet metal-metal-to-ligand charge-transfer emission from 614 to 625 nm. Ab initio calculations revealed the presence of intramolecular hydrogen bonding between the deprotonated and negatively charged 1-pyrazolyl-N moiety and the methylene CH and phenyl C-H of the mu-dppm. The "open" configuration of the deprotonated Pt(2)dppm was estimated to be 19 kcal mol(-1) more stable than its alternative "closed" configuration. On the other hand, the open configuration of the deprotonated Pt(2)dchpm was 6 kcal mol(-1) less stable than its alternative closed configuration.
Network configuration of global R&D networks
DEFF Research Database (Denmark)
Hansen, Zaza Nadja Lee; Srai, Jagjit Singh
2011-01-01
, network configuration of global R&D has tended to focus on strategic elements with limited attention given operational effectiveness, or to interfaces with downstream manufacturing operations. Within OM literature, the drivers of configuration of global networks within, engineering, production, supply...... to R&D networks emerged, e.g. product features were more prominent in R&D networks. Furthermore, the study has shown extensive interaction with other operations, including many downstream manufacturing operations. By extending the OM configuration concepts to the configuration of R&D networks......Companies are increasingly globalising their R&D activities, both within the firms and with external partners, with consequent implications for their interaction with manufacturing operations. Previous research in R&D networks has focused on coordination, governance and support elements. However...
AB INITIO calculations of magneto-optical effects
Czech Academy of Sciences Publication Activity Database
Kuneš, Jan; Oppeneer, P. M.
2002-01-01
Roč. 2, - (2002), s. 141-146 ISSN 1346-7948 R&D Projects: GA AV ČR IAA1010214 Institutional research plan: CEZ:AV0Z1010914 Keywords : electronic structure * ab initio calculation * polar magneto-optical Kerr effect * transitiom metal * uranium intermetallics * CrO 2 Subject RIV: BM - Solid Matter Physics ; Magnetism
Early stage precipitation in aluminum alloys : An ab initio study
Zhang, X.
2017-01-01
Multiscale computational materials science has reached a stage where many complicated phenomena or properties that are of great importance to manufacturing can be predicted or explained. The word “ab initio study” becomes commonplace as the development of density functional theory has enabled the
Ab initio molecular dynamics simulation of laser melting of silicon
Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.
1996-01-01
The method of ab initio molecular dynamics, based on finite temperature density functional theory, is used to simulate laser heating of crystal silicon. We have found that a high concentration of excited electrons dramatically weakens the covalent bond. As a result, the system undergoes a melting
Cyanogen Azide. Ionization Potentials and Ab Initio SCF MO Calculation
DEFF Research Database (Denmark)
Bak, Börge; Jansen, Peter; Stafast, Herbert
1975-01-01
The Ne(I) and He(I) photoelectron(PE) spectra of cyanogen azide, NCN3, have been recorded at high resolution. Their interpretation is achieved by comparison with the PE spectrum of HN3 and an ab initio LCGO SCF MO calculation. Deviations from Koopmans' theorem of quite different magnitudes...
Ab initio study of alanine polypeptide chain twisting
DEFF Research Database (Denmark)
Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.
2006-01-01
chains. These particular degrees of freedom are essential for the characterization of the proteins folding process. Calculations have been carried out within the ab initio theoretical framework based on the density functional theory and accounting for all the electrons in the system. We have determined...
Ab initio simulation of dislocation cores in metals
International Nuclear Information System (INIS)
Ventelon, L.
2008-01-01
In the framework of the multi scale simulation of metals and alloys plasticity, the aim of this study is to develop a methodology of ab initio dislocations study and to apply it to the [111] screw dislocation in the bc iron. (A.L.B.)
Young Modulus of Crystalline Polyethylene from ab Initio Molecular Dynamics
Hageman, J.C.L.; Meier, Robert J.; Heinemann, M.; Groot, R.A. de
1997-01-01
The Young modulus for crystalline polyethylene is calculated using ab initio molecular dynamics based on density functional theory in the local density approximation (DFT-LDA). This modulus, which can be seen as the ultimate value for the Young modulus of polyethylene fibers, is found to be 334 GPa.
Ab initio electronic properties of dual phosphorus monolayers in silicon
DEFF Research Database (Denmark)
Drumm, Daniel W.; Per, Manolo C.; Budi, Akin
2014-01-01
In the midst of the epitaxial circuitry revolution in silicon technology, we look ahead to the next paradigm shift: effective use of the third dimension - in particular, its combination with epitaxial technology. We perform ab initio calculations of atomically thin epitaxial bilayers in silicon...
Quantifying transition voltage spectroscopy of molecular junctions: Ab initio calculations
DEFF Research Database (Denmark)
Chen, Jingzhe; Markussen, Troels; Thygesen, Kristian Sommer
2010-01-01
Transition voltage spectroscopy (TVS) has recently been introduced as a spectroscopic tool for molecular junctions where it offers the possibility to probe molecular level energies at relatively low bias voltages. In this work we perform extensive ab initio calculations of the nonlinear current...
Ab initio and kinetic modeling studies of formic acid oxidation
DEFF Research Database (Denmark)
Marshall, Paul; Glarborg, Peter
2015-01-01
A detailed chemical kinetic model for oxidation of formic acid (HOCHO) in flames has been developed, based on theoretical work and data from literature. Ab initio calculations were used to obtain rate coefficients for reactions of HOCHO with H, O, and HO2. Modeling predictions with the mechanism...
Ab initio calculations and modelling of atomic cluster structure
DEFF Research Database (Denmark)
Solov'yov, Ilia; Lyalin, Andrey G.; Solov'yov, Andrey V.
2004-01-01
The optimized structure and electronic properties of small sodium and magnesium clusters have been investigated using it ab initio theoretical methods based on density-functional theory and post-Hartree-Fock many-body perturbation theory accounting for all electrons in the system. A new theoretical...
Bicanonical ab Initio Molecular Dynamics for Open Systems.
Frenzel, Johannes; Meyer, Bernd; Marx, Dominik
2017-08-08
Performing ab initio molecular dynamics simulations of open systems, where the chemical potential rather than the number of both nuclei and electrons is fixed, still is a challenge. Here, drawing on bicanonical sampling ideas introduced two decades ago by Swope and Andersen [ J. Chem. Phys. 1995 , 102 , 2851 - 2863 ] to calculate chemical potentials of liquids and solids, an ab initio simulation technique is devised, which introduces a fictitious dynamics of two superimposed but otherwise independent periodic systems including full electronic structure, such that either the chemical potential or the average fractional particle number of a specific chemical species can be kept constant. As proof of concept, we demonstrate that solvation free energies can be computed from these bicanonical ab initio simulations upon directly superimposing pure bulk water and the respective aqueous solution being the two limiting systems. The method is useful in many circumstances, for instance for studying heterogeneous catalytic processes taking place on surfaces where the chemical potential of reactants rather than their number is controlled and opens a pathway toward ab initio simulations at constant electrochemical potential.
Ab initio calculations of mechanical properties: Methods and applications
Czech Academy of Sciences Publication Activity Database
Pokluda, J.; Černý, Miroslav; Šob, Mojmír; Umeno, Y.
2015-01-01
Roč. 73, AUG (2015), s. 127-158 ISSN 0079-6425 R&D Projects: GA ČR(CZ) GAP108/12/0311 Institutional support: RVO:68081723 Keywords : Ab initio methods * Elastic moduli * Intrinsic hardness * Stability analysis * Theoretical strength * Intrinsic brittleness/ductility Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 31.083, year: 2015
The Properties of Some Simple Covalent Hydrides: An Ab Initio ...
African Journals Online (AJOL)
Some properties of the monomeric binary hydrides of the elements of the first two rows of the periodic table have been determined using ab initio molecular orbital theory. The properties in question are the energetic, structural, electronic, topological and vibrational characteristics. In general, a gradual convergence towards ...
Hydrogen Bond Dynamics in Aqueous Solutions: Ab initio Molecular ...
Indian Academy of Sciences (India)
Rate equation for the decay of CHB(t) · Definition of Hydrogen Bonds · Results of Molecular Dynamics · Dynamics of anion-water and water-water hydrogen bonds · Structural relaxation of anion-water & water-water H-bonds · Ab initio Molecular Dynamics : · Slide 14 · Dynamics of hydrogen bonds : CPMD results · Slide 16.
Ab initio transport across bismuth selenide surface barriers
Narayan, Awadhesh; Rungger, Ivan; Droghetti, Andrea; Sanvito, Stefano
2014-01-01
© 2014 American Physical Society. We investigate the effect of potential barriers in the form of step edges on the scattering properties of Bi2Se3(111) topological surface states by means of large-scale ab initio transport simulations. Our results
Ab initio investigation of superconductivity in orthorhombic MgPtSi
Energy Technology Data Exchange (ETDEWEB)
Tütüncü, H.M., E-mail: tutuncu@sakarya.edu.tr [Sakarya Üniversitesi, Fen-Edebiyat Fakültesi, Fizik Bölümü, 54187, Adapazarı (Turkey); Sakarya Üniversitesi, BIMAYAM Biyomedikal, Manyetik ve Yarıiletken Malzemeler Araştırma Merkezi, 54187, Adapazarı (Turkey); Ertuǧrul Karaca [Sakarya Üniversitesi, Fen-Edebiyat Fakültesi, Fizik Bölümü, 54187, Adapazarı (Turkey); Srivastava, G.P. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom)
2016-07-15
We have performed an ab initio study of electronic, vibrational and superconducting properties of the orthorhombic MgPtSi by employing the density functional theory, a linear-response formalism, and the plane-wave pseudopotential method. Our electronic results suggest that the density of states at the Fermi level is primarily contributed by Pt 5d and Si 3p states with much smaller contribution from Mg electronic states. Phonon anomalies have been found for all three acoustic branches. Due to these phonon anomalies, the acoustic branches make large contributions to the average electron-phonon coupling parameter. From the Eliashberg spectral function, the value of average electron-phonon coupling parameter is found to 0.707. Using this value, the superconducting critical temperature is obtained to be 2.4 K, in excellent accordance with its experimental value of 2.5 K. - Highlights: • The electronic structure of MgPtSi is studied using ab initio pseudopotential method. • Phonons and electron–phonon interaction in MgPtSi are studied using a linear response theory. • The acoustic phonon modes couple more strongly with electrons. • The value of λ is found to be 0.707 which shows that MgPtSi is a conventional honon-mediated superconductor. • The calculated T{sub c} of 2.4 K is in excellent accordance with its experimental value of 2.5 K.
Ab initio results for intermediate-mass, open-shell nuclei
Baker, Robert B.; Dytrych, Tomas; Launey, Kristina D.; Draayer, Jerry P.
2017-01-01
A theoretical understanding of nuclei in the intermediate-mass region is vital to astrophysical models, especially for nucleosynthesis. Here, we employ the ab initio symmetry-adapted no-core shell model (SA-NCSM) in an effort to push first-principle calculations across the sd-shell region. The ab initio SA-NCSM's advantages come from its ability to control the growth of model spaces by including only physically relevant subspaces, which allows us to explore ultra-large model spaces beyond the reach of other methods. We report on calculations for 19Ne and 20Ne up through 13 harmonic oscillator shells using realistic interactions and discuss the underlying structure as well as implications for various astrophysical reactions. This work was supported by the U.S. NSF (OCI-0904874 and ACI -1516338) and the U.S. DOE (DE-SC0005248), and also benefitted from the Blue Waters sustained-petascale computing project and high performance computing resources provided by LSU.
Ab Initio periodic Hartree-Fock study of group IA cations in ANA-type zeolites
International Nuclear Information System (INIS)
Anchell, J.L.; White, J.C.; Thompson, M.R.; Hess, A.C.
1994-01-01
This study investigates the electronic structure of Group IA cations intercalated into zeolites with the analcime (ANA) framework using ab initio periodic Hartree-Fock theory. The purpose of the study is to gain a better understanding of the role played by electron-donating species in zeolites in general, with specific applications to materials that have been suggested as storage matrices for radioactive materials. The effect of the intercalated species (Na, K, Rb, and Cs) on the electronic structure of the zeolite is presented on the basis of an analysis of the total and projected density of states, Mulliken charges, and charge density differences. The results of those analyses indicate that, relative to a charge neutral atomic state, the Group IA species donate an electron to the zeolite lattice and interact most strongly with the s and p atomic states of oxygen as the species are moved through the lattice. In addition, estimates of the self-diffusion constants of Na, K, Rb, and Cs based upon a one-dimensional diffusion model parameterized from the ab initio total energy data will be presented. 24 refs., 8 figs., 4 tabs
Directory of Open Access Journals (Sweden)
Vadym V. Kulish
2017-12-01
Full Text Available Rational design of active electrode materials is important for the development of advanced lithium and post-lithium batteries. Ab initio modeling can provide mechanistic understanding of the performance of prospective materials and guide design. We review our recent comparative ab initio studies of lithium, sodium, potassium, magnesium, and aluminum interactions with different phases of several actively experimentally studied electrode materials, including monoelemental materials carbon, silicon, tin, and germanium, oxides TiO2 and VxOy as well as sulphur-based spinels MS2 (M = transition metal. These studies are unique in that they provided reliable comparisons, i.e., at the same level of theory and using the same computational parameters, among different materials and among Li, Na, K, Mg, and Al. Specifically, insertion energetics (related to the electrode voltage and diffusion barriers (related to rate capability, as well as phononic effects, are compared. These studies facilitate identification of phases most suitable as anode or cathode for different types of batteries. We highlight the possibility of increasing the voltage, or enabling electrochemical activity, by amorphization and p-doping, of rational choice of phases of oxides to maximize the insertion potential of Li, Na, K, Mg, Al, as well as of rational choice of the optimum sulfur-based spinel for Mg and Al insertion, based on ab initio calculations. Some methodological issues are also addressed, including construction of effective localized basis sets, applications of Hubbard correction, generation of amorphous structures, and the use of a posteriori dispersion corrections.
International Nuclear Information System (INIS)
Ng, T Y; Yeak, S H; Liew, K M
2008-01-01
A multiscale technique is developed that couples empirical molecular dynamics (MD) and ab initio density functional theory (DFT). An overlap handshaking region between the empirical MD and ab initio DFT regions is formulated and the interaction forces between the carbon atoms are calculated based on the second-generation reactive empirical bond order potential, the long-range Lennard-Jones potential as well as the quantum-mechanical DFT derived forces. A density of point algorithm is also developed to track all interatomic distances in the system, and to activate and establish the DFT and handshaking regions. Through parallel computing, this multiscale method is used here to study the dynamic behavior of single-walled carbon nanotubes (SWCNTs) under asymmetrical axial compression. The detection of sideways buckling due to the asymmetrical axial compression is reported and discussed. It is noted from this study on SWCNTs that the MD results may be stiffer compared to those with electron density considerations, i.e. first-principle ab initio methods
International Nuclear Information System (INIS)
Hiyama, M.; Kosugi, N.
2004-01-01
Full text: Ab initio R-matrix/MQDT approach, which is a combination of ab initio R-matrix techniques and the multi channel quantum defect theory (MQDT), has recently been developed by one of the present authors (MH) and Child, to successfully obtain the potential energy curves of Rydberg states converging to not only the lowest but also the higher ionized states. This approach is also applied to estimate the valence state interaction with Rydberg and continuum (ionization) channels. Very recently we have made an original ab initio polyatomic R-matrix/MQDT program package, GSCF4R based on Gaussian type basis functions for the bound and continuum states, to extensively study molecular excitation and ionization in the X-ray region as well as in the VUV region. We are going to report the results for core excitation and ionization of diatomic molecules such as NO and O 2 to show that the R-matrix/MQDT method is indispensable to describe the core-to-Rydberg states with the higher quantum number and the continuum states. These results lead us to the conclusion that the close-coupling approximation augmented with the correlation term within the R-matrix/MQDT formalism is powerful to calculate the Rydberg-valence mixing and the interchannel coupling between several core-ionized states
International Nuclear Information System (INIS)
Masrour, R.; Jabar, A.; Hlil, E.K.; Hamedoun, M.; Benyoussef, A.; Hourmatallah, A.; Rezzouk, A.; Bouslykhane, K.; Benzakour, N.
2017-01-01
Self-consistent ab initio calculations, based on Density Functional Theory (DFT) approach and using Full potential Linear Augmented Plane Wave (FLAPW) method, are performed to investigate both electronic and magnetic properties of the Mn 2 NiAl. Magnetic moment considered to lie along (001) axes are computed. Obtained data from ab initio calculations are used as input for Monte Carlo simulations to compute other magnetic parameters. Also, the magnetic properties of Mn 2 NiAl are studied using the Monte Carlo simulations. The variation of magnetization and magnetic susceptibility with the reduced temperature of Mn 2 NiAl are investigated. The transition temperature of this system is deduced for different values exchange interaction and crystal field. The thermal total magnetization has been obtained, and the magnetic hysteresis cycle is established. The total magnetic moment is superior to those obtained by the other method and is mainly determined by the antiparallel aligned Mn I , Mn II and Ni spin moments. The superparamagnetic phase is found at the neighborhood of transition temperature. - Highlights: • Ab initio calculations are used to study magnetic and electronic properties of Mn 2 NiX. • The transition temperature of Mn 2 NiX is established. • The magnetic hysteresis cycle of M n2 NiX (X = Al, Ga, In, Sn) is deduced. • The magnetic coercive field of Mn 2 NiX (X = Al, Ga, In, Sn) is given.
Roy, Soumendra K.; Jian, Tian; Lopez, Gary V.; Li, Wei-Li; Su, Jing; Bross, David H.; Peterson, Kirk A.; Wang, Lai-Sheng; Li, Jun
2016-02-01
The observation of the gaseous UFO- anion is reported, which is investigated using photoelectron spectroscopy and relativisitic ab initio calculations. Two strong photoelectron bands are observed at low binding energies due to electron detachment from the U-7sσ orbital. Numerous weak detachment bands are also observed due to the strongly correlated U-5f electrons. The electron affinity of UFO is measured to be 1.27(3) eV. High-level relativistic quantum chemical calculations have been carried out on the ground state and many low-lying excited states of UFO to help interpret the photoelectron spectra and understand the electronic structure of UFO. The ground state of UFO- is linear with an O-U-F structure and a 3H4 spectral term derived from a U 7sσ25fφ15fδ1 electron configuration, whereas the ground state of neutral UFO has a 4H7/2 spectral term with a U 7sσ15fφ15fδ1 electron configuration. Strong electron correlation effects are found in both the anionic and neutral electronic configurations. In the UFO neutral, a high density of electronic states with strong configuration mixing is observed in most of the scalar relativistic and spin-orbit coupled states. The strong electron correlation, state mixing, and spin-orbit coupling of the electronic states make the excited states of UFO very challenging for accurate quantum chemical calculations.
Knowledge Based Product Configuration - a documentatio tool for configuration projects
DEFF Research Database (Denmark)
Hvam, Lars; Malis, Martin
2003-01-01
. A lot of knowledge isput into these systems and many domain experts are involved. This calls for an effective documentation system in order to structure this knowledge in a way that fits to the systems. Standard configuration systems do not support this kind of documentation. The chapter deals...... with the development of a Lotus Notes application that serves as a knowledge based documentation tool for configuration projects. A prototype has been developed and tested empirically in an industrial case-company. It has proved to be a succes....