WorldWideScience

Sample records for initiated metal induced

  1. Visible Light-Induced Metal Free Surface Initiated Atom Transfer Radical Polymerization of Methyl Methacrylate on SBA-15

    Directory of Open Access Journals (Sweden)

    Liang Ma

    2017-02-01

    Full Text Available Surface-initiated atom transfer radical polymerization (SI-ATRP is one of the most versatile techniques to modify the surface properties of materials. Recent developed metal-free SI-ATRP makes such techniques more widely applicable. Herein photo-induced metal-free SI-ATRP of methacrylates, such as methyl methacrylate, N-isopropanyl acrylamide, and N,N-dimethylaminoethyl methacrylate, on the surface of SBA-15 was reported to fabricate organic-inorganic hybrid materials. A SBA-15-based polymeric composite with an adjustable graft ratio was obtained. The structure evolution during the SI-ATRP modification of SBA-15 was monitored and verified by FT-IR, XPS, TGA, BET, and TEM. The obtained polymeric composite showed enhanced adsorption ability for the model compound toluene in aqueous conditions. This procedure provides a low-cost, readily available, and easy modification method to synthesize polymeric composites without the contamination of metal.

  2. Laser-Induced Breakdown Spectroscopy for Qualitative Analysis of Metals in Simulated Martian Soils

    Science.gov (United States)

    Mowry, Curtis; Milofsky, Rob; Collins, William; Pimentel, Adam S.

    2017-01-01

    This laboratory introduces students to laser-induced breakdown spectroscopy (LIBS) for the analysis of metals in soil and rock samples. LIBS employs a laser-initiated spark to induce electronic excitation of metal atoms. Ensuing atomic emission allows for qualitative and semiquantitative analysis. The students use LIBS to analyze a series of…

  3. The kinetic and mechanical aspects of hydrogen-induced failure in metals. Ph.D. Thesis, 1971

    Science.gov (United States)

    Nelson, H. G.

    1972-01-01

    Premature hydrogen-induced failure observed to occur in many metal systems involves three stages of fracture: (1) crack initiation, (2) stable slow crack growth, and (3) unstable rapid crack growth. The presence of hydrogen at some critical location on the metal surface or within the metal lattice was shown to influence one or both of the first two stages of brittle fracture but has a negligible effect on the unstable rapid crack growth stage. The relative influence of the applied parameters of time, temperature, etc., on the propensity of a metal to exhibit hydrogen induced premature failure was investigated.

  4. STAR FORMATION AT VERY LOW METALLICITY. V. THE GREATER IMPORTANCE OF INITIAL CONDITIONS COMPARED TO METALLICITY THRESHOLDS

    International Nuclear Information System (INIS)

    Jappsen, Anne-Katharina; Low, Mordecai-Mark Mac; Glover, Simon C. O.; Klessen, Ralf S.; Kitsionas, Spyridon

    2009-01-01

    The formation of the first stars out of metal-free gas appears to result in stars at least an order of magnitude more massive than in the present-day case. We here consider what controls the transition from a primordial to a modern initial mass function. It has been proposed that this occurs when effective metal line cooling occurs at a metallicity threshold of Z/Z sun > 10 -3.5 . We study the influence of low levels of metal enrichment on the cooling and collapse of initially ionized gas in small protogalactic halos using three-dimensional, smoothed particle hydrodynamics simulations with particle splitting. Our initial conditions represent protogalaxies forming within a previously ionized H II region that has not yet had time to cool and recombine. These differ considerably from those used in simulations predicting a metallicity threshold, where the gas was initially cold and only partially ionized. In the centrally condensed potential that we study here, a wide variety of initial conditions for the gas yields a monolithic central collapse. Our models show no fragmentation during collapse to number densities as high as 10 5 cm -3 , for metallicities reaching as high as 10 -1 Z sun , far above the threshold suggested by previous work. Rotation allows for the formation of gravitationally stable gas disks over large fractions of the local Hubble time. Turbulence slows the growth of the central density slightly, but both spherically symmetric and turbulent initial conditions collapse and form a single sink particle. We therefore argue that fragmentation at moderate density depends on the initial conditions for star formation more than on the metal abundances present. The actual initial conditions to be considered still need to be determined in detail by observation and modeling of galaxy formation. Metal abundance may still drive fragmentation at very high densities due to dust cooling, perhaps giving an alternative metallicity threshold.

  5. Effect of the critical size of initial voids on stress-induced migration

    International Nuclear Information System (INIS)

    Aoyagi, Minoru

    2004-01-01

    The stress-induced migration phenomenon is one of the problems related to the reliability of metal interconnections in semiconductor devices. This phenomenon causes voids and fractures in interconnections. The basic feature of this phenomenon is vacancy migration to minute initial voids. Expanding initial voids grow into larger voids and fractures. The purpose of this work is to theoretically clarify the effects of residual thermal stress and void surface stress on the behavior of the initial voids which exist immediately after a passivation process. Using a spherical metal sample with a spherical void under external stress, vacancy absorption or emission was investigated between the void surface and the sample surface. The behavior of vacancies and atoms was also investigated in interconnections under residual thermal stress. We show that the void or sample surface becomes a vacancy sink or source, depending on the mutual relationship between the surface stress due to the surface-free energy and the residual thermal stress. We also reveal that the initial voids, which exist immediately after a passivation process, grow into larger voids and fractures when the size of the initial voids exceeds the critical size. If the size of the initial void can be controlled to below the critical size, voids and fractures do not occur

  6. Specificity in liquid metal induced embrittlement

    CSIR Research Space (South Africa)

    Fernandes, PJL

    1996-12-01

    Full Text Available One of the most intriguing features of liquid metal induced embrittlement (LMIE) is the observation that some liquid metal-solid metal couples are susceptible to embrittlement, while others appear to be immune. This is referred to as the specificity...

  7. Flow-induced elastic anisotropy of metallic glasses

    International Nuclear Information System (INIS)

    Sun, Y.H.; Concustell, A.; Carpenter, M.A.; Qiao, J.C.; Rayment, A.W.; Greer, A.L.

    2016-01-01

    As-cast bulk metallic glasses are isotropic, but anisotropy can be induced by thermomechanical treatments. For example, the diffraction halo in the structure function S(Q) observed in transmission becomes elliptical (rather than circular) after creep in uniaxial tension or compression. Published studies associate this with frozen-in anelastic strain and bond-orientational anisotropy. Results so far are inconsistent on whether viscoplastic flow of metallic glasses can induce anisotropy. Preliminary diffraction data suggest that the anisotropy, if any, is very low, while measurements of the elastic properties suggest that there is induced anisotropy, opposite in sign to that due to anelastic strain. We study three bulk metallic glasses, Ce 65 Al 10 Cu 20 Co 5 , La 55 Ni 10 Al 35 , and Pd 40 Ni 30 Cu 10 P 20 . By using resonant ultrasound spectroscopy to determine the full elasticity tensor, the effects of relaxation and rejuvenation can be reliably separated from uniaxial anisotropy (of either sign). The effects of viscoplastic flow in tension are reported for the first time. We find that viscoplastic flow of bulk metallic glasses, particularly in tension, can induce significant anisotropy that is distinct from that associated with frozen-in anelastic strain. The conditions for inducing such anisotropy are explored in terms of the Weissenberg number (ratio of relaxation times for primary relaxation and for shear strain rate). There is a clear need for further work to characterize the structural origins of flow-induced anisotropy and to explore the prospects for improved mechanical and other properties through induced anisotropy.

  8. Heavy Metal-Induced Oxidative DNA Damage in Earthworms: A Review

    Directory of Open Access Journals (Sweden)

    Takeshi Hirano

    2010-01-01

    Full Text Available Earthworms can be used as a bio-indicator of metal contamination in soil, Earlier reports claimed the bioaccumulation of heavy metals in earthworm tissues, while the metal-induced mutagenicity reared in contaminated soils for long duration. But we examined the metal-induced mutagenicity in earthworms reared in metal containing culture beddings. In this experiment we observed the generation of 8-oxoguanine (8-oxo-Gua in earthworms exposed to cadmium and nickel in soil. 8-oxo-Gua is a major premutagenic form of oxidative DNA damage that induces GC-to-TA point mutations, leading to carcinogenesis.

  9. Parkinson Disease Protein DJ-1 Binds Metals and Protects against Metal-induced Cytotoxicity*

    Science.gov (United States)

    Björkblom, Benny; Adilbayeva, Altynai; Maple-Grødem, Jodi; Piston, Dominik; Ökvist, Mats; Xu, Xiang Ming; Brede, Cato; Larsen, Jan Petter; Møller, Simon Geir

    2013-01-01

    The progressive loss of motor control due to reduction of dopamine-producing neurons in the substantia nigra pars compacta and decreased striatal dopamine levels are the classically described features of Parkinson disease (PD). Neuronal damage also progresses to other regions of the brain, and additional non-motor dysfunctions are common. Accumulation of environmental toxins, such as pesticides and metals, are suggested risk factors for the development of typical late onset PD, although genetic factors seem to be substantial in early onset cases. Mutations of DJ-1 are known to cause a form of recessive early onset Parkinson disease, highlighting an important functional role for DJ-1 in early disease prevention. This study identifies human DJ-1 as a metal-binding protein able to evidently bind copper as well as toxic mercury ions in vitro. The study further characterizes the cytoprotective function of DJ-1 and PD-mutated variants of DJ-1 with respect to induced metal cytotoxicity. The results show that expression of DJ-1 enhances the cells' protective mechanisms against induced metal toxicity and that this protection is lost for DJ-1 PD mutations A104T and D149A. The study also shows that oxidation site-mutated DJ-1 C106A retains its ability to protect cells. We also show that concomitant addition of dopamine exposure sensitizes cells to metal-induced cytotoxicity. We also confirm that redox-active dopamine adducts enhance metal-catalyzed oxidation of intracellular proteins in vivo by use of live cell imaging of redox-sensitive S3roGFP. The study indicates that even a small genetic alteration can sensitize cells to metal-induced cell death, a finding that may revive the interest in exogenous factors in the etiology of PD. PMID:23792957

  10. Synthesis of uranium metal using laser-initiated reduction of uranium tetrafluoride by calcium metal

    International Nuclear Information System (INIS)

    West, M.H.; Martinez, M.M.; Nielsen, J.B.; Court, D.C.; Appert, Q.D.

    1995-09-01

    Uranium metal has numerous uses in conventional weapons (armor penetrators) and nuclear weapons. It also has application to nuclear reactor designs utilizing metallic fuels--for example, the former Integral Fast Reactor program at Argonne National Laboratory. Uranium metal also has promise as a material of construction for spent-nuclear-fuel storage casks. A new avenue for the production of uranium metal is presented that offers several advantages over existing technology. A carbon dioxide (CO 2 ) laser is used to initiate the reaction between uranium tetrafluoride (UF 4 ) and calcium metal. The new method does not require induction heating of a closed system (a pressure vessel) nor does it utilize iodine (I 2 ) as a chemical booster. The results of five reductions of UF 4 , spanning 100 to 200 g of uranium, are evaluated, and suggestions are made for future work in this area

  11. Hydrogen-induced high damping of bulk metallic glasses

    International Nuclear Information System (INIS)

    Hasegawa, M.

    2009-01-01

    There are two important topics concerned with the recent researches on the damping materials of hydrogenated metallic glasses (HMGs). One is the mechanism of the high hydrogen-induced internal friction of HMGs. The other is the materials processing of 'bulk' HMGs for engineering. This article describes the summary of our recent studies on these topics. The first one is closely related to the local structure of the metallic glasses. Therefore, our recent results on the intermediate-range local structure of the simple two Zr-based metallic glasses are described, which has been clarified by the Voronoi analysis using the experimental data of the neutron diffraction measurements. The hydrogen-induced internal friction of HMGs is also discussed on the basis of these recent results of the local structure of the metallic glasses. In terms of the second topic, the first successful preparation of heavily hydrogenated Zr-based bulk HMG rods without hydrogen-induced surface embrittlement is described. They are prepared by a powder-compact-melting and liquid-casting process using Zr-Al-Ni-Cu metallic glass and ZrH 2 powders as the starting materials. It has been found that they have high damping properties.

  12. Ionic imbalance induced self-propulsion of liquid metals

    Science.gov (United States)

    Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F.; O'Mullane, Anthony P.; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh

    2016-08-01

    Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems.

  13. Induced voltages in metallic pipelines near power transmission lines

    International Nuclear Information System (INIS)

    Grcev, Leonid; Jankov, Voislav; Filiposki, Velimir

    2002-01-01

    With the continuous development of the electric power system and the pipeline networks used to convey oil or natural gas, cases of close proximity of high voltage structures and metallic pipelines become more and more frequent. Accordingly there is a growing concern about possible hazards resulting from voltages induced in the metallic pipelines by magnetic coupling with nearby power transmission lines. This paper presents a methodology for computation of the induced voltages in buried isolated metallic pipelines. A practical example of computation is also presented. (Author)

  14. The basic research on the CDA initiation phase for a metallic fuel FBR

    International Nuclear Information System (INIS)

    Hirano, Go; Hirakawa, Naohiro; Kawada, Ken-ichi; Niwa, Hazime

    1998-03-01

    A metallic fuel with novel design has received great deal of interest recently as an option of advanced fuel to be substituted MOX fuel, however, the behavior at the transient has not been studied in many aspects. Therefore, for the purpose to show the basic tendency of the behavior and released energy at CDA (core disruptive accident) for a metallic fuel FBR and to prepare the basic knowledge for consideration of the adoption of the advanced fuel, Tohoku University and Power Reactor and Nuclear Fuel Development Corporation have made a joint research entitled. (1) Target and Results of analysis: The accident initiator considered is a LOF accident with ATWS. The LOF analysis was performed for a metallic fuel 600 MWe homogeneous two region core at the beginning of cycle, both for an ordinary metallic fuel core and for a metallic fuel core with ZrH pins. It was necessary mainly to change the constants of input parameters to apply the code for the analysis of a metallic fueled reactor. These changes were made by assuming appropriate models. Basic LOF cases and all blackout case that assumed using electromagnetic pumps were analyzed. The results show that the basic LOF cases for a metallic fuel core and all the cases for a metallic fuel core with ZrH pins could be avoided to become prompt-critical, and mildly transfer to the transient phase. (2) Improvement of CDA initiation phase analysis code: At present, it is difficult for the code to adapt to the large material movement to in the core at the transient. Therefore, the nuclear calculation model in the code was improved by using the adiabatic space dependent kinetics. The results of a sample case, that is a metallic fueled core at the beginning of cycle, show this improvement is appropriate. (3) Conclusion: The behavior at CDA of a metallic fueled core of a fast reactor was analyzed using the CDA initiation phase analysis code and the knowledge of the important characteristics at the CDA initiation phase was obtained

  15. Advances in metal-induced oxidative stress and human disease

    International Nuclear Information System (INIS)

    Jomova, Klaudia; Valko, Marian

    2011-01-01

    Detailed studies in the past two decades have shown that redox active metals like iron (Fe), copper (Cu), chromium (Cr), cobalt (Co) and other metals undergo redox cycling reactions and possess the ability to produce reactive radicals such as superoxide anion radical and nitric oxide in biological systems. Disruption of metal ion homeostasis may lead to oxidative stress, a state where increased formation of reactive oxygen species (ROS) overwhelms body antioxidant protection and subsequently induces DNA damage, lipid peroxidation, protein modification and other effects, all symptomatic for numerous diseases, involving cancer, cardiovascular disease, diabetes, atherosclerosis, neurological disorders (Alzheimer's disease, Parkinson's disease), chronic inflammation and others. The underlying mechanism of action for all these metals involves formation of the superoxide radical, hydroxyl radical (mainly via Fenton reaction) and other ROS, finally producing mutagenic and carcinogenic malondialdehyde (MDA), 4-hydroxynonenal (HNE) and other exocyclic DNA adducts. On the other hand, the redox inactive metals, such as cadmium (Cd), arsenic (As) and lead (Pb) show their toxic effects via bonding to sulphydryl groups of proteins and depletion of glutathione. Interestingly, for arsenic an alternative mechanism of action based on the formation of hydrogen peroxide under physiological conditions has been proposed. A special position among metals is occupied by the redox inert metal zinc (Zn). Zn is an essential component of numerous proteins involved in the defense against oxidative stress. It has been shown, that depletion of Zn may enhance DNA damage via impairments of DNA repair mechanisms. In addition, Zn has an impact on the immune system and possesses neuroprotective properties. The mechanism of metal-induced formation of free radicals is tightly influenced by the action of cellular antioxidants. Many low-molecular weight antioxidants (ascorbic acid (vitamin C), alpha

  16. Metal induced gap states at alkali halide/metal interface

    International Nuclear Information System (INIS)

    Kiguchi, Manabu; Yoshikawa, Genki; Ikeda, Susumu; Saiki, Koichiro

    2004-01-01

    The electronic state of a KCl/Cu(0 0 1) interface was investigated using the Cl K-edge near-edge X-ray absorption fine structure (NEXAFS). A pre-peak observed on the bulk edge onset of thin KCl films has a similar feature to the peak at a LiCl/Cu(0 0 1) interface, which originates from the metal induced gap state (MIGS). The present result indicates that the MIGS is formed universally at alkali halide/metal interfaces. The decay length of MIGS to an insulator differs from each other, mainly due to the difference in the band gap energy of alkali halide

  17. Thin film pc-Si by aluminium induced crystallization on metallic substrate

    Directory of Open Access Journals (Sweden)

    Cayron C.

    2013-04-01

    Full Text Available Thin film polycrystalline silicon (pc-Si on flexible metallic substrates is promising for low cost production of photovoltaic solar cells. One of the attractive methods to produce pc-Si solar cells consists in thickening a large-grained seed layer by epitaxy. In this work, the deposited seed layer is made by aluminium induced crystallization (AIC of an amorphous silicon (a-Si thin film on metallic substrates (Ni/Fe alloy initially coated with a tantalum nitride (TaN conductive diffusion barrier layer. Effect of the thermal budget on the AIC grown pc-Si seed layer was investigated in order to optimize the process (i.e. the quality of the pc-Si thin film. Structural and optical characterizations were carried out using optical microscopy, μ-Raman and Electron Backscatter Diffraction (EBSD. At optimal thermal annealing conditions, the continuous AIC grown pc-Si thin film showed an average grain size around 15 μm. The grains were preferably (001 oriented which is favorable for its epitaxial thickening. This work proves the feasibility of the AIC method to grow large grains pc-Si seed layer on TaN coated metal substrates. These results are, in terms of grains size, the finest obtained by AIC on metallic substrates.

  18. Electromagnetically induced transparency in a plasmonic system comprising of three metal-dielectric-metal parallel slabs: Plasmon- Plasmon interaction

    Directory of Open Access Journals (Sweden)

    M Moradbeigi

    2018-02-01

    Full Text Available In this paper, electromagnetically induced transparency (EIT in a system consisting of associated arrays of parallel slabs (metal-dielectric-metal is studied. The transmission coefficient, the reflection coefficient and the absorption coefficient as function of the incident light frequency by using the transfer matrix method is calculated and numerically discussed. Influence of the thickness of slab and the type of plasmonic metal on the induced transparency has been investigated. It is shown with decreasing the thickness of intermediate slab of length  (dielectric slab, the induced transparency increases due to the strong plasmon–plasmon couplings.

  19. Mesenchymal stem cells cancel azoxymethane-induced tumor initiation.

    Science.gov (United States)

    Nasuno, Masanao; Arimura, Yoshiaki; Nagaishi, Kanna; Isshiki, Hiroyuki; Onodera, Kei; Nakagaki, Suguru; Watanabe, Shuhei; Idogawa, Masashi; Yamashita, Kentaro; Naishiro, Yasuyoshi; Adachi, Yasushi; Suzuki, Hiromu; Fujimiya, Mineko; Imai, Kohzoh; Shinomura, Yasuhisa

    2014-04-01

    The role of mesenchymal stem cells (MSCs) in tumorigenesis remains controversial. Therefore, our goal was to determine whether exogenous MSCs possess intrinsic antineoplastic or proneoplastic properties in azoxymethane (AOM)-induced carcinogenesis. Three in vivo models were studied: an AOM/dextran sulfate sodium colitis-associated carcinoma model, an aberrant crypt foci model, and a model to assess the acute apoptotic response of a genotoxic carcinogen (AARGC). We also performed in vitro coculture experiments. As a result, we found that MSCs partially canceled AOM-induced tumor initiation but not tumor promotion. Moreover, MSCs inhibited the AARGC in colonic epithelial cells because of the removal of O(6)-methylguanine (O(6) MeG) adducts through O(6) MeG-DNA methyltransferase activation. Furthermore, MSCs broadly affected the cell-cycle machinery, potentially leading to G1 arrest in vivo. Coculture of IEC-6 rat intestinal cells with MSCs not only arrested the cell cycle at the G1 phase, but also induced apoptosis. The anti-carcinogenetic properties of MSCs in vitro required transforming growth factor (TGF)-β signaling because such properties were completely abrogated by absorption of TGF-β under indirect coculture conditions. MSCs inhibited AOM-induced tumor initiation by preventing the initiating cells from sustaining DNA insults and subsequently inducing G1 arrest in the initiated cells that escaped from the AARGC. Furthermore, tumor initiation perturbed by MSCs might potentially dysregulate WNT and TGF-β-Smad signaling pathways in subsequent tumorigenesis. Obtaining a better understanding of MSC functions in colon carcinogenesis is essential before commencing the broader clinical application of promising MSC-based therapies for cancer-prone patients with inflammatory bowel disease. © AlphaMed Press.

  20. Unexpected pressure induced ductileness tuning in sulfur doped polycrystalline nickel metal

    Directory of Open Access Journals (Sweden)

    Cheng Guo

    2018-02-01

    Full Text Available The sulfur induced embrittlement of polycrystalline nickel (Ni metal has been a long-standing mystery. It is suggested that sulfur impurity makes ductile Ni metal brittle in many industry applications due to various mechanisms, such as impurity segregation and disorder-induced melting etc. Here we report an observation that the most ductile measurement occurs at a critical sulfur doping concentration, 14 at.% at pressure from 14 GPa up to 29 GPa through texture evolution analysis. The synchrotron-based high pressure texturing measurements using radial diamond anvil cell (rDAC X-ray diffraction (XRD techniques reveal that the activities of slip systems in the polycrystalline nickel metal are affected by sulfur impurities and external pressures, giving rise to the changes in the plastic deformation of the nickel metal. Dislocation dynamics (DD simulation on dislocation density and velocity further confirms the pressure induced ductilization changes in S doped Ni metal. This observation and simulation suggests that the ductilization of the doped polycrystalline nickel metal can be optimized by engineering the sulfur concentration under pressure, shedding a light on tuning the mechanical properties of this material for better high pressure applications.

  1. Unexpected pressure induced ductileness tuning in sulfur doped polycrystalline nickel metal

    Science.gov (United States)

    Guo, Cheng; Yang, Yan; Tan, Liuxi; Lei, Jialin; Guo, Shengmin; Chen, Bin; Yan, Jinyuan; Yang, Shizhong

    2018-02-01

    The sulfur induced embrittlement of polycrystalline nickel (Ni) metal has been a long-standing mystery. It is suggested that sulfur impurity makes ductile Ni metal brittle in many industry applications due to various mechanisms, such as impurity segregation and disorder-induced melting etc. Here we report an observation that the most ductile measurement occurs at a critical sulfur doping concentration, 14 at.% at pressure from 14 GPa up to 29 GPa through texture evolution analysis. The synchrotron-based high pressure texturing measurements using radial diamond anvil cell (rDAC) X-ray diffraction (XRD) techniques reveal that the activities of slip systems in the polycrystalline nickel metal are affected by sulfur impurities and external pressures, giving rise to the changes in the plastic deformation of the nickel metal. Dislocation dynamics (DD) simulation on dislocation density and velocity further confirms the pressure induced ductilization changes in S doped Ni metal. This observation and simulation suggests that the ductilization of the doped polycrystalline nickel metal can be optimized by engineering the sulfur concentration under pressure, shedding a light on tuning the mechanical properties of this material for better high pressure applications.

  2. A comprehensive review of metal-induced cellular transformation studies.

    Science.gov (United States)

    Chen, Qiao Yi; Costa, Max

    2017-09-15

    In vitro transformation assays not only serve practical purposes in screening for potential carcinogenic substances in food, drug, and cosmetic industries, but more importantly, they provide a means of understanding the critical biological processes behind in vivo cancer development. In resemblance to cancer cells in vivo, successfully transformed cells display loss of contact inhibition, gain of anchorage independent growth, resistant to proper cell cycle regulation such as apoptosis, faster proliferation rate, potential for cellular invasion, and ability to form tumors in experimental animals. Cells purposely transformed using metal exposures enable researchers to examine molecular changes, dissect various stages of tumor formation, and ultimately elucidate metal induced cancer mode of action. For practical purposes, this review specifically focuses on studies incorporating As-, Cd-, Cr-, and Ni-induced cell transformation. Through investigating and comparing an extensive list of studies using various methods of metal-induced transformation, this review serves to bridge an information gap and provide a guide for avoiding procedural discrepancies as well as maximizing experimental efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Pressure-induced polyamorphism in lanthanide-solute metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liangliang; Li, Renfeng; Liu, Haozhe [Harbin Institute of Technology, Harbin (China); Center for High Pressure Science Technology Advanced Research, Changchun (China); Wang, Luhong [Harbin Institute of Technology, Harbin (China); Qu, Dongdong [School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD (Australia); Zhao, Haiyan [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL (United States); Center for Advanced Energy Studies, University of Idaho, Idaho Falls, ID (United States); Chapman, Karena W.; Chupas, Peter J. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL (United States)

    2017-06-15

    The electronic structure inheritance of lanthanide-solvent atoms in lanthanide-based metallic glasses has been proposed. Is a polyamorphism possible in lanthanide-solute metallic glasses? So far, polyamorphic phase transitions in metallic glass containing lanthanide have been observed only in lanthanide-solvent metallic glasses. Here, a pressure-induced transition between two distinct amorphous states, accompanied by a 7% volume collapse at ambient pressure, was observed in La{sub 43.4}Pr{sub 18.6}Al{sub 14}Cu{sub 24} metallic glass, with low lanthanide content, by using in situ X-ray total scattering method. The transformation also indicated by changes in short range and medium range order. Thus, it is proposed that the lanthanide-solute metallic glasses also inherit 4f electronic transition from pure lanthanide element in polyamorphic transition. This discovery offers a supplement to research on lanthanide-based metallic glasses, which further provides a new perspective of the polyamorphic transformation in metallic glasses containing lanthanide element. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Geometrically induced surface polaritons in planar nanostructured metallic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, P. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Intravia, F [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-14

    We examine the modal structure and dispersion of periodically nanostructured planar metallic cavities within the scattering matrix formulation. By nanostructuring a metallic grating in a planar cavity, artificial surface excitations or spoof plasmon modes are induced with dispersion determined by the periodicity and geometric characteristics of the grating. These spoof surface plasmon modes are shown to give rise to new cavity polaritonic modes at short mirror separations that modify the density of modes in nanostructured cavities. The increased modal density of states form cavity polarirons have a large impact on the fluctuation induced electromagnetic forces and enhanced hear transfer at short separations.

  5. Field-induced resistance switching at metal/perovskite manganese oxide interface

    International Nuclear Information System (INIS)

    Ohkubo, I.; Tsubouchi, K.; Harada, T.; Kumigashira, H.; Itaka, K.; Matsumoto, Y.; Ohnishi, T.; Lippmaa, M.; Koinuma, H.; Oshima, M.

    2008-01-01

    Planar type metal/insulator/metal structures composed of an epitaxial perovskite manganese oxide layer and various metal electrodes were prepared for electric-field-induced resistance switching. Only the electrode pairs including Al show good resistance switching and the switching ratio reaches its maximum of 1000. This resistance switching occurs around the interface between Al electrodes and epitaxial perovskite manganese oxide thin films

  6. Sensitivity Analysis of FEAST-Metal Fuel Performance Code: Initial Results

    International Nuclear Information System (INIS)

    Edelmann, Paul Guy; Williams, Brian J.; Unal, Cetin; Yacout, Abdellatif

    2012-01-01

    This memo documents the completion of the LANL milestone, M3FT-12LA0202041, describing methodologies and initial results using FEAST-Metal. The FEAST-Metal code calculations for this work are being conducted at LANL in support of on-going activities related to sensitivity analysis of fuel performance codes. The objective is to identify important macroscopic parameters of interest to modeling and simulation of metallic fuel performance. This report summarizes our preliminary results for the sensitivity analysis using 6 calibration datasets for metallic fuel developed at ANL for EBR-II experiments. Sensitivity ranking methodology was deployed to narrow down the selected parameters for the current study. There are approximately 84 calibration parameters in the FEAST-Metal code, of which 32 were ultimately used in Phase II of this study. Preliminary results of this sensitivity analysis led to the following ranking of FEAST models for future calibration and improvements: fuel conductivity, fission gas transport/release, fuel creep, and precipitation kinetics. More validation data is needed to validate calibrated parameter distributions for future uncertainty quantification studies with FEAST-Metal. Results of this study also served to point out some code deficiencies and possible errors, and these are being investigated in order to determine root causes and to improve upon the existing code models.

  7. Noise-induced hearing loss in small-scale metal industry in Nepal.

    Science.gov (United States)

    Whittaker, J D; Robinson, T; Acharya, A; Singh, D; Smith, M

    2014-10-01

    There has been no previous research to demonstrate the risk of noise-induced hearing loss in industry in Nepal. Limited research on occupational noise-induced hearing loss has been conducted within small-scale industry worldwide, despite it being a substantial and growing cause of deafness in the developing world. The study involved a cross-sectional audiometric assessment, with questionnaire-based examinations of noise and occupational history, and workplace noise level assessment. A total of 115 metal workers and 123 hotel workers (control subjects) were recruited. Noise-induced hearing loss prevalence was 30.4 per cent in metal workers and 4.1 per cent in hotel workers, with a significant odds ratio of 10.3. Except for age and time in occupation, none of the demographic factors were significant in predicting outcomes in regression analyses. When adjusted for this finding, and previous noise-exposed occupations, the odds ratio was 13.8. Workplace noise was significantly different between the groups, ranging from 65.3 to 84.7 dBA in metal worker sites, and from 51.4 to 68.6 dBA in the control sites. Metal workers appear to have a greater risk of noise-induced hearing loss than controls. Additional research on occupational noise-induced hearing loss in Nepal and small-scale industry globally is needed.

  8. The effects of microstructure on crack initiation in liquid-metal environments

    CSIR Research Space (South Africa)

    Fernandes, PJL

    1997-09-01

    Full Text Available Liquid-metal-induced embrittlement under tensile test conditions is identified by the existence of a characteristic ductility trough. In this study, the effect of molten gallium on the behaviour of two brass alloys with different microstructures...

  9. Light-induced attractive force between two metal bodies separated by a subwavelength slit

    International Nuclear Information System (INIS)

    Nesterov, Vladimir; Frumin, Leonid

    2011-01-01

    A novel light-induced attractive force which acts as a force with negative light pressure has been revealed. The force arises by the interaction of plasmon polaritons which are excited at the surface of metal when a transverse magnetic mode propagates through a subwavelength slit between two metal bodies. The estimation of the repulsive force acting on the metal walls of the slit in the case of subwavelength TE mode propagation along the slit is presented. The explicit analytical expressions of light-induced forces between two macroscopic metal bodies or films separated by a subwavelength slit have been derived. These forces could be used to manipulate metallic macro-, micro- and nano-objects in vacuum or in a dielectric medium. Estimations of these light-induced forces show that the forces are sufficient for measurements and practical applications

  10. Fatigue crack initiation in hybrid boron/glass/aluminum fiber metal laminates

    International Nuclear Information System (INIS)

    Chang, P.-Y.; Yeh, P.-C.; Yang, J.-M.

    2008-01-01

    The fatigue crack initiation behavior of a high modulus and hybrid boron/glass/aluminum fiber/metal laminate (FML) was investigated experimentally and analytically. Two types of hybrid boron/glass/aluminum FMLs were fabricated and studied, which consisted of aluminum alloy sheets as the metal layers and a mixture of boron fibers and glass fibers as the composite layers. For the first type, the boron fiber/prepreg and the glass fiber/prepreg were used separately in the composite layers, and for the second type, the boron fibers and the glass fibers were mingled together to form a hybrid boron/glass/prepreg composite layer. These hybrid FMLs were consolidated using an autoclave curing process. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, would improve the fatigue crack initiation life of the Al sheet. The experimental results clearly showed that the fatigue crack initiation lives for both types of hybrid boron/glass/aluminum FMLs were superior to the monolithic aluminum alloy under the same loading condition. An analytical approach was proposed to calculate the fatigue crack initiation lives of hybrid boron/glass/aluminum FMLs based on the classical laminate theory and the small-crack theory. A good correlation was obtained between the predictions and the experimental results

  11. Zn(II)- and Cu(II)-induced non-fibrillar aggregates of amyloid-beta (1-42) peptide are transformed to amyloid fibrils, both spontaneously and under the influence of metal chelators.

    Science.gov (United States)

    Tõugu, Vello; Karafin, Ann; Zovo, Kairit; Chung, Roger S; Howells, Claire; West, Adrian K; Palumaa, Peep

    2009-09-01

    Aggregation of amyloid-beta (Abeta) peptides is a central phenomenon in Alzheimer's disease. Zn(II) and Cu(II) have profound effects on Abeta aggregation; however, their impact on amyloidogenesis is unclear. Here we show that Zn(II) and Cu(II) inhibit Abeta(42) fibrillization and initiate formation of non-fibrillar Abeta(42) aggregates, and that the inhibitory effect of Zn(II) (IC(50) = 1.8 micromol/L) is three times stronger than that of Cu(II). Medium and high-affinity metal chelators including metallothioneins prevented metal-induced Abeta(42) aggregation. Moreover, their addition to preformed aggregates initiated fast Abeta(42) fibrillization. Upon prolonged incubation the metal-induced aggregates also transformed spontaneously into fibrils, that appear to represent the most stable state of Abeta(42). H13A and H14A mutations in Abeta(42) reduced the inhibitory effect of metal ions, whereas an H6A mutation had no significant impact. We suggest that metal binding by H13 and H14 prevents the formation of a cross-beta core structure within region 10-23 of the amyloid fibril. Cu(II)-Abeta(42) aggregates were neurotoxic to neurons in vitro only in the presence of ascorbate, whereas monomers and Zn(II)-Abeta(42) aggregates were non-toxic. Disturbed metal homeostasis in the vicinity of zinc-enriched neurons might pre-dispose formation of metal-induced Abeta aggregates, subsequent fibrillization of which can lead to amyloid formation. The molecular background underlying metal-chelating therapies for Alzheimer's disease is discussed in this light.

  12. Metal surface nitriding by laser induced plasma

    Science.gov (United States)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  13. Slurry erosion induced surface nanocrystallization of bulk metallic glass

    Science.gov (United States)

    Ji, Xiulin; Wu, Jili; Pi, Jinghong; Cheng, Jiangbo; Shan, Yiping; Zhang, Yingtao

    2018-05-01

    Microstructure evolution and phase transformation of metallic glasses (MGs) could occur under heating condition or mechanical deformation. The cross-section of as-cast Zr55Cu30Ni5Al10 MG rod was impacted by the solid particles when subjected to erosion in slurry flow. The surface microstructure was observed by XRD before and after slurry erosion. And the stress-driven de-vitrification increases with the increase of erosion time. A microstructure evolution layer with 1-2 μm thickness was formed on the topmost eroded surface. And a short range atomic ordering prevails in the microstructure evolution layer with crystalline size around 2-3 nm embedded in the amorphous matrix. The XPS analysis reveals that most of the metal elements in the MG surface, except for Cu, were oxidized. And a composite layer with ZrO2 and Al2O3 phases were formed in the topmost surface after slurry erosion. The cooling rate during solidification of MG has a strong influence on the slurry erosion induced nanocrystallization. And a lower cooling rate favors the surface nanocrystallization because of lower activation energy and thermo-stability. Finally, the slurry erosion induced surface nanocrystallization and microstructure evolution result in surface hardening and strengthening. Moreover, the microstructure evolution mechanisms were discussed and it is related to the cooling rate of solidification and the impact-induced temperature rise, as well as the combined effects of the impact-induced plastic flow, inter-diffusion and oxidation of the metal elements.

  14. New pathway for the formation of metallic cubic phase Ge-Sb-Te compounds induced by an electric current.

    Science.gov (United States)

    Park, Yong-Jin; Cho, Ju-Young; Jeong, Min-Woo; Na, Sekwon; Joo, Young-Chang

    2016-02-23

    The novel discovery of a current-induced transition from insulator to metal in the crystalline phase of Ge2Sb2Te5 and GeSb4Te7 have been studied by means of a model using line-patterned samples. The resistivity of cubic phase Ge-Sb-Te compound was reduced by an electrical current (~1 MA/cm(2)), and the final resistivity was determined based on the stress current density, regardless of the initial resistivity and temperature, which indicates that the conductivity of Ge-Sb-Te compound can be modulated by an electrical current. The minimum resistivity of Ge-Sb-Te materials can be achieved at high kinetic rates by applying an electrical current, and the material properties change from insulating to metallic behavior without a phase transition. The current-induced metal transition is more effective in GeSb4Te7 than Ge2Sb2Te5, which depends on the intrinsic vacancy of materials. Electromigration, which is the migration of atoms induced by a momentum transfer from charge carriers, can easily promote the rearrangement of vacancies in the cubic phase of Ge-Sb-Te compound. This behavior differs significantly from thermal annealing, which accompanies a phase transition to the hexagonal phase. This result suggests a new pathway for modulating the electrical conductivity and material properties of chalcogenide materials by applying an electrical current.

  15. Heavy metal-induced gene expression in fish and fish cell lines

    International Nuclear Information System (INIS)

    Price-Haughey, J.; Bonham, K.; Gedamu, L.

    1986-01-01

    Two isoforms of metallothionein (MT) have been isolated from rainbow trout livers following CdCl 2 injections. These MTs have been identified by standard procedures and appear to be similar to mammalian MTs. Total RNA from such induced livers was shown to contain high levels of MT-mRNA activity when translated in cell free systems. This activity was demonstrated to be in the 8 to 10S region of a sucrose gradient. The RNA fractions also showed homology to a mouse MT-I cDNA probe. The exposure of rainbow trout hepatoma (RTH) cells to various concentrations of CdCl 2 and ZnCl 2 induced the expression of MT and MT-mRNA. Exposure of Chinook salmon embryonic (CHSE) cells to these metals, however, did not result in MT synthesis, suggesting that the MT genes have not become committed to transcription. Instead, an unknown low molecular weight (MW = 14 kDa) protein was induced. This metal-inducible protein (MIP) was capable of binding 109 Cd and was stable to heating, while the binding of the metal to this protein was not. These characteristics have been reported for a protein induced in rainbow trout liver following environmental exposure to cadmium

  16. Applications of Laser-Induced Breakdown Spectroscopy (LIBS) in Molten Metal Processing

    Science.gov (United States)

    Hudson, Shaymus W.; Craparo, Joseph; De Saro, Robert; Apelian, Diran

    2017-10-01

    In order for metals to meet the demand for critical applications in the automotive, aerospace, and defense industries, tight control over the composition and cleanliness of the metal must be achieved. The use of laser-induced breakdown spectroscopy (LIBS) for applications in metal processing has generated significant interest for its ability to perform quick analyses in situ. The fundamentals of LIBS, current techniques for deployment on molten metal, demonstrated capabilities, and possible avenues for development are reviewed and discussed.

  17. Small liquid metal reactor for an initial phase of fast breeder reactor introduction

    International Nuclear Information System (INIS)

    Ishiguro, Y.; Nascimento, J.A. do.

    1985-01-01

    Safety and burnup characteristics of a 1000 MWth liquid metal reactor have been examined for various fuel types. With metallic Pu/Th fuel containing a small amount of zirconium hydride, low sodium-void reactivity, a high Doppler coefficient, and small burnup reactivity swings can be achieved. A conservative design is considered for an initial phase of fast breeder reactor development and possible modifications are discussed. (Author) [pt

  18. Laser Induced Forward Transfer of High Viscosity Silver Paste for New Metallization Methods in Photovoltaic and Flexible Electronics Industry

    Science.gov (United States)

    Chen, Y.; Munoz-Martin, D.; Morales, M.; Molpeceres, C.; Sánchez-Cortezon, E.; Murillo-Gutierrez, J.

    Laser Induced Forward Transfer (LIFT) has been studied in the past as a promising approach for precise metallization in electronics using metallic inks and pastes. In this work we present large area metallization using LIFT of fully commercial silver-based pastes initially designed for solar cell screen-printing. We discuss the mechanisms for the material transfer both in ns and ps regimes of irradiation of these high viscosity materials, and the potential use of this technique in the photovoltaic industry (both in standard c-Si solar cells and thin film technologies) and flexible electronics devices. In particular we summarize the results of our group in this field, demonstrating that our approach is capable of improving the aspect ratio of the standard metallization patterns achieved with screen-printing technologies in those technological fields and, in addition, of fulfilling the requirements imposed by the mechanical properties of the substrates in flexible electronic applications.

  19. Promotion of initiated cells by radiation-induced cell inactivation.

    Science.gov (United States)

    Heidenreich, W F; Paretzke, H G

    2008-11-01

    Cells on the way to carcinogenesis can have a growth advantage relative to normal cells. It has been hypothesized that a radiation-induced growth advantage of these initiated cells might be induced by an increased cell replacement probability of initiated cells after inactivation of neighboring cells by radiation. Here Monte Carlo simulations extend this hypothesis for larger clones: The effective clonal expansion rate decreases with clone size. This effect is stronger for the two-dimensional than for the three-dimensional situation. The clones are irregular, far from a circular shape. An exposure-rate dependence of the effective clonal expansion rate could come in part from a minimal recovery time of the initiated cells for symmetric cell division.

  20. The Responses of Antioxidant System against the Heavy Metal-Induced Stress in Tomato

    Directory of Open Access Journals (Sweden)

    Dursun KISA

    2017-12-01

    Full Text Available Plants maintain their life cycles under the various environmental conditions such as oxidative stress induced by heavy metals. Accumulation of metal ions in plants causes the formation of free radicals and stimulates the antioxidative defense systems. In this study, the activities of APX, POD, and SOD are investigated in the leaves and roots of tomato cultivated under the heavy metal-induced stress. The activities of APX, POD, and SOD exhibited remarkable induction with the treatment of Cd, Cu and Pb (10, 20 and 50 ppm in the leaves of tomato compared to control plants except for 50 ppm Pb. In roots, APX activity changed depending on the heavy metal types and concentrations, while Cd clearly increased it with stress conditions, but Cu decreased in tomato compared to control. The activity of POD clearly exhibited that the all doses of heavy metals reduced the enzyme activity in roots polluted with heavy metals. The treatment of Cd (10, 20 and 50 ppm significantly increased the activity of SOD, however, Cu showed the opposite effect which significantly decreased with increasing doses in roots compared to uncontaminated plants. Also, roots from plants grown on the high concentration of Pb (20 and 50 ppm induced the activity of SOD. Briefly, it is clear responses which Cd significantly raised the activities of APX and SOD in leaves and roots of tomato. The decreases caused by these metals in the activity of POD and Cu in the activities of APX and SOD in roots of tomato can be clarified by the result of heavy metal-induced the over production of free radical.

  1. Metal-induced changes in photosynthetic electron transport in poplar Ieaves

    International Nuclear Information System (INIS)

    Kralova, K.; Gaplovsky, A.; Masarovicova, E.; Havranek, E.

    2001-01-01

    This study reports the effect of different toxic metals (Cu, Hg and Cd) on dark-induced changes in the photochemical activity of detached poplar leaves that were submersed in solutions of tested metals at different pH level, on the metal accumulation in poplar leaves as well as on fluorescence quenching ability of the tested metals. Cu and Hg inhibited the photosynthetic electron transport (PET) in chloroplast prepared from the leaves of P. nigra and the corresponding IC 50 values were 32.7 and 512.7 μmol dm -3 , respectively. We could not determine the IC 50 value for CdCl 2 due to its very low PET-inhibiting activity. These results are in agreement with previous findings concerning PET inhibition by the studied metals in spinach chloroplasts. The accumulated metal amounts in poplar leaves were determined using radionuclide X-ray fluorescence analysis. The accumulated metal amount increased with the increasing metal concentration and with the decreasing pH value of the applied metal solution. (authors)

  2. Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer

    NARCIS (Netherlands)

    Visser, C.W.; Pohl, Ralph; Sun, Chao; Römer, Gerardus Richardus, Bernardus, Engelina; Huis in 't Veld, Bert; Lohse, Detlef

    2015-01-01

    3D printing of common metals is highly challenging because metals are generally solid at room conditions. Copper and gold pillars are manufactured with a resolution below 5 μm and a height up to 2 mm, using laser-induced forward transfer to create and eject liquid metal droplets. The solidified

  3. Metal stress induces programmed cell death in aquatic fungi

    International Nuclear Information System (INIS)

    Azevedo, Maria-Manuel; Almeida, Bruno; Ludovico, Paula; Cassio, Fernanda

    2009-01-01

    Aquatic hyphomycetes are a group of fungi that play a key role in organic matter turnover in both clean and metal-polluted streams. We examined the ability of Cu or Zn to induce programmed cell death (PCD) in three aquatic hyphomycete species through the evaluation of typical apoptotic markers, namely reactive oxygen species (ROS) accumulation, caspase-like activity, nuclear morphological alterations, and the occurrence of DNA strand breaks assessed by TUNEL assay. The exposure to both metals induced apoptotic events in all tested aquatic fungi. The most tolerant fungi either to Zn (Varicosporium elodeae) or Cu (Heliscussubmersus) exhibited higher levels of PCD markers, suggesting that PCD processes might be linked to fungal resistance/tolerance to metal stress. Moreover, different patterns of apoptotic markers were found, namely a PCD process independent of ROS accumulation in V. elodeae exposed to Cu, or independent of caspase-like activity in Flagellospora curta exposed to Zn, or even without the occurrence of DNA strand breaks in F. curta exposed to Cu. This suggests that a multiplicity of PCD pathways might be operating in aquatic hyphomycetes. The occurrence of a tightly regulated cell death pathway, such as PCD, in aquatic hyphomycetes under metal stress might be a part of the mechanisms underlying fungal acclimation in metal-polluted streams, because it would allow the rapid removal of unwanted or damaged cells sparing nutrients and space for the fittest ones.

  4. Heavy metal and abiotic stress inducible metallothionein isoforms from Prosopis juliflora (SW) D.C. show differences in binding to heavy metals in vitro.

    Science.gov (United States)

    Usha, B; Venkataraman, Gayatri; Parida, Ajay

    2009-01-01

    Prosopis juliflora is a tree species that grows well in heavy metal laden industrial sites and accumulates heavy metals. To understand the possible contribution of metallothioneins (MTs) in heavy metal accumulation in P. juliflora, we isolated and compared the metal binding ability of three different types of MTs (PjMT1-3). Glutathione S-transferase fusions of PjMTs (GSTMT1-3) were purified from Escherichia coli cells grown in the presence of 0.3 mM cadmium, copper or zinc. Analysis of metal bound fusion proteins using atomic absorption spectrometry showed that PjMT1 bound higher levels of all three heavy metals as compared to PjMT2 and PjMT3. A comparative analysis of the genomic regions (including promoter for all three PjMTs) is also presented. All three PjMTs are induced by H(2)O(2) and ABA applications. PjMT1 and PjMT2 are induced by copper and zinc respectively while PjMT3 is induced by copper, zinc and cadmium. Variation in induction of PjMTs in response to metal exposure and their differential binding to metals suggests that each MT has a specific role in P. juliflora. Of the three MTs analyzed, PjMT1 shows maximum heavy metal sequestration and is thus a potential candidate for use in heavy metal phytoremediation.

  5. Robust nanopatterning by laser-induced dewetting of metal nanofilms

    International Nuclear Information System (INIS)

    Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna

    2006-01-01

    We have observed nanopattern formation with robust and controllable spatial ordering by laser-induced dewetting in nanoscopic metal films. Pattern evolution in Co film of thickness 1≤h≤8 nm on SiO 2 was achieved under multiple pulse irradiation using a 9 ns pulse laser. Dewetting leads to the formation of cellular patterns which evolve into polygons that eventually break up into nanoparticles with unimodal size distribution and short range ordering in nearest neighbour spacing R. Spatial ordering was attributed to a hydrodynamic thin film instability and resulted in a predictable variation of R and particle diameter D with h. The length scales R and D were found to be independent of the laser energy. These results suggest that spatially ordered metal nanoparticles can be robustly assembled by laser-induced dewetting

  6. Robust nanopatterning by laser-induced dewetting of metal nanofilms

    Energy Technology Data Exchange (ETDEWEB)

    Favazza, Christopher [Department of Physics, Washington University in St Louis, MO 63130 (United States); Kalyanaraman, Ramki [Department of Physics, Washington University in St Louis, MO 63130 (United States); Sureshkumar, Radhakrishna [Center for Materials Innovation, Washington University in St Louis, MO 63130 (United States)

    2006-08-28

    We have observed nanopattern formation with robust and controllable spatial ordering by laser-induced dewetting in nanoscopic metal films. Pattern evolution in Co film of thickness 1{<=}h{<=}8 nm on SiO{sub 2} was achieved under multiple pulse irradiation using a 9 ns pulse laser. Dewetting leads to the formation of cellular patterns which evolve into polygons that eventually break up into nanoparticles with unimodal size distribution and short range ordering in nearest neighbour spacing R. Spatial ordering was attributed to a hydrodynamic thin film instability and resulted in a predictable variation of R and particle diameter D with h. The length scales R and D were found to be independent of the laser energy. These results suggest that spatially ordered metal nanoparticles can be robustly assembled by laser-induced dewetting.

  7. Robust nanopatterning by laser-induced dewetting of metal nanofilms.

    Science.gov (United States)

    Favazza, Christopher; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna

    2006-08-28

    We have observed nanopattern formation with robust and controllable spatial ordering by laser-induced dewetting in nanoscopic metal films. Pattern evolution in Co film of thickness 1≤h≤8 nm on SiO(2) was achieved under multiple pulse irradiation using a 9 ns pulse laser. Dewetting leads to the formation of cellular patterns which evolve into polygons that eventually break up into nanoparticles with unimodal size distribution and short range ordering in nearest neighbour spacing R. Spatial ordering was attributed to a hydrodynamic thin film instability and resulted in a predictable variation of R and particle diameter D with h. The length scales R and D were found to be independent of the laser energy. These results suggest that spatially ordered metal nanoparticles can be robustly assembled by laser-induced dewetting.

  8. Heavy metal-induced cytotoxicity to cultured human epidermal keratinocytes and effects of antioxidants.

    Science.gov (United States)

    Kappus, H; Reinhold, C

    1994-04-01

    Human epidermal keratinocytes which have been cultured were treated with the heavy metal ions of cadmium, mercury, copper and zinc. Cytotoxicity was measured either by protein estimation or by using the neutral red assay. Antioxidants were added in order to find out whether heavy metal-induced cytotoxicity is related to oxidative stress. All metals used showed considerable cytotoxic effects within 24 h in moderate concentrations. None of the antioxidants vitamin E (alpha-tocopherol), pyrogallol, propyl gallate, BHT or ebselen showed any protective or preventive effect. This indicates that oxidative stress may not be involved in the cytotoxicity induced by heavy metals in human epidermal keratinocytes. The cells used are, however, a valuable tool to study mechanisms of cytotoxicity.

  9. Photo-induced-heat localization on nanostructured metallic glasses

    Science.gov (United States)

    Uzun, Ceren; Kahler, Niloofar; Grave de Peralta, Luis; Kumar, Golden; Bernussi, Ayrton A.

    2017-09-01

    Materials with large photo-thermal energy conversion efficiency are essential for renewable energy applications. Photo-excitation is an effective approach to generate controlled and localized heat at relatively low excitation optical powers. However, lateral heat diffusion to the surrounding illuminated areas accompanied by low photo-thermal energy conversion efficiency remains a challenge for metallic surfaces. Surface nanoengineering has proven to be a successful approach to further absorption and heat generation. Here, we show that pronounced spatial heat localization and high temperatures can be achieved with arrays of amorphous metallic glass nanorods under infrared optical illumination. Thermography measurements revealed marked temperature contrast between illuminated and non-illuminated areas even under low optical power excitation conditions. This attribute allowed for generating legible photo-induced thermal patterns on textured metallic glass surfaces.

  10. Comparative effectiveness of metal ions in inducing curvature of primary roots of Zea mays

    Science.gov (United States)

    Hasenstein, K. H.; Evans, M. L.; Stinemetz, C. L.; Moore, R.; Fondren, W. M.; Koon, E. C.; Higby, M. A.; Smucker, A. J.

    1988-01-01

    We used five cultivars of Zea mays (Bear Hybrid WF9 * 38MS, B73 * Missouri 17, Yellow Dent, Merit, and Great Lakes Hybrid 422) to reinvestigate the specificity of metal ions for inducing root curvature. Of 17 cations tested, 6 (Al3+, Ba2+, Ca2+, Cd2+, Cu2+, Zn2+) induced curvature. Roots curved away from Al3+, Ba2+, and Cd2+. Roots curved away from low (0.1 millimolar) concentrations of Cu2+ but toward higher (1-5 millimolar) concentrations. Roots initially curved away from Zn2+ but the direction of the subsequent curvature was unpredictable. In most cases, roots of all cultivars curved towards calcium. However, in some tests there was no response to calcium or even (especially in the cultivars Merit and B73 * Missouri 17) substantial curvature away from calcium. The results indicate that the induction of root curvature is not specific for calcium. The results are discussed relative to the possible role of calmodulin as a mediator of ion-induced root curvature.

  11. Roll-to-Roll Nanoforming of Metals Using Laser-Induced Superplasticity.

    Science.gov (United States)

    Goswami, Debkalpa; Munera, Juan C; Pal, Aniket; Sadri, Behnam; Scarpetti, Caio Lui P G; Martinez, Ramses V

    2018-05-24

    This Letter describes a low-cost, scalable nanomanufacturing process that enables the continuous forming of thin metallic layers with nanoscale accuracy using roll-to-roll, laser-induced superplasticity (R2RLIS). R2RLIS uses a laser shock to induce the ultrahigh-strain-rate deformation of metallic films at room temperature into low-cost polymeric nanomolds, independently of the original grain size of the metal. This simple and inexpensive nanoforming method does not require access to cleanrooms and associated facilities, and can be easily implemented on conventional CO 2 lasers, enabling laser systems commonly used for rapid prototyping or industrial cutting and engraving to fabricate uniform and three-dimensional crystalline metallic nanostructures over large areas. Tuning the laser power during the R2RLIS process enables the control of the aspect ratio and the mechanical and optical properties of the fabricated nanostructures. This roll-to-roll technique successfully fabricates mechanically strengthened gold plasmonic nanostructures with aspect ratios as high as 5 that exhibit high oxidation resistance and strong optical field enhancements. The CO 2 laser used in R2RLIS can also integrate the fabricated nanostructures on transparent flexible substrates with robust interfacial contact. The ability to fabricate ultrasmooth metallic nanostructures using roll-to-roll manufacturing enables the large scale production, at a relatively low-cost, of flexible plasmonic devices toward emerging applications.

  12. The Role of Oxidative Stress in Carcinogenesis Induced by Metals and Xenobiotics

    International Nuclear Information System (INIS)

    Henkler, Frank; Brinkmann, Joep; Luch, Andreas

    2010-01-01

    In addition to a wide range of adverse effects on human health, toxic metals such as cadmium, arsenic and nickel can also promote carcinogenesis. The toxicological properties of these metals are partly related to generation of reactive oxygen species (ROS) that can induce DNA damage and trigger redox-dependent transcription factors. The precise mechanisms that induce oxidative stress are not fully understood. Further, it is not yet known whether chronic exposures to low doses of arsenic, cadmium or other metals are sufficient to induce mutations in vivo, leading to DNA repair responses and/or tumorigenesis. Oxidative stress can also be induced by environmental xenobiotics, when certain metabolites are generated that lead to the continuous release of superoxide, as long as the capacity to reduce the resulting dions (quinones) into hydroquinones is maintained. However, the specific significance of superoxide-dependent pathways to carcinogenesis is often difficult to address, because formation of DNA adducts by mutagenic metabolites can occur in parallel. Here, we will review both mechanisms and toxicological consequences of oxidative stress triggered by metals and dietary or environmental pollutants in general. Besides causing DNA damage, ROS may further induce multiple intracellular signaling pathways, notably NF-κB, JNK/SAPK/p38, as well as Erk/MAPK. These signaling routes can lead to transcriptional induction of target genes that could promote proliferation or confer apoptosis resistance to exposed cells. The significance of these additional modes depends on tissue, cell-type and is often masked by alternate oncogenic mechanisms being activated in parallel

  13. Antireflux Metal Stent for Initial Treatment of Malignant Distal Biliary Obstruction

    Directory of Open Access Journals (Sweden)

    Shinichi Morita

    2018-01-01

    Full Text Available Objectives. To compare the use of an antireflux metal stent (ARMS with that of a conventional covered self-expandable metal stent (c-CSEMS for initial stenting of malignant distal biliary obstruction (MDBO. Materials and Methods. We retrospectively investigated 59 consecutive patients with unresectable MDBO undergoing initial endoscopic biliary drainage. ARMS was used in 32 patients and c-CSEMS in 27. Technical success, functional success, complications, causes of recurrent biliary obstruction (RBO, time to RBO (TRBO, and reintervention were compared between the groups. Results. Stent placement was technically successful in all patients. There were no significant intergroup differences in functional success (ARMS [96.9%] versus c-CSEMS [96.2%], complications (6.2 versus 7.4%, and RBO (48.4 versus 42.3%. Food impaction was significantly less frequent for ARMS than for c-CSEMS (P=0.037, but TRBO did not differ significantly between the groups (log-rank test, P=0.967. The median TRBO was 180.0 [interquartile range (IQR, 114.0–349.0] days for ARMS and 137.0 [IQR, 87.0–442.0] days for c-CSEMS. In both groups, reintervention for RBO was successfully completed in all patients thus treated. Conclusion. ARMS offers no advantage for initial stent placement, but food impaction is significantly prevented by the antireflux valve.

  14. Modelling chelate-Induced phytoextraction: functional models predicting bioavailability of metals in soil, metal uptake and shoot biomass

    Directory of Open Access Journals (Sweden)

    Pasqualina Sacco

    2006-06-01

    Full Text Available Chelate-induced phytoextraction of heavy metals from contaminated soils requires special care to determine, a priori, the best method of chelate application, in terms of both dose and timing. In fact, the chelate dose must assure the bioavailability of the metal to the plant without increasing leaching risk and giving toxic effects. Three mathematical models are here proposed for usefully interpreting the processes taking place: a increased soil bioavailability of metals by chelants; b metal uptake by plants; c variation in plant biomass. The models are implemented and validated using data from pot and lysimeter trials. Both the chelate dose and the time elapsed since its application affected metal bioavailability and plant response. Contrariwise, the distribution strategy (single vs. split application seems to produce significant differences both in plant growth and metal uptake, but not in soil metal bioavailability. The proposed models may help to understand and predict the chelate dose – effect relationship with less experimental work.

  15. Modelling chelate-Induced phytoextraction: functional models predicting bioavailability of metals in soil, metal uptake and shoot biomass

    Directory of Open Access Journals (Sweden)

    Pasqualina Sacco

    Full Text Available Chelate-induced phytoextraction of heavy metals from contaminated soils requires special care to determine, a priori, the best method of chelate application, in terms of both dose and timing. In fact, the chelate dose must assure the bioavailability of the metal to the plant without increasing leaching risk and giving toxic effects. Three mathematical models are here proposed for usefully interpreting the processes taking place: a increased soil bioavailability of metals by chelants; b metal uptake by plants; c variation in plant biomass. The models are implemented and validated using data from pot and lysimeter trials. Both the chelate dose and the time elapsed since its application affected metal bioavailability and plant response. Contrariwise, the distribution strategy (single vs. split application seems to produce significant differences both in plant growth and metal uptake, but not in soil metal bioavailability. The proposed models may help to understand and predict the chelate dose – effect relationship with less experimental work.

  16. 40 CFR Table 5 to Subpart Uuu of... - Initial Compliance With Metal HAP Emission Limits for Catalytic Cracking Units

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Initial Compliance With Metal HAP Emission Limits for Catalytic Cracking Units 5 Table 5 to Subpart UUU of Part 63 Protection of Environment..., Subpt. UUU, Table 5 Table 5 to Subpart UUU of Part 63—Initial Compliance With Metal HAP Emission Limits...

  17. Contribution of Metal Defects in the Assembly Induced Emission of Cu Nanoclusters

    KAUST Repository

    Wu, Zhennan

    2017-03-20

    Aggregation/assembly induced emission (AIE) has been observed for metal nanoclusters (NCs), but the origin of the enhanced emission is not fully understood, yet. In this work, the significant contribution of metal defects on AIE is revealed by engineering the self-assembly process of Cu NCs using ethanol. The presence of ethanol leads to a rapid assembly of NCs into ultrathin nanosheets, promoting the formation of metal defects-rich surface. Detailed studies and computer simulation confirm that the metal defects-rich nanosheets possess increased Cu(I)-to-Cu(0) ratio, which greatly influences ligand-to-metal-metal charge transfer and therewith facilitates the radiative relaxation of excitons. Consequently, the Cu NCs self-assembly nanosheets exhibit obvious emission enhancement.

  18. Printing of metallic 3D micro-objects by laser induced forward transfer.

    Science.gov (United States)

    Zenou, Michael; Kotler, Zvi

    2016-01-25

    Digital printing of 3D metal micro-structures by laser induced forward transfer under ambient conditions is reviewed. Recent progress has allowed drop on demand transfer of molten, femto-liter, metal droplets with a high jetting directionality. Such small volume droplets solidify instantly, on a nanosecond time scale, as they touch the substrate. This fast solidification limits their lateral spreading and allows the fabrication of high aspect ratio and complex 3D metal structures. Several examples of micron-scale resolution metal objects printed using this method are presented and discussed.

  19. Metal induced B-Y activation in semisandwich Cp*Rh-, Cp*Ir-, (p-cumene)Ru-, and (p-cumene)Os complexes containing 1,2-dicarba-closo-dodecaborane(12)-1,2-dichalcogenide ligand

    International Nuclear Information System (INIS)

    Bernd Vrakmejer; Khong Yan; Vol'fgang Milius; Maks Kherberkhol'd

    2001-01-01

    Reactivity of 16e-semisandwich Cp*M[E 2 C 2 (B 10 H 10 )] and (p-cumene) M' [S 2 C 2 (B 10 H 10 )] complexes (Cp = cyclopentadienyl-ion; M = Rh, Ir; M' Ru, Os; E = S, Se) towards various alkynes was studied using data of NMR and X-ray diffraction analyses of intermediate and final products of the reactions. It is shown that the reactions initiate from introduction of alkyne molecule in one of metal-E bonds, then intramolecular metal-induced B-H activation occurs along with metal-B bond formation, followed by simultaneous hydrogen atom transfer from boron atom through metal atom to alkyne [ru

  20. Predicting the release of metals from ombrotrophic peat due to drought-induced acidification

    Energy Technology Data Exchange (ETDEWEB)

    Tipping, E.; Smith, E.J.; Lawlor, A.J.; Hughes, S.; Stevens, P.A

    2003-05-01

    Metals stored in peats can be remobilised by sulphuric acid, generated by the drought-induced oxidation of reduced sulphur. - Ombrotrophic peats in northern England and Scotland, close to industrial areas, have substantial contents of potentially toxic metals (Al, Ni, Cu, Zn, Cd and Pb) and of pollutant sulphur, all derived from atmospheric deposition. The peat sulphur, ordinarily in reduced form, may be converted to sulphuric acid under drought conditions, due to the entry of oxygen into the peats. The consequent lowering of soil solution pH is predicted to cause the release of metals held on ligand sites of the peat organic matter. The purpose of the present study was to explore, by simulation modelling, the extent of the metal response. Chemical variables (elemental composition, pH, metal contents) were measured for samples of ombrotrophic peats from three locations. Water extracts of the peats, and samples of local surface water, were also analysed, for pH, dissolved organic carbon (DOC) and metals. Metal release from peats due to acidification was demonstrated experimentally, and could be accounted for reasonably well using a speciation code (WHAM/Model VI). These data, together with information on metal and S deposition, and meteorology, were used to construct a simple description of peat hydrochemistry, based on WHAM/Model VI, that takes into account ion-binding by humic substances (assumed to be the 'active' constituents of the peat with respect to ion-binding). The model was used to simulate steady state situations that approximated the observed soil pH, metal pools and dissolved metal concentrations. Then, drought conditions were imposed, to generate increased concentrations of H{sub 2}SO{sub 4}, in line with those observed during the drought of 1995. The model calculations suggest that the pH will decrease from the initial steady state value of 4.3 to 3.3-3.6 during rewetting periods following droughts, depending upon assumptions about the

  1. Quantum interference induced by initial system–environment correlations

    International Nuclear Information System (INIS)

    Man, Zhong-Xiao; Smirne, Andrea; Xia, Yun-Jie; Vacchini, Bassano

    2012-01-01

    We investigate the quantum interference induced by a relative phase in the correlated initial state of a system which consists in a two-level atom interacting with a damped mode of the radiation field. We show that the initial relative phase has significant effects on both the evolution of the atomic excited-state population and the information flow between the atom and the reservoir, as quantified by the trace distance. Furthermore, by considering two two-level atoms interacting with a common damped mode of the radiation field, we highlight how initial relative phases can affect the subsequent entanglement dynamics. -- Highlights: ► We study the effect of initial correlations in system–bath excitation transfer. ► We study the information flow from the bath to the system via the trace distance. ► We show how entanglement dynamics can be controlled via initial relative phases.

  2. Initial stresses in two-layer metal domes due to imperfections of their production and assemblage

    Directory of Open Access Journals (Sweden)

    Lebed Evgeniy Vasil’evich

    2015-04-01

    Full Text Available The process of construction of two-layer metal domes is analyzed to illustrate the causes of initial stresses in the bars of their frames. It has been noticed that it is impossible to build such structures with ideal geometric parameters because of imperfections caused by objective reasons. These imperfections cause difficulties in the process of connection of the elements in the joints. The paper demonstrates the necessity of fitting operations during assemblage that involve force fitting and yield initial stresses due to imperfections. The authors propose a special method of computer modeling of enforced elimination of possible imperfections caused by assemblage process and further confirm the method by an analysis of a concrete metal dome.

  3. On catalysis of the initial period of methylcyclohexane oxidation by salts of nontransition metals

    International Nuclear Information System (INIS)

    Smirnov, P.A.; Syroezhko, A.M.; Potekhin, V.M.

    1976-01-01

    The purpose of the present work was to study the influence of salts formed by alkali and alkaline-earth metals with aliphatic acids on chain initiation during the initial period of methylcyclohexane oxidation by air. The oxidation was carried out in an autoclave under 10 kg/cm 2 pressure in the temperature range 120-150 0 C, at catalyst concentrations in the range 0.0-2.36.10 -2 M. The inhibitor concentration was varied in the range 0.0-9.5.10 -4 M. Sodium, cesium, barium lithium and calcium stearates and sodium pelargonate (Pe) were used as catalysts. It was found that salts formed by nontransition metals with aliphatic acids having acid radicals with 9-16 carbon atoms are active catalysts of chain initiation. The catalytic activity of the salts increases with the ionic radius of the cation in the series LiSt 2 2 < CsSt. Radical formation is a first-order process with respect to the catalyst and is due to the polar group of the salt

  4. Inducer pumps for liquid metal reactor plants

    International Nuclear Information System (INIS)

    Jackson, E.D.

    2002-01-01

    Pumps proposed for liquid metal reactor plants typically use centrifugal impellers as the rotating element and are required to maintain a relatively low speed to keep the suction specific speed low enough to operate at the available net positive suction head (HPSH) and to avoid cavitation damage. These low speeds of operation require that the pump diameter increase and/or multiple stages be used to achieve the design head. This frequently results in a large, heavy, complex pump design. In addition, the low speed results in a larger drive motor size so that the resultant penalty to the plant designer is multiplied. The heavier pump can also result in further complications as, e.g., the difficulty in maintaining the first critical speed sufficiently above the pump operating range to provide margin for rotor dynamic stability. To overcome some of these disadvantages, it was proposed the use of inducer pumps for Liquid Metal Fast Breeder Reactor (LMFBR) plants. This paper discusses some of the advantages of the inducer pump and the development history of designing and testing these pumps both in water and sodium. The inducer pump is seen to be a sound concept with a strong technology base derived from the aerospace and ship propulsion industries. The superior suction performance capability of the inducer offers significant system design advantages, primarily a smaller, lighter weight, less complex pump design with resulting saving in cost. Extensive testing of these pumps has been conducted in both sodium and water to demonstrate the long-life capability with no cavitation damage occurring in those designs based on Rockwell's current design criteria. These tests have utilized multiple inspection and measurement approaches to accurately assess and identify any potential for cavitation damage, and these approaches have all concluded that no damage is occurring. Therefore, it is concluded that inducer pumps can be safely designed for long life operation in sodium with

  5. Stress corrosion crack initiation of alloy 182 weld metal in primary coolant - Influence of chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Calonne, O.; Foucault, M.; Steltzlen, F. [AREVA (France); Amzallag, C. [EDF SEPTEN (France)

    2011-07-01

    Nickel-base alloys 182 and 82 have been used extensively for dissimilar metal welds. Typical applications are the J-groove welds of alloy 600 vessel head penetrations, pressurizer penetrations, heater sleeves and bottom mounted instrumented nozzles as well as some safe end butt welds. While the overall performance of these weld metals has been good, during the last decade, an increasing number of cases of stress corrosion cracking of Alloy 182 weld metal have been reported in PWRs. In this context, the role of weld defects has to be examined. Their contribution in the crack initiation mechanism requires laboratory investigations with small scale characterizations. In this study, the influence of both alloy composition and weld defects on PWSCC (Stress Corrosion Cracking in Primary Water) initiation was investigated using U-bend specimens in simulated primary water at 320 C. The main results are the following: -) the chemical compositions of the weld deposits leading to a large propensity to hot cracking are not the most susceptible to PWSCC initiation, -) macroscopically, superficial defects did not evolve during successive exposures. They can be included in large corrosion cracks but their role as 'precursors' is not yet established. (authors)

  6. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.

    Science.gov (United States)

    Shahid, Muhammad; Pourrut, Bertrand; Dumat, Camille; Nadeem, Muhammad; Aslam, Muhammad; Pinelli, Eric

    2014-01-01

    As a result of the industrial revolution, anthropogenic activities have enhanced there distribution of many toxic heavy metals from the earth's crust to different environmental compartments. Environmental pollution by toxic heavy metals is increasing worldwide, and poses a rising threat to both the environment and to human health.Plants are exposed to heavy metals from various sources: mining and refining of ores, fertilizer and pesticide applications, battery chemicals, disposal of solid wastes(including sewage sludge), irrigation with wastewater, vehicular exhaust emissions and adjacent industrial activity.Heavy metals induce various morphological, physiological, and biochemical dysfunctions in plants, either directly or indirectly, and cause various damaging effects. The most frequently documented and earliest consequence of heavy metal toxicity in plants cells is the overproduction of ROS. Unlike redox-active metals such as iron and copper, heavy metals (e.g, Pb, Cd, Ni, AI, Mn and Zn) cannot generate ROS directly by participating in biological redox reactions such as Haber Weiss/Fenton reactions. However, these metals induce ROS generation via different indirect mechanisms, such as stimulating the activity of NADPH oxidases, displacing essential cations from specific binding sites of enzymes and inhibiting enzymatic activities from their affinity for -SH groups on the enzyme.Under normal conditions, ROS play several essential roles in regulating the expression of different genes. Reactive oxygen species control numerous processes like the cell cycle, plant growth, abiotic stress responses, systemic signalling, programmed cell death, pathogen defence and development. Enhanced generation of these species from heavy metal toxicity deteriorates the intrinsic antioxidant defense system of cells, and causes oxidative stress. Cells with oxidative stress display various chemical,biological and physiological toxic symptoms as a result of the interaction between ROS and

  7. Tailored plasmon-induced transparency in attenuated total reflection response in a metal-insulator-metal structure.

    Science.gov (United States)

    Matsunaga, Kouki; Hirai, Yusuke; Neo, Yoichiro; Matsumoto, Takahiro; Tomita, Makoto

    2017-12-19

    We demonstrated tailored plasmon-induced transparency (PIT) in a metal (Au)-insulator (SiO 2 )-metal (Ag) (MIM) structure, where the Fano interference between the MIM waveguide mode and the surface plasmon polariton (SPP) resonance mode induced a transparency window in an otherwise opaque wavenumber (k) region. A series of structures with different thicknesses of the Ag layer were prepared and the attenuated total reflection (ATR) response was examined. The height and width of the transparency window, as well as the relevant k-domain dispersion, were controlled by adjusting the Ag layer thickness. To confirm the dependency of PIT on Ag layer thickness, we performed numerical calculations to determine the electric field amplitude inside the layers. The steep k-domain dispersion in the transparency window is capable of creating a lateral beam shift known as the Goos-Hänchen shift, for optical device and sensor applications. We also discuss the Fano interference profiles in a ω - k two-dimensional domain on the basis of Akaike information criteria.

  8. Ejection Regimes in Picosecond Laser-Induced Forward Transfer of Metals

    NARCIS (Netherlands)

    Pohl, Ralph; Visser, C.W.; Römer, Gerardus Richardus, Bernardus, Engelina; Lohse, Detlef; Sun, Chao; Huis in 't Veld, Bert

    2015-01-01

    Laser-induced forward transfer (LIFT) is a 3D direct-write method suitable for precision printing of various materials, including pure metals. To understand the ejection mechanism and thereby improve deposition, here we present visualizations of ejection events at high-spatial (submicrometer) and

  9. Plasma-Induced Damage on the Reliability of Hf-Based High-k/Dual Metal-Gates Complementary Metal Oxide Semiconductor Technology

    International Nuclear Information System (INIS)

    Weng, W.T.; Lin, H.C.; Huang, T.Y.; Lee, Y.J.; Lin, H.C.

    2009-01-01

    This study examines the effects of plasma-induced damage (PID) on Hf-based high-k/dual metal-gates transistors processed with advanced complementary metal-oxide-semiconductor (CMOS) technology. In addition to the gate dielectric degradations, this study demonstrates that thinning the gate dielectric reduces the impact of damage on transistor reliability including the positive bias temperature instability (PBTI) of n-channel metal-oxide-semiconductor field-effect transistors (NMOSFETs) and the negative bias temperature instability (NBTI) of p-channel MOSFETs. This study shows that high-k/metal-gate transistors are more robust against PID than conventional SiO 2 /poly-gate transistors with similar physical thickness. Finally this study proposes a model that successfully explains the observed experimental trends in the presence of PID for high-k/metal-gate CMOS technology.

  10. Induced magnetism in transition metal intercalated graphitic systems

    KAUST Repository

    Kaloni, Thaneshwor P.; Schwingenschlö gl, Udo; Upadhyay Kahaly, M.

    2011-01-01

    We investigate the structure, chemical bonding, electronic properties, and magnetic behavior of a three-dimensional graphitic network in aba and aaa stacking with intercalated transition metal atoms (Mn, Fe, Co, Ni, and Cu). Using density functional theory, we find induced spin-polarization of the C atoms both when the graphene sheets are aba stacked (forming graphite) and aaa stacked (resembling bi-layer graphene). The magnetic moment induced by Mn, Fe, and Co turns out to vary from 1.38 μB to 4.10 μB, whereas intercalation of Ni and Cu does not lead to a magnetic state. The selective induction of spin-polarization can be utilized in spintronic and nanoelectronic applications.

  11. Induced magnetism in transition metal intercalated graphitic systems

    KAUST Repository

    Kaloni, Thaneshwor P.

    2011-10-26

    We investigate the structure, chemical bonding, electronic properties, and magnetic behavior of a three-dimensional graphitic network in aba and aaa stacking with intercalated transition metal atoms (Mn, Fe, Co, Ni, and Cu). Using density functional theory, we find induced spin-polarization of the C atoms both when the graphene sheets are aba stacked (forming graphite) and aaa stacked (resembling bi-layer graphene). The magnetic moment induced by Mn, Fe, and Co turns out to vary from 1.38 μB to 4.10 μB, whereas intercalation of Ni and Cu does not lead to a magnetic state. The selective induction of spin-polarization can be utilized in spintronic and nanoelectronic applications.

  12. On the role of initial void geometry in plastic deformation of metallic thin films: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yanqing [School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0340 (United States); Xu, Shuozhi, E-mail: shuozhixu@gatech.edu [GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405 (United States)

    2016-12-15

    Void growth is usually considered one of the most critical phases leading to dynamic fracture of ductile materials. Investigating the detailed process of void growth at the nanoscale aids in understanding the damage mechanism of metals. While most atomistic simulations by far assume circular or spherical voids for simplicity, recent studies highlight the significance of the initial void ellipticity in mechanical response of voided metals. In this work, we perform large scale molecular dynamics simulations with millions of atoms to investigate the void growth in plastic deformation of thin films in face-centered cubic Cu. It is found that the initial ellipticity and the initial orientation angle of the void have substantial impacts on the dislocation nucleation, the void evolution, and the stress-strain response. In particular, the initial dislocation emission sites and the sequence of slip plane activation vary with the initial void geometry. For the void size evolution, three regimes are identified: (I) the porosity increases relatively slowly in the absence of dislocations, (II) the porosity grows much more rapidly after dislocations start to glide on different slip planes, and (III) the rate of porosity variation becomes much more slowly when dislocations are saturated in the model, and the void surface becomes irregular, non-smooth. In terms of the stress-strain response, the effects of the initial orientation angle are more pronounced when the initial void ellipticity is large; the influence of the initial void ellipticity is different for different initial orientation angles. The effects of the temperature, the strain rate, the loading direction, and the initial porosity in the void growth are also explored. Our results reveal the underlying mechanisms of initial void geometry-dependent plastic deformation of metallic thin films and shed light on informing more accurate theoretical models.

  13. On the role of initial void geometry in plastic deformation of metallic thin films: A molecular dynamics study

    International Nuclear Information System (INIS)

    Su, Yanqing; Xu, Shuozhi

    2016-01-01

    Void growth is usually considered one of the most critical phases leading to dynamic fracture of ductile materials. Investigating the detailed process of void growth at the nanoscale aids in understanding the damage mechanism of metals. While most atomistic simulations by far assume circular or spherical voids for simplicity, recent studies highlight the significance of the initial void ellipticity in mechanical response of voided metals. In this work, we perform large scale molecular dynamics simulations with millions of atoms to investigate the void growth in plastic deformation of thin films in face-centered cubic Cu. It is found that the initial ellipticity and the initial orientation angle of the void have substantial impacts on the dislocation nucleation, the void evolution, and the stress-strain response. In particular, the initial dislocation emission sites and the sequence of slip plane activation vary with the initial void geometry. For the void size evolution, three regimes are identified: (I) the porosity increases relatively slowly in the absence of dislocations, (II) the porosity grows much more rapidly after dislocations start to glide on different slip planes, and (III) the rate of porosity variation becomes much more slowly when dislocations are saturated in the model, and the void surface becomes irregular, non-smooth. In terms of the stress-strain response, the effects of the initial orientation angle are more pronounced when the initial void ellipticity is large; the influence of the initial void ellipticity is different for different initial orientation angles. The effects of the temperature, the strain rate, the loading direction, and the initial porosity in the void growth are also explored. Our results reveal the underlying mechanisms of initial void geometry-dependent plastic deformation of metallic thin films and shed light on informing more accurate theoretical models.

  14. Initial steps in the microbially influenced corrosion (MIC) of metallic surfaces in a natural marine environment

    International Nuclear Information System (INIS)

    Esteso, M.A.; Estrella, C.N.; Dolores de la Rosa, M.; Martinez-Trujillo, R.; Rosales, B.M.; Podesta, J.J.

    1992-01-01

    Immersion of various metal samples in polluted seawater from Tenerife Harbor was followed by microbial attachment as an intermediate step in fouling development. The purpose of this research was to determine the initial steps in MIC by identifying the different microbial species attached to the respective metal or alloy. Image analysis was used to determine the morphologic changes in the metal surfaces. The corrosion products were determined by X-ray diffraction. The open circuit potentials were measured periodically and their variation with time used to assess the electrochemical behavior in the aforementioned marine environment

  15. Viscous surface flow induced on Ti-based bulk metallic glass by heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kun [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Hu, Zheng [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Science and Technology on Vehicle Transmission Laboratory, China North Vehicle Research Institute, Beijing 100072 (China); Li, Fengjiang [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Wei, Bingchen, E-mail: weibc@imech.ac.cn [Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-12-30

    Highlights: • Obvious smoothing and roughening phases on the Ti-based MG surface resulted, which correspond respectively to the normal and off-normal incidence angles. • Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough surface. • The irradiation-induced viscosity of MG is about 4×10{sup 12} Pa·s, which accords with the theoretical prediction for metallic glasses close to glass transition temperature. • Surface-confined viscous flow plays a dominant quantitative role, which is due to radiation-induced softening of the low-viscosity surface layer. - Abstract: Ti-based bulk metallic glass was irradiated by a 20 MeV Cl{sup 4+} ion beam under liquid-nitrogen cooling, which produced remarkable surface smoothing and roughening that respectively correspond to normal and off-normal incidence angles of irradiation. Atomic force microscopy confirms two types of periodic ripples distributed evenly over the rough glass surface. In terms of mechanism, irradiation-induced viscosity agrees with the theoretical prediction for metallic glasses near glass transition temperature. Here, a model is introduced, based on relaxation of confined viscous flow with a thin liquid-like layer, that explains both surface smoothing and ripple formation. This study demonstrates that bulk metallic glass has high morphological instability and low viscosity under ion irradiation, which assets can pave new paths for metallic glass applications.

  16. Hemolysis of human red blood cells induced by the combination of diethyldithiocarbamate (DDC) and divalent metals: modulation by anaerobiosis, certain antioxidants and oxidants.

    Science.gov (United States)

    Ginsburg, I; Sadovnic, M; Varani, J; Tirosh, O; Kohen, R

    1999-08-01

    The objective of the present communication is to describe the role played by combinations between diethydithiocarbamate (DDC) and divalent metals in hemolysis of human RBC. RBC which had been treated with DDC (10-50 microM) were moderately hemolyzed (about 50%) upon the addition of subtoxic amounts of Cu2+ (50 microM). However, a much stronger and a faster hemolysis occurred either if mixtures of RBC-DDC were immediately treated either by Co2+ (50 microM) or by a premixture of Cu2+ and Co2+ (Cu:Co) (50 microM). While Fe2+ and Ni2+, at 50 microM, initiated 30-50% hemolysis when combined with DDC (50 microM), on a molar basis, Cd2+ was at least 50 fold more efficient than any of the other metals in the initiation of hemolysis by DDC. On the other hand, neither Mn2+ nor Zn2+, had any hemolysis-initiating effects. Co2+ was the only metal which totally blocked hemolysis if added to DDC prior to the addition of the other metals. Hemolysis by mixtures of DDC + (Cu:Co) was strongly inhibited by anaerobiosis (flushing with nitrogen gas), by the reducing agents glutathione, N-acetyl cysteine, mercaptosuccinate, ascorbate, TEMPO, and alpha-tocopherol, by the PLA2 inhibitorbromophenacylbromide (BrPACBr), by tetracycline as well as by phosphatidyl choline, cholesterol and by trypan blue. However, TEMPO, BrPACBr and PC were the only agents which inhibited hemolysis induced by DDC: Cd2+ complexes. On the other hand, none of the classical scavengers of reactive oxygen species (ROS) employed e.g dimethylthiourea, catalase, histidine, mannitol, sodium benzoate, nor the metal chelators desferal and phenanthroline, had any appreciable inhibitory effects on hemolysis induced by DDC + (Cu:Co). DDC oxidized by H2O2 lost its capacity to act in concert either with Cu2+ or with Cd2+ to hemolyze RBC. While either heating RBC to temperatures greater than 37 degrees C or exposure of the cells to glucose-oxidase-generated peroxide diminished their susceptibility to hemolysis, exposure to the

  17. Transversely Excited Atmospheric CO2 Laser-Induced Plasma Spectroscopy for the Detection of Heavy Metals in Soil

    Science.gov (United States)

    Khumaeni, A.; Sugito, H.; Setia Budi, W.; Yoyo Wardaya, A.

    2018-01-01

    A rapid detection of heavy metals in soil was presented by the metal-assisted gas plasma method using specific characteristics of a pulsed, transversely excited atmospheric (TEA) CO2 laser. The soil particles were placed in a hole made of acrylic plate. The sample was covered by a to prevent the soil particles from being blown off. The mesh also functioned to initiate a luminous plasma. When a TEA CO2 laser (1500 mJ, 200 ns) was focused on the soil sample, passing through the metal mesh, some of the laser energy was used to generate the gas plasma on the mesh surface, and the remaining laser energy was employed to ablate the soil particles. The fine, ablated soil particles moved into the gas plasma region to be dissociated and excited. Using this technique, analysis can be made with reduced sample pretreatment, and therefore a rapid analysis can be performed efficiently. The results proved that the signal to noise ratio (S/N) of the emission spectral lines is much better for the case of the present method (mesh method) compared to the case of standard laser-induced breakdown spectroscopy using the pellet method. Rapid detection of heavy metal elements in soil has been successfully carried out. The detection limits of Cu and Hg in soil were estimated to be 3 and 10 mg/kg, respectively. The present method has good potential for rapid and sensitive detection of heavy metals in soil samples.

  18. Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels.

    Science.gov (United States)

    Lešková, Alexandra; Giehl, Ricardo F H; Hartmann, Anja; Fargašová, Agáta; von Wirén, Nicolaus

    2017-07-01

    In plants, the excess of several heavy metals mimics iron (Fe) deficiency-induced chlorosis, indicating a disturbance in Fe homeostasis. To examine the level at which heavy metals interfere with Fe deficiency responses, we carried out an in-depth characterization of Fe-related physiological, regulatory, and morphological responses in Arabidopsis ( Arabidopsis thaliana ) exposed to heavy metals. Enhanced zinc (Zn) uptake closely mimicked Fe deficiency by leading to low chlorophyll but high ferric-chelate reductase activity and coumarin release. These responses were not caused by Zn-inhibited Fe uptake via IRON-REGULATED TRANSPORTER (IRT1). Instead, Zn simulated the transcriptional response of typical Fe-regulated genes, indicating that Zn affects Fe homeostasis at the level of Fe sensing. Excess supplies of cobalt and nickel altered root traits in a different way from Fe deficiency, inducing only transient Fe deficiency responses, which were characterized by a lack of induction of the ethylene pathway. Cadmium showed a rather inconsistent influence on Fe deficiency responses at multiple levels. By contrast, manganese evoked weak Fe deficiency responses in wild-type plants but strongly exacerbated chlorosis in irt1 plants, indicating that manganese antagonized Fe mainly at the level of transport. These results show that the investigated heavy metals modulate Fe deficiency responses at different hierarchic and regulatory levels and that the interaction of metals with physiological and morphological Fe deficiency responses is uncoupled. Thus, this study not only emphasizes the importance of assessing heavy metal toxicities at multiple levels but also provides a new perspective on how Fe deficiency contributes to the toxic action of individual heavy metals. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. Preparation and controlled drug delivery applications of mesoporous silica polymer nanocomposites through the visible light induced surface-initiated ATRP

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Long; Liu, Meiying; Mao, Liucheng; Xu, Dazhuang; Wan, Qing; Zeng, Guangjian; Shi, Yingge [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wen, Yuanqing, E-mail: m18600788382@163.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and The Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2017-08-01

    Graphical abstract: A novel strategy for surface PEGylation of mesoporous silica nanoparticles was developed based on the light induced surface-initiated atom transfer radical polymerization. - Highlights: • Surface modification of silica nanoparticles through light induced surface-initiated ATRP. • MSNs-NH{sub 2}-poly(IA-co-PEGMA) nanocomposites show high water dispersity. • MSNs-NH{sub 2}-poly(IA-co-PEGMA) nanocomposites are promising for biomedical applications. • The light induced ATRP possesses many advantages as compared with traditional ATRP. - Abstract: The mesoporous materials with large pore size, high specific surface area and high thermal stability have been widely utilized in a variety of fields ranging from environmental remediation to separation and biomedicine. However, surface modification of these silica nanomaterials is required to endow novel properties and achieve better performance for most of these applications. In this work, a new method has been established for surface modification of mesoporous silica nanoparticles (MSNs) that relied on the visible light induced atom transfer radical polymerization (ATRP). In the procedure, the copolymers composited with itaconic acid (IA) and poly(ethylene glycol)methyl acrylate (PEGMA) were grafted from MSNs using IA and PEGMA as the monomers and 10-Phenylphenothiazine(PTH) as the organic catalyst. The successful preparation of final polymer nanocomposites (named as MSNs-NH{sub 2}-poly(IA-co-PEGMA)) were evidenced by a series of characterization techniques. More importantly, the anticancer agent cisplatin can be effectively loaded on MSNs-NH{sub 2}-poly(IA-co-PEGMA) and controlled release it from the drug-loading composites with pH responsive behavior. As compared with conventional ATRP, the light induced surface-initiated ATRP could also be utilized for preparation of various silica polymer nanocomposites under rather benign conditions (e.g. absent of transition metal ions, low polymerization

  20. Complexation-Induced Phase Separation: Preparation of Metal-Rich Polymeric Membranes

    KAUST Repository

    Villalobos Vazquez de la Parra, Luis Francisco

    2017-08-01

    The majority of state-of-the-art polymeric membranes for industrial or medical applications are fabricated by phase inversion. Complexation induced phase separation (CIPS)—a surprising variation of this well-known process—allows direct fabrication of hybrid membranes in existing facilities. In the CIPS process, a first step forms the thin metal-rich selective layer of the membrane, and a succeeding step the porous support. Precipitation of the selective layer takes place in the same solvent used to dissolve the polymer and is induced by a small concentration of metal ions. These ions form metal-coordination-based crosslinks leading to the formation of a solid skin floating on top of the liquid polymer film. A subsequent precipitation in a nonsolvent bath leads to the formation of the porous support structure. Forming the dense layer and porous support by different mechanisms while maintaining the simplicity of a phase inversion process, results in unprecedented control over the final structure of the membrane. The thickness and morphology of the dense layer as well as the porosity of the support can be controlled over a wide range by manipulating simple process parameters. CIPS facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude—from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. The nature of the CIPS process facilitates a precise loading of a high concentration of metal ions that are located in only the top layer of the membrane. Moreover, these metal ions can be converted—during the membrane fabrication process—to nanoparticles or crystals. This simple method opens up fascinating possibilities for the fabrication of metal-rich polymeric membranes with a new set of properties. This dissertation describes the process in depth and explores promising

  1. Metal ion induced room temperature phase transformation and stimulated infrared spectroscopy on TiO2-based surfaces

    International Nuclear Information System (INIS)

    Gole, James L.; Prokes, S.M.; White, Mark G.

    2008-01-01

    Raman and infrared spectroscopy are used to demonstrate (1) the high spin metal ion induced room temperature transformation of anatase to rutile TiO 2 and (2) the phenomena of stimulated IR spectroscopy induced by simultaneous nitrogen doping and high spin metal ion seeding of a TiO 2 nanocolloid lattice

  2. Inducing half-metallicity with enhanced stability in zigzag graphene nanoribbons via fluorine passivation

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, Neeraj K., E-mail: neerajkjaiswal@gmail.com [Discipline of Physics, Indian Institute of Information Technology Design & Manufacturing, Jabalpur 482005 (India); Tyagi, Neha [Department of Applied Physics, Delhi Technological University, Delhi 110042 (India); Kumar, Amit [Discipline of Physics, Indian Institute of Information Technology Design & Manufacturing, Jabalpur 482005 (India); Srivastava, Pankaj [Nanomaterials Research Group, ABV-Indian Institute of Information Technology & Management, Gwalior 474015 (India)

    2017-02-28

    Highlights: • F passivated zigzag graphene nanoribbon (F-ZGNR) are more favorable than pristine ones. • External electric field induces half metallicity in F-ZGNR. • The observed half metallicity is independent of ribbon widths. • Enhanced stability makes F-ZGNR preferable over pristine ribbon. - Abstract: Half metals are the primary ingredients for the realization of novel spintronic devices. In the present work, by employing density functional theory based first-principles calculation, we predict half metallic behavior in fluorine passivated zigzag graphene nanoribbons (F-ZGNR). Four different structures have been investigated viz. one edge F passivated ZGNR (F-ZGNR-1), both edges F passivated ZGNR (F-ZGNR-2), F passivation on alternate sites in first configuration (alt-1) and F passivation on alternate sites in second configuration (alt-2). Interestingly, it is noticed that F passivation is analogous to H passivation (pristine), however, F-ZGNR are reckoned energetically more stable than pristine ones. An spin induced band gap is noticed for all F-ZGNR irrespective of their widths although its magnitude is slightly less than the pristine counterparts. With an external transverse electric field, ribbons undergo semiconducting to half metallic transformation. The observed half metallic character with enhanced stability present F-ZGNR as a better candidate than pristine ZGNR towards the realization of upcoming spintronic devices.

  3. Segregation of cascade induced interstitial loops at dislocations: possible effect on initiation of plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Trinkaus, H. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Festkoerperforschung; Singh, B.N. [Materials Research Department, Risoe National Laboratory, DK-4000 Roskilde (Denmark); Foreman, A.J.E. [Materials Performance Department, Harwell Laboratory, Oxfordshire OX11 0RA (United Kingdom)

    1997-11-01

    In metals and alloys subjected to cascade damage dislocations are frequently found to be decorated with a high density of small clusters of self-interstitial atoms (SIAs) in the form of dislocation loops. In the present paper it is shown that this effect may be attributed to the glide and trapping of SIA loops, produced directly in cascades (rather than to the enhanced agglomeration of single SIAs), in the strain field of the dislocations. The conditions for the accumulation of glissile SIA loops near dislocations as well as the dose and temperature dependencies of this phenomenon are discussed. It is suggested that the decoration of dislocations with loops may play a key role in radiation hardening subjected to cascade damage. It is shown, for example, that the increase in the upper yield stress followed by a yield drop and plastic instability in metals andalloys subjected to cascade damage cannot be rationalized in terms of conventional dispersed barrier hardening (DBH) but may be understood in terms of cascade induced source hardening (CISH) in which the dislocations are considered to be locked by the loops decorating them. Estimates for the stress necessary to pull a dislocation away from its loop `cloud` are used to discuss the dose and temperature dependence of plastic flow initiation. (orig.). 55 refs.

  4. Segregation of cascade induced interstitial loops at dislocations: possible effect on initiation of plastic deformation

    International Nuclear Information System (INIS)

    Trinkaus, H.; Foreman, A.J.E.

    1997-01-01

    In metals and alloys subjected to cascade damage dislocations are frequently found to be decorated with a high density of small clusters of self-interstitial atoms (SIAs) in the form of dislocation loops. In the present paper it is shown that this effect may be attributed to the glide and trapping of SIA loops, produced directly in cascades (rather than to the enhanced agglomeration of single SIAs), in the strain field of the dislocations. The conditions for the accumulation of glissile SIA loops near dislocations as well as the dose and temperature dependencies of this phenomenon are discussed. It is suggested that the decoration of dislocations with loops may play a key role in radiation hardening subjected to cascade damage. It is shown, for example, that the increase in the upper yield stress followed by a yield drop and plastic instability in metals andalloys subjected to cascade damage cannot be rationalized in terms of conventional dispersed barrier hardening (DBH) but may be understood in terms of cascade induced source hardening (CISH) in which the dislocations are considered to be locked by the loops decorating them. Estimates for the stress necessary to pull a dislocation away from its loop 'cloud' are used to discuss the dose and temperature dependence of plastic flow initiation. (orig.)

  5. Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers

    KAUST Repository

    Cheng, Yingchun; Zhu, Zhiyong; Tahir, Muhammad; Schwingenschlö gl, Udo

    2013-01-01

    . We present ab initio electronic structure, phonon, and molecular-dynamics calculations to study the structural stability and spin-orbit-induced spin splitting in the transition metal dichalcogenide monolayers MXY (M = Mo, W and X, Y = S, Se, Te

  6. A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles

    OpenAIRE

    Abedini, Alam; Daud, Abdul Razak; Abdul Hamid, Muhammad Azmi; Kamil Othman, Norinsan; Saion, Elias

    2013-01-01

    This review presents an introduction to the synthesis of metallic nanoparticles by radiation-induced method, especially gamma irradiation. This method offers some benefits over the conventional methods because it provides fully reduced and highly pure nanoparticles free from by-products or chemical reducing agents, and is capable of controlling the particle size and structure. The nucleation and growth mechanism of metallic nanoparticles are also discussed. The competition between nucleation ...

  7. Metal induced embrittlement. Annual report, [March 1, 1987--February 29, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Hoagland, R.G.

    1988-11-01

    This program is investigating the causes of embrittlement that occur in certain solid metals when exposed to liquid metals. The degree of embrittlement varies enormously among different solid/liquid pairs as witness, for example, the modest loss of load carrying, ability induced in carbon steels by Pb or the profound embrittlment of aluminum (particularly high strength) alloys by Hg and Ga. The structure of this study involves two types of activities: an experimental fracture mechanics study of the behavior of certain solid metals in liquid metals, and a theoretical study on an atomic scale of the crack tip deformation and extension behavior by means of atomistic simulation. This research, which began March 1, 1987, has completed its 20 month. A brief synopsis is given of performance in each of the areas of activity during the past year.

  8. Online monitoring of corrosion behavior in molten metal using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Zeng, Qiang; Pan, Congyuan; Li, Chaoyang; Fei, Teng; Ding, Xiaokang; Du, Xuewei; Wang, Qiuping

    2018-04-01

    The corrosion behavior of structure materials in direct contact with molten metals is widespread in metallurgical industry. The corrosion of casting equipment by molten metals is detrimental to the production process, and the corroded materials can also contaminate the metals being produced. Conventional methods for studying the corrosion behavior by molten metal are offline. This work explored the application of laser-induced breakdown spectroscopy (LIBS) for online monitoring of the corrosion behavior of molten metal. The compositional changes of molten aluminum in crucibles made of 304 stainless steel were obtained online at 1000 °C. Several offline techniques were combined to determine the corrosion mechanism, which was highly consistent with previous studies. Results proved that LIBS was an efficient method to study the corrosion mechanism of solid materials in molten metal.

  9. Mutations induced by the action of metal ions in Pisum

    Energy Technology Data Exchange (ETDEWEB)

    von Rosen, G

    1957-01-01

    Simple metal ions may induce both radiomimetic effects and genuine gene mutations of the same type which occurs from ionizing radiation and from treatment with some chemical agencies as e.g., mustard gas. The main material during the experiments has been species of Pisum. The biochemical principle which lies behind these reactions is the complex-forming ability among those reactive bivalent metal elements. The author assumes that interruptions of the chelate formation in the cell synthesis form the real background to the observed activity of the metal ions. The possible role in the evolution of the plant- and animal kingdom and the probable value for plant-breeding of the mutation activity observed are suggested. A new field for mutation experiments may here be opened and the results must hitherto be judged as interesting and promising. 13 references, 7 figures, 4 tables.

  10. Genetic toxicology of metal compounds. II. Enhancement of ultraviolet light-induced mutagenesis in Escherichia coli WP2

    International Nuclear Information System (INIS)

    Rossman, T.G.; Molina, M.

    1986-01-01

    Salts of metals which are carcinogenic, noncarcinogenic, or of unknown carcinogenicity were assayed for their abilities to modulate ultraviolet (UV)-induced mutagenesis in Escherichia coli WP2. In addition to the previously reported comutagenic effect of arsenite, salts of three other compounds were found to enhance UV mutagenesis. CuCl 2 , MnCl 2 (and a small effect by KMnO 4 ), and NaMoO 4 acted as comutagens in E coli WP2, which has wild-type DNA repair capability, but were much less comutagenic in the repair deficient strain WP2/sub s/ (uvrA). The survival of irradiated or unirradiated cells was not affected by these compounds. No effects on UV mutagenesis were seen for 16 other metal compounds. We suggest that the comutagenic effects might occur either via metal-induced decreases in the fidelity of repair replication or via metal-induced depurination

  11. Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988: Annual report of the metals initiative for fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This annual report has been prepared for the President and Congress describing the activities carried out under the Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988, commonly referred to as the Metals Initiative. The Act has the following purposes: (1) increase energy efficiency and enhance the competitiveness of the American steel, aluminum, and copper industries; and (2) continue research and development efforts begun under the U.S. Department of Energy (DOE) program known as the Steel Initiative. These activities are detailed in a subsequent section. Other sections describe the appropriation history, the distribution of funds through fiscal year 1996, and the estimated funds necessary to continue projects through fiscal year 1997. The Metals Initiative supported four research and development projects with the U.S. Steel industry: (1) steel plant waste oxide recycling and resource recovery by smelting, (2) electrochemical dezincing of steel scrap, (3) rapid analysis of molten metals using laser-produced plasmas, and (4) advanced process control. There are three Metals Initiative projects with the aluminum industry: (1) evaluation of TiB2-G cathode components, (2) energy efficient pressure calciner, and (3) spray forming of aluminum. 1 tab.

  12. Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988: Annual report of the metals initiative for fiscal year 1996

    International Nuclear Information System (INIS)

    1998-01-01

    This annual report has been prepared for the President and Congress describing the activities carried out under the Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988, commonly referred to as the Metals Initiative. The Act has the following purposes: (1) increase energy efficiency and enhance the competitiveness of the American steel, aluminum, and copper industries; and (2) continue research and development efforts begun under the U.S. Department of Energy (DOE) program known as the Steel Initiative. These activities are detailed in a subsequent section. Other sections describe the appropriation history, the distribution of funds through fiscal year 1996, and the estimated funds necessary to continue projects through fiscal year 1997. The Metals Initiative supported four research and development projects with the U.S. Steel industry: (1) steel plant waste oxide recycling and resource recovery by smelting, (2) electrochemical dezincing of steel scrap, (3) rapid analysis of molten metals using laser-produced plasmas, and (4) advanced process control. There are three Metals Initiative projects with the aluminum industry: (1) evaluation of TiB2-G cathode components, (2) energy efficient pressure calciner, and (3) spray forming of aluminum. 1 tab

  13. Dendrite-Free Sodium-Metal Anodes for High-Energy Sodium-Metal Batteries.

    Science.gov (United States)

    Sun, Bing; Li, Peng; Zhang, Jinqiang; Wang, Dan; Munroe, Paul; Wang, Chengyin; Notten, Peter H L; Wang, Guoxiu

    2018-05-31

    Sodium (Na) metal is one of the most promising electrode materials for next-generation low-cost rechargeable batteries. However, the challenges caused by dendrite growth on Na metal anodes restrict practical applications of rechargeable Na metal batteries. Herein, a nitrogen and sulfur co-doped carbon nanotube (NSCNT) paper is used as the interlayer to control Na nucleation behavior and suppress the Na dendrite growth. The N- and S-containing functional groups on the carbon nanotubes induce the NSCNTs to be highly "sodiophilic," which can guide the initial Na nucleation and direct Na to distribute uniformly on the NSCNT paper. As a result, the Na-metal-based anode (Na/NSCNT anode) exhibits a dendrite-free morphology during repeated Na plating and striping and excellent cycling stability. As a proof of concept, it is also demonstrated that the electrochemical performance of sodium-oxygen (Na-O 2 ) batteries using the Na/NSCNT anodes show significantly improved cycling performances compared with Na-O 2 batteries with bare Na metal anodes. This work opens a new avenue for the development of next-generation high-energy-density sodium-metal batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Water-Induced Dimensionality Reduction in Metal-Halide Perovskites

    KAUST Repository

    Turedi, Bekir

    2018-03-30

    Metal-halide perovskite materials are highly attractive materials for optoelectronic applications. However, the instability of perovskite materials caused by moisture and heat-induced degradation impairs future prospects of using these materials. Here we employ water to directly transform films of the three-dimensional (3D) perovskite CsPbBr3 to stable two-dimensional (2D) perovskite-related CsPb2Br5. A sequential dissolution-recrystallization process governs this water induced transformation under PbBr2 rich condition. We find that these post-synthesized 2D perovskite-related material films exhibit excellent stability against humidity and high photoluminescence quantum yield. We believe that our results provide a new synthetic method to generate stable 2D perovskite-related materials that could be applicable for light emitting device applications.

  15. Ion-induced effects on metallic nanoparticles

    International Nuclear Information System (INIS)

    Klimmer, Andreas

    2010-01-01

    This work deals with the ion-irradiation of metallic nanoparticles in combination with various substrates. Particle diameters were systematically varied within the range of 2.5-14 nm, inter-particle distances range from 30-120 nm. Irradiations were performed with various inert gas ions with energies of 200 keV, resulting in an average ion range larger than the particle dimensions and therefore the effects of irradiation are mainly due to creation of structural defects within the particles and the underlying substrate as well. The main part of this work deals with ion-induced burrowing of metallic nanoparticles into the underlying substrate. The use of micellar nanoparticles with sharp size distribution combined with AFM and TEM analysis allows a much more detailed look at this effect than other works on that topic so far. With respect to the particle properties also a detailed look on the effect of irradiation on the particle structure would be interesting, which might lead to a deliberate influence on magnetic properties, for example. Within the context of this work, first successful experiments were performed on FePt particles, showing a significant reduction of the ordering temperature leading to the magnetically interesting, ordered L1 0 phase. (orig.)

  16. Heat pretreatment-induced activation of gadolinium surfaces towards the initial precipitation of hydrides

    International Nuclear Information System (INIS)

    Benamar, G.; Schweke, D.; Shamir, N.; Zalkind, S.; Livneh, T.; Danon, A.; Kimmel, G.; Mintz, M.H.

    2010-01-01

    A vacuum heat pretreatment is applied, in order to enhance the reactivity of hydride-forming metals towards hydrogen reaction. For gadolinium, as for other rare-earth metals and some actinides, pretreatment temperatures of about 470 K are sufficient to induce such activation. The different factors that may be involved in that activation mechanism are identified and analyzed for gadolinium and their role is evaluated. It is concluded that the most prominent effect is desorption of surface hydroxyl groups, which impede the dissociative chemisorptions of hydrogen.

  17. Electron-electron scattering-induced channel hot electron injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors with high-k/metal gate stacks

    International Nuclear Information System (INIS)

    Tsai, Jyun-Yu; Liu, Kuan-Ju; Lu, Ying-Hsin; Liu, Xi-Wen; Chang, Ting-Chang; Chen, Ching-En; Ho, Szu-Han; Tseng, Tseung-Yuen; Cheng, Osbert; Huang, Cheng-Tung; Lu, Ching-Sen

    2014-01-01

    This work investigates electron-electron scattering (EES)-induced channel hot electron (CHE) injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors (n-MOSFETs) with high-k/metal gate stacks. Many groups have proposed new models (i.e., single-particle and multiple-particle process) to well explain the hot carrier degradation in nanoscale devices and all mechanisms focused on Si-H bond dissociation at the Si/SiO 2 interface. However, for high-k dielectric devices, experiment results show that the channel hot carrier trapping in the pre-existing high-k bulk defects is the main degradation mechanism. Therefore, we propose a model of EES-induced CHE injection to illustrate the trapping-dominant mechanism in nanoscale n-MOSFETs with high-k/metal gate stacks.

  18. Metal ion induced room temperature phase transformation and stimulated infrared spectroscopy on TiO{sub 2}-based surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gole, James L. [Schools of Physics and Mechanical Engineering, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332-0430 (United States)], E-mail: jim.gole@physics.gatech.edu; Prokes, S.M. [Code 6876, NRL, Washington, DC 20375 (United States)], E-mail: prokes@estd.nrl.navy.mil; White, Mark G. [Dave C. Swalm School of Chemical Engineering, James Worth Bagley College of Engineering, Box 959, MS 39762 (United States)], E-mail: white@che.msstate.edu

    2008-11-30

    Raman and infrared spectroscopy are used to demonstrate (1) the high spin metal ion induced room temperature transformation of anatase to rutile TiO{sub 2} and (2) the phenomena of stimulated IR spectroscopy induced by simultaneous nitrogen doping and high spin metal ion seeding of a TiO{sub 2} nanocolloid lattice.

  19. Theory of in-plane current induced spin torque in metal/ferromagnet bilayers

    Science.gov (United States)

    Sakanashi, Kohei; Sigrist, Manfred; Chen, Wei

    2018-05-01

    Using a semiclassical approach that simultaneously incorporates the spin Hall effect (SHE), spin diffusion, quantum well states, and interface spin–orbit coupling (SOC), we address the interplay of these mechanisms as the origin of the spin–orbit torque (SOT) induced by in-plane currents, as observed in the normal metal/ferromagnetic metal bilayer thin films. Focusing on the bilayers with a ferromagnet much thinner than its spin diffusion length, such as Pt/Co with  ∼10 nm thickness, our approach addresses simultaneously the two contributions to the SOT, namely the spin-transfer torque (SHE-STT) due to SHE-induced spin injection, and the inverse spin Galvanic effect spin–orbit torque (ISGE-SOT) due to SOC-induced spin accumulation. The SOC produces an effective magnetic field at the interface, hence it modifies the angular momentum conservation expected for the SHE-STT. The SHE-induced spin voltage and the interface spin current are mutually dependent and, hence, are solved in a self-consistent manner. The result suggests that the SHE-STT and ISGE-SOT are of the same order of magnitude, and the spin transport mediated by the quantum well states may be an important mechanism for the experimentally observed rapid variation of the SOT with respect to the thickness of the ferromagnet.

  20. Direct observation of shear–induced nanocrystal attachment and coalescence in CuZr-based metallic glasses: TEM investigation

    International Nuclear Information System (INIS)

    Hajlaoui, K.; Alrasheedi, Nashmi H.; Yavari, A.R.

    2016-01-01

    In-situ tensile straining tests were performed in a transmission electron microscope (TEM) to analyse the deformation processes in CuZr-based metallic glasses and to directly observe the phase transformation occurrence. We report evidence of shear induced coalescence of nanocrystals in the vicinity of deformed regions. Nanocrystals grow in shear bands, come into contact, being attached and progressively coalesce under applied shear stress. - Highlights: • In-situ tensile straining test in TEM was investigated on CuZr-Based metallic glass. • Strain induces nanocrystallization and subsequent attachment and coalescence of nanocrystals. • The coalescence of nanocrystals compensates strain softening in metallic glasses.

  1. Ion bombardment induced smoothing of amorphous metallic surfaces: Experiments versus computer simulations

    International Nuclear Information System (INIS)

    Vauth, Sebastian; Mayr, S. G.

    2008-01-01

    Smoothing of rough amorphous metallic surfaces by bombardment with heavy ions in the low keV regime is investigated by a combined experimental-simulational study. Vapor deposited rough amorphous Zr 65 Al 7.5 Cu 27.5 films are the basis for systematic in situ scanning tunneling microscopy measurements on the smoothing reaction due to 3 keV Kr + ion bombardment. The experimental results are directly compared to the predictions of a multiscale simulation approach, which incorporates stochastic rate equations of the Langevin type in combination with previously reported classical molecular dynamics simulations [Phys. Rev. B 75, 224107 (2007)] to model surface smoothing across length and time scales. The combined approach of experiments and simulations clearly corroborates a key role of ion induced viscous flow and ballistic effects in low keV heavy ion induced smoothing of amorphous metallic surfaces at ambient temperatures

  2. Study on penetration-induced initiation of energetic fragment

    Science.gov (United States)

    Qiao, Xiangxin; Xu, Heyang

    2017-09-01

    In order to investigate penetration-induced initiation of energetic fragment penetrating target, PTFE/Al (mass ratio 73.5/26.5) pressed and sintered into a Ф8mm × 8mm cylinder. To form energetic fragment, the cylinder was put into a closed container made by 35CrMnSiA. The container is 12mm long, 2mm thick. Energetic fragments were launched by a 14.5mm ballistic gun with a series of velocities and the penetrate process was simulated by AUTODYN-3D. The results show that the stress peak of energetic material exceed the initiation threshold, and energetic material will deflagrate, when energetic fragments impact velocity more than 800 m/s. The research results can provide reference for designs of energetic warhead.

  3. ER stress inducer tunicamycin suppresses the self-renewal of glioma-initiating cell partly through inhibiting Sox2 translation.

    Science.gov (United States)

    Xing, Yang; Ge, Yuqing; Liu, Chanjuan; Zhang, Xiaobiao; Jiang, Jianhai; Wei, Yuanyan

    2016-06-14

    Glioma-initiating cells possess tumor-initiating potential and are relatively resistant to conventional chemotherapy and irradiation. Therefore, their elimination is an essential factor for the development of efficient therapy. Here, we report that endoplasmic reticulum (ER) stress inducer tunicamycin inhibits glioma-initiating cell self-renewal as determined by neurosphere formation assay. Moreover, tunicamycin decreases the efficiency of glioma-initiating cell to initiate tumor formation. Although tunicamycin induces glioma-initiating cell apoptosis, apoptosis inhibitor z-VAD-fmk only partly abrogates the reduction in glioma-initiating cell self-renewal induced by tunicamycin. Indeed, tunicamycin reduces the expression of self-renewal regulator Sox2 at translation level. Overexpression of Sox2 obviously abrogates the reduction in glioma-initiating cell self-renewal induced by tunicamycin. Taken together, tunicamycin suppresses the self-renewal and tumorigenic potential of glioma-initiating cell partly through reducing Sox2 translation. This finding provides a cue to potential effective treatment of glioblastoma through controlling stem cells.

  4. Optimization of laccase production by two strains of Ganoderma lucidum using phenolic and metallic inducers

    Directory of Open Access Journals (Sweden)

    Francisco Kuhar

    Full Text Available Ganoderma lucidum (Curtis P. Karst is a white rot fungus that is able to degrade the lignin component in wood. The ability of two strains of this species to produce the ligninolytic enzyme laccase was assessed. After the evaluation of induction with heavy metals and phenolic compounds, it was found that among the tested substances, copper and ferulic acid are the best laccase inducers. It was also observed that the two types of inducers (phenolic and metallic produce different electrophoretic patterns of laccase activity. Optimized concentrations of inducers were obtained through a factorial design and the thermal stability of optimized supernatants was studied at a wide range of acidic pH. We found that the enzyme is more thermostable at higher pH values.

  5. NRF2 Oxidative Stress Induced by Heavy Metals is Cell Type Dependent

    Science.gov (United States)

    Exposure to metallic environmental toxicants has been demonstrated to induce a variety of oxidative stress responses in mammalian cells. The transcription factor Nrf2 is activated in response to oxidative stress and coordinates the expression of antioxidant gene products. In this...

  6. Laser-induced fluorescence of metal-atom impurities in a neutral beam

    International Nuclear Information System (INIS)

    Burrell, C.F.; Pyle, R.V.; Sabetimani, Z.; Schlachter, A.S.

    1984-10-01

    The need to limit impurities in fusion devices to low levels is well known. We have investigated, by the technique of laser-induced fluorescence, the concentration of heavy-metal atoms in a neutral beam caused by their evaporation from the hot filaments in a conventional high-current multifilament hydrogen-ion source

  7. Evidence for photo-induced monoclinic metallic VO2 under high pressure

    International Nuclear Information System (INIS)

    Hsieh, Wen-Pin; Mao, Wendy L.; Trigo, Mariano; Reis, David A.; Andrea Artioli, Gianluca; Malavasi, Lorenzo

    2014-01-01

    We combine ultrafast pump-probe spectroscopy with a diamond-anvil cell to decouple the insulator-metal electronic transition from the lattice symmetry changing structural transition in the archetypal strongly correlated material vanadium dioxide. Coherent phonon spectroscopy enables tracking of the photo-excited phonon vibrational frequencies of the low temperature, monoclinic (M 1 )-insulating phase that transforms into the metallic, tetragonal rutile structured phase at high temperature or via non-thermal photo-excitations. We find that in contrast with ambient pressure experiments where strong photo-excitation promptly induces the electronic transition along with changes in the lattice symmetry, at high pressure, the coherent phonons of the monoclinic (M 1 ) phase are still clearly observed upon the photo-driven phase transition to a metallic state. These results demonstrate the possibility of synthesizing and studying transient phases under extreme conditions

  8. High Strain Rate and Shock-Induced Deformation in Metals

    Science.gov (United States)

    Ravelo, Ramon

    2012-02-01

    Large-scale non-equilibrium molecular Dynamics (MD) simulations are now commonly used to study material deformation at high strain rates (10^9-10^12 s-1). They can provide detailed information-- such as defect morphology, dislocation densities, and temperature and stress profiles, unavailable or hard to measure experimentally. Computational studies of shock-induced plasticity and melting in fcc and bcc single, mono-crystal metals, exhibit generic characteristics: high elastic limits, large directional anisotropies in the yield stress and pre-melting much below the equilibrium melt temperature for shock wave propagation along specific crystallographic directions. These generic features in the response of single crystals subjected to high strain rates of deformation can be explained from the changes in the energy landscape of the uniaxially compressed crystal lattice. For time scales relevant to dynamic shock loading, the directional-dependence of the yield strength in single crystals is shown to be due to the onset of instabilities in elastic-wave propagation velocities. The elastic-plastic transition threshold can accurately be predicted by a wave-propagation stability analysis. These strain-induced instabilities create incipient defect structures, which can be quite different from the ones, which characterize the long-time, asymptotic state of the compressed solid. With increase compression and strain rate, plastic deformation via extended defects gives way to amorphization associated with the loss in shear rigidity along specific deformation paths. The hot amorphous or (super-cooled liquid) metal re-crystallizes at rates, which depend on the temperature difference between the amorphous solid and the equilibrium melt line. This plastic-amorphous transition threshold can be computed from shear-waves stability analyses. Examples from selected fcc and bcc metals will be presented employing semi-empirical potentials of the embedded atom method (EAM) type as well as

  9. Influence of metallic surface states on electron affinity of epitaxial AlN films

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Monu; Krishna, Shibin; Aggarwal, Neha [Advanced Materials and Devices Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Gupta, Govind, E-mail: govind@nplindia.org [Advanced Materials and Devices Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)

    2017-06-15

    The present article investigates surface metallic states induced alteration in the electron affinity of epitaxial AlN films. AlN films grown by plasma-assisted molecular beam epitaxy system with (30% and 16%) and without metallic aluminium on the surface were probed via photoemission spectroscopic measurements. An in-depth analysis exploring the influence of metallic aluminium and native oxide on the electronic structure of the films is performed. It was observed that the metallic states pinned the Fermi Level (FL) near valence band edge and lead to the reduction of electron affinity (EA). These metallic states initiated charge transfer and induced changes in surface and interface dipoles strength. Therefore, the EA of the films varied between 0.6–1.0 eV due to the variation in contribution of metallic states and native oxide. However, the surface barrier height (SBH) increased (4.2–3.5 eV) adversely due to the availability of donor-like surface states in metallic aluminium rich films.

  10. Metallic nickel nano- and fine particles induce JB6 cell apoptosis through a caspase-8/AIF mediated cytochrome c-independent pathway

    Directory of Open Access Journals (Sweden)

    Castranova Vincent

    2009-04-01

    Full Text Available Abstract Background Carcinogenicity of nickel compounds has been well documented. However, the carcinogenic effect of metallic nickel is still unclear. The present study investigates metallic nickel nano- and fine particle-induced apoptosis and the signal pathways involved in this process in JB6 cells. The data obtained from this study will be of benefit for elucidating the pathological and carcinogenic potential of metallic nickel particles. Results Using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay, we found that metallic nickel nanoparticles exhibited higher cytotoxicity than fine particles. Both metallic nickel nano- and fine particles induced JB6 cell apoptosis. Metallic nickel nanoparticles produced higher apoptotic induction than fine particles. Western-blot analysis showed an activation of proapoptotic factors including Fas (CD95, Fas-associated protein with death domain (FADD, caspase-8, death receptor 3 (DR3 and BID in apoptotic cells induced by metallic nickel particles. Immunoprecipitation (IP western blot analysis demonstrated the formation of the Fas-related death-inducing signaling complex (DISC in the apoptotic process. Furthermore, lamin A and beta-actin were cleaved. Moreover, we found that apoptosis-inducing factor (AIF was up-regulated and released from mitochondria to cytoplasm. Interestingly, although an up-regulation of cytochrome c was detected in the mitochondria of metallic nickel particle-treated cells, no cytochrome c release from mitochondria to cytoplasm was found. In addition, activation of antiapoptotic factors including phospho-Akt (protein kinase B and Bcl-2 was detected. Further studies demonstrated that metallic nickel particles caused no significant changes in the mitochondrial membrane permeability after 24 h treatment. Conclusion In this study, metallic nickel nanoparticles caused higher cytotoxicity and apoptotic induction than fine particles in JB6 cells. Apoptotic cell death

  11. Magnetic phase transition induced by electrostatic gating in two-dimensional square metal-organic frameworks

    Science.gov (United States)

    Wang, Yun-Peng; Li, Xiang-Guo; Liu, Shuang-Long; Fry, James N.; Cheng, Hai-Ping

    2018-03-01

    We investigate theoretically magnetism and magnetic phase transitions induced by electrostatic gating of two-dimensional square metal-organic framework compounds. We find that electrostatic gating can induce phase transitions between homogeneous ferromagnetic and various spin-textured antiferromagnetic states. Electronic structure and Wannier function analysis can reveal hybridizations between transition-metal d orbitals and conjugated π orbitals in the organic framework. Mn-containing compounds exhibit a strong d -π hybridization that leads to partially occupied spin-minority bands, in contrast to compounds containing transition-metal ions other than Mn, for which electronic structure around the Fermi energy is only slightly spin split due to weak d -π hybridization and the magnetic interaction is of the Ruderman-Kittel-Kasuya-Yosida type. We use a ferromagnetic Kondo lattice model to understand the phase transition in Mn-containing compounds in terms of carrier density and illuminate the complexity and the potential to control two-dimensional magnetization.

  12. Radiation-induced void swelling in metals and alloys

    International Nuclear Information System (INIS)

    Zelinskij, V.F.; Neklyudov, I.M.; Ozhigov, L.S.; Reznichenko, Eh.A.; Rozhkov, V.V.; Chernyaeva, T.T.

    1979-01-01

    Main regularities in the development of radiation-induced void swelling are considered. Special attention is paid to consideration of a possibility to obtain information on material behaviour under conditions of reactor irradiation proceeding from the data of simulation experiments and to methods of rate control, for the processes which occur in material during irradiation and further annealing by the way of rationalized alloying, of thermomechanical treatment and programmed change of irradiation conditions under operation. Problems of initiation and growth of voids in irradiated materials are discussed as well as the ways to decrease the rate of radiation-induced void swelling

  13. When is thermodynamics relevant to ion-induced atomic rearrangements in metals

    International Nuclear Information System (INIS)

    Johnson, W.L.; Cheng, Y.T.; Van Rossum, M.; Nicolet, M.A.

    1984-08-01

    The problem of ion-induced mixing of metal bilayers is examined in the limit of heavy metals (Z > 20) and heavy energetic ions (E > 100 keV) and in the absence of delayed effects such as radiation enhanced thermal diffusion. Thermochemical effects are shown to play an important role in biasing the random walk process of mixing. A universal mixing equation is derived which predicts the evolution of the concentration profile as a function of ion dose. Finally, a model is presented which allows one to predict what metallurgical phases are formed during the mixing process. Criteria for amorphous phase formation are particularly emphasized

  14. [Initial stages of steel biocorrosion].

    Science.gov (United States)

    Zhigletsova, S K; Rodin, V B; Kobelev, V S; Aleksandrova, N V; Rasulova, G E; Kholodenko, V P

    2000-01-01

    Initial stages of corrosion of mild steel induced by Klebsiela rhinoscleromatis BO2 were studied in various media. The effect of the microorganism was detected 8-10 h after inoculation. The number of viable cells were virtually unchanged within one month in all media, but the corrosive activity of the strain decreased. The corrosive activity of microorganisms can be determined by spectrophotometry even only after incubation for 24 h. At a low level of organic substrate, even strong colonization with microorganisms does not inevitably result in a significant damage to metals.

  15. Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels1[OPEN

    Science.gov (United States)

    2017-01-01

    In plants, the excess of several heavy metals mimics iron (Fe) deficiency-induced chlorosis, indicating a disturbance in Fe homeostasis. To examine the level at which heavy metals interfere with Fe deficiency responses, we carried out an in-depth characterization of Fe-related physiological, regulatory, and morphological responses in Arabidopsis (Arabidopsis thaliana) exposed to heavy metals. Enhanced zinc (Zn) uptake closely mimicked Fe deficiency by leading to low chlorophyll but high ferric-chelate reductase activity and coumarin release. These responses were not caused by Zn-inhibited Fe uptake via IRON-REGULATED TRANSPORTER (IRT1). Instead, Zn simulated the transcriptional response of typical Fe-regulated genes, indicating that Zn affects Fe homeostasis at the level of Fe sensing. Excess supplies of cobalt and nickel altered root traits in a different way from Fe deficiency, inducing only transient Fe deficiency responses, which were characterized by a lack of induction of the ethylene pathway. Cadmium showed a rather inconsistent influence on Fe deficiency responses at multiple levels. By contrast, manganese evoked weak Fe deficiency responses in wild-type plants but strongly exacerbated chlorosis in irt1 plants, indicating that manganese antagonized Fe mainly at the level of transport. These results show that the investigated heavy metals modulate Fe deficiency responses at different hierarchic and regulatory levels and that the interaction of metals with physiological and morphological Fe deficiency responses is uncoupled. Thus, this study not only emphasizes the importance of assessing heavy metal toxicities at multiple levels but also provides a new perspective on how Fe deficiency contributes to the toxic action of individual heavy metals. PMID:28500270

  16. Effects of moisture content and initial pH in composting process on heavy metal removal characteristics of grass clipping compost used for stormwater filtration.

    Science.gov (United States)

    Khan, Eakalak; Khaodhir, Sutha; Ruangrote, Darin

    2009-10-01

    Heavy metals are common contaminants in stormwater runoff. One of the devices that can be used to effectively and economically remove heavy metals from runoff is a yard waste compost stormwater filter. The primary goal of composting is to reduce waste volume rather than to produce stormwater filter media. Moisture content (MC) and initial pH, the two important parameters in composting, were studied for their effects on yard waste volume reduction and heavy metal adsorption performances of the compost. The main objective of this investigation was to examine whether the conditions that provided high yard waste volume reduction would also result in compost with good heavy metal removal performances. Manila grass was composted at different initial pHs (5-9) and MCs (30-70%) and the composts were used to adsorb cadmium, copper, lead and zinc from water. Results indicated that MC is more critical than initial pH for both volume reduction and production of compost with high metal adsorption performances. The most optimal conditions for the two attributes were not exactly the same but lower MCs of 30-40% and pH 7 or higher tended to satisfy both high volume reduction and effective metal adsorption.

  17. Adaptive self-assembly and induced-fit transformations of anion-binding metal-organic macrocycles

    Science.gov (United States)

    Zhang, Ting; Zhou, Li-Peng; Guo, Xiao-Qing; Cai, Li-Xuan; Sun, Qing-Fu

    2017-06-01

    Container-molecules are attractive to chemists due to their unique structural characteristics comparable to enzymes and receptors in nature. We report here a family of artificial self-assembled macrocyclic containers that feature induced-fit transformations in response to different anionic guests. Five metal-organic macrocycles with empirical formula of MnL2n (M=Metal L=Ligand n=3, 4, 5, 6, 7) are selectively obtained starting from one simple benzimidazole-based ligand and square-planar palladium(II) ions, either by direct anion-adaptive self-assembly or induced-fit transformations. Hydrogen-bonding interactions between the inner surface of the macrocycles and the anionic guests dictate the shape and size of the product. A comprehensive induced-fit transformation map across all the MnL2n species is drawn, with a representative reconstitution process from Pd7L14 to Pd3L6 traced in detail, revealing a gradual ring-shrinking mechanism. We envisage that these macrocyclic molecules with adjustable well-defined hydrogen-bonding pockets will find wide applications in molecular sensing or catalysis.

  18. Soil microbial effects of smelter induced heavy metal contamination

    Energy Technology Data Exchange (ETDEWEB)

    Nordgren, A

    1986-01-01

    The soil concentrations of Cu and Zn at the secondary smelter were 20 00 mu g/g dry soil. Close to the primary smelter the soil was contaminated with more than ten elements including Pb, Zn, Cu and As at levels ranging between 6000 and 1000 mu g/g dry soil. The correlations between the concentrations of the metals were high at both smelters. Soil respiration rate decreased by about 75% close to both smelters. Total and fluorescein diacetate stained mycelial lengths decrease with increasing heavy metal pollution at the secondary but not at the primary smelter. The fungal community structure was strongly affected by the contamination. General common in coniferous forest soils such as Penicillium and Oidiodendron virtually vanished, while less frequent species like Paecilomyces farinosus and Geomyces pannorum dominated the site close to the smelter. Colony forming units of a number of functional groups of bacteria were found to be very sensitive to metal contamination. The urease activity of the soil was inhibited. Multivariate statistical analyses showed that the metal contamination was the major environmental influence on the microbiotain the soils studied. A study of about 200 decomposition curves resulting from glutamic acid additions to the different soils produced four microbially related parameters: basal respiration rate, initial respiration rate after the addition of the glutamic acid, specific respiration rate during the exponential increase of the respiration rate and the lag time before the exponential phase. With 53 refs.

  19. Electron Transfer Dissociation and Collision-Induced Dissociation of Underivatized Metallated Oligosaccharides

    Science.gov (United States)

    Schaller-Duke, Ranelle M.; Bogala, Mallikharjuna R.; Cassady, Carolyn J.

    2018-05-01

    Electron transfer dissociation (ETD) and collision-induced dissociation (CID) were used to investigate underivatized, metal-cationized oligosaccharides formed via electrospray ionization (ESI). Reducing and non-reducing sugars were studied including the tetrasaccharides maltotetraose, 3α,4β,3α-galactotetraose, stachyose, nystose, and a heptasaccharide, maltoheptaose. Univalent alkali, divalent alkaline earth, divalent and trivalent transition metal ions, and a boron group trivalent metal ion were adducted to the non-permethylated oligosaccharides. ESI generated [M + Met]+, [M + 2Met]2+, [M + Met]2+, [M + Met - H]+, and [M + Met - 2H]+ most intensely along with low intensity nitrate adducts, depending on the metal and sugar ionized. The ability of these metal ions to produce oligosaccharide adduct ions by ESI had the general trend: Ca(II) > Mg(II) > Ni(II) > Co(II) > Zn(II) > Cu(II) > Na(I) > K(I) > Al(III) ≈ Fe(III) ≈ Cr(III). Although trivalent metals were utilized, no triply charged ions were formed. Metal cations allowed for high ESI signal intensity without permethylation. ETD and CID on [M + Met]2+ produced various glycosidic and cross-ring cleavages, with ETD producing more cross-ring and internal ions, which are useful for structural analysis. Product ion intensities varied based on glycosidic-bond linkage and identity of monosaccharide sub-unit, and metal adducts. ETD and CID showed high fragmentation efficiency, often with complete precursor dissociation, depending on the identity of the adducted metal ion. Loss of water was occasionally observed, but elimination of small neutral molecules was not prevalent. For both ETD and CID, [M + Co]2+ produced the most uniform structurally informative dissociation with all oligosaccharides studied. The ETD and CID spectra were complementary. [Figure not available: see fulltext.

  20. Electron Transfer Dissociation and Collision-Induced Dissociation of Underivatized Metallated Oligosaccharides

    Science.gov (United States)

    Schaller-Duke, Ranelle M.; Bogala, Mallikharjuna R.; Cassady, Carolyn J.

    2018-02-01

    Electron transfer dissociation (ETD) and collision-induced dissociation (CID) were used to investigate underivatized, metal-cationized oligosaccharides formed via electrospray ionization (ESI). Reducing and non-reducing sugars were studied including the tetrasaccharides maltotetraose, 3α,4β,3α-galactotetraose, stachyose, nystose, and a heptasaccharide, maltoheptaose. Univalent alkali, divalent alkaline earth, divalent and trivalent transition metal ions, and a boron group trivalent metal ion were adducted to the non-permethylated oligosaccharides. ESI generated [M + Met]+, [M + 2Met]2+, [M + Met]2+, [M + Met - H]+, and [M + Met - 2H]+ most intensely along with low intensity nitrate adducts, depending on the metal and sugar ionized. The ability of these metal ions to produce oligosaccharide adduct ions by ESI had the general trend: Ca(II) > Mg(II) > Ni(II) > Co(II) > Zn(II) > Cu(II) > Na(I) > K(I) > Al(III) ≈ Fe(III) ≈ Cr(III). Although trivalent metals were utilized, no triply charged ions were formed. Metal cations allowed for high ESI signal intensity without permethylation. ETD and CID on [M + Met]2+ produced various glycosidic and cross-ring cleavages, with ETD producing more cross-ring and internal ions, which are useful for structural analysis. Product ion intensities varied based on glycosidic-bond linkage and identity of monosaccharide sub-unit, and metal adducts. ETD and CID showed high fragmentation efficiency, often with complete precursor dissociation, depending on the identity of the adducted metal ion. Loss of water was occasionally observed, but elimination of small neutral molecules was not prevalent. For both ETD and CID, [M + Co]2+ produced the most uniform structurally informative dissociation with all oligosaccharides studied. The ETD and CID spectra were complementary. [Figure not available: see fulltext.

  1. Radiation-induced processes in the metallic powders after electron and gamma-radiation

    International Nuclear Information System (INIS)

    Zajkin, Yu.A.; Aliev, B.A.

    2001-01-01

    In the work the quantitative assessments for conditions both healing and growth of micropores in metal volume and surface layers have been made. Taking into account of these rules is important at a choice of radiation processing conditions for fine-disperse powders characterizing with increased porosity. Numerical evaluation shows, that under irradiation of a metals by electrons with energy 2 MeV and electron current density about 1 μA/cm 2 within 300-400 K temperature range the optimal doses for the micropores healing make up a several Mrad. Further increase of dose could lead to formation of pores in the crystal volume. Principal conclusions about radiation porosity development character of metallic particles surface layers one can make from analysis of the point defects distribution near surface and computing of radiation-induced diffusion coefficients

  2. Possible Immune Regulation of Natural Killer T Cells in a Murine Model of Metal Ion-Induced Allergic Contact Dermatitis

    Directory of Open Access Journals (Sweden)

    Kenichi Kumagai

    2016-01-01

    Full Text Available Metal often causes delayed-type hypersensitivity reactions, which are possibly mediated by accumulating T cells in the inflamed skin, called irritant or allergic contact dermatitis. However, accumulating T cells during development of a metal allergy are poorly characterized because a suitable animal model is unavailable. We have previously established novel murine models of metal allergy and found accumulation of both metal-specific T cells and natural killer (NK T cells in the inflamed skin. In our novel models of metal allergy, skin hypersensitivity responses were induced through repeated sensitizations by administration of metal chloride and lipopolysaccharide into the mouse groin followed by metal chloride challenge in the footpad. These models enabled us to investigate the precise mechanisms of the immune responses of metal allergy in the inflamed skin. In this review, we summarize the immune responses in several murine models of metal allergy and describe which antigen-specific responses occur in the inflamed skin during allergic contact dermatitis in terms of the T cell receptor. In addition, we consider the immune regulation of accumulated NK T cells in metal ion–induced allergic contact dermatitis.

  3. Radiation induced apoptosis and initial DNA damage are inversely related in locally advanced breast cancer patients

    International Nuclear Information System (INIS)

    Pinar, Beatriz; Henríquez-Hernández, Luis Alberto; Lara, Pedro C; Bordon, Elisa; Rodriguez-Gallego, Carlos; Lloret, Marta; Nuñez, Maria Isabel; De Almodovar, Mariano Ruiz

    2010-01-01

    DNA-damage assays, quantifying the initial number of DNA double-strand breaks induced by radiation, have been proposed as a predictive test for radiation-induced toxicity. Determination of radiation-induced apoptosis in peripheral blood lymphocytes by flow cytometry analysis has also been proposed as an approach for predicting normal tissue responses following radiotherapy. The aim of the present study was to explore the association between initial DNA damage, estimated by the number of double-strand breaks induced by a given radiation dose, and the radio-induced apoptosis rates observed. Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp). Radio-induced apoptosis at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. Radiation-induced apoptosis increased in order to radiation dose and data fitted to a semi logarithmic mathematical model. A positive correlation was found among radio-induced apoptosis values at different radiation doses: 1, 2 and 8 Gy (p < 0.0001 in all cases). Mean DSB/Gy/DNA unit obtained was 1.70 ± 0.83 (range 0.63-4.08; median, 1.46). A statistically significant inverse correlation was found between initial damage to DNA and radio-induced apoptosis at 1 Gy (p = 0.034). A trend toward 2 Gy (p = 0.057) and 8 Gy (p = 0.067) was observed after 24 hours of incubation. An inverse association was observed for the first time between these variables, both considered as predictive factors to radiation toxicity

  4. Research on Initiation Sensitivity of Solid Explosive and Planer Initiation System

    OpenAIRE

    N Matsuo; M Otuka; H Hamasima; K Hokamoto; S Itoh

    2016-01-01

    Firstly, recently, there are a lot of techniques being demanded for complex process, various explosive initiation method and highly accurate control of detonation are needed. In this research, the metal foil explosion using high current is focused attention on the method to obtain linear or planate initiation easily, and the main evaluation of metal foil explosion to initiate explosive was conducted. The explosion power was evaluated by observing optically the underwater shock wave generated ...

  5. Phenomenological understanding of dewetting and embedding of noble metal nanoparticles in thin films induced by ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Jai, E-mail: jai.gupta1983@gmail.com [Department of Chemistry, MMH College (Ch. Charan Singh University Meerut), Ghaiziabad 201001 (India); Chemical Physics of Materials, Université Libre de Bruxelles, Campus de la Plaine, CP 243, B-1050 Bruxelles (Belgium); Tripathi, A. [Inter University Accelerator Centre, Aruna Asif Ali Marg, New Delhi 110067 (India); Gautam, Sanjeev; Chae, K.H.; Song, Jonghan [Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 136–791 (Korea, Republic of); Rigato, V. [INFN Laboratori Nazionali di Legnaro, Via Romea. 4, 35020 Legnaro, Padova (Italy); Tripathi, Jalaj [Department of Chemistry, MMH College (Ch. Charan Singh University Meerut), Ghaiziabad 201001 (India); Asokan, K. [Inter University Accelerator Centre, Aruna Asif Ali Marg, New Delhi 110067 (India)

    2014-10-15

    The present experimental work provides the phenomenological approach to understand the dewetting in thin noble metal films with subsequent formation of nanoparticles (NPs) and embedding of NPs induced by ion irradiation. Au/polyethyleneterepthlate (PET) bilayers were irradiated with 150 keV Ar ions at varying fluences and were studied using scanning electron microscopy (SEM) and cross-sectional transmission electron microscopy (X-TEM). Thin Au film begins to dewet from the substrate after irradiation and subsequent irradiation results in spherical nanoparticles on the surface that at a fluence of 5 × 10{sup 16} ions/cm{sup 2} become embedded into the substrate. In addition to dewetting in thin films, synthesis and embedding of metal NPs by ion irradiation, the present article explores fundamental thermodynamic principles that govern these events systematically under the effect of irradiation. The results are explained on the basis of ion induced sputtering, thermal spike inducing local melting and of thermodynamic driving forces by minimization of the system free energy where contributions of surface and interfacial energies are considered with subsequent ion induced viscous flow in substrate. - Highlights: • Phenomenological interpretation of dewetting and embedding of metal NPs in thin film. • Exploring fundamental thermodynamic principles under influence of ion irradiation. • Ion induced surface/interface microstructural changes using SEM/X-TEM. • Ion induced sputtering, thermal spike induced local melting. • Thermodynamic driving forces relate to surface and interfacial energies.

  6. Flow induced vibrations in liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    1989-01-01

    Flow induced vibrations are well known phenomena in industry. Engineers have to estimate their destructive effects on structures. In the nuclear industry, flow induced vibrations are assessed early in the design process, and the results are incorporated in the design procedures. In many cases, model testing is used to supplement the design process to ensure that detrimental behaviour due to flow induced vibrations will not occur in the component in question. While these procedures attempt to minimize the probability of adverse performance of the various components, there is a problem in the extrapolation of analytical design techniques and/or model testing to actual plant operation. Therefore, sodium tests or vibrational measurements of components in the reactor system are used to provide additional assurance. This report is a general survey of experimental and calculational methods in this area of structural mechanics. The report is addressed to specialists and institutions in industrialized and developing countries who are responsible for the design and operation of liquid metal fast breeder reactors. 92 refs, 90 figs, 8 tabs

  7. Laser-induced breakdown spectroscopy for quantification of heavy metals in soils and sediments

    CSIR Research Space (South Africa)

    Ambushe, AA

    2010-09-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS) will be used to determine the contents of heavy metals in soils and sediments. LIBS results will be compared with the results obtained by inductively coupled plasma-optical emission spectrometry (ICP...

  8. Gamma-ray induced delay of fruiting body initiation in a basidiomycete, Hebeloma vinosophyllum

    International Nuclear Information System (INIS)

    Takimoto, K.

    1980-01-01

    The effect of gamma-radiation on fruiting body initiation in a basidiomycete, Hebeloma vinosophyllum, was investigated. Fruiting of this fungus is induced by visible light, but irradiation of the mycelium before or after light treatment delayed fruiting body initiation. The time required for fruiting body initiation increased with the radiation dose. The induction of fruiting bodies had two gamma-radiation sensitive stages, one immediately before fruiting body initiation and the other 15 to 20 h after the start of photoinduction. (author)

  9. Terbinafine-induced lichenoid drug eruption.

    Science.gov (United States)

    Zheng, Yue; Zhang, Jie; Chen, Haiyan; Lai, Wei; Maibach, Howard I

    2017-03-01

    Drug-induced lichen planus has been induced by antibiotics, anticonvulsants, antidiabetics, antimalarials, antitubercular drugs, antihypertensives, psychiatric drugs, chemotherapeutic agents, diuretic, heavy metals, NSAIDs, etc. Terbinafine, an antifungal agent, is widely used for dermatophyte infections and onychomycosis. Cutaneous adverse effects of terbinafine are rarely reported. Here, we report a case of terbinafine-induced lichenoid drug eruption in a 22-year-old who presented with generalized lichenoid eruption 2 weeks after terbinafine initiation of. The body and lip cleared completely after 8 weeks of drug withdrawal; nail change cleared after 12 weeks.

  10. Plasma damage in floating metal-insulator-metal capacitors

    NARCIS (Netherlands)

    Ackaert, Jan; Wang, Zhichun; De Backer, E.; Coppens, P.

    2002-01-01

    In this paper, charging induced damage (CID) to metal-insulator-metal capacitors (MIMCs), is reported. CID does not necessarily lead to direct yield loss, but may also induce latent damage leading to reliability losses. The damage is caused by the build up of a voltage potential difference between

  11. Plasma Damage in Floating Metal-Insulator-Metal Capacitors

    NARCIS (Netherlands)

    Ackaert, Jan; Wang, Zhichun; Backer, E.; Coppens, P.

    2001-01-01

    In this paper, charging induced damage (CID) to metal-insulator-metal capacitors (MIMCs), is reported. CID does not necessarily lead to direct yield loss, but may also induce latent damage leading to reliability losses. The damage is caused by the build up of a voltage potential difference between

  12. Asparagus cochinchinensis Extract Alleviates Metal Ion-Induced Gut Injury in Drosophila: An In Silico Analysis of Potential Active Constituents

    Directory of Open Access Journals (Sweden)

    Weiyu Zhang

    2016-01-01

    Full Text Available Metal ions and sulfate are components of atmospheric pollutants that have diverse ways of entering the human body. We used Drosophila as a model to investigate the effect of Asparagus cochinchinensis (A. cochinchinensis extracts on the gut and characterized gut homeostasis following the ingestion of metal ions (copper, zinc, and aluminum. In this study, we found that the aqueous A. cochinchinensis extract increased the survival rate, decreased epithelial cell death, and attenuated metal ion-induced gut morphological changes in flies following chronic exposure to metal ions. In addition, we screened out, by network pharmacology, six natural products (NPs that could serve as putative active components of A. cochinchinensis that prevented gut injury. Altogether, the results of our study provide evidence that A. cochinchinensis might be an effective phytomedicine for the treatment of metal ion-induced gut injury.

  13. Surfactant-adsorption-induced initial depinning behavior in evaporating water and nanofluid sessile droplets.

    Science.gov (United States)

    Zhong, Xin; Duan, Fei

    2015-05-19

    A surfactant-induced autophobic effect has been observed to initiate an intense depinning behavior at the initial stage of evaporation in both pure water and nanofluid sessile droplets. The cationic surfactant adsorbing to the negatively charged silicon wafer makes the solid surface more hydrophobic. The autophobing-induced depinning behavior, leading to an enlarged contact angle and a shortened base diameter, takes place only when the surfactant concentration is below its critical micelle concentration (cmc). The initial spreading degree right before the droplet retraction, the retracting velocity of the contact line, and the duration of the initial droplet retraction are shown to depend negatively on the surfactant concentration below the cmc. An unexpected enhancement in the initial depinning has been found in the nanofluid droplets, possibly resulting from the hydrophilic interplay between the graphite nanoparticle deposition and the surfactant molecules. Such promotion of the initial depinning due to the nanoparticle deposition makes the droplet retract even at a surfactant concentration higher than the cmc (1.5 cmc). The resulting deposition formed in the presence of the depinning behavior has great enhancement for coffee-ring formation as compared to the one free of surfactant, implying that the formation of a coffee ring does not require the pinning of the contact line during the entire drying process.

  14. Evidence for photo-induced monoclinic metallic VO{sub 2} under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Wen-Pin, E-mail: wphsieh@stanford.edu; Mao, Wendy L. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305 (United States); Trigo, Mariano [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Reis, David A. [Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Photon Science and Applied Physics, Stanford University, Stanford, California 94305 (United States); Andrea Artioli, Gianluca; Malavasi, Lorenzo [Dipartimento di Chimica, Sezione di Chimica Fisica, INSTM (UdR Pavia), Università di Pavia, Viale Taramelli 16, 27100 Pavia (Italy)

    2014-01-13

    We combine ultrafast pump-probe spectroscopy with a diamond-anvil cell to decouple the insulator-metal electronic transition from the lattice symmetry changing structural transition in the archetypal strongly correlated material vanadium dioxide. Coherent phonon spectroscopy enables tracking of the photo-excited phonon vibrational frequencies of the low temperature, monoclinic (M{sub 1})-insulating phase that transforms into the metallic, tetragonal rutile structured phase at high temperature or via non-thermal photo-excitations. We find that in contrast with ambient pressure experiments where strong photo-excitation promptly induces the electronic transition along with changes in the lattice symmetry, at high pressure, the coherent phonons of the monoclinic (M{sub 1}) phase are still clearly observed upon the photo-driven phase transition to a metallic state. These results demonstrate the possibility of synthesizing and studying transient phases under extreme conditions.

  15. Peptidoglycan recognition proteins kill bacteria by inducing oxidative, thiol, and metal stress.

    Directory of Open Access Journals (Sweden)

    Des Raj Kashyap

    2014-07-01

    Full Text Available Mammalian Peptidoglycan Recognition Proteins (PGRPs are a family of evolutionary conserved bactericidal innate immunity proteins, but the mechanism through which they kill bacteria is unclear. We previously proposed that PGRPs are bactericidal due to induction of reactive oxygen species (ROS, a mechanism of killing that was also postulated, and later refuted, for several bactericidal antibiotics. Here, using whole genome expression arrays, qRT-PCR, and biochemical tests we show that in both Escherichia coli and Bacillus subtilis PGRPs induce a transcriptomic signature characteristic of oxidative stress, as well as correlated biochemical changes. However, induction of ROS was required, but not sufficient for PGRP killing. PGRPs also induced depletion of intracellular thiols and increased cytosolic concentrations of zinc and copper, as evidenced by transcriptome changes and supported by direct measurements. Depletion of thiols and elevated concentrations of metals were also required, but by themselves not sufficient, for bacterial killing. Chemical treatment studies demonstrated that efficient bacterial killing can be recapitulated only by the simultaneous addition of agents leading to production of ROS, depletion of thiols, and elevation of intracellular metal concentrations. These results identify a novel mechanism of bacterial killing by innate immunity proteins, which depends on synergistic effect of oxidative, thiol, and metal stress and differs from bacterial killing by antibiotics. These results offer potential targets for developing new antibacterial agents that would kill antibiotic-resistant bacteria.

  16. Recombination of charge carriers on radiation-induced defects in silicon doped by transition metals impurities

    CERN Document Server

    Kazakevich, L A

    2003-01-01

    It has been studied the peculiarities of recombination of nonequilibrium charge carriers on radiation-induced defects in received according to Czochralski method p-silicon (p approx 3 - 20 Ohm centre dot cm), doped by one of the impurities of transition metals of the IV-th group of periodic table (titanium, zirconium, hafnium). Experimental results are obtained out of the analysis of temperature and injection dependence of the life time of charge carriers. The results are explained taking into consideration the influences of elastic stress fields created by the aggregates of transition metals atoms on space distribution over the crystal of oxygen and carbon background impurities as well as on the migration of movable radiation-induced defects during irradiation. (authors).

  17. Nanoparticle dispersion in liquid metals by electromagnetically induced acoustic cavitation

    International Nuclear Information System (INIS)

    Kaldre, Imants; Bojarevičs, Andris; Grants, Ilmārs; Beinerts, Toms; Kalvāns, Matīss; Milgrāvis, Mikus; Gerbeth, Gunter

    2016-01-01

    Aim of this study is to investigate experimentally the effect of magnetically induced cavitation applied for the purpose of nanoparticle dispersion in liquid metals. The oscillating magnetic force due to the azimuthal induction currents and the axial magnetic field excites power ultrasound in the sample. If the fields are sufficiently high then it is possible to achieve the acoustic cavitation threshold in liquid metals. Cavitation bubble collapses are known to create microscale jets with a potential to break nanoparticle agglomerates and disperse them. The samples are solidified under the contactless ultrasonic treatment and later analyzed by electron microscopy and energy-dispersive X-ray spectroscopy (EDX). It is observed that SiC nanoparticles are dispersed in an aluminum magnesium alloy, whereas in tin the same particles remain agglomerated in micron-sized clusters despite a more intense cavitation.

  18. Stabilization of the initial electrochemical potential for a metal-based potentiometric titration study of a biosorption process.

    Science.gov (United States)

    Naja, Ghinwa; Mustin, Christian; Volesky, Bohumil; Berthelin, Jacques

    2006-01-01

    An interactive metal-based potentiometric titration method has been developed using an ion selective electrode for studying the sorption of metal cations. The accuracy of this technique was verified by analyzing the metal sorption mechanism for the biomass of Rhizopus arrhizus fungus and diatomite, two dissimilar materials (organic and mineral, strong sorbent and weak sorbent) of a different order of cation exchange capacity. The problem of the initial electrochemical potential was addressed identifying the usefulness of a Na-sulfonic resin as a strong chelating agent applied before the beginning of sorption titration experiments so that the titration curves and the sorption uptake could be quantitatively compared. The resin stabilized the initial electrochemical potential to -405+/-5 mV corresponding to 2 micro gl(-1) of lead concentration in solution. The amounts of lead sorbed by R. arrhizus biomass and diatomite were 0.9 mmol g(-1) (C(e)=5.16 x 10(-2)mM) and 0.052 mmol g(-1) (C(e)=5.97 x 10(-2) mM), respectively. Lead sorption by the fungal biomass was pinpointed to at least two types of chemical active sites. The first type was distinguished by high reactivity and a low number of sites whereas the other was characterized by their higher number and lower reactivity.

  19. Force-induced chemical reactions on the metal centre in a single metalloprotein molecule

    Science.gov (United States)

    Zheng, Peng; Arantes, Guilherme M.; Field, Martin J.; Li, Hongbin

    2015-01-01

    Metalloproteins play indispensable roles in biology owing to the versatile chemical reactivity of metal centres. However, studying their reactivity in many metalloproteins is challenging, as protein three-dimensional structure encloses labile metal centres, thus limiting their access to reactants and impeding direct measurements. Here we demonstrate the use of single-molecule atomic force microscopy to induce partial unfolding to expose metal centres in metalloproteins to aqueous solution, thus allowing for studying their chemical reactivity in aqueous solution for the first time. As a proof-of-principle, we demonstrate two chemical reactions for the FeS4 centre in rubredoxin: electrophilic protonation and nucleophilic ligand substitution. Our results show that protonation and ligand substitution result in mechanical destabilization of the FeS4 centre. Quantum chemical calculations corroborated experimental results and revealed detailed reaction mechanisms. We anticipate that this novel approach will provide insights into chemical reactivity of metal centres in metalloproteins under biologically more relevant conditions. PMID:26108369

  20. Multiple plasmonically induced transparency for chip-scale bandpass filters in metallic nanowaveguides

    Science.gov (United States)

    Lu, Hua; Yue, Zengqi; Zhao, Jianlin

    2018-05-01

    We propose and investigate a new kind of bandpass filters based on the plasmonically induced transparency (PIT) effect in a special metal-insulator-metal (MIM) waveguide system. The finite element method (FEM) simulations illustrate that the obvious PIT response can be generated in the metallic nanostructure with the stub and coupled cavities. The lineshape and position of the PIT peak are particularly dependent on the lengths of the stub and coupled cavities, the waveguide width, as well as the coupling distance between the stub and coupled cavities. The numerical simulations are in accordance with the results obtained by the temporal coupled-mode theory. The multi-peak PIT effect can be achieved by integrating multiple coupled cavities into the plasmonic waveguide. This PIT response contributes to the flexible realization of chip-scale multi-channel bandpass filters, which could find crucial applications in highly integrated optical circuits for signal processing.

  1. Selective metallization of polymers using laser induced surface activation (LISA)—characterization and optimization of porous surface topography

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; De Grave, Arnaud

    2011-01-01

    Laser induced selective activation (LISA) is a molded interconnected devices technique for selective metallization of polymers. On the working piece, only the laser-machined area can be metalized in the subsequent plating. The principle of the technology is introduced. Surface analysis was perfor...

  2. Phase transformation induced by swift heavy ion irradiation of pure metals

    International Nuclear Information System (INIS)

    Dammak, H.; Dunlop, A.; Lesueur, D.

    1996-01-01

    It is now unambiguously established that high electronic energy deposition (HEED), obtained by swift heavy ion irradiation, plays an important role in the damage processes of pure metallic targets: (i) annealing of the defects created by elastic collisions in Fe, Nb, Ni and Pt, and (ii) creation of additional defects in Co, Fe, Ti and Zr. For Ti, we have recently evidenced by transmission electron microscopy observations that the damage creation by HEED is very important and leads to a phase transformation. Titanium evolves from the equilibrium hcp alpha-phase to the high pressure omega-phase. We studied the influence of three parameters on this phase transformation: ion fluence, electronic stopping power and irradiation temperature. The study of Ti and the results concerning other metals (Fe, Zr, etc.) and the semi-metal Bi allow us to propose criteria to predict in which metals HEED could induce damage: those which undergo a phase transformation under high pressure. As a matter of fact, beryllium is strongly damaged when submitted to HEED and seems to behave very similarly to titanium. The fact that such phase changes from a crystalline form to another form were only observed in those metals in which high pressure phases exist in the pressure-temperature diagram, strongly supports the Coulomb explosion model in which the generation of (i) a shock wave and (ii) collective atomic movements are invoked to account for the observed damage creation. (orig.)

  3. Detection of Genetic Variations in Marine Algae Ulva lactuca (Chlorophyta Induced by Heavy Metal Pollutants

    Directory of Open Access Journals (Sweden)

    Basel Saleh

    2015-09-01

    Full Text Available Ulva lactuca (Chlorophyta green macroalgae has been successfully used as bioindicator for heavy metals pollution in ecosystems. Random amplified microsatellite polymorphism (RAMP marker was employed to investigate genetic DNA pattern variability in green U. lactuca 5 days after exposure to Cu, Pb, Cd and Zn heavy metals stress. Genomic template stability (GTS% value was employed as a qualitative DNA changes measurement based on RAMP technique. In this respect, estimated GTS% value was recorded to be 65.215, 64.630, 59.835 and 59.250% for Pb, Cu, Cd and Zn treatment, respectively. Moreover, genetic similarity (GS induced by the above heavy metals was also evaluated to measure genetic distance between algae treated plants and their respective control. In this respect, estimated GS values generated by RAMP marker ranged between 0.576 (between control and Zn treatment - 0.969 (for both case; between Pb and Cu and between Cd and Zn treatment with an average of 0.842. Based upon data presented herein based on variant bands number (VB, GTS% and GS values; the present study could be suggested that Pb and Cu followed similar tendency at genomic DNA changes. Similar finding was also observed with Cd and Zn ions. Thereby, RAMP marker successfully highlighted DNA change patterns induced by heavy metals stress.

  4. Heavy metal immobilization via microbially induced carbonate precipitation and co-precipitation

    Science.gov (United States)

    Lauchnor, E. G.; Stoick, E.

    2017-12-01

    Microbially induced CaCO3 precipitation (MICP) has been successfully used in applications such as porous media consolidation and sealing of leakage pathways in the subsurface, and it has the potential to be used for remediation of metal and radionuclide contaminants in surface and groundwater. In this work, MICP is investigated for removal of dissolved heavy metals from contaminated mine discharge water via co-precipitation in CaCO3 or formation of other metal carbonates. The bacterially catalyzed hydrolysis of urea produces inorganic carbon and ammonium and increases pH and the saturation index of carbonate minerals to promote precipitation of CaCO3. Other heavy metal cations can be co-precipitated in CaCO3 as impurities or by replacing Ca2+ in the crystal lattice. We performed laboratory batch experiments of MICP in alkaline mine drainage sampled from an abandoned mine site in Montana and containing a mixture of heavy metals at near neutral pH. Both a model bacterium, Sporosarcina pasteurii, and a ureolytic bacterium isolated from sediments on the mine site were used to promote MICP. Removal of dissolved metals from the aqueous phase was determined via inductively coupled plasma mass spectrometry and resulting precipitates were analyzed via electron microscopy and energy dispersive x-ray spectroscopy (EDX). Both S. pasteurii and the native ureolytic isolate demonstrated ureolysis, increased the pH and promoted precipitation of CaCO3 in batch tests. MICP by the native bacterium reduced concentrations of the heavy metals zinc, copper, cadmium, nickel and manganese in the water. S. pasteurii was also able to promote MICP, but with less removal of dissolved metals. Analysis of precipitates revealed calcium carbonate and phosphate minerals were likely present. The native isolate is undergoing identification via 16S DNA sequencing. Ongoing work will evaluate biofilm formation and MICP by the isolate in continuous flow, gravel-filled laboratory columns. This research

  5. Heavy metals induce oxidative stress and trigger oxidative stress-mediated heat shock protein (hsp) modulation in the intertidal copepod Tigriopus japonicus.

    Science.gov (United States)

    Kim, Bo-Mi; Rhee, Jae-Sung; Jeong, Chang-Bum; Seo, Jung Soo; Park, Gyung Soo; Lee, Young-Mi; Lee, Jae-Seong

    2014-11-01

    Heat shock proteins (hsps) are induced by a wide range of environmental stressors including heavy metals in aquatic organisms. However, the effect of heavy metals on zooplankton at the molecular level remains still unclear. In this study, we measured the intracellular reactive oxygen species (ROS) level and the antioxidant enzyme activities for 96 h after exposure to five heavy metals: arsenic (As), cadmium (Cd), copper (Cu), silver (Ag), and zinc (Zn) in the intertidal copepod Tigriopus japonicus. Activities of the antioxidant enzymes were highly elevated in metal-exposed copepods, indicating that heavy metals can induce oxidative stress by generating ROS, and stimulate the involvement of antioxidant enzymes as cellular defense mechanisms. Subsequently, transcriptional changes in hsp gene families were further investigated in the metal-exposed groups for 96 h. The ROS level and glutathione (GSH) content were significantly increased in Ag-, As-, and Cu-exposed copepods, while they were only slightly elevated in Cd- and Zn-exposed groups. Based on the numbers of significantly modulated hsp genes and their expression levels for 96 h, we measured the effect of heavy metals to stress genes of T. japonicus in the following order: Cu > Zn > Ag > As > Cd, implying that Cu acts as a stronger oxidative stress inducer than other heavy metals. Of them, the expression of hsp20 and hsp70 genes was substantially modulated by exposure to heavy metals, indicating that these genes would provide a sensitive molecular biomarker for aquatic monitoring of heavy metal pollution. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Numerical-experimental assessment of roughness-induced metal-polymer interface failure

    NARCIS (Netherlands)

    Beeck, van J.; Schreurs, P.J.G.; Geers, M.G.D.

    2015-01-01

    A numerical–experimental method is presented to study the initiation and growth of interface damage in polymer–steel interfaces subjected to deformation-induced steel surface roughening. The experimentally determined displacement field of an evolving steel surface is applied to a numerical model

  7. Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers

    KAUST Repository

    Cheng, Yingchun

    2013-06-01

    The Rashba effect in quasi two-dimensional materials, such as noble metal surfaces and semiconductor heterostructures, has been investigated extensively, while interest in real two-dimensional systems has just emerged with the discovery of graphene. We present ab initio electronic structure, phonon, and molecular-dynamics calculations to study the structural stability and spin-orbit-induced spin splitting in the transition metal dichalcogenide monolayers MXY (M = Mo, W and X, Y = S, Se, Te). In contrast to the non-polar systems with X = Y, in the polar systems with X ≠ Y the Rashba splitting at the Γ-point for the uppermost valence band is caused by the broken mirror symmetry. An enhancement of the splitting can be achieved by increasing the spin-orbit coupling and/or the potential gradient. © Copyright EPLA, 2013.

  8. Use of the MicroRespTM method to assess pollution-induced community tolerance to metals for lotic biofilms

    International Nuclear Information System (INIS)

    Tlili, Ahmed; Marechal, Marjorie; Montuelle, Bernard; Volat, Bernadette; Dorigo, Ursula; Berard, Annette

    2011-01-01

    Understanding the ecological status of aquatic ecosystems and the impact of anthropogenic contamination requires correlating exposure to toxicants with impact on biological communities. Several tools exist for assessing the ecotoxicity of substances, but there is still a need for new tools that are ecologically relevant and easy to use. We have developed a protocol based on the substrate-induced respiration of a river biofilm community, using the MicroResp TM technique, in a pollution-induced community tolerance approach. The results show that MicroResp TM can be used in bioassays to assess the toxicity toward biofilm communities of a wide range of metals (Cu, Zn, Cd, Ag, Ni, Fe, Co, Al and As). Moreover, a community-level physiological profile based on the mineralization of different carbon substrates was established. Finally, the utility of MicroResp TM was confirmed in an in-situ study showing gradient of tolerance to copper correlated to a contamination gradient of this metal in a small river. - A modified MicroResp TM technique as a tool for measuring induced tolerance to heavy metals of a microbial biofilm community. - Research highlights: → MicroResp TM allows to plot dose-response curves with various tested metals. → Induced-tolerance to copper of heterotrophic biofilm community was successfully measured. → No co-tolerance detected between copper, silver and cadmium by using MicroResp TM . → MicroResp TM allows assessment of change in catabolic diversity in microbial community.

  9. Antioxidant effect of vitamin E treatment on some heavy metals-induced renal and testicular injuries in male mice

    OpenAIRE

    Al-Attar, Atef M.

    2010-01-01

    Toxic heavy metals in water, air and soil are global problems that are a growing threat to humanity. Heavy metals are widely distributed in the environment and some of them occur in food, water, air and tissues even in the absence of occupational exposure. The antioxidant and protective influences of vitamin E on a mixture of some heavy metals (Pb, Hg, Cd and Cu)-induced oxidative stress and renal and testicular injuries were evaluated in male mice. Exposure of mice to these heavy metals in d...

  10. Polarization-induced renormalization of molecular levels at metallic and semiconducting surfaces

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Rostgaard, Carsten; Rubio, A.

    2009-01-01

    On the basis of first-principles G0W0 calculations we systematically study how the electronic levels of a benzene molecule are renormalized by substrate polarization when physisorbed on different metallic and semiconducting surfaces. The polarization-induced reduction in the energy gap between oc...... find that error cancellations lead to remarkably good agreement between the G0W0 and Kohn-Sham energies for the occupied orbitals of the adsorbed molecule....

  11. Diffusion induced nuclear reactions in metals: a possible source of heat in the core

    International Nuclear Information System (INIS)

    Hamza, V.M.; Iyer, S.S.S.

    1989-01-01

    It has recently been proposed that diffusion of light nuclei in metals can give rise to unusual electrical charge distributions in their lattice structures, inducing thereby certain nuclear reactions that are otherwise uncommon. In the light of these results we advance the hypothesis that such nuclear reactions take place in the metal rich core of the earth, based on following observations: 1 - The solubility of hydrogen in metals is relatively high compared to that in silicates. 2 - Studies of rare gas samples in intraplate volcanos and diamonds show that 3 He/ He ratio increases with depth in the mantle. 3 - There are indications that He is positively correlated with enrichment of metals in lavas. We propose that hydrogen incorporated into metallic phases at the time of planetary accretion was carried to the core by downward migration of metal rich melts during the early states of proto-earth. Preliminary estimates suggest that cold fusion reactions can give rise to an average rate of heat generation of 8.2x10 12 W and may thus serve as a supplementary source of energy for the geomagnetic dynamo. (author)

  12. Multicharged ion-induced emission from metal- and insulator surfaces related to magnetic fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Winter, H.P. [Technische Univ., Vienna (Austria). Inst. fuer Allgemeine Physik

    1997-01-01

    The edge region of magnetically confined plasmas in thermonuclear fusion experiments couples the hot plasma core with the cold first wall. We consider the dependence of plasma-wall interaction processes on edge plasma properties, with particular emphasis on the role of slow multicharged ions (MCI). After a short survey on the physics of slow MCI-surface interaction we discuss recent extensive studies on MCI-induced electron emission from clean metal surfaces conducted at impact velocities << 1 a.u., from which generally reliable total electron yields can be obtained. We then demonstrate the essentially different role of the MCI charge for electron emission from metallic and insulator surfaces, respectively. Furthermore, we present recent results on slow MCI-induced `potential sputtering` of insulators which, in contrast to the well established kinetic sputtering, already occurs at very low ion impact energy and strongly increases with the MCI charge state. (J.P.N.). 55 refs.

  13. Metal-insulator transition induced in CaVO3 thin films

    International Nuclear Information System (INIS)

    Gu Man; Laverock, Jude; Chen, Bo; Smith, Kevin E.; Wolf, Stuart A.; Lu Jiwei

    2013-01-01

    Stoichiometric CaVO 3 (CVO) thin films of various thicknesses were grown on single crystal SrTiO 3 (STO) (001) substrates using a pulsed electron-beam deposition technique. The CVO films were capped with a 2.5 nm STO layer. We observed a temperature driven metal-insulator transition (MIT) in CVO films with thicknesses below 4 nm that was not observed in either thick CVO films or STO films. The emergence of this MIT can be attributed to the reduction in effective bandwidth due to a crossover from a three-dimensional metal to a two-dimensional insulator. The insulating phase was only induced with a drive current below 0.1 μA. X-ray absorption measurements indicated different electronic structures for thick and very thin films of CVO. Compared with the thick film (∼60 nm), thin films of CVO (2–4 nm) were more two-dimensional with the V charge state closer to V 4+ .

  14. Evidence for top-heavy stellar initial mass functions with increasing density and decreasing metallicity

    Science.gov (United States)

    Marks, Michael; Kroupa, Pavel; Dabringhausen, Jörg; Pawlowski, Marcel S.

    2012-05-01

    Residual-gas expulsion after cluster formation has recently been shown to leave an imprint in the low-mass present-day stellar mass function (PDMF) which allowed the estimation of birth conditions of some Galactic globular clusters (GCs) such as mass, radius and star formation efficiency. We show that in order to explain their characteristics (masses, radii, metallicity and PDMF) their stellar initial mass function (IMF) must have been top heavy. It is found that the IMF is required to become more top heavy the lower the cluster metallicity and the larger the pre-GC cloud-core density are. The deduced trends are in qualitative agreement with theoretical expectation. The results are consistent with estimates of the shape of the high-mass end of the IMF in the Arches cluster, Westerlund 1, R136 and NGC 3603, as well as with the IMF independently constrained for ultra-compact dwarf galaxies (UCDs). The latter suggests that GCs and UCDs might have formed along the same channel or that UCDs formed via mergers of GCs. A Fundamental Plane is found which describes the variation of the IMF with density and metallicity of the pre-GC cloud cores. The implications for the evolution of galaxies and chemical enrichment over cosmological times are expected to be major.

  15. Towards nanoprinting with metals on graphene

    Science.gov (United States)

    Melinte, G.; Moldovan, S.; Hirlimann, C.; Liu, X.; Bégin-Colin, S.; Bégin, D.; Banhart, F.; Pham-Huu, C.; Ersen, O.

    2015-08-01

    Graphene and carbon nanotubes are envisaged as suitable materials for the fabrication of the new generation of nanoelectronics. The controlled patterning of such nanostructures with metal nanoparticles is conditioned by the transfer between a recipient and the surface to pattern. Electromigration under the impact of an applied voltage stands at the base of printing discrete digits at the nanoscale. Here we report the use of carbon nanotubes as nanoreservoirs for iron nanoparticles transfer on few-layer graphene. An initial Joule-induced annealing is required to ensure the control of the mass transfer with the nanotube acting as a `pen' for the writing process. By applying a voltage, the tube filled with metal nanoparticles can deposit metal on the surface of the graphene sheet at precise locations. The reverse transfer of nanoparticles from the graphene surface to the nanotube when changing the voltage polarity opens the way for error corrections.

  16. Swift heavy ion induced surface and microstructural evolution in metallic glass thin films

    International Nuclear Information System (INIS)

    Thomas, Hysen; Thomas, Senoy; Ramanujan, Raju V.; Avasthi, D.K.; Al- Omari, I.A.; Al-Harthi, Salim; Anantharaman, M.R.

    2012-01-01

    Swift heavy ion induced changes in microstructure and surface morphology of vapor deposited Fe–Ni based metallic glass thin films have been investigated by using atomic force microscopy, X-ray diffraction and transmission electron microscopy. Ion beam irradiation was carried out at room temperature with 103 MeV Au 9+ beam with fluences ranging from 3 × 10 11 to 3 × 10 13 ions/cm 2 . The atomic force microscopy images were subjected to power spectral density analysis and roughness analysis using an image analysis software. Clusters were found in the image of as-deposited samples, which indicates that the film growth is dominated by the island growth mode. As-deposited films were amorphous as evidenced from X-ray diffraction; however, high resolution transmission electron microscopy measurements revealed a short range atomic order in the samples with crystallites of size around 3 nm embedded in an amorphous matrix. X-ray diffraction pattern of the as-deposited films after irradiation does not show any appreciable changes, indicating that the passage of swift heavy ions stabilizes the short range atomic ordering, or even creates further amorphization. The crystallinity of the as-deposited Fe–Ni based films was improved by thermal annealing, and diffraction results indicated that ion beam irradiation on annealed samples results in grain fragmentation. On bombarding annealed films, the surface roughness of the films decreased initially, then, at higher fluences it increased. The observed change in surface morphology of the irradiated films is attributed to the interplay between ion induced sputtering, volume diffusion and surface diffusion.

  17. Induced magnetization spiral in a nonmagnetic metal sandwiched between two ferromagnets

    CERN Document Server

    Mathon, J; Villeret, M; Muniz, R B; Edwards, D M

    2000-01-01

    Calculation of the magnetic moment induced in a non-magnetic metal, sandwiched between two ferromagnets with magnetizations at an arbitrary angle, is reported. It is found that the induced magnetization rotates along a complex three-dimensional spiral and can undergo many complete 360 deg. rotations. A simple free-electron model is used to derive an analytic formula for the twist angle phi inside the spacer. This demonstrates that, contrary to the behavior of magnetization inside a domain wall in a ferromagnet, phi varies non-uniformly inside the spacer and exhibits plateaus of almost constant rotation separated by regions of sharp rotations by large angles. The calculation is extended to the case of a realistic Co/Cu/Co(0 0 1) trilayer described by s, p, d tight-binding bands fitted to an ab initio band structure. An analytic formula for the components of the induced moment (and hence, for phi) is derived using the stationary phase approximation. Its validity is tested against a fully numerical calculation u...

  18. Pulse laser-induced generation of cluster codes from metal nanoparticles for immunoassay applications

    Directory of Open Access Journals (Sweden)

    Chia-Yin Chang

    2017-05-01

    Full Text Available In this work, we have developed an assay for the detection of proteins by functionalized nanomaterials coupled with laser-induced desorption/ionization mass spectrometry (LDI-MS by monitoring the generation of metal cluster ions. We achieved selective detection of three proteins [thrombin, vascular endothelial growth factor-A165 (VEGF-A165, and platelet-derived growth factor-BB (PDGF-BB] by modifying nanoparticles (NPs of three different metals (Au, Ag, and Pt with the corresponding aptamer or antibody in one assay. The Au, Ag, and Pt acted as metal bio-codes for the analysis of thrombin, VEGF-A165, and PDGF-BB, respectively, and a microporous cellulose acetate membrane (CAM served as a medium for an in situ separation of target protein-bound and -unbound NPs. The functionalized metal nanoparticles bound to their specific proteins were subjected to LDI-MS on the CAM. The functional nanoparticles/CAM system can function as a signal transducer and amplifier by transforming the protein concentration into an intense metal cluster ion signal during LDI-MS analysis. This system can selectively detect proteins at picomolar concentrations. Most importantly, the system has great potential for the detection of multiple proteins without any pre-concentration, separation, or purification process because LDI-MS coupled with CAM effectively removes all signals except for those from the metal cluster ions.

  19. Monitoring transport and equilibrium of heavy metals in soil using induced polarization

    Science.gov (United States)

    Shalem, T.; Huisman, J. A.; Zimmermann, E.; Furman, A.

    2017-12-01

    Soil and groundwater pollution in general, and by heavy metals in particular, is a major threat to human health, and especially in rapidly developing regions, such as China. Fast, accurate and low-cost measurement of heavy metal contamination is of high desire. Spectral induced polarization (SIP) may be an alternative to the tedious sampling techniques typically used. In the SIP method, an alternating current at a range of low frequencies is injected into the soil and the resultant potential is measured along the current's path. SIP is a promising method for monitoring heavy metals, because it is sensitive to the chemical composition of both the absorbed ions on the soil minerals and the pore fluid and to the interface between the two. The high sorption affinity of heavy metals suggests that their electrical signature may be significant, even at relatively low concentrations. The goal of this research is to examine the electrical signature of soil contaminated by heavy metals and of the pollution transport and remediation processes, in a non-tomographic fashion. Specifically, we are looking at the SIP response of various heavy metals in several settings: 1) at equilibrium state in batch experiments; 2) following the progress of a pollution front along a soil column through flow experiments and 3) monitoring the extraction of the contaminant by a chelating agent. Using the results, we develop and calibrate a multi-Cole-Cole model to separate the electrochemical and the interfacial components of the polarization. Last, we compare our results to the electrical signature of contaminated soil from southern China. Results of single metals from both batch and flow experiments display a shift of the relaxation time and a decrease in the phase response of the soil with increase of the metal concentration, suggesting strong sorption of the metals on the stern layer. Preliminary results also show evidence of electrodic polarization, assuming to be related to the formation of

  20. Magnetization induced by odd-frequency spin-triplet Cooper pairs in a Josephson junction with metallic trilayers

    Science.gov (United States)

    Hikino, S.; Yunoki, S.

    2015-07-01

    We theoretically study the magnetization inside a normal metal induced in an s -wave superconductor/ferromagnetic metal/normal metal/ferromagnetic metal/s -wave superconductor (S /F 1 /N /F 2 /S ) Josephson junction. Using the quasiclassical Green's function method, we show that the magnetization becomes finite inside the N . The origin of this magnetization is due to odd-frequency spin-triplet Cooper pairs formed by electrons of equal and opposite spins, which are induced by the proximity effect in the S /F 1 /N /F 2 /S junction. We find that the magnetization M (d ,θ ) in the N can be decomposed into two parts, M (d ,θ ) =MI(d ) +MII(d ,θ ) , where θ is the superconducting phase difference between the two S s and d is the thickness of N . The θ -independent magnetization MI(d ) exists generally in S /F junctions, while MII(d ,θ ) carries all θ dependence and represents the fingerprint of the phase coherence between the two S s in Josephson junctions. The θ dependence thus allows us to control the magnetization in the N by tuning θ for a fixed d . We show that the θ -independent magnetization MI(d ) weakly decreases with increasing d , while the θ -dependent magnetization MII(d ,θ ) rapidly decays with d . Moreover, we find that the time-averaged magnetization exhibits a discontinuous peak at each resonance dc voltage Vn=n ℏ ωS/2 e (n : integer) when dc voltage V as well as ac voltage vac(t ) with frequency ωS are both applied to the S /F 1 /N /F 2 /S junction. This is because MII(d ,θ ) oscillates generally in time t (ac magnetization) with d θ /d t =2 e [V +vac(t ) ]/ℏ and thus =0 , but can be converted into the time-independent dc magnetization for the dc voltage at Vn. We also discuss that the magnetization induced in the N can be measurably large in realistic systems. Therefore, the measurement of the induced magnetization serves as an alternative way to detect the phase coherence between the two S s in Josephson junctions. Our results

  1. Trace metal content in aspirin and women's cosmetics via proton induced x-ray emission (PIXE)

    International Nuclear Information System (INIS)

    Hichwa, B.P.; Pun, D.D.; Wang, D.

    1981-01-01

    A multielemental analysis to determine the trace metal content of generic and name-brand aspirins and name-brand lipsticks was done via proton induced x-ray (PIXE) measurements. The Hope College PIXE system is described as well as the target preparation methods. The trace metal content of twelve brands of aspirin and aspirin substitutes and fourteen brands of lipstick are reported. Detection limits for most elements are in the range of 100 parts per billion (ppb) to 10 parts per million

  2. Research on Initiation Sensitivity of Solid Explosive and Planer Initiation System

    Directory of Open Access Journals (Sweden)

    N Matsuo

    2016-09-01

    Full Text Available Firstly, recently, there are a lot of techniques being demanded for complex process, various explosive initiation method and highly accurate control of detonation are needed. In this research, the metal foil explosion using high current is focused attention on the method to obtain linear or planate initiation easily, and the main evaluation of metal foil explosion to initiate explosive was conducted. The explosion power was evaluated by observing optically the underwater shock wave generated from the metal foil explosion. Secondly, in high energy explosive processing, there are several applications, such as shock compaction, explosive welding, food processing and explosive forming. In these explosive applications, a high sensitive explosive has been mainly used. The high sensitive explosive is so dangerous, since it can lead to explosion suddenly. So, for developing explosives, the safety is the most important thing as well as low manufacturing cost and explosive characteristics. In this work, we have focused on the initiation sensitivity of a solid explosive and performed numerical analysis of sympathetic detonation. The numerical analysis is calculated by LS-DYNA 3D (commercial code. To understand the initiation reaction of an explosive, Lee-Tarver equation was used and impact detonation process was analyzed by ALE code. Configuration of simulation model is a quarter of circular cylinder. The donor type of explosive (SEP was used as initiation explosive. When the donor explosive is exploded, a shock wave is generated and it propagates into PMMA, air and metallic layers in order. During passing through the layers, the shock wave is attenuated and finally, it has influence on the acceptor explosive, Comp. B. Here, we evaluate the initiation of acceptor explosive and discuss about detonation pressure, reactive rate of acceptor explosive and attenuation of impact pressure.

  3. Structural coloration of metallic surfaces with micro/nano-structures induced by elliptical vibration texturing

    Science.gov (United States)

    Yang, Yang; Pan, Yayue; Guo, Ping

    2017-04-01

    Creating orderly periodic micro/nano-structures on metallic surfaces, or structural coloration, for control of surface apparent color and optical reflectivity has been an exciting research topic over the years. The direct applications of structural coloration include color marking, display devices, and invisibility cloak. This paper presents an efficient method to colorize metallic surfaces with periodic micro/nano-gratings using elliptical vibration texturing. When the tool vibration is coupled with a constant cutting velocity, controlled periodic ripples can be generated due to the overlapping tool trajectory. These periodic ripples with a wavelength near visible spectrum can act as micro-gratings to introduce iridescent colors. The proposed technique also provides a flexible method for color marking of metallic surfaces with arbitrary patterns and images by precise control of the spacing distance and orientation of induced micro/nano-ripples. Theoretical analysis and experimental results are given to demonstrate structural coloration of metals by a direct mechanical machining technique.

  4. Liquid metals replace water steam

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, V

    1976-12-01

    The techniques are described of power generation with regard to their effectiveness which depends on the efficiency of the conversion of thermal energy into electric energy. The magnetohydrodynamic conversion of energy is based on the use of induced electromotive force which results from the movement of the conductor in the magnetic field. The use of liquid metal as the working medium makes it possible to increase the initial temperature of the magnetohydrodynamic cycle to the limit of the highest technically attainable temperatures. The total efficiency of energy conversion in magnetohydrodynamic converters is 2 to 6%.

  5. Ion-beam-induced reactions in metal-thin-film-/BP system

    International Nuclear Information System (INIS)

    Kobayashi, N.; Kumashiro, Y.; Revesz, P.; Mayer, J.W.

    1989-01-01

    Ion-beam-induced reactions in Ni thin films on BP(100) have been investigated and compared with the results of the thermal reaction. The full reaction of Ni layer with BP induced by energetic heavy ion bombardments (600 keV Xe) was observed at 200degC and the formation of the crystalline phase corresponding to a composition of Ni 4 BP was observed. Amorphous layer with the same composition was formed by the bombardments below RT. For thermally annealed samples the reaction of the Ni layer on BP started at temperatures between 350degC and 400degC and full reaction was observed at 450degC. Metal-rich ternary phase or mixed binary phase is thought to be the first crystalline phase formed both in the ion-beam-induced and in the thermally induced reactions. The crystalline phase has the same composition and X-ray diffraction pattern both for ion-beam-induced and thermal reactions. Linear dependence of the reacted thickness on the ion fluence was also observed. The authors would like to express their sincere gratitude to Jian Li and Shi-Qing Wang for X-ray diffraction measurements at Cornell University. One of the authors (N.K.) acknowledge the Agency of Science and Technology of Japan for the financial support of his stay at Cornell. We also acknowledge Dr. H. Tanoue at ETL for his help in ion bombardment experiments. (author)

  6. Detection of boron in metal alloys with solid state nuclear track detector by neutron induced autoradiography

    International Nuclear Information System (INIS)

    Ali Nabipour; Hosseini, A.; Afarideh, H.

    2002-01-01

    Neutron induced autoradiography is very useful technique for detection as well as measurement of Boron densities in metal alloys. The method is relatively simple and quite sensitive in comparison with other techniques with resolution in the range of PPM. Using this technique with it is also possible to investigate microscopic scattering of Boron in metal alloys. In comparison with most techniques neutron induced autoradiography has its own difficulties and limitations. In this research measurement of Boron densities and investigation of that diffusion in metal alloys has been carried out. A flat nicely polished Boron doped metal samples is covered with a track detecting plastic (CR-39 solid state nuclear track detector) and exposed to thermal neutron dose. After irradiation the plastic detector have been removed and put in an etching solution. Since the diffusion rate of corrosive solution in those area, which heavy ions have been, produces as the result of nuclear reaction with thermal neutron are more than the other areas, some cavities are formed. The diameter of cavities or tracks cross section are increased with increasing the etching time, to some extent that it is possible to observe the cavities with optical microscopes. The density of tracks on the detector surface is directly related to the Boron concentration in the sample and thermal neutron dose. So by measuring the number of tracks on surface of the detector it would possible to calculate the concentration of Boron in metal samples. (Author)

  7. Divalent Metal Ions Induced Osteogenic Differentiation of MC3T3E1

    Science.gov (United States)

    Wang, Guoshou; Su, Wenta; Chen, Pohung; Huang, Teyang

    2017-12-01

    Biomaterial scaffolds blended with biochemical signal molecules with adequate osteoinductive and osteoconductive properties have attracted significant interest in bone tissue engineering regeneration. The divalent metal ions can gradually release from the scaffold into the culture medium and then induced osteoblastic differentiation of MC3T3E1. These MC3T3E1 cells expressed high activity of alkaline phosphatase, bone-related gene expression of collagen type I, Runx2, osteopontin, osteocalcin, and significantly enhanced deposited minerals on scaffold after 21 days of culture. This experiment provided a useful inducer for osteogenic differentiation in bone repair.

  8. Metal induced crystallization of silicon germanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gjukic, M.

    2007-05-15

    In the framework of this thesis the applicability of the aluminium-induced layer exchange on binary silicon germanium alloys was studied. It is here for the first time shown that polycrstalline silicon-germanium layers can be fabricated over the whole composition range by the aluminium-induced layer exchange. The experimental results prove thet the resulting material exhibits a polycrystalline character with typocal grain sizes of 10-100 {mu}m. Raman measurements confirm that the structural properties of the resulting layers are because of the large crystallites more comparable with monocrystalline than with nano- or microcrystalline silicon-germanium. The alloy ratio of the polycrystalline layer correspondes to the chemical composition of the amorphous starting layer. The polycrystalline silicon-germanium layers possess in the range of the interband transitions a reflection spectrum, as it is otherwise only known from monocrystalline reference layers. The improvement of the absorption in the photovoltaically relevant spectral range aimed by the application of silicon-germanium could be also proved by absorption measurments. Strongly correlated with the structural properties of the polycrystalline layers and the electronic band structure resulting from this are beside the optical properties also the electrical properties of the material, especially the charge-carrier mobility and the doping concentration. For binary silicon-germanium layers the hole concentration of about 2 x 10{sup 18} cm{sup -3} for pure silicon increrases to about 5 x 10{sup 20} cm{sub -3} for pure germanium. Temperature-resolved measurements were applied in order to detect doping levels respectively semiconductor-metal transitions. In the last part of the thesis the hydrogen passivation of polycrystalline thin silicon-germanium layers, which were fabricated by means of aluminium-induced layer exchange, is treated.

  9. Radiation-Induced Correlation between Molecules Nearby Metallic Antenna Array

    Directory of Open Access Journals (Sweden)

    Yoshiki Osaka

    2015-01-01

    Full Text Available We theoretically investigate optical absorption of molecules embedded nearby metallic antennas by using discrete dipole approximation method. It is found that the spectral peak of the absorption is shifted due to the radiation-induced correlation between the molecules. The most distinguishing feature of our work is to show that the shift is largely enhanced even when the individual molecules couple with localized surface plasmons near the different antennas. Specifically, we first consider the case that two sets of dimeric gold blocks with a spacing of a few nanometers are arranged and reveal that the intensity and spectral peak of the optical absorption strongly depend on the position of the molecules. In addition, when the dimeric blocks and the molecules are periodically arranged, the peak shift is found to increase up to ~1.2 meV (300 GHz. Because the radiation-induced correlation is essential for collective photon emission, our result implies the possibility of plasmon-assisted superfluorescence in designed antenna-molecule complex systems.

  10. Characteristics of indirect laser-induced plasma from a thin film of oil on a metallic substrate

    Science.gov (United States)

    Xiu, Jun-Shan; Bai, Xue-Shi; Motto-Ros, Vincent; Yu, Jin

    2015-04-01

    Optical emissions from the major and trace elements embodied in a transparent gel prepared from cooking oil were detected after the gel was spread in a thin film on a metallic substrate. Such emissions are due to the indirect breakdown of the coating layer. The generated plasma, a mixture of substances from the substrate, the layer, and the ambient gas, was characterized using emission spectroscopy. The characteristics of the plasma formed on the metal with and without the coating layer were investigated. The results showed that Al emission induced from the aluminum substrates coated with oil films extends away from the target surface to ablate the oil film. This finally formed a bifurcating circulation of aluminum vapor against a spherical confinement wall in the front of the plume, which differed from the evolution of the plasma induced from the uncoated aluminum target. The strongest emissions of elements from the oil films can be observed at 2 mm above the target after a detection delay of 1.0 μs. A high temperature zone has been observed in the plasma after the delay of 1.0 μs for the plasma induced from the coated metal. This higher temperature determined in the plasma allows the consideration of the sensitive detection of trace elements in liquids, gels, biological samples, or thin films.

  11. Fluorescence lifetime microscopy for monitoring cell adhesion using metal induced energy transfer

    Science.gov (United States)

    Hwang, Wonsang; Seo, JinWon; Song, Jun ho; Kim, DongEun; Won, YoungJae; Choi, In-Hong; Yoo, Kyung-Hwa; Kim, Dug Young

    2018-02-01

    A precise control and a reliable monitoring tool for the adhesion properties of a cell are very important in atherosclerosis studies. If endothelial cells in contact with the intracellular membrane are not attached securely, low-density lipoprotein (LDL) particles can enter into the inner membrane. It is therefore necessary to measure conditions under which endothelial cell detachment occurs. When a cell is attached to a metal thin film, the lifetime of a fluorescence probe attached to the membrane of the cell is reduced by the metal-induced energy transfer (MIET). Fluorescence lifetime imaging microscopy (FLIM) is used to monitor the attachment condition of a cell to a metal surface using FRET. However, this requires high numerical aperture (NA) objective lens because axial confocal resolution must be smaller than the cell thickness. This requirement limits the field of view of the measurement specimen. In this study we provides a new method which can measure adhesion properties of endothelial cells even with a low NA objective lens by resolving two lifetime components in FLIM.

  12. Polution of the environment by heavy metals

    International Nuclear Information System (INIS)

    Houtman, J.P.W.

    1980-01-01

    An overview is given of the problems caused by pollution of the environment by heavy metals and the important role played by nuclear examination methods such as activation analysis and particle induced X-ray emission. A number of examples taken from work initiated by the interuniversitair Reactor Instituut, demonstrate that this research should be continued and extended, particularly in relation to the expected increase in the use of coal for energy generation in electricity centres. (C.F.)

  13. Application of proton induced x-ray emission (PIXE) in estimation of trace metals entrapped in silica matrix

    International Nuclear Information System (INIS)

    Jal, P.K.; Patel, Sabita; Mishra, B.K.; Sudarshan, M.; Saha, A.

    2005-01-01

    Proton induced x-ray emission technique is used for multielemental analysis of metal ions adsorbed on nanosilica surface. At pH 3.5, silica traps uranium selectively from a mixture of solutions of 13 different metal ions viz., K(I), Ca(II), Fe(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Sr(II), Cd(II). Ba(II), Hg(II) and UO 2 (VI). (author)

  14. Study on Corrosion-induced Crack Initiation and Propagation of Sustaining Loaded RCbeams

    Science.gov (United States)

    Zhong, X. P.; Li, Y.; Yuan, C. B.; Yang, Z.; Chen, Y.

    2018-05-01

    For 13 pieces of reinforced concrete beams with HRB500 steel bars under long-term sustained loads, at time of corrosion-induced initial crack of concrete, and corrosion-induced crack widths of 0.3mm and 1mm, corrosion of steel bars and time-varying behavior of corrosion-induced crack width were studied by the ECWD (Electro-osmosis - constant Current – Wet and Dry cycles) accelerated corrosion method. The results show that when cover thickness was between 30 and 50mm,corrosion rates of steel bars were between 0.8% and 1.7% at time of corrosion-induced crack, and decreased with increasing concrete cover thickness; when corrosion-induced crack width was 0.3mm, the corrosion rate decreased with increasing steel bar diameter, and increased with increasing cover thickness; its corrosion rate varied between 0.98% and 4.54%; when corrosion-induced crack width reached 1mm, corrosion rate of steel bars was between 4% and 4.5%; when corrosion rate of steel bars was within 5%, the maximum and average corrosion-induced crack and corrosion rate of steel bars had a good linear relationship. The calculation model predicting the maximum and average width of corrosion-induced crack is given in this paper.

  15. Time-response characteristic and potential biomarker identification of heavy metal induced toxicity in zebrafish.

    Science.gov (United States)

    Yin, Jian; Wang, Ai-Ping; Li, Wan-Fang; Shi, Rui; Jin, Hong-Tao; Wei, Jin-Feng

    2018-01-01

    The present work aims to explore the time-response (from 24 h to 96 h) characteristic and identify early potential sensitive biomarkers of copper (Cu) (as copper chloride dihydrate), cadmium (Cd) (as cadmium acetate), lead (Pb) (as lead nitrate) and chromium (Cr) (as potassium dichromate) exposure in adult zebrafish, focusing on reactive oxygen species (ROS), SOD activity, lipid peroxidation and gene expression related to oxidative stress and inflammatory response. Furthermore, the survival rate decreased apparently by a concentration-dependent manner after Cu, Cr, Cd and Pb exposure, and we selected non-lethal concentrations 0.05 mg/L for Cu, 15 mg/L for Cr, 3 mg/L for Cd and 93.75μg/L for Pb to test the effect on the following biological indicators. Under non-lethal concentration, the four heavy metals have no apparent histological change in adult zebrafish gills. Similar trends in ROS production, MDA level and SOD activity were up-regulated by the four heavy metals, while MDA level responded more sensitive to Pb by time-dependent manner than the other three heavy metals. In addition, mRNA levels related to antioxidant system (SOD1, SOD2 and Nrf2) were up-regulated by non-lethal concentration Cu, Cr, Cd and Pb exposure. MDA level and SOD1 gene have a more delayed response to heavy metals. Genes related to immunotoxicity were increased significantly after heavy metals exposure at non-lethal concentrations. TNF-α and IL-1β gene have similar sensibility to the four heavy metals, while IL-8 gene was more responsive to Cr, Cd and Pb exposure at 48 h groups and IFN-γ gene showed more sensitivity to Cu at 48 h groups than the other heavy metals. In conclusion, the present works have suggested that the IFN-γ gene may applied as early sensitive biomarker to identify Cu-induced toxicity, while MDA content and IL-8 gene may use as early sensitive biomarkers for evaluating the risk of Pb exposure. Moreover, IL-8 and IFN-γ gene were more responsive to heavy

  16. Effect of initial as-cast microstructure on semisolid microstructure of AZ91D alloy during the strain-induced melt activation process

    International Nuclear Information System (INIS)

    Wang, J.G.; Lin, H.Q.; Li, Y.Q.; Jiang, Q.C.

    2008-01-01

    The effects of different as-cast microstructures which were initially cast in graphite, metal, sand and firebrick moulds, respectively on the semisolid microstructure of AZ91D alloy, have been investigated during the strain-induced melt activation (SIMA) process. The experimental results showed that the moulds with high cooling capacity could produce the fine-grained as-cast microstructure in which the fine α-Mg dendrites were surrounded by a narrow layer of eutectic mixtures. After compressive deformation, in the fine-grained as-cast microstructure, the more systemic strain energy would be gradually accumulated and abundantly stored due to uniform inner crystal lattice distortion, so the recrystallization was easily induced by the stored strain energy at the elevated temperature. As a channel for the diffusion of atoms, the subgrain boundary along which Al element was enriched, foremost melted above the eutectic temperature and resulted in the separation of neighboring subgrains from primary dendrites. Therefore, the refining role of recrystallization on the microstructural evolution from dendrite to globular particles in morphology was easier to play in the fine-grained as-cast microstructure, which was advantageous for the production of fine-grained semisolid microstructure. Additionally, in the fine-grained as-cast microstructure, the melting fracture of narrow secondary dendritic arms was easy to occur in their roots, which also attributed to the production of fine globular grains in semisolid microstructure from primary dendrites. The finer dendrites in the initial as-cast alloy could evolve into the finer globular grains with relatively small grain size distribution range in the semisolid microstructure during partial remelting; therefore, the finer the dendrites in the initial as-cast microstructure, the better were the tensile properties of the evolved semisolid microstructure

  17. Laser-induced selective metallization of polypropylene doped with multiwall carbon nanotubes

    Science.gov (United States)

    Ratautas, Karolis; Gedvilas, Mindaugas; Stankevičiene, Ina; Jagminienė, Aldona; Norkus, Eugenijus; Pira, Nello Li; Sinopoli, Stefano; Račiukaitis, Gediminas

    2017-08-01

    Moulded interconnect devices (MID) offer the material, weight and cost saving by integration electronic circuits directly into polymeric components used in automotive and other consumer products. Lasers are used to write circuits directly by modifying the surface of polymers followed by an electroless metal plating. A new composite material - the polypropylene doped with multiwall carbon nanotubes was developed for the laser-induced selective metallization. Mechanism of surface activation by laser irradiation was investigated in details utilising pico- and nanoseconds lasers. Deposition of copper was performed in the autocatalytic electroless plating bath. The laser-activated polymer surfaces have been studied using the Raman spectroscopy and scanning electron microscope (SEM). Microscopic images revealed that surface becomes active only after its melting by a laser. Alterations in the Raman spectra of the D and G bands indicated the clustering of carbon additives in the composite material. Optimal laser parameters for the surface activation were found by measuring a sheet resistance of the finally metal-plated samples. A spatially selective copper plating was achieved with the smallest conductor line width of 22 μm at the laser scanning speed of 3 m/s and the pulse repetition rate of 100 kHz. Finally, the technique was validated by making functional electronic circuits by this MID approach.

  18. Metal-insulator transition induced in CaVO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gu Man [Department of Physics, University of Virginia, 382 McCormick Rd., Charlottesville, Virginia 22904 (United States); Laverock, Jude; Chen, Bo; Smith, Kevin E. [Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215 (United States); Wolf, Stuart A. [Department of Physics, University of Virginia, 382 McCormick Rd., Charlottesville, Virginia 22904 (United States); Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., Charlottesville, Virginia 22904 (United States); Lu Jiwei [Department of Materials Science and Engineering, University of Virginia, 395 McCormick Rd., Charlottesville, Virginia 22904 (United States)

    2013-04-07

    Stoichiometric CaVO{sub 3} (CVO) thin films of various thicknesses were grown on single crystal SrTiO{sub 3} (STO) (001) substrates using a pulsed electron-beam deposition technique. The CVO films were capped with a 2.5 nm STO layer. We observed a temperature driven metal-insulator transition (MIT) in CVO films with thicknesses below 4 nm that was not observed in either thick CVO films or STO films. The emergence of this MIT can be attributed to the reduction in effective bandwidth due to a crossover from a three-dimensional metal to a two-dimensional insulator. The insulating phase was only induced with a drive current below 0.1 {mu}A. X-ray absorption measurements indicated different electronic structures for thick and very thin films of CVO. Compared with the thick film ({approx}60 nm), thin films of CVO (2-4 nm) were more two-dimensional with the V charge state closer to V{sup 4+}.

  19. A transition-metal-free synthesis of arylcarboxyamides from aryl diazonium salts and isocyanides.

    Science.gov (United States)

    Xia, Zhonghua; Zhu, Qiang

    2013-08-16

    A transition-metal-free carboxyamidation process, using aryl diazonium tetrafluoroborates and isocyanides under mild conditions, has been developed. This novel conversion was initiated by a base and solvent induced aryl radical, followed by radical addition to isocyanide and single electron transfer (SET) oxidation, affording the corresponding arylcarboxyamide upon hydration of the nitrilium intermediate.

  20. GP-initiated preconception counselling in a randomised controlled trial does not induce anxiety

    NARCIS (Netherlands)

    de Jong-Potjer, L. C.; Elsinga, J.; le Cessie, S.; van der Pal-de Bruin, K. M.; Neven, A. Knuistingh; Buitendijk, S. E.; Assendelft, W. J. J.

    2006-01-01

    BACKGROUND: Preconception counselling (PCC) can reduce adverse pregnancy outcome by addressing risk factors prior to pregnancy. This study explores whether anxiety is induced in women either by the offer of PCC or by participation with GP-initiated PCC. METHODS: Randomised trial of usual care versus

  1. GP-initiated preconception counselling in a randomised controlled trial does not induce anxiety

    NARCIS (Netherlands)

    Jong-Potjer, L.C. de; Elsinga, J.; Cessie, S. le; Pal-de Bruin, K.M. van der; Knuistingh Neven, A.; Buitendijk, S.E.; Assendelft, W.J.J.

    2006-01-01

    Background: Preconception counselling (PCC) can reduce adverse pregnancy outcome by addressing risk factors prior to pregnancy. This study explores whether anxiety is induced in women either by the offer of PCC or by participation with GP-initiated PCC. Methods: Randomised trial of usual care versus

  2. Laser-induced breakdown spectroscopy used to detect endophyte-mediated accumulation of metals by tall fescue

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Madhavi Z.; Stewart, Arthur J.; Gwinn, Kimberley D.; Waller, John C.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) was used to determine the impact of endophyte (Neotyphodium sp.) infection on elemental composition of tall fescue (Festuca arundinacea). Leaf material from endophyte-infected (E+) and endophyte-free (E-) tall fescue populations in established plots was examined. Leaf-tissue digestates were also tested for metals, by inductively coupled plasma (ICP) mass spectrometry (MS). Seven of eleven metals (Ca, Mg, Fe, Mn, Cu, Ni, and Zn) were measured by both techniques at concentrations great enough for a reliable comparison. Mg, Zn, and Cd, a toxic metal that can be present in forage, were readily detected by LIBS, even though Cd concentrations in the plants were below levels typically achieved using ICP MS detection. Implications of these results for research on forage analysis and phytoremediation are discussed.

  3. Liquid metals replace water steam

    International Nuclear Information System (INIS)

    Kozlov, V.

    1976-01-01

    The techniques are described of power generation with regard to their effectiveness which depends on the efficiency of the conversion of thermal energy into electric energy. The magnetohydrodynamic conversion of energy is based on the use of induced electromotive force which results from the movement of the conductor in the magnetic field. The use of liquid metal as the working medium makes it possible to increase the initial temperature of the magnetohydrodynamic cycle to the limit of the highest technically attainable temperatures. The total efficiency of energy conversion in magnetohydrodynamic converters is 2 to 6%. (J.B.)

  4. GeO{sub x} interfacial layer scavenging remotely induced by metal electrode in metal/HfO{sub 2}/GeO{sub x}/Ge capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taehoon; Jung, Yong Chan; Seong, Sejong; Ahn, Jinho, E-mail: jhahn@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Seoul 04763 (Korea, Republic of); Lee, Sung Bo [Department of Materials Science and Engineering and Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826 (Korea, Republic of); Park, In-Sung, E-mail: parkis77@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Seoul 04763 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul 04763 (Korea, Republic of)

    2016-07-11

    The metal gate electrodes of Ni, W, and Pt have been investigated for their scavenging effect: a reduction of the GeO{sub x} interfacial layer (IL) between HfO{sub 2} dielectric and Ge substrate in metal/HfO{sub 2}/GeO{sub x}/Ge capacitors. All the capacitors were fabricated using the same process except for the material used in the metal electrodes. Capacitance-voltage measurements, scanning transmission electron microscopy, and electron energy loss spectroscopy were conducted to confirm the scavenging of GeO{sub x} IL. Interestingly, these metals are observed to remotely scavenge the interfacial layer, reducing its thickness in the order of Ni, W, and then Pt. The capacitance equivalent thickness of these capacitors with Ni, W, and Pt electrodes are evaluated to be 2.7 nm, 3.0 nm, and 3.5 nm, and each final remnant physical thickness of GeO{sub x} IL layer is 1.1 nm 1.4 nm, and 1.9 nm, respectively. It is suggested that the scavenging effect induced by the metal electrodes is related to the concentration of oxygen vacancies generated by oxidation reaction at the metal/HfO{sub 2} interface.

  5. Shock-induced hotspot formation and chemical reaction initiation in PETN containing a spherical void

    International Nuclear Information System (INIS)

    Shan, Tzu-Ray; Thompson, Aidan P

    2014-01-01

    We present results of reactive molecular dynamics simulations of hotspot formation and chemical reaction initiation in shock-induced compression of pentaerythritol tetranitrate (PETN) with the ReaxFF reactive force field. A supported shockwave is driven through a PETN crystal containing a 20 nm spherical void at a sub-threshold impact velocity of 2 km/s. Formation of a hotspot due to shock-induced void collapse is observed. During void collapse, NO 2 is the dominant species ejected from the upstream void surface. Once the ejecta collide with the downstream void surface and the hotspot develops, formation of final products such as N 2 and H 2 O is observed. The simulation provides a detailed picture of how void collapse and hotspot formation leads to initiation at sub-threshold impact velocities.

  6. Investigation of the resistance of several new metallic reinforcing bars to chloride-induced corrosion in concrete.

    Science.gov (United States)

    2003-01-01

    The Virginia Department of Transportation recently initiated a search for metallic reinforcing bars that are not only more durable and corrosion resistant than the epoxy-coated bars currently used, but also economical. In the last few years, several ...

  7. Centrifuge model tests of rainfall-induced slope failures for the investigation of the initiation conditions

    Science.gov (United States)

    Matziaris, Vasileios; Marshall, Alec; Yu, Hai-Sui

    2015-04-01

    Rainfall-induced landslides are very common natural disasters which cause damage to properties and infrastructure and may result in the loss of human lives. These phenomena often take place in unsaturated soil slopes and are triggered by the saturation of the soil profile, due to rain infiltration, which leads to a loss of shear strength. The aim of this study is to determine rainfall thresholds for the initiation of landslides under different initial conditions. Model tests of rainfall-induced landslides are conducted in the Nottingham Centre for Geomechanics 50g-T geotechnical centrifuge. Initially unsaturated plane-strain slope models made with fine silica sand are prepared at varying densities at 1g and accommodated within a climatic chamber which provides controlled environmental conditions. During the centrifuge flight at 60g, rainfall events of varying intensity and duration are applied to the slope models causing the initiation of slope failure. The impact of soil state properties and rainfall characteristics on the landslide initiation process are discussed. The variation of pore water pressures within the slope before, during and after simulated rainfall events is recorded using miniature pore pressure transducers buried in the soil model. Slope deformation is determined by using a high-speed camera and digital image analysis techniques.

  8. Surface polyPEGylation of Eu"3"+ doped luminescent hydroxyapatite nanorods through the combination of ligand exchange and metal free surface initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Zeng, Guangjian; Liu, Meiying; Heng, Chunning; Huang, Qiang; Mao, Liucheng; Huang, Hongye; Hui, Junfeng; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-01-01

    Highlights: • Surface modification of HAp nanorods through the combination of ligand exchange reaction and metal free SI-ATRP. • HAp-polyPEGMA displayed high water dispersibility, good biocompatibility and biological imaging capability. • Metal free ATRP can overcome the toxic and fluorescence quenching effects of metal catalysts of conventional ATRP. - Abstract: The Eu"3"+ doped luminescent hydroxyapatite (HAp) nanorods with uniform size and morphology can be synthesized by hydrothermal route. However, these HAp nanorods are coated by hydrophobic oleylamine, which makes them difficult to be dispersed in aqueous solution and impede their biomedical applications. In this work, Eu"3"+ doped luminescent polymers functionalized HAp nanorods were prepared through the combination of ligand exchange reaction and metal free surface initiated atom transfer radical polymerization (ATRP) method. In this procedure, the amino group functionalized HAp nanorods were first prepared by ligand exchange reaction using adenosine monophosphate (AMP) as ligand. Then the Br-containing initiators (HAp-Br) were introduced onto the surface of HAp-AMP nanorods through the amidation reaction. Finally, polymers functionalized HAp nanorods were prepared by metal free ATRP method using poly(ethylene glycol) methacrylate (PEGMA) as monomer and 10-phenylphenothiazine (PTH) as organic photocatalyst. The properties of these obtained HAp nanocomposites (HAP-polyPEGMA nanorods) were characterized by means of transmission electron microscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis in detail. The cell imaging of these HAP-polyPEGMA nanorods was examined using laser scanning confocal microscope to evaluate their biomedical applications. We demonstrated for the first time that hydrophobic luminescent HAp nanorods can be functionalized with polyPEGMA through the combination of ligand exchange reaction and metal free surface initiated

  9. Dynamic Flow-through Methods for Metal Fractionation in Environmental Solid Samples

    DEFF Research Database (Denmark)

    Miró, Manuel; Hansen, Elo Harald; Petersen, Roongrat

    occurring processes always take place under dynamic conditions, recent trends have been focused on the development of alternative flow-through dynamic methods aimed at mimicking environmental events more correctly than their classical extraction counterparts. In this lecture particular emphasis is paid......Accummulation of metal ions in different compartments of the biosphere and their possible mobilization under changing environmental conditions induce a pertubation of the ecosystem and may cause adverse health effects. Nowadays, it is widely recognized that the information on total content...... the ecotoxicological significance of metal ions in solid environmental samples. The background of end-over-end fractionation for releasing metal species bound to particular soil phases is initially discussed, its relevant features and limitations being thoroughly described. However, taking into account that naturally...

  10. Initial Evaluation of Processing Methods for an Epsilon Metal Waste Form

    International Nuclear Information System (INIS)

    Crum, Jarrod V.; Strachan, Denis M.; Zumhoff, Mac R.

    2012-01-01

    During irradiation of nuclear fuel in a reactor, the five metals, Mo, Pd, Rh, Ru, and Tc, migrate to the fuel grain boundaries and form small metal particles of an alloy known as epsilon metal ((var e psilon)-metal). When the fuel is dissolved in a reprocessing plant, these metal particles remain behind with a residue - the undissolved solids (UDS). Some of these same metals that comprise this alloy that have not formed the alloy are dissolved into the aqueous stream. These metals limit the waste loading for a borosilicate glass that is being developed for the reprocessing wastes. Epsilon metal is being developed as a waste form for the noble metals from a number of waste streams in the aqueous reprocessing of used nuclear fuel (UNF) - (1) the (var e psilon)-metal from the UDS, (2) soluble Tc (ion-exchanged), and (3) soluble noble metals (TRUEX raffinate). Separate immobilization of these metals has benefits other than allowing an increase in the glass waste loading. These materials are quite resistant to dissolution (corrosion) as evidenced by the fact that they survive the chemically aggressive conditions in the fuel dissolver. Remnants of (var e psilon)-metal particles have survived in the geologically natural reactors found in Gabon, Africa, indicating that they have sufficient durability to survive for ∼ 2.5 billion years in a reducing geologic environment. Additionally, the (var e psilon)-metal can be made without additives and incorporate sufficient foreign material (oxides) that are also present in the UDS. Although (var e psilon)-metal is found in fuel and Gabon as small particles (∼10 (micro)m in diameter) and has survived intact, an ideal waste form is one in which the surface area is minimized. Therefore, the main effort in developing (var e psilon)-metal as a waste form is to develop a process to consolidate the particles into a monolith. Individually, these metals have high melting points (2617 C for Mo to 1552 C for Pd) and the alloy is expected

  11. Transition Metal Chelator Induces Progesterone Production in Mouse Cumulus-Oocyte Complexes and Corpora Lutea.

    Science.gov (United States)

    Tian, X; Anthony, K; Diaz, Francisco J

    2017-04-01

    Progesterone production is upregulated in granulosa cells (cumulus and mural) after the LH surge, but the intra-follicular mechanisms regulating this transition are not completely known. Recent findings show that the transition metal chelator, N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine (TPEN), impairs ovarian function. In this study, we provide evidence that chelating transition metals, including zinc, enhances progesterone production. The findings show that TPEN (transition metal chelator) increases abundance of Cyp11a1 and Star messenger RNA (mRNA) between 8- and 20-fold and progesterone production more than 3-fold in cultured cumulus-oocyte complexes (COC). Feeding a zinc-deficient diet for 10 days, but not 3 days, increased Star, Hsd3b, and prostaglandin F2 alpha receptor (Ptgfr) mRNA ~2.5-fold, suggesting that the effect of TPEN is through modulation of zinc availability. Progesterone from cumulus cells promotes oocyte developmental potential. Blocking progesterone production with epostane during maturation reduced subsequent blastocyst formation from 89 % in control to 18 % in epostane-treated complexes, but supplementation with progesterone restored blastocyst developmental potential to 94 %. Feeding a zinc-deficient diet for 5 days before ovulation did not affect the number of CL, STAR protein, or serum progesterone. However, incubating luteal tissue with TPEN increased abundance of Star, Hsd3b, and Ptgfr mRNA 2-3-fold and increased progesterone production 3-fold. TPEN is known to abolish SMAD2/3 signaling in cumulus cells. However, treatment of COC with the SMAD2/3 phosphorylation inhibitor, SB421542, did not by itself induce steroidogenic transcripts but did potentiate EGF-induced Star mRNA expression. Collectively, the results show that depletion of transition metals with TPEN acutely enhances progesterone biosynthesis in COC and luteal tissue.

  12. Snail1 induces epithelial-to-mesenchymal transition and tumor initiating stem cell characteristics

    International Nuclear Information System (INIS)

    Dang, Hien; Ding, Wei; Emerson, Dow; Rountree, C Bart

    2011-01-01

    Tumor initiating stem-like cells (TISCs) are a subset of neoplastic cells that possess distinct survival mechanisms and self-renewal characteristics crucial for tumor maintenance and propagation. The induction of epithelial-mesenchymal-transition (EMT) by TGFβ has been recently linked to the acquisition of TISC characteristics in breast cancer. In HCC, a TISC and EMT phenotype correlates with a worse prognosis. In this work, our aim is to elucidate the underlying mechanism by which cells acquire tumor initiating characteristics after EMT. Gene and protein expression assays and Nanog-promoter luciferase reporter were utilized in epithelial and mesenchymal phenotype liver cancer cell lines. EMT was analyzed with migration/invasion assays. TISC characteristics were analyzed with tumor-sphere self-renewal and chemotherapy resistance assays. In vivo tumor assay was performed to investigate the role of Snail1 in tumor initiation. TGFβ induced EMT in epithelial cells through the up-regulation of Snail1 in Smad-dependent signaling. Mesenchymal liver cancer post-EMT demonstrates TISC characteristics such as tumor-sphere formation but are not resistant to cytotoxic therapy. The inhibition of Snail1 in mesenchymal cells results in decreased Nanog promoter luciferase activity and loss of self-renewal characteristics in vitro. These changes confirm the direct role of Snail1 in some TISC traits. In vivo, the down-regulation of Snail1 reduced tumor growth but was not sufficient to eliminate tumor initiation. In summary, TGFβ induces EMT and TISC characteristics through Snail1 and Nanog up-regulation. In mesenchymal cells post-EMT, Snail1 directly regulates Nanog expression, and loss of Snail1 regulates tumor growth without affecting tumor initiation

  13. Contour forming of metals by laser peening

    Science.gov (United States)

    Hackel, Lloyd; Harris, Fritz

    2002-01-01

    A method and apparatus are provided for forming shapes and contours in metal sections by generating laser induced compressive stress on the surface of the metal workpiece. The laser process can generate deep compressive stresses to shape even thick components without inducing unwanted tensile stress at the metal surface. The precision of the laser-induced stress enables exact prediction and subsequent contouring of parts. A light beam of 10 to 100 J/pulse is imaged to create an energy fluence of 60 to 200 J/cm.sup.2 on an absorptive layer applied over a metal surface. A tamping layer of water is flowed over the absorptive layer. The absorption of laser light causes a plasma to form and consequently creates a shock wave that induces a deep residual compressive stress into the metal. The metal responds to this residual stress by bending.

  14. Redox Active Transition Metal ions Make Melanin Susceptible to Chemical Degradation Induced by Organic Peroxide.

    Science.gov (United States)

    Zadlo, Andrzej; Pilat, Anna; Sarna, Michal; Pawlak, Anna; Sarna, Tadeusz

    2017-12-01

    With aging, retinal pigment epithelium melanosomes, by fusion with the age pigment lipofuscin, form complex granules called melanolipofuscin. Lipofuscin granules may contain oxidized proteins and lipid hydroperoxides, which in melanolipofuscin could chemically modify melanin polymer, while transition metal ions present in melanin can accelerate such oxidative modifications. The aim of this research was to examine the effect of selected transition metal ions on melanin susceptibility to chemical modification induced by the water-soluble tert-butyl hydroperoxide used as an oxidizing agent. Synthetic melanin obtained by DOPA autooxidation and melanosomes isolated from bovine retinal pigment epithelium were analyzed. To monitor tert-butyl hydroperoxide-induced oxidative changes of DMa and BMs, electron paramagnetic resonance spectroscopy, UV-vis absorption spectroscopy, dynamic light scattering, atomic force microscopy and electron paramagnetic resonance oximetry were employed. These measurements revealed that both copper and iron ions accelerated chemical degradation induced by tert-butyl hydroperoxide, while zinc ions had no effect. Strong prooxidant action was detected only in the case of melanosomes and melanin degraded in the presence of iron. It can be postulated that similar chemical processes, if they occur in situ in melanolipofuscin granules of the human retinal pigment epithelium, would modify antioxidant properties of melanin and its reactivity.

  15. Initial liquid metal magnetohydrodynamic thin film flow experiments in the MeGA-loop facility at UCLA

    International Nuclear Information System (INIS)

    Morley, N.B.; Gaizer, A.A.; Tillack, M.S.; Abdou, M.A.

    1995-01-01

    Free surface thin film flows of liquid metal were investigated experimentally in the presence of a coplanar magnetic field. This investigation was performed in a new magnetohydrodynamic (MHD) flow facility, the MeGA-loop, utilizing a low melting temperature lead-bismuth alloy as the working metal. Owing to the relatively low magnetic field produced by the present field coil system, the ordinary hydrodynamic and low MHD interaction regimes only were investigated. At the high flow speeds necessary for self cooling, the importance of a well designed and constructed channel becomes obvious. Partial MHD drag, increasing the film height, is observed as Haβ 2 becomes greater than unity. MHD laminarization of the turbulent film flows is observed when Haβ/Re>0.002, but fully laminar flow was not reached. Suggestions for facility upgrades to achieve greater MHD interaction are presented in the context of these initial results. (orig.)

  16. Charging damage in floating metal-insulator-metal capacitors

    NARCIS (Netherlands)

    Ackaert, Jan; Wang, Zhichun; De Backer, E.; Coppens, P.

    2002-01-01

    In this paper, charging induced damage (CID) to metal-insulator-metal capacitors (MIMC) is reported. The damage is caused by the build up of a voltage potential difference between the two plates of the capacitor. A simple logarithmic relation is discovered between the damage by this voltage

  17. Lightning-Discharge Initiation as a Noise-Induced Kinetic Transition

    Science.gov (United States)

    Iudin, D. I.

    2017-10-01

    The electric fields observed in thunderclouds have the peak values one order of magnitude smaller than the electric strength of air. This fact renders the issue of the lightning-discharge initiation one of the most intriguing problems of thunderstorm electricity. In this work, the lightning initiation in a thundercloud is considered as a noise-induced kinetic transition. The stochastic electric field of the charged hydrometeors is the noise source. The considered kinetic transition has some features which distinguish it from other lightning-initiation mechanisms. First, the dynamic realization of this transition, which is due to interaction of the electron and ion components, is extended for a time significantly exceeding the spark-discharge development time. In this case, the fast attachment of electrons generated by supercritical bursts of the electric field of hydrometeors is balanced during long-term time intervals by the electron-release processes when the negative ions are destroyed. Second, an important role in the transition kinetics is played by the stochastic drift of electrons and ions caused by the small-scale fluctuations of the field of charged hydrometeors. From the formal mathematical viewpoint, this stochastic drift is indistinguishable from the scalar-impurity advection in a turbulent flow. In this work, it is shown that the efficiency of "advective mixing" is several orders of magnitude greater than that of the ordinary diffusion. Third, the considered transition leads to a sharp increase in the conductivity in the exponentially rare compact regions of space against the background of the vanishingly small variations in the average conductivity of the medium. In turn, the spots with increased conductivity are polarized in the mean field followed by the streamer initiation and discharge contraction.

  18. Elastic and failure response of imperfect three-dimensional metallic lattices: the role of geometric defects induced by Selective Laser Melting

    Science.gov (United States)

    Liu, Lu; Kamm, Paul; García-Moreno, Francisco; Banhart, John; Pasini, Damiano

    2017-10-01

    This paper examines three-dimensional metallic lattices with regular octet and rhombicuboctahedron units fabricated with geometric imperfections via Selective Laser Sintering. We use X-ray computed tomography to capture morphology, location, and distribution of process-induced defects with the aim of studying their role in the elastic response, damage initiation, and failure evolution under quasi-static compression. Testing results from in-situ compression tomography show that each lattice exhibits a distinct failure mechanism that is governed not only by cell topology but also by geometric defects induced by additive manufacturing. Extracted from X-ray tomography images, the statistical distributions of three sets of defects, namely strut waviness, strut thickness variation, and strut oversizing, are used to develop numerical models of statistically representative lattices with imperfect geometry. Elastic and failure responses are predicted within 10% agreement from the experimental data. In addition, a computational study is presented to shed light into the relationship between the amplitude of selected defects and the reduction of elastic properties compared to their nominal values. The evolution of failure mechanisms is also explained with respect to strut oversizing, a parameter that can critically cause failure mode transitions that are not visible in defect-free lattices.

  19. Cobalt-alloy implant debris induce HIF-1α hypoxia associated responses: a mechanism for metal-specific orthopedic implant failure.

    Directory of Open Access Journals (Sweden)

    Lauryn Samelko

    Full Text Available The historical success of orthopedic implants has been recently tempered by unexpected pathologies and early failures of some types of Cobalt-Chromium-Molybdenum alloy containing artificial hip implants. Hypoxia-associated responses to Cobalt-alloy metal debris were suspected as mediating this untoward reactivity at least in part. Hypoxia Inducible Factor-1α is a major transcription factor involved in hypoxia, and is a potent coping mechanism for cells to rapidly respond to changing metabolic demands. We measured signature hypoxia associated responses (i.e. HIF-1α, VEGF and TNF-α to Cobalt-alloy implant debris both in vitro (using a human THP-1 macrophage cell line and primary human monocytes/macrophages and in vivo. HIF-1α in peri-implant tissues of failed metal-on-metal implants were compared to similar tissues from people with metal-on-polymer hip arthroplasties, immunohistochemically. Increasing concentrations of cobalt ions significantly up-regulated HIF-1α with a maximal response at 0.3 mM. Cobalt-alloy particles (1 um-diameter, 10 particles/cell induced significantly elevated HIF-1α, VEGF, TNF-α and ROS expression in human primary macrophages whereas Titanium-alloy particles did not. Elevated expression of HIF-1α was found in peri-implant tissues and synovial fluid of people with failing Metal-on-Metal hips (n = 5 compared to failed Metal-on-Polymer articulating hip arthroplasties (n = 10. This evidence suggests that Cobalt-alloy, more than other metal implant debris (e.g. Titanium alloy, can elicit hypoxia-like responses that if unchecked can lead to unusual peri-implant pathologies, such as lymphocyte infiltration, necrosis and excessive fibrous tissue growths.

  20. Laser-induced breakdown spectroscopy for detection of heavy metals in environmental samples

    Science.gov (United States)

    Wisbrun, Richard W.; Schechter, Israel; Niessner, Reinhard; Schroeder, Hartmut

    1993-03-01

    The application of LIBS technology as a sensor for heavy metals in solid environmental samples has been studied. This specific application introduces some new problems in the LIBS analysis. Some of them are related to the particular distribution of contaminants in the grained samples. Other problems are related to mechanical properties of the samples and to general matrix effects, like the water and organic fibers content of the sample. An attempt has been made to optimize the experimental set-up for the various involved parameters. The understanding of these factors has enabled the adjustment of the technique to the substrates of interest. The special importance of the grain size and of the laser-induced aerosol production is pointed out. Calibration plots for the analysis of heavy metals in diverse sand and soil samples have been carried out. The detection limits are shown to be usually below the recent regulation restricted concentrations.

  1. Effect of initial perturbation amplitude on Richtmyer-Meshkov flows induced by strong shocks

    Energy Technology Data Exchange (ETDEWEB)

    Dell, Z.; Abarzhi, S. I., E-mail: snezhana.abarzhi@gmail.com, E-mail: sabarji@andrew.cmu.edu [Mellon College of Science and Carnegie Mellon University – Qatar, Carnegie Mellon University, Pittsburgh, Pennsylvania 15231 (United States); Stellingwerf, R. F. [Stellingwerf Consulting, Huntsville, Alabama 35803 (United States)

    2015-09-15

    We systematically study the effect of the initial perturbation on Richtmyer-Meshkov (RM) flows induced by strong shocks in fluids with contrasting densities. Smooth Particle Hydrodynamics simulations are employed. A broad range of shock strengths and density ratios is considered. The amplitude of the initial single mode sinusoidal perturbation of the interface varies from 0% to 100% of its wavelength. The simulations results are compared, wherever possible, with four rigorous theories, and with other experiments and simulations, achieving good quantitative and qualitative agreement. Our study is focused on early time dynamics of the Richtmyer-Meshkov instability (RMI). We analyze the initial growth-rate of RMI immediately after the shock passage, when the perturbation amplitude increases linearly with time. For the first time, to the authors' knowledge, we find that the initial growth-rate of RMI is a non-monotone function of the initial perturbation amplitude, thus restraining the amount of energy that can be deposited by the shock at the interface. The maximum value of the initial growth-rate depends on the shock strength and the density ratio, whereas the corresponding value of the initial perturbation amplitude depends only slightly on the shock strength and density ratio.

  2. Moessbauer spectroscopy and additional study of neutron irradiated Cr-doped metallic glasses

    International Nuclear Information System (INIS)

    Miglierini, M.; Sitek, J.; Mihalik, M.; Zentko, A.

    1990-01-01

    Concentration and fluence dependent tendency of FeNiCrMoSiB metallic glass towards disordering as well as a decrease of the Curie temperature were revealed by Moessbauer and electron-positron annihilation spectroscopies and initial permeability measurements, respectively. The observed changes can be assigned to irradiation-induced defects resulting in fluctuations in chemical and/or topological short-range order. (orig.)

  3. Fluid Flow and Mixing Induced by AC Continuous Electrowetting of Liquid Metal Droplet

    Directory of Open Access Journals (Sweden)

    Qingming Hu

    2017-04-01

    Full Text Available In this work, we proposed a novel design of a microfluidic mixer utilizing the amplified Marangoni chaotic advection induced by alternating current (AC continuous electrowetting of a metal droplet situated in electrolyte solution, due to the linear and quadratic voltage-dependence of flow velocity at small or large voltages, respectively. Unlike previous researchers exploiting the unidirectional surface stress with direct current (DC bias at droplet/medium interface for pumping of electrolytes where the resulting flow rate is linearly proportional to the field intensity, dominance of another kind of dipolar flow pattern caused by local Marangoni stress at the drop surface in a sufficiently intense AC electric field is demonstrated by both theoretical analysis and experimental observation, which exhibits a quadratic growth trend as a function of the applied voltage. The dipolar shear stress merely appears at larger voltages and greatly enhances the mixing performance by inducing chaotic advection between the neighboring laminar flow. The mixer design developed herein, on the basis of amplified Marangoni chaotic advection around a liquid metal droplet at larger AC voltages, has great potential for chemical reaction and microelectromechanical systems (MEMS actuator applications because of generating high-throughput and excellent mixing performance at the same time.

  4. BaP-metals co-exposure induced tissue-specific antioxidant defense in marine mussels Mytilus coruscus.

    Science.gov (United States)

    Chen, Siyu; Qu, Mengjie; Ding, Jiawei; Zhang, Yifei; Wang, Yi; Di, Yanan

    2018-04-18

    Both benzo(α)pyrene (BaP) and metals are frequently found in marine ecosystem and can cause detrimental effects in marine organism, especially the filter feeder-marine mussels. Although the biological responses in mussels have been well-studied upon the single metal or BaP exposure, the information about antioxidant defense, especially in different tissues of mussels, are still limited. Considering the variety of contaminants existing in the actual marine environment, single BaP (56 μg/L) and the co-exposure with Cu, Cd and Pb (50 μg/L, 50 μg/L and 3 mg/L respectively) were applied in a 6 days exposure followed by 6 days depuration experiment. The alterations of superoxide dismutase (SOD), catalase (CAT) activities and total antioxidant capacity (TAC) level were assessed in haemolymph, gills and digestive glands of marine mussels, Mytilus coruscus. An unparalleled change in antioxidant biomarkers was observed in all cells/tissues, with the SOD activity showing higher sensitivity to exposure. A tissue-specific response showing unique alteration in gill was investigated, indicating the different function of tissues during stress responses. Depressed antioxidant effects were induced by BaP-metals co-exposure, indicating the interaction may alter the intact properties of BaP. To our knowledge, this is the first research to explore the antioxidant defense induced by combined exposure of BaP-metals regarding to tissue-specific responses in marine mussels. The results and experimental model will provide valuable information and can be utilized in the investigation of stress response mechanisms, especially in relation to tissue functions in marine organism in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. The effect of substrate orientation on the kinetics and thermodynamics of initial oxide-film growth on metals

    Energy Technology Data Exchange (ETDEWEB)

    Reichel, Friederike

    2007-11-19

    This thesis addresses the effect of the parent metal-substrate orientation on the thermodynamics and kinetics of ultra-thin oxide-film growth on bare metals upon their exposure to oxygen gas at low temperatures (up to 650 K). A model description has been developed to predict the thermodynamically stable microstructure of a thin oxide film grown on its bare metal substrate as function of the oxidation conditions and the substrate orientation. For Mg and Ni, the critical oxide-film thickness is less than 1 oxide monolayer and therefore the initial development of an amorphous oxide phase on these metal substrates is unlikely. Finally, for Cu and densely packed Cr and Fe metal surfaces, oxide overgrowth is predicted to proceed by the direct formation and growth of a crystalline oxide phase. Further, polished Al single-crystals with {l_brace}111{r_brace}, {l_brace}100{r_brace} and {l_brace}110{r_brace} surface orientations were introduced in an ultra-high vacuum system for specimen processing and analysis. After surface cleaning and annealing, the bare Al substrates have been oxidized by exposure to pure oxygen gas. During the oxidation, the oxide-film growth kinetics has been established by real-time in-situ spectroscopic ellipsometry. After the oxidation, the oxide-film microstructures were investigated by angle-resolved X-ray photoelectron spectroscopy and low energy electron diffraction. Finally, high-resolution transmission electron microscopic analysis was applied to study the microstructure and morphology of the grown oxide films on an atomic scale. (orig.)

  6. Copper Contamination Impairs Herbivore Initiation of Seaweed Inducible Defenses and Decreases Their Effectiveness.

    Directory of Open Access Journals (Sweden)

    Alexandria M Warneke

    Full Text Available Seaweed-herbivore interactions are often mediated by environmental conditions, yet the roles of emerging anthropogenic stressors on these interactions are poorly understood. For example, chemical contaminants have unknown consequences on seaweed inducible resistance and herbivore response to these defenses despite known deleterious effects of contaminants on animal inducible defenses. Here, we investigated the effect of copper contamination on the interactions between a snail herbivore and a brown seaweed that displays inducible resistance to grazing. We examined seaweed inducible resistance and its effectiveness for organisms exposed to copper at two time points, either during induction or after herbivores had already induced seaweed defenses. Under ambient conditions, non-grazed tissues were more palatable than grazed tissues. However, copper additions negated the preference for non-grazed tissues regardless of the timing of copper exposure, suggesting that copper decreased both how herbivores initiated these inducible defenses and their subsequent effectiveness. Copper decreased stimulation of defenses, at least in part, by suppressing snail grazing pressure-the cue that turns inducible defenses on. Copper decreased effectiveness of defenses by preventing snails from preferentially consuming non-grazed seaweed. Thus, contaminants can potentially stress communities by changing seaweed-herbivore interactions mediated via inducible defenses. Given the ubiquity of seaweed inducible resistance and their potential influence on herbivores, we hypothesize that copper contamination may change the impact of these resistant traits on herbivores.

  7. An illustrative review to understand and manage metal-induced artifacts in musculoskeletal MRI: a primer and updates

    Energy Technology Data Exchange (ETDEWEB)

    Dillenseger, J.P.; Choquet, P.; Goetz, C.; Bierry, G. [University Hospital of Strasbourg, Medical Imaging Department, Strasbourg (France); Icube, CNRS, University of Strasbourg, Strasbourg (France); University of Strasbourg, Translational Medicine Research Federation, Strasbourg Medical School, Strasbourg (France); Moliere, S. [University Hospital of Strasbourg, Medical Imaging Department, Strasbourg (France); Ehlinger, M. [Icube, CNRS, University of Strasbourg, Strasbourg (France); University of Strasbourg, Translational Medicine Research Federation, Strasbourg Medical School, Strasbourg (France); University Hospital of Strasbourg, Department of Orthopedic Surgery, Strasbourg (France)

    2016-05-15

    This article reviews and explains the basic physical principles of metal-induced MRI artifacts, describes simple ways to reduce them, and presents specific reduction solutions. Artifacts include signal loss, pile-up artifacts, geometric distortion, and failure of fat suppression. Their nature and origins are reviewed and explained though schematic representations that ease the understanding. Then, optimization of simple acquisition parameters is detailed. Lastly, dedicated sequences and options specifically developed to reduce metal artifacts (VAT, SEMAC, and MAVRIC) are explained. (orig.)

  8. Conditions for formation of electron pairs in a metal

    Energy Technology Data Exchange (ETDEWEB)

    Shekhtman, A.Z., E-mail: shekhtmanalexander@gmail.com

    2015-04-15

    Highlights: • A new approach has been developed for consideration of electron pairing in metals. • Binding energy of a single pair induced by electron-phonon interaction is very small. • A new mechanism for electron pairing in metals has been considered. • Conditions for feasibility of the mechanism give conditions for electron pairing. • The mechanism gives wide opportunities to study new conditions for electron pairing. - Abstract: In an isotropic model of the electron system of metal that is presented by the Fröhlich’s initial Hamiltonian, in the approximation of a weak electron–phonon interaction at T = 0, first time, we show that the ground state of the system is the state with pairing correlations of electrons (the pair correlations of occupied electron states). In contrast to the BCS approach, the initial point in our approach is not electron pairing but is the maximum reduction of the energy of the considered system due to virtual processes of the electron–phonon interaction and to the exchange effect for the indirect electron–electron interaction (which is induced by certain phonon modes separately from others). In contrast to the BCS approach, we take into account the portion of the energy of the electron system that is connected with the above exchange effect. In the BCS approach, the corresponding portion is missed, and its role is prescribed to the portion that does not relate to the electron pairing. We show that expectation values of the above Hamiltonian for different wave functions for two interacting electrons above the Fermi sea of the non-interacting system (with interaction between the electrons that is induced by different phonon modes separately from others) are minimum for a certain structure of these functions and simultaneously for phonon modes that can induce the transitions of the interacting electrons between electron states in which they are (without violation of the Pauli exclusion principle and at everything else

  9. Surface polyPEGylation of Eu{sup 3+} doped luminescent hydroxyapatite nanorods through the combination of ligand exchange and metal free surface initiated atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guangjian; Liu, Meiying [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Heng, Chunning [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an 710069 (China); Huang, Qiang; Mao, Liucheng; Huang, Hongye [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Hui, Junfeng [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an 710069 (China); Deng, Fengjie, E-mail: fengjiedeng@aliyun.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and The Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China)

    2017-03-31

    Highlights: • Surface modification of HAp nanorods through the combination of ligand exchange reaction and metal free SI-ATRP. • HAp-polyPEGMA displayed high water dispersibility, good biocompatibility and biological imaging capability. • Metal free ATRP can overcome the toxic and fluorescence quenching effects of metal catalysts of conventional ATRP. - Abstract: The Eu{sup 3+} doped luminescent hydroxyapatite (HAp) nanorods with uniform size and morphology can be synthesized by hydrothermal route. However, these HAp nanorods are coated by hydrophobic oleylamine, which makes them difficult to be dispersed in aqueous solution and impede their biomedical applications. In this work, Eu{sup 3+} doped luminescent polymers functionalized HAp nanorods were prepared through the combination of ligand exchange reaction and metal free surface initiated atom transfer radical polymerization (ATRP) method. In this procedure, the amino group functionalized HAp nanorods were first prepared by ligand exchange reaction using adenosine monophosphate (AMP) as ligand. Then the Br-containing initiators (HAp-Br) were introduced onto the surface of HAp-AMP nanorods through the amidation reaction. Finally, polymers functionalized HAp nanorods were prepared by metal free ATRP method using poly(ethylene glycol) methacrylate (PEGMA) as monomer and 10-phenylphenothiazine (PTH) as organic photocatalyst. The properties of these obtained HAp nanocomposites (HAP-polyPEGMA nanorods) were characterized by means of transmission electron microscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis in detail. The cell imaging of these HAP-polyPEGMA nanorods was examined using laser scanning confocal microscope to evaluate their biomedical applications. We demonstrated for the first time that hydrophobic luminescent HAp nanorods can be functionalized with polyPEGMA through the combination of ligand exchange reaction and metal free surface

  10. Detection of heavy metals in soils by laser-induced breakdown spectroscopy (LIBS)

    International Nuclear Information System (INIS)

    Sirven, Jean-Baptiste

    2006-01-01

    In the fields of analysis, control and physical measurement, the laser constitutes a particularly powerful and multi-purpose metrological tool, capable to bring concrete solutions to various matters, including of a societal nature. Among the latter, contamination of sites and soils by heavy metals is an important issue of public health which requires to have measurement means adapted to existing regulations and whose use be sufficiently flexible. As a fast technique which does not need any sample preparation, laser-induced breakdown spectroscopy (LIBS) offers very interesting advantages for making on-site measurements of heavy metals content at the 10-ppm level; the design of a portable system is conceivable in the medium term. In this work we first show that the femtosecond regime presents no advantages with respect to the standard nanosecond regime for our issue. Then we implement an advanced treatment of LIBS spectra by chemometric techniques whose performances significantly improve the results of qualitative and quantitative analyses of soils samples. (author)

  11. Radiation promotes colorectal cancer initiation and progression by inducing senescence-associated inflammatory responses.

    Science.gov (United States)

    Kim, S B; Bozeman, R G; Kaisani, A; Kim, W; Zhang, L; Richardson, J A; Wright, W E; Shay, J W

    2016-06-30

    Proton radiotherapy is becoming more common as protons induce more precise DNA damage at the tumor site with reduced side effects to adjacent normal tissues. However, the long-term biological effects of proton irradiation in cancer initiation compared with conventional photon irradiation are poorly characterized. In this study, using a human familial adenomatous polyposis syndrome susceptible mouse model, we show that whole-body irradiation with protons are more effective in inducing senescence-associated inflammatory responses (SIRs), which are involved in colon cancer initiation and progression. After proton irradiation, a subset of SIR genes (Troy, Sox17, Opg, Faim2, Lpo, Tlr2 and Ptges) and a gene known to be involved in invasiveness (Plat), along with the senescence-associated gene (P19Arf), are markedly increased. Following these changes, loss of Casein kinase Iα and induction of chronic DNA damage and TP53 mutations are increased compared with X-ray irradiation. Proton irradiation also increases the number of colonic polyps, carcinomas and invasive adenocarcinomas. Pretreatment with the non-steroidal anti-inflammatory drug, 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid-ethyl amide (CDDO-EA), reduces proton irradiation-associated SIR and tumorigenesis. Thus exposure to proton irradiation elicits significant changes in colorectal cancer initiation and progression that can be mitigated using CDDO-EA.

  12. Formation and properties of metallic nanoparticles in lithium and sodium fluorides with radiation-induced color centers

    Science.gov (United States)

    Bryukvina, L. I.; Martynovich, E. F.

    2012-12-01

    The specific features of light- and temperature-induced formation of metallic nanoparticles in γ-irradiated LiF and NaF crystals have been investigated. Atomic force microscope images of nanoparticles of different sizes and in different locations have been presented. The relation between the crystal processing regimes and properties of the nanoparticles formed has been revealed. The optical properties of the processed crystals have been analyzed. The thermo- and light-stimulated processes underlying the formation of metallic nanoparticles in aggregation of the color centers and their decay due to the recovery of the crystal lattice have been studied.

  13. Removal of heavy metals from metal-containing effluent by yeast ...

    African Journals Online (AJOL)

    Removal of heavy metals from metal-containing effluent by yeast biomass. ... Research studies have described this phenomenon of fast initial sorption with a ... chrome and tin from the chrome and tin effluents of a local iron and steel industry.

  14. Surface polyPEGylation of Eu3+ doped luminescent hydroxyapatite nanorods through the combination of ligand exchange and metal free surface initiated atom transfer radical polymerization

    Science.gov (United States)

    Zeng, Guangjian; Liu, Meiying; Heng, Chunning; Huang, Qiang; Mao, Liucheng; Huang, Hongye; Hui, Junfeng; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-03-01

    The Eu3+ doped luminescent hydroxyapatite (HAp) nanorods with uniform size and morphology can be synthesized by hydrothermal route. However, these HAp nanorods are coated by hydrophobic oleylamine, which makes them difficult to be dispersed in aqueous solution and impede their biomedical applications. In this work, Eu3+ doped luminescent polymers functionalized HAp nanorods were prepared through the combination of ligand exchange reaction and metal free surface initiated atom transfer radical polymerization (ATRP) method. In this procedure, the amino group functionalized HAp nanorods were first prepared by ligand exchange reaction using adenosine monophosphate (AMP) as ligand. Then the Br-containing initiators (HAp-Br) were introduced onto the surface of HAp-AMP nanorods through the amidation reaction. Finally, polymers functionalized HAp nanorods were prepared by metal free ATRP method using poly(ethylene glycol) methacrylate (PEGMA) as monomer and 10-phenylphenothiazine (PTH) as organic photocatalyst. The properties of these obtained HAp nanocomposites (HAP-polyPEGMA nanorods) were characterized by means of transmission electron microscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis in detail. The cell imaging of these HAP-polyPEGMA nanorods was examined using laser scanning confocal microscope to evaluate their biomedical applications. We demonstrated for the first time that hydrophobic luminescent HAp nanorods can be functionalized with polyPEGMA through the combination of ligand exchange reaction and metal free surface initiated ATRP. As compared with the traditional ATRP, the metal free ATRP can overcome the toxic and fluorescence quenching effects of metal catalysts such as copper ions. More importantly, the strategy described in this work should also be utilized for fabrications of many other luminescent polymer nanocomposites due to its good monomer adoptability.

  15. Multipole induced splitting of metal-cage vibrations in crystalline endohedral D2d-M2@C84 dimetallofullerenes.

    Science.gov (United States)

    Krause, M; Popov, V N; Inakuma, M; Tagmatarchis, N; Shinohara, H; Georgi, P; Dunsch, L; Kuzmany, H

    2004-01-22

    Metal-carbon cage vibrations of crystalline endohedral D2d-M2@C84 (M=Sc,Y,Dy) dimetallofullerenes were analyzed by temperature dependent Raman scattering and a dynamical force field model. Three groups of metal-carbon cage modes were found at energies of 35-200 cm(-1) and assigned to metal-cage stretching and deformation vibrations. They exhibit a textbook example for the splitting of molecular vibrations in a crystal field. Induced dipole-dipole and quadrupole-quadrupole interactions account quantitatively for the observed mode splitting. Based on the metal-cage vibrational structure it is demonstrated that D2d-Y2@C84 dimetallofullerene retains a monoclinic crystal structure up to 550 K and undergoes a transition from a disordered to an ordered orientational state at a temperature of approximately 150 K.

  16. Metal interrelationships in plant nutrition. I. Effects of some metal toxicities on sugar beet, tomato, oat, potato, and Marrowstem kale grown in sand culture

    Energy Technology Data Exchange (ETDEWEB)

    Hewitt, E J

    1953-02-01

    Sugar beet, tomato, potato, oat, and kale were grown in sand cultures with additions of several heavy metals including Cr, Mn, Co, Ni, Cu, Zn, Pb, Cd, V, Mo, in equivalent concentrations. In sugar beet Cu/sup + +/, Co/sup + +/, Cd/sup + +/ were usually highly active in causing chlorosis mainly suggestive of iron deficiency. The effect of Cr depended on valency and was greater as CrO/sub 4//sup - -/, Zn/sup + +/, VO/sub 3//sup - -/, Cr/sup + + +/, Mn/sup + +/, and Pb/sup + +/ were less active in order. The visual responses to Co/sup + +/ and Ni/sup + +/ varied greatly with the crop tested. Cu/sup + +/, however, always induced typical iron deficiency. Crop susceptibility also varied greatly. For example, Cu/sup + +/ readily caused chlorosis in beet and also in tomato, and potato, but not in oat and kale. Ni/sup + +/ induced symptoms resembling manganese deficiency in potato and tomato and unusual oblique white and green banding leaves of oat. Zn/sup + +/ induced apparent manganese deficiency in sugar beet and Co/sup + +/ toxicity in tomato initially resembled manganese deficiency. Ni/sup + +/ and Co/sup + +/ were the most toxic of the metals tested.

  17. The effect of refurbishing a UK steel plant on PM10 metal composition and ability to induce inflammation

    Directory of Open Access Journals (Sweden)

    Maynard Robert L

    2005-05-01

    Full Text Available Abstract Background In the year 2000 Corus closed its steel plant operations in Redcar, NE of England temporarily for refurbishment of its blast furnace. This study investigates the impact of the closure on the chemical composition and biological activity of PM10 collected in the vicinity of the steel plant. Methods The metal content of PM10 samples collected before during and after the closure was measured by ICP-MS in order to ascertain whether there was any significant alteration in PM10 composition during the steel plant closure. Biological activity was assessed by instillation of 24 hr PM10 samples into male Wistar rats for 18 hr (n = 6. Inflammation was identified by the cellular and biochemical profile of the bronchoalveolar lavage fluid. Metal chelation of PM10 samples was conducted using Chelex beads prior to treatment of macrophage cell line, J774, in vitro and assessment of pro-inflammatory cytokine expression. Results The total metal content of PM10 collected before and during the closure period were similar, but on reopening of the steel plant there was a significant 3-fold increase (p 10 collected during the reopened period, as well as significant increases in albumin (p 10 from the pre-closure and closure periods did not induce any significant alterations in inflammation or lung damage. The soluble and insoluble extractable PM10 components washed from the reopened period both induced a significant increase in neutrophil cell number (p 10 from the re-opened period stimulated J774 macrophages to generate TNF-α protein and this was significantly prevented by chelating the metal content of the PM10 prior to addition to the cells. Conclusion PM10-induced inflammation in the rat lung was related to the concentration of metals in the PM10 samples tested, and activity was found in both the soluble and insoluble fractions of the particulate pollutant.

  18. Melt Fragmentation Characteristics of Metal Fuel with Melt Injection Mass during Initiating Phase of SFR Severe Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Hyo; Lee, Min Ho; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Jerng, Dong Wook [Chung-Ang Univ., Seoul (Korea, Republic of)

    2016-05-15

    The PGSFR has adopted the metal fuel for its inherent safety under severe accident conditions. However, this fuel type is not demonstrated clearly yet under the such severe accident conditions. Additional experiments for examining these issues should be performed to support its licensing activities. Under initiating phase of hypothetic core disruptive accident (HCDA) conditions, the molten metal could be better dispersed and fragmented into the coolant channel than in the case of using oxide fuel. This safety strategy provides negative reactivity driven by a good dispersion of melt. If the coolant channel does not sufficient coolability, the severe recriticality would occur within the core region. Thus, it is important to examine the extent of melt fragmentation. The fragmentation behaviors of melt are closely related to a formation of debris shape. Once the debris shape is formed through the fragmentation process, its coolability is determined by the porosity or thermal conductivity of the melt. There were very limited studies for transient irradiation experiments of the metal fuel. These studies were performed by Transient Reactor Test Facility (TREAT) M series tests in U.S. The TREAT M series tests provided basic information of metal fuel performance under transient conditions. The effect of melt injection mass was evaluated in terms of the fragmentation behaviors of melt. These behaviors seemed to be similar between single-pin and multi-pins failure condition. However, the more melt was agglomerated in case of multi-pins failure.

  19. New bonding configuration on Si(111) and Ge(111) surfaces induced by the adsorption of alkali metals

    DEFF Research Database (Denmark)

    Lottermoser, L.; Landemark, E.; Smilgies, D.M.

    1998-01-01

    The structure of the (3×1) reconstructions of the Si(111) and Ge(111) surfaces induced by adsorption of alkali metals has been determined on the basis of surface x-ray diffraction and low-energy electron diffraction measurements and density functional theory. The (3×1) surface results primarily f...... from the substrate reconstruction and shows a new bonding configuration consisting of consecutive fivefold and sixfold Si (Ge) rings in 〈11̅ 0〉 projection separated by channels containing the alkali metal atoms. © 1998 The American Physical Society...

  20. Ultrafast Coulomb-Induced Intervalley Coupling in Atomically Thin WS2.

    Science.gov (United States)

    Schmidt, Robert; Berghäuser, Gunnar; Schneider, Robert; Selig, Malte; Tonndorf, Philipp; Malić, Ermin; Knorr, Andreas; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf

    2016-05-11

    Monolayers of semiconducting transition metal dichalcogenides hold the promise for a new paradigm in electronics by exploiting the valley degree of freedom in addition to charge and spin. For MoS2, WS2, and WSe2, valley polarization can be conveniently initialized and read out by circularly polarized light. However, the underlying microscopic processes governing valley polarization in these atomically thin equivalents of graphene are still not fully understood. Here, we present a joint experiment-theory study on the ultrafast time-resolved intervalley dynamics in monolayer WS2. Based on a microscopic theory, we reveal the many-particle mechanisms behind the observed spectral features. We show that Coulomb-induced intervalley coupling explains the immediate and prominent pump-probe signal in the unpumped valley and the seemingly low valley polarization degrees typically observed in pump-probe measurements compared to photoluminescence studies. The gained insights are also applicable to other light-emitting monolayer transition metal dichalcogenides, such as MoS2 and WSe2, where the Coulomb-induced intervalley coupling also determines the initial carrier dynamics.

  1. Crack initiation and fracture features of Fe–Co–B–Si–Nb bulk metallic glass during compression

    Directory of Open Access Journals (Sweden)

    S. Lesz

    2016-01-01

    Full Text Available The aim of the paper was investigation crack initiation and fracture features developed during compression of Fe-based bulk metallic glass (BMG. These Fe-based BMG has received great attention as a new class of structural material due to an excellent properties (e.g. high strength and high elasticity and low costs. However, the poor ductility and brittle fracture exhibited in BMGs limit their structural application. At room temperature, BMGs fails catastrophically without appreciable plastic deformation under tension and only very limited plastic deformation is observed under compression or bending. Hence a well understanding of the crack initiation and fracture morphology of Fe-based BMGs after compression is of much importance for designing high performance BMGs. The raw materials used in this experiment for the production of BMGs were pure Fe, Co, Nb metals and nonmetallic elements: Si, B. The Fe–Co–B–Si–Nb alloy was cast as rods with three different diameters. The structure of the investigated BMGs rod is amorphous. The measurement of mechanical properties (Young modulus - E, compressive stress - σc, elastic strain - ε, unitary elastic strain energy – Uu were made in compression test. Compression test indicates the rods of Fe-based alloy to exhibit high mechanical strength. The development of crack initiation and fracture morphology after compression of Fe-based BMG were examined with scanning electron microscope (SEM. Fracture morphology of rods has been different on the cross section. Two characteristic features of the compressive fracture morphologies of BMGs were observed. One is the smooth region. Another typical feature of the compressive fracture morphology of BMGs is the vein pattern. The veins on the compressive fracture surface have an obvious direction as result of initial displace of sample along shear bands. This direction follows the direction of the displacement of a material. The formation of veins on the

  2. Process for etching zirconium metallic objects

    International Nuclear Information System (INIS)

    Panson, A.J.

    1988-01-01

    In a process for etching of zirconium metallic articles formed from zirconium or a zirconium alloy, wherein the zirconium metallic article is contacted with an aqueous hydrofluoric acid-nitric acid etching bath having an initial ratio of hydrofluoric acid to nitric acid and an initial concentration of hydrofluoric and nitric acids, the improvement, is described comprising: after etching of zirconium metallic articles in the bath for a period of time such that the etching rate has diminished from an initial rate to a lesser rate, adding hydrofluoric acid and nitric acid to the exhausted bath to adjust the concentration and ratio of hydrofluoric acid to nitric acid therein to a value substantially that of the initial concentration and ratio and thereby regenerate the etching solution without removal of dissolved zirconium therefrom; and etching further zirconium metallic articles in the regenerated etching bath

  3. Preparation and controlled drug delivery applications of mesoporous silica polymer nanocomposites through the visible light induced surface-initiated ATRP

    Science.gov (United States)

    Huang, Long; Liu, Meiying; Mao, Liucheng; Xu, Dazhuang; Wan, Qing; Zeng, Guangjian; Shi, Yingge; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-08-01

    The mesoporous materials with large pore size, high specific surface area and high thermal stability have been widely utilized in a variety of fields ranging from environmental remediation to separation and biomedicine. However, surface modification of these silica nanomaterials is required to endow novel properties and achieve better performance for most of these applications. In this work, a new method has been established for surface modification of mesoporous silica nanoparticles (MSNs) that relied on the visible light induced atom transfer radical polymerization (ATRP). In the procedure, the copolymers composited with itaconic acid (IA) and poly(ethylene glycol)methyl acrylate (PEGMA) were grafted from MSNs using IA and PEGMA as the monomers and 10-Phenylphenothiazine(PTH) as the organic catalyst. The successful preparation of final polymer nanocomposites (named as MSNs-NH2-poly(IA-co-PEGMA)) were evidenced by a series of characterization techniques. More importantly, the anticancer agent cisplatin can be effectively loaded on MSNs-NH2-poly(IA-co-PEGMA) and controlled release it from the drug-loading composites with pH responsive behavior. As compared with conventional ATRP, the light induced surface-initiated ATRP could also be utilized for preparation of various silica polymer nanocomposites under rather benign conditions (e.g. absent of transition metal ions, low polymerization temperature and short polymerization time). Taken together, we have developed a rather promising strategy method for fabrication of multifunctional MSNs-NH2-poly(IA-co-PEGMA) with great potential for biomedical applications.

  4. Calculation of induced current densities and specific absorption rates (SAR) for pregnant women exposed to hand-held metal detectors

    International Nuclear Information System (INIS)

    Kainz, Wolfgang; Chan, Dulciana D; Casamento, Jon P; Bassen, Howard I

    2003-01-01

    The finite difference time domain (FDTD) method in combination with a well established frequency scaling method was used to calculate the internal fields and current densities induced in a simple model of a pregnant woman and her foetus, when exposed to hand-held metal detectors. The pregnant woman and foetus were modelled using a simple semi-heterogeneous model in 10 mm resolution, consisting of three different types of tissue. The model is based on the scanned shape of a pregnant woman in the 34th gestational week. Nine different representative models of hand-held metal detectors operating in the frequency range from 8 kHz to 2 MHz were evaluated. The metal detectors were placed directly on the abdomen of the computational model with a spacing of 1 cm. Both the induced current density and the specific absorption rate (SAR) are well below the recommended limits for exposure of the general public published in the ICNIRP Guidelines and the IEEE C95.1 Standard. The highest current density is 8.3 mA m -2 and the highest SAR is 26.5 μW kg -1 . Compared to the limits for the induced current density recommended in the ICNIRP Guidelines, a minimum safety factor of 3 exists. Compared to the IEEE C95.1 Standard, a safety factor of 60,000 for the specific absorption rate was found. Based on the very low specific absorption rate and an induced current density below the recommended exposure limits, significant temperature rise or nerve stimulation in the pregnant woman or in the foetus can be excluded

  5. Effect of Pre-Gamma Irradiation Induction of Metallothionein on potentially Radiation-Induced Toxic Heavy Metals Ions In Rats

    International Nuclear Information System (INIS)

    El-Shamy, El.

    2004-01-01

    Metallothionein, which is a cystein-rich metal binding protein, can act as free radical scavenger and involved in resistance to heavy metal toxicity. The induction of synthesis has been shown to protect organs from the toxic effect of radiation. This study aimed to stud the effects of pre-irradiation induction of by heavy metal (Zinc sulfate) on potentially gamma radiation-induced toxic heavy metals ions in rate liver and kidney tissues. Forty eight albino rats were included in this study. They were divided into eight groups each of six animals. Two control groups injected with saline. Two Zinc sulfate-treated groups injected with zinc sulfate, two Irradiated groups exposed to a single dose level (7 Gy) of whole body gamma irradiation and two combined zinc sulfate and irradiation groups injected with zinc sulfate and exposed to whole body gamma irradiation (at dose 7 Gy). Animals of all groups were sacrificed 24 and 48 hours after last either zinc sulfate dose or irradiation. Samples of liver and kidney's tissues were subjected to the following investigations: Estimation of tissue heavy Metals (Zinc, Iron and Copper), and tissue (MT). After irradiation, liver and kidney MT were increased approximately 10-fold and 2-fold respectively after irradiation. Accumulation of zinc and iron in both liver and kidney tissues were detected, while accumulation of copper only in the liver tissues. The pre-irradiation treatment with zinc sulfate (Zn SO4) resulted in highly significant decrease in zinc, iron, and copper levels in both liver and kidney tissues in comparison with irradiation groups. Conclusion, it can be supposed that pre-irradiation injection of ZnSO 4 exerted protective effect against the potentially radiation-induced toxic heavy metals ions through MT induction

  6. Correlation of initiating potency of skin carcinogens with potency to induce resistance to terminal differentiation in cultured mouse keratinocytes

    International Nuclear Information System (INIS)

    Kilkenny, A.E.; Morgan, D.; Spangler, E.F.; Yuspa, S.H.

    1985-01-01

    The induction by chemical carcinogens of resistance to terminal differentiation in cultured mouse keratinocytes has been proposed to represent a cellular change associated with the initiation phase of skin carcinogenesis. Previous results with this culture model indicated that the number of differentiation-resistant foci was correlated with the dose and known potency for several chemical carcinogens. Assay conditions were optimized to provide quantitative results for screening a variety of carcinogens for their potency as inducers of foci resistant to terminal differentiation. Eight skin initiators of varying potency and from different chemical classes and ultraviolet light were studied for their activity to induce this alteration in cultured epidermal cells from newborn BALB/c mice. There was an excellent positive correlation for the potency of these agents as initiators in vivo and as inducers of altered differentiation in vitro. The induction of resistant foci was independent of the relative cytotoxic effects of each agent except where cytotoxicity was extensive and reduced the number of foci. The results support the hypothesis that initiation of carcinogenesis in skin results in an alteration in the program of epidermal cell differentiation. The results also suggest that the assay is useful for identifying relative potency classes (strong, moderate, weak) of initiating agents

  7. Influence of Ambient Gas on Laser-Induced Breakdown Spectroscopy of Uranium Metal

    International Nuclear Information System (INIS)

    Zhang Dacheng; Ma Xinwen; Wang Shulong; Zhu Xiaolong

    2015-01-01

    Laser-induced breakdown spectroscopy (LIBS) is regarded as a suitable method for the remote analysis of materials in any phase, even in an environment with high radiation levels. In the present work we used the third harmonic pulse of a Nd:YAG laser for ablation of uranium metal and measured the plasma emission with a fiber-optic spectrometer. The LIBS spectra of uranium metal and their features in different ambient gases (i.e., argon, neon, oxygen, and nitrogen) at atmospheric pressure were studied. Strong continuum spectrum and several hundreds of emission lines from UI and UII were observed. It is found that the continuum spectrum observed in uranium not only comes from bremsstrahlung emission but is also due to the complex spectrum of uranium. The influence of ambient gas and the gas flow rate for ablation of uranium metal was investigated. The experimental results indicate that the intensity of the uranium lines was enhanced in argon and nitrogen. However, the intensity of uranium lines was decreased in oxygen due to the generation of UO and other oxides. The results also showed that the highest intensity of uranium lines were obtained in argon gas with a gas flow rate above 2.5 L/min. The enhanced mechanism in ambient gas and the influence of the gas flow rate were analyzed in this work. (paper)

  8. The Alchemist’s Approach to Metal Poisoning: Transforming the Metal Burden

    Directory of Open Access Journals (Sweden)

    Wayne Briner

    2014-06-01

    Full Text Available Metal poisoning is a global problem with humans being exposed to a wide range of metals in varying doses and varying time frames. Traditionally, treatment involves removal of the toxic source or chelation therapy. An intermediate approach is needed. This review outlines the argument for the use of essential metal supplementation as a strategy to induce metallothionein expression and displace the toxic metal from important biological systems, improving the metal burden of the patient. Specific recommendations are given for supplementation with calcium, zinc and vitamin E as a broad strategy to improve the status of those exposed to toxic metals.

  9. Preparation of metal ion exchange resin by radiation-induced graft copolymerization

    International Nuclear Information System (INIS)

    Nakase, Yoshiaki; Akasaka, Nobuhiro.

    1982-06-01

    Radiation-induced graft copolymerization of 2-acrylamide-2-methyl propane sulfonic acid (AMPS) onto polyvinylchloride (PVC) and polyvinylidene chloride resin (PVD) was investigated in the water-acetone system and their adsorptive activities to metal ion were also examined. In the case of PVC, the degree of grafting increased with the increase of acetone content, but the adsorptive activity to metal ions (mainly lithic ion) became maximum in the system with water/acetone of 2/3. Grafted PVC prepared at about 35 0 C and at a higher concentration of AMPS showed higher adsorption activity than the other cases. In the case of PVD, a similar result was obtained with the case of PVC except the temperature dependence and effect of swelling agent. Polymerizations at temperatures of 35 and 50 0 C showed no effect on the degree of grafting, and the usage of a swelling agent was quite effective to the adsorptive activity. Glass transition temperature of the grafted copolymer was the same as that of original polymer, and their thermal stability was confirmed up to the temperature at which homopolymer of AMPS decomposed, about 180 0 C. (author)

  10. Effect of heavy-metal insertions at Fe/MgO interfaces on electric-field-induced modification of magnetocrystalline anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, K.; Nomura, T. [Department of Physics Engineering, Mie University, Tsu, Mie 514-8507 (Japan); Pradipto, A.-M. [Department of Physics Engineering, Mie University, Tsu, Mie 514-8507 (Japan); Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011 (Japan); Nawa, K.; Akiyama, T.; Ito, T. [Department of Physics Engineering, Mie University, Tsu, Mie 514-8507 (Japan)

    2017-05-01

    Magnetocrystalline anisotropy (MCA) at Fe/MgO interfaces with insertions of 3d (Co, Ni), 4d (Ru, Rh, Pd), and 5d (Os, Ir, Pt) elements in external electric fields was investigated from first-principles calculations. The MCA energy and the electric-field-induced MCA modification dramatically depend on the inserted elements. Large MCA modification may be achieved by heavy-metal insertions, in which the strength of spin-orbit coupling of inserted elements and the position of the Fermi level relative to d band level play key roles. - Highlights: • MCA at Fe/MgO interface dramatically depends on insertions of 3d, 4d, and 5d elements. • Large electric-field-induced MCA modification is achieved by heavy-metal insertions. • Position of Fermi level relative to d band level plays key role in determining MCA.

  11. The "Big Bang" in obese fat: Events initiating obesity-induced adipose tissue inflammation.

    Science.gov (United States)

    Wensveen, Felix M; Valentić, Sonja; Šestan, Marko; Turk Wensveen, Tamara; Polić, Bojan

    2015-09-01

    Obesity is associated with the accumulation of pro-inflammatory cells in visceral adipose tissue (VAT), which is an important underlying cause of insulin resistance and progression to diabetes mellitus type 2 (DM2). Although the role of pro-inflammatory cytokines in disease development is established, the initiating events leading to immune cell activation remain elusive. Lean adipose tissue is predominantly populated with regulatory cells, such as eosinophils and type 2 innate lymphocytes. These cells maintain tissue homeostasis through the excretion of type 2 cytokines, such as IL-4, IL-5, and IL-13, which keep adipose tissue macrophages (ATMs) in an anti-inflammatory, M2-like state. Diet-induced obesity is associated with the loss of tissue homeostasis and development of type 1 inflammatory responses in VAT, characterized by IFN-γ. A key event is a shift of ATMs toward an M1 phenotype. Recent studies show that obesity-induced adipocyte hypertrophy results in upregulated surface expression of stress markers. Adipose stress is detected by local sentinels, such as NK cells and CD8(+) T cells, which produce IFN-γ, driving M1 ATM polarization. A rapid accumulation of pro-inflammatory cells in VAT follows, leading to inflammation. In this review, we provide an overview of events leading to adipose tissue inflammation, with a special focus on adipose homeostasis and the obesity-induced loss of homeostasis which marks the initiation of VAT inflammation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Does Increased Coefficient of Friction of Highly Porous Metal Increase Initial Stability at the Acetabular Interface?

    Science.gov (United States)

    Goldman, Ashton H; Armstrong, Lucas C; Owen, John R; Wayne, Jennifer S; Jiranek, William A

    2016-03-01

    Highly porous metal acetabular components illustrate a decreased rate of aseptic loosening in short-term follow-up compared with previous registry data. This study compared the effect of component surface roughness at the bone-implant interface and the quality of the bone on initial pressfit stability. The null hypothesis is that a standard porous coated acetabular cup would show no difference in initial stability as compared with a highly porous acetabular cup when subjected to a bending moment. Second, would bone mineral density (BMD) be a significant variable under these test conditions. In a cadaveric model, acetabular cup micromotion was measured during a 1-time cantilever bending moment applied to 2 generations of pressfit acetabular components. BMD data were also obtained from the femoral necks available for associated specimen. The mean bending moment at 150 μm was not found to be significantly different for Gription (24.6 ± 14.0 N m) cups vs Porocoat (25 ± 10.2 N m; P > .84). The peak bending moment tolerated by Gription cups (33.9 ± 20.3 N m) was not found to be significantly different from Porocoat (33.5 ± 12.2 N m; P > .92). No correlation between BMD and bending moment at 150 μm of displacement could be identified. The coefficient of friction provided by highly porous metal acetabular shells used in this study did not provide better resistance to migration under bending load when compared with a standard porous coated component. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Metal-free, single-polymer device exhibits resistive memory effect

    KAUST Repository

    Bhansali, Unnat Sampatraj; Khan, Yasser; Cha, Dong Kyu; Almadhoun, Mahmoud N.; Li, Ruipeng; Chen, Long; Amassian, Aram; Odeh, Ihab N.; Alshareef, Husam N.

    2013-01-01

    All-polymer, write-once-read-many times resistive memory devices have been fabricated on flexible substrates using a single polymer, poly(3,4- ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). Spin-cast or inkjet-printed films of solvent-modified PEDOT:PSS are used as electrodes, while the unmodified or as-is PEDOT:PSS is used as the semiconducting active layer. The all-polymer devices exhibit an irreversible but stable transition from a low resistance state (ON) to a high resistance state (OFF) at low voltages caused by an electric-field-induced morphological rearrangement of PEDOT and PSS at the electrode interface. However, in the metal-PEDOT:PSS-metal devices, we have shown a metal filament formation switching the device from an initial high resistance state (OFF) to the low resistance state (ON). The all-PEDOT:PSS memory device has low write voltages (<3 V), high ON/OFF ratio (>10 3), good retention characteristics (>10 000 s), and stability in ambient storage (>3 months). © 2013 American Chemical Society.

  14. Metal-free, single-polymer device exhibits resistive memory effect

    KAUST Repository

    Bhansali, Unnat Sampatraj

    2013-12-23

    All-polymer, write-once-read-many times resistive memory devices have been fabricated on flexible substrates using a single polymer, poly(3,4- ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). Spin-cast or inkjet-printed films of solvent-modified PEDOT:PSS are used as electrodes, while the unmodified or as-is PEDOT:PSS is used as the semiconducting active layer. The all-polymer devices exhibit an irreversible but stable transition from a low resistance state (ON) to a high resistance state (OFF) at low voltages caused by an electric-field-induced morphological rearrangement of PEDOT and PSS at the electrode interface. However, in the metal-PEDOT:PSS-metal devices, we have shown a metal filament formation switching the device from an initial high resistance state (OFF) to the low resistance state (ON). The all-PEDOT:PSS memory device has low write voltages (<3 V), high ON/OFF ratio (>10 3), good retention characteristics (>10 000 s), and stability in ambient storage (>3 months). © 2013 American Chemical Society.

  15. Laser-induced selective metallization of polypropylene doped with multiwall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ratautas, Karolis, E-mail: karolis.ratautas@ftmc.lt [Center for Physical Sciences and Technology, Savanoriu Ave. 231, Vilnius LT-02300 (Lithuania); Gedvilas, Mindaugas; Stankevičiene, Ina; Jagminienė, Aldona; Norkus, Eugenijus [Center for Physical Sciences and Technology, Savanoriu Ave. 231, Vilnius LT-02300 (Lithuania); Pira, Nello Li [Centro Ricerche Fiat, Strada Torino 50, Orbassano 10043 (Italy); Sinopoli, Stefano [BioAge Srl, Via Dei Glicini 25, Lamezia Terme 88046 (Italy); Račiukaitis, Gediminas [Center for Physical Sciences and Technology, Savanoriu Ave. 231, Vilnius LT-02300 (Lithuania)

    2017-08-01

    Highlights: • PP doped with multiwall CNT can be activated with ns laser for electroless plating. • Developed material is cheap decision for MID applications. • Activation mechanism was preliminary proposed. • Demo for automotive application has been manufactured. - Abstract: Moulded interconnect devices (MID) offer the material, weight and cost saving by integration electronic circuits directly into polymeric components used in automotive and other consumer products. Lasers are used to write circuits directly by modifying the surface of polymers followed by an electroless metal plating. A new composite material – the polypropylene doped with multiwall carbon nanotubes was developed for the laser-induced selective metallization. Mechanism of surface activation by laser irradiation was investigated in details utilising pico- and nanoseconds lasers. Deposition of copper was performed in the autocatalytic electroless plating bath. The laser-activated polymer surfaces have been studied using the Raman spectroscopy and scanning electron microscope (SEM). Microscopic images revealed that surface becomes active only after its melting by a laser. Alterations in the Raman spectra of the D and G bands indicated the clustering of carbon additives in the composite material. Optimal laser parameters for the surface activation were found by measuring a sheet resistance of the finally metal-plated samples. A spatially selective copper plating was achieved with the smallest conductor line width of 22 μm at the laser scanning speed of 3 m/s and the pulse repetition rate of 100 kHz. Finally, the technique was validated by making functional electronic circuits by this MID approach.

  16. Laser-induced selective metallization of polypropylene doped with multiwall carbon nanotubes

    International Nuclear Information System (INIS)

    Ratautas, Karolis; Gedvilas, Mindaugas; Stankevičiene, Ina; Jagminienė, Aldona; Norkus, Eugenijus; Pira, Nello Li; Sinopoli, Stefano; Račiukaitis, Gediminas

    2017-01-01

    Highlights: • PP doped with multiwall CNT can be activated with ns laser for electroless plating. • Developed material is cheap decision for MID applications. • Activation mechanism was preliminary proposed. • Demo for automotive application has been manufactured. - Abstract: Moulded interconnect devices (MID) offer the material, weight and cost saving by integration electronic circuits directly into polymeric components used in automotive and other consumer products. Lasers are used to write circuits directly by modifying the surface of polymers followed by an electroless metal plating. A new composite material – the polypropylene doped with multiwall carbon nanotubes was developed for the laser-induced selective metallization. Mechanism of surface activation by laser irradiation was investigated in details utilising pico- and nanoseconds lasers. Deposition of copper was performed in the autocatalytic electroless plating bath. The laser-activated polymer surfaces have been studied using the Raman spectroscopy and scanning electron microscope (SEM). Microscopic images revealed that surface becomes active only after its melting by a laser. Alterations in the Raman spectra of the D and G bands indicated the clustering of carbon additives in the composite material. Optimal laser parameters for the surface activation were found by measuring a sheet resistance of the finally metal-plated samples. A spatially selective copper plating was achieved with the smallest conductor line width of 22 μm at the laser scanning speed of 3 m/s and the pulse repetition rate of 100 kHz. Finally, the technique was validated by making functional electronic circuits by this MID approach.

  17. Electron-irradiation induced changes in structural and magnetic properties of Fe and Co based metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kane, S.N., E-mail: kane_sn@yahoo.com [School of Physics, D.A. University, Khandwa Road Campus, Indore 452001 (India); Satalkar, M., E-mail: satalkar.manvi@gmail.com [School of Physics, D.A. University, Khandwa Road Campus, Indore 452001 (India); Ghosh, A.; Shah, M. [School of Physics, D.A. University, Khandwa Road Campus, Indore 452001 (India); Ghodke, N. [UGC-DAE CSR, University Campus, Khandwa Road, Indore 452001 (India); Pramod, R.; Sinha, A.K.; Singh, M.N.; Dwivedi, J. [Raja Ramanna Centre for Advanced Technology, P.O. CAT, Indore 452013 (India); Coisson, M.; Celegato, F.; Vinai, F.; Tiberto, P. [INRIM, Electromagnetism Division, Strada Delle Cacce 91, I-10135 TO (Italy); Varga, L.K. [RISSPO, Hungarian Academy of Sciences, P.O. Box 49, 1525 Budapest (Hungary)

    2014-12-05

    Highlights: • Enhancement of Ms by low electron irradiation dose in Fe-based alloy. • Variation of magnetic properties by electron irradiation induced ordered phase. • Electron irradiation alters TM-TM distance and, magnetic properties. - Abstract: Electron-irradiation induced changes in structural and, magnetic properties of Co{sub 57.6}Fe{sub 14.4}Si{sub 4.8}B{sub 19.2}Nb{sub 4}, Fe{sub 72}Si{sub 4.8}B{sub 19.2}Nb{sub 4} and, Co{sub 72}Si{sub 4.8}B{sub 19.2}Nb{sub 4} metallic glasses were studied using magnetic hysteresis and, synchrotron X-ray diffraction measurements. Results reveal composition dependent changes of magnetic properties in electron irradiated metallic glasses. A low electron irradiation dose (15 kGy) enhances saturation magnetization (up to 62%) in Fe-based alloy (Fe{sub 72}Si{sub 4.8}B{sub 19.2}Nb{sub 4}). Synchrotron XRD measurements reveal that electron irradiation transforms the amorphous matrix to a more ordered phase, accountable for changes in magnetic properties.

  18. Molecular detection with terahertz waves based on absorption-induced transparency metamaterials

    Science.gov (United States)

    G. Rodrigo, Sergio; Martín-Moreno, L.

    2016-10-01

    A system for the detection of spectral signatures of chemical compounds at the Terahertz regime is presented. The system consists on a holey metal film whereby the presence of a given substance provokes the appearance of spectral features in transmission and reflection induced by the molecular specimen. These induced effects can be regarded as an extraordinary optical transmission phenomenon called absorption-induced transparency (AIT). The phenomenon consist precisely in the appearance of peaks in transmission and dips in reflection after sputtering of a chemical compound onto an initially opaque holey metal film. The spectral signatures due to AIT occur unexpectedly close to the absorption energies of the molecules. The presence of a target, a chemical compound, would be thus revealed as a strong drop in reflectivity measurements. We theoretically predict the AIT based system would serve to detect amounts of hydrocyanic acid (HCN) at low rate concentrations.

  19. Symmetry-induced deformation and reconstructive phase transformation in metal-oxide interface: the Fe (001) example

    International Nuclear Information System (INIS)

    Lahoche, L.; Universite de Technologie de Compiegne; Lorman, V.; Roelandt, J.M.; Rochal, S.B.

    1996-01-01

    A model is proposed for the structural transformation and corresponding induced deformation in physical three-dimensional interface of the metal-oxide system. The thermodynamical and elastic state of the system is described by the Landau-Ginzbourg free energy. Calculated theoretical phase diagram shows several different types of isothermal growth processes. The model is applied to the case of the oxidation of the (001) Fe surface. (orig.)

  20. Metallicity at interphase boundaries due to polar catastrophe induced by charge density discontinuity

    KAUST Repository

    Albar, Arwa

    2018-02-09

    The electronic properties of interphase boundaries are of basic importance for most materials, particularly when those properties deviate strongly from the bulk behavior. We introduce a mechanism that can result in metallicity at stoichiometric interphase boundaries between semiconductors based on the idea of polar catastrophe, which is usually considered only in the context of heterostructures. To this end, we perform ab initio calculations within density functional theory to investigate the electronic states at stoichiometric SnO/SnO2 (110) interphase boundaries. In this system, one would not expect polar catastrophe to have a role according to state-of-the-art theory because the interface lacks formal charge discontinuity. However, we observe the formation of a hole gas between the semiconductors SnO and SnO2. To explain these findings, we provide a generalized theory based on the idea that the charge density discontinuity between SnO and SnO2, a consequence of lattice mismatch, drives a polar catastrophe scenario. As a result, SnO/SnO2 (110) interphase boundaries can develop metallicity depending on the grain size. The concept of metallicity due to polar catastrophe induced by charge density discontinuity is of general validity and applies to many interphase boundaries with lattice mismatch.

  1. Complexation-induced supramolecular assembly drives metal-ion extraction.

    Science.gov (United States)

    Ellis, Ross J; Meridiano, Yannick; Muller, Julie; Berthon, Laurence; Guilbaud, Philippe; Zorz, Nicole; Antonio, Mark R; Demars, Thomas; Zemb, Thomas

    2014-09-26

    Combining experiment with theory reveals the role of self-assembly and complexation in metal-ion transfer through the water-oil interface. The coordinating metal salt Eu(NO3)3 was extracted from water into oil by a lipophilic neutral amphiphile. Molecular dynamics simulations were coupled to experimental spectroscopic and X-ray scattering techniques to investigate how local coordination interactions between the metal ion and ligands in the organic phase combine with long-range interactions to produce spontaneous changes in the solvent microstructure. Extraction of the Eu(3+)-3(NO3(-)) ion pairs involves incorporation of the "hard" metal complex into the core of "soft" aggregates. This seeds the formation of reverse micelles that draw the water and "free" amphiphile into nanoscale hydrophilic domains. The reverse micelles interact through attractive van der Waals interactions and coalesce into rod-shaped polynuclear Eu(III) -containing aggregates with metal centers bridged by nitrate. These preorganized hydrophilic domains, containing high densities of O-donor ligands and anions, provide improved Eu(III) solvation environments that help drive interfacial transfer, as is reflected by the increasing Eu(III) partitioning ratios (oil/aqueous) despite the organic phase approaching saturation. For the first time, this multiscale approach links metal-ion coordination with nanoscale structure to reveal the free-energy balance that drives the phase transfer of neutral metal salts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Range verification for eye proton therapy based on proton-induced x-ray emissions from implanted metal markers

    International Nuclear Information System (INIS)

    Rosa, Vanessa La; Royle, Gary; Gibson, Adam; Kacperek, Andrzej

    2014-01-01

    Metal fiducial markers are often implanted on the back of the eye before proton therapy to improve target localization and reduce patient setup errors. We aim to detect characteristic x-ray emissions from metal targets during proton therapy to verify the treatment range accuracy. Initially gold was chosen for its biocompatibility properties. Proton-induced x-ray emissions (PIXE) from a 15 mm diameter gold marker were detected at different penetration depths of a 59 MeV proton beam at the CATANA proton facility at INFN-LNS (Italy). The Monte Carlo code Geant4 was used to reproduce the experiment and to investigate the effect of different size markers, materials, and the response to both mono-energetic and fully modulated beams. The intensity of the emitted x-rays decreases with decreasing proton energy and thus decreases with depth. If we assume the range to be the depth at which the dose is reduced to 10% of its maximum value and we define the residual range as the distance between the marker and the range of the beam, then the minimum residual range which can be detected with 95% confidence level is the depth at which the PIXE peak is equal to 1.96 σ bkg , which is the standard variation of the background noise. With our system and experimental setup this value is 3 mm, when 20 GyE are delivered to a gold marker of 15 mm diameter. Results from silver are more promising. Even when a 5 mm diameter silver marker is placed at a depth equal to the range, the PIXE peak is 2.1 σ bkg . Although these quantitative results are dependent on the experimental setup used in this research study, they demonstrate that the real-time analysis of the PIXE emitted by fiducial metal markers can be used to derive beam range. Further analysis are needed to demonstrate the feasibility of the technique in a clinical setup. (paper)

  3. Range verification for eye proton therapy based on proton-induced x-ray emissions from implanted metal markers

    Science.gov (United States)

    La Rosa, Vanessa; Kacperek, Andrzej; Royle, Gary; Gibson, Adam

    2014-06-01

    Metal fiducial markers are often implanted on the back of the eye before proton therapy to improve target localization and reduce patient setup errors. We aim to detect characteristic x-ray emissions from metal targets during proton therapy to verify the treatment range accuracy. Initially gold was chosen for its biocompatibility properties. Proton-induced x-ray emissions (PIXE) from a 15 mm diameter gold marker were detected at different penetration depths of a 59 MeV proton beam at the CATANA proton facility at INFN-LNS (Italy). The Monte Carlo code Geant4 was used to reproduce the experiment and to investigate the effect of different size markers, materials, and the response to both mono-energetic and fully modulated beams. The intensity of the emitted x-rays decreases with decreasing proton energy and thus decreases with depth. If we assume the range to be the depth at which the dose is reduced to 10% of its maximum value and we define the residual range as the distance between the marker and the range of the beam, then the minimum residual range which can be detected with 95% confidence level is the depth at which the PIXE peak is equal to 1.96 σbkg, which is the standard variation of the background noise. With our system and experimental setup this value is 3 mm, when 20 GyE are delivered to a gold marker of 15 mm diameter. Results from silver are more promising. Even when a 5 mm diameter silver marker is placed at a depth equal to the range, the PIXE peak is 2.1 σbkg. Although these quantitative results are dependent on the experimental setup used in this research study, they demonstrate that the real-time analysis of the PIXE emitted by fiducial metal markers can be used to derive beam range. Further analysis are needed to demonstrate the feasibility of the technique in a clinical setup.

  4. Ca-site substitution induced a metal-insulator transition in manganite CaMnO3

    International Nuclear Information System (INIS)

    Sousa, D.; Nunes, M.R.; Silveira, C.; Matos, I.; Lopes, A.B.; Melo Jorge, M.E.

    2008-01-01

    A systematic study of the A-site doping in Mn(IV)-rich perovskite manganites Ca 1-x Ho x MnO 3 , over a large homogeneity range (0.1 ≤ x ≤ 0.4), has been performed. A significant increase in the lattice parameters indicated the presence of mixed valence state of Mn: Mn 3+ and Mn 4+ . The substitution of calcium by holmium also induces strong changes in the electrical properties. We found that small Ho concentration produces an important decrease in the electrical resistivity and induces an electrical transition, the temperature corresponding to the metal-insulator transition (T MI ) shifts with the holmium content. This electrical behavior is attributed to the Mn 3+ ions content and a charge order effect

  5. X-ray studies of irradiation induced dislocation loops in metals

    International Nuclear Information System (INIS)

    Larson, B.C.

    1975-01-01

    Theoretical and experimental progress has resulted in the increased use of x-rays for the study of defects and defect clusters in crystals. An outline of the theoretical framework associated with Huang, Stokes-Wilson and integral diffuse scattering from dislocation loops is presented, and an account of recent experiments on radiation induced loops is given. These studies include low temperature, ambient temperature, and elevated temperature irradiations of metals with electrons, neutrons, and accelerated ions, and pertain to the study of the thermal annealing characteristics as well as the as-produced damage structure. The information obtained by x-rays as to the type, size and concentrations of dislocation loops is contrasted with existing electron microscopy, electrical resistivity, and lattice parameter data in order to establish correlations and identify areas of disagreement

  6. Optically induced bistable states in metal/tunnel-oxide/semiconductor /MTOS/ junctions

    Science.gov (United States)

    Lai, S. K.; Dressendorfer, P. V.; Ma, T. P.; Barker, R. C.

    1981-01-01

    A new switching phenomenon in metal-oxide semiconductor tunnel junction has been discovered. With a sufficiently large negative bias applied to the electrode, incident visible light of intensity greater than about 1 microW/sq cm causes the reverse-biased junction to switch from a low-current to a high-current state. It is believed that hot-electron-induced impact ionization provides the positive feedback necessary for switching, and causes the junction to remain in its high-current state after the optical excitation is removed. The junction may be switched back to the low-current state electrically. The basic junction characteristics have been measured, and a simple model for the switching phenomenon has been developed.

  7. Etching of fused silica fiber by metallic laser-induced backside wet etching technique

    Energy Technology Data Exchange (ETDEWEB)

    Vass, Cs., E-mail: vasscsaba@physx.u-szeged.hu [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary); Kiss, B.; Kopniczky, J.; Hopp, B. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9 (Hungary)

    2013-08-01

    The tip of multimode fused silica fiber (core diameter: 550 μm) was etched by metallic laser-induced backside wet etching (M-LIBWE) method. Frequency doubled, Q-switched Nd:YAG laser (λ = 532 nm; τ{sub FWHM} = 8 ns) was used as laser source. The laser beam was coupled into the fiber by a fused silica lens with a focal length of 1500 mm. The other tip of the fiber was dipped into liquid gallium metallic absorber. The etching threshold fluence was measured to be 475 mJ/cm{sup 2}, while the highest fluence, which resulted etching without breaking the fiber, was 1060 mJ/cm{sup 2}. The progress of etching was followed by optical microscopy, and the etch rate was measured to be between 20 and 37 nm/pulse depending on the applied laser energy. The surface morphologies of the etched tips were studied by scanning electron microscopy. A possible application of the structured fibers was also tested.

  8. Etching of fused silica fiber by metallic laser-induced backside wet etching technique

    International Nuclear Information System (INIS)

    Vass, Cs.; Kiss, B.; Kopniczky, J.; Hopp, B.

    2013-01-01

    The tip of multimode fused silica fiber (core diameter: 550 μm) was etched by metallic laser-induced backside wet etching (M-LIBWE) method. Frequency doubled, Q-switched Nd:YAG laser (λ = 532 nm; τ FWHM = 8 ns) was used as laser source. The laser beam was coupled into the fiber by a fused silica lens with a focal length of 1500 mm. The other tip of the fiber was dipped into liquid gallium metallic absorber. The etching threshold fluence was measured to be 475 mJ/cm 2 , while the highest fluence, which resulted etching without breaking the fiber, was 1060 mJ/cm 2 . The progress of etching was followed by optical microscopy, and the etch rate was measured to be between 20 and 37 nm/pulse depending on the applied laser energy. The surface morphologies of the etched tips were studied by scanning electron microscopy. A possible application of the structured fibers was also tested.

  9. In situ EC-AFM study of the effect of nanocrystals on the passivation and pit initiation in an Al-based metallic glass

    International Nuclear Information System (INIS)

    Zhang, S.D.; Liu, Z.W.; Wang, Z.M.; Wang, J.Q.

    2014-01-01

    Highlights: • The nanoscale corrosion on Al-rich glass was characterised by in situ EC-AFM. • The nanocrystals were identified from amorphous matrix by tapping mode AFM. • The formation of corrosion products is associated with the galvanic coupling. • The nanocrystals changed the local structure and component of the passive film. - Abstract: The effect of nanocrystals on pit initiation in metallic glasses is an unresolved issue. The passive film formation and pit initiation in the Al–Ni–Ce metallic glass were investigated using in situ electrochemical atomic force microscope (EC-AFM). The α-Al nanophases were identified from the amorphous matrix based upon the phase imaging in the tapping mode AFM. In the early stage of the passive film formation, the corrosion products Al(OH) 3 formed on the α-Al nanoparticles due to the galvanic coupling. The corrosion products incorporated into the passive film changed the local structure and component of the passive film, lowering its stability

  10. Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: A review.

    Science.gov (United States)

    Shahzad, Babar; Tanveer, Mohsin; Che, Zhao; Rehman, Abdul; Cheema, Sardar Alam; Sharma, Anket; Song, He; Rehman, Shams Ur; Zhaorong, Dong

    2018-01-01

    Industrialization and urbanization have posed serious threats to the environment. Excessive release of heavy metals from industrial effluents and overuse of pesticides in modern agriculture are limiting crop production by polluting environment and deteriorating food quality. Sustaining food quality under heavy metals and pesticide stress is crucial to meet the increasing demands for food. 24-Epibrassinolide (EBL), a ubiquitously occurring plant growth hormone shows great potential to alleviate heavy metals and pesticide stress in plants. This review sums up the potential role of EBL in ameliorating heavy metals and pesticide toxicity in plants extensively. EBL application increases plant's overall growth, biomass accumulation and photosynthetic efficiency by the modulation of numerous biochemical and physiological processes under heavy metals and pesticide stress. In addition, EBL scavenges reactive oxygen species (ROS) by triggering the production of antioxidant enzymes such as SOD, CAT, POX etc. EBL also induces the production of proline and soluble proteins that helps in maintaining osmotic potential and osmo-protection under both heavy metals and pesticide stress. At the end, future needs of research about the application of 24-epibrassinolide have also been discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Analysis of noble metal on automotive exhaust catalysts by radioisotope-induce x-ray fluorescence

    International Nuclear Information System (INIS)

    Elgart, M.F.

    1976-01-01

    A technique was developed for the in-situ analysis of noble metals deposited on monolithic automotive exhaust catalysts. This technique is based on radioisotope-induced x-ray fluorescence, and provides a detailed picture of the distribution of palladium and platinum on catalyst samples. The experimental results for the cross section of a monolithic exhaust catalyst, analyzed in increments of 0.2 cm 3 , are compared with analyses for palladium and platinum obtained by instrumental neutron activation analysis

  12. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells

    Directory of Open Access Journals (Sweden)

    Ohayon-Courtès Céline

    2011-03-01

    Full Text Available Abstract Background Some manufactured nanoparticles are metal-based and have a wide variety of applications in electronic, engineering and medicine. Until now, many studies have described the potential toxicity of NPs on pulmonary target, while little attention has been paid to kidney which is considered to be a secondary target organ. The objective of this study, on human renal culture cells, was to assess the toxicity profile of metallic nanoparticles (TiO2, ZnO and CdS usable in industrial production. Comparative studies were conducted, to identify whether particle properties impact cytotoxicity by altering the intracellular oxidative status. Results Nanoparticles were first characterized by size, surface charge, dispersion and solubility. Cytotoxicity of NPs was then evaluated in IP15 (glomerular mesangial and HK-2 (epithelial proximal cell lines. ZnO and CdS NPs significantly increased the cell mortality, in a dose-dependent manner. Cytotoxic effects were correlated with the physicochemical properties of NPs tested and the cell type used. Analysis of reactive oxygen species and intracellular levels of reduced and oxidized glutathione revealed that particles induced stress according to their composition, size and solubility. Protein involved in oxidative stress such as NF-κb was activated with ZnO and CdS nanoparticles. Such effects were not observed with TiO2 nanoparticles. Conclusion On glomerular and tubular human renal cells, ZnO and CdS nanoparticles exerted cytotoxic effects that were correlated with metal composition, particle scale and metal solubility. ROS production and oxidative stress induction clearly indicated their nephrotoxic potential.

  13. Pressure-induced metal-insulator transition in spinel compound CuV2S4

    International Nuclear Information System (INIS)

    Okada, H.; Koyama, K.; Hedo, M.; Uwatoko, Y.; Watanabe, K.

    2008-01-01

    In order to investigate the pressure effect on electrical properties of CuV 2 S 4 , we performed the electrical resistivity measurements under high pressures up to 8 GPa for a high-quality polycrystalline sample. The charge density wave (CDW) transition temperatures increase with increasing pressure. The residual resistivity rapidly increases with increasing pressure over 4 GPa, and the temperature dependence of the electrical resistivity at 8 GPa exhibits a semiconducting behavior below about 150 K, indicating that a pressure-induced metal-insulator transition occurs in CuV 2 S 4 at 8 GPa

  14. Red mud (RM)-Induced enhancement of iron plaque formation reduces arsenic and metal accumulation in two wetland plant species.

    Science.gov (United States)

    Yang, J X; Guo, Q J; Yang, J; Zhou, X Y; Ren, H Y; Zhang, H Z; Xu, R X; Wang, X D; Peters, M; Zhu, G X; Wei, R F; Tian, L Y; Han, X K

    2016-01-01

    Human activities have resulted in arsenic (As) and heavy metals accumulation in paddy soils in China. Phytoremediation has been suggested as an effective and low-cost method to clean up contaminated soils. A combined soil-sand pot experiment was conducted to investigate the influence of red mud (RM) supply on iron plaque formation and As and heavy metal accumulation in two wetland plant species (Cyperus alternifolius Rottb., Echinodorus amazonicus Rataj), using As and heavy metals polluted paddy soil combined with three rates of RM application (0, 2%, 5%). The results showed that RM supply significantly decreased As and heavy metals accumulation in shoots of the two plants due to the decrease of As and heavy metal availability and the enhancement of the formation of iron plaque on the root surface and in the rhizosphere. Both wetland plants supplied with RM tended to have more Fe plaque, higher As and heavy metals on roots and in their rhizospheres, and were more tolerant of As and heavy metal toxicity. The results suggest that RM-induced enhancement of the formation of iron plaque on the root surface and in the rhizosphere of wetland plants may be significant for remediation of soils contaminated with As and heavy metals.

  15. Ion-induced effects on metallic nanoparticles; Ioneninduzierte Effekte an metallischen Nanoteilchen

    Energy Technology Data Exchange (ETDEWEB)

    Klimmer, Andreas

    2010-02-25

    This work deals with the ion-irradiation of metallic nanoparticles in combination with various substrates. Particle diameters were systematically varied within the range of 2.5-14 nm, inter-particle distances range from 30-120 nm. Irradiations were performed with various inert gas ions with energies of 200 keV, resulting in an average ion range larger than the particle dimensions and therefore the effects of irradiation are mainly due to creation of structural defects within the particles and the underlying substrate as well. The main part of this work deals with ion-induced burrowing of metallic nanoparticles into the underlying substrate. The use of micellar nanoparticles with sharp size distribution combined with AFM and TEM analysis allows a much more detailed look at this effect than other works on that topic so far. With respect to the particle properties also a detailed look on the effect of irradiation on the particle structure would be interesting, which might lead to a deliberate influence on magnetic properties, for example. Within the context of this work, first successful experiments were performed on FePt particles, showing a significant reduction of the ordering temperature leading to the magnetically interesting, ordered L1{sub 0} phase. (orig.)

  16. Complexation induced phase separation: preparation of composite membranes with a nanometer thin dense skin loaded with metal ions

    KAUST Repository

    Villalobos Vazquez de la Parra, Luis Francisco; Karunakaran, Madhavan; Peinemann, Klaus-Viktor

    2015-01-01

    We present the development of a facile phase-inversion method for forming asymmetric membranes with a precise high metal ion loading capacity in only the dense layer. The approach combines the use of macromolecule-metal intermolecular complexes to form the dense layer of asymmetric membranes with nonsolvent-induced phase separation to form the porous support. This allows the independent optimization of both the dense layer and porous support while maintaining the simplicity of a phase-inversion process. Moreover, it facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude—from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. This simple and scalable process provides a new platform for building multifunctional membranes with a high loading of well-dispersed metal ions in the dense layer.

  17. Complexation induced phase separation: preparation of composite membranes with a nanometer thin dense skin loaded with metal ions

    KAUST Repository

    Villalobos Vazquez de la Parra, Luis Francisco

    2015-04-21

    We present the development of a facile phase-inversion method for forming asymmetric membranes with a precise high metal ion loading capacity in only the dense layer. The approach combines the use of macromolecule-metal intermolecular complexes to form the dense layer of asymmetric membranes with nonsolvent-induced phase separation to form the porous support. This allows the independent optimization of both the dense layer and porous support while maintaining the simplicity of a phase-inversion process. Moreover, it facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude—from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. This simple and scalable process provides a new platform for building multifunctional membranes with a high loading of well-dispersed metal ions in the dense layer.

  18. Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, V.K.; Upadhyaya, A.R.; Pandey, S.K.; Tripathi, B.D. [Banaras Hindu University, Varanasi (India)

    2008-03-15

    Three aquatic plants Eichhornia crassipes, Lemna minor and Spirodela polyrhhiza were used in laboratory for the removal of heavy metals from the coal mining effluent. Plants were grown singly as well as in combination during 21 days phytoremediation experiment. Results revealed that combination of E. crassipes and L. minor was the most efficient for the removal of heavy metals while E. crassipes was the most efficient in monoculture. Significant correlations between metal concentration in final water and macrophytes were obtained. Translocation factor i.e. ratio of shoot to root metal concentration revealed that metals were largely retained in the roots of aquatic macrophytes. Analytical results showed that plant roots have accumulated heavy metals approximately 10 times of its initial concentration. These plants were also subjected to toxicity assessment and no symptom of metal toxicity was found therefore, this method can be applied on the large scale treatment of waste water where volumes generated are very high and concentrations of pollutants are low.

  19. Characterization and metal-induced gene transcription of two new copper zinc superoxide dismutases in the solitary ascidian Ciona intestinalis

    International Nuclear Information System (INIS)

    Ferro, Diana; Franchi, Nicola; Mangano, Valentina; Bakiu, Rigers; Cammarata, Matteo; Parrinello, Nicolò; Santovito, Gianfranco; Ballarin, Loriano

    2013-01-01

    Highlights: •Ciona intestinalis express two copper-zinc superoxide dismutases (Cu,Zn SODs), one extracellular (Ci-SODa) and one intracellular isoform (Ci-SODb). •Promoters contain consensus sequences similar to mammalian MRE. •Metal exposure results in a significant increase of gene transcription: ci-soda is induced especially by copper and zinc, the increase of ci-sodb transcription is more evident after cadmium exposure. •Genes are mostly transcribed in circulating hemocytes and in ovarian follicular cells. -- Abstract: Antioxidant enzymes are known to protect living organisms against the oxidative stress risk, also induced by metals. In the present study, we describe the purification and molecular characterization of two Cu,Zn superoxide dismutases (SODs), referred to as Ci-SODa and Ci-SODb, from Ciona intestinalis, a basal chordate widely distributed in temperate shallow seawater. The putative amino acid sequences were compared with Cu,Zn SODs from other metazoans and phylogenetic analyses indicate that the two putative Ci-SODs are more related to invertebrate SODs than vertebrate ones. Both phylogenetic and preliminary homology modeling analyses suggest that Ci-SODa and Ci-SODb are extracellular and intracellular isoform, respectively. The mRNA of the two Cu,Zn SODs was localized in hemocytes and in ovarian follicular cells, as revealed by in situ hybridization. The time course of SOD mRNA levels in the presence of three different metals showed upregulation of ci-soda and inhibition of ci-sodb. Spectrophotometric analysis confirms the presence of SOD activity in Ciona tissues. Our in silico analyses of the ci-soda promoter region revealed putative consensus sequences similar to mammalian metal-responsive elements (MRE), suggesting that the transcription of these genes directly depends on metals. These data emphasize the importance of complex metal regulation of ci-soda and ci-sodb transcription, as components of an efficient detoxification pathway

  20. Characterization and metal-induced gene transcription of two new copper zinc superoxide dismutases in the solitary ascidian Ciona intestinalis

    Energy Technology Data Exchange (ETDEWEB)

    Ferro, Diana [Department of Biology, University of Padova, Padova (Italy); Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität, Münster (Germany); Franchi, Nicola [Department of Biology, University of Padova, Padova (Italy); Department of Biological, Chemical, Pharmaceutical Science and Technology, University of Palermo, Palermo (Italy); Mangano, Valentina [Department of Biological, Chemical, Pharmaceutical Science and Technology, University of Palermo, Palermo (Italy); Bakiu, Rigers [Department of Crop Production, Agricultural University of Tirana, Tirana (Albania); Cammarata, Matteo; Parrinello, Nicolò [Department of Biological, Chemical, Pharmaceutical Science and Technology, University of Palermo, Palermo (Italy); Santovito, Gianfranco, E-mail: gianfranco.santovito@unipd.it [Department of Biology, University of Padova, Padova (Italy); Ballarin, Loriano [Department of Biology, University of Padova, Padova (Italy)

    2013-09-15

    Highlights: •Ciona intestinalis express two copper-zinc superoxide dismutases (Cu,Zn SODs), one extracellular (Ci-SODa) and one intracellular isoform (Ci-SODb). •Promoters contain consensus sequences similar to mammalian MRE. •Metal exposure results in a significant increase of gene transcription: ci-soda is induced especially by copper and zinc, the increase of ci-sodb transcription is more evident after cadmium exposure. •Genes are mostly transcribed in circulating hemocytes and in ovarian follicular cells. -- Abstract: Antioxidant enzymes are known to protect living organisms against the oxidative stress risk, also induced by metals. In the present study, we describe the purification and molecular characterization of two Cu,Zn superoxide dismutases (SODs), referred to as Ci-SODa and Ci-SODb, from Ciona intestinalis, a basal chordate widely distributed in temperate shallow seawater. The putative amino acid sequences were compared with Cu,Zn SODs from other metazoans and phylogenetic analyses indicate that the two putative Ci-SODs are more related to invertebrate SODs than vertebrate ones. Both phylogenetic and preliminary homology modeling analyses suggest that Ci-SODa and Ci-SODb are extracellular and intracellular isoform, respectively. The mRNA of the two Cu,Zn SODs was localized in hemocytes and in ovarian follicular cells, as revealed by in situ hybridization. The time course of SOD mRNA levels in the presence of three different metals showed upregulation of ci-soda and inhibition of ci-sodb. Spectrophotometric analysis confirms the presence of SOD activity in Ciona tissues. Our in silico analyses of the ci-soda promoter region revealed putative consensus sequences similar to mammalian metal-responsive elements (MRE), suggesting that the transcription of these genes directly depends on metals. These data emphasize the importance of complex metal regulation of ci-soda and ci-sodb transcription, as components of an efficient detoxification pathway

  1. Origin of photoluminescence from silicon nanowires prepared by metal induced etching (MIE)

    International Nuclear Information System (INIS)

    Saxena, Shailendra K.; Rai, Hari. M.; Late, Ravikiran; Sagdeo, Pankaj R.; Kumar, Rajesh

    2015-01-01

    In this present study the origin of luminescence from silicon nanowires (SiNws) has been studied. SiNWs are fabricated on Si substrate by metal induced chemical etching (MIE). Here it is found that the band gap of SiNWs is higher than the gap of luminescent states in SiNWs which leads to the effect of Si=O bond. The band gap is estimated from diffuse reflectance analysis. Here we observe that band gap can be tailored depending on size (quantum confinement) but photoluminescence (PL) from all the sample is found to be fixed at 1.91 eV. This study is important for the understanding of origin of photoluminescence

  2. Adsorption-induced gap states of h-BN on metal surfaces

    Science.gov (United States)

    Preobrajenski, A. B.; Krasnikov, S. A.; Vinogradov, A. S.; Ng, May Ling; Käämbre, T.; Cafolla, A. A.; Mårtensson, N.

    2008-02-01

    The formation of hexagonal boron nitride (h-BN) monolayers on Ni(111), Rh(111), and Pt(111) has been studied by a combination of x-ray emission, angle-resolved valence band photoemission, and x-ray absorption in search for interface-induced gap states of h-BN . A significant density of both occupied and unoccupied gap states with N2p and B2p characters is observed for h-BN/Ni(111) , somewhat less for h-BN/Rh(111) and still less for h-BN/Pt(111) . X-ray emission shows that the h-BN monolayer is chemisorbed strongly on Ni(111) and very weakly on Pt(111). We associate the gap states of h-BN adsorbed on the transition metal surfaces with the orbital mixing and electron sharing at the interface because their density increases with the growing strength of chemisorption.

  3. Influence of initial microstructure of aluminium alloy charge after its melting on the hard metal inherited structure

    Directory of Open Access Journals (Sweden)

    Г. О. Іванов

    2016-07-01

    Full Text Available Metal properties heredity in the chain- initial hard state > liquid state > final solidified state has always been interesting for metallurgists. It is known that after the primary melting of charge there occurs microheterogenеous non-equilibrium melt with crystal-like groups of atoms and disordered area in it. With increase in temperature the melt approaches the equilibrium microhomogeneous state. The aim of this work is to study the charge microstructure influence on melt fluidity in the light of quasi-crystal model of liquid structure. Influence of isothermal heating on fluidity of aluminium melt, smelted from fine-grained and coarse-grained charge has been investigated. It has been stated that for coarse-grained metal additional melting of crystallization «genes» takes place in 1,4-quick time, as compared to fine-grained. The coefficients of exponential function for our experimental data have been calculated. It has been stated that the exponent depends on the charge microstructure, and multiplier depends on the soaking temperature. On the basis of A. Einstein equation for the calculation of liquid viscosity from the known fraction of admixtures and clean liquid viscosity an analogical equation for fluidity and calculation of quasi-crystals volume share in the melt have been derived. It has been found that the charge grain size affects the speed of quasi-crystals additional melting in the melt. The reference amount of quasi-crystals at the initial moment of large- and fine-grained charge melting has been calculated from our metallographic, experimental and estimated data

  4. Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium

    International Nuclear Information System (INIS)

    Senesi, G.S.; Dell'Aglio, M.; Gaudiuso, R.; De Giacomo, A.; Zaccone, C.; De Pascale, O.; Miano, T.M.; Capitelli, M.

    2009-01-01

    Soil is unanimously considered as one of the most important sink of heavy metals released by human activities. Heavy metal analysis of natural and polluted soils is generally conducted by the use of atomic absorption spectroscopy (AAS) or inductively coupled plasma optical emission spectroscopy (ICP-OES) on adequately obtained soil extracts. Although in recent years the emergent technique of laser-induced breakdown spectroscopy (LIBS) has been applied widely and with increasing success for the qualitative and quantitative analyses of a number of heavy metals in soil matrices with relevant simplification of the conventional methodologies, the technique still requires further confirmation before it can be applied fully successfully in soil analyses. The main objective of this work was to demonstrate that new developments in LIBS technique are able to provide reliable qualitative and quantitative analytical evaluation of several heavy metals in soils, with special focus on the element chromium (Cr), and with reference to the concentrations measured by conventional ICP spectroscopy. The preliminary qualitative LIBS analysis of five soil samples and one sewage sludge sample has allowed the detection of a number of elements including Al, Ca, Cr, Cu, Fe, Mg, Mn, Pb, Si, Ti, V and Zn. Of these, a quantitative analysis was also possible for the elements Cr, Cu, Pb, V and Zn based on the obtained linearity of the calibration curves constructed for each heavy metal, i.e., the proportionality between the intensity of the LIBS emission peaks and the concentration of each heavy metal in the sample measured by ICP. In particular, a triplet of emission lines for Cr could be used for its quantitative measurement. The consistency of experiments made on various samples was supported by the same characteristics of the laser-induced plasma (LIP), i.e., the typical linear distribution confirming the existence of local thermodynamic equilibrium (LTE) condition, and similar excitation

  5. Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium.

    Science.gov (United States)

    Senesi, G S; Dell'Aglio, M; Gaudiuso, R; De Giacomo, A; Zaccone, C; De Pascale, O; Miano, T M; Capitelli, M

    2009-05-01

    Soil is unanimously considered as one of the most important sink of heavy metals released by human activities. Heavy metal analysis of natural and polluted soils is generally conducted by the use of atomic absorption spectroscopy (AAS) or inductively coupled plasma optical emission spectroscopy (ICP-OES) on adequately obtained soil extracts. Although in recent years the emergent technique of laser-induced breakdown spectroscopy (LIBS) has been applied widely and with increasing success for the qualitative and quantitative analyses of a number of heavy metals in soil matrices with relevant simplification of the conventional methodologies, the technique still requires further confirmation before it can be applied fully successfully in soil analyses. The main objective of this work was to demonstrate that new developments in LIBS technique are able to provide reliable qualitative and quantitative analytical evaluation of several heavy metals in soils, with special focus on the element chromium (Cr), and with reference to the concentrations measured by conventional ICP spectroscopy. The preliminary qualitative LIBS analysis of five soil samples and one sewage sludge sample has allowed the detection of a number of elements including Al, Ca, Cr, Cu, Fe, Mg, Mn, Pb, Si, Ti, V and Zn. Of these, a quantitative analysis was also possible for the elements Cr, Cu, Pb, V and Zn based on the obtained linearity of the calibration curves constructed for each heavy metal, i.e., the proportionality between the intensity of the LIBS emission peaks and the concentration of each heavy metal in the sample measured by ICP. In particular, a triplet of emission lines for Cr could be used for its quantitative measurement. The consistency of experiments made on various samples was supported by the same characteristics of the laser-induced plasma (LIP), i.e., the typical linear distribution confirming the existence of local thermodynamic equilibrium (LTE) condition, and similar excitation

  6. Cytoprotection by fructose and other ketohexoses during bile salt-induced apoptosis of hepatocytes.

    Science.gov (United States)

    Zeid, I M; Bronk, S F; Fesmier, P J; Gores, G J

    1997-01-01

    Toxic bile salts cause hepatocyte necrosis at high concentrations and apoptosis at lower concentrations. Although fructose prevents bile salt-induced necrosis, the effect of fructose on bile salt-induced apoptosis is unclear. Our aim was to determine if fructose also protects against bile salt-induced apoptosis. Fructose inhibited glycochenodeoxycholate (GCDC)-induced apoptosis in a concentration-dependent manner with a maximum inhibition of 72% +/- 10% at 10 mmol/L. First, we determined if fructose inhibited apoptosis by decreasing adenosine triphosphate (ATP) and intracellular pH (pHi). Although fructose decreased ATP to effects, alterations in the expression of bcl-2, or metal chelation, we next determined if the poorly metabolized ketohexoses, tagatose and sorbose, also inhibited apoptosis; unexpectedly, both ketohexoses inhibited apoptosis. Because bile salt-induced apoptosis and necrosis are inhibited by fructose, these data suggest that similar processes initiate bile salt-induced hepatocyte necrosis and apoptosis. In contrast, acidosis, which inhibits necrosis, potentiates apoptosis. Thus, ketohexose-sensitive pathways appear to initiate both bile salt-induced cell apoptosis and necrosis, whereas dissimilar, pH-sensitive, effector mechanisms execute these two different cell death processes.

  7. Ultrafast photo-induced hidden phases in strained manganite thin films

    Science.gov (United States)

    Zhang, Jingdi; McLeod, A. S.; Zhang, Gu-Feng; Stoica, Vladimir; Jin, Feng; Gu, Mingqiang; Gopalan, Venkatraman; Freeland, John W.; Wu, Wenbin; Rondinelli, James; Wen, Haidan; Basov, D. N.; Averitt, R. D.

    Correlated transition metal oxides (TMOs) are particularly sensitive to external control because of energy degeneracy in a complex energy landscape that promote a plethora of metastable states. However, it remains a grand challenge to actively control and fully explore the rich landscape of TMOs. Dynamic control with pulsed photons can overcome energetic barriers, enabling access to transient or metastable states that are not thermally accessible. In the past, we have demonstrated that mode-selective single-laser-pulse excitation of a strained manganite thin film La2/3Ca1/3MnO3 initiates a persistent phase transition from an emergent antiferromagnetic insulating ground state to a ferromagnetic metallic metastable state. Beyond the photo-induced insulator to metal transition, we recently discovered a new peculiar photo-induced hidden phase, identified by an experimental approach that combines ultrafast pump-probe spectroscopy, THz spectroscopy, X-ray diffraction, cryogenic near-field spectroscopy and SHG probe. This work is funded by the DOE, Office of Science, Office of Basic Energy Science under Award Numbers DE-SC0012375 and DE-SC0012592.

  8. Production of metal particles and clusters

    Science.gov (United States)

    Mcmanus, S. P.

    1982-01-01

    The feasibility of producing novel metals or metal clusters in a low gravity environment was studied. The production of coordinately unsaturated metal carbonyls by thermolysis or photolysis of stable metal carbonyls has the potential to generate novel catalysts by this technique. Laser irradiation of available metal carbonyls was investigated. It is found that laser induced decomposition of metal carbonyls is feasible for producing a variety of coordinately unsaturated species. Formation of clustered species does occur but is hampered by weak metal-metal bonds.

  9. Toxicity effects on metal sequestration by microbially-induced carbonate precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Mugwar, Ahmed J. [Cardiff School of Engineering, Cardiff University, Queen’s Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); College of Engineering, Al-Muthanna University, Samawah (Iraq); Harbottle, Michael J., E-mail: harbottlem@cardiff.ac.uk [Cardiff School of Engineering, Cardiff University, Queen’s Buildings, The Parade, Cardiff CF24 3AA (United Kingdom)

    2016-08-15

    Highlights: • Minimum inhibitory concentrations (MIC) are determined for S. pasteurii with a range of metals. • Zinc & cadmium bioprecipitation is strongly linked to microbial carbonate generation. • Lead & copper carbonate bioprecipitation is limited & abiotic processes may be significant. • Bioprecipitation allows survival at & remediation of higher metal concentrations than expected. - Abstract: Biological precipitation of metallic contaminants has been explored as a remedial technology for contaminated groundwater systems. However, metal toxicity and availability limit the activity and remedial potential of bacteria. We report the ability of a bacterium, Sporosarcina pasteurii, to remove metals in aerobic aqueous systems through carbonate formation. Its ability to survive and grow in increasingly concentrated aqueous solutions of zinc, cadmium, lead and copper is explored, with and without a metal precipitation mechanism. In the presence of metal ions alone, bacterial growth was inhibited at a range of concentrations depending on the metal. Microbial activity in a urea-amended medium caused carbonate ion generation and pH elevation, providing conditions suitable for calcium carbonate bioprecipitation, and consequent removal of metal ions. Elevation of pH and calcium precipitation are shown to be strongly linked to removal of zinc and cadmium, but only partially linked to removal of lead and copper. The dependence of these effects on interactions between the respective metal and precipitated calcium carbonate are discussed. Finally, it is shown that the bacterium operates at higher metal concentrations in the presence of the urea-amended medium, suggesting that the metal removal mechanism offers a defence against metal toxicity.

  10. Pressure-induced irreversible metallization accompanying the phase transitions in S b2S3

    Science.gov (United States)

    Dai, Lidong; Liu, Kaixiang; Li, Heping; Wu, Lei; Hu, Haiying; Zhuang, Yukai; Yang, Linfei; Pu, Chang; Liu, Pengfei

    2018-01-01

    We have revealed S b2S3 to have two phase transitions and to undergo metallization using a diamond anvil cell at around 5.0, 15.0, and 34.0 GPa, respectively. These results were obtained on the basis of high-pressure Raman spectroscopy, temperature-dependent conductivity measurements, atomic force microscopy, high-resolution transmission electron microscopy, and first-principles calculations. The first phase transition at ˜5.0 GPa is an isostructural phase transition, which is manifested in noticeable changes in five Raman-active modes and the slope of the conductivity because of a change in the electronic structure. The second pressure-induced phase transition was characterized by a discontinuous change in the slope of conductivity and a new low-intensity Raman mode at ˜15.0 GPa . Furthermore, a semiconductor-to-metal transition was found at ˜34.0 GPa , which was accompanied by irreversible metallization, and it could be attributed to the permanently plastic deformation of the interlayer spacing. This high-pressure behavior of S b2S3 will help us to understand the universal crystal structure evolution and electrical characteristics for A2B3 -type compounds, and to facilitate their application in electronic devices.

  11. Monitoring the corrosion process of Al alloys through pH induced fluorescence

    International Nuclear Information System (INIS)

    Pidaparti, R M; Neblett, E B; Miller, S A; Alvarez, J C

    2008-01-01

    A sensing and monitoring set-up based on electrochemical pH induced fluorescence to systematically control the electrochemical corrosion process has been developed for possible applications in the field of localized corrosion. The sensing and monitoring concept is based on exposing the corroding metal surface to solutions that contain selected redox chemicals which will react in local regions where anodic or cathodic polarizations occur. Redox couples that produce or consume protons in their electrochemical reactions were used so that local pH gradients can indicate electrochemical activity by inducing fluorescence in dyes. This approach has been applied to study the corrosion initiation in aircraft aluminum metal 2024-T3 in a controlled electrochemical cell. Preliminary results obtained suggest that monitoring of localized corrosion based on pH can be achieved for field applications

  12. Adlayer Core-Level Shifts of Random Metal Overlayers on Transition-Metal Substrates

    DEFF Research Database (Denmark)

    Ganduglia-Pirovano, M. V.; Kudrnovský, J.; Scheffler, M.

    1997-01-01

    and the screening effects induced by the core hole, and study the influence of the alloy composition for a number of noble metal-transition metal systems. Our analysis clearly indicates the importance of final-state screening effects for the interpretation of measured core-level shifts. Calculated deviations from...

  13. Metal balance shift induced in small fresh water fish by several environmental stresses

    International Nuclear Information System (INIS)

    Yukawa, Masae; Iso, Hiroyuki; Kodama, Kumiko; Imaseki, Hitoshi; Aoki, Kazuko; Ishikawa, Yuji

    2005-01-01

    Balance of essential elements in organisms might be changed by environmental stresses. Small fresh water fish, Medaka, was burdened with X-ray irradiation (total dose: 17 Gy), keeping in salty water (70% NaCl of sea water) and keeping in metal containing water (10 ppm of Cr and Co). These stresses are not lethal doses. Essential elements in liver, gall bladder, kidney, spleen, heart and brain in the stress-loaded fish were measured by PIXE method and compared with a control fish to determine the effect of the stresses. Various changes of the elemental contents were observed. Effect of X-ray irradiation was the smallest among the stresses. Relatively high content elements such as P, S, Cl and K were hardly affected with the stresses examined in this work. The effect of Cr on the metal balance seems to be larger than the other stresses. As PIXE method can analyze many elements in a small sample simultaneously, change of elemental distribution in small organisms induced by environmental stresses can be determined readily. (author)

  14. Remediation of Cu metal-induced accelerated Fenton reaction by potato peels bio-sorbent.

    Science.gov (United States)

    Azmat, Rafia; Moin, Sumeira; Saleem, Ailyan

    2016-12-01

    This article has allied exposure to Ecological Particulate Matter (EPM) and its remediation using potato peel surface (PPC) bio-sorbent on two important edible crops Spinacia oleracea and Luffa acutangula. Fenton reaction acceleration was one of the major stress oxidation reactions as a consequence of iron and copper toxicity, which involve in the formation of hydroxyl radical (OH) through EPM. Results showed that the oxidative stress encouraged by Cu in both species that recruits the degradation of photosynthetic pigments, initiating decline in growth, reduced leaf area and degrade proteins. The plants were cultivated in natural environmental condition in three pots with three replicates like (a) control, (b) Cu treated and (c) treated water. Oxidative stress initiated by metal activity in Cu accumulated plant (b) were controlled, through bio-sorption of metal from contaminated water using PPC; arranged at laboratory scale. The acceleration of Fenton reaction was verified in terms of OH radical generation. These radicals were tested in aqueous extract of leaves of three types of plants via benzoic acid. The benzoic acid acts as a scavenger of OH radical due to which the decarboxylation of benzoic acid cured. Observation on (b) showed more rapid decarboxylation as compared to other plants which showed that Cu activity was much higher in (b) as compared to (a) and (c). The rapid decarboxylation of benzoic acid and lower chlorophyll contents in (b) suggest that Fenton reaction system was much enhanced by Cu-O and Fe-O chemistry that was successfully controlled by PPC which results in restoring the metabolic pathway and nullifying oxidative stress in (c).

  15. Mercury heavy-metal-induced physiochemical changes and genotoxic alterations in water hyacinths [Eichhornia crassipes (Mart.)].

    Science.gov (United States)

    Malar, Srinivasan; Sahi, Shivendra Vikram; Favas, Paulo J C; Venkatachalam, Perumal

    2015-03-01

    Mercury heavy metal pollution has become an important environmental problem worldwide. Accumulation of mercury ions by plants may disrupt many cellular functions and block normal growth and development. To assess mercury heavy metal toxicity, we performed an experiment focusing on the responses of Eichhornia crassipes to mercury-induced oxidative stress. E. crassipes seedlings were exposed to varying concentrations of mercury to investigate the level of mercury ions accumulation, changes in growth patterns, antioxidant defense mechanisms, and DNA damage under hydroponics system. Results showed that plant growth rate was significantly inhibited (52 %) at 50 mg/L treatment. Accumulation of mercury ion level were 1.99 mg/g dry weight, 1.74 mg/g dry weight, and 1.39 mg/g dry weight in root, leaf, and petiole tissues, respectively. There was a decreasing trend for chlorophyll a, b, and carotenoids with increasing the concentration of mercury ions. Both the ascorbate peroxidase and malondialdehyde contents showed increased trend in leaves and roots up to 30 mg/L mercury treatment and slightly decreased at the higher concentrations. There was a positive correlation between heavy metal dose and superoxide dismutase, catalase, and peroxidase antioxidative enzyme activities which could be used as biomarkers to monitor pollution in E. crassipes. Due to heavy metal stress, some of the normal DNA bands were disappeared and additional bands were amplified compared to the control in the random amplified polymorphic DNA (RAPD) profile. Random amplified polymorphic DNA results indicated that genomic template stability was significantly affected by mercury heavy metal treatment. We concluded that DNA changes determined by random amplified polymorphic DNA assay evolved a useful molecular marker for detection of genotoxic effects of mercury heavy metal contamination in plant species.

  16. Advances in Understanding How Heavy Metal Pollution Triggers Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Wenzhen Yuan

    2016-01-01

    Full Text Available With the development of industrialization and urbanization, heavy metals contamination has become a major environmental problem. Numerous investigations have revealed an association between heavy metal exposure and the incidence and mortality of gastric cancer. The mechanisms of heavy metals (lead, cadmium, mercury, chromium, and arsenic contamination leading to gastric cancer are concluded in this review. There are four main potential mechanisms: (1 Heavy metals disrupt the gastric mucosal barrier by decreasing mucosal thickness, mucus content, and basal acid output, thereby affecting the function of E-cadherin and inducing reactive oxygen species (ROS damage. (2 Heavy metals directly or indirectly induce ROS generation and cause gastric mucosal and DNA lesions, which subsequently alter gene regulation, signal transduction, and cell growth, ultimately leading to carcinogenesis. Exposure to heavy metals also enhances gastric cancer cell invasion and metastasis. (3 Heavy metals inhibit DNA damage repair or cause inefficient lesion repair. (4 Heavy metals may induce other gene abnormalities. In addition, heavy metals can induce the expression of proinflammatory chemokine interleukin-8 (IL-8 and microRNAs, which promotes tumorigenesis. The present review is an effort to underline the human health problem caused by heavy metal with recent development in order to garner a broader perspective.

  17. Electric-field-induced modification of the magnon energy, exchange interaction, and curie temperature of transition-metal thin films.

    Science.gov (United States)

    Oba, M; Nakamura, K; Akiyama, T; Ito, T; Weinert, M; Freeman, A J

    2015-03-13

    The electric-field-induced modification in the Curie temperature of prototypical transition-metal thin films with the perpendicular magnetic easy axis, a freestanding Fe(001) monolayer and a Co monolayer on Pt(111), is investigated by first-principles calculations of spin-spiral structures in an external electric field (E field). An applied E field is found to modify the magnon (spin-spiral formation) energy; the change arises from the E-field-induced screening charge density in the spin-spiral states due to p-d hybridizations. The Heisenberg exchange parameters obtained from the magnon energy suggest an E-field-induced modification of the Curie temperature, which is demonstrated via Monte Carlo simulations that take the magnetocrystalline anisotropy into account.

  18. Structure changes in steels and hard metal induced by nanosecond and femtosecond laser processing

    Science.gov (United States)

    Dumitru, Gabriel; Romano, Valerio; Weber, Heinz P.; Haefke, Henry; Gerbig, Yvonne; Sentis, Marc L.; Hermann, Joerg; Bruneau, Sebastien

    2003-11-01

    Investigations on the occurrence of structure and hardness changes (for two sorts of steel and for a hard metal substrate) in the immediate vicinity of laser induced craters are presented in this work. Experiments with femtosecond pulses were performed in air with a Ti:sapphire laser (800 nm, 100 fs) at mean fluences of 2, 5 and 10 J/cm2. Series of microcraters were induced with 100 to 5,000 laser pulses per hole. Experiments with similar fluences, but 10 to 40 pules per hole, were performed on the same materials using a Nd:YAG delivering 100 ns pulese. After laser irradiation, cuts were made through the processed samples and the changes occurred in the crystalline structure of the target materials were evidenced by metallographical analysis of the resulting cross-sections. Hardness measurements were performed in points situated in the immediate vicinity of the laser-induced pores. Affected zones in the material surrounding laser induced pores were always found in the ns-regime, however with different properties for various laser parameters. In the fs-regime, zones of modified materials were also found and in such zones a significant hardness increasing was evidenced; the limit of the low fluences regime, where no structure changes occurred, was found to be slightly above 2 J/cm2.

  19. Structural-chemical characteristics of implanted metals

    International Nuclear Information System (INIS)

    Kozejkin, B.V.; Pavlov, P.V.; Pitirimova, E.A.; Frolov, A.I.

    1988-01-01

    Corrosion and structural characteristics of metallic layers implanted by ions of chemically active impurities and noble gases are studied. Dependence of experimental results on parameters of initial materials and technological conditions of implantation is established. In studying corrosion characteristics of implanted metals a strong dependence of chemical passivation effect on technological conditions of ion-implantation and structure of initial material is stated. On the basis of developed mathematical model of chemical passivation effect it is shown that increase of corrosion characteristics of implanted metals is defined by superposition of surface and volumetric mechanisms

  20. Stress-induced chemical detection using flexible metal-organic frameworks.

    Science.gov (United States)

    Allendorf, Mark D; Houk, Ronald J T; Andruszkiewicz, Leanne; Talin, A Alec; Pikarsky, Joel; Choudhury, Arnab; Gall, Kenneth A; Hesketh, Peter J

    2008-11-05

    In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, which causes slight distortions in the MOF crystal structure, can be converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N2 or O2. The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthermore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO2. Finally, we report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds great promise for creating recognition chemistries to enable selective detection of a wide range of analytes.

  1. Canonical Schottky barrier heights of transition metal dichalcogenide monolayers in contact with a metal

    Science.gov (United States)

    Szcześniak, Dominik; Hoehn, Ross D.; Kais, Sabre

    2018-05-01

    The transition metal dichalcogenide (M X2 , where M =Mo , W and X =S , Se, Te) monolayers are of high interest for semiconducting applications at the nanoscale level; this interest is due to both their direct band gaps and high charge mobilities. In this regard, an in-depth understating of the related Schottky barrier heights, associated with the incorporation of M X2 sheets into novel low-dimensional metal-semiconductor junctions, is of crucial importance. Herein, we generate and provide analysis of the Schottky barrier heights behavior to account for the metal-induced gap states concept as its explanation. In particular, the present investigations concentrate on the estimation of the charge neutrality levels directly by employing the primary theoretical model, i.e., the cell-averaged Green's function formalism combined with the complex band structure technique. The results presented herein place charge neutrality levels in the vicinity of the midgap; this is in agreement with previous reports and analogous to the behavior of three-dimensional semiconductors. The calculated canonical Schottky barrier heights are also found to be in agreement with other computational and experimental values in cases where the difference between electronegativities of the semiconductor and metal contact is small. Moreover, the influence of the spin-orbit effects is herein considered and supports that Schottky barrier heights have metal-induced gap state-derived character, regardless whether spin-orbit coupling interactions are considered. The results presented within this report constitute a direct and vital verification of the importance of metal-induced gap states in explaining the behavior of observed Schottky barrier heights at M X2 -metal junctions.

  2. Metals and Neurodegeneration

    Science.gov (United States)

    Chen, Pan; Miah, Mahfuzur Rahman; Aschner, Michael

    2016-01-01

    Metals play important roles in the human body, maintaining cell structure and regulating gene expression, neurotransmission, and antioxidant response, to name a few. However, excessive metal accumulation in the nervous system may be toxic, inducing oxidative stress, disrupting mitochondrial function, and impairing the activity of numerous enzymes. Damage caused by metal accumulation may result in permanent injuries, including severe neurological disorders. Epidemiological and clinical studies have shown a strong correlation between aberrant metal exposure and a number of neurological diseases, including Alzheimer’s disease, amyotrophic lateral sclerosis, autism spectrum disorders, Guillain–Barré disease, Gulf War syndrome, Huntington’s disease, multiple sclerosis, Parkinson’s disease, and Wilson’s disease. Here, we briefly survey the literature relating to the role of metals in neurodegeneration. PMID:27006759

  3. Trace metal analysis in sea grasses from Mexican Caribbean Coast by particle induced X-ray emission (PIXE)

    International Nuclear Information System (INIS)

    Solis, C.; Issac O, K.; Martinez, A.; Lavoisier, E.; Martinez, M. A.

    2008-01-01

    The growing urban and tourist activity in the Mexican Caribbean coasts has resulted in an increase of chemical substances, metals in particular, discharged to the coastal waters. In order to reach an adequate management and conservation of these marine ecosystems it is necessary to perform an inventory of the actual conditions that reflect the vulnerability and the level of damage. Sea-grasses are considered good biological indicators of heavy metal contamination in marine systems. The goal of this preliminary work is to evaluate the concentrations of trace metals such as Cr, Mn, Fe, Co, Cu, Zn, and Pb in Thalassia testudinum, a very common sea-grass in the Mexican Caribbean Sea. Samples were collected from several locations in the coasts of the Yucatan Peninsula: Holbox, Blanquizal and Punta Allen, areas virtually uninfluenced by anthropogenic activities. Trace elements in different part plants were determined by particle induced X-ray emission (PIXE). This is a very suitable technique since it offers a fast, accurate and multi-element analysis. Also, the analysis by PIXE can be performed directly on powdered leaves without a laborious sample preparation. The trace metal concentration determined in sea-grasses growing in Caribbean generally fall in the range of the lowest valuables reported for sea grasses from the Gulf of Mexico. The results indicate that the studied areas do not present contamination by heavy metals. (Author)

  4. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil

    International Nuclear Information System (INIS)

    Clistenes do Nascimento, Williams A.; Amarasiriwardena, Dula; Xing, Baoshan

    2006-01-01

    Chemically assisted phytoremediation has been developing to induce accumulation of metals by high biomass plants. Synthetic chelates have shown high effectiveness to reach such a goal, but they pose serious drawbacks in field application due to the excessive amount of metals solubilized. We compared the performance of synthetic chelates with naturally occurring low molecular weight organic acids (LMWOA) in enhancing phytoextraction of metals by Indian mustard (Brassica juncea) from multi-metal contaminated soils. Gallic and citric acids were able to induce removal of Cd, Zn, Cu, and Ni from soil without increasing the leaching risk. Net removal of these metals caused by LMWOA can be as much as synthetic chelates. A major reason for this is the lower phytotoxicity of LMWOA. Furthermore, supplying appropriate mineral nutrients increased biomass and metal removal. - Organic acids can be as efficient as synthetic chelates for use in phytoextraction of multi-metal contaminated soils

  5. Spatial and seasonal heterogeneity of atmospheric particles induced reactive oxygen species in urban areas and the role of water-soluble metals

    International Nuclear Information System (INIS)

    Gali, Nirmal Kumar; Yang, Fenhuan; Jiang, Sabrina Yanan; Chan, Ka Lok; Sun, Li; Ho, Kin-fai; Ning, Zhi

    2015-01-01

    Adverse health effects are associated with exposure to atmospheric particulate matter (PM), which carry various chemical constituents and induce both exogenous and endogenous oxidative stress. This study investigated the spatial and seasonal variability of PM-induced ROS at four sites with different characteristics in Hong Kong. Cytotoxicity, exogenous and endogenous ROS was determined on a dose and time dependent analysis. Large spatial variation of ROS was observed with fine PM at urban site showing highest ROS levels while coarse PM at traffic site ranks the top. No consistent seasonal difference was observed for ROS levels among all sites. The highly heterogeneous distribution of PM-induced ROS demonstrates the differential capability of PM to produce oxidative stress, and the need to use appropriate metrics as surrogates of exposure instead of PM mass in epidemiologic studies. Several transition metals were found associated with ROS by different degree illustrating the complexity of mechanisms involved. - Highlights: • Adverse health effects are associated with size segregated atmospheric PM. • Seasonal and spatial variability of PM induced ROS determined in Hong Kong city. • Coarse PM ranks top in ROS generation on per volume and mass basis. • Traffic site demonstrated as source of potent inducer of cell toxicity. • No consistent seasonal difference observed for fine and coarse PM. - Heterogeneous PM-induced ROS distribution was observed in a city. Several water-soluble metals were associated with the ROS generation but with different degree from different sites

  6. Identification of human-induced initiating events in the low power and shutdown operation using the commission error search and assessment method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Chan; Kim, Jong Hyun [KEPCO International Nuclear Graduate School (KINGS), Ulsan (Korea, Republic of)

    2015-03-15

    Human-induced initiating events, also called Category B actions in human reliability analysis, are operator actions that may lead directly to initiating events. Most conventional probabilistic safety analyses typically assume that the frequency of initiating events also includes the probability of human-induced initiating events. However, some regulatory documents require Category B actions to be specifically analyzed and quantified in probabilistic safety analysis. An explicit modeling of Category B actions could also potentially lead to important insights into human performance in terms of safety. However, there is no standard procedure to identify Category B actions. This paper describes a systematic procedure to identify Category B actions for low power and shutdown conditions. The procedure includes several steps to determine operator actions that may lead to initiating events in the low power and shutdown stages. These steps are the selection of initiating events, the selection of systems or components, the screening of unlikely operating actions, and the quantification of initiating events. The procedure also provides the detailed instruction for each step, such as operator's action, information required, screening rules, and the outputs. Finally, the applicability of the suggested approach is also investigated by application to a plant example.

  7. Determination of Metal Elements in Wine Using Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Bocková, Jana; Tian, Ye; Yin, Hualiang; Delepine-Gilon, Nicole; Chen, Yanping; Veis, Pavel; Yu, Jin

    2017-08-01

    We developed a method for sensitive elemental analysis of wines using laser-induced breakdown spectroscopy (LIBS). In order to overcome the inefficiency of direct ablation of bulk wine (an organic liquid), a thin layer of wine residue was prepared on a metallic target according to an appropriated heating procedure applied to an amount of liquid wine dropped on the target surface. The obtained ensemble was thus ablated. Such a sample preparation procedure used a very small volume of 2 mL of wine and took only 30 min without reagent or solvent. The results show the detection of tens of metal and non-metal elements including majors (Na, Mg, K, Ca), minors, and traces (Li, B, Si, P, Ti, Mn, Fe, Cu, Zn, Rb, Sr, Ba, and Pb) in wines purchased from local supermarkets and from different production places in France. Commercially available wines were then spiked with certified standard solutions of Ti and Fe. Three series of laboratory reference samples were thus prepared using three different wines (a red wine and a white wine from a same production region and a red wine from another production region) with concentrations of Ti and Fe in the range of 1-40 mg/L. Calibration graphs established with the spiked samples allowed extracting the figures-of-merit parameters of the method for wine analysis such as the coefficient of determination ( R 2 ) and the limits of detection and quantification (LOD and LOQ). The calibration curves built with the three wines were then compared. We studied the residual matrix effect between these wines in the determination of the concentrations of Ti and Fe.

  8. Scoliosis correction with shape-memory metal: results of an experimental study.

    Science.gov (United States)

    Wever, D J; Elstrodt, J A; Veldhuizen, A G; v Horn, J R

    2002-04-01

    The biocompatibility and functionality of a new scoliosis correction device, based on the properties of the shape-memory metal nickel-titanium alloy, were studied. With this device, the shape recovery forces of a shape-memory metal rod are used to achieve a gradual three-dimensional scoliosis correction. In the experimental study the action of the new device was inverted: the device was used to induce a scoliotic curve instead of correcting one. Surgical procedures were performed in six pigs. An originally curved squared rod, in the cold condition, was straightened and fixed to the spine with pedicle screws. Peroperatively, the memory effect of the rod was activated by heating the rod to 50 degrees C by a low-voltage, high-frequency current. After 3 and after 6 months the animals were sacrificed. The first radiographs, obtained immediately after surgery, showed in all animals an induced curve of about 40 degrees Cobb angle - the original curve of the rod. This curve remained constant during the follow-up. The postoperative serum nickel measurements were around the detection limit, and were not significantly higher compared to the preoperative nickel concentration. Macroscopic inspection after 3 and 6 months showed that the device was almost overgrown with newly formed bone. Corrosion and fretting processes were not observed. Histologic examination of the sections of the surrounding tissues and sections of the lung, liver, spleen and kidney showed no evidence of a foreign body response. In view of the initiation of the scoliotic deformation, it is expected that the shape-memory metal based scoliosis correction device also has the capacity to correct a scoliotic curve. Moreover, it is expected that the new device will show good biocompatibility in clinical application. Extensive fatigue testing of the whole system should be performed before clinical trials are initiated.

  9. Two-scale characterization of deformation-induced anisotropy of polycrystalline metals

    International Nuclear Information System (INIS)

    Watanabe, Ikumu; Terada, Kenjiro

    2004-01-01

    The anisotropic macro-scale mechanical behavior of polycrystalline metals is characterized by incorporating the micro-scale constitutive model of single crystal plasticity into the two-scale modeling based on the mathematical homogenization theory. The two-scale simulations are conducted to analyze the macro-scale anisotropy induced by micro-scale plastic deformation of the polycrystalline aggregate. In the simulations, the micro-scale representative volume element (RVE) of a polycrystalline aggregate is uniformly loaded in one direction, unloaded to macroscopically zero stress in a certain stage of deformation and then re-loaded in the different directions. The last re-loading calculations provide different macro-scale responses of the RVE, which can be the appearance of material anisotropy. We then try to examine the effects of the intergranular and intragranular behaviors on the anisotropy by means of various illustrations of plastic deformation process in stead of the use of pole figures for the change of crystallographic orientations

  10. Remote metal analysis by laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Duckworth, A.

    1996-01-01

    This paper describes a new technique by which the composition of irradiated or inaccessible reactor components can be determined remotely. The technique uses very short duration, high energy laser pulses at a wavelength which can be transmitted down an optical fibre to ablate a tiny plasma from the surface of a metal component. Light from the plasma is collected by a second fibre and returned to a spectrometer where it is split into the characteristic emission wavelengths of the elements in the sample. Comparison of the emission line amplitude for a particular element with that of a chosen calibration line can be used to deduce the concentration of the element in the sample. The technique has been used successfully to differentiate between different highly radioactive control rod batches at Sizewell ''A'' and Hinkley Point ''A'' Power Stations. The material analysis accuracy is comparable with that obtained from electron microphobe analysis and other direct spectroscopic methods. However, by analysing the mild steel control rod casing material remotely, difficult sample removal becomes unneccessary and the integrity of the component remains essentially unaltered. In addition, removal of deposits or surface corrosion is incorporated very neatly into the process. These factors make remote laser induced breakdown spectroscopy an ideal tool for material analysis in the nuclear environment. (UK)

  11. Remote metal analysis by laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Duckworth, A.

    1996-01-01

    This paper describes a new technique by which the composition of irradiated or inaccessible reactor components can be determined remotely. The technique uses very short duration, high energy laser pulses at a wavelength which can be transmitted down an optical fibre to ablate a tiny plasma from the surface of a metal component. Light from the plasma is collected by a second fibre and returned to a spectrometer where it is split into the characteristic emission wavelengths of the elements in the sample. Comparison of the emission line amplitude for a particular element with that of a chosen calibrationline can be used to deduce the concentration of the element in the sample. The technique has been used successfully to differentiate between highly radioactive control rod batches at Sizewell 'A' and Hinkley Point 'A Power Stations. The material analysis accuracy is comparable with that obtained from electron microprobe analysis and other direct spectroscopic methods. However, by analysing the mild steel control rod casing material remotely, difficult sample removal becomes unnecessary and the integrity of the component remains essentially unaltered. In addition, removal of deposits or surface corrosion is incorporated very neatly into the process. These factors make remote laser induced breakdown spectroscopy an ideal tool for material analysis in the nuclear environment. (Author)

  12. Analgesia induced by self-initiated electrotactile sensation is mediated by top-down modulations.

    Science.gov (United States)

    Zhao, Ke; Tang, Zhengyu; Wang, Huiquan; Guo, Yifei; Peng, Weiwei; Hu, Li

    2017-06-01

    It is well known that sensory perception can be attenuated when sensory stimuli are controlled by self-initiated actions. This phenomenon is explained by the consistency between forward models of anticipated action effects and actual sensory feedback. Specifically, the brain state related to the binding between motor processing and sensory perception would have inhibitory function by gating sensory information via top-down control. Since the brain state could casually influence the perception of subsequent stimuli of different sensory modalities, we hypothesize that pain evoked by nociceptive stimuli following the self-initiated tactile stimulation would be attenuated as compared to that following externally determined tactile stimulation. Here, we compared psychophysical and neurophysiological responses to identical nociceptive-specific laser stimuli in two different conditions: self-initiated tactile sensation condition (STS) and nonself-initiated tactile sensation condition (N-STS). We observed that pain intensity and unpleasantness, as well as laser-evoked brain responses, were significantly reduced in the STS condition compared to the N-STS condition. In addition, magnitudes of alpha and beta oscillations prior to laser onset were significantly larger in the STS condition than in the N-STS condition. These results confirmed that pain perception and pain-related brain responses were attenuated when the tactile stimulation was initiated by subjects' voluntary actions, and exploited neural oscillations reflecting the binding between motor processing and sensory feedback. Thus, our study elaborated the understanding of underlying neural mechanisms related to top-down modulations of the analgesic effect induced by self-initiated tactile sensation, which provided theoretical basis to improve the analgesic effect in various clinical applications. © 2017 Society for Psychophysiological Research.

  13. Preparation of Metallic and Polymer Nanoparticles, Responsive Nanogels and Nanofibers by Radiation Initiated Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. -Pill; Gopalan, A. I. [Department of Chemistry Education, Kyungpook National University (Korea, Republic of)

    2009-07-01

    Synthesis of nanomaterials have become the focus of intensive research due to their numerous applications in diverse fields such as electronics, optics, ceramics, metallurgy, pulp and paper, environmental, pharmaceutics, biotechnology and biomedical fields. Due to expanding demand for the nanomaterials with defined properties, extensive research activities have been focused on the synthesis and characterization of “functional nanomaterials”. Our research group launched into research activities on the preparation of varieties of functional materials using radiation as the source for inducing functionalities ino these new nanomaterials. Importantly, we kept final goals for specific applications. Thus, we have prepared few interesting functional nanomaterials such as metal nanoparticles decorated multi wall carbon nanotubes, pore filled functional electrospun nanofibers and nanocables based on conducting polymer and carbon nanotubes and demonstrated their applications toward electrocatalysts, polymer electrolyte in energy devices and biosensors. In the forthcoming sections, a brief outline on the use of radiation for the preparation of those functional nanomaterials are presented. (author)

  14. Metal-induced gap states in ferroelectric capacitors and its relationship with complex band structures

    Science.gov (United States)

    Junquera, Javier; Aguado-Puente, Pablo

    2013-03-01

    At metal-isulator interfaces, the metallic wave functions with an energy eigenvalue within the band gap decay exponentially inside the dielectric (metal-induced gap states, MIGS). These MIGS can be actually regarded as Bloch functions with an associated complex wave vector. Usually only real values of the wave vectors are discussed in text books, since infinite periodicity is assumed and, in that situation, wave functions growing exponentially in any direction would not be physically valid. However, localized wave functions with an exponential decay are indeed perfectly valid solution of the Schrodinger equation in the presence of defects, surfaces or interfaces. For this reason, properties of MIGS have been typically discussed in terms of the complex band structure of bulk materials. The probable dependence on the interface particulars has been rarely taken into account explicitly due to the difficulties to include them into the model or simulations. We aim to characterize from first-principles simulations the MIGS in realistic ferroelectric capacitors and their connection with the complex band structure of the ferroelectric material. We emphasize the influence of the real interface beyond the complex band structure of bulk materials. Financial support provided by MICINN Grant FIS2009-12721-C04-02, and by the European Union Grant No. CP-FP 228989-2 ``OxIDes''. Computer resources provided by the RES.

  15. Surface/structure functionalization of copper-based catalysts by metal-support and/or metal-metal interactions

    Science.gov (United States)

    Konsolakis, Michalis; Ioakeimidis, Zisis

    2014-11-01

    Cu-based catalysts have recently attracted great attention both in catalysis and electro-catalysis fields due to their excellent catalytic performance and low cost. Given that their performance is determined, to a great extent, by Cu sites local environment, considerable efforts have been devoted on the strategic modifications of the electronic and structural properties of Cu sites. In this regard, the feasibility of tuning the local structure of Cu entities by means of metal-support or metal-metal interactions is investigated. More specifically, the physicochemical properties of Cu entities are modified by employing: (i) different oxides (CeO2, La2O3, Sm2O3), or (ii) ceria-based mixed oxides (Ce1-xSmxOδ) as supporting carriers, and (iii) a second metal (Cobalt) adjacent to Cu (bimetallic Cu-Co/CeO2). A characterization study, involving BET, XRD, TPR, and XPS, reveal that significant modifications on structural, redox and electronic properties of Cu sites can be induced by adopting either different oxide carriers or bimetallic complexes. Fundamental insights into the tuning of Cu local environment by metal-support or metal-metal interactions are provided, paving the way for real-life industrial applications.

  16. Emerging Science and Research Opportunities for Metals and Metallic Nanostructures

    Science.gov (United States)

    Handwerker, Carol A.; Pollock, Tresa M.

    2014-07-01

    During the next decade, fundamental research on metals and metallic nanostructures (MMNs) has the potential to continue transforming metals science into innovative materials, devices, and systems. A workshop to identify emerging and potentially transformative research areas in MMNs was held June 13 and 14, 2012, at the University of California Santa Barbara. There were 47 attendees at the workshop (listed in the Acknowledgements section), representing a broad range of academic institutions, industry, and government laboratories. The metals and metallic nanostructures (MMNs) workshop aimed to identify significant research trends, scientific fundamentals, and recent breakthroughs that can enable new or enhanced MMN performance, either alone or in a more complex materials system, for a wide range of applications. Additionally, the role that MMN research can play in high-priority research and development (R&D) areas such as the U.S. Materials Genome Initiative, the National Nanotechnology Initiative, the Advanced Manufacturing Initiative, and other similar initiatives that exist internationally was assessed. The workshop also addressed critical issues related to materials research instrumentation and the cyberinfrastructure for materials science research and education, as well as science, technology, engineering, and mathematics (STEM) workforce development, with emphasis on the United States but with an appreciation that similar challenges and opportunities for the materials community exist internationally. A central theme of the workshop was that research in MMNs has provided and will continue to provide societal benefits through the integration of experiment, theory, and simulation to link atomistic, nanoscale, microscale, and mesoscale phenomena across time scales for an ever-widening range of applications. Within this overarching theme, the workshop participants identified emerging research opportunities that are categorized and described in more detail in the

  17. Effect of immobilized biosorbents on the heavy metals (Cu2+) biosorption with variations of temperature and initial concentration of waste

    Science.gov (United States)

    Siwi, W. P.; Rinanti, A.; Silalahi, M. D. S.; Hadisoebroto, R.; Fachrul, M. F.

    2018-01-01

    The aims of research is to studying the efficiency of copper removal by combining immobilized microalgae with optimizations of temperature and initial Copper concentration. The research was conducted in batch culture with temperature variations of 25°C, 30°C, and 35°C, as well as initial Cu2+ concentrations (mg/l) of 3, 5, 10, 15 and 20 using monoculture of S. cerevisiae, Chlorella sp., and mixed culture of them both as immobilized biosorbents. The optimum adsorption of 83.4% obtained in temperature of 30°C with an initial waste concentration of 17.62 mg/l, initial biomass concentration of 200 mg, pH of 4, and 120 minutes detention time by the immobilized mixed culture biosorbent. The cell morphology examined using Scanning Electron Microscope (SEM) has proved that the biosorbent surface was damaged after being in contact with copper (waste), implying that heavy metals (molecules) attach to different functional cell surfaces and change the biosorbent surface. The adsorption process of this research follows Langmuir Isotherm with the R2 value close to 1. The immobilized mixed culture biosorbent is capable of optimally removing copper at temperature of 30°C and initial Cu2+ concentration of 17.62 mg/l.

  18. Diethylnitrosamine initiation does not alter clofibric acid-induced hepatocarcinogenesis in the rat.

    Science.gov (United States)

    Michel, Cecile; Desdouets, Chantal; Slaoui, Mohamed; Isaacs, Kevin Robert; Roberts, Ruth Angela; Boitier, Eric

    2007-09-01

    Clofibric acid (CLO) is a nongenotoxic hepatocarcinogen in rodents that causes altered hepatocellular foci and/or neoplasms. Initiation by DNA-damaging agents such as diethylnitrosamine (DEN) accelerates focus and tumor appearance and could therefore significantly contribute to shortening of the regulatory 2-year rodent carcinogenicity bioassays. However, it is crucial to evaluate the histological and molecular impact of initiation with DEN on hepatocarcinogenesis promoted by CLO. Male F344 rats were given a single nonnecrogenic injection of DEN (0 or 30 mg/kg) followed by Control diet or CLO (5000 ppm) in diet for up to 20 months. Histopathology and gene expression profiling were performed in liver tumors and surrounding nontumoral liver tissues. The molecular signature of DEN was characterized and its histopathological and immunohistopathological effects on focus and tumor types were also determined. Although foci and tumors appeared earlier in the DEN+CLO-treated group compared to the group treated with CLO alone, DEN had little impact on gene expression in nontumoral tissues since the gene expression profiles were highly similar between Control and DEN-treated rats, and DEN+CLO- and CLO-treated rats. Finally, tumors obtained from DEN+CLO and CLO-treated groups displayed highly correlated gene expression profiles (r>0.83, independently of the time-point). The pathways involved in tumor development revealed by Gene Ontology functional analysis are similar when driven either by spontaneous initiation or by a chemically induced initiation step. Our work described here may contribute to the design optimization of shorter preclinical tests for the evaluation of the nongenotoxic hepatocarcinogenic potential of drugs under development.

  19. Modeling the dark current histogram induced by gold contamination in complementary-metal-oxide-semiconductor image sensors

    Energy Technology Data Exchange (ETDEWEB)

    Domengie, F., E-mail: florian.domengie@st.com; Morin, P. [STMicroelectronics Crolles 2 (SAS), 850 Rue Jean Monnet, 38926 Crolles Cedex (France); Bauza, D. [CNRS, IMEP-LAHC - Grenoble INP, Minatec: 3, rue Parvis Louis Néel, CS 50257, 38016 Grenoble Cedex 1 (France)

    2015-07-14

    We propose a model for dark current induced by metallic contamination in a CMOS image sensor. Based on Shockley-Read-Hall kinetics, the expression of dark current proposed accounts for the electric field enhanced emission factor due to the Poole-Frenkel barrier lowering and phonon-assisted tunneling mechanisms. To that aim, we considered the distribution of the electric field magnitude and metal atoms in the depth of the pixel. Poisson statistics were used to estimate the random distribution of metal atoms in each pixel for a given contamination dose. Then, we performed a Monte-Carlo-based simulation for each pixel to set the number of metal atoms the pixel contained and the enhancement factor each atom underwent, and obtained a histogram of the number of pixels versus dark current for the full sensor. Excellent agreement with the dark current histogram measured on an ion-implanted gold-contaminated imager has been achieved, in particular, for the description of the distribution tails due to the pixel regions in which the contaminant atoms undergo a large electric field. The agreement remains very good when increasing the temperature by 15 °C. We demonstrated that the amplification of the dark current generated for the typical electric fields encountered in the CMOS image sensors, which depends on the nature of the metal contaminant, may become very large at high electric field. The electron and hole emissions and the resulting enhancement factor are described as a function of the trap characteristics, electric field, and temperature.

  20. Polycrystalline GaN layer recrystallization by metal-induced method during the baking process

    Energy Technology Data Exchange (ETDEWEB)

    Jagoda, A.; Stanczyk, B.; Dobrzanski, L.; Diduszko, R. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw 118 (Poland)

    2007-04-15

    Radio frequency reactive sputtering was used to produce gallium nitride films on thermally oxidized silicon substrates at room temperature. Metallic Ga (purity 6N) was used as the target, N{sub 2} and Ar were utilized as sputtering gases. Amorphous GaN was obtained by metal-induced crystallization with a Ni assistance. The nickel particles were scattered onto the surface by rf sputtering and their density was 2 x 10{sup 14} atoms/cm{sup 2} or 4 x 10{sup 14} atoms/cm{sup 2}, which corresponds to 0.02 nm and 0.04 nm thick layer. These values are less than a monolayer thickness, so they are not continuous. Samples were annealed at 700 C for 3 h and at 900 C for 5 min in a RTP furnace. The 2.5 {mu}m GaN layers grown on the Ni-coated SiO{sub 2} surface recrystallized during annealing forming crystals of (002) orientation. The catalytic regrowth mechanism of GaN is discussed on the basis of experimental results. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Spin-filter effect in normal metal/ferromagnetic insulator/normal metal/superconductor structures

    International Nuclear Information System (INIS)

    Li, Hong; Yang, Wei; Yang, Xinjian; Qin, Minghui; Guo, Jianqin

    2007-01-01

    Taking into account the thickness of the ferromagnetic insulator, the spin-filter effect in normal metal/ferromagnetic insulator/normal metal/superconductor (NM/FI/NM/SC) junctions is studied based on the Blonder-Tinkham-Klapwijk (BTK) theory. It is shown that a spin-dependent energy shift during the tunneling process induces splitting of the subgap resonance peaks. The spin polarization due to the spin-filter effect of the FI causes an imbalance of the peaks heights and can enhance the Zeeman splitting of the gap peaks caused by an applied magnetic field. The spin-filter effect has no contribution to the proximity-effect-induced superconductivity in NM interlayer

  2. Protein synthesis during the initial phase of the temperature-induced bleaching response in Euglena gracilis

    International Nuclear Information System (INIS)

    Ortiz, W.

    1990-01-01

    Growing cultures of photoheterotrophic Euglena gracilis experience an increase in chlorophyll accumulation during the initial phase of the temperature-induced bleaching response suggesting an increase in the synthesis of plastid components at the bleaching temperature of 33 degree C. A primary goal of this work was to establish whether an increase in the synthesis of plastid proteins accompanies the observed increase in chlorophyll accumulation. In vivo pulse-labeling experiments with [ 35 S]sodium sulfate were carried out with cells grown at room temperature or at 33 degree C. The synthesis of a number of plastid polypeptides of nucleocytoplasmic origin, including some presumably novel polypeptides, increased in cultures treated for 15 hours at 33 degree C. In contrast, while synthesis of thylakoid proteins by the plastid protein synthesis machinery decreased modestly, synthesis of the large subunit of the enzyme ribulosebisphosphate carboxylase was strongly affected at the elevated temperature. Synthesis of novel plastid-encoded polypeptides was not induced at the bleaching temperature. It is concluded that protein synthesis in plastids declines during the initial phase of the temperature response in Euglena despite an overall increase in cellular protein synthesis and an increase in chlorophyll accumulation per cell

  3. Possible stibnite transformation at the friction surface of the semi-metallic friction composites designed for car brake linings

    Science.gov (United States)

    Matějka, V.; Lu, Y.; Matějková, P.; Smetana, B.; Kukutschová, J.; Vaculík, M.; Tomášek, V.; Zlá, S.; Fan, Y.

    2011-12-01

    After a friction process several changes in phase composition of friction composites are often registered. High temperature, accompanied by high pressure induced during braking can cause initiation of chemical reactions which do not run at room or elevated temperatures under the atmospheric pressure. Most of the studies in the field of tribochemistry at friction surfaces of automotive semi-metallic brake linings deal with phenolic resin degradation and corrosion of metallic components. The paper addresses the formation of elemental antimony as well as the alloying process of iron with antimony observed on the surface of laboratory prepared semi-metallic friction composites containing stibnite. The role of alumina abrasives in the process of stibnite transformation is also discussed and mechanism of stibnite transformation was outlined.

  4. Effects of 12 metal ions on iron regulatory protein 1 (IRP-1) and hypoxia-inducible factor-1 alpha (HIF-1α) and HIF-regulated genes

    International Nuclear Information System (INIS)

    Li Qin; Chen Haobin; Huang Xi; Costa, Max

    2006-01-01

    Several metal ions that are carcinogenic affect cellular iron homeostasis by competing with iron transporters or iron-regulated enzymes. Some metal ions can mimic a hypoxia response in cells under normal oxygen tension, and induce expression of HIF-1α-regulated genes. This study investigated whether 12 metal ions altered iron homeostasis in human lung carcinoma A549 cells as measured by an activation of IRP-1 and ferritin level. We also studied hypoxia signaling by measuring HIF-1α protein levels, hypoxia response element (HRE)-driven luciferase reporter activity, and Cap43 protein level (an HIF-1α responsive gene). Our results show the following: (i) Ni(II), Co(II), V(V), Mn(II), and to a lesser extent As(III) and Cu(II) activated the binding of IRP-1 to IRE after 24 h, while the other metal ions had no effect; (ii) 10 of 12 metal ions induced HIF-1α protein but to strikingly different degrees. Two of these metal ions, Al(III) and Cd(II), did not induce HIF-1α protein; however, as indicated below, only Ni(II), Co (II), and to lesser extent Mn(II) and V(V) activated HIF-1α-dependent transcription. The combined effects of both [Ni(II) + As(III)] and [Ni(II) + Cr(VI)] on HIF-1α protein were synergistic; (iii) Addition of Fe(II) with Ni(II), Co(II), and Cr(VI) attenuated the induction of HIF-1α after 4 h treatment; (iv) Ni(II), Co(II), and Mn(II) significantly decrease ferritin level after 24 h exposure; (v) Ni(II), Co(II), V(V), and Mn(II) activated HRE reporter gene after 20 h treatment; (vi) Ni(II), Co(II), V(V), and Mn(II) increased the HIF-1-dependent Cap43 protein level after 24 h treatment. In conclusion, only Ni (II), Co (II), and to a lesser extent Mn(II) and V(V) significantly stabilized HIF-1α protein, activated IRP, decreased the levels of ferritin, induced the transcription of HIF-dependent reporter, and increased the expression of Cap43 protein levels (HIF-dependent gene). The mechanism for the significant stabilization and elevation of HIF-1

  5. Quinonoid metal complexes: toward molecular switches.

    Science.gov (United States)

    Dei, Andrea; Gatteschi, Dante; Sangregorio, Claudio; Sorace, Lorenzo

    2004-11-01

    The peculiar redox-active character of quinonoid metal complexes makes them extremely appealing to design materials of potential technological interest. We show here how the tuning of the properties of these systems can be pursued by using appropriate molecular synthetic techniques. In particular, we focus our attention on metal polyoxolene complexes exhibiting intramolecular electron transfer processes involving either the ligand and the metal ion or the two dioxolene moieties of a properly designed ligand thus inducing electronic bistability. The transition between the two metastable electronic states can be induced by different external stimuli such as temperature, pressure, light, or pH suggesting the use of these systems for molecular switches.

  6. Research on Formation Mechanism of Dynamic Response and Residual Stress of Sheet Metal Induced by Laser Shock Wave

    Science.gov (United States)

    Feng, Aixin; Cao, Yupeng; Wang, Heng; Zhang, Zhengang

    2018-01-01

    In order to reveal the quantitative control of the residual stress on the surface of metal materials, the relevant theoretical and experimental studies were carried out to investigate the dynamic response of metal thin plates and the formation mechanism of residual stress induced by laser shock wave. In this paper, the latest research trends on the surface residual stress of laser shock processing technology were elaborated. The main progress of laser shock wave propagation mechanism and dynamic response, laser shock, and surface residual stress were discussed. It is pointed out that the multi-scale characterization of laser and material, surface residual stress and microstructure change is a new hotspot in laser shock strengthening technology.

  7. Laser-Induced Breakdown Spectroscopy for Rapid Discrimination of Heavy-Metal-Contaminated Seafood Tegillarca granosa

    Directory of Open Access Journals (Sweden)

    Guoli Ji

    2017-11-01

    Full Text Available Tegillarca granosa samples contaminated artificially by three kinds of toxic heavy metals including zinc (Zn, cadmium (Cd, and lead (Pb were attempted to be distinguished using laser-induced breakdown spectroscopy (LIBS technology and pattern recognition methods in this study. The measured spectra were firstly processed by a wavelet transform algorithm (WTA, then the generated characteristic information was subsequently expressed by an information gain algorithm (IGA. As a result, 30 variables obtained were used as input variables for three classifiers: partial least square discriminant analysis (PLS-DA, support vector machine (SVM, and random forest (RF, among which the RF model exhibited the best performance, with 93.3% discrimination accuracy among those classifiers. Besides, the extracted characteristic information was used to reconstruct the original spectra by inverse WTA, and the corresponding attribution of the reconstructed spectra was then discussed. This work indicates that the healthy shellfish samples of Tegillarca granosa could be distinguished from the toxic heavy-metal-contaminated ones by pattern recognition analysis combined with LIBS technology, which only requires minimal pretreatments.

  8. Visible-light-induced instability in amorphous metal-oxide based TFTs for transparent electronics

    Directory of Open Access Journals (Sweden)

    Tae-Jun Ha

    2014-10-01

    Full Text Available We investigate the origin of visible-light-induced instability in amorphous metal-oxide based thin film transistors (oxide-TFTs for transparent electronics by exploring the shift in threshold voltage (Vth. A large hysteresis window in amorphous indium-gallium-zinc-oxide (a-IGZO TFTs possessing large optical band-gap (≈3 eV was observed in a visible-light illuminated condition whereas no hysteresis window was shown in a dark measuring condition. We also report the instability caused by photo irradiation and prolonged gate bias stress in oxide-TFTs. Larger Vth shift was observed after photo-induced stress combined with a negative gate bias than the sum of that after only illumination stress and only negative gate bias stress. Such results can be explained by trapped charges at the interface of semiconductor/dielectric and/or in the gate dielectric which play a role in a screen effect on the electric field applied by gate voltage, for which we propose that the localized-states-assisted transitions by visible-light absorption can be responsible.

  9. Visible-light-induced instability in amorphous metal-oxide based TFTs for transparent electronics

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Tae-Jun [Department of Electronic Materials Engineering, Kwangwoon University, Seoul 139-701 (Korea, Republic of)

    2014-10-15

    We investigate the origin of visible-light-induced instability in amorphous metal-oxide based thin film transistors (oxide-TFTs) for transparent electronics by exploring the shift in threshold voltage (V{sub th}). A large hysteresis window in amorphous indium-gallium-zinc-oxide (a-IGZO) TFTs possessing large optical band-gap (≈3 eV) was observed in a visible-light illuminated condition whereas no hysteresis window was shown in a dark measuring condition. We also report the instability caused by photo irradiation and prolonged gate bias stress in oxide-TFTs. Larger V{sub th} shift was observed after photo-induced stress combined with a negative gate bias than the sum of that after only illumination stress and only negative gate bias stress. Such results can be explained by trapped charges at the interface of semiconductor/dielectric and/or in the gate dielectric which play a role in a screen effect on the electric field applied by gate voltage, for which we propose that the localized-states-assisted transitions by visible-light absorption can be responsible.

  10. Metal release from contaminated coastal sediments under changing pH conditions: Implications for metal mobilization in acidified oceans.

    Science.gov (United States)

    Wang, Zaosheng; Wang, Yushao; Zhao, Peihong; Chen, Liuqin; Yan, Changzhou; Yan, Yijun; Chi, Qiaoqiao

    2015-12-30

    To investigate the impacts and processes of CO2-induced acidification on metal mobilization, laboratory-scale experiments were performed, simulating the scenarios where carbon dioxide was injected into sediment-seawater layers inside non-pressurized chambers. Coastal sediments were sampled from two sites with different contamination levels and subjected to pre-determined pH conditions. Sediment samples and overlying water were collected for metal analysis after 10-days. The results indicated that CO2-induced ocean acidification would provoke increased metal mobilization causing adverse side-effects on water quality. The mobility of metals from sediment to the overlying seawater was correlated with the reduction in pH. Results of sequential extractions of sediments illustrated that exchangeable metal forms were the dominant source of mobile metals. Collectively, our data revealed that high metal concentrations in overlying seawater released from contaminated sediments under acidic conditions may strengthen the existing contamination gradients in Maluan Bay and represent a potential risk to ecosystem health in coastal environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Extra metal adatom surface diffusion simulation on 1/3 ML Si(111) √3×√3 metal-induced surfaces

    International Nuclear Information System (INIS)

    Luniakov, Yu V

    2013-01-01

    A first-principle simulation of the surface diffusion of an extra metal (Me) adatom has been performed on the corresponding 1/3 monolayer (ML) Si(111) √3×√3 Me-induced surfaces. Using the nudged elastic band (NEB) optimization method, the minimum energy paths and the activation energy barrier profiles for all known Me-inducing √3×√3 reconstruction on an Si(111) surface at the 1/3 ML coverage have been obtained and compared with the available experimental data. The activation barrier is shown to depend on the atomic size of the diffusing adatom: the barrier has the highest value for the largest Me adatom, Pb (0.44 eV); lower values for the smaller Me adatoms, Sn (0.36 eV), In (0.22 eV) and Ga (0.13 eV); and the lowest value for the smallest Me adatom, Al (0.08 eV). The Arrhenius pre-exponential factors that were obtained in the harmonic approximation are as large as ∼10 11−13 Hz for all of the investigated surfaces, which supports the single-adatom diffusion model considered here. (paper)

  12. Fabrication of Metallic Hollow Nanoparticles

    Science.gov (United States)

    Kim, Jae-Woo (Inventor); Choi, Sr., Sang H. (Inventor); Lillehei, Peter T. (Inventor); Chu, Sang-Hyon (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2016-01-01

    Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH.sub.4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.

  13. Development and initial characterization of amorphous metals rich in W and/or RE

    International Nuclear Information System (INIS)

    Giessen, B.C.; Polk, D.E.

    1978-01-01

    Studies of refractory metal alloys concentrated on two families of such alloys: ternary tungsten alloys and binary T 5 -T 9 alloys. The former were selected because of the possibility of finding desirable glasses consisting of low-cost components; the latter were chosen because they could be quenched into metallic glasses with high thermal stability and good toughness. Alloys selected for study were prepared by arc-melting and were subsequently rapidly quenched in an arc furnace quenching unit. Considerable difficulties were encountered in preparing metal--metalloid alloys, such as W--B, as well as alloys combining high melting and low melting transition metals, such as W and Ni. Brittleness of ductility as revealed by a bend test was noted. Measurements were made up to 1000 K and resistivity measurements up to 1300 K. The probe for electrical resistivity measurements at high temperatures has been constructed and tested. To determine the elastic (Young's) moduli of new metallic glasses prepared in this program, equipment utilizing the pulse--echo method was set up

  14. Crack initiation and growth in welded structures

    International Nuclear Information System (INIS)

    Assire, A.

    2000-01-01

    This work concerns the remaining life assessment of a structure containing initial defects of manufacturing. High temperature crack initiation and growth are studied for austenitic stainless steels, and defect assessment methods are improved in order to take into account welded structures. For these one, the probability to have a defect is significant. Two kinds of approaches are commonly used for defect assessment analysis. Fracture mechanics global approach with an energetic criterion, and local approach with a model taking into account the physical damage mechanism. For both approaches mechanical fields (stress and strain) have to be computed everywhere within the structure. Then, Finite Element computation is needed. The first part of the thesis concerns the identification of non linear kinematic and isotropic constitutive models. A pseudo-analytical method is proposed for a 'Two Inelastic Strain' model. This method provides a strategy of identification with a mechanical meaning, and this enables to associate each parameter to a physical phenomenon. Existing identifications are improved for cyclic plasticity and creep on a large range of stress levels. The second part concerns high temperature crack initiation and growth in welded structures. Finite Element analysis on plate and tube experimental configuration enable to understand the phenomenons of interaction between base metal and weld metal under mechanical and thermal loading. Concerning global approach, criteria based on C* parameter (Rice integral for visco-plasticity) are used. Finite Element computations underline the fact that for a defect located in the weld metal, C* values strongly depend on the base metal creep strain rate, because widespread visco-plasticity is located in both metals. A simplified method, based on the reference stress approach, is proposed and validated with Finite Element results. Creep crack growth simplified assessment is a quite good validation of the experimental results

  15. Site specific X-ray induced changes in organic and metal organic compounds and their influence on global radiation damage

    International Nuclear Information System (INIS)

    Heintz, Desiree Ellen

    2012-07-01

    The aim of this work was to systematically investigate the effects of specific and global X-ray radiation damage to biological samples and obtain a conclusive model to describe the underlying principles. Based on the systematic studies performed in this work, it was possible to propose two conclusive mechanisms to describe X-ray induced photoreduction and global radiation damage. The influence of chemical composition, temperature and solvent on X-ray induced photoreduction was investigated by X-ray Absorption Near Edge Spectroscopy and single crystal X-ray diffraction of two B12 cofactors - cyano- and methylcobalamin - as well as iron(II) and iron(III) complexes. The obtained results revealed that X-ray induced photoreduction is a ligand dependent process, with a redox reaction taking place within the complex. It could further be shown that selective hydrogen abstraction plays an important role in the process of X-ray induced photoreduction. Based on the experimental results of this work, a model to describe X-ray induced photoreduction of metal organic complexes could be proposed. The process of X-ray induced hydrogen abstraction was further investigated in a combined X-ray and neutron diffraction study on the amino acids L-serine and L-alanine, which were used as model compounds for proteins, and the nucleoside deoxythymidine (thymidine) as a model for DNA. A damage mechanism for L-serine could be found. It involves the abstraction of two hydrogen atoms, one from the hydroxyl group and one from the adjacent methylene group. Such a hydrogen abstraction results in the formation of a carbonyl group. X-ray diffraction measurements on cyano- and methylcobalamin as well as on three metal amino acid complexes, containing nickel(II) and copper(II), respectively, were conducted to investigate the contribution of X-ray induced photoreduction to global radiation damage. Results from these measurements combined with the results from L-serine, L-alanine and thymidine allowed

  16. Site specific X-ray induced changes in organic and metal organic compounds and their influence on global radiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, Desiree Ellen

    2012-07-15

    The aim of this work was to systematically investigate the effects of specific and global X-ray radiation damage to biological samples and obtain a conclusive model to describe the underlying principles. Based on the systematic studies performed in this work, it was possible to propose two conclusive mechanisms to describe X-ray induced photoreduction and global radiation damage. The influence of chemical composition, temperature and solvent on X-ray induced photoreduction was investigated by X-ray Absorption Near Edge Spectroscopy and single crystal X-ray diffraction of two B12 cofactors - cyano- and methylcobalamin - as well as iron(II) and iron(III) complexes. The obtained results revealed that X-ray induced photoreduction is a ligand dependent process, with a redox reaction taking place within the complex. It could further be shown that selective hydrogen abstraction plays an important role in the process of X-ray induced photoreduction. Based on the experimental results of this work, a model to describe X-ray induced photoreduction of metal organic complexes could be proposed. The process of X-ray induced hydrogen abstraction was further investigated in a combined X-ray and neutron diffraction study on the amino acids L-serine and L-alanine, which were used as model compounds for proteins, and the nucleoside deoxythymidine (thymidine) as a model for DNA. A damage mechanism for L-serine could be found. It involves the abstraction of two hydrogen atoms, one from the hydroxyl group and one from the adjacent methylene group. Such a hydrogen abstraction results in the formation of a carbonyl group. X-ray diffraction measurements on cyano- and methylcobalamin as well as on three metal amino acid complexes, containing nickel(II) and copper(II), respectively, were conducted to investigate the contribution of X-ray induced photoreduction to global radiation damage. Results from these measurements combined with the results from L-serine, L-alanine and thymidine allowed

  17. Iminobisphosphines to (non-)symmetrical diphosphinoamine ligands : Metal-induced synthesis of diphosphorus nickel complexes and application in ethylene oligomerisation reactions

    NARCIS (Netherlands)

    Boulens, Pierre; Lutz, Martin|info:eu-repo/dai/nl/304828971; Jeanneau, Erwann; Olivier-Bourbigou, Hélène; Reek, Joost N H; Breuil, Pierre Alain R

    2014-01-01

    We describe the synthesis of a range of novel iminobisphosphine ligands based on a sulfonamido moiety [R1SO2N=P(R 2)2-P(R3)2]. These molecules rearrange in the presence of nickel by metal-induced breakage of the P-P bond to yield symmetrical and nonsymmetrical diphosphinoamine nickel complexes of

  18. Chemodynamics of heavy metals in long-term contaminated soils: metal speciation in soil solution.

    Science.gov (United States)

    Kim, Kwon-Rae; Owens, Gary

    2009-01-01

    The concentration and speciation of heavy metals in soil solution isolated from long-term contaminated soils were investigated. The soil solution was extracted at 70% maximum water holding capacity (MWHC) after equilibration for 24 h. The free metal concentrations (Cd2+, CU2+, Pb2+, and Zn2+) in soil solution were determined using the Donnan membrane technique (DMT). Initially the DMT was validated using artificial solutions where the percentage of free metal ions were significantly correlated with the percentages predicted using MINTEQA2. However, there was a significant difference between the absolute free ion concentrations predicted by MINTEQA2 and the values determined by the DMT. This was due to the significant metal adsorption onto the cation exchange membrane used in the DMT with 20%, 28%, 44%, and 8% mass loss of the initial total concentration of Cd, Cu, Pb, and Zn in solution, respectively. This could result in a significant error in the determination of free metal ions when using DMT if no allowance for membrane cation adsorption was made. Relative to the total soluble metal concentrations the amounts of free Cd2+ (3%-52%) and Zn2+ (11%-72%) in soil solutions were generally higher than those of Cu2+ (0.2%-30%) and Pb2+ (0.6%-10%). Among the key soil solution properties, dissolved heavy metal concentrations were the most significant factor governing free metal ion concentrations. Soil solution pH showed only a weak relationship with free metal ion partitioning coefficients (K(p)) and dissolved organic carbon did not show any significant influence on K(p).

  19. Electrochemically induced maskless metal deposition on micropore wall.

    Science.gov (United States)

    Liu, Jie; Hébert, Clément; Pham, Pascale; Sauter-Starace, Fabien; Haguet, Vincent; Livache, Thierry; Mailley, Pascal

    2012-05-07

    By applying an external electric field across a micropore via an electrolyte, metal ions in the electrolyte can be reduced locally onto the inner wall of the micropore, which was fabricated in a silica-covered silicon membrane. This maskless metal deposition on the silica surface is a result of the pore membrane polarization in the electric field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors

    KAUST Repository

    Zhu, Zhiyong

    2011-10-14

    Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. All these systems are identified as direct-band-gap semiconductors. Giant spin splittings of 148–456 meV result from missing inversion symmetry. Full out-of-plane spin polarization is due to the two-dimensional nature of the electron motion and the potential gradient asymmetry. By suppression of the Dyakonov-Perel spin relaxation, spin lifetimes are expected to be very long. Because of the giant spin splittings, the studied materials have great potential in spintronics applications.

  1. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2011-01-01

    Fully relativistic first-principles calculations based on density functional theory are performed to study the spin-orbit-induced spin splitting in monolayer systems of the transition-metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. All these systems are identified as direct-band-gap semiconductors. Giant spin splittings of 148–456 meV result from missing inversion symmetry. Full out-of-plane spin polarization is due to the two-dimensional nature of the electron motion and the potential gradient asymmetry. By suppression of the Dyakonov-Perel spin relaxation, spin lifetimes are expected to be very long. Because of the giant spin splittings, the studied materials have great potential in spintronics applications.

  2. Laser-induced plasmonic colours on metals

    Science.gov (United States)

    Guay, Jean-Michel; Calà Lesina, Antonino; Côté, Guillaume; Charron, Martin; Poitras, Daniel; Ramunno, Lora; Berini, Pierre; Weck, Arnaud

    2017-07-01

    Plasmonic resonances in metallic nanoparticles have been used since antiquity to colour glasses. The use of metal nanostructures for surface colourization has attracted considerable interest following recent developments in plasmonics. However, current top-down colourization methods are not ideally suited to large-scale industrial applications. Here we use a bottom-up approach where picosecond laser pulses can produce a full palette of non-iridescent colours on silver, gold, copper and aluminium. We demonstrate the process on silver coins weighing up to 5 kg and bearing large topographic variations (~1.5 cm). We find that colours are related to a single parameter, the total accumulated fluence, making the process suitable for high-throughput industrial applications. Statistical image analyses of laser-irradiated surfaces reveal various nanoparticle size distributions. Large-scale finite-difference time-domain computations based on these nanoparticle distributions reproduce trends seen in reflectance measurements, and demonstrate the key role of plasmonic resonances in colour formation.

  3. Microstructure-based approach for predicting crack initiation and early growth in metals.

    Energy Technology Data Exchange (ETDEWEB)

    Cox, James V.; Emery, John M.; Brewer, Luke N.; Reedy, Earl David, Jr.; Puskar, Joseph David; Bartel, Timothy James; Dingreville, Remi P. M.; Foulk, James W., III; Battaile, Corbett Chandler; Boyce, Brad Lee

    2009-09-01

    Fatigue cracking in metals has been and is an area of great importance to the science and technology of structural materials for quite some time. The earliest stages of fatigue crack nucleation and growth are dominated by the microstructure and yet few models are able to predict the fatigue behavior during these stages because of a lack of microstructural physics in the models. This program has developed several new simulation tools to increase the microstructural physics available for fatigue prediction. In addition, this program has extended and developed microscale experimental methods to allow the validation of new microstructural models for deformation in metals. We have applied these developments to fatigue experiments in metals where the microstructure has been intentionally varied.

  4. Debris flow-induced topographic changes: effects of recurrent debris flow initiation.

    Science.gov (United States)

    Chen, Chien-Yuan; Wang, Qun

    2017-08-12

    Chushui Creek in Shengmu Village, Nantou County, Taiwan, was analyzed for recurrent debris flow using numerical modeling and geographic information system (GIS) spatial analysis. The two-dimensional water flood and mudflow simulation program FLO-2D were used to simulate debris flow induced by rainfall during typhoon Herb in 1996 and Mindulle in 2004. Changes in topographic characteristics after the debris flows were simulated for the initiation of hydrological characteristics, magnitude, and affected area. Changes in topographic characteristics included those in elevation, slope, aspect, stream power index (SPI), topographic wetness index (TWI), and hypsometric curve integral (HI), all of which were analyzed using GIS spatial analysis. The results show that the SPI and peak discharge in the basin increased after a recurrence of debris flow. The TWI was higher in 2003 than in 2004 and indicated higher potential of landslide initiation when the slope of the basin was steeper. The HI revealed that the basin was in its mature stage and was shifting toward the old stage. Numerical simulation demonstrated that the parameters' mean depth, maximum depth, affected area, mean flow rate, maximum flow rate, and peak flow discharge were increased after recurrent debris flow, and peak discharge occurred quickly.

  5. Investigation on the Crack Initiation of V-Shaped Notch Tip in Precision Cropping

    Directory of Open Access Journals (Sweden)

    Lijun Zhang

    2014-01-01

    Full Text Available The crack initiation of V-shaped notch tip has a very important influence on the cross-section quality and the cropping time for every segment of metal bar in course of low stress precision cropping. By the finite element method, the influence of machining precision of V-shaped notch bottom corner on the crack initiation location is analyzed and it is pointed out that the crack initiation point locates in the place at the maximal equivalent stress change rate on V-shaped notch surface. The judgment criterion of the crack initiation direction is presented and the corresponding crack initiation angle can be calculated by means of the displacement extrapolation method. The factual crack initiation angle of the metal bar has been measured by using the microscopic measurement system. The formula of the crack initiation life of V-shaped notch tip is built, which mainly includes the stress concentration factor of V-shaped notch, the tensile properties of metal material, and the cyclic loading conditions. The experimental results show that the obtained theoretical analyses about the crack initiation location, the crack initiation direction, and the crack initiation time in this paper are correct. It is also shown that the crack initiation time accounts for about 80% of the cropping time for every segment of the metal bar.

  6. Heavy metals and soil microbes

    NARCIS (Netherlands)

    Giller, K.E.; Witter, E.; McGrath, S.

    2009-01-01

    The discovery in the early 1980s that soil microorganisms, and in particular the symbiotic bacteria Rhizobium, were highly sensitive to heavy metals initiated a new line of research. This has given us important insights into a range of topics: ecotoxicology, bioavailability of heavy metals, the role

  7. Superconductor-Metal-Insulator transition in two dimensional Ta thin Films

    Science.gov (United States)

    Park, Sun-Gyu; Kim, Eunseong

    2013-03-01

    Superconductor-insulator transition has been induced by tuning film thickness or magnetic field. Recent electrical transport measurements of MoGe, Bi, Ta thin films revealed an interesting intermediate metallic phase which intervened superconducting and insulating phases at certain range of magnetic field. Especially, Ta thin films show the characteristic IV behavior at each phase and the disorder tuned intermediate metallic phase [Y. Li, C. L. Vicente, and J. Yoon, Physical Review B 81, 020505 (2010)]. This unexpected metallic phase can be interpreted as a consequence of vortex motion or contribution of fermionic quasiparticles. In this presentation, we report the scaling behavior during the transitions in Ta thin film as well as the transport measurements in various phases. Critical exponents v and z are obtained in samples with wide ranges of disorder. These results reveal new universality class appears when disorder exceeds a critical value. Dynamical exponent z of Superconducting sample is found to be 1, which is consistent with theoretical prediction of unity. z in a metallic sample is suddenly increased to be approximately 2.5. This critical exponent is much larger than the value found in other system and theoretical prediction. We gratefully acknowledge the financial support by the National Research Foundation of Korea through the Creative Research Initiatives.

  8. Terahertz Induced Electromigration

    DEFF Research Database (Denmark)

    Strikwerda, Andrew; Zalkovskij, Maksim; Iwaszczuk, Krzysztof

    2014-01-01

    We report the first observation of THz-field-induced electromigration in subwavelength metallic gap structures after exposure to intense single-cycle, sub-picosecond electric field transients of amplitude up to 400 kV/cm.......We report the first observation of THz-field-induced electromigration in subwavelength metallic gap structures after exposure to intense single-cycle, sub-picosecond electric field transients of amplitude up to 400 kV/cm....

  9. Internal and surface phenomena in metal combustion

    Science.gov (United States)

    Dreizin, Edward L.; Molodetsky, Irina E.; Law, Chung K.

    1995-01-01

    Combustion of metals has been widely studied in the past, primarily because of their high oxidation enthalpies. A general understanding of metal combustion has been developed based on the recognition of the existence of both vapor-phase and surface reactions and involvement of the reaction products in the ensuing heterogeneous combustion. However, distinct features often observed in metal particle combustion, such as brightness oscillations and jumps (spearpoints), disruptive burning, and non-symmetric flames are not currently understood. Recent metal combustion experiments using uniform high-temperature metal droplets produced by a novel micro-arc technique have indicated that oxygen dissolves in the interior of burning particles of certain metals and that the subsequent transformations of the metal-oxygen solutions into stoichiometric oxides are accompanied with sufficient heat release to cause observed brightness and temperature jumps. Similar oxygen dissolution has been observed in recent experiments on bulk iron combustion but has not been associated with such dramatic effects. This research addresses heterogeneous metal droplet combustion, specifically focusing on oxygen penetration into the burning metal droplets, and its influence on the metal combustion rate, temperature history, and disruptive burning. A unique feature of the experimental approach is the combination of the microgravity environment with a novel micro-arc Generator of Monodispersed Metal Droplets (GEMMED), ensuring repeatable formation and ignition of uniform metal droplets with controllable initial temperature and velocity. The droplet initial temperatures can be adjusted within a wide range from just above the metal melting point, which provides means to ignite droplets instantly upon entering an oxygen containing environment. Initial droplet velocity will be set equal to zero allowing one to organize metal combustion microgravity experiments in a fashion similar to usual microgravity

  10. Internal and Surface Phenomena in Heterogenous Metal Combustion

    Science.gov (United States)

    Dreizin, Edward L.

    1997-01-01

    The phenomenon of gas dissolution in burning metals was observed in recent metal combustion studies, but it could not be adequately explained by the traditional metal combustion models. The research reported here addresses heterogeneous metal combustion with emphasis on the processes of oxygen penetration inside burning metal and its influence on the metal combustion rate, temperature history, and disruptive burning. The unique feature of this work is the combination of the microgravity environment with a novel micro-arc generator of monodispersed metal droplets, ensuring repeatable formation and ignition of uniform metal droplets with a controllable initial temperature and velocity. Burning droplet temperature is measured in real time with a three wavelength pyrometer. In addition, particles are rapidly quenched at different combustion times, cross-sectioned, and examined using SEM-based techniques to retrieve the internal composition history of burning metal particles. When the initial velocity of a spherical particle is nearly zero, the microgravity environment makes it possible to study the flame structure, the development of flame nonsymmetry, and correlation of the flame shape with the heterogeneous combustion processes.

  11. Negative differential resistance effect induced by metal ion implantation in SiO2 film for multilevel RRAM application

    Science.gov (United States)

    Wu, Facai; Si, Shuyao; Shi, Tuo; Zhao, Xiaolong; Liu, Qi; Liao, Lei; Lv, Hangbing; Long, Shibing; Liu, Ming

    2018-02-01

    Pt/SiO2:metal nanoparticles/Pt sandwich structure is fabricated with the method of metal ion (Ag) implantation. The device exhibits multilevel storage with appropriate R off/R on ratio, good endurance and retention properties. Based on transmission electron microscopy and energy dispersive spectrometer analysis, we confirm that Pt nanoparticles are spurted into SiO2 film from Pt bottom electrode by Ag implantation; during electroforming, the local electric field can be enhanced by these Pt nanoparticles, meanwhile the Ag nanoparticles constantly migrate toward the Pt nanoparticles. The implantation induced nanoparticles act as trap sites in the resistive switching layer and play critical roles in the multilevel storage, which is evidenced by the negative differential resistance effect in the current-voltage (I-V) measurements.

  12. Analysis of early initiating event(s) in radiation-induced thymic lymphomagenesis

    International Nuclear Information System (INIS)

    Muto, Masahiro; Ying Chen; Kubo, Eiko; Mita, Kazuei

    1996-01-01

    Since the T cell receptor rearrangement is a sequential process and unique to the progeny of each clone, we investigated the early initiating events in radiation-induced thymic lymphomagenesis by comparing the oncogenic alterations with the pattern of γ T cell receptor (TCR) rearrangements. We reported previously that after leukemogenic irradiation, preneoplastic cells developed, albeit infrequently, from thymic leukemia antigen-2 + (TL-2 + ) thymocytes. Limited numbers of TL-2 + cells from individual irradiated B10.Thy-1.1 mice were injected into B10.Thy-1.2 mice intrathymically, and the common genetic changes among the donor-type T cell lymphomas were investigated with regard to p53 gene and chromosome aberrations. The results indicated that some mutations in the p53 gene had taken place in these lymphomas, but there was no common mutation among the donor-type lymphomas from individual irradiated mice, suggesting that these mutations were late-occurring events in the process of oncogenesis. On the other hand, there were common chromosome aberrations or translocations such as trisomy 15, t(7F; 10C), t(1A; 13D) or t(6A; XB) among the donor-type lymphomas derived from half of the individual irradiated mice. This indicated that the aberrations/translocations, which occurred in single progenitor cells at the early T cell differentiation either just before or after γ T cell receptor rearrangements, might be important candidates for initiating events. In the donor-type lymphomas from the other half of the individual irradiated mice, microgenetic changes were suggested to be initial events and also might take place in single progenitor cells just before or right after γ TCR rearrangements. (author)

  13. Band structure engineering and vacancy induced metallicity at the GaAs-AlAs interface

    KAUST Repository

    Upadhyay Kahaly, M.

    2011-09-20

    We study the epitaxial GaAs-AlAs interface of wide gap materials by full-potential density functional theory. AlAsthin films on a GaAs substrate and GaAsthin films on an AlAs substrate show different trends for the electronic band gap with increasing film thickness. In both cases, we find an insulating state at the interface and a negligible charge transfer even after relaxation. Differences in the valence and conduction band edges suggest that the energy band discontinuities depend on the growth sequence. Introduction of As vacancies near the interface induces metallicity, which opens great potential for GaAs-AlAs heterostructures in modern electronics.

  14. In situ AFM investigation of electrochemically induced surface-initiated atom-transfer radical polymerization.

    Science.gov (United States)

    Li, Bin; Yu, Bo; Zhou, Feng

    2013-02-12

    Electrochemically induced surface-initiated atom-transfer radical polymerization is traced by in situ AFM technology for the first time, which allows visualization of the polymer growth process. It affords a fundamental insight into the surface morphology and growth mechanism simultaneously. Using this technique, the polymerization kinetics of two model monomers were studied, namely the anionic 3-sulfopropyl methacrylate potassium salt (SPMA) and the cationic 2-(metharyloyloxy)ethyltrimethylammonium chloride (METAC). The growth of METAC is significantly improved by screening the ammonium cations by the addition of ionic liquid electrolyte in aqueous solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Production of metals and compounds by radiation chemistry

    Science.gov (United States)

    Marsik, S. J.; Philipp, W. H.

    1969-01-01

    Preparation of metals and compounds by radiation induced chemical reactions involves irradiation of metal salt solutions with high energy electrons. This technique offers a method for the preparation of high purity metals with minimum contamination from the container material or the cover gas.

  16. Biopolymer nanostructures induced by plasma irradiation and metal sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Slepička, P., E-mail: petr.slepicka@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Juřík, P. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Malinský, P.; Macková, A. [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Rez, Prague 25068 (Czech Republic); Faculty of Science, J.E. Purkyně University, Ústí nad Labem (Czech Republic); Kasálková, N. Slepičková; Švorčík, V. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic)

    2014-08-01

    Modification based on polymer surface exposure to plasma treatment exhibits an easy and cheap technique for polymer surface nanostructuring. The influence of argon plasma treatment on biopolymer poly(L-lactide acid (PLLA) will be presented in this paper. The combination of Ar{sup +} ion irradiation, consequent sputter metallization (platinum) and thermal annealing of polymer surface will be summarized. The surface morphology was studied using atomic force microscopy. The Rutherford Backscattering Spectroscopy and X-ray Photoelectron Spectroscopy were used as analytical methods. The combination of plasma treatment with consequent thermal annealing and/or metal sputtering led to the change of surface morphology and its elemental ratio. The surface roughness and composition has been strongly influenced by the modification parameters and metal layer thickness. By plasma treatment of polymer surface combined with consequent annealing or metal deposition can be prepared materials applicable both in tissue engineering as cell carriers, but also in integrated circuit manufacturing.

  17. Ion-induced electron emission from clean metals

    International Nuclear Information System (INIS)

    Baragiola, R.A.; Alonso, E.V.; Ferron, J.; Oliva-Florio, A.; Universidad Nacional de Cuyo, San Carlos de Bariloche

    1979-01-01

    We report recent experimental work on electron emission from clean polycrystalline metal surfaces under ion bombardment. We critically discuss existing theories and point out the presently unsolved problems. (orig.)

  18. Tracking environmental impacts in global product chains - Rare Earth Metals and other critical metals used in the cleantech industry

    Energy Technology Data Exchange (ETDEWEB)

    Pathan, A.; Schilli, A.; Johansson, J.; Vehvilaeinen, I.; Larsson, A.; Hutter, J.

    2013-03-15

    Metals form a central part of the global economy, but their extraction and supply are linked to several environmental and social concerns. This study aims to create a picture of the supply chain of Rare Earth Metals (REMs) and other critical metals used in the clean technology (cleantech) sectors of electric vehicles and solar panels. The study examines how Nordic cleantech companies are aware and acting on the challenges related to the lifecycle of these metals and what are the potentials to minimise environmental and social impacts. Recommendations of the study can be summarised as three initiatives: establishment of an awareness platform and roundtable initiative (short-term), research and information gathering (mid-term), and development of closed-loop solutions (long-term). (Author)

  19. Expression of mtc in Folsomia candida indicative of metal pollution in soil

    International Nuclear Information System (INIS)

    Nota, Benjamin; Vooijs, Riet; Straalen, Nico M. van; Roelofs, Dick

    2011-01-01

    The soil-living springtail Folsomia candida is frequently used in reproduction bioassays to assess soil contamination. Alternatively, the response of genes to contamination is assessed. In this study the expression of F. candida's gene encoding the deduced metallothionein-like motif containing protein (MTC) was assessed, using quantitative PCR, in response to six different metals, each at two concentrations in soil. The expression of mtc was induced after exposure to all metals, except for one chromium concentration. Exposure to soil originating from metal-contaminated field sites also induced mtc, while the expression did not change in response to a polycyclic aromatic hydrocarbon. Since this transcript is induced by most of the tested metals, it may potentially be a good indicator of metal contamination. The presented gene expression assay might become a useful tool to screen potentially polluted sites, in order to identify the ones that need further ecotoxicological investigation. - Highlights: → mtc expression in the springtail Folsomia candida is measured in response to different metals. → Expression of this gene changed in response to all tested metals, except for one. → Metal-contaminated field soils also changed the expression of mtc significantly. → The polycyclic aromatic hydrocarbon phenanthrene did not change mtc's expression. → mtc expression may be a specific indicator of metal soil contamination. - Exposure to metal containing soil induces the expression of mtc in the springtail Folsomia candida.

  20. Multiplicity dependence of matrix-induced frequency shifts for atomic transitions of the group 12 metals in rare gas solids

    International Nuclear Information System (INIS)

    Laursen, S.L.; Cartland, H.E.

    1991-01-01

    Atomic resonances of the group 12 metal atoms, Hg, Cd, and Zn, undergo frequency shifts from the gas phase atomic line when trapped in rare gas matrices of Ar, Kr, and Xe at 12 K. As expected, the shifts are approximately linear in polarizability of the rare gas, but the slope of this line depends on whether the transition in question is 1 P 1 left-arrow 1 S 0 or 3 P 1 left-arrow 1 S 0 . Thus the matrix-induced frequency shift is dependent on the singlet or triplet nature of the excited state as well as on the matrix material. This dependence on multiplicity is discussed in terms of interactions between the excited-state atomic orbitals and the matrix. The results are compared to matrix studies of other metals and to related gas-phase work on diatomic van der Waals complexes of group 12 metals with rare gases

  1. The Role of III-V Substrate Roughness and Deoxidation Induced by Digital Etch in Achieving Low Resistance Metal Contacts

    Directory of Open Access Journals (Sweden)

    Florent Ravaux

    2017-06-01

    Full Text Available To achieve low contact resistance between metal and III-V material, transmission-line-model (TLM structures of molybdenum (Mo were fabricated on indium phosphide (InP substrate on the top of an indium gallium arsenide (InGaAs layer grown by molecular beam epitaxy. The contact layer was prepared using a digital etch procedure before metal deposition. The contact resistivity was found to decrease significantly with the cleaning process. High Resolution Transmission & Scanning Electron Microscopy (HRTEM & HRSTEM investigations revealed that the surface roughness of treated samples was increased. Further analysis of the metal-semiconductor interface using Energy Electron Loss Spectroscopy (EELS showed that the amount of oxides (InxOy, GaxOy or AsxOy was significantly decreased for the etched samples. These results suggest that the low contact resistance obtained after digital etching is attributed to the combined effects of the induced surface roughness and oxides removal during the digital etch process.

  2. Post-initiation chlorophyllin exposure does not modulate aflatoxin-induced foci in the liver and colon of rats

    Directory of Open Access Journals (Sweden)

    Orner Gayle A

    2006-02-01

    Full Text Available Abstract Chlorophyllin (CHL is a promising chemopreventive agent believed to block cancer primarily by inhibiting carcinogen uptake through the formation of molecular complexes with the carcinogens. However, recent studies suggest that CHL may have additional biological effects particularly when given after the period of carcinogen treatment. This study examines the post-initiation effects of CHL towards aflatoxin B1 (AFB1-induced preneoplastic foci of the liver and colon. The single concentration of CHL tested in this study (0.1% in the drinking water had no significant effects on AFB1-induced foci of the liver and colons of rats.

  3. Inhibition of Ribosome Recruitment Induces Stress Granule Formation Independently of Eukaryotic Initiation Factor 2α Phosphorylation

    Science.gov (United States)

    Mazroui, Rachid; Sukarieh, Rami; Bordeleau, Marie-Eve; Kaufman, Randal J.; Northcote, Peter; Tanaka, Junichi; Gallouzi, Imed

    2006-01-01

    Cytoplasmic aggregates known as stress granules (SGs) arise as a consequence of cellular stress and contain stalled translation preinitiation complexes. These foci are thought to serve as sites of mRNA storage or triage during the cell stress response. SG formation has been shown to require induction of eukaryotic initiation factor (eIF)2α phosphorylation. Herein, we investigate the potential role of other initiation factors in this process and demonstrate that interfering with eIF4A activity, an RNA helicase required for the ribosome recruitment phase of translation initiation, induces SG formation and that this event is not dependent on eIF2α phosphorylation. We also show that inhibition of eIF4A activity does not impair the ability of eIF2α to be phosphorylated under stress conditions. Furthermore, we observed SG assembly upon inhibition of cap-dependent translation after poliovirus infection. We propose that SG modeling can occur via both eIF2α phosphorylation-dependent and -independent pathways that target translation initiation. PMID:16870703

  4. Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2alpha phosphorylation.

    Science.gov (United States)

    Mazroui, Rachid; Sukarieh, Rami; Bordeleau, Marie-Eve; Kaufman, Randal J; Northcote, Peter; Tanaka, Junichi; Gallouzi, Imed; Pelletier, Jerry

    2006-10-01

    Cytoplasmic aggregates known as stress granules (SGs) arise as a consequence of cellular stress and contain stalled translation preinitiation complexes. These foci are thought to serve as sites of mRNA storage or triage during the cell stress response. SG formation has been shown to require induction of eukaryotic initiation factor (eIF)2alpha phosphorylation. Herein, we investigate the potential role of other initiation factors in this process and demonstrate that interfering with eIF4A activity, an RNA helicase required for the ribosome recruitment phase of translation initiation, induces SG formation and that this event is not dependent on eIF2alpha phosphorylation. We also show that inhibition of eIF4A activity does not impair the ability of eIF2alpha to be phosphorylated under stress conditions. Furthermore, we observed SG assembly upon inhibition of cap-dependent translation after poliovirus infection. We propose that SG modeling can occur via both eIF2alpha phosphorylation-dependent and -independent pathways that target translation initiation.

  5. Giant metal sputtering yields induced by 20-5000 keV/atom gold clusters

    International Nuclear Information System (INIS)

    Andersen, H.H.; Brunelle, A.; Della-Negra, S.; Depauw, J.; Jacquet, D.; Le Beyec, Y.

    1997-01-01

    Very large non-linear effects have been found in cluster-induced metal sputtering over a broad projectile energy interval for the first time. Recently available cluster beams from tandem accelerators have allowed sputtering yield measurements to be made with Au 1 to Au 5 from 20 keV/atom to 5 MeV/atom. The cluster-sputtering yield maxima were found at the same total energy but not at the same energy/atom as expected. For Au 5 a yield as high as 3000 was reached at 150 keV/atom while the Au 1 yield was only 55 at the same velocity. The Sigmund-Claussen thermal spike theory, which fits published data at low energy, cannot reproduce our extended new data set. (author)

  6. Magnetic metallic multilayers

    International Nuclear Information System (INIS)

    Hood, R.Q.

    1994-04-01

    Utilizing self-consistent Hartree-Fock calculations, several aspects of multilayers and interfaces are explored: enhancement and reduction of the local magnetic moments, magnetic coupling at the interfaces, magnetic arrangements within each film and among non-neighboring films, global symmetry of the systems, frustration, orientation of the various moments with respect to an outside applied field, and magnetic-field induced transitions. Magnetoresistance of ferromagnetic-normal-metal multilayers is found by solving the Boltzmann equation. Results explain the giant negative magnetoresistance encountered in these systems when an initial antiparallel arrangement is changed into a parallel configuration by an external magnetic field. The calculation depends on (1) geometric parameters (thicknesses of layers), (2) intrinsic metal parameters (number of conduction electrons, magnetization, and effective masses in layers), (3) bulk sample properties (conductivity relaxation times), (4) interface scattering properties (diffuse scattering versus potential scattering at the interfaces, and (5) outer surface scattering properties (specular versus diffuse surface scattering). It is found that a large negative magnetoresistance requires considerable asymmetry in interface scattering for the two spin orientations. Features of the interfaces that may produce an asymmetrical spin-dependent scattering are studied: varying interfacial geometric random roughness with no lateral coherence, correlated (quasi-periodic) roughness, and varying chemical composition of the interfaces. The interplay between these aspects of the interfaces may enhance or suppress the magnetoresistance, depending on whether it increases or decreases the asymmetry in the spin-dependent scattering of the conduction electrons

  7. Evidence of a Bottom-heavy Initial Mass Function in Massive Early-type Galaxies from Near-infrared Metal Lines

    Science.gov (United States)

    Lagattuta, David J.; Mould, Jeremy R.; Forbes, Duncan A.; Monson, Andrew J.; Pastorello, Nicola; Persson, S. Eric

    2017-09-01

    We present new evidence for a variable stellar initial mass function (IMF) in massive early-type galaxies, using high-resolution, near-infrared spectroscopy from the Folded-port InfraRed Echellette spectrograph (FIRE) on the Magellan Baade Telescope at Las Campanas Observatory. In this pilot study, we observe several gravity-sensitive metal lines between 1.1 and 1.3 μm in eight highly luminous (L˜ 10{L}* ) nearby galaxies. Thanks to the broad wavelength coverage of FIRE, we are also able to observe the Ca II triplet feature, which helps with our analysis. After measuring the equivalent widths (EWs) of these lines, we notice mild to moderate trends between EW and central velocity dispersion (σ), with some species (K I, Na I, Mn I) showing a positive EW-σ correlation and others (Mg I, Ca II, Fe I) a negative one. To minimize the effects of metallicity, we measure the ratio R = [EW(K I)/EW(Mg I)], finding a significant systematic increase in this ratio with respect to σ. We then probe for variations in the IMF by comparing the measured line ratios to the values expected in several IMF models. Overall, we find that low-mass galaxies (σ ˜ 100 km s-1) favor a Chabrier IMF, while high-mass galaxies (σ ˜ 350 km s-1) are better described with a steeper (dwarf-rich) IMF slope. While we note that our galaxy sample is small and may suffer from selection effects, these initial results are still promising. A larger sample of galaxies will therefore provide an even clearer picture of IMF trends in this regime. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  8. Metal-ion exchange induced structural transformation as a way of forming novel Ni(II)− and Cu(II)−salicylaldimine structures

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jing-Yun, E-mail: jyunwu@ncnu.edu.tw; Tsai, Chi-Jou; Chang, Ching-Yun; Wu, Yung-Yuan

    2017-02-15

    A Zn(II)−salicylaldimine complex [Zn(L{sup salpyca})(H{sub 2}O)]{sub n} (1, where H{sub 2}L{sup salpyca}=4-hydroxy-3-(((pyridin-2-yl)methylimino)methyl)benzoic acid), with a one-dimensional (1D) chain structure, has been successfully converted to a discrete Ni(II)−salicylaldimine complex [Ni(L{sup salpyca})(H{sub 2}O){sub 3}] (2) and an infinite Cu(II)−salicylaldimine complex ([Cu(L{sup salpyca})]·3H{sub 2}O){sub n} (3) through a metal-ion exchange induced structural transformation process. However, such processes do not worked by Mn(II) and Co(II) ions. Solid-state structure analyses reveal that complexes 1–3 form comparable coordinative or supramolecular zigzag chains running along the crystallographic [201] direction. In addition, replacing Zn(II) ion by Ni(II) and Cu(II) ions caused changes in coordination environment and sphere of metal centers, from a 5-coordinate intermediate geometry of square pyramidal and trigonal bipyramidal in 1 to a 6-coordinate octahedral geometry in 2, and to a 4-coordiante square planar geometry in 3. This study shows that metal-ion exchange serves as a very efficient way of forming new coordination complexes that may not be obtained through direct synthesis. - Graphical abstract: A Zn(II)−salicylaldimine zigzag chain has been successfully converted to a Ni(II)−salicylaldimine supramolecular zigzag chain and a Cu(II)−salicylaldimine coordinative zigzag chain through metal-ion exchange induced structural transformations, which is not achieved by Mn(II) and Co(II) ions.

  9. Metallic behavior and enhanced adsorption energy of graphene on BN layer induced by Cu(111) substrate

    International Nuclear Information System (INIS)

    Hashmi, Arqum; Hong, Jisang

    2014-01-01

    We have investigated the adsorption properties and the electronic structure of graphene/BN and graphene/BN/Cu(111) systems by using van der Waals density functional theory. The ground-state adsorption site of graphene on BN/Cu(111) is found to be the same as that of graphene/BN. The Cu(111) substrate did not induce a significant change in the geometrical feature of graphene/BN. However, the adsorption energy of graphene on BN/Cu(111) is observed to be enhanced due to the Cu(111) substrate. In addition, we have found that the graphene layer displays a weak metallic character in graphene/BN/Cu(111) whereas an energy band gap is observed in the graphene in the graphene/BN bilayer system. Therefore, we have found that the metallic Cu(111) substrate affects the electronic structure and adsorption properties of graphene on BN/Cu(111), although it has no significant effect on the geometrical features.

  10. Changes in metal availability, desorption kinetics and speciation in contaminated soils during repeated phytoextraction with the Zn/Cd hyperaccumulator Sedum plumbizincicola

    International Nuclear Information System (INIS)

    Li, Zhu; Jia, Mingyun; Wu, Longhua; Christie, Peter; Luo, Yongming

    2016-01-01

    Phytoextraction is one of the most promising technologies for the remediation of metal contaminated soils. Changes in soil metal availability during phytoremediation have direct effects on removal efficiency and can also illustrate the interactive mechanisms between hyperaccumulators and metal contaminated soils. In the present study the changes in metal availability, desorption kinetics and speciation in four metal-contaminated soils during repeated phytoextraction by the zinc/cadmium hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) over three years were investigated by chemical extraction and the DGT-induced fluxes in soils (DIFS) model. The available metal fractions (i.e. metal in the soil solution extracted by CaCl_2 and by EDTA) decreased greatly by >84% after phytoextraction in acid soils and the deceases were dramatic at the initial stages of phytoextraction. However, the decreases in metal extractable by CaCl_2 and EDTA in calcareous soils were not significant or quite low. Large decreases in metal desorption rate constants evaluated by DIFS were found in calcareous soils. Sequential extraction indicated that the acid-soluble metal fraction was easily removed by S. plumbizincicola from acid soils but not from calcareous soils. Reducible and oxidisable metal fractions showed discernible decreases in acid and calcareous soils, indicating that S. plumbizincicola can mobilize non-labile metal for uptake but the residual metal cannot be removed. The results indicate that phytoextraction significantly decreases metal availability by reducing metal pool sizes and/or desorption rates and that S. plumbizincicola plays an important role in the mobilization of less active metal fractions during repeated phytoextraction. - Highlights: • Metal availability, desorption, and speciation were tested during phytoextraction. • Metal availability showed an initial sharp decline then a slight change in acid soils. • Metal availability changed little during

  11. State promotion and neutralization of ions near metal surface

    International Nuclear Information System (INIS)

    Zinoviev, A.N.

    2011-01-01

    Research highlights: → Multiply charged ion and the charge induced in the metal form a dipole. → Dipole states are promoted into continuum with decreasing ion-surface distance. → These states cross the states formed from metal atom. → Proposed model explains the dominant population of deep bound states. → Observed spectra of emitted Auger electrons prove this promotion model. -- Abstract: When a multiply charged ion with charge Z approaches the metal surface, a dipole is formed by the multiply charged ion and the charge induced in the metal. The states for such a dipole are promoted into continuum with decreasing ion-surface distance and cross the states formed from metal atom. The model proposed explains the dominant population of deep bound states in collisions considered.

  12. Strong Rashba-Edelstein Effect-Induced Spin–Orbit Torques in Monolayer Transition Metal Dichalcogenide/Ferromagnet Bilayers

    KAUST Repository

    Shao, Qiming

    2016-11-18

    The electronic and optoelectronic properties of two-dimensional materials have been extensively explored in graphene and layered transition metal dichalcogenides (TMDs). Spintronics in these two-dimensional materials could provide novel opportunities for future electronics, for example, efficient generation of spin current, which should enable the efficient manipulation of magnetic elements. So far, the quantitative determination of charge current-induced spin current and spin-orbit torques (SOTs) on the magnetic layer adjacent to two-dimensional materials is still lacking. Here, we report a large SOT generated by current-induced spin accumulation through the Rashba-Edelstein effect in the composites of monolayer TMD (MoS or WSe)/CoFeB bilayer. The effective spin conductivity corresponding to the SOT turns out to be almost temperature-independent. Our results suggest that the charge-spin conversion in the chemical vapor deposition-grown large-scale monolayer TMDs could potentially lead to high energy efficiency for magnetization reversal and convenient device integration for future spintronics based on two-dimensional materials.

  13. Inherent safety phenomenon of fission-gas induced axial extrusion in oxide and metal fueled LMFBRs

    International Nuclear Information System (INIS)

    Miles, K.J.; Kalimullah.

    1985-01-01

    The current emphasis in LMFBR design is to develop reactor systems that contain as many features as possible to limit the severity of hypothetical accidents and provide the maximum time before corrective action is required while maintaining low capital costs. One feature is the possibility of fission-gas induced axial extrusion of the fuel within the intact cladding. The potential exists for this phenomenon to enable the reactor to withstand most accidents of the TOP variety, or at least provide an extended time for corrective action to be taken. Under transient conditions which produce a heating of the fuel above its nominal operating temperature, thermal expansion of the material axially produces a negative reactivity effect. This effect is presently considered in most accident analysis codes. The phenomenon of fission-gas induced axial extrusion has received renewed interest because of the consideration of metal alloys of uranium and plutonium for the fuel in some current reactor designs

  14. Coupled metal partitioning dynamics and toxicodynamics at biointerfaces: a theory beyond the biotic ligand model framework.

    Science.gov (United States)

    Duval, Jérôme F L

    2016-04-14

    A mechanistic understanding of the processes governing metal toxicity to microorganisms (bacteria, algae) calls for an adequate formulation of metal partitioning at biointerfaces during cell exposure. This includes the account of metal transport dynamics from bulk solution to biomembrane and the kinetics of metal internalisation, both potentially controlling the intracellular and surface metal fractions that originate cell growth inhibition. A theoretical rationale is developed here for such coupled toxicodynamics and interfacial metal partitioning dynamics under non-complexing medium conditions with integration of the defining cell electrostatic properties. The formalism explicitly considers intertwined metal adsorption at the biointerface, intracellular metal excretion, cell growth and metal depletion from bulk solution. The theory is derived under relevant steady-state metal transport conditions on the basis of coupled Nernst-Planck equation and continuous logistic equation modified to include metal-induced cell growth inhibition and cell size changes. Computational examples are discussed to identify limitations of the classical Biotic Ligand Model (BLM) in evaluating metal toxicity over time. In particular, BLM is shown to severely underestimate metal toxicity depending on cell exposure time, metal internalisation kinetics, cell surface electrostatics and initial cell density. Analytical expressions are provided for the interfacial metal concentration profiles in the limit where cell-growth is completely inhibited. A rigorous relationship between time-dependent cell density and metal concentrations at the biosurface and in bulk solution is further provided, which unifies previous equations formulated by Best and Duval under constant cell density and cell size conditions. The theory is sufficiently flexible to adapt to toxicity scenarios with involved cell survival-death processes.

  15. Ion beam induced nanosized Ag metal clusters in glass

    International Nuclear Information System (INIS)

    Mahnke, H.-E.; Schattat, B.; Schubert-Bischoff, P.; Novakovic, N.

    2006-01-01

    Silver metal clusters have been formed in soda lime glass by high-energy heavy-ion irradiation at ISL. The metal cluster formation was detected with X-ray absorption spectroscopy (EXAFS) in fluorescence mode, and the shape of the clusters was imaged with transmission electron microscopy. While annealing in reducing atmosphere alone, leads to the formation of metal clusters in Ag-containing glasses, where the Ag was introduced by ion-exchange, such clusters are not very uniform in size and are randomly distributed over the Ag-containing glass volume. Irradiation with 600-MeV Au ions followed by annealing, however, results in clusters more uniform in size and arranged in chains parallel to the direction of the ion beam

  16. Determination of Trace Available Heavy Metals in Soil Using Laser-Induced Breakdown Spectroscopy Assisted with Phase Transformation Method.

    Science.gov (United States)

    Yi, Rongxing; Yang, Xinyan; Zhou, Ran; Li, Jiaming; Yu, Huiwu; Hao, Zhongqi; Guo, Lianbo; Li, Xiangyou; Lu, Yongfeng; Zeng, Xiaoyan

    2018-05-18

    To detect available heavy metals in soil using laser-induced breakdown spectroscopy (LIBS) and improve its poor detection sensitivity, a simple and low cost sample pretreatment method named solid-liquid-solid transformation was proposed. By this method, available heavy metals were extracted from soil through ultrasonic vibration and centrifuging and then deposited on a glass slide. Utilization of this solid-liquid-solid transformation method, available Cd and Pb elements in soil were detected successfully. The results show that the regression coefficients of calibration curves for soil analyses reach to more than 0.98. The limits of detection could reach to 0.067 and 0.94 ppm for available Cd and Pb elements in soil under optimized conditions, respectively, which are much better than those obtained by conventional LIBS.

  17. Biochar- and phosphate-induced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater.

    Science.gov (United States)

    Liang, Yuan; Cao, Xinde; Zhao, Ling; Arellano, Eduardo

    2014-03-01

    Long-term wastewater irrigation or solid waste disposal has resulted in the heavy metal contamination in both soil and groundwater. It is often separately implemented for remediation of contaminated soil or groundwater at a specific site. The main objective of this study was to demonstrate the hypothesis of simultaneous remediation of both heavy metal contaminated soil and groundwater by integrating the chemical immobilization and pump-and-treat methods. To accomplish the objective, three experiments were conducted, i.e., an incubation experiment was first conducted to determine how dairy-manure-derived biochar and phosphate rock tailing induced immobilization of Cd in the Cd-contaminated soils; second, a batch sorption experiment was carried out to determine whether the pre-amended contaminated soil still had the ability to retain Pb, Zn and Cd from aqueous solution. BCR sequential extraction as well as XRD and SEM analysis were conducted to explore the possible retention mechanism; and last, a laboratory-scale model test was undertaken by leaching the Pb, Zn, and Cd contaminated groundwater through the pre-amended contaminated soils to demonstrate how the heavy metals in both contaminated soil and groundwater were simultaneously retained and immobilized. The incubation experiment showed that the phosphate biochar were effective in immobilizing soil Cd with Cd concentration in TCLP (toxicity characteristics leaching procedure) extract reduced by 19.6 % and 13.7 %, respectively. The batch sorption experiment revealed that the pre-amended soil still had ability to retain Pb, Zn, and Cd from aqueous solution. The phosphate-induced metal retention was mainly due to the metal-phosphate precipitation, while both sorption and precipitation were responsible for the metal stabilization in the biochar amendment. The laboratory-scale test demonstrated that the soil amended with phosphate removed groundwater Pb, Zn, and Cd by 96.4 %, 44.6 %, and 49.2 %, respectively, and the

  18. SYNTHESIS OF STYRENE-BUTADIENE STATISTIC COPOLYMERS CONTAINING MAGNESIUM INITIATOR

    Directory of Open Access Journals (Sweden)

    A. V. Firsova

    2015-01-01

    Full Text Available The article discusses the use of organomagnesium initiators in the synthesis of styrene-butadiene random copolymer (SBR obtained solution polymerization and their influence on the properties of rubber. Selected organic magnesium dialkyl initiator is combined with a modifier, which is a mixed alkoxide of an alkali and alkaline earth metals, which allows to control the micr ostructure of the diene polymer and its molecular weight characteristics. Alcohol derivatives selected high-boiling alcohols tetra (hydroxypropyl ethylenediamine (lapromol 294 and tetrahydrofurfuryl alcohol (TGFS. Selection of high-boiling alcohols due to the fact that the destruction of alkoxide with aqueous polymer degassing they do not fall into the return solvent and almost fall into the exact water. The metal components of alkoxides are lithium, sodium, potassium, magnesium and calcium. The resulting solutions are stable when stored modifier t hroughout the year even at -40 °C. The scheme of obtaining the new catalyst systems based organomagnesium and alcoxide of alkali and alkaline earth metals, which yields as functionalized SBR with a statistical and a distribution block of butadiene and styrene was developed. The process of copolymerization with styrene to butadiene organomagnesium initiators as using an organolithium compound (n-butyllithium was carried out, and without it. Found that the addition of n-butyllithium in the reaction mixture leads to a sharp increase in the rate of reaction. The results of studies of the effect of composition of the initiator system on the structure of diene polymers. It was revealed that a mixed initiator system affords a high conversion of monomers (to 90 % in 1 hour 1,2-polybutadiene content increased to 60 %. The process of polymerization of only a mixture of organomagnesium initiators and alcoxide of alkali and alkaline earth metals are not actively proceeds, conversion of the monomers reaches to 90 % in 4 hours, the microstructure

  19. Surface modification of nanodiamond through metal free atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guangjian; Liu, Meiying; Shi, Kexin; Heng, Chunning; Mao, Liucheng; Wan, Qing; Huang, Hongye [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Deng, Fengjie, E-mail: fengjiedeng@aliyun.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2016-12-30

    Highlights: • Surface modification of ND with water soluble and biocompatible polymers. • Functionalized ND through metal free surface initiated ATRP. • The metal free surface initiated ATRP is rather simple and effective. • The ND-poly(MPC) showed high dispersibility and desirable biocompatibility. - Abstract: Surface modification of nanodiamond (ND) with poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)] has been achieved by using metal free surface initiated atom transfer radical polymerization (SI-ATRP). The ATRP initiator was first immobilized on the surface of ND through direct esterification reaction between hydroxyl group of ND and 2-bromoisobutyryl bromide. The initiator could be employed to obtain ND-poly(MPC) nanocomposites through SI-ATRP using an organic catalyst. The final functional materials were characterized by {sup 1}H nuclear magnetic resonance, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermo gravimetric analysis in detailed. All of these characterization results demonstrated that ND-poly(MPC) have been successfully obtained via metal free photo-initiated SI-ATRP. The ND-poly(MPC) nanocomposites shown enhanced dispersibility in various solvents as well as excellent biocompatibility. As compared with traditional ATRP, the metal free ATRP is rather simple and effective. More importantly, this preparation method avoided the negative influence of metal catalysts. Therefore, the method described in this work should be a promising strategy for fabrication of polymeric nanocomposites with great potential for different applications especially in biomedical fields.

  20. Surface modification of nanodiamond through metal free atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Zeng, Guangjian; Liu, Meiying; Shi, Kexin; Heng, Chunning; Mao, Liucheng; Wan, Qing; Huang, Hongye; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2016-01-01

    Highlights: • Surface modification of ND with water soluble and biocompatible polymers. • Functionalized ND through metal free surface initiated ATRP. • The metal free surface initiated ATRP is rather simple and effective. • The ND-poly(MPC) showed high dispersibility and desirable biocompatibility. - Abstract: Surface modification of nanodiamond (ND) with poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)] has been achieved by using metal free surface initiated atom transfer radical polymerization (SI-ATRP). The ATRP initiator was first immobilized on the surface of ND through direct esterification reaction between hydroxyl group of ND and 2-bromoisobutyryl bromide. The initiator could be employed to obtain ND-poly(MPC) nanocomposites through SI-ATRP using an organic catalyst. The final functional materials were characterized by 1 H nuclear magnetic resonance, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermo gravimetric analysis in detailed. All of these characterization results demonstrated that ND-poly(MPC) have been successfully obtained via metal free photo-initiated SI-ATRP. The ND-poly(MPC) nanocomposites shown enhanced dispersibility in various solvents as well as excellent biocompatibility. As compared with traditional ATRP, the metal free ATRP is rather simple and effective. More importantly, this preparation method avoided the negative influence of metal catalysts. Therefore, the method described in this work should be a promising strategy for fabrication of polymeric nanocomposites with great potential for different applications especially in biomedical fields.

  1. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review.

    Science.gov (United States)

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2015-10-09

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed.

  2. Tracheal stenosis after treatment with metallic stent: a situation worse than the initial problem

    International Nuclear Information System (INIS)

    Barreto, Jaime; Mejia, Bibiana; Nino, Federico; Garavito, Carlos

    2008-01-01

    Stens are a tubular device for use in trachea, carina or main bronchus to provide a support and maintain the permeability of these structures. There are two groups: Metallic and Silicone stent. Either metallic and silicone stents has a special properties. Metallic stent are very attractive option due to relative easy in their placement. The accumulated experience in this therapy has allowed to recognize several complications to take into consideration mainly in patients with tracheal benign stenosis. FDA has recommended don't use metallic stents, covered and not covered in benign diseases. We report a case of a tracheal stenosis secondary to prolonged ortho tracheal intubation that required extensive interventions to control symptoms of central airway obstruction, between April and July of 2005.

  3. Quantum confinement effect in cheese like silicon nano structure fabricated by metal induced etching

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Shailendra K., E-mail: phd1211512@iiti.ac.in; Sahu, Gayatri; Sagdeo, Pankaj R.; Kumar, Rajesh [Material Research Laboratory, Discipline of Physics & MSEG, Indian Institute of Technology Indore, Madhya Pradesh-452017 (India)

    2015-08-28

    Quantum confinement effect has been studied in cheese like silicon nano-structures (Ch-SiNS) fabricated by metal induced chemical etching using different etching times. Scanning electron microscopy is used for the morphological study of these Ch-SiNS. A visible photoluminescence (PL) emission is observed from the samples under UV excitation at room temperature due to quantum confinement effect. The average size of Silicon Nanostructures (SiNS) present in the samples has been estimated by bond polarizability model using Raman Spectroscopy from the red-shift observed from SiNSs as compared to its bulk counterpart. The sizes of SiNS present in the samples decreases as etching time increase from 45 to 75 mintunes.

  4. On the possibility of contact-induced spin polarization in interfaces of armchair nanotubes with transition metal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kuzubov, Alexander A. [Siberian Federal University, 79 Svobodny Prospect, 660041 Krasnoyarsk (Russian Federation); Kirensky Institute of Physics, 50 Akademgorodok, 660036 Krasnoyarsk (Russian Federation); Kovaleva, Evgenia A., E-mail: kovaleva.evgeniya1991@mail.ru [Siberian Federal University, 79 Svobodny Prospect, 660041 Krasnoyarsk (Russian Federation); Kirensky Institute of Physics, 50 Akademgorodok, 660036 Krasnoyarsk (Russian Federation); Tomilin, Felix N.; Mikhaleva, Natalya S.; Kuklin, Artem V. [Siberian Federal University, 79 Svobodny Prospect, 660041 Krasnoyarsk (Russian Federation); Kirensky Institute of Physics, 50 Akademgorodok, 660036 Krasnoyarsk (Russian Federation)

    2015-12-15

    The interaction between armchair carbon and boron nitride nanotubes (NT) with ferromagnetic transition metal (TM) surfaces, namely, Ni(111) and Co(0001), was studied by means of density functional theory. Different configurations of composite compartments mutual arrangement were considered. Partial densities of states and spin density spatial distribution of optimized structures were investigated. Influence of ferromagnetic substrate on nanotubes’ electronic properties was discussed. The values of spin polarization magnitude at the Fermi level are also presented and confirm the patterns of spin density spatial distribution. - Highlights: • Interaction of armchair nanotubes with ferromagnetic metal surfaces was investigated. • Different configurations of nanotube's location were considered. • For all nanotubes the energy difference between configurations is negligible. • Nanotubes were found to be more or less spin-polarized regarding to the configuration. • BN nanotubes demonstrate vanishing of the band gap and contact-induced conductivity.

  5. Temperature-induced delocalization of charge carriers and semiconductor to metal-like phase in SrFeO{sub 3-δ}

    Energy Technology Data Exchange (ETDEWEB)

    Manimuthu, P.; Venkateswaran, C. [University of Madras, Department of Nuclear Physics, Guindy Campus, Chennai (India); Murugaraj, R. [Anna University, Department of Physics, MIT Campus, Chennai (India)

    2015-04-01

    Perovskite SrFeO{sub 3-δ}, a Ruddlesden-Popper class of system exhibits interesting electronic and magnetic properties. Influence of oxygen vacancies on the electrical response of nanocrystalline SrFeO{sub 2.91} as a function of temperature is investigated using impedance spectroscopy technique. A change observed in the Nyquist plot at 383 K has been analyzed in terms of localized and delocalized e{sub g} electrons. An unusual and interesting temperature-induced semiconductor to metal-like transition is observed in the frequency-dependent real part of dielectric permittivity. Dependence of frequency on the real and imaginary parts of impedance with respect to temperature supports the presence of semiconductor to metal-like transition in SrFeO{sub 2.91}. (orig.)

  6. Complexity of MRI induced heating on metallic leads: Experimental measurements of 374 configurations

    Directory of Open Access Journals (Sweden)

    Mendoza Gonzalo

    2008-03-01

    Full Text Available Abstract Background MRI induced heating on PM leads is a very complex issue. The widely varying results described in literature suggest that there are many factors that influence the degree of heating and that not always are adequately addressed by existing testing methods. Methods We present a wide database of experimental measurements of the heating of metallic wires and PM leads in a 1.5 T RF coil. The aim of these measurements is to systematically quantify the contribution of some potential factors involved in the MRI induced heating: the length and the geometric structure of the lead; the implant location within the body and the lead path; the shape of the phantom used to simulate the human trunk and its relative position inside the RF coil. Results We found that the several factors are the primary influence on heating at the tip. Closer locations of the leads to the edge of the phantom and to the edge of the coil produce maximum heating. The lead length is the other crucial factor, whereas the implant area does not seem to have a major role in the induced temperature increase. Also the lead structure and the geometry of the phantom revealed to be elements that can significantly modify the amount of heating. Conclusion Our findings highlight the factors that have significant effects on MRI induced heating of implanted wires and leads. These factors must be taken into account by those who plan to study or model MRI heating of implants. Also our data should help those who wish to develop guidelines for defining safe medical implants for MRI patients. In addition, our database of the entire set of measurements can help those who wish to validate their numerical models of implants that may be exposed to MRI systems.

  7. Disorder and conductivity of organic metal

    International Nuclear Information System (INIS)

    Bouffard, Serge

    1982-02-01

    At high temperature, quasi-one-dimensional organic conductors are metallic; at low temperature, the electron gas instabilities drive either a metal to insulator transition or a metal to superconductor transition. Precursors of these 3-D ordering could be appear at higher temperature. A study of the effects of irradiation induced defects on a few organic complexes has shown that defects are produced by radiolitic process. Their concentration can be easily deduced from resistivity measurement at room temperature. In the metallic state, the defects act as strong potentials which break the conducting chains and force the electron to jump to the neighbourg stack. The defects produce a mixing between longitudinal and transverse conductivities. While, it is the 3-D effect of the defects which pins the charge density waves and thus the 3-D ordering can not be acheived: the metal to insulator transition is destroyed, the metallic state is stabilized. In the same time, the fluctuative conductivity is suppress. The superconducting regime has been found to be extremely sensitive to irradiation induced defects. Thus we can demonstrate that the 1-D superconducting fluctuations contribute to the conductivity and that the transition temperature is correlated to the 3-D superconducting fluctuations. [fr

  8. Electromigration-induced plastic deformation in passivated metal lines

    Science.gov (United States)

    Valek, B. C.; Bravman, J. C.; Tamura, N.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Spolenak, R.; Brown, W. L.; Batterman, B. W.; Patel, J. R.

    2002-11-01

    We have used scanning white beam x-ray microdiffraction to study microstructural evolution during an in situ electromigration experiment on a passivated Al(Cu) test line. The data show plastic deformation and grain rotations occurring under the influence of electromigration, seen as broadening, movement, and splitting of reflections diffracted from individual metal grains. We believe this deformation is due to localized shear stresses that arise due to the inhomogeneous transfer of metal along the line. Deviatoric stress measurements show changes in the components of stress within the line, including relaxation of stress when current is removed.

  9. Determination of Different Metals in Steel Waste Samples Using laser Induced Breakdown Spectroscopy

    Directory of Open Access Journals (Sweden)

    A. H. Bakry

    2007-12-01

    Full Text Available Elemental analysis of waste samples collected from steel products manufacturing plant (SPS located at industrial city of Jeddah, Saudi-Arabia has been carried out using Laser Induced Breakdown Spectroscopy (LIBS. The 1064 nm laser radiations from a Nd:YAG laser at an irradiance of 7.6  1010 W cm –2 were used. Atomic emission spectra of the elements present in the waste samples were recorded in the 200 – 620 nm region. Elements such as Fe, W, Ti, Al, Mg, Ca, S, Mn, and Na were detected in these samples. Quantitative determination of the elemental concentration was obtained for these metals against certified standard samples. Parametric dependences of LIBS signal intensity on incident laser energy and time delay between the laser pulse and data acquisition system were also carried out.

  10. Magnetic field-induced Landau Fermi liquid in high-T{sub c} metals

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya.; Shaginyan, V.R

    2003-08-25

    We consider the behavior of strongly correlated electron liquid in high-temperature superconductors within the framework of the fermion condensation model. We show that at low temperatures the normal state recovered by the application of a magnetic field larger than the critical field can be viewed as the Landau Fermi liquid induced by the magnetic field. In this state, the Wiedemann-Franz law and the Korringa law are held and the elementary excitations are the Landau Fermi liquid quasiparticles. Contrary to what might be expected from the Landau theory, the effective mass of quasiparticles depends on the magnetic field. The recent experimental verifications of the Wiedemann-Franz law in heavily hole-overdoped, overdoped and optimally doped cuprates and the verification of the Korringa law in the electron-doped copper oxide superconductor strongly support the existence of fermion condensate in high-T{sub c} metals.

  11. Fabrication and magnetic-induced aggregation of Fe3O4–noble metal composites for superior SERS performances

    International Nuclear Information System (INIS)

    Gan, Zibao; Zhao, Aiwu; Zhang, Maofeng; Wang, Dapeng; Guo, Hongyan; Tao, Wenyu; Gao, Qian; Mao, Ranran; Liu, Erhu

    2013-01-01

    Fe 3 O 4 –noble metal composites were obtained by combining Au, Ag nanoparticles (NPs) with 3-aminopropyltrimethoxysilane-functionalized Fe 3 O 4 NPs. UV–Visible absorption spectroscopy demonstrates the obtained Fe 3 O 4 –noble metal composites inherit the typical surface plasmon resonance bands of Au, Ag at 533 and 453 nm, respectively. Magnetic measurements also indicated that the superparamagnetic Fe 3 O 4 –noble metal composites have excellent magnetic response behavior. A magnetic-induced idea was introduced to change their aggregated states and take full advantage of their surface-enhanced Raman scattering (SERS) performances. Under the induction of an external magnetic field, the bifunctional Fe 3 O 4 –noble metal aggregates exhibit the unique superiority in SERS detection of Rhodamine 6G (R6G), compared with the naturally dispersed Au, Ag NPs. Especially, the detection limit of the Fe 3 O 4 –Ag aggregates for R6G is as low as 10 −14  M, and the calculated EF reaches up to 1.2 × 10 6 , which meets the requirements for trace detection of analytes. Furthermore, the superiority could be extended to sensitive detection of other organic molecules, such as 4-mercaptopyridine. This work provides a new insight for active adjustment of the aggregated states of SERS substrates and the optimization of SERS performances

  12. Finding buried metallic pipes using a non-destructive approach based on 3D time-domain induced polarization data

    Science.gov (United States)

    Shao, Zhenlu; Revil, André; Mao, Deqiang; Wang, Deming

    2018-04-01

    The location of buried utility pipes is often unknown. We use the time-domain induced polarization method to non-intrusively localize metallic pipes. A new approach, based on injecting a primary electrical current between a pair of electrodes and measuring the time-lapse voltage response on a set of potential electrodes after shutting down this primary current is used. The secondary voltage is measured on all the electrodes with respect to a single electrode used as a reference for the electrical potential, in a way similar to a self-potential time lapse survey. This secondary voltage is due to the formation of a secondary current density in the ground associated with the polarization of the metallic pipes. An algorithm is designed to localize the metallic object using the secondary voltage distribution by performing a tomography of the secondary source current density associated with the polarization of the pipes. This algorithm is first benchmarked on a synthetic case. Then, two laboratory sandbox experiments are performed with buried metallic pipes located in a sandbox filled with some clean sand. In Experiment #1, we use a horizontal copper pipe while in Experiment #2 we use an inclined stainless steel pipe. The result shows that the method is effective in localizing these two pipes. At the opposite, electrical resistivity tomography is not effective in localizing the pipes because they may appear resistive at low frequencies. This is due to the polarization of the metallic pipes which blocks the charge carriers at its external boundaries.

  13. Has long-term metal exposure induced changes in life history traits and genetic diversity of the enchytraeid worm Cognettia sphagnetorum (Vejd.)?

    International Nuclear Information System (INIS)

    Haimi, Jari; Knott, Karelyn Emily; Selonen, Salla; Laurikainen, Marjo

    2006-01-01

    We studied whether long-term metal exposure has affected life history traits, population growth patterns and genetic diversity of the asexual enchytraeid worm Cognettia sphagnetorum (Vejd.). Enchytraeids from metal contaminated and uncontaminated forest soil were compared by growing them individually in the laboratory and by following their population development in patchily Cu contaminated microcosms. Genetic differences between the two native populations were studied using allozyme electrophoresis. Individuals from the contaminated site had slower growth rate and they produced fewer fragments of larger size when compared to individuals from the uncontaminated site. In patchily Cu contaminated microcosms, C. sphagnetorum from the contaminated site had a slower population growth rate. Most alleles were shared by the two native populations, but there was greater diversity and more unique genotypes in the population living in the uncontaminated site. Overall, long-term exposure to metals has induced only slight changes in life history properties and clonal diversity of C. sphagnetorum. - Long-term exposure to metals caused only small changes in life histories of two populations of Cognettia sphagnetorum

  14. Fourier transform infrared spectroscopic characterisation of heavy metal-induced metabolic changes in the plant-associated soil bacterium Azospirillum brasilense Sp7

    Science.gov (United States)

    Kamnev, A. A.; Antonyuk, L. P.; Tugarova, A. V.; Tarantilis, P. A.; Polissiou, M. G.; Gardiner, P. H. E.

    2002-06-01

    Structural and compositional features of whole cells of the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp7 under standard and heavy metal-stressed conditions are analysed using Fourier transform infrared (FTIR) spectroscopy and compared with the FT-Raman spectroscopic data obtained previously [J. Mol. Struct. 563-564 (2001) 199]. The structural spectroscopic information is considered together with inductively coupled plasma-mass spectrometric (ICP-MS) analytical data on the content of the heavy metal cations (Co2+, Cu2+ and Zn2+) in the bacterial cells. As a bacterial response to heavy metal stress, all the three metals, being taken up by bacterial cells from the culture medium (0.2 mM) in significant amounts (ca. 0.12, 0.48 and 4.2 mg per gram of dry biomass for Co, Cu and Zn, respectively), are shown to induce essential metabolic changes in the bacterium revealed in the spectra, including the accumulation of polyester compounds in bacterial cells and their enhanced hydration affecting certain IR vibrational modes of functional groups involved.

  15. Stellar metallicity variations across spiral arms in disk galaxies with multiple populations

    Science.gov (United States)

    Khoperskov, S.; Di Matteo, P.; Haywood, M.; Combes, F.

    2018-03-01

    This Letter studies the formation of azimuthal metallicity variations in the disks of spiral galaxies in the absence of initial radial metallicity gradients. Using high-resolution N-body simulations, we model composite stellar discs, made of kinematically cold and hot stellar populations, and study their response to spiral arm perturbations. We find that, as expected, disk populations with different kinematics respond differently to a spiral perturbation, with the tendency for dynamically cooler populations to show a larger fractional contribution to spiral arms than dynamically hotter populations. By assuming a relation between kinematics and metallicity, namely the hotter the population, the more metal-poor it is, this differential response to the spiral arm perturbations naturally leads to azimuthal variations in the mean metallicity of stars in the simulated disk. Thus, azimuthal variations in the mean metallicity of stars across a spiral galaxy are not necessarily a consequence of the reshaping, by radial migration, of an initial radial metallicity gradient. They indeed arise naturally also in stellar disks which have initially only a negative vertical metallicity gradient.

  16. Pretreatment Hepatoprotective Effect of the Marine Fungus Derived from Sponge on Hepatic Toxicity Induced by Heavy Metals in Rats

    Directory of Open Access Journals (Sweden)

    Nehad M. Abdel-Monem

    2013-01-01

    Full Text Available The aim of this study was to evaluate the pretreatment hepatoprotective effect of the extract of marine-derived fungus Trichurus spiralis Hasselbr (TS isolated from Hippospongia communis sponge on hepatotoxicity. Twenty-eight male Sprague-Dawley rats were divided into four groups (n=7. Group I served as −ve control, group II served as the induced group receiving subcutaneously for seven days 0.25 mg heavy metal mixtures, group III received (i.p. TS extract of dose 40 mg for seven days, and group IV served as the protected group pretreated with TS extract for seven days as a protection dose, and then treated with the heavy metal-mixture. The main pathological changes within the liver after heavy-metal mixtures administrations marked hepatic damage evidenced by foci of lobular necrosis with neutrophilic infiltration, adjacent to dysplastic hepatocytes. ALT and AST measurements show a significant increase in group II by 46.20% and 45.12%, respectively. Total protein, elevated by about 38.9% in induction group compared to the −ve control group, in contrast to albumin, decreased as a consequence of metal administration with significant elevation on bilirubin level. The results prove that TS extract possesses a hepatoprotective property due to its proven antioxidant and free-radical scavenging properties.

  17. Electronic structure of metal clusters

    International Nuclear Information System (INIS)

    Wertheim, G.K.

    1989-01-01

    Photoemission spectra of valence electrons in metal clusters, together with threshold ionization potential measurements, provide a coherent picture of the development of the electronic structure from the isolated atom to the large metallic cluster. An insulator-metal transition occurs at an intermediate cluster size, which serves to define the boundary between small and large clusters. Although the outer electrons may be delocalized over the entire cluster, a small cluster remains insulating until the density of states near the Fermi level exceeds 1/kT. In large clusters, with increasing cluster size, the band structure approaches that of the bulk metal. However, the bands remain significantly narrowed even in a 1000-atom cluster, giving an indication of the importance of long-range order. The core-electron binding-energy shifts of supported metal clusters depend on changes in the band structure in the initial state, as well as on various final-state effects, including changes in core hole screening and the coulomb energy of the final-state charge. For cluster supported on amorphous carbon, this macroscopic coulomb shift is often dominant, as evidenced by the parallel shifts of the core-electron binding energy and the Fermi edge. Auger data confirm that final-state effects dominate in cluster of Sn and some other metals. Surface atom core-level shifts provide a valuable guide to the contributions of initial-state changes in band structure to cluster core-electron binding energy shifts, especially for Au and Pt. The available data indicate that the shift observed in supported, metallic clusters arise largely from the charge left on the cluster by photoemission. As the metal-insulator transition is approached from above, metallic screening is suppressed and the shift is determined by the local environment. (orig.)

  18. The dynamics of the laser-induced metal-semiconductor phase transition of samarium sulfide (SmS)

    International Nuclear Information System (INIS)

    Kaempfer, Tino

    2009-01-01

    The present thesis is dedicated to the experimental study of the metal-semiconductor phase transition of samarium sulfide (SmS): Temperature- and time-resolved experiments on the characterization of the phase transition of mixed-valence SmS samples (M-SmS) are presented. The measurement of the dynamics of the laser-induced phase transition pursues via time-resolved ultrashort-time microscopy and by X-ray diffraction with sub-picosecond time resolution. The electronic and structural processes, which follow an excitation of M-SmS with infrared femtosecond laser pulses, are physically interpreted on the base of the results obtained in this thesis and model imaginations. [de

  19. Liquid metal degassing in electromagnetic mixing

    Energy Technology Data Exchange (ETDEWEB)

    Pakhomov, A I; EHL' -FAVAKHRI, KAMAL' -ABD-RABU MOKHAMED [LENINGRADSKIJ POLITEKHNICHESKIJ INST. (USSR)

    1977-01-01

    Experimental results for laboratory and industrial conditions are presented showing the favourable effect of electromagnetic mixing on hot metal degassing process. It has been found that the intensity and duration of the mixing process increase with the degree of iron and steel degassing. Initiation of cavitation phenomena during hot metal electromagnetic mixing is intensified because of the presence of alien inclusions in the metal reducing the tensile strength of the liquid metal. This is the most substantial factor contributing to the gas content in the process of electromagnetic mixing.

  20. Initial chemical transport of reducing elements and chemical reactions in oxide cathode base metal

    International Nuclear Information System (INIS)

    Roquais, J.M.; Poret, F.; Doze, R. le; Dufour, P.; Steinbrunn, A.

    2002-01-01

    In the present work, the formation of compounds associated to the diffusion of reducing elements (Mg and Al) to the nickel surface of a one-piece oxide cathode has been studied. Those compounds have been evidenced after the annealing steps at high temperature performed on cathode base metal prior to the emitting coating deposition. Therefore, they form the ''initial'' interface between the nickel and the coating, in other words, the interface existing at the beginning of cathode life. Extensive analysis to characterize the nickel base prior to coating deposition has been performed by means of scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX), Auger electron spectroscopy (AES), transmission electron microscopy (TEM), and glow discharge optical emission spectroscopy (GDOES). TEM and AES analysis have allowed to identify for the first time a spinel compound of MgAl 2 O 4 . The preferential distribution of the different compounds on the nickel surface has been studied by EDX mapping. Experimental profiles of diffusion of the reducing elements in the nickel have been obtained over the entire thickness of the material by GDOES. The mechanism of formation of these compounds together with a related diffusion model are proposed

  1. Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation

    International Nuclear Information System (INIS)

    Rohwetter, Ph.; Stelmaszczyk, K.; Woeste, L.; Ackermann, R.; Mejean, G.; Salmon, E.; Kasparian, J.; Yu, J.; Wolf, J.-P.

    2005-01-01

    We demonstrate laser induced ablation and plasma line emission from a metallic target at distances up to 180 m from the laser, using filaments (self-guided propagation structures ∼ 100 μm in diameter and ∼ 5 x 10 13 W/cm 2 in intensity) appearing as femtosecond and terawatt laser pulses propagating in air. The remarkable property of filaments to propagate over a long distance independently of the diffraction limit opens the frontier to long range operation of the laser-induced breakdown spectroscopy technique. We call this special configuration of remote laser-induced breakdown spectroscopy 'remote filament-induced breakdown spectroscopy'. Our results show main features of filament-induced ablation on the surface of a metallic sample and associated plasma emission. Our experimental data allow us to estimate requirements for the detection system needed for kilometer-range remote filament-induced breakdown spectroscopy experiment

  2. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review

    Science.gov (United States)

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2015-01-01

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed. PMID:26473834

  3. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review

    Directory of Open Access Journals (Sweden)

    Krystian Miazek

    2015-10-01

    Full Text Available Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed.

  4. Metal-insulator transition in Pt-C nanowires grown by focused-ion-beam-induced deposition

    International Nuclear Information System (INIS)

    Fernandez-Pacheco, A.; Ibarra, M. R.; De Teresa, J. M.; Cordoba, R.

    2009-01-01

    We present a study of the transport properties of Pt-C nanowires created by focused-ion-beam (FIB)-induced deposition. By means of the measurement of the resistance while the deposit is being performed, we observe a progressive decrease in the nanowire resistivity with thickness, changing from 10 8 μΩ cm for thickness ∼20 nm to a lowest saturated value of 700 μΩ cm for thickness >150 nm. Spectroscopy analysis indicates that this dependence on thickness is caused by a gradient in the metal-carbon ratio as the deposit is grown. We have fabricated nanowires in different ranges of resistivity and studied their conduction mechanism as a function of temperature. A metal-insulator transition as a function of the nanowire thickness is observed. The results will be discussed in terms of the Mott-Anderson theory for noncrystalline materials. An exponential decrease in the conductance with the electric field is found for the most resistive samples, a phenomenon understood by the theory of hopping in lightly doped semiconductors under strong electric fields. This work explains the important discrepancies found in the literature for Pt-C nanostructures grown by FIB and opens the possibility to tune the transport properties of this material by an appropriate selection of the growth parameters.

  5. Single-magnet rotary flowmeter for liquid metals

    OpenAIRE

    Priede, Jānis; Buchenau, Dominique; Gerbeth, Gunter

    2010-01-01

    We present a theory of single-magnet flowmeter for liquid metals and compare it with experimental results. The flowmeter consists of a freely rotating permanent magnet, which is magnetized perpendicularly to the axle it is mounted on. When such a magnet is placed close to a tube carrying liquid metal flow, it rotates so that the driving torque due to the eddy currents induced by the flow is balanced by the braking torque induced by the rotation itself. The equilibrium rotation rate, which var...

  6. by Phanerochaete chrysosporium from a binary metal system

    African Journals Online (AJOL)

    drinie

    2001-01-01

    Jan 1, 2001 ... metal concentrations (Ci) increased, independent of initial pH (pHi) and generally the metal with ... The results also show that some portion of the metal ions sorbed by P. ... mechanisms, mainly ion exchange, chelation, adsorption, and ..... YU Q and KAEWSARN P (1999) Binary adsorption of copper(II) and.

  7. Metal working and dislocation structures

    DEFF Research Database (Denmark)

    Hansen, Niels

    2007-01-01

    Microstructural observations are presented for different metals deformed from low to high strain by both traditional and new metal working processes. It is shown that deformation induced dislocation structures can be interpreted and analyzed within a common framework of grain subdivision on a finer...... and finer scale down to the nanometer dimension, which can be reached at ultrahigh strains. It is demonstrated that classical materials science and engineering principles apply from the largest to the smallest structural scale but also that new and unexpected structures and properties characterize metals...

  8. Non-Ligand-Induced Dimerization is Sufficient to Initiate the Signalling and Endocytosis of EGF Receptor

    Directory of Open Access Journals (Sweden)

    George Kourouniotis

    2016-07-01

    Full Text Available The binding of epidermal growth factor (EGF to EGF receptor (EGFR stimulates cell mitogenesis and survival through various signalling cascades. EGF also stimulates rapid EGFR endocytosis and its eventual degradation in lysosomes. The immediate events induced by ligand binding include receptor dimerization, activation of intrinsic tyrosine kinase and autophosphorylation. However, in spite of intensified efforts, the results regarding the roles of these events in EGFR signalling and internalization is still very controversial. In this study, we constructed a chimeric EGFR by replacing its extracellular domain with leucine zipper (LZ and tagged a green fluorescent protein (GFP at its C-terminus. We showed that the chimeric LZ-EGFR-GFP was constitutively dimerized. The LZ-EGFR-GFP dimer autophosphorylated each of its five well-defined C-terminal tyrosine residues as the ligand-induced EGFR dimer does. Phosphorylated LZ-EGFR-GFP was localized to both the plasma membrane and endosomes, suggesting it is capable of endocytosis. We also showed that LZ-EGFR-GFP activated major signalling proteins including Src homology collagen-like (Shc, extracellular signal-regulated kinase (ERK and Akt. Moreover, LZ-EGFR-GFP was able to stimulate cell proliferation. These results indicate that non-ligand induced dimerization is sufficient to activate EGFR and initiate cell signalling and EGFR endocytosis. We conclude that receptor dimerization is a critical event in EGF-induced cell signalling and EGFR endocytosis.

  9. Laser-induced damage of fused silica at 355 and 1065 nm initiated at aluminum contamination particles on the surface

    International Nuclear Information System (INIS)

    Genin, F.Y.; Michlitsch, K.; Furr, J.; Kozlowski, M.R.; Krulevitch, P.

    1997-01-01

    1-μm thick circular dots, 10-250 μm dia, were deposited onto 1.14 cm thick fused silica windows by sputtering Al through a mask. Al shavings were also deposited on the windows to investigate effects of particle-substrate adhesion. The silica windows were then illuminated repetitively using a 3-ns, 355 nm and an 8.6-ns, 1064 nm laser. The tests were conducted at near normal incidence with particles on input and output surfaces of the windows. During the first shot, a plasma ignited at the metal particle and damage initiated on the fused silica surface. The morphology of the damage at the metal dots were reproducible but different for input and output surface contamination. For input surface contamination, minor damage occurred where the particle was located; such damage ceased to grow with the removal of contaminant material. More serious damage (pits and cracks) was initiated on the output surface (especially at 355 nm) and grew to catastrophic proportions after few shots. Output surface contaminants were usually ejected on the initial shot, leaving a wave pattern on the surface. No further damage occurred with subsequent shots unless a shot (usually the first shot) cracked the surface; such behavior was mostly observed at 355 nm and occasionally for large shavings at 1064 nm. The size of the damaged area scaled with the size of the particle (except when catastrophic damage occurred). Onset of catastrophic damage on output surface occurred only when particles exceeded a critical size. Damage behavior of the sputtered dots was found to be qualitatively similar to that of the shavings. The artificial contamination technique accelerated the study by allowing better control of the test conditions

  10. Competitive Adsorption and Oxidation Behavior of Heavy Metals on nZVI Coated with TEOS.

    Science.gov (United States)

    Eglal, Mahmoud M; Ramamurthy, Amruthur S

    2015-11-01

    Zero valent iron nanoparticle (nanofer ZVI) is a powerful substance due to its coating with tetraethyl orthosilicate (TEOS). Tetraethyl orthosilicate imparts higher reactivity and decreases particle agglomeration. The competitive removal and displacement of multi-metals are influenced by time, pH, and initial concentration, the presence and properties of competing metals ion in the solution. For both the isotherm and kinetic studies performed for multi-metal removal experiments, compared to Pb II and Cd II, Cu II experienced a higher removal rate during the initial 5 minutes. After 120 minutes, all metals achieved removal efficiency in the range of 95 to 99%. The results of single and competitive kinetic tests for all three metals during the initial 5 minutes indicated that the presence of other metals generally reduce removal efficiency of metals. Both kinetic test and electron dispersive spectroscope (EDS) studies found that Cu II gets removed faster than the other metals. Pseudo-second order behavior was noted for the multi-metal removal systems.

  11. Simulation of surface crack initiation induced by slip localization and point defects kinetics

    International Nuclear Information System (INIS)

    Sauzay, Maxime; Liu, Jia; Rachdi, Fatima

    2014-01-01

    Crack initiation along surface persistent slip bands (PSBs) has been widely observed and modelled. Nevertheless, from our knowledge, no physically-based fracture modelling has been proposed and validated with respect to the numerous recent experimental data showing the strong relationship between extrusion and microcrack initiation. The whole FE modelling accounts for: - localized plastic slip in PSBs; - production and annihilation of vacancies induced by cyclic slip. If temperature is high enough, point defects may diffuse in the surrounding matrix due to large concentration gradients, allowing continuous extrusion growth in agreement with Polak's model. At each cycle, the additional atoms diffusing from the matrix are taken into account by imposing an incremental free dilatation; - brittle fracture at the interfaces between PSBs and their surrounding matrix which is simulated using cohesive zone modelling. Any inverse fitting of parameter is avoided. Only experimental single crystal data are used such as hysteresis loops and resistivity values. Two fracture parameters are required: the {111} surface energy which depends on environment and the cleavage stress which is predicted by the universal binding energy relationship. The predicted extrusion growth curves agree rather well with the experimental data published for copper and the 316L steel. A linear dependence with respect to PSB length, thickness and slip plane angle is predicted in agreement with recent AFM measurement results. Crack initiation simulations predict fairly well the effects of PSB length and environment for copper single and poly-crystals. (authors)

  12. Formation of Ag2, Au2 and AgAu particles on MgO(1 0 0): DFT study on the role of support-induced charge transfer in metal-metal interactions

    International Nuclear Information System (INIS)

    Fuente, Silvia A.; Belelli, Patricia G.; Branda, Maria M.; Ferullo, Ricardo M.; Castellani, Norberto J.

    2009-01-01

    The formation of Ag 2 , Au 2 and AgAu particles oriented perpendicularly to the MgO(1 0 0) surface was studied using the density functional theory. While the support induces a slight enhancement of the Ag-Ag bond (by 0.3-0.4 eV), the Au-Au bond is strongly enhanced (by 0.8-1.1 eV). Concerning the bimetallic particle, the Ag-Au bond stabilization depends on the relative position of each atom. Thus, in general terms, the strength of the metal-metal bond is determined by the nature of the terminal atom; the bond is stronger in Au-terminal particles. The partial electronic charge transfer to the terminal Au atom and its ability to polarize this charge are responsible for this energetic stabilization.

  13. Metal-ligand interactions

    Science.gov (United States)

    Ervin, Kent M.

    Experimental studies of the interactions of small transition-metal cluster anions with carbonyl ligands are reviewed and compared with neutral and cationic clusters. Under thermal conditions, the reaction rates of transition-metal clusters with carbon monoxide are measured as a function of cluster size. Saturation limits for carbon monoxide addition can be related to the geometric structures of the clusters. Both energy-resolved threshold collision-induced dissociation experiments and time-resolved photodissociation experiments are used to measure metal-carbonyl binding energies. For platinum and palladium trimer anions, the carbonyl binding energies are assigned to different geometric binding sites. Platinum and palladium cluster anions catalyse the oxidation of carbon monoxide to carbon dioxide in a full catalytic cycle at thermal energies.

  14. Surface Finish after Laser Metal Deposition

    Science.gov (United States)

    Rombouts, M.; Maes, G.; Hendrix, W.; Delarbre, E.; Motmans, F.

    Laser metal deposition (LMD) is an additive manufacturing technology for the fabrication of metal parts through layerwise deposition and laser induced melting of metal powder. The poor surface finish presents a major limitation in LMD. This study focuses on the effects of surface inclination angle and strategies to improve the surface finish of LMD components. A substantial improvement in surface quality of both the side and top surfaces has been obtained by laser remelting after powder deposition.

  15. X-ray photoelectron spectroscopy study of the initial oxidation of uranium metal in oxygen+water-vapour mixtures

    International Nuclear Information System (INIS)

    Allen, G.C.; Tucker, P.M.; Lewis, R.A.

    1984-01-01

    X-ray photoelectron spectroscopy (X.p.s.) has been used to study the chemical nature of the oxide film initially produced on clean uranium metal in oxygen + water-vapour atmospheres. The rate of reaction has been monitored and the nature of the surface film determined. From a consideration of the O 1s and U 4f X.p. spectra it has been possible to advance a mechanism which explains the complex nature of the surface oxide and the lack of satellite structure in the spectra. This is postulated to be a consequence of the way in which OH - is involved in the growth of the oxide and the presence of hydrogen in the surface film. The presence of oxygen retards the water oxidation reaction by inhibiting the decomposition of water vapour at the gas/oxide interface. (author)

  16. X-ray photoelectron spectroscopy study of the initial oxidation of uranium metal in oxygen+water-vapour mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Allen, G.C.; Tucker, P.M.; Lewis, R.A. (Central Electricity Generating Board, Berkeley (UK). Berkeley Nuclear Labs.)

    1984-08-01

    X-ray photoelectron spectroscopy (X.p.s.) has been used to study the chemical nature of the oxide film initially produced on clean uranium metal in oxygen + water-vapour atmospheres. The rate of reaction has been monitored and the nature of the surface film determined. From a consideration of the O 1s and U 4f X.p. spectra it has been possible to advance a mechanism which explains the complex nature of the surface oxide and the lack of satellite structure in the spectra. This is postulated to be a consequence of the way in which OH/sup -/ is involved in the growth of the oxide and the presence of hydrogen in the surface film. The presence of oxygen retards the water oxidation reaction by inhibiting the decomposition of water vapour at the gas/oxide interface.

  17. Localized atomic segregation in the spalled area of a Zr50Cu40Al10 bulk metallic glasses induced by laser-shock experiment

    Science.gov (United States)

    Jodar, B.; Loison, D.; Yokoyama, Y.; Lescoute, E.; Nivard, M.; Berthe, L.; Sangleboeuf, J.-C.

    2018-02-01

    Laser-shock experiments were performed on a ternary {Zr50{Cu}40{Al}10} bulk metallic glass. A spalling process was studied through post-mortem analyses conducted on a recovered sample and spall. Scanning electron microscopy magnification of fracture surfaces revealed the presence of a peculiar feature known as cup-cone. Cups are found on sample fracture surface while cones are observed on spall. Two distinct regions can be observed on cups and cones: a smooth viscous-like region in the center and a flat one with large vein-pattern in the periphery. Energy dispersive spectroscopy measurements conducted on these features emphasized atomic distribution discrepancies both on the sample and spall. We propose a mechanism for the initiation and the growth of these features but also a process for atomic segregation during spallation. Cup and cones would originate from cracks arising from shear bands formation (softened paths). These shear bands result from a quadrupolar-shaped atomic disorder engendered around an initiation site by shock wave propagation. This disorder turns into a shear band when tensile front reaches spallation plane. During the separation process, temperature gain induced by shock waves and shear bands generation decreases material viscosity leading to higher atomic mobility. Once in a liquid-like form, atomic clusters migrate and segregate due to inertial effects originating from particle velocity variation (interaction of release waves). As a result, a high rate of copper is found in sample cups and high zirconium concentration is found on spall cones.

  18. The metal binding potential of a dairy isolate

    Directory of Open Access Journals (Sweden)

    K. Ramyakrishna

    2017-12-01

    Full Text Available Excess iron in water resources can lead to health hazards and problems. The ability of lactic acid bacteria to bind iron has not yet been widely studied. In the present study, sorption of iron ions from aqueous solutions onto lactic acid bacterium was determined. Elemental analyses were carried out by inductively coupled plasma optical emission spectrometry. The kinetics of Fe(III biosorption was investigated at different initial concentrations of metal ion. The highest uptake capacity was found to be 16 mg of Fe(III per gram of adsorbent with a contact time of 24 hr and at initial metal ion concentration of 34 mg/L. The uptake capacity of Fe(III ion varied from 83.2 to 46.7% across the range of initial metal ion concentrations. The equilibrium data were evaluated by Langmuir and Freundlich isotherms, and were found to fit better with the latter (R2 = 0.9999. The surface morphology of the biomass and percentage of metal was characterized by using a scanning electron microscope equipped with energy dispersive X-ray spectroscopy. The functional groups on the cell wall surface of biomass involved in biosorption of heavy metals were studied by Fourier transform infrared spectroscopy spectrum.

  19. Reduction in health risk induced by semi-volatile organic compounds and metals in a drinking water treatment plant

    International Nuclear Information System (INIS)

    Zhao, F.; Yin, J.; Zhang, X. X.; Chen, Y.; Zhang, Y.; Wu, B.; Li, M.

    2015-01-01

    This study investigated health risk reduction in a drinking water treatment plant of Nanjing City (China) based on chemical detection of 22 semi-volatile organic compounds (SVOCs) and 24 metallic elements in source water and drinking water during 2009–2011. Chemical analysis showed that 15 SVOCs and 9 metals were present in the water. Health risk assessment revealed that hazard quotient of each pollutant and hazard index (HI) of all the detectable pollutants were below 1.00, indicating that the chemicals posed negligible non-carcinogenic risk to local residents. Benzo(a)pyrene may induce carcinogenic risk since its risk index via both oral and dermal exposure exceeded the safety level (1.00E-6), but other SVOCs induced no carcinogenic risk. Total HI of the SVOCs was 1.08E-3 for the source water and 1.56E-3 for the drinking water, suggesting that the used conventional treatment processes (coagulation/sedimentation, sand filtration and chlorine disinfection) cannot effectively reduce the non-carcinogenic risk. The source water had higher carcinogenic risk than the drinking water, but risk index of the drinking water still exceeded 1.00E-6. This study might serve as a basis for health risk assessment of drinking water and also as a benchmark for the authorities to reduce health risk arising from trace-level hazardous pollutants.

  20. Metal-phthalocyanine ordered layers on Au(110): Metal-dependent adsorption energy

    Energy Technology Data Exchange (ETDEWEB)

    Massimi, Lorenzo, E-mail: lorenzo.massimi@uniroma1.it; Angelucci, Marco; Gargiani, Pierluigi; Betti, Maria Grazia [Dipartimento di Fisica, Università di Roma La “Sapienza,” 00185 Roma (Italy); Montoro, Silvia [IFIS Litoral, CONICET-UNL, Laboratorio de Fisica de Superficies e Interfaces, Güemes 3450, Santa Fe (Argentina); Mariani, Carlo, E-mail: carlo.mariani@uniroma1.it [Dipartimento di Fisica, CNISM, Università di Roma La “Sapienza,” 00185 Roma (Italy)

    2014-06-28

    Iron-phthalocyanine and cobalt-phthalocyanine chains, assembled along the Au(110)-(1×2) reconstructed channels, present a strong interaction with the Au metallic states, via the central metal ion. X-ray photoemission spectroscopy from the metal-2p core-levels and valence band high-resolution ultraviolet photoelectron spectroscopy bring to light signatures of the interaction of the metal-phthalocyanine single-layer with gold. The charge transfer from Au to the molecule causes the emerging of a metal-2p core level component at lower binding energy with respect to that measured in the molecular thin films, while the core-levels associated to the organic macrocycle (C and N 1s) are less influenced by the adsorption, and the macrocycles stabilize the interaction, inducing a strong interface dipole. Temperature Programmed Desorption experiments and photoemission as a function of temperature allow to estimate the adsorption energy for the thin-films, mainly due to the molecule-molecule van der Waals interaction, while the FePc and CoPc single-layers remain adsorbed on the Au surface up to at least 820 K.

  1. The Coupled Photothermal Reaction and Transport in a Laser Additive Metal Nanolayer Simultaneous Synthesis and Pattering for Flexible Electronics

    Directory of Open Access Journals (Sweden)

    Song-Ling Tsai

    2016-01-01

    Full Text Available The Laser Direct Synthesis and Patterning (LDSP technology has advantages in terms of processing time and cost compared to nanomaterials-based laser additive microfabrication processes. In LDSP, a scanning laser on the substrate surface induces chemical reactions in the reactive liquid solution and selectively deposits target material in a preselected pattern on the substrate. In this study, we experimentally investigated the effect of the processing parameters and type and concentration of the additive solvent on the properties and growth rate of the resulting metal film fabricated by this LDSP technology. It was shown that reactive metal ion solutions with substantial viscosity yield metal films with superior physical properties. A numerical analysis was also carried out the first time to investigate the coupled opto-thermo-fluidic transport phenomena and the effects on the metal film growth rate. To complete the simulation, the optical properties of the LDSP deposited metal film with a variety of thicknesses were measured. The characteristics of the temperature field and the thermally induced flow associated with the moving heat source are discussed. It was shown that the processing temperature range of the LDSP is from 330 to 390 K. A semi-empirical model for estimating the metal film growth rate using this process was developed based on these results. From the experimental and numerical results, it is seen that, owing to the increased reflectivity of the silver film as its thickness increases, the growth rate decreases gradually from about 40 nm at initial to 10 nm per laser scan after ten scans. This self-controlling effect of LDSP process controls the thickness and improves the uniformity of the fabricated metal film. The growth rate and resulting thickness of the metal film can also be regulated by adjustment of the processing parameters, and thus can be utilized for controllable additive nano/microfabrication.

  2. Initial Tensile and Residual Forces of Pigmented Elastomeric Ligatures from Various Brands

    Science.gov (United States)

    Wichai, Wassana; Anuwongnukroh, Niwat; Dechkunakorn, Surachai; Kaypetch, Rattiporn; Tua-ngam, Peerapong

    2017-11-01

    This study aimed to investigate the initial tensile and residual forces of pigmented elastomeric ligatures (clear, pink, and metallic) from three commercial brands - Brand 1 (USA), Brand 2 (USA), and Brand 3(China). Twelve elastomeric ligatures of each brand and color were evaluated for initial tensile and residual forces after stretching for 28 days at 37°C by a Universal Testing Machine. The results showed that the highest initial tensile force was 14.78 N, 20.71 N, and 15.1 N for the metallic color of Brand-1, pink color of Brand -2, and metallic color of Brand -3, respectively. There were significant (ptensile force of each brand, except clear and metallic color of Brand-1 & 3 and pink color of Brand-2 & 3. Similarly, among the pigmented ligatures from each brand, significant (ptensile force, except metallic color of Brand-1 & 3. Brand-3 had the highest residual force after 28 days, whereas the loss of force was 80-90% in Brand-1 & 2 and 20-30% in Brand-3. There were also significant (ptensile and residual forces among the three pigmented elastomeric ligatures of the three commercial brands.

  3. Can gamma irradiation during radiotherapy influence the metal release process for biomedical CoCrMo and 316L alloys?

    Science.gov (United States)

    Wei, Zheng; Edin, Jonathan; Karlsson, Anna Emelie; Petrovic, Katarina; Soroka, Inna L; Odnevall Wallinder, Inger; Hedberg, Yolanda

    2018-02-09

    The extent of metal release from implant materials that are irradiated during radiotherapy may be influenced by irradiation-formed radicals. The influence of gamma irradiation, with a total dose of relevance for radiotherapy (e.g., for cancer treatments) on the extent of metal release from biomedical stainless steel AISI 316L and a cobalt-chromium alloy (CoCrMo) was investigated in physiological relevant solutions (phosphate buffered saline with and without 10 g/L bovine serum albumin) at pH 7.3. Directly after irradiation, the released amounts of metals were significantly higher for irradiated CoCrMo as compared to nonirradiated CoCrMo, resulting in an increased surface passivation (enhanced passive conditions) that hindered further release. A similar effect was observed for 316L showing lower nickel release after 1 h of initially irradiated samples as compared to nonirradiated samples. However, the effect of irradiation (total dose of 16.5 Gy) on metal release and surface oxide composition and thickness was generally small. Most metals were released initially (within seconds) upon immersion from CoCrMo but not from 316L. Albumin induced an increased amount of released metals from AISI 316L but not from CoCrMo. Albumin was not found to aggregate to any greater extent either upon gamma irradiation or in the presence of trace metal ions, as determined using different light scattering techniques. Further studies should elucidate the effect of repeated friction and fractionated low irradiation doses on the short- and long term metal release process of biomedical materials. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.

  4. Initial stages of high temperature metal oxidation

    International Nuclear Information System (INIS)

    Yang, C.Y.; O'Grady, W.E.

    1981-01-01

    The application of XPS and UPS to the study of the initial stages of high temperature (> 350 0 C) electrochemical oxidation of iron and nickel is discussed. In the high temperature experiments, iron and nickel electrodes were electrochemically oxidized in contact with a solid oxide electrolyte in the uhv system. The great advantages of this technique are that the oxygen activity at the interface may be precisely controlled and the ability to run the reactions in uhv allows the simultaneous observation of the reactions by XPS

  5. Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells

    Science.gov (United States)

    Wang, Ye; Zi, Xiao-Yuan; Su, Juan; Zhang, Hong-Xia; Zhang, Xin-Rong; Zhu, Hai-Ying; Li, Jian-Xiu; Yin, Meng; Yang, Feng; Hu, Yi-Ping

    2012-01-01

    In the rapid development of nanoscience and nanotechnology, many researchers have discovered that metal oxide nanoparticles have very useful pharmacological effects. Cuprous oxide nanoparticles (CONPs) can selectively induce apoptosis and suppress the proliferation of tumor cells, showing great potential as a clinical cancer therapy. Treatment with CONPs caused a G1/G0 cell cycle arrest in tumor cells. Furthermore, CONPs enclosed in vesicles entered, or were taken up by mitochondria, which damaged their membranes, thereby inducing apoptosis. CONPs can also produce reactive oxygen species (ROS) and initiate lipid peroxidation of the liposomal membrane, thereby regulating many signaling pathways and influencing the vital movements of cells. Our results demonstrate that CONPs have selective cytotoxicity towards tumor cells, and indicate that CONPs might be a potential nanomedicine for cancer therapy. PMID:22679374

  6. On the strain-induced fibrillar microstructure of polyethylene: Influence of chemical structure, initial morphology and draw temperature

    Directory of Open Access Journals (Sweden)

    B. Xiong

    2016-04-01

    Full Text Available The influence of crystalline microstructure and molecular topology on the strain-induced fibrillar transformation of semi-crystalline polyethylenes having various chemical structures including co-unit content and molecular weight and crystallized under various thermal treatments was studied by in situ SAXS at different draw temperatures. The long period of the nascent microfibrils, Lpf, proved to be strongly dependent on the draw temperature but non-sensitive to the initial crystallization conditions. Lpf was smaller than the initial long period. Both findings have been ascribed to the straininduced melting-recrystallization process as generally claimed in the literature. The microfibrils diameter, Df, was shown to depend on the draw temperature and initial microstructure in a different way as Lpf. The evolution of Df was shown to correlate with the interfacial layer thickness that mainly depends on the chemical structure of the chains. It was concluded that, in contrast to Lpf, the microfibril diameter should not be directly sensitive to the strain-induced melting-recrystallization. The proposed scenario is that after the generation of the protofibrils by fragmentation of the crystalline lamellae at yielding, the diameter of the microfibril during the course of their stabilization should be governed by the chain-unfolding and subsequent aggregation of the unfolded chains onto the lateral surface of the microfibrils. The morphogenesis of the microfibrils should therefore essentially depend on the chemical structure of the polymer that governs its crystallization ability, its chain topology and subsequently its fragmentation process at yielding. This scenario is summed up in a sketch.

  7. Spatially resolved synchrotron-induced X-ray fluorescence analyses of metal point drawings and their mysterious inscriptions

    International Nuclear Information System (INIS)

    Reiche, Ina; Radtke, Martin; Berger, Achim; Goerner, Wolf; Ketelsen, Thomas; Merchel, Silke; Riederer, Josef; Riesemeier, Heinrich; Roth, Michael

    2004-01-01

    Synchrotron-induced X-ray fluorescence (Sy-XRF) analysis was used to study the chemical composition of precious Renaissance silverpoint drawings. Drawings by famous artists such as Albrecht Duerer (1471-1528) and Jan van Eyck (approximately 1395-1441) must be investigated non-destructively. Moreover, extremely sensitive synchrotron- or accelerator-based techniques are needed since only small quantities of silver are deposited on the paper. New criteria for attributing these works to a particular artist could be established based on the analysis of the chemical composition of the metal points used. We illustrate how analysis can give new art historical information by means of two case studies. Two particular drawings, one of Albrecht Duerer, showing a profile portrait of his closest friend, 'Willibald Pirckheimer' (1503), and a second one attributed to Jan van Eyck, showing a 'Portrait of an elderly man', often named 'Niccolo Albergati', are the object of intense art historical controversy. Both drawings show inscriptions next to the figures. Analyses by Sy-XRF could reveal the same kind of silverpoint for the Pirckheimer portrait and its mysterious Greek inscription, contrary to the drawing by Van Eyck where at least three different metal points were applied. Two different types of silver marks were found in this portrait. Silver containing gold marks were detected in the inscriptions and over-subscriptions. This is the first evidence of the use of gold points for metal point drawings in the Middle Ages

  8. Fermi level pinning in metal/Al{sub 2}O{sub 3}/InGaAs gate stack after post metallization annealing

    Energy Technology Data Exchange (ETDEWEB)

    Winter, R.; Krylov, I.; Cytermann, C.; Eizenberg, M. [Department of Materials Science and Engineering, Technion—Israel Institute of Technology, Haifa 32000 (Israel); Tang, K.; Ahn, J.; McIntyre, P. C. [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-08-07

    The effect of post metal deposition annealing on the effective work function in metal/Al{sub 2}O{sub 3}/InGaAs gate stacks was investigated. The effective work functions of different metal gates (Al, Au, and Pt) were measured. Flat band voltage shifts for these and other metals studied suggest that their Fermi levels become pinned after the post-metallization vacuum annealing. Moreover, there is a difference between the measured effective work functions of Al and Pt, and the reported vacuum work function of these metals after annealing. We propose that this phenomenon is caused by charging of indium and gallium induced traps at the annealed metal/Al{sub 2}O{sub 3} interface.

  9. Armeria maritima from a calamine heap--initial studies on physiologic-metabolic adaptations to metal-enriched soil.

    Science.gov (United States)

    Olko, A; Abratowska, A; Zyłkowska, J; Wierzbicka, M; Tukiendorf, A

    2008-02-01

    Plants of Armeria maritima are found both on unpolluted sites and on soils strongly polluted with heavy metals. Seedlings of A. maritima from a zinc-lead calamine heap in ore-mining region (Bolesław population) and from unpolluted area (Manasterz population) were tested to determine the zinc, cadmium and lead tolerance. In hydroponic experiments Bolesław population was more tolerant to zinc, cadmium and lead. Localization of heavy metals in roots was determined using the histochemical method for detecting metal-complexes with dithizone. Their accumulation was found in root hairs, rhizoderma and at the surface of the central cylinder. Glutathione level in plants increased after metal treatment of both populations. However, its high level was not correlated with phytochelatin production. These metal-binding complexes were not detected in plants exposed to zinc, cadmium or lead. Changes of organic acids concentrations in Armeria treated with metals may suggest their role in metal translocation from roots to shoots. The content of organic acids, especially malate, decreased in the roots and increased in the leaves. These changes may be important in Pb-tolerance of Manasterz population and in Zn-, Cd-tolerance of calamine population from Bolesław.

  10. A comparative proteomic study on the effects of metal pollution in oysters Crassostrea hongkongensis.

    Science.gov (United States)

    Xu, Lanlan; Ji, Chenglong; Wu, Huifeng; Tan, Qiaoguo; Wang, Wen-Xiong

    2016-11-15

    The metal pollution has posed great risk on the coastal organisms along the Jiulongjiang Estuary in South China. In this work, two-dimensional electrophoresis-based proteomics was applied to the oysters Crassostrea hongkongensis from metal pollution sites to characterize the proteomic responses to metal pollution. Metal accumulation and proteomic responses indicated that the oysters from BJ site were more severely contaminated than those from FG site. Compared with those oyster samples from the clean site (JZ), metal pollution induced cellular injuries, oxidative and immune stresses in oyster heapatopancreas from both BJ and FG sites via differential metabolic pathways. In addition, metal pollution in BJ site induced disturbance in energy and lipid metabolisms in oysters. Results indicated that cathepsin L and ferritin GF1 might be the biomarkers of As and Fe in oyster C. hongkongensis, respectively. This study demonstrates that proteomics is a useful tool for investigating biological effects induced by metal pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Laser-induced change of electrical resistivity of metals and its applications

    Science.gov (United States)

    Pawlak, Ryszard; Kostrubiec, Franciszek; Tomczyk, Mariusz; Walczak, Maria

    2005-01-01

    Applying of laser alloying for modification of electrical resistivity of metals with significant importance in electrical and electronic engineering and utilization of this method for producing passive elements of electric circuit have been presented. The alloyed metals were obtained by means of laser beams with different wave length and various mode of working (cw or pulse), by different methods for the supplying of alloying elements. It was possible to form alloyed layers of metals forming different types of metallurgical systems: with full (Cu-Au, Cu-Ni) or partial solubility (Mo-Ni, W-Ni, Cu-Al, Ag-Sn), insoluble (Mo-Au and Cu-Cr) and immiscible (Ag-Ni and Ni-Au) metals, with metallic as well as non-metallic additions (oxide). It has been shown as well that it is possible to achieve resistive elements modified in whole cross section, in a single technological process. The results of systematic investigations into the resistivity of alloyed metals in the temperature range of 77-450 K have been presented. The alloyed layers, obtained, were characterised by a range of resistivity from 2.8 x 10-8 Ωm (Cu-Cr) to 128 x 10-8 Ωm (W-Ni). The microstructure and composition of alloyed layers were examined by means of SEM-microscopy and EDX analyser. In selected cases it was shown how results of investigations could be utilized for modification of surface layer of contact materials or to optimize the resistance of laser welded joints. In addition the results of investigations of new developed microtechnology -- producing micro-areas with extremely high resistivity -- have been presented.

  12. Predicting Metal Speciation & Bioavailability via Estimation of Metal-Organic Thermodynamic Properties

    Science.gov (United States)

    Prasad, A.; Howells, A. E.; Shock, E.

    2017-12-01

    & metal-induced toxicity) and metal speciation.

  13. Pressure-Induced Metallization of the Halide Perovskite (CH 3 NH 3 )PbI 3

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, Adam; Lin, Yu [Photon; Mao, Wendy L. [Photon; Karunadasa, Hemamala I.

    2017-03-10

    We report the metallization of the hybrid perovskite semiconductor (MA)PbI3 (MA = CH3NH3+) with no apparent structural transition. We tracked its bandgap evolution during compression in diamond-anvil cells using absorption spectroscopy and observed strong absorption over both visible and IR wavelengths at pressures above ca. 56 GPa, suggesting the imminent closure of its optical bandgap. The metallic character of (MA)PbI3 above 60 GPa was confirmed using both IR reflectivity and variable-temperature dc conductivity measurements. The impressive semiconductor properties of halide perovskites have recently been exploited in a multitude of optoelectronic applications. Meanwhile, the study of metallic properties in oxide perovskites has revealed diverse electronic phenomena. Importantly, the mild synthetic routes to halide perovskites and the templating effects of the organic cations allow for fine structural control of the inorganic lattice. Pressure-induced closure of the 1.6 eV bandgap in (MA)PbI3 demonstrates the promise of the continued study of halide perovskites under a range of thermodynamic conditions, toward realizing wholly new electronic properties.

  14. Process induced poling and plasma induced damage of thin films PZT

    NARCIS (Netherlands)

    Wang, J.; Houwman, Evert Pieter; Salm, Cora; Nguyen, Duc Minh; Vergeer, Kurt; Schmitz, Jurriaan

    2017-01-01

    This paper treats processing sequence induced changes on PZT. Two kinds of metal-PZT-metal capacitors are compared. The top surface and sidewall of PZT in one kind of capacitor is directly bombarded by energetic particles during ion milling process, whereas PZT in the other kind of capacitor is not.

  15. Vacuum-based surface modification of organic and metallic substrates

    Science.gov (United States)

    Torres, Jessica

    Surface physico-chemical properties play an important role in the development and performance of materials in different applications. Consequently, understanding the chemical and physical processes involved during surface modification strategies is of great scientific and technological importance. This dissertation presents results from the surface modification of polymers, organic films and metallic substrates with reactive species, with the intent of simulating important modification processes and elucidating surface property changes of materials under different environments. The reactions of thermally evaporated copper and titanium with halogenated polytetrafluoroethylene (PTFE) and polyvinyl chloride (PVC) are used to contrast the interaction of metals with polymers. Results indicate that reactive metallization is thermodynamically favored when the metal-halogen bond strength is greater than the carbon-halogen bond strength. X-ray post-metallization treatment results in an increase in metal-halide bond formation due to the production of volatile halogen species in the polymer that react with the metallic overlayer. The reactions of atomic oxygen (AO) and atomic chlorine with polyethylene (PE) and self-assembled monolayers (SAMs) films were followed to ascertain the role of radical species during plasma-induced polymer surface modification. The reactions of AO with X-ray modified SAMs are initially the dominated by the incorporation of new oxygen containing functionality at the vacuum/film interface, leading to the production of volatile carbon containing species such as CO2 that erodes the hydrocarbon film. The reaction of atomic chlorine species with hydrocarbon SAMs, reveals that chlorination introduces C-Cl and C-Cl2 functionalities without erosion. A comparison of the reactions of AO and atomic chlorine with PE reveal a maximum incorporation of the corresponding C-O and C-Cl functionalities at the polymer surface. A novel method to prepare phosphorous

  16. Metal Chloride Induced Formation of Porous Polyhydroxybutyrate (PHB) Films: Morphology, Thermal Properties and Crystallinity

    Science.gov (United States)

    Tan, W. L.; Yaakob, N. N.; Zainal Abidin, A.; Abu Bakar, M.; Abu Bakar, N. H. H.

    2016-06-01

    Polyhydroxybutyrate (PHB) films with highly porous structures were synthesized using a one phase system comprising of metal chloride/methanol/PHB/chloroform (MCl2/CH3OH/PHB/CHCl3). SEM analyses confirmed that the MCl2 (where M = Cu2+ or Ni2+) induced porous structures with pore sizes ranging from 0.3 - 2.0 μm. The average pore size increased with the increasing MCl2 content. There existed weak physical interactions between the PHB chains and MCl2 as revealed by FTIR and NMR spectroscopies. The residue of MCl2 in the porous PHB film does not exert significant influence on the thermal stability of PHB. Nevertheless, the crystallinity of the prepared film is enhanced, as MCl2 acts as the nucleation sites to promote the growth of spherullites.

  17. Advances in Carcinogenic Metal Toxicity and Potential Molecular Markers

    Directory of Open Access Journals (Sweden)

    Preeyaporn Koedrith

    2011-12-01

    Full Text Available Metal compounds such as arsenic, cadmium, chromium, cobalt, lead, mercury, and nickel are classified as carcinogens affecting human health through occupational and environmental exposure. However, the underlying mechanisms involved in tumor formation are not well clarified. Interference of metal homeostasis may result in oxidative stress which represents an imbalance between production of free radicals and the system’s ability to readily detoxify reactive intermediates. This event consequently causes DNA damage, lipid peroxidation, protein modification, and possibly symptomatic effects for various diseases including cancer. This review discusses predominant modes of action and numerous molecular markers. Attention is paid to metal-induced generation of free radicals, the phenomenon of oxidative stress, damage to DNA, lipid, and proteins, responsive signal transduction pathways with major roles in cell growth and development, and roles of antioxidant enzymatic and DNA repair systems. Interaction of non-enzymatic antioxidants (carotenoids, flavonoids, glutathione, selenium, vitamin C, vitamin E, and others with cellular oxidative stress markers (catalase, glutathione peroxidase, and superoxide dismutase as well as certain regulatory factors, including AP-1, NF-κB, Ref-1, and p53 is also reviewed. Dysregulation of protective pathways, including cellular antioxidant network against free radicals as well as DNA repair deficiency is related to oncogenic stimulation. These observations provide evidence that emerging oxidative stress-responsive regulatory factors and DNA repair proteins are putative predictive factors for tumor initiation and progression.

  18. A basic research on the transient behavior for a metallic fuel FBR

    International Nuclear Information System (INIS)

    Baba, Mamoru; Hirano, Go; Kawada, Ken-ichi; Niwa, Hajime

    1999-03-01

    A metallic fuel with novel design has received great deal of interest recently as an option of advanced fuel to be substituted MOX fuel, however, the behavior at the transient has not been studied in many aspects. Therefore, for the purpose to show the basic tendency of the behavior and released energy at CDA (core disruptive accident) for a metallic fuel FBR and to prepare the basic knowledge for consideration of the adoption of the advanced fuel, Tohoku university and Power Reactor and Nuclear Fuel Development Corporation have made a joint research entitled 'A basic research on the transient behavior for a metallic fuel FBR'. The results are the following. (1) Target and Results of analysis: The accident initiator considered is a LOF accident without scram. The LOF analysis was performed for a metallic fuel 600 MWe homogeneous two region core at the beginning of cycle, both for an ordinary metallic fuel core and for a metallic fuel core with ZrH pins. It was necessary mainly to change the constants of input parameters to apply the code for the analysis of a metallic fueled reactor. These changes were made by assuming appropriate models. Basic LOF cases and all blackout case that assumed using electromagnetic pumps were analyzed. The results show that the basic LOF cases for a metallic fuel core and all the cases for a metallic fuel core with ZrH pins could be avoided to become prompt-critical, and mildly transfer to the transition phase. It is shown that the moderator is quite elective to mitigate the accident at the initiation phase. However, it is necessary to analyze the transition phase to know if the re-criticality is totally avoided after the initiation phase. (2) Improvement of CDA initiation phase analysis code: At present, it is difficult for the code to adapt to the large scale material movement in the core at the transient. Therefore, the nuclear calculation model in the code was improved by using the adiabatic space dependent kinetics, and examined

  19. Inelastic behavior of a dissimilar-metal-welded pipe transition joint: comparison of experimental measurements and analytical prediction

    International Nuclear Information System (INIS)

    Yang, T.M.; Dalcher, A.W.

    1979-06-01

    The subject study involved the prediction and observed behavior of a dissimilar metal pipe joint made from 2 1/4 Cr-1Mo steel welded to Type 316 austenitic stainless steel using a nickel-base filler metal, ERNiCr-3. A two-dimensional axi-symmetric finite element model was employed in the analysis, with certain assumptions made relative to the initial stress state of the joint. Internal pressure and thermal loadings which simulated the test conditions experienced by the joint, were used as inputs. Uni-axial stress-strain relationships and creep equations were applied to the multi-axial stress state through the concept of effective stress and equivalent strain. The analysis indicated that the loading history during the preparatory period (before acutal service) has a significant effect on the behavior of the transition joint in its early service life. The magnitudes of the stresses created at the vicinity of the dissimilar metal interfaces, mainly due to the differences in thermal expansions of the metals, are sufficient to yield the metals, and fast thermal down transients during service will induce more yielding of the metals before shakedown occurs. Calculated plastic ratchetting and creep responses of the joint metals were compared with ORNL strain measurements of the test joint. Very good agreement was shown to exist between the predictions and measurements

  20. Can heavy metal pollution defend seed germination against heat stress? Effect of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination under high temperature.

    Science.gov (United States)

    Deng, Benliang; Yang, Kejun; Zhang, Yifei; Li, Zuotong

    2016-09-01

    Heavy metal pollution, as well as greenhouse effect, has become a serious threat today. Both heavy metal and heat stresses can arrest seed germination. What response can be expected for seed germination under both stress conditions? Here, the effects of heavy metals (Cu(2+), Cd(2+) and Hg(2+)) on maize seed germination were investigated at 20 °C and 40 °C. Compared with 20 °C, heat stress induced thermodormancy. However, this thermodormancy could be significantly alleviated by the addition of a low concentration of heavy metals. Heavy metals, as well as heat stress induced H2O2 accumulation in germinating seeds. Interestingly, this low concentration of heavy metal that promoted seed germination could be partly blocked by DMTU (a specific ROS scavenger), irrespective of temperature. Accordingly, H2O2 addition reinforced this promoting effect on seed germination, which was induced by a low concentration of heavy metal. Furthermore, we found that the NADPH oxidase derived ROS was required for seed germination promoted by the heavy metals. Subsequently, treatment of seeds with fluridone (a specific inhibitor of ABA) or ABA significantly alleviated or aggravated thermodormancy, respectively. However, this alleviation or aggravation could be partly attenuated by a low concentration of heavy metals. In addition, germination that was inhibited by high concentrations of heavy metals was also partly reversed by fluridone. The obtained results support the idea that heavy metal-mediated ROS and hormone interaction can finally affect the thermodormancy release or not. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Mechanical behavior of Fe{sub 75}Mo{sub 5}P{sub 10}C{sub 7.5}B{sub 2.5} bulk-metallic glass under torsional loading

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xinjian [School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072 (China); Huang Lu [Department of Materials Science and Engineering, University of Tennessee, TN 37996 (United States); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Chen Xu, E-mail: xchen@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072 (China); Liaw, Peter K. [Department of Materials Science and Engineering, University of Tennessee, TN 37996 (United States); An Ke [Neutron Scattering Sciences Division, Oak Ridge National Laboratory, TN 37831 (United States); Zhang Tao [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Wang Gongyao [Department of Materials Science and Engineering, University of Tennessee, TN 37996 (United States)

    2010-11-15

    Research highlights: {yields} Fe{sub 75}Mo{sub 5}P{sub 10}C{sub 7.5}B{sub 2.5} bulk-metallic glass exhibits a brittle characteristic under torsional loading. {yields} The BMG occurs in a tensile mode failure under torsional loading. {yields} A slight cyclic-hardening behavior was observed in the initial loading cycles during torsional-fatigue tests. {yields} The torsional fatigue-fracture surface consists of three main regions. - Abstract: Pure- and cyclic-torsional studies were conducted on a Fe{sub 75}Mo{sub 5}P{sub 10}C{sub 7.5}B{sub 2.5} (atomic percent, at.%) bulk-metallic glass at room temperature for an understanding of its damage and fracture mechanisms. Under pure-torsional loading, the metallic glass exhibited very little plastic strain before fracture. The fracture initiated along the maximum tensile-stress plane, which is about 45{sup o} to the axial direction. The shear-fracture strength ({approx}510 MPa) is much lower than the compressive-fracture strength ({approx}3280 MPa), which suggests that different deformation mechanisms be present under various loading modes. Instead of an apparent vein-type structure, the fracture morphologies revealed a crack-initiation site, a mirror region, a mist region, and a hackle region. Under cyclic-torsional loading, fatigue cracks initiated from casting defects, and propagate generally along the maximum tensile-stress plane. A slight cyclic-hardening behavior was observed in initial loading steps. The fatigue-fracture surface consists of three main regions: the fatigue crack-initiation, crack-propagation, and final-fast-fracture areas. The striations resulting from the blunting and re-sharpening of the fatigue crack tip were observed in the crack-propagation region. Based on these results, the damage and fracture mechanisms of the metallic glass induced by torsional loadings are elucidated.

  2. Is Neurotoxicity of Metallic Nanoparticles the Cascades of Oxidative Stress?

    Science.gov (United States)

    Song, Bin; Zhang, YanLi; Liu, Jia; Feng, XiaoLi; Zhou, Ting; Shao, LongQuan

    2016-06-01

    With the rapid development of nanotechnology, metallic (metal or metal oxide) nanoparticles (NPs) are widely used in many fields such as cosmetics, the food and building industries, and bio-medical instruments. Widespread applications of metallic NP-based products increase the health risk associated with human exposures. Studies revealed that the brain, a critical organ that consumes substantial amounts of oxygen, is a primary target of metallic NPs once they are absorbed into the body. Oxidative stress (OS), apoptosis, and the inflammatory response are believed to be the main mechanisms underlying the neurotoxicity of metallic NPs. Other studies have disclosed that antioxidant pretreatment or co-treatment can reverse the neurotoxicity of metallic NPs by decreasing the level of reactive oxygen species, up-regulating the activities of antioxidant enzymes, decreasing the proportion of apoptotic cells, and suppressing the inflammatory response. These findings suggest that the neurotoxicity of metallic NPs might involve a cascade of events following NP-induced OS. However, additional research is needed to determine whether NP-induced OS plays a central role in the neurotoxicity of metallic NPs, to develop a comprehensive understanding of the correlations among neurotoxic mechanisms and to improve the bio-safety of metallic NP-based products.

  3. Surface analysis applied to metal-ceramic and bioceramic interfacial bonding

    International Nuclear Information System (INIS)

    Smart, R.St.C.; Arora, P.S.; Steveson, M.; Kawashima, N.; Cavallaro, G.P.; Ming, H.; Skinner, W.M.

    1999-01-01

    using sol-gel deposition (e.g. silica, alumina, hydroxyapatite). Limited initial clinical testing has shown that the plasma-induced surface layer is not measurably altered in composition, structure or thickness by insertion and removal from bone under stress and load conditions similar to implantation in dental application. Copyright (1999) Australian X-ray Analytical Association Inc

  4. Effect of the final-state interaction on the initial core-hole lifetime: the case of the 4s-hole lifetime of Sn metal

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2003-01-01

    The first theoretical study of the effect of the final-state interaction on the initial core-hole lifetime is presented. The 4s-hole lifetime width of Sn metal is calculated by an ab-initio atomic many-body theory (Green's function method). When the final-state interaction in the 4p4d two-hole state, created by the 4s -1 -4p -1 4d -1 εf super Coster-Kronig (CK) transition of the initial 4s hole, is explicitly taken into account, the ab-initio atomic many-body calculation of the 4s-hole X-ray photoelectron spectroscopy (XPS) spectrum of Sn atom can provide excellent agreement with experiment in both the 4s-hole energy and the 4s-hole lifetime width. Otherwise, the many-body calculation underestimates considerably the 4s-hole lifetime width. The 4p4d two-hole state interacts strongly with the 4d triple-hole state by the 4p -1 4d -1 -4d -3 εf super CK transition. The interaction affects greatly the initial 4s-hole lifetime width

  5. Preparation of New Adsorbent Containing Hydroxamic Acid Groups by Electron Beam-Induced Grafting for Metal Ion Adsorption

    International Nuclear Information System (INIS)

    Suwanmala, Phiriyatorn; Hoshina, Hiroyuki; Seko, Noriaki; Tamada, Masao

    2007-08-01

    Full text: A new adsorbent containing hydroxamic acid groups was synthesized by electron beam-induced graft copolymerization of methyl acrylate (MA) onto nonwoven fabric composed of polyethylene-coated polypropylene fiber. Conversion of ester groups of the grafted copolymer into the hydroxamic groups was performed by treatment with an alkaline solution of hydroxylamine (HA). Adsorbent containing hydroxamic acid groups can adsorb 99% of UO2 2+ , 98% of V5+, 97% of Pb2+ and 96% of Al3+ at pH, 5, 4, 6, and 4, respectively, after coming into contact with 100 ppb metal solution for 24 h

  6. Exact matrix treatment of statistical mechanical lattice model of adsorption induced gate opening in metal-organic frameworks

    International Nuclear Information System (INIS)

    Dunne, Lawrence J; Manos, George

    2015-01-01

    Here we present a statistical mechanical lattice model which is exactly solvable using a matrix method and allows treatment of adsorption induced gate opening structural transformations of metal-organic frameworks which are nanoporous materials with exceptional adsorption properties. Modelling of these structural changes presents a serious theoretical challenge when the solid and gas species are treated in an even handed way. This exactly solvable model complements other simulation based approaches. The methodology presented here highlights the competition between the potential for adsorption and the energy required for structural transition as a driving force for the features in the adsorption isotherms. (paper)

  7. Conceptual design studies for the liquid metal target META:LIC

    International Nuclear Information System (INIS)

    Class, A.G.; Fazio, C.; Fetzer, J.R.; Gordeev, S.

    2014-01-01

    When the construction of ESS (European Spallation Source) in Sweden was initiated, the target station concept selection group decided to reevaluate a variety of target designs to respect new developments in their selection process. The META:LIC (MEgawatt TArget:Lead bIsmuth Cooled) target concept was developed following an extensive analysis of existing and new proposed designs and reached the level of proof of principle within only 2 years. ESS selected META:LIC as comparative target option for licensing purposes during the design update phase of ESS. The present work describes the design motivation of META:LIC referring to properties and design features of other targets. Therefore, META:LIC design is an evolutionary target which incorporates the extensive experience of liquid metal targets. The modular LBE (Lead Bismuth Eutectic) target concept with focus on the target module is introduced. Both, a window target option for the start of operation and a windowless option with extended lifetime are foreseen. Thermohydraulic simulations show that adequate window cooling can be realized. The stability of the free surface in the windowless option has been shown. Robust target module instrumentation based on free surface levels and the MEGAPIE experience is proposed for target control. Since the META:LIC concept foresees a horizontal extraction for both moderators and target from the monolith a safety concept based on the SNS and JSNS experience is proposed

  8. Comparative analysis of metal samples

    International Nuclear Information System (INIS)

    Lopez M, J.; Ramirez T, J.J.; Sandoval J, A.R.; Villasenor S, P.; Aspiazu F, J.A.

    2001-01-01

    Metal wastes were analysed to establish its origin with respect to a set of pieces. The elemental analysis was realized using the PIXE technique (Proton induced X-ray emission). Results are presented. (Author)

  9. Effect of Dynamic Reheating Induced by Weaving on the Microstructure of GTAW Weld Metal of 25% Cr Super Duplex Stainless Steel Weld Metal

    Directory of Open Access Journals (Sweden)

    Hee-Joon Sung

    2017-11-01

    Full Text Available The importance of the additional growth and/or transformation of the austenite phase that occurs in weld metals of super duplex stainless steel upon reheating is known. However, the effects have not been fully investigated, especially with respect to reheating induced by weaving during single-pass welding. In this work, bead-on-pipe gas tungsten arc welding (GTAW was conducted on super duplex stainless steel to understand the effect of weaving on the microstructure of weld metal. Microstructural analysis, electron backscatter diffraction (EBSD, and focused ion beam transmission electron microscopy (FIB-TEM were carried out to investigate the relationship between weaving and microstructural change. The weaving of GTAW produced a dynamic reheated area just before the weld bead during welding. It was revealed that extensive reheated weld existed even after one welding pass, and that the content of the austenite phase in the reheated area was higher than that in the non-reheated area, indicating the existence of a large quantity of intragranular austenite phase. In addition, the Cr2N content in the reheated area was lower than that in the non-reheated area. This reduction of Cr2N was closely related to the reheating resulting from weaving. TEM analysis revealed that Cr2N in the non-reheated area was dispersed following heating and transformed to secondary austenite.

  10. Femtosecond laser-induced concentric ring microstructures on Zr-based metallic glass

    International Nuclear Information System (INIS)

    Ma Fengxu; Yang Jianjun; Xiaonong Zhu; Liang Chunyong; Wang Hongshui

    2010-01-01

    Surface morphological evolution of Zr-based metallic glass ablated by femtosecond lasers is investigated in atmosphere condition. Three types of permanent ring structures with micro-level spacing are observed for different laser shots and fluences. In the case of low laser fluences, the generation of annular patterns with nonthermal features is observed on the rippled structure with the subwavelength scale, and the ring spacing shows a decrease tendency from the center to the margin. While in the case of high laser fluences, the concentric rings formation within the laser spot is found to have evident molten traces and display the increasing ring spacing along the radial direction. Moreover, when the laser shots accumulation becomes large, the above two types of ring microstructures begin to develop into the common ablation craters. Analysis and discussion suggests that the stress-induced condensation of ablation vapors and the frozen thermocapillary waves on the molten surfaces should be responsible for the formation of two different types of concentric ring structures, respectively. Eventually, a processing window for each resulting surface microstructure type is obtained experimentally and indicates the possibility to control the morphological transitions among different types.

  11. X-ray induced fluorescence measurement of segregation in a DyI{sub 3}-Hg metal-halide lamp

    Energy Technology Data Exchange (ETDEWEB)

    Nimalasuriya, T [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Curry, J J [National Institute of Standards and Technology, 100 Bureau Drive, Stop 8422, Gaithersburg, MD 20899-8422 (United States); Sansonetti, C J [National Institute of Standards and Technology, 100 Bureau Drive, Stop 8422, Gaithersburg, MD 20899-8422 (United States); Ridderhof, E J [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Shastri, S D [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Flikweert, A J [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Stoffels, W W [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Haverlag, M [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Mullen, J J A M van der [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2007-05-07

    Segregation of elemental Dy in a DyI{sub 3}-Hg metal-halide high-intensity discharge lamp has been observed with x-ray induced fluorescence. Significant radial and axial Dy segregation are seen, with the axial segregation characterized by a Fischer parameter value of {lambda} = 0.215 {+-} 0.002 mm{sup -1}. This is within 7% of the value ({lambda} = 0.20 {+-} 0.01 mm{sup -1}) obtained by Flikweert et al (2005 J. Appl. Phys. 98 073301) based on laser absorption by neutral Dy atoms. Elemental I is seen to exhibit considerably less axial and radial segregation. Some aspects of the observed radial segregation are compatible with a simplified fluid picture describing two main transition regions in the radial coordinate. The first transition occurs in the region where DyI{sub 3} molecules are in equilibrium with neutral Dy atoms. The second transition occurs where neutral Dy atoms are in equilibrium with ionized Dy. These measurements are part of a larger study on segregation in metal-halide lamps under a variety of conditions.

  12. Low voltage initiation of damaging arcs between electrical contacts

    International Nuclear Information System (INIS)

    Cuthrell, R.E.

    1975-07-01

    Metallic arcs were found to precede the firm contacting of electrical contacts which were closed without bounce. When the open-circuit voltages were below the ionization potential, the initiation of these arcs was found to depend on the presence of asperities on the surfaces and on asperity contracting, melting, and pinching off by magnetic forces. The arc is thought to be initiated inductively when the molten metallic asperity contact is pinched off, and the electrode damage is similar to that produced by the arcing of opening contacts. Arcing could not be produced for exceptionally smooth surfaces, or, for rough surfaces when the open-circuit potential was below the melting voltages of the electrode metals. In order to prevent damage to contact surfaces by melting or arcing, it is suggested that test potentials be limited to below the melting voltages, that the current be limited, the test circuits be designed to prevent inductively generated high voltage transients, and the contact surfaces be very smooth. In order to facilitate arc initiation in arc welding applications, it is suggested that the surfaces of electrodes and work pieces be roughened. (U.S.)

  13. Electrical transport through a metal-molecule-metal junction; Transport electrique a travers une jonction metal-molecule-metal

    Energy Technology Data Exchange (ETDEWEB)

    Kergueris, Ch

    1998-12-17

    We investigate the electrical transport through a very few molecules connected to metallic electrodes at room temperature. First, the state of the art in molecular electronics is outlined. We present the most convincing molecular devices reported so far in the literature and the theoretical tools available to analyze the electron transport mechanism through a molecular junction. Second, we describe the use of mechanically controllable break junctions to investigate the electron transport properties through a metal-molecule-metal junction. Two kindsof molecules were adsorbed on the two facing gold electrodes, dodecane-thiol (DT) and bis-thiol-ter-thiophene ({alpha},{omega} T3), that are basically expected to behave as an insulator and as a molecular wire, respectively. In the latter case, we study the chemical reactivity of the molecule and show that {alpha},{omega} T3 is chemically adsorbed on gold electrodes. Current-voltage characteristics of the junction were observed at room temperature. The Gold-DT-Gold junction behaves as a simple metal-insulator-metal junction. On the other hand, the electron transport through a Gold-{alpha},{omega} T3-Gold junction explicitly involves the electronic structure of the molecule which gives rise to step-like features in the current-voltage characteristics. The measured zero bias conductance is interpreted using the scattering theory. At high bias, we discuss two different models: a coherent model where the electron has no time to be completely re-localized in the molecule and a sequential model where the electron is localized in the molecule during the transfer. Finally, we show that the mechanical action of decreasing the inter-electrodes spacing can be used to induce a strong modification of the current-voltage characteristics. (author)

  14. Evolution of Metal(Loid) Binding Sites in Transcriptional Regulators

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, E.; Thiyagarajan, S.; Cook, J.D.; Stemmler, T.L.; Gil, J.A.; Mateos, L.M.; Rosen, B.P.

    2009-05-22

    Expression of the genes for resistance to heavy metals and metalloids is transcriptionally regulated by the toxic ions themselves. Members of the ArsR/SmtB family of small metalloregulatory proteins respond to transition metals, heavy metals, and metalloids, including As(III), Sb(III), Cd(II), Pb(II), Zn(II), Co(II), and Ni(II). These homodimeric repressors bind to DNA in the absence of inducing metal(loid) ion and dissociate from the DNA when inducer is bound. The regulatory sites are often three- or four-coordinate metal binding sites composed of cysteine thiolates. Surprisingly, in two different As(III)-responsive regulators, the metalloid binding sites were in different locations in the repressor, and the Cd(II) binding sites were in two different locations in two Cd(II)-responsive regulators. We hypothesize that ArsR/SmtB repressors have a common backbone structure, that of a winged helix DNA-binding protein, but have considerable plasticity in the location of inducer binding sites. Here we show that an As(III)-responsive member of the family, CgArsR1 from Corynebacterium glutamicum, binds As(III) to a cysteine triad composed of Cys{sup 15}, Cys{sup 16}, and Cys{sup 55}. This binding site is clearly unrelated to the binding sites of other characterized ArsR/SmtB family members. This is consistent with our hypothesis that metal(loid) binding sites in DNA binding proteins evolve convergently in response to persistent environmental pressures.

  15. Initial results for electrochemical dissolution of spent EBR-II fuel

    International Nuclear Information System (INIS)

    Li, S. X.

    1998-01-01

    Initial results are reported for the anode behavior of spent metallic nuclear fuel in an electrorefining process. The anode behavior has been characterized in terms of the initial spent fuel composition and the final composition of the residual cladding hulls. A variety of results have been obtained depending on the experimental conditions. Some of the process variables considered are average and maximum cell voltage, average and maximum anode voltage, amount of electrical charge passed (coulombs or amp-hours) during the experiment, and cell resistance. The main goal of the experiments has been the nearly complete dissolution of uranium with the retention of zirconium and noble metal fission products in the cladding hulls. Analysis has shown that the most indicative parameters for determining an endpoint to the process, recognizing the stated goal, are the maximum anode voltage and the amount of electrical charge passed. For the initial experiments reported here, the best result obtained is greater than 98% uranium dissolution with approximately 50% zirconium retention. Noble metal fission product retention appears to be correlated with zirconium retention

  16. The addition of organic carbon and nitrate affects reactive transport of heavy metals in sandy aquifers

    KAUST Repository

    Satyawali, Yamini

    2011-04-01

    Organic carbon introduction in the soil to initiate remedial measures, nitrate infiltration due to agricultural practices or sulphate intrusion owing to industrial usage can influence the redox conditions and pH, thus affecting the mobility of heavy metals in soil and groundwater. This study reports the fate of Zn and Cd in sandy aquifers under a variety of plausible in-situ redox conditions that were induced by introduction of carbon and various electron acceptors in column experiments. Up to 100% Zn and Cd removal (from the liquid phase) was observed in all the four columns, however the mechanisms were different. Metal removal in column K1 (containing sulphate), was attributed to biological sulphate reduction and subsequent metal precipitation (as sulphides). In the presence of both nitrate and sulphate (K2), the former dominated the process, precipitating the heavy metals as hydroxides and/or carbonates. In the presence of sulphate, nitrate and supplemental iron (Fe(OH)3) (K3), metal removal was also due to precipitation as hydroxides and/or carbonates. In abiotic column, K4, (with supplemental iron (Fe(OH)3), but no nitrate), cation exchange with soil led to metal removal. The results obtained were modeled using the reactive transport model PHREEQC-2 to elucidate governing processes and to evaluate scenarios of organic carbon, sulphate and nitrate inputs. © 2010 Elsevier B.V.

  17. Water-Mediated Photochemical Treatments for Low-Temperature Passivation of Metal-Oxide Thin-Film Transistors.

    Science.gov (United States)

    Heo, Jae Sang; Jo, Jeong-Wan; Kang, Jingu; Jeong, Chan-Yong; Jeong, Hu Young; Kim, Sung Kyu; Kim, Kwanpyo; Kwon, Hyuck-In; Kim, Jaekyun; Kim, Yong-Hoon; Kim, Myung-Gil; Park, Sung Kyu

    2016-04-27

    The low-temperature electrical passivation of an amorphous oxide semiconductor (AOS) thin-film transistor (TFT) is achieved by a deep ultraviolet (DUV) light irradiation-water treatment-DUV irradiation (DWD) method. The water treatment of the first DUV-annealed amorphous indium-gallium-zinc-oxide (a-IGZO) thin film is likely to induce the preferred adsorption of water molecules at the oxygen vacancies and leads to subsequent hydroxide formation in the bulk a-IGZO films. Although the water treatment initially degraded the electrical performance of the a-IGZO TFTs, the second DUV irradiation on the water-treated devices may enable a more complete metal-oxygen-metal lattice formation while maintaining low oxygen vacancies in the oxide films. Overall, the stable and dense metal-oxygen-metal (M-O-M) network formation could be easily achieved at low temperatures (below 150 °C). The successful passivation of structural imperfections in the a-IGZO TFTs, such as hydroxyl group (OH-) and oxygen vacancies, mainly results in the enhanced electrical performances of the DWD-processed a-IGZO TFTs (on/off current ratio of 8.65 × 10(9), subthreshold slope of 0.16 V/decade, an average mobility of >6.94 cm(2) V(-1) s(-1), and a bias stability of ΔVTH IGZO TFTs.

  18. Three-Dimensional Reconstruction of Nuclear Envelope Architecture Using Dual-Color Metal-Induced Energy Transfer Imaging.

    Science.gov (United States)

    Chizhik, Anna M; Ruhlandt, Daja; Pfaff, Janine; Karedla, Narain; Chizhik, Alexey I; Gregor, Ingo; Kehlenbach, Ralph H; Enderlein, Jörg

    2017-12-26

    The nuclear envelope, comprising the inner and the outer nuclear membrane, separates the nucleus from the cytoplasm and plays a key role in cellular functions. Nuclear pore complexes (NPCs), which are embedded in the nuclear envelope, control transport of macromolecules between the two compartments. Here, using dual-color metal-induced energy transfer (MIET), we determine the axial distance between Lap2β and Nup358 as markers for the inner nuclear membrane and the cytoplasmic side of the NPC, respectively. Using MIET imaging, we reconstruct the 3D profile of the nuclear envelope over the whole basal area, with an axial resolution of a few nanometers. This result demonstrates that optical microscopy can achieve nanometer axial resolution in biological samples and without recourse to complex interferometric approaches.

  19. Sorption of toxic metal ions in aqueous environment using ...

    African Journals Online (AJOL)

    carbodithioate and imidazole-1-carbodithioate were employed as sorbents for heavy metals from aqueous environments. The equilibrating time, initial metal concentrations and sorbent mass for optimal adsorption were 40 min, 5 mg/ℓ and 8 mg, ...

  20. Cobalt allergy in hard metal workers

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, T; Rystedt, I

    1983-03-01

    Hard metal contains about 10% cobalt. 853 hard metal workers were examined and patch tested with substances from their environment. Initial patch tests with 1% cobalt chloride showed 62 positive reactions. By means of secondary serial dilution tests, allergic reactions to cobalt were reproduced in 9 men and 30 women. Weak reactions could not normally be reproduced. A history of hand eczema was found in 36 of the 39 individuals with reproducible positive test reactions to cobalt, while 21 of 23 with a positive initial patch test but negative serial dilution test had never had any skin problems. Hand etching and hand grinding, mainly female activities and traumatic to the hands, were found to involve the greatest risk of cobalt sensitization. 24 individuals had an isolated cobalt allergy. They had probably been sensitized by hard metal work, while the individuals, all women, who had simultaneous nickel allergy had probably been sensitized to nickel before their employment and then became sensitized to cobalt by hard metal work. A traumatic occupation, which causes irritant contact dermatitis and/or a previous contact allergy or atopy is probably a prerequisite for the development of cobalt allergy.

  1. Large-Scale Reactive Atomistic Simulation of Shock-induced Initiation Processes in Energetic Materials

    Science.gov (United States)

    Thompson, Aidan

    2013-06-01

    Initiation in energetic materials is fundamentally dependent on the interaction between a host of complex chemical and mechanical processes, occurring on scales ranging from intramolecular vibrations through molecular crystal plasticity up to hydrodynamic phenomena at the mesoscale. A variety of methods (e.g. quantum electronic structure methods (QM), non-reactive classical molecular dynamics (MD), mesoscopic continuum mechanics) exist to study processes occurring on each of these scales in isolation, but cannot describe how these processes interact with each other. In contrast, the ReaxFF reactive force field, implemented in the LAMMPS parallel MD code, allows us to routinely perform multimillion-atom reactive MD simulations of shock-induced initiation in a variety of energetic materials. This is done either by explicitly driving a shock-wave through the structure (NEMD) or by imposing thermodynamic constraints on the collective dynamics of the simulation cell e.g. using the Multiscale Shock Technique (MSST). These MD simulations allow us to directly observe how energy is transferred from the shockwave into other processes, including intramolecular vibrational modes, plastic deformation of the crystal, and hydrodynamic jetting at interfaces. These processes in turn cause thermal excitation of chemical bonds leading to initial chemical reactions, and ultimately to exothermic formation of product species. Results will be presented on the application of this approach to several important energetic materials, including pentaerythritol tetranitrate (PETN) and ammonium nitrate/fuel oil (ANFO). In both cases, we validate the ReaxFF parameterizations against QM and experimental data. For PETN, we observe initiation occurring via different chemical pathways, depending on the shock direction. For PETN containing spherical voids, we observe enhanced sensitivity due to jetting, void collapse, and hotspot formation, with sensitivity increasing with void size. For ANFO, we

  2. Analysis of metal samples

    International Nuclear Information System (INIS)

    Ramirez T, J.J.; Lopez M, J.; Sandoval J, A.R.; Villasenor S, P.; Aspiazu F, J.A.

    2001-01-01

    An elemental analysis, metallographic and of phases was realized in order to determine the oxidation states of Fe contained in three metallic pieces: block, plate and cylinder of unknown material. Results are presented from the elemental analysis which was carried out in the Tandem Accelerator of ININ by Proton induced X-ray emission (PIXE). The phase analysis was carried out by X-ray diffraction which allowed to know the type of alloy or alloys formed. The combined application of nuclear techniques with metallographic techniques allows the integral characterization of industrial metals. (Author)

  3. Ion induced modification of polymers at energies between 100 keV and 1 GeV applied for optical waveguides and improved metal adhesion

    International Nuclear Information System (INIS)

    Rueck, D.M.

    2000-01-01

    Polymers are a class of materials widely used for a broad field of applications. Ion irradiation ranging from several eV to GeV is a quite efficient tool to modify the properties of polymers like wettability, optical properties, adhesion between metal and polymer surfaces. In this paper ion induced chemical changes of polymers will be discussed in relation to the modified macroscopic properties. In the field of optical telecommunication, polymers are discussed as a new class of materials for the fabrication of passive optical devices. Ion irradiation is a promising method to generate structures with a modified index of refraction, which is necessary for the guidance of light with different wavelengths in optical devices. Modified optical properties of different polymers under ion irradiation will be discussed. Analytical investigations like infrared measurements and measurement of the outgassing reaction products during irradiation will be discussed to interpret the chemical changes of the polymers. Metallization of polymers is of interest in several fields of application like for multilayer systems in microtechnology or casings for radiation shielding for example. Ion beam mixing at low energies is a promising method to improve the metal/polymer adhesion. Also ion irradiation at high energies applied to a metal/polymer multilayer can improve the adhesion of a metal layer to a polymer surface, if not sufficient. Different metal/polymer systems will be presented as well as specific applications

  4. The Role of Reactive Oxygen Species (ROS in the Biological Activities of Metallic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ahmed Abdal Dayem

    2017-01-01

    Full Text Available Nanoparticles (NPs possess unique physical and chemical properties that make them appropriate for various applications. The structural alteration of metallic NPs leads to different biological functions, specifically resulting in different potentials for the generation of reactive oxygen species (ROS. The amount of ROS produced by metallic NPs correlates with particle size, shape, surface area, and chemistry. ROS possess multiple functions in cellular biology, with ROS generation a key factor in metallic NP-induced toxicity, as well as modulation of cellular signaling involved in cell death, proliferation, and differentiation. In this review, we briefly explained NP classes and their biomedical applications and describe the sources and roles of ROS in NP-related biological functions in vitro and in vivo. Furthermore, we also described the roles of metal NP-induced ROS generation in stem cell biology. Although the roles of ROS in metallic NP-related biological functions requires further investigation, modulation and characterization of metallic NP-induced ROS production are promising in the application of metallic NPs in the areas of regenerative medicine and medical devices.

  5. The lack of effects of zinc and nitric oxide in initial state of pilocarpine-induced seizures.

    Science.gov (United States)

    Noyan, Behzat; Jensen, Morten Skovgaard; Danscher, Gorm

    2007-07-01

    In this study we investigated whether intracerebroventricular (i.c.v.) injection of L-NAME (a nitric oxide synthase inhibitor) or CaEDTA (an extracellular zinc chelator) or the combination of the two could affect the initial phase of pilocarpine induced (2 h) seizures. Two groups of rats were used. Animals from both groups were given with i.c.v. injections of either saline (10 microl), L-NAME (150 microg/10 microl), CaEDTA (100 mM/10 microl) or L-NAME and CaEDTA. One group received pilocarpine HCl (380 mg/kg i.p.) the other served as control. Pilocarpine HCl was injected intraperitoneally 10 min later. The behavior of the animals was observed for 2h and the intensity of their seizures was scored. The rats were then sacrificed and their brains were removed and analyzed for zinc ions by using the immersion autometallography and the TSQ fluorescence staining. All the animals which received pilocarpine HCl developed seizures. Despite treatment with L-NAME and/or CaEDTA we found that the latency and the intensity of seizures were similar in both groups investigated. The distribution of stainable zinc ions and the intensity of staining in hippocampus were not affected by pilocarpine and found unchanged after L-NAME and/or CaEDTA injections in both the control animals and the pilocarpine treated animals. The data suggest that the nitric oxide system and zinc ions do not affect pilocarpine-induced seizures in their initial state.

  6. Fuel-coolant interaction in a shock tube with initially-established film boiling

    International Nuclear Information System (INIS)

    Sharon, A.; Bankoff, S.G.

    1979-01-01

    A new mode of thermal interaction has been employed, in which liquid metal is melted in a crucible within a shock tube; the coolant level is raised to overflow the crucible and establish subcooled film boiling with known bulk metal temperature; and a pressure shock is then initiated. With water and lead-tin alloy an initial splash of metal may be obtained after the vapor film has collapsed, due primarily to thermal interaction, followed by a successive cycle of bubble growth and collapse. To obtain large interactions, the interfacial contact temperature must exceed the spontaneous nucleation temperature of the coolant. Other cutoff behavior is observed with respect to the initial system pressure and temperatures and with the shock pressure and rise time. Experiments with butanol and lead-tin alloy show only relatively mild interactions. Qualitative explanations are proposed for the different behaviors of the two liquids

  7. Thermal runaway of metal nano-tips during intense electron emission

    Science.gov (United States)

    Kyritsakis, A.; Veske, M.; Eimre, K.; Zadin, V.; Djurabekova, F.

    2018-06-01

    When an electron emitting tip is subjected to very high electric fields, plasma forms even under ultra high vacuum conditions. This phenomenon, known as vacuum arc, causes catastrophic surface modifications and constitutes a major limiting factor not only for modern electron sources, but also for many large-scale applications such as particle accelerators, fusion reactors etc. Although vacuum arcs have been studied thoroughly, the physical mechanisms that lead from intense electron emission to plasma ignition are still unclear. In this article, we give insights to the atomic scale processes taking place in metal nanotips under intense field emission conditions. We use multi-scale atomistic simulations that concurrently include field-induced forces, electron emission with finite-size and space-charge effects, Nottingham and Joule heating. We find that when a sufficiently high electric field is applied to the tip, the emission-generated heat partially melts it and the field-induced force elongates and sharpens it. This initiates a positive feedback thermal runaway process, which eventually causes evaporation of large fractions of the tip. The reported mechanism can explain the origin of neutral atoms necessary to initiate plasma, a missing key process required to explain the ignition of a vacuum arc. Our simulations provide a quantitative description of in the conditions leading to runaway, which shall be valuable for both field emission applications and vacuum arc studies.

  8. Interaction of terbium group metal oxides with carbon

    International Nuclear Information System (INIS)

    Vodop'yanov, A.G.; Baranov, S.V.; Kozhevnikov, G.N.

    1990-01-01

    Mechanism of carbothermal reduction of terbium group metals from oxides is investigated using thermodynamic and kinetic analyses. Interaction of metal oxides with carbon covers dissociation of metal oxides and reduction by carbon monoxide, which contribution into general reduction depends on CO pressure. Temperatures of reaction beginning for batch initial components at P=1.3x10 -4 and P CO =0.1 MPa and of formation of oxycarbide melts are determined

  9. Standard entropy for borides of non-transition metals, rare-earth metals and actinides

    International Nuclear Information System (INIS)

    Borovikova, M.S.

    1986-01-01

    Using as initial data the most reliable values of standard entropy for 10 compounds, the entropies for 40 compounds of non-transition metals, rare-earth metals and actinides have been evaluated by the method of comparative calculation. Taking into account the features of boride structures, two methods, i.e. additive and proportional, have been selected for the entropy calculations. For the range of borides the entropies were calculated from the linear relation of the latter to the number of boron atoms in the boride. For borides of rare-earth metals allowance has been made for magnetic contributions in conformity with the multiplicity of the corresponding ions. Insignificant differences in the electronic contributions to the entropy for borides and metals have been neglected. For dodecaborides only the additive method has been used. This is specified by the most rigid network that provides the same contribution to compound entropy. (orig.)

  10. Metal-metal interaction mediates the iron induction of Drosophila MtnB

    International Nuclear Information System (INIS)

    Qiang, Wenjia; Huang, Yunpeng; Wan, Zhihui; Zhou, Bing

    2017-01-01

    Metallothionein (MT) protein families are a class of small and universal proteins rich in cysteine residues. They are synthesized in response to heavy metal stresses to sequester the toxic ions by metal-thiolate bridges. Five MT family members, namely MtnA, MtnB, MtnC, MtnD and MtnE, have been discovered and identified in Drosophila. These five isoforms of MTs are regulated by metal responsive transcription factor dMTF-1 and play differentiated but overlapping roles in detoxification of metal ions. Previous researches have shown that Drosophila MtnB responds to copper (Cu), cadmium (Cd) and zinc (Zn). Interestingly in this study we found that Drosophila MtnB expression also responds to elevated iron levels in the diet. Further investigations revealed that MtnB plays limited roles in iron detoxification, and the direct binding of MtnB to ferrous iron in vitro is also weak. The induction of MtnB by iron turns out to be mediated by iron interference of other metals, because EDTA at even a partial concentration of that of iron can suppress this induction. Indeed, in the presence of iron, zinc homeostasis is altered, as reflected by expression changes of zinc transporters dZIP1 and dZnT1. Thus, iron-mediated MtnB induction appears resulting from interrupted homeostasis of other metals such as zinc, which in turns induced MtnB expression. Metal-metal interaction may more widely exist than we expected. - Highlights: • Metallothionein B expression is regulated by iron in Drosophila melanogaster. • MtnB has limited physiological roles in iron detoxification. • Binding affinity of MtnB to iron is weak in vitro. • Induction of Drosophila MtnB by iron is mediated indirectly through metal-metal interaction.

  11. On the performance of laser-induced breakdown spectroscopy for direct determination of trace metals in lubricating oils

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Lijuan [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China); Cao, Fan; Xiu, Junshan; Bai, Xueshi; Motto-Ros, Vincent [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Gilon, Nicole [Institut des Sciences Analytiques, UMR5280 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Zeng, Heping [State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062 (China); Yu, Jin, E-mail: jin.yu@univ-lyon1.fr [Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne Cedex (France); Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astrophysics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-09-01

    Laser-induced breakdown spectroscopy (LIBS) provides a technique to directly determine metals in viscous liquids and especially in lubricating oils. A specific laser ablation configuration of a thin layer of oil applied on the surface of a pure aluminum target was used to evaluate the analytical figures of merit of LIBS for elemental analysis of lubricating oils. Among the analyzed oils, there were a certified 75cSt blank mineral oil, 8 virgin lubricating oils (synthetic, semi-synthetic, or mineral and of 2 different manufacturers), 5 used oils (corresponding to 5 among the 8 virgin oils), and a cooking oil. The certified blank oil and 4 virgin lubricating oils were spiked with metallo-organic standards to obtain laboratory reference samples with different oil matrix. We first established calibration curves for 3 elements, Fe, Cr, Ni, with the 5 sets of laboratory reference samples in order to evaluate the matrix effect by the comparison among the different oils. Our results show that generalized calibration curves can be built for the 3 analyzed elements by merging the measured line intensities of the 5 sets of spiked oil samples. Such merged calibration curves with good correlation of the merged data are only possible if no significant matrix effect affects the measurements of the different oils. In the second step, we spiked the remaining 4 virgin oils and the cooking oils with Fe, Cr and Ni. The accuracy and the precision of the concentration determination in these prepared oils were then evaluated using the generalized calibration curves. The concentrations of metallic elements in the 5 used lubricating oils were finally determined. - Highlights: • Direct determination of wear metals in lubricating oils using LIBS. • Generalized calibration curves for different oils. • Ablation of a thin oil layer on a pure metallic target.

  12. Investigation of metal coatings for the free electron laser

    International Nuclear Information System (INIS)

    Scott, M.L.; Arendt, P.N.; Springer, R.W.; Cordi, R.C.; McCreary, W.J.

    1985-01-01

    We are investigating the deposition and characteristics of metal coatings for use in environments such as the Free Electron Laser where the radiation resistance of metal coatings could prove to be of great benefit. We have concentrated our initial efforts on silver laminate coatings due to the high reflectance of silver at 1 micron wavelength. Our initial laminate coatings have utilized thin layers of titanium oxide to break up the columnar structure of the silver during electron-beam deposition on fused silica substrates. Our initial results on equal coating thickness samples indicate an improvement in damage threshold that ranges from 1.07 to 1.71 at 351 nm

  13. Hydrogen-induced metallization on Ge(1 1 1) c(2 x 8)

    International Nuclear Information System (INIS)

    Razado, I.C.; Zhang, H.M.; Hansson, G.V.; Uhrberg, R.I.G.

    2006-01-01

    We have studied hydrogen adsorption on the Ge(1 1 1) c(2 x 8) surface using scanning tunneling microscopy (STM) and angle-resolved photoelectron spectroscopy (ARPES). We find that atomic hydrogen preferentially adsorbs on rest atom sites. The neighbouring adatoms appear higher in STM images, which clearly indicates a charge transfer from the rest atom states to the adatom states. The surface states near the Fermi-level have been followed by ARPES as function of H exposure. Initially, there is strong emission from the rest atom states but no emission at the Fermi-level which confirms the semiconducting character of the c(2 x 8) surface. With increasing H exposure a structure develops in the close vicinity of the Fermi-level. The energy position clearly indicates a metallic character of the H-adsorbed surface. Since the only change in the STM images is the increased brightness of the adatoms neighbouring a H-terminated rest atom, we identify the emission at the Fermi-level with these adatom states

  14. Changes in metal availability, desorption kinetics and speciation in contaminated soils during repeated phytoextraction with the Zn/Cd hyperaccumulator Sedum plumbizincicola.

    Science.gov (United States)

    Li, Zhu; Jia, Mingyun; Wu, Longhua; Christie, Peter; Luo, Yongming

    2016-02-01

    Phytoextraction is one of the most promising technologies for the remediation of metal contaminated soils. Changes in soil metal availability during phytoremediation have direct effects on removal efficiency and can also illustrate the interactive mechanisms between hyperaccumulators and metal contaminated soils. In the present study the changes in metal availability, desorption kinetics and speciation in four metal-contaminated soils during repeated phytoextraction by the zinc/cadmium hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) over three years were investigated by chemical extraction and the DGT-induced fluxes in soils (DIFS) model. The available metal fractions (i.e. metal in the soil solution extracted by CaCl2 and by EDTA) decreased greatly by >84% after phytoextraction in acid soils and the deceases were dramatic at the initial stages of phytoextraction. However, the decreases in metal extractable by CaCl2 and EDTA in calcareous soils were not significant or quite low. Large decreases in metal desorption rate constants evaluated by DIFS were found in calcareous soils. Sequential extraction indicated that the acid-soluble metal fraction was easily removed by S. plumbizincicola from acid soils but not from calcareous soils. Reducible and oxidisable metal fractions showed discernible decreases in acid and calcareous soils, indicating that S. plumbizincicola can mobilize non-labile metal for uptake but the residual metal cannot be removed. The results indicate that phytoextraction significantly decreases metal availability by reducing metal pool sizes and/or desorption rates and that S. plumbizincicola plays an important role in the mobilization of less active metal fractions during repeated phytoextraction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Toxicity assessment due to sub-chronic exposure to individual and mixtures of four toxic heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Cobbina, Samuel J.; Chen, Yao [School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu (China); Zhou, Zhaoxiang; Wu, Xueshan; Zhao, Ting [School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 (China); Zhang, Zhen [School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu (China); Feng, Weiwei; Wang, Wei [School of Food and Biological Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu (China); Li, Qian [School of Pharmacy, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu (China); Wu, Xiangyang, E-mail: wuxy@ujs.edu.cn [School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013, Jiangsu (China); Yang, Liuqing, E-mail: yangliuqing@ujs.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang 212013 (China)

    2015-08-30

    Highlights: • Low dose single and mixtures of toxic metals had adverse effect on mice. • Metal mixtures exhibited higher toxicities compared to individual metals. • Mixtures of low dose Pb + Hg + Cd induced neuronal degeneration in brain of mice. • Exposure to Pb + Hg + As + Cd showed renal tubular necrosis in kidney. - Abstract: Humans are exposed to a cocktail of heavy metal toxicants in the environment. Though heavy metals are deleterious, there is a paucity of information on toxicity of low dose mixtures. In this study, lead (Pb) (0.01 mg/L), mercury (Hg) (0.001 mg/L), cadmium (Cd) (0.005 mg/L) and arsenic (As) (0.01 mg/L) were administered individually and as mixtures to 10 groups of 40 three-week old mice (20 males and 20 females), for 120 days. The study established that low dose exposures induced toxicity to the brain, liver, and kidney of mice. Metal mixtures showed higher toxicities compared to individual metals, as exposure to low dose Pb + Hg + Cd reduced brain weight and induced structural lesions, such as neuronal degeneration in 30-days. Pb + Hg + Cd and Pb + Hg + As + Cd exposure induced hepatocellular injury to mice evidenced by decreased antioxidant activities with marginal increases in MDA. These were accentuated by increases in ALT, AST and ALP. Interactions in metal mixtures were basically synergistic in nature and exposure to Pb + Hg + As + Cd induced renal tubular necrosis in kidneys of mice. This study underlines the importance of elucidating the toxicity of low dose metal mixtures so as to protect public health.

  16. Simulating cosmic metal enrichment by the first galaxies

    NARCIS (Netherlands)

    Pallottini, A.; Ferrara, A.; Gallerani, S.; Salvadori, S.; D'Odorico, V.

    We study cosmic metal enrichment via adaptive mesh refinement hydrodynamical simulations in a (10 Mpc h-1)3 volume following the Population III (PopIII)-PopII transition and for different PopIII initial mass function (IMFs). We have analysed the joint evolution of metal enrichment on galactic and

  17. Production of metal waste forms from spent fuel treatment

    International Nuclear Information System (INIS)

    Westphal, B.R.; Keiser, D.D.; Rigg, R.H.; Laug, D.V.

    1995-01-01

    Treatment of spent nuclear fuel at Argonne National Laboratory consists of a pyroprocessing scheme in which the development of suitable waste forms is being advanced. Of the two waste forms being proposed, metal and mineral, the production of the metal waste form utilizes induction melting to stabilize the waste product. Alloying of metallic nuclear materials by induction melting has long been an Argonne strength and thus, the transition to metallic waste processing seems compatible. A test program is being initiated to coalesce the production of the metal waste forms with current induction melting capabilities

  18. Surface modification of nanodiamond through metal free atom transfer radical polymerization

    Science.gov (United States)

    Zeng, Guangjian; Liu, Meiying; Shi, Kexin; Heng, Chunning; Mao, Liucheng; Wan, Qing; Huang, Hongye; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2016-12-01

    Surface modification of nanodiamond (ND) with poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)] has been achieved by using metal free surface initiated atom transfer radical polymerization (SI-ATRP). The ATRP initiator was first immobilized on the surface of ND through direct esterification reaction between hydroxyl group of ND and 2-bromoisobutyryl bromide. The initiator could be employed to obtain ND-poly(MPC) nanocomposites through SI-ATRP using an organic catalyst. The final functional materials were characterized by 1H nuclear magnetic resonance, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermo gravimetric analysis in detailed. All of these characterization results demonstrated that ND-poly(MPC) have been successfully obtained via metal free photo-initiated SI-ATRP. The ND-poly(MPC) nanocomposites shown enhanced dispersibility in various solvents as well as excellent biocompatibility. As compared with traditional ATRP, the metal free ATRP is rather simple and effective. More importantly, this preparation method avoided the negative influence of metal catalysts. Therefore, the method described in this work should be a promising strategy for fabrication of polymeric nanocomposites with great potential for different applications especially in biomedical fields.

  19. Metal Induced Gap States on Pt/Ge(001)

    NARCIS (Netherlands)

    Oncel, N.; van Beek, W.J.; Poelsema, Bene; Zandvliet, Henricus J.W.

    2007-01-01

    Using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) we have studied the electronic properties of a novel, planar, metal semiconductor contact. For this purpose we take advantage of the unique properties of the Pt-modified Ge(001) surface, which consist of coexisting

  20. Damage induced by helium ion irradiation in Fe-based metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaonan; Mei, Xianxiu, E-mail: xxmei@dlut.edu.cn; Zhang, Qi; Li, Xiaona; Qiang, Jianbing; Wang, Younian

    2017-07-15

    The changes in structure and surface morphology of metallic glasses Fe{sub 80}Si{sub 7.43}B{sub 12.57} and Fe{sub 68}Zr{sub 7}B{sub 25} before and after the irradiation of He ions with the energy of 300 keV were investigated, and were compared with that of the tungsten. The results show that after the He{sup 2+} irradiation, metallic glass Fe{sub 68}Zr{sub 7}B{sub 25} still maintained amorphous. While a small amount of metastable β-Mn type phase nanocrystals formed in metallic glass Fe{sub 80}Si{sub 7.43}B{sub 12.57} at the fluence of 4.0 × 10{sup 17}ions/cm{sup 2} (19dpa). The nanocrystals transformed into α-Fe phase and tetragonal Fe{sub 2}B phase as the fluence increased to 1.0 × 10{sup 18}ions/cm{sup 2} (47dpa). Then the new orthogonal Fe{sub 3}B phase and β-Mn type phase nanocrystals appeared when the fluence increased further, and the quantities of nanocrystals increased. Blisters and cracks appeared on the surface of tungsten under the irradiation fluence of 1.0 × 10{sup 18}ions/cm{sup 2}, however only when the fluence was up to 1.6 × 10{sup 18}ions/cm{sup 2}, could cracks and spalling appear on the surfaces of metallic glasses. - Highlights: •Metallic glass Fe{sub 68}Zr{sub 7}B{sub 25} could maintain amorphous state after the irradiation. •A series of crystallization behaviors occurred in metallic glass Fe{sub 80}Si{sub 7.43}B{sub 12.57}. •The surface of tungsten appeared blisters at the fluence of 1.0 × 10{sup 18} ions/cm{sup 2}. •Surfaces of Fe-based metallic glasses cracked at the fluence of 1.6 × 10{sup 18}ions/cm{sup 2}.

  1. Three-phase metal kinetics in terrestrial invertebrates exposed to high metal concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Laskowski, Ryszard, E-mail: ryszard.laskowski@uj.edu.pl [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland); Bednarska, Agnieszka J. [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland); Spurgeon, David; Svendsen, Claus [Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxon, OX10 8BB (United Kingdom); Gestel, Cornelis A.M. van [Institute of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands)

    2010-08-15

    Models of metal toxicokinetics are critically evaluated using both newly generated data in the NoMiracle project as well as those originating from older studies. The analysis showed that the most frequently used one-compartment two-phase toxicokinetic model, with one assimilation and one elimination rate constant, does not describe correctly certain data sets pertaining particularly to the pattern of assimilation of trace elements. Using nickel toxicokinetics in carabid beetles and earthworms as examples, we showed that Ni in fact exhibits a three-phase kinetics with a short phase of fast metal accumulation immediately after exposure, followed by partial elimination to an equilibrium concentration at a later stage of a metal exposure phase, and by final elimination upon transfer to an uncontaminated food/soil. A similar phenomenon was also found for data on cadmium kinetics in ground beetles and copper kinetics in earthworms in data already published in the literature that was not accounted for in the earlier analysis of the data. The three-phase model suggests that the physiology of controlling body metal concentrations can change shortly after exposure, at least in some cases, by increasing the elimination rate and/or decreasing metal assimilation. Hence, the three-phase model, that allows for different assimilation and/or elimination rates in different phases of exposure to a toxicant, may provide insight into temporal changes in the physiology of metal handling. Consequently, this alternative model should always be tested when describing metal toxicokinetics when temporal patterns of internal metal concentration exhibit an initial 'overshoot' in body metal concentrations.

  2. Three-phase metal kinetics in terrestrial invertebrates exposed to high metal concentrations

    International Nuclear Information System (INIS)

    Laskowski, Ryszard; Bednarska, Agnieszka J.; Spurgeon, David; Svendsen, Claus; Gestel, Cornelis A.M. van

    2010-01-01

    Models of metal toxicokinetics are critically evaluated using both newly generated data in the NoMiracle project as well as those originating from older studies. The analysis showed that the most frequently used one-compartment two-phase toxicokinetic model, with one assimilation and one elimination rate constant, does not describe correctly certain data sets pertaining particularly to the pattern of assimilation of trace elements. Using nickel toxicokinetics in carabid beetles and earthworms as examples, we showed that Ni in fact exhibits a three-phase kinetics with a short phase of fast metal accumulation immediately after exposure, followed by partial elimination to an equilibrium concentration at a later stage of a metal exposure phase, and by final elimination upon transfer to an uncontaminated food/soil. A similar phenomenon was also found for data on cadmium kinetics in ground beetles and copper kinetics in earthworms in data already published in the literature that was not accounted for in the earlier analysis of the data. The three-phase model suggests that the physiology of controlling body metal concentrations can change shortly after exposure, at least in some cases, by increasing the elimination rate and/or decreasing metal assimilation. Hence, the three-phase model, that allows for different assimilation and/or elimination rates in different phases of exposure to a toxicant, may provide insight into temporal changes in the physiology of metal handling. Consequently, this alternative model should always be tested when describing metal toxicokinetics when temporal patterns of internal metal concentration exhibit an initial 'overshoot' in body metal concentrations.

  3. Accumulation of Proline under Salinity and Heavy metal stress in ...

    African Journals Online (AJOL)

    Michael Horsfall

    Seed germination and growth parameters of seedlings of cauliflower were observed after 5, 10 and 15 ... Keywords: Abiotic stress, salinity, proline and heavy metals. The responses of ..... induced accumulation of free proline in a metal-tolerant.

  4. MRI Near Metallic Implants Using MAVRIC SL: Initial Clinical Experience at 3T

    Science.gov (United States)

    Gutierrez, Luis B.; Do, Bao H.; Gold, Garry E.; Hargreaves, Brian A.; Koch, Kevin M.; Worters, Pauline W.; Stevens, Kathryn J.

    2014-01-01

    Rationale and Objectives To compare the effectiveness of MAVRIC SL with conventional 2D-FSE MR techniques at 3T in imaging patients with a variety of metallic implants. Materials and Methods Twenty-one 3T MR studies were obtained in 19 patients with different types of metal implants. Paired MAVRIC SL and 2D-FSE sequences were reviewed by 2 radiologists, and compared for in-plane and through-plane metal artifact, visualization of the bone implant interface and surrounding soft tissues, blurring, and overall image quality using a 2-tailed Wilcoxon signed rank test. The area of artifact on paired images was measured and compared using a paired Wilcoxon signed rank test. Changes in patient management resulting from MAVRIC SL imaging were documented. Results Significantly less in-plane and through-plane artifact was seen with MAVRIC SL, with improved visualization of the bone-implant interface and surrounding soft tissues, and superior overall image quality (p = 0.0001). Increased blurring was seen with MAVRIC SL (p=0.0016). MAVRIC SL significantly decreased the image artifact compared to 2D-FSE (p=0.0001). Inclusion of MAVRIC SL to the imaging protocol determined the need for surgery or type of surgery in 5 patients, and ruled out the need for surgery in 13 patients. In 3 patients the area of interest was well seen on both MAVRIC SL and 2D-FSE images, so the addition of MAVRIC had no effect on patient management. Conclusion Imaging around metal implants with MAVRIC SL at 3T significantly improved image quality and decreased image artifact compared to conventional 2D-FSE imaging techniques, and directly impacted patient management. PMID:25435186

  5. Studies on the Use of Gamma Radiation-Induced for Preparation of Some Modified Resins for the Separation of Some Metal Ions

    International Nuclear Information System (INIS)

    Abo-Zahra, S.F.

    2012-01-01

    The work carried out in the present thesis is based on preparation, characterization and applications of some modified resins such as: poly(acrylamide)/poly(maleic acid) P(AAm)/P(MA) interpolymer complex (resin), poly(acrylamide-acrylic acid-amidoxime) P(AAm-AA-AO) resin and poly(hydroxamic acid) P(HA) resin. Poly(acrylamide)/poly(maleic acid) P(AAm)/P(MA) interpolymer complex (resin) was prepared by template polymerization of maleic acid (MA) monomer on poly(acrylamide) P(AAm) hydrogel as a template polymer in the presence of N,N'-methylenebisacrylamide (NMBA) as a crosslinker using gamma radiation-induced technique. Poly(acrylamide-acrylic acid-amidoxime) P(AAm-AA-AO) resin was prepared by template polymerization of acrylic acid (AA) and acrylonitrile (AN) monomers on P(AAm) hydrogel as a template polymer in the presence of NMBA as a crosslinker using gamma radiation-induced technique. The conversion of nitrile group to amidoxime one was carried out by the treatment of the prepared resin with an alkaline solution of hydroxylamine. Poly(hydroxamic acid) P(HA) resin was prepared from the reaction of the corresponding water-soluble P(AAm) previously prepared by gamma radiation-induced with hydroxylamine hydrochloride in an alkaline medium. The functional groups on the prepared polymeric resins were confirmed by using Fourier transform infrared (FTIR) spectra. Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) measurements, scanning electron microscopy (SEM) and electron spin resonance (ESR) measurements were performed to evaluate the properties of the prepared polymeric resins, free or complexed with metal ions such as Cu 2+ metal ions.

  6. Controllable irregular melting induced by atomic segregation in bimetallic clusters with fabricating different initial configurations

    International Nuclear Information System (INIS)

    Li Guojian; Liu Tie; Wang Qiang; Lue Xiao; Wang Kai; He Jicheng

    2010-01-01

    The melting process of Co, Co-Cu and Co-Ni clusters with different initial configurations is studied in molecular dynamics by a general embedded atom method. An irregular melting, at which energy decreases as the temperature increase near the melting point, is found in the onion-like Co-Cu-Co clusters, but not in the mixed Co-Cu and onion-like Co-Ni-Co clusters. From the analysis of atomic distributions and energy variation, the results indicate the irregular melting is induced by Cu atomic segregation. Furthermore, this melting can be controlled by doping hetero atoms with different surface energies and controlling their distributions.

  7. GP-initiated preconception counselling in a randomised controlled trial does not induce anxiety

    Directory of Open Access Journals (Sweden)

    Neven A Knuistingh

    2006-11-01

    Full Text Available Abstract Background Preconception counselling (PCC can reduce adverse pregnancy outcome by addressing risk factors prior to pregnancy. This study explores whether anxiety is induced in women either by the offer of PCC or by participation with GP-initiated PCC. Methods Randomised trial of usual care versus GP-initiated PCC for women aged 18–40, in 54 GP practices in the Netherlands. Women completed the six-item Spielberger State Trait Anxiety Inventory (STAI before PCC (STAI-1 and after (STAI-2. After pregnancy women completed a STAI focusing on the first trimester of pregnancy (STAI-3. Results The mean STAI-1-score (n = 466 was 36.4 (95% CI 35.4 – 37.3. Following PCC there was an average decrease of 3.6 points in anxiety-levels (95% CI, 2.4 – 4.8. Mean scores of the STAI-3 were 38.5 (95% CI 37.7 – 39.3 in the control group (n = 1090 and 38.7 (95% CI 37.9 – 39.5 in the intervention group (n = 1186. Conclusion PCC from one's own GP reduced anxiety after participation, without leading to an increase in anxiety among the intervention group during pregnancy. We therefore conclude that GPs can offer PCC to the general population without fear of causing anxiety. Trial Registration: ISRCTN53942912

  8. Impact of heavy metals on the female reproductive system

    Directory of Open Access Journals (Sweden)

    Piotr Rzymski

    2015-05-01

    Environmental deterioration can lead to the elevated risk of human exposure to heavy metals, and consequently, health implications including disturbances in reproduction. It is therefore important to continue the investigations on metal-induced mechanisms of fertility impairment on the genetic, epigenetic and biochemical level.

  9. Elastic properties of Gum Metal

    International Nuclear Information System (INIS)

    Kuramoto, Shigeru; Furuta, Tadahiko; Hwang, Junghwan; Nishino, Kazuaki; Saito, Takashi

    2006-01-01

    In situ X-ray diffraction measurements under tensile loading and dynamic mechanical analysis were performed to investigate the mechanisms of elastic deformation in Gum Metal. Tensile stress-strain curves for Gum Metal indicate that cold working substantially decreases the elastic modulus while increasing the yield strength, thereby confirming nonlinearity in the elastic range. The gradient of each curve decreased continuously to about one-third its original value near the elastic limit. As a result of this decrease in elastic modulus and nonlinearity, elastic deformability reaches 2.5% after cold working. Superelasticity is attributed to stress-induced martensitic transformations, although the large elastic deformation in Gum Metal is not accompanied by a phase transformation

  10. Effects of loading variables on fatigue-crack growth in liquid-metal environments

    CSIR Research Space (South Africa)

    Fernandes, PJL

    1995-10-01

    Full Text Available Liquid-metal-induced embrittlement (LMIE) refers to the loss of ductility in normally ductile metals and alloys when stressed while in contact with a liquid metal. In this study, the fatigue crack growth behaviour of brass in molten gallium...

  11. Functionalization of Polymer Surfaces by Radiation-Induced Grafting for Separation of Heavy Metal Ions

    Energy Technology Data Exchange (ETDEWEB)

    Przybytniak, G; Kornacka, E M; Fuks, L; Walo, M; Lyczko, K; Mirkowski, K [Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw (Poland)

    2012-09-15

    The reported investigations were focused on the elucidation of the most important factors influencing radiation-induced grafting; particularly (1) the effect of radical population generated in polymeric matrix on degree of grafting, (2) parameters determined grafting and its procedure, (3) correlation between layer structure formed via copolymerization and content of monomers in the initial solution. Sorption capacity of the adsorbants was evaluated using {sup 152}Eu{sup 3+} as a marker monitoring depletion of the radioisotope from the initial solution by gamma radiometer. Electron spin resonance spectroscopy (EPR) and gas chromatography (GC) studies confirmed that yield of radiation-induced radicals increases in the following order polystyrene (PS) < polypropylene (PP) < polyethylene (PE). The same relationship was found for efficiency of radiation grafting. It was concluded that under comparable conditions the content of radicals in polymeric matrices determines grafting degree. It was found that application of the simultaneous method of grafting introduces to the grafted layers crosslinking or/and branching as well as degradation of functional groups. All these phenomena reduce access of Eu{sup 3+} to the studied sorbent therefore sorption capacity of the polyamide functionalized via pre-irradiation (indirect) method is higher than that determined for the sorbent prepared by simultaneous method of grafting. When two monomers, acrylic acid (AAc) and acrylamide (AAm) , contributed in the formation of grafted layer, their input into copolymerization was not proportional to the concentrations in the feed solution. It was confirmed that grafting of the monomers shows synergetic effect as the yield of copolymerization exceeds degree of grafting achieved for individual components. (author)

  12. Influence of metal induced crystallization parameters on the performance of polycrystalline silicon thin film transistors

    International Nuclear Information System (INIS)

    Pereira, L.; Barquinha, P.; Fortunato, E.; Martins, R.

    2005-01-01

    In this work, metal induced crystallization using nickel was employed to obtain polycrystalline silicon by crystallization of amorphous films for thin film transistor applications. The devices were produced through only one lithographic process with a bottom gate configuration using a new gate dielectric consisting of a multi-layer of aluminum oxide/titanium oxide produced by atomic layer deposition. The best results were obtained for TFTs with the active layer of poly-Si crystallized for 20 h at 500 deg. C using a nickel layer of 0.5 nm where the effective mobility is 45.5 cm 2 V -1 s -1 . The threshold voltage, the on/off current ratio and the sub-threshold voltage are, respectively, 11.9 V, 5.55x10 4 and 2.49 V/dec

  13. Modulation of translation-initiation in CHO-K1 cells by rapamycin-induced heterodimerization of engineered eIF4G fusion proteins.

    Science.gov (United States)

    Schlatter, Stefan; Senn, Claudia; Fussenegger, Martin

    2003-07-20

    Translation-initiation is a predominant checkpoint in mammalian cells which controls protein synthesis and fine-tunes the flow of information from gene to protein. In eukaryotes, translation-initiation is typically initiated at a 7-methyl-guanylic acid cap posttranscriptionally linked to the 5' end of mRNAs. Alternative cap-independent translation-initiation involves 5' untranslated regions (UTR) known as internal ribosome entry sites, which adopt a particular secondary structure. Translation-initiating ribosome assembly at cap or IRES elements is mediated by a multiprotein complex of which the initiation factor 4F (eIF4F) consisting of eIF4A (helicase), eIF4E (cap-binding protein), and eIF4G is a major constituent. eIF4G is a key target of picornaviral protease 2A, which cleaves this initiation factor into eIF4G(Delta) and (Delta)eIF4G to redirect the cellular translation machinery exclusively to its own IRES-containing transcripts. We have designed a novel translation control system (TCS) for conditional as well as adjustable translation of cap- and IRES-dependent transgene mRNAs in mammalian cells. eIF4G(Delta) and (Delta)eIF4G were fused C- and N-terminally to the FK506-binding protein (FKBP) and the FKBP-rapamycin-binding domain (FRB) of the human FKBP-rapamycin-associated protein (FRAP), respectively. Rapamycin-induced heterodimerization of eIF4G(Delta)-FKBP and FRB-(Delta)eIF4G fusion proteins reconstituted a functional chimeric elongation factor 4G in a dose-dependent manner. Rigorous quantitative expression analysis of cap- and IRES-dependent SEAP- (human placental secreted alkaline phosphatase) and luc- (Photinus pyralis luciferase) encoding reporter constructs confirmed adjustable translation control and revealed increased production of desired proteins in response to dimerization-induced heterologous eIF4G in Chinese hamster ovary (CHO-K1) cells. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 83: 210-225, 2003.

  14. Damage Prediction in Sheet Metal Forming

    International Nuclear Information System (INIS)

    Saanouni, Khemais; Badreddine, Houssem

    2007-01-01

    Ductile (or plastic) damage often occurs during sheet metal forming processes due to the large plastic flow localization. Accordingly, it is crucial for numerical tools, used in the simulation of that processes, to use fully coupled constitutive equations accounting for both hardening and damage. This can be used in both cases, namely to overcome the damage initiation during some sheet metal forming processes as deep drawing, ... or to enhance the damage initiation and growth as in sheet metal cutting. In this paper, a fully coupled constitutive equations accounting for combined isotropic and kinematic hardening as well as the ductile damage is implemented into the general purpose Finite Element code for metal forming simulation. First, the fully coupled anisotropic constitutive equations in the framework of Continuum Damage Mechanics are presented. Attention is paid to the strong coupling between the main mechanical fields as elasto-viscoplasticity, mixed hardening, ductile isotropic damage and contact with friction. The anisotropy of the plastic flow is taken into account using various kinds of quadratic or non quadratic yield criteria in the framework of non associative finite plasticity theory with two types of normality rules. The associated numerical aspects concerning both the local integration of the coupled constitutive equations as well as the (global) equilibrium integration schemes are presented. The local integration is outlined thanks to the Newton iterative scheme applied to a reduced system of 2 equations. For the global resolution of the initial and boundary value problem, the classical dynamic explicit (DE) scheme with an adaptive time step control is used. The numerical implementation of the damage is made in such a manner that calculations can be executed with or without damage effect, i.e. fully coupled or uncoupled calculations. For the 2D processes an advanced adaptive meshing procedure is used in order to enhance the numerical solution and

  15. Initiation precursors and initiators in laser-induced copolymerization of styrene and maleic anhydride in acetone

    Science.gov (United States)

    Miner, Gilda A.; Meador, Willard E.; Chang, C. Ken

    1990-01-01

    The initiation step of photopolymerized styrene/maleic anhydride copolymer was investigated at 365 nm. UV absorption measurements provide decisive evidence that the styrene/maleic anhydride charge transfer complex is the sole absorbing species; however, key laser experiments suggest intermediate reactions lead to a monoradical initiating species. A mechanism for the photoinitiation step of the copolymer is proposed.

  16. Correlation of transcriptomic responses and metal bioaccumulation in Mytilus edulis L. reveals early indicators of stress

    Energy Technology Data Exchange (ETDEWEB)

    Poynton, Helen C., E-mail: helen.poynton@umb.edu; Robinson, William E.; Blalock, Bonnie J.; Hannigan, Robyn E.

    2014-10-15

    , three transcripts directly involved in the unfolded protein response (UPR) were induced in the metal treatments at 2 weeks and were further up-regulated at 4 weeks. Overall, correlation of tissue concentrations and gene expression responses indicates that as mussels accumulate higher concentrations of metals, initial stress responses are mobilized to protect tissues. However, given the role of UPR in apoptosis, it serves as an early indicator of stress, which once overwhelmed will result in adverse physiological effects.

  17. Abaca/polyester nonwoven fabric functionalization for metal ion adsorbent synthesis via electron beam-induced emulsion grafting

    International Nuclear Information System (INIS)

    Madrid, Jordan F.; Ueki, Yuji; Seko, Noriaki

    2013-01-01

    A metal ion adsorbent was developed from a nonwoven fabric trunk material composed of both natural and synthetic polymers. A pre-irradiation technique was used for emulsion grafting of glycidyl methacrylate (GMA) onto an electron beam irradiated abaca/polyester nonwoven fabric (APNWF). The dependence of degree of grafting (Dg), calculated from the weight of APNWF before and after grafting, on absorbed dose, reaction time and monomer concentration were evaluated. After 50 kGy irradiation with 2 MeV electron beam and subsequent 3 h reaction with an emulsion consisting of 5% GMA and 0.5% polyoxyethylene sorbitan monolaurate (Tween 20) surfactant in deionized water at 40 °C, a grafted APNWF with a Dg greater than 150% was obtained. The GMA-grafted APNWF was further modified by reaction with ethylenediamine (EDA) in isopropyl alcohol at 60 °C to introduce amine functional groups. After a 3 h reaction with 50% EDA, an amine group density of 2.7 mmole/gram adsorbent was achieved based from elemental analysis. Batch adsorption experiments were performed using Cu 2+ and Ni 2+ ions in aqueous solutions with initial pH of 5 at 30 °C. Results show that the adsorption capacity of the grafted adsorbent for Cu 2+ is four times higher than Ni 2+ ions. - Highlights: • An amine type adsorbent from abaca/polyester nonwoven fabric was synthesized. • Pre-irradiation method was used in grafting glycidyl methacrylate on nonwoven fabric. • Radiation-induced grafting was performed with monomer in emulsion state. • The calculated adsorption capacity for Cu 2+ is four times higher than Ni 2+ ions. • Grafted adsorbent can remove Cu 2+ faster than a chemically similar commercial resin

  18. Complex-radical copolymerization of vinyl monomers on organoelemental initiators

    International Nuclear Information System (INIS)

    Grishin, D.F.

    1993-01-01

    Data on regularities of the initiation and growth of the (co)polymerization of polar vinyl series monomers on organo-elemental initiator, organo-boron in particular, are generalized. The effect of organo-metallic compounds and some phenol type inhibitors on the rate of acrylate (co)polymerization is analyzed from view of the change of electroacceptor properties (electrophilicity) of macroradicals

  19. Mode Specific Electronic Friction in Dissociative Chemisorption on Metal Surfaces: H2 on Ag(111)

    Science.gov (United States)

    Maurer, Reinhard J.; Jiang, Bin; Guo, Hua; Tully, John C.

    2017-06-01

    Electronic friction and the ensuing nonadiabatic energy loss play an important role in chemical reaction dynamics at metal surfaces. Using molecular dynamics with electronic friction evaluated on the fly from density functional theory, we find strong mode dependence and a dominance of nonadiabatic energy loss along the bond stretch coordinate for scattering and dissociative chemisorption of H2 on the Ag(111) surface. Exemplary trajectories with varying initial conditions indicate that this mode specificity translates into modulated energy loss during a dissociative chemisorption event. Despite minor nonadiabatic energy loss of about 5%, the directionality of friction forces induces dynamical steering that affects individual reaction outcomes, specifically for low-incidence energies and vibrationally excited molecules. Mode-specific friction induces enhanced loss of rovibrational rather than translational energy and will be most visible in its effect on final energy distributions in molecular scattering experiments.

  20. Irradiation performance of metallic fuels

    International Nuclear Information System (INIS)

    Pahl, R.G.; Lahm, C.E.; Porter, D.L.; Batte, G.L.; Hofman, G.L.

    1989-01-01

    Argonne National Laboratory has been working for the past five years to develop and demonstrate the Integral Fast Reactor (IFR) concept. The concept involves a closed system for fast-reactor power generation and on-site fuel reprocessing, both designed specifically around the use of metallic fuel. The Experimental Breeder Reactor-II (EBR-II) has used metallic fuel for all of its 25-year life. In 1985, tests were begun to examine the irradiation performance of advanced-design metallic fuel systems based on U-Zr or U-Pu-Zr fuels. These tests have demonstrated the viable performance of these fuel systems to high burnup. The initial testing program will be described in this paper. 2 figs

  1. Immobilizer-assisted management of metal-contaminated agricultural soils for safer food production.

    Science.gov (United States)

    Kim, Kwon-Rae; Kim, Jeong-Gyu; Park, Jeong-Sik; Kim, Min-Suk; Owens, Gary; Youn, Gyu-Hoon; Lee, Jin-Su

    2012-07-15

    Production of food crops on metal contaminated agricultural soils is of concern because consumers are potentially exposed to hazardous metals via dietary intake of such crops or crop derived products. Therefore, the current study was conducted to develop management protocols for crop cultivation to allow safer food production. Metal uptake, as influenced by pH change-induced immobilizing agents (dolomite, steel slag, and agricultural lime) and sorption agents (zeolite and compost), was monitored in three common plants representative of leafy (Chinese cabbage), root (spring onion) and fruit (red pepper) vegetables, in a field experiment. The efficiency of the immobilizing agents was assessed by their ability to decrease the phytoavailability of metals (Cd, Pb, and Zn). The fruit vegetable (red pepper) showed the least accumulation of Cd (0.16-0.29 mgkg(-1) DW) and Pb (0.2-0.9 mgkg(-1) DW) in edible parts regardless of treatment, indicating selection of low metal accumulating crops was a reasonable strategy for safer food production. However, safer food production was more likely to be achievable by combining crop selection with immobilizing agent amendment of soils. Among the immobilizing agents, pH change-induced immobilizers were more effective than sorption agents, showing decreases in Cd and Pb concentrations in each plant well below standard limits. The efficiency of pH change-induced immobilizers was also comparable to reductions obtained by 'clean soil cover' where the total metal concentrations of the plow layer was reduced via capping the surface with uncontaminated soil, implying that pH change-induced immobilizers can be practically applied to metal contaminated agricultural soils for safer food production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Rapid detection of soils contaminated with heavy metals and oils by laser induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Kim, Gibaek; Kwak, Jihyun; Kim, Ki-Rak; Lee, Heesung; Kim, Kyoung-Woong; Yang, Hyeon; Park, Kihong

    2013-12-15

    A laser induced breakdown spectroscopy (LIBS) coupled with the chemometric method was applied to rapidly discriminate between soils contaminated with heavy metals or oils and clean soils. The effects of the water contents and grain sizes of soil samples on LIBS emissions were also investigated. The LIBS emission lines decreased by 59-75% when the water content increased from 1.2% to 7.8%, and soil samples with a grain size of 75 μm displayed higher LIBS emission lines with lower relative standard deviations than those with a 2mm grain size. The water content was found to have a more pronounced effect on the LIBS emission lines than the grain size. Pelletizing and sieving were conducted for all samples collected from abandoned mining areas and military camp to have similar water contents and grain sizes before being analyzed by the LIBS with the chemometric analysis. The data show that three types of soil samples were clearly discerned by using the first three principal components from the spectral data of soil samples. A blind test was conducted with a 100% correction rate for soil samples contaminated with heavy metals and oil residues. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Chromatography Of Metal Ions On Wood Cellulose Impregnated ...

    African Journals Online (AJOL)

    Adsorption chromatography of some heavy metal ions on wood cellulose of saw dust (wood waste dust) modified with hydrochloric acid, urea and thiourea was studied. Atomic absorption spectrophotometry (AAS) was used to determine the initial concentration of solutions of Zn2+, Cu2+, Ni2+, Pb2+, and Fe3+ metal ions.

  4. Characterization of microwave-induced electric discharge phenomena in metal-solvent mixtures.

    Science.gov (United States)

    Chen, Wen; Gutmann, Bernhard; Kappe, C Oliver

    2012-02-01

    Electric discharge phenomena in metal-solvent mixtures are investigated utilizing a high field density, sealed-vessel, single-mode 2.45 GHz microwave reactor with a built-in camera. Particular emphasis is placed on studying the discharges exhibited by different metals (Mg, Zn, Cu, Fe, Ni) of varying particle sizes and morphologies in organic solvents (e.g., benzene) at different electric field strengths. Discharge phenomena for diamagnetic and paramagnetic metals (Mg, Zn, Cu) depend strongly on the size of the used particles. With small particles, short-lived corona discharges are observed that do not lead to a complete breakdown. Under high microwave power conditions or with large particles, however, bright sparks and arcs are experienced, often accompanied by solvent decomposition and formation of considerable amounts of graphitized material. Small ferromagnetic Fe and Ni powders (discharges. Electric discharges were also observed when Cu metal or other conductive materials such as silicon carbide were exposed to the microwave field in the absence of a solvent in an argon or nitrogen atmosphere.

  5. Quantum-size colloid metal systems

    International Nuclear Information System (INIS)

    Roldugin, V.I.

    2000-01-01

    In the review dealing with quantum-dimensional metallic colloid systems the methods of preparation, electronic, optical and thermodynamic properties of metal nanoparticles and thin films are considered, the effect of ionizing radiation on stability of silver colloid sols and existence of a threshold radiation dose affecting loss of stability being discussed. It is shown that sol stability loss stems from particles charge neutralization due to reduction of sorbed silver ions induced by radiation, which results in destruction of double electric layer on colloid particles boundary [ru

  6. Batch adsorption of heavy metals (Cu, Pb, Fe, Cr and Cd) from ...

    African Journals Online (AJOL)

    cinthia

    This study was carried out to evaluate the efficiency of metals (Cu, Fe, Pb, Cr and Cd) removal from mixed metal ions solution using coconut husk as adsorbent. The effects of varying contact time, initial metal ion concentration, adsorbent dose and pH on adsorption process of these metals were studied using synthetically ...

  7. Common and metal-specific proteomic responses to cadmium and zinc in the metal tolerant ericoid mycorrhizal fungus Oidiodendron maius Zn.

    Science.gov (United States)

    Chiapello, M; Martino, E; Perotto, S

    2015-05-01

    Although adaptive metal tolerance may arise in fungal populations in polluted soils, the mechanisms underlying metal-specific tolerance are poorly understood. Comparative proteomics is a powerful tool to identify variation in protein profiles caused by changing environmental conditions, and was used to investigate protein accumulation in a metal tolerant isolate of the ericoid mycorrhizal fungus Oidiodendron maius exposed to zinc and cadmium. Two-dimensional gel electrophoresis and shotgun proteomics followed by mass spectrometry lead to the identification of common and metal-specific proteins and pathways. Proteins selectively induced by cadmium exposure were molecular chaperons of the Hsp90 family, cytoskeletal proteins and components of the translation machinery. Zinc significantly up-regulated metabolic pathways related to energy production and carbohydrates metabolism, likely mirroring zinc adaptation of this fungal isolate. Common proteins induced by the two metal ions were the antioxidant enzyme Cu/Zn superoxide dismutase and ubiquitin. In mycelia exposed to zinc and cadmium, both proteomic techniques also identified agmatinase, an enzyme involved in polyamine biosynthesis. This novel finding suggests that, like plants, polyamines may have important functions in response to abiotic environmental stress in fungi. Genetic evidence also suggests that the biosynthesis of polyamines via an alternative metabolic pathway may be widespread in fungi.

  8. On metal fracture induced by laser radiation and impact pinched plasma

    International Nuclear Information System (INIS)

    Sultanov, M.A.; Olejnikov, V.P.

    1980-01-01

    Dependences of erosion of metals (Mo, W, Fe, Ta, Cr, Cd and etc.) on thermal physical properties and the place of laser radiation focusing are investigated. The radiation outpu