WorldWideScience

Sample records for inhibits ultraviolet radiation-induced

  1. Topical W-7 inhibits ultraviolet radiation-induced melanogenesis in Skh:HR2 pigmented hairless mice

    Dowdy, J.C. [Univ. of Memphis, Div. of Molecular Sciences and Microbiology, Memphis, Tennessee (United States); Anthony, F.A.; Costlow, M.E. [Schering-Plough HealthCare Products, Inc., Advanced Product Research, Memphis, Tennessee (United States)

    1995-08-01

    We studied the effect of N-(6-aminohexyl)-5-chloro-1-napthalenesulfonamide (W-7) on ultraviolet radiation (UVR)-induced melanogenesis (tanning) in Skh:HR2 pigmented hairless mice. Topically pretreated mice were exposed to subminimal edematogenic as well as edematogenic UVR doses to establish whether W-7-UVR-induced edema prophylaxis allows increased melanogenesis while preventing edema. Ultraviolet light-irradiated vehicle control animals developed visible trans; however, both W-7-treated groups failed to tan. Topical W-7 before UVR exposure inhibited UVR induction of dopa oxidase activity in melanocytes by 49% (P=0.029) and inhibited UVR-induced deposition of melanin in the epidermis by 88% (P=0.006). Topical W-7 blocked 23% of the UVR but this blockage could not account for the inhibition of dopa oxidase and melanization. We conclude that, in addition to preventing edema, W-7 inhibits UVR-induced melanogenesis, possibly by affecting Ca{sup 2+}-calmodulin and/or protein kinase C-dependent processes. (au) 30 refs.

  2. Topical W-7 inhibits ultraviolet radiation-induced melanogenesis in Skh:HR2 pigmented hairless mice

    Dowdy, J.C.; Anthony, F.A.; Costlow, M.E.

    1995-01-01

    We studied the effect of N-(6-aminohexyl)-5-chloro-1-napthalenesulfonamide (W-7) on ultraviolet radiation (UVR)-induced melanogenesis (tanning) in Skh:HR2 pigmented hairless mice. Topically pretreated mice were exposed to subminimal edematogenic as well as edematogenic UVR doses to establish whether W-7-UVR-induced edema prophylaxis allows increased melanogenesis while preventing edema. Ultraviolet light-irradiated vehicle control animals developed visible trans; however, both W-7-treated groups failed to tan. Topical W-7 before UVR exposure inhibited UVR induction of dopa oxidase activity in melanocytes by 49% (P=0.029) and inhibited UVR-induced deposition of melanin in the epidermis by 88% (P=0.006). Topical W-7 blocked 23% of the UVR but this blockage could not account for the inhibition of dopa oxidase and melanization. We conclude that, in addition to preventing edema, W-7 inhibits UVR-induced melanogenesis, possibly by affecting Ca 2+ -calmodulin and/or protein kinase C-dependent processes. (au) 30 refs

  3. Psoralen plus ultraviolet radiation-induced inhibition of DNA synthesis and viability in human lymphoid cells in vitro

    Kraemer, K H; Waters, H L [National Cancer Inst., Bethesda, MD (USA); Ellingson, O L; Tarone, R E

    1979-08-01

    The present study investigated whether conditions of 8-methoxypsoralen (8-MOP) concentration and of exposure to high intensity long wavelength ultraviolet radiation (UV-A) during psoriasis and mycosis fungoides therapy might be sufficient to result directly in decreased lymphoid cell DNA synthesis and viability in vitro. Tritiated thymidine (/sup 3/HtdR) incorporation and cell growth following UV-A exposure alone or with 8-MOP was examined in peripheral blood lymphocytes and in Ebstein-Barr virus transformed human lymphoblastoid cell lines. UV-A exposure alone induced a dose-dependent inhibition of /sup 3/HTdR incorporation in both types of lymphoid cells. Pre-incubation with 0.1 ..mu..g/ml 8-MOP before UV-A exposure induced a significantly greater inhibition of /sup 3/HTdr incorporation. Further inhibition of /sup 3/HTdR incorporation was observed by preincubation of the lymphoblastoid cells with 1.0 ..mu..g/ml 8-MOP but not in the lymphocytes. The concentration of viable lymphoblastoid cells did not decrease below the original concentration after the highest dose of UV-A alone (29,00 J/m/sup 2/) but preincubation with 0.1 ..mu..g/ml 8-MOP resulted in 40% and 0.6% survival respectively after 3000 J/m/sup 2/. This study suggested that the low doses of 8-MOP and UV-A received by patients' lymphocytes may be sufficient to explain the decreased DNA synthesis found in their circulating leucocytes. (author).

  4. Ultraviolet radiation-induced carcinogenesis: mechanisms and experimental models

    Ramasamy, Karthikeyan; Shanmugam, Mohana; Balupillai, Agilan; Govindhasamy, Kanimozhi; Gunaseelan, Srithar; Muthusamy, Ganesan; Robert, Beualah Mary; Nagarajan, Rajendra Prasad

    2017-01-01

    Ultraviolet radiation (UVR) is a very prominent environmental toxic agent. UVR has been implicated in the initiation and progression of photocarcinogenesis. UVR exposure elicits numerous cellular and molecular events which include the generation of inflammatory mediators, DNA damage, epigenetic modifications, and oxidative damages mediated activation of signaling pathways. UVR-initiated signal transduction pathways are believed to be responsible for tumor promotion effects. UVR-induced carcinogenic mechanism has been well studied using various animal and cellular models. Human skin-derived dermal fibroblasts, epidermal keratinocytes, and melanocytes served as excellent cellular model systems for the understanding of UVR-mediated carcinogenic events. Apart from this, scientists developed reconstituted three-dimensional normal human skin equivalent models for the study of UVR signaling pathways. Moreover, hairless mice such as SKH-1, devoid of Hr gene, served as a valuable model for experimental carcinogenesis. Scientists have also used transgenic mice and dorsal portion shaved Swiss albino mice for UVR carcinogenesis studies. In this review, we have discussed the current progress in the study on ultraviolet B (UVB)-mediated carcinogenesis and outlined appropriate experimental models for both ultraviolet A- and UVB-mediated carcinogenesis. (author)

  5. Silymarin protects epidermal keratinocytes from ultraviolet radiation-induced apoptosis and DNA damage by nucleotide excision repair mechanism.

    Santosh K Katiyar

    Full Text Available Solar ultraviolet (UV radiation is a well recognized epidemiologic risk factor for melanoma and non-melanoma skin cancers. This observation has been linked to the accumulation of UVB radiation-induced DNA lesions in cells, and that finally lead to the development of skin cancers. Earlier, we have shown that topical treatment of skin with silymarin, a plant flavanoid from milk thistle (Silybum marianum, inhibits photocarcinogenesis in mice; however it is less understood whether chemopreventive effect of silymarin is mediated through the repair of DNA lesions in skin cells and that protect the cells from apoptosis. Here, we show that treatment of normal human epidermal keratinocytes (NHEK with silymarin blocks UVB-induced apoptosis of NHEK in vitro. Silymarin reduces the amount of UVB radiation-induced DNA damage as demonstrated by reduced amounts of cyclobutane pyrimidine dimers (CPDs and as measured by comet assay, and that ultimately may lead to reduced apoptosis of NHEK. The reduction of UV radiation-induced DNA damage by silymarin appears to be related with induction of nucleotide excision repair (NER genes, because UV radiation-induced apoptosis was not blocked by silymarin in NER-deficient human fibroblasts. Cytostaining and dot-blot analysis revealed that silymarin repaired UV-induced CPDs in NER-proficient fibroblasts from a healthy individual but did not repair UV-induced CPD-positive cells in NER-deficient fibroblasts from patients suffering from xeroderma pigmentosum complementation-A disease. Similarly, immunohistochemical analysis revealed that silymarin did not reduce the number of UVB-induced sunburn/apoptotic cells in the skin of NER-deficient mice, but reduced the number of sunburn cells in their wild-type counterparts. Together, these results suggest that silymarin exert the capacity to reduce UV radiation-induced DNA damage and, thus, prevent the harmful effects of UV radiation on the genomic stability of epidermal cells.

  6. Induction, development, and inhibition of radiation-induced macrobodies

    Adam, W.J.; Grunewald, R.

    1975-01-01

    Coleus shoots were exposed to 100,000 R of γ radiation and the fine structure of the apical meristems was examined. Meristems were fixed at various postirradiation times. An ultrastructural body was found associated with irradiated tissue, bound by a single membrane, containing dense osmiophilic bodies, and usually associated with radiation-induced vacuoles. The development of these new bodies, and the effects of both dose rate and light during the postirradiation period on their development were examined. Reduction of the dose rate by a factor of two inhibited the formation of these macrobodies through the 24 hour postirradiation period. Meristems kept in the dark during the 24 hour postirradiation period had macrobodies similar in form to the macrobodies from the meristems of the 16 hour postirradiation period which were exposed to light. Superlethal doses were used to achieve these results. Similarities between our results and those achieved with lower lethal doses are discussed

  7. The influence of infrared radiation on short-term ultraviolet-radiation-induced injuries

    Kaidbey, K.H.; Witkowski, T.A.; Kligman, A.M.

    1982-01-01

    Because heat has been reported to influence adversely short- and long-term ultraviolet (UV)-radiation-induced skin damage in animals, we investigated the short-term effects of infrared radiation on sunburn and on phototoxic reactions to topical methoxsalen and anthracene in human volunteers. Prior heating of the skin caused suppression of the phototoxic response to methoxsalen as evidenced by an increase in the threshold erythema dose. Heat administered either before or after exposure to UV radiation had no detectable influence on sunburn erythema or on phototoxic reactions provoked by anthracene

  8. Effects of ceramide inhibition on radiation-induced apoptosis in human leukemia MOLT-4 cells

    Takahashi, Eriko; Inanami, Osamu; Asanuma, Taketoshi; Kuwabara, Mikinori [Hokkaido Univ., Graduate School of Veterinary Medicine, Sapporo, Hokkaido (Japan)

    2006-03-15

    In the present study, using inhibitors of ceramide synthase (fumonisin B{sub 1}), ketosphinganine synthetase (L-cycloserine), acid sphingomyelinase (D609 and desipramine) and neutral sphingomyelinase (GW4869), the role of ceramide in X-ray-induced apoptosis was investigated in MOLT-4 cells. The diacylglycerol kinase (DGK) assay showed that the intracellular concentration of ceramide increased time-dependently after X irradiation of cells, and this radiation-induced accumulation of ceramide did not occur prior to the appearance of apoptotic cells. Treatment with D609 significantly inhibited radiation-induced apoptosis, but did not inhibit the increase of intracellular ceramide. Treatment with desipramine or GW4869 prevented neither radiation-induced apoptosis nor the induced increase of ceramide. On the other hand, fumonisin B{sub 1} and L-cycloserine had no effect on the radiation-induced induction of apoptosis, in spite of significant inhibition of the radiation-induced ceramide. From these results, it was suggested that the increase of the intracellular concentration of ceramide was not essential for radiation-induced apoptosis in MOLT-4 cells. (author)

  9. Effects of ceramide inhibition on radiation-induced apoptosis in human leukemia MOLT-4 cells

    Takahashi, Eriko; Inanami, Osamu; Asanuma, Taketoshi; Kuwabara, Mikinori

    2006-01-01

    In the present study, using inhibitors of ceramide synthase (fumonisin B 1 ), ketosphinganine synthetase (L-cycloserine), acid sphingomyelinase (D609 and desipramine) and neutral sphingomyelinase (GW4869), the role of ceramide in X-ray-induced apoptosis was investigated in MOLT-4 cells. The diacylglycerol kinase (DGK) assay showed that the intracellular concentration of ceramide increased time-dependently after X irradiation of cells, and this radiation-induced accumulation of ceramide did not occur prior to the appearance of apoptotic cells. Treatment with D609 significantly inhibited radiation-induced apoptosis, but did not inhibit the increase of intracellular ceramide. Treatment with desipramine or GW4869 prevented neither radiation-induced apoptosis nor the induced increase of ceramide. On the other hand, fumonisin B 1 and L-cycloserine had no effect on the radiation-induced induction of apoptosis, in spite of significant inhibition of the radiation-induced ceramide. From these results, it was suggested that the increase of the intracellular concentration of ceramide was not essential for radiation-induced apoptosis in MOLT-4 cells. (author)

  10. Inhibition of radiation-induced polyuria by histamine receptor antagonists

    Donlon, M.A.; Melia, J.A.; Helgeson, E.A.; Wolfe, W.W.

    1986-03-01

    In previous studies the authors have demonstrated that gamma radiation results in polyuria, which is preceded by polydypsia. This suggests that the increased thirst elicited by radiation causes increased urinary volume (UV). Histamine, which is released following radiation exposure, also elicits drinking by nonirradiated rats when administered exogenously. In this study the authors have investigated both the role of water deprivation and the effect of histamine receptor antagonists (HRA) on radiation-induced polyuria. Sprague-Dawley rats were housed individually in metabolic cages. Water was allowed ad libitum except in deprivation experiments where water was removed for 24 hr immediately following radiation. Cimetidine (CIM), an H2 HRA, and dexbromopheniramine (DXB), an H1 HRA, were administered i.p. (16 and 1 mg/kg, respectively) 30 min prior to irradiation (950 rads from a cobalt source). UV was determined at 24-hr intervals for 3 days preceding irradiation and 24 hr postirradiation. UV in DXB treated rats was significantly reduced 24 hr postirradiation (CON = 427 +/- 54%; DXB = 247 +/- 39% of preirradiated CON) compared to postirradiation control values. CIM did not affect postirradiation UV. These data suggest that radiation-induced polyuria is caused by polydypsia which is, in part, mediated by histamine induced by an H1 receptor.

  11. Inhibition of radiation-induced polyuria by histamine receptor antagonists

    Donlon, M.A.; Melia, J.A.; Helgeson, E.A.; Wolfe, W.W.

    1986-01-01

    In previous studies the authors have demonstrated that gamma radiation results in polyuria, which is preceded by polydypsia. This suggests that the increased thirst elicited by radiation causes increased urinary volume (UV). Histamine, which is released following radiation exposure, also elicits drinking by nonirradiated rats when administered exogenously. In this study the authors have investigated both the role of water deprivation and the effect of histamine receptor antagonists (HRA) on radiation-induced polyuria. Sprague-Dawley rats were housed individually in metabolic cages. Water was allowed ad libitum except in deprivation experiments where water was removed for 24 hr immediately following radiation. Cimetidine (CIM), an H2 HRA, and dexbromopheniramine (DXB), an H1 HRA, were administered i.p. (16 and 1 mg/kg, respectively) 30 min prior to irradiation (950 rads from a cobalt source). UV was determined at 24-hr intervals for 3 days preceding irradiation and 24 hr postirradiation. UV in DXB treated rats was significantly reduced 24 hr postirradiation (CON = 427 +/- 54%; DXB = 247 +/- 39% of preirradiated CON) compared to postirradiation control values. CIM did not affect postirradiation UV. These data suggest that radiation-induced polyuria is caused by polydypsia which is, in part, mediated by histamine induced by an H1 receptor

  12. Inhibition of radiation-induced lipid peroxidation by means of gallic polydisulphide

    Losev, Yu.P.; Amadyan, M.G.; Oganesyan, N.M.; Fedulov, A.S.; Abramyan, A.K.; Shagoyan, A.G.; Khachkavanktsyan, A.S.

    1999-01-01

    Inhibition of radiation-induced lipid peroxidation by means of gallic polydisulphade has been studied. Rats were exposed to X-rays in doses 4,8 and 5,25 Gy. Lipid peroxidation was analysed in blood plasma, membranes of erythrocytes and homogenates of liver and spleen tissues of rats. Polydisulphide of gallic acid was used as inhibitor of lipid peroxidation because of its effective antioxidant properties as have been reported previously. It has been demonstrated that gallic disulphide exhibited high inhibition efficiency in conditions of radiation-induced lipid peroxidation due to the effect of intra-molecular synergism

  13. Solar ultraviolet radiation-induced DNA damage in aquatic organisms: potential environmental impact

    Haeder, Donat-P.; Sinha, Rajeshwar P.

    2005-01-01

    Continuing depletion of stratospheric ozone and subsequent increases in deleterious ultraviolet (UV) radiation at the Earth's surface have fueled the interest in its ecological consequences for aquatic ecosystems. The DNA is certainly one of the key targets for UV-induced damage in a variety of aquatic organisms. UV radiation induces two of the most abundant mutagenic and cytotoxic DNA lesions, cyclobutane pyrimidine dimers (CPDs) and pyrimidine pyrimidone photoproducts (6-4PPs) and their Dewar valence isomers. However, aquatic organisms have developed a number of repair and tolerance mechanisms to counteract the damaging effects of UV on DNA. Photoreactivation with the help of the enzyme photolyase is one of the most important and frequently occurring repair mechanisms in a variety of organisms. Excision repair, which can be distinguished into base excision repair (BER) and nucleotide excision repair (NER), also play an important role in DNA repair in several organisms with the help of a number of glycosylases and polymerases, respectively. In addition, mechanisms such as mutagenic repair or dimer bypass, recombinational repair, cell-cycle checkpoints, apoptosis and certain alternative repair pathways are also operative in various organisms. This review deals with the UV-induced DNA damage and repair in a number of aquatic organisms as well as methods of detecting DNA damage

  14. Changes in peroxidases associated with radiation-induced sprout inhibition in garlic (Allium sativum L.)

    Croci, C.A.; Curvetto, N.R.; Orioli, G.A.; Arguello, J.A.

    1991-01-01

    The effects of an acute dose of γ-rays (10 Gy) to post-dormant garlic cloves on inner sprout growth and changes in peroxidases and soluble proteins were evaluated up to 100 days of storage in darkness at 19±1 0 C and 42±2% relative humidity. Radiation-induced inhibition of sprout growth became evident after 25 days of treatment and was synchronous with a marked increase in peroxidase activity. Thin-layer isoelectric focusing revealed that radiation induced an increase in the number of anodic peroxidase isoenzymes at 100 days, suggesting modifications in the vascularization process. Neither the soluble protein content nor the protein pattern were affected by irradiation. These results are discussed in terms of a possible mediating effect of peroxidase on radiation-induced sprout inhibition in garlic. (author)

  15. Changes in peroxidases associated with radiation-induced sprout inhibition in garlic (Allium sativum L. )

    Croci, C.A.; Curvetto, N.R.; Orioli, G.A. (Universidad Nacional del Sur, Bahia Blanca (Argentina)); Arguello, J.A. (Universidad Nacional de Cordoba (Argentina). Dept. de Biologia Aplicada)

    1991-02-01

    The effects of an acute dose of {gamma}-rays (10 Gy) to post-dormant garlic cloves on inner sprout growth and changes in peroxidases and soluble proteins were evaluated up to 100 days of storage in darkness at 19+-1{sup 0}C and 42+-2% relative humidity. Radiation-induced inhibition of sprout growth became evident after 25 days of treatment and was synchronous with a marked increase in peroxidase activity. Thin-layer isoelectric focusing revealed that radiation induced an increase in the number of anodic peroxidase isoenzymes at 100 days, suggesting modifications in the vascularization process. Neither the soluble protein content nor the protein pattern were affected by irradiation. These results are discussed in terms of a possible mediating effect of peroxidase on radiation-induced sprout inhibition in garlic. (author).

  16. Effects of smoke and tea on radiation-induced bone marrow cell mutation and marrow inhibition

    Gao Yong; Zhang Weiguang

    2004-01-01

    Objective: To provide scientific information for the prevention and treatment of the radiation damage by analyzing the effects of smoke and tea on radiation-induced bone marrow cell mutation and marrow inhibition. Methods: 7 group mice were exposed to smoke and/or tea and/or radiation respectively. There were also b blank control group and a cyclophosphamide positive control group. The frequencies of micronucleated polychromatic erythrocytes (MPCE), the ratio of polychromatic erythrocytes (PCE) to mature erythrocytes (RBC) in marrow, and the count of peripheral blood hemoleukocyte were observed. Results: The frequencies of MPCE in the groups irradiated with γ-rays were significantly higher than that in the blank control group (P<0.05 or 0.01). The smoke + radiation group's frequency was significantly higher than single radiation group (P<0.05). The ratios of PCE to RBC in the groups irradiated were significantly lower than that in the blank control group (P<0.01). The counts of peripheral blood hemoleukocyte in the groups irradiated were significantly lower than the blank control group (P<0.01). Conclusion: Radiation were able to cause marrow cell mutation and induce marrow inhibition. Smoke increases the effect of radiation-induced marrow cell mutation. Tea and smoke could not affect radiation-induced bone marrow inhibition

  17. Near-ultraviolet radiation-induced damage using an actinic reticuloid strain as a possible sensitive model

    Kralli, A.

    1987-01-01

    The introduction to this thesis consists of a review of current concepts regarding the effects of ultraviolet radiation on living cells. Actinic reticuloid, a disease condition for which a near-ultraviolet radiation cellular sensitivity has been proposed as an underlying cause, is described. The experimental work, the broad aim of which is to expand existing knowledge of the effects of near-ultraviolet radiation that may lead to cell lethality, has centred upon the irradiation of a normal human skin fibroblast strain, GM730, and a strain derived from an actinic reticuloid patient, AR6LO. Parts 1 and 2 examine the effects of the irradiation on both normal and actinic fibroblast sensitivities to a range of ultraviolet wavelengths. The next two sections include observations on the protective effect of Trolox-C, a vitamin E analogue and the sensitization resulting from the replacement of the irradiation medium by a deuterated one, using both normal and actinic reticuloid fibroblasts. The final part examines broad-band near- and far-ultraviolet radiation induced membrane damage by the use of radioactively labelled rubidium as a potassium analogue. (author)

  18. Kaempferol targets RSK2 and MSK1 to suppress ultraviolet radiation-induced skin cancer

    Langfald, Alyssa; Yang, Ge; Zhang, Yi; Yu, Dong Hoon; Kim, Myoung Ok; Lee, Mee-Hyun; Li, Haitao; Bae, Ki Beom; Kim, Hong-Gyum; Ma, Wei-Ya; Bode, Ann M.; Dong, Ziming; Dong, Zigang

    2014-01-01

    Solar ultraviolet (SUV) irradiation is a major factor in skin carcinogenesis, the most common form of cancer in the USA. The mitogen-activated protein (MAP) kinase cascades are activated by SUV irradiation. The 90 kDa ribosomal S6 kinase (RSK) and mitogen and stress activated protein kinase (MSK) proteins constitute a family of protein kinases that mediate signal transduction downstream of the MAP kinase cascades. In this study, phosphorylation of RSK and MSK1 was up-regulated in human squamous cell carcinoma (SCC) and solar UV-treated mouse skin. Kaempferol, a natural flavonol, found in tea, broccoli, grapes, apples and other plant sources, is known to have anticancer activity, but its mechanisms and direct target(s) in cancer chemoprevention are unclear. Kinase array results revealed that kaempferol inhibited RSK2 and MSK1. Pull-down assay results, ATP competition and in vitro kinase assay data revealed that kaempferol interacts with RSK2 and MSK1 at the ATP-binding pocket and inhibits their respective kinase activities. Mechanistic investigations showed that kaempferol suppresses RSK2 and MSK1 kinase activities to attenuate solar UV-induced phosphorylation of CREB and histone H3 in mouse skin cells. Kaempferol was a potent inhibitor of solar UV-induced mouse skin carcinogenesis. Further analysis showed that skin from the kaempferol-treated group exhibited a substantial reduction in solar UV-induced phosphorylation of cAMP response element-binding protein (CREB), c-Fos and histone H3. Overall, our results identify kaempferol as a safe and novel chemopreventive agent against solar UV-induced skin carcinogenesis that acts by targeting RSK2 and MSK1. PMID:24994661

  19. Antigenotoxic Effect Against Ultraviolet Radiation-induced DNA Damage of the Essential Oils from Lippia Species.

    Quintero Ruiz, Nathalia; Córdoba Campo, Yuri; Stashenko, Elena E; Fuentes, Jorge Luis

    2017-07-01

    The antigenotoxicity against ultraviolet radiation (UV)-induced DNA damage of essential oils (EO) from Lippia species was studied using SOS Chromotest. Based on the minimum concentration that significantly inhibits genotoxicity, the genoprotective potential of EO from highest to lowest was Lippia graveolens, thymol-RC ≈ Lippia origanoides, carvacrol-RC ≈ L. origanoides, thymol-RC > Lippia alba, citral-RC ≈ Lippia citriodora, citral-RC ≈ Lippia micromera, thymol-RC > L. alba, myrcenone-RC. EO from L. alba, carvone/limonene-RC, L. origanoides, α-phellandrene-RC and L. dulcis, trans-β-caryophyllene-RC did not reduce the UV genotoxicity at any of the doses tested. A gas chromatography with flame ionization detection analysis (GC-FID) was conducted to evaluate the solubility of the major EO constituents under our experimental conditions. GC-FID analysis showed that, at least partially, major EO constituents were water-soluble and therefore, they were related with the antigenotoxicity detected for EO. Constituents such as p-cymene, geraniol, carvacrol, thymol, citral and 1,8-cineole showed antigenotoxicity. The antioxidant activity of EO constituents was also determined using the oxygen radical antioxidant capacity (ORAC) assay. The results showed that the antigenotoxicity of the EO constituents was unconnected with their antioxidant activity. The antigenotoxicity to different constituent binary mixtures suggests that synergistic effects can occur in some of the studied EO. © 2017 The American Society of Photobiology.

  20. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G., E-mail: lhudson@salud.unm.edu

    2013-06-01

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the Hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. - Highlights: • Low levels of arsenite enhance UV-induced DNA damage in human keratinocytes. • UV-initiated HPRT mutation frequency is enhanced by arsenite. • Zinc supplementation offsets DNA damage and mutation frequency enhanced by arsenite. • Zinc-dependent reduction of arsenite enhanced DNA damage is confirmed in vivo.

  1. Effect of superoxide dismutase and catalase on radiation-induced inhibition of human lymphocyte blastogenesis

    Knox, S.; Misra, H.P.; Rosenblatt, L.S.; Shifrine, M.

    1980-01-01

    Mitogen-induced lymphocyte blastogenesis was measured following x-irradiation (0 to 400 R) in the presence or absence of SOD, under aerobic or anaerobic conditions. No significant differences were observed between radiation survival curves under these different conditions. SOD had no radioprotective effect, and an o.e.r. of 1.11 was obtained, demonstrating the lack of oxygen dependence of radiation-induced inhibition of lymphocyte blastogenesis. Following x-irradiation at 200 R, neither SOD nor catalase, alone or together, added before or after irradiation, was radioprotective

  2. Radiation-induced inhibition of human lymphocyte blastogenesis: the effect of superoxide dismutase and catalase

    Knox, S.; Misra, H.P.; Shifrine, M.

    1982-01-01

    Mitogen-induced lymphocyte blastogenesis was measured following X-irradiation (0-4 Gy) in the presence or absence of superoxide dismutase (SOD), under aerobic and anaerobic conditions. There were no significant differences between radiation survival curves under these different conditions, nor did SOD have any radioprotective effect. This demonstrates lack of oxygen dependence of radiation-induced inhibition of lymphocyte blastogenesis. Following X-irradiation at 2 Gy, neither SOD nor catalase, alone or together, added before or after irradiation, were radioprotective. In comparison to controls, both enzymes depressed lymphocyte proliferation when added at levels as low as 25 μg catalase or 100 μg SOD/ml media. When SOD and catalase were added together, the greatest depression of blastogenesis was obtained with increasing levels of SOD relative to increasing levels of catalase, indicating that SOD was largely responsible for this depression. The suppressive effect of administration of SOD (p 2 - and/or H 2 O 2 are not involved in radiation-induced inhibition of lymphocyte blastogenesis. (author)

  3. Effects of emollients on ultraviolet-radiation-induced erythema of the skin

    Schleider, N.R.; Moskowitz, R.S.; Cort, D.H.; Horwitz, S.N.; Frost, P.

    1979-01-01

    Several commonly used emollients were studied as to their effectiveness in absorbing and filtering erythema-causing ultraviolet radiation in the 280 to 315 nm range (UVB). Planter's Peanut Oil (Standard Brands) and Mazola Corn Oil (Best Foods Inc.) had no effect; Alpha Keri Bath Oil (Westwood Pharmaceuticals), mineral oil, and Johnson's Baby Oil (Johnson and Johnson Co) had minimal effects. Vaseline Petroleum Jelly (Chesebrough-Ponds Inc.), petrolatum, and hydrophilic ointment substantially reduced the erythema that was induced by exposure to low doses of UVB radiation. Therefore, these emollients may interfere with the therapeutic effects of the ultraviolet radiation component of the Goeckerman treatment when it is administered in low doses to patients with psoriasis

  4. Continuous wave ultraviolet radiation induced frustration of etching in lithium niobate single crystals

    Mailis, S.; Riziotis, C.; Smith, P.G.R.; Scott, J.G.; Eason, R.W

    2003-02-15

    Illumination of the -z face of congruent lithium niobate single crystals with continuous wave (c.w.) ultraviolet (UV) laser radiation modifies the response of the surface to subsequent acid etching. A frequency doubled Ar{sup +} laser ({lambda}=244 nm) was used to illuminate the -z crystal face making it resistive to HF etching and thus transforming the illuminated tracks into ridge structures. This process enables the fabrication of relief patterns in a photolithographic manner. Spatially resolved Raman spectroscopy indicates preservation of the good crystal quality after irradiation.

  5. Ultraviolet radiation-induced lipid peroxidation in liposomal membrane: modification by capsaicin

    De, A. K.; Ghosh, J. J.; Mandal, T. K. [University College of Science, Department of Biochemistry, 35 Ballygunge Circular Road, Calcutta 700-019 (India)

    1993-07-01

    Ultraviolet-radiation has been reported to cause lipid peroxidation in the liposomal membrane. In the present study, treatment with capsaicin, (8-methyl-n-vanillyl-6-nonenamide), the pungent principle of red hot pepper, was shown to modify UV-induced lipid peroxidation in the liposomal membrane. Treatment with low doses of capsaicin (less than 0.1 μg/mL of phosphatidyl choline liposome) produced a significant increase in UV-induced lipid peroxidation, while high doses (0.1-0.5 μg/mL of PC liposome) caused a significant decrease of UV-induced peroxidation.

  6. Ultraviolet radiation-induced lipid peroxidation in liposomal membrane: modification by capsaicin

    De, A.K.; Ghosh, J.J.; Mandal, T.K.

    1993-01-01

    Ultraviolet-radiation has been reported to cause lipid peroxidation in the liposomal membrane. In the present study, treatment with capsaicin, (8-methyl-n-vanillyl-6-nonenamide), the pungent principle of red hot pepper, was shown to modify UV-induced lipid peroxidation in the liposomal membrane. Treatment with low doses of capsaicin (less than 0.1 μg/mL of phosphatidyl choline liposome) produced a significant increase in UV-induced lipid peroxidation, while high doses (0.1-0.5 μg/mL of PC liposome) caused a significant decrease of UV-induced peroxidation

  7. Ambient ultraviolet radiation induces protective responses in soybean but does not attenuate indirect defense

    Winter, Thorsten R.; Rostas, Michael

    2008-01-01

    We investigated the effects of ambient ultraviolet (UV) radiation on (i) the performance and chemistry of soybean plants, (ii) the performance of Spodoptera frugiperda and (iii) the foraging behavior of the herbivore's natural enemy Cotesia marginiventris which exploits herbivore-induced plant volatiles (VOC) for host location. The accumulation of protective phenolics was faster in plants receiving ambient UV than in controls exposed to sun light lacking UV. Accordingly, isorhamnetin- and quercetin-based flavonoids were increased in UV exposed plants. No UV effects were found on the performance and feeding behavior of S. frugiperda. Herbivore-damaged plants emitted the same VOC when grown under ambient or attenuated UV for 5, 10 or 30 days. Consequently, C. marginiventris was attracted but did not discriminate between exposed and unexposed soybeans. In summary, ambient UV radiation affected soybean morphology and physiology but did not destabilize interactions between trophic levels. - Ambient ultraviolet radiation does not alter induced VOC emission in soybean and thus host location of the parasitoid Cotesia marginiventris remains effective

  8. Ambient ultraviolet radiation induces protective responses in soybean but does not attenuate indirect defense

    Winter, Thorsten R. [Department of Botany II, Julius-von-Sachs Institute for Biosciences, University of Wuerzburg, Julius-von-Sachs-Platz 3, 97082 Wuerzburg (Germany); Rostas, Michael [Department of Botany II, Julius-von-Sachs Institute for Biosciences, University of Wuerzburg, Julius-von-Sachs-Platz 3, 97082 Wuerzburg (Germany)], E-mail: rostas@botanik.uni-wuerzburg.de

    2008-09-15

    We investigated the effects of ambient ultraviolet (UV) radiation on (i) the performance and chemistry of soybean plants, (ii) the performance of Spodoptera frugiperda and (iii) the foraging behavior of the herbivore's natural enemy Cotesia marginiventris which exploits herbivore-induced plant volatiles (VOC) for host location. The accumulation of protective phenolics was faster in plants receiving ambient UV than in controls exposed to sun light lacking UV. Accordingly, isorhamnetin- and quercetin-based flavonoids were increased in UV exposed plants. No UV effects were found on the performance and feeding behavior of S. frugiperda. Herbivore-damaged plants emitted the same VOC when grown under ambient or attenuated UV for 5, 10 or 30 days. Consequently, C. marginiventris was attracted but did not discriminate between exposed and unexposed soybeans. In summary, ambient UV radiation affected soybean morphology and physiology but did not destabilize interactions between trophic levels. - Ambient ultraviolet radiation does not alter induced VOC emission in soybean and thus host location of the parasitoid Cotesia marginiventris remains effective.

  9. Skin Erythema, Pigmentation and Hydration Kinetics after Ultraviolet Radiation-induced Photodamage in Southern Chinese Women.

    Wan, Miaojian; Hu, Rong; Xie, Xiaoyuan; Gong, Zijian; Yi, Jinling; Chen, Haiyan; Xie, Lin; Guan, Xiaomin; Guan, Lei; Lai, Wei

    2017-10-01

    Although there have been some studies about changes of skin erythema and pigmentation following ultraviolet radiation in other races, the relevant data in Chinese have never been achieved. Thus, we evaluated the long-time course of skin erythema, pigmentation and hydration changes after different doses of solar-simulated ultraviolet (SSUV) irradiation in 26 Chinese women for 168 days. The erythema index increased abruptly and peaked during 3 days of SSUV exposure, then slowly returned to the baseline level starting at day 7 and completely recovered during 168-day course of this study only in one minimal erythema doses (MED) SSUV irradiation. The melanin index started to slowly increase at day 3 of SSUV exposure, peaking at day 14 and gradually returned to the baseline level thereafter, but did not return to the baseline level during 168-day course in all doses. Skin hydration slowly declined at day 3 of exposure, hitting the lowest point at day 7, then slowly recovered starting at day 14 and completely returned to the baseline level at day 28 only in 1.5MED. These results will serve as baseline data on Chinese skin and provide useful references for the treatment of serious skin photodamage in Chinese. © 2017 The American Society of Photobiology.

  10. Sunscreen protection against ultraviolet radiation-induced pyrimidine dimers in mouse epidermal DNA

    Ley, R.D.

    1997-01-01

    Solar ultraviolet radiation (UVR) induces a number of pathologic conditions of mammalian skin including erythema, oedema, hyperplasia, sunburn cell formation and skin cancer. Consequently, UVR-induced DNA damage has been implicated as one of the photochemical events that results in the formation of these pathological changes. The ability of sunscreens to protect against UVR-induced DNA damage has not been well characterized especially with UVA (320-400 nm) wavelengths and UVA absorbers. In this paper we present results of a study aimed at determining the efficacy of two sunscreens at preventing the induction of pyrmidine dimers in basal cell DNA of mice exposed to solar-simulated UVR (SSUV) wavelengths (290-400 nm) or to UVA (320-400 nm). (author)

  11. Sunscreen protection against ultraviolet radiation-induced pyrimidine dimers in mouse epidermal DNA

    Ley, R.D. [The Lovelace Institutes, Albuqeurque, NM (United States). Photomdecine Program; Fourtanier, A. [L`Oreal, Advanced Research, Clichy (France)

    1997-06-01

    Solar ultraviolet radiation (UVR) induces a number of pathologic conditions of mammalian skin including erythema, oedema, hyperplasia, sunburn cell formation and skin cancer. Consequently, UVR-induced DNA damage has been implicated as one of the photochemical events that results in the formation of these pathological changes. The ability of sunscreens to protect against UVR-induced DNA damage has not been well characterized especially with UVA (320-400 nm) wavelengths and UVA absorbers. In this paper we present results of a study aimed at determining the efficacy of two sunscreens at preventing the induction of pyrmidine dimers in basal cell DNA of mice exposed to solar-simulated UVR (SSUV) wavelengths (290-400 nm) or to UVA (320-400 nm). (author).

  12. Ultraviolet radiation induces changes in membrane metabolism of human keratinocytes in culture

    De Leo, V.A.; Horlick, H.; Hanson, D.; Eisinger, M.; Harber, L.C.

    1984-01-01

    Human keratinocytes in culture were prelabeled with [ 3 H]arachidonic acid (AA) and then exposed to ultraviolet B radiation. Irradiated cells released labeled AA metabolites into media in a dose-dependent manner when compared to sham-irradiated cells. The response began immediately and continued for 24 h. Extracts from media were examined by high-performance liquid chromatography for identification of specific AA metabolites. Irradiated cells were stimulated to produce prostaglandin-like material (PGE2 and PGF2 alpha). These findings support the concept that the cell membrane of keratinocytes participates directly or indirectly in initiating the sunburn response. It is also felt that the metabolites formed following injury to the membrane are an integral component in the mediation of that response

  13. Evaluation of the Photoprotective Effect of Dongchongxiacao (Paecilomyces japonica) Extract against Ultraviolet Radiation-induced Skin Wrinkling and Cancer

    Lee, Hae June; Moon, Chang Jong; Kim, Jong Choon; Kim Sung Ho; Jung, Uhee; Jo, Sung Kee; Jang, Jong Sik

    2012-01-01

    To evaluate the ability of Dongchongxiacao (Paecilomyces japonica ) extract (PJE) to protect the skin from photo damage, the gross and microscopic changes in the skin of hairless mice and PJE-treated mice exposed chronically to ultraviolet (UV) were examined. The skin of the UV-irradiated mice showed characteristic signs of photo aging, such as deep wrinkles across the back. PJE-treated mice showed a significantly decreased wrinkling score. By the 22nd week, 88.9% (i.p. with saline) or 44.4% (topical administration with cream base) of the UV-irradiated mice developed at least one tumor. PJE delayed tumor onset significantly. PJE (i.p.) was also effective in reducing the occurrence of UV radiation-induced skin tumors and reduced the number of tumors per mouse. After 22 weeks of treatment, 80.0% (i.p.) and 75.0% (topical) of the mice treated with PJE were tumor-free. Tumor multiplicity was reduced by 96.2% (i.p.) in the PJE treated groups. It is noted that skin that is chronically exposed to UV is subject to photo aging and photo carcinogenesis and regular use of PJE would prevent these photo damaging effects of UV.

  14. Photoprotection beyond ultraviolet radiation--effective sun protection has to include protection against infrared A radiation-induced skin damage.

    Schroeder, P; Calles, C; Benesova, T; Macaluso, F; Krutmann, J

    2010-01-01

    Solar radiation is well known to damage human skin, for example by causing premature skin ageing (i.e. photoageing). We have recently learned that this damage does not result from ultraviolet (UV) radiation alone, but also from longer wavelengths, in particular near-infrared radiation (IRA radiation, 760-1,440 nm). IRA radiation accounts for more than one third of the solar energy that reaches human skin. While infrared radiation of longer wavelengths (IRB and IRC) does not penetrate deeply into the skin, more than 65% of the shorter wavelength (IRA) reaches the dermis. IRA radiation has been demonstrated to alter the collagen equilibrium of the dermal extracellular matrix in at least two ways: (a) by leading to an increased expression of the collagen-degrading enzyme matrix metalloproteinase 1, and (b) by decreasing the de novo synthesis of the collagen itself. IRA radiation exposure therefore induces similar biological effects to UV radiation, but the underlying mechanisms are substantially different, specifically, the cellular response to IRA irradiation involves the mitochondrial electron transport chain. Effective sun protection requires specific strategies to prevent IRA radiation-induced skin damage. 2010 S. Karger AG, Basel.

  15. Effects of Pharmacological Inhibition and Genetic Deficiency of Plasminogen Activator Inhibitor-1 in Radiation-Induced Intestinal Injury

    Abderrahmani, Rym; Francois, Agnes; Buard, Valerie; Benderitter, Marc; Sabourin, Jean-Christophe; Crandall, David L.; Milliat, Fabien

    2009-01-01

    Purpose: To investigate effects of plasminogen activator inhibitor 1 (PAI-1) genetic deficiency and pharmacological PAI-1 inhibition with PAI-039 in a mouse model of radiation-induced enteropathy. Methods and Materials: Wild-type (Wt) and PAI-1 -/- knockout mice received a single dose of 19 Gy to an exteriorized localized intestinal segment. Sham and irradiated Wt mice were treated orally with 1 mg/g of PAI-039. Histological modifications were quantified using a radiation injury score. Moreover, intestinal gene expression was monitored by real-time PCR. Results: At 3 days after irradiation, PAI-039 abolished the radiation-induced increase in the plasma active form of PAI-1 and limited the radiation-induced gene expression of transforming growth factor β1 (TGF-β1), CTGF, PAI-1, and COL1A2. Moreover, PAI-039 conferred temporary protection against early lethality. PAI-039 treatment limited the radiation-induced increase of CTGF and PAI-1 at 2 weeks after irradiation but had no effect at 6 weeks. Radiation injuries were less severe in PAI-1 -/- mice than in Wt mice, and despite the beneficial effect, 3 days after irradiation, PAI-039 had no effects on microscopic radiation injuries compared to untreated Wt mice. Conclusions: A genetic deficiency of PAI-1 is associated with amelioration of late radiation enteropathy. Pharmacological inhibition of PAI-1 by PAI-039 positively impacts the early, acute phase increase in plasma PAI-1 and the associated radiation-induced gene expression of inflammatory/extracellular matrix proteins. Since PAI-039 has been shown to inhibit the active form of PAI-1, as opposed to the complete loss of PAI-1 in the knockout animals, these data suggest that a PAI-1 inhibitor could be beneficial in treating radiation-induced tissue injury in acute settings where PAI-1 is elevated.

  16. Solar Simulated Ultraviolet Radiation Induces Global Histone Hypoacetylation in Human Keratinocytes.

    Zhang, Xiaoru; Kluz, Thomas; Gesumaria, Lisa; Matsui, Mary S; Costa, Max; Sun, Hong

    2016-01-01

    Ultraviolet radiation (UVR) from sunlight is the primary effector of skin DNA damage. Chromatin remodeling and histone post-translational modification (PTM) are critical factors in repairing DNA damage and maintaining genomic integrity, however, the dynamic changes of histone marks in response to solar UVR are not well characterized. Here we report global changes in histone PTMs induced by solar simulated UVR (ssUVR). A decrease in lysine acetylation of histones H3 and H4, particularly at positions of H3 lysine 9, lysine 56, H4 lysine 5, and lysine 16, was found in human keratinocytes exposed to ssUVR. These acetylation changes were highly associated with ssUVR in a dose-dependent and time-specific manner. Interestingly, H4K16ac, a mark that is crucial for higher order chromatin structure, exhibited a persistent reduction by ssUVR that was transmitted through multiple cell divisions. In addition, the enzymatic activities of histone acetyltransferases were significantly reduced in irradiated cells, which may account for decreased global acetylation. Moreover, depletion of histone deacetylase SIRT1 in keratinocytes rescued ssUVR-induced H4K16 hypoacetylation. These results indicate that ssUVR affects both HDAC and HAT activities, leading to reduced histone acetylation.

  17. The Role of Macrophage Migration Inhibitory Factor (MIF) in Ultraviolet Radiation-Induced Carcinogenesis

    Shimizu, Tadamichi [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, 930-0194, Toyama (Japan)

    2010-08-09

    Ultraviolet (UV) radiation is the most common cause of physical injury to the skin due to environmental damage, and UV exposure substantially increases the risk of actinic damage to the skin. The inflammatory changes induced by acute UV exposure include erythema (sunburn) of the skin, while chronic exposure to solar UV radiation causes photo-aging, immunosuppression, and ultimately, carcinogenesis of the skin. After skin damage by UV radiation, the cells are known to secrete many cytokines, including interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)-α. and macrophage migration inhibitory factor (MIF). MIF was originally identified as a lymphokine that concentrates macrophages at inflammatory loci, and is known to be a potent activator of macrophages in vivo. MIF is considered to play an important role in cell-mediated immunity. Since the molecular cloning of MIF cDNA, MIF has been re-evaluated as a proinflammatory cytokine and pituitary-derived hormone that potentiates endotoxemia. MIF is ubiquitously expressed in various tissues, including the skin. Recent studies have suggested a potentially broader role for MIF in growth regulation because of its ability to antagonize p53-mediated gene activation and apoptosis. This article reviews the latest findings on the roles of MIF with regard to UV-induced skin cancer.

  18. The Role of Macrophage Migration Inhibitory Factor (MIF) in Ultraviolet Radiation-Induced Carcinogenesis

    Shimizu, Tadamichi

    2010-01-01

    Ultraviolet (UV) radiation is the most common cause of physical injury to the skin due to environmental damage, and UV exposure substantially increases the risk of actinic damage to the skin. The inflammatory changes induced by acute UV exposure include erythema (sunburn) of the skin, while chronic exposure to solar UV radiation causes photo-aging, immunosuppression, and ultimately, carcinogenesis of the skin. After skin damage by UV radiation, the cells are known to secrete many cytokines, including interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)-α. and macrophage migration inhibitory factor (MIF). MIF was originally identified as a lymphokine that concentrates macrophages at inflammatory loci, and is known to be a potent activator of macrophages in vivo. MIF is considered to play an important role in cell-mediated immunity. Since the molecular cloning of MIF cDNA, MIF has been re-evaluated as a proinflammatory cytokine and pituitary-derived hormone that potentiates endotoxemia. MIF is ubiquitously expressed in various tissues, including the skin. Recent studies have suggested a potentially broader role for MIF in growth regulation because of its ability to antagonize p53-mediated gene activation and apoptosis. This article reviews the latest findings on the roles of MIF with regard to UV-induced skin cancer

  19. The Role of Macrophage Migration Inhibitory Factor (MIF in Ultraviolet Radiation-Induced Carcinogenesis

    Tadamichi Shimizu

    2010-08-01

    Full Text Available Ultraviolet (UV radiation is the most common cause of physical injury to the skin due to environmental damage, and UV exposure substantially increases the risk of actinic damage to the skin. The inflammatory changes induced by acute UV exposure include erythema (sunburn of the skin, while chronic exposure to solar UV radiation causes photo-aging, immunosuppression, and ultimately, carcinogenesis of the skin. After skin damage by UV radiation, the cells are known to secrete many cytokines, including interleukin (IL-1, IL-6, tumor necrosis factor (TNF-α. and macrophage migration inhibitory factor (MIF. MIF was originally identified as a lymphokine that concentrates macrophages at inflammatory loci, and is known to be a potent activator of macrophages in vivo. MIF is considered to play an important role in cell-mediated immunity. Since the molecular cloning of MIF cDNA, MIF has been re-evaluated as a proinflammatory cytokine and pituitary-derived hormone that potentiates endotoxemia. MIF is ubiquitously expressed in various tissues, including the skin. Recent studies have suggested a potentially broader role for MIF in growth regulation because of its ability to antagonize p53-mediated gene activation and apoptosis. This article reviews the latest findings on the roles of MIF with regard to UV-induced skin cancer.

  20. Overexpression of SKP2 Inhibits the Radiation-Induced Bystander Effects of Esophageal Carcinoma

    Xiao-Chun Wang

    2017-02-01

    Full Text Available Background: To investigate the effects of S-phase kinase protein 2 (SKP2 expression on the radiation induced bystander effect (RIBE in esophageal cancer (EC cells. Materials and Methods: Western blot was used to detect the levels of SKP2, Rad51, and Ku70 in EC cells. Positive transfection, RNAi, micronucleus (MN, and γ-H2AX focus formation assay were used to investigate the effects of SKP2 on RIBE induced by irradiated cells. Results: We found a significant negative correlation between SKP2 expression and MN frequency (p < 0.05 induced by RIBE. The results were further confirmed by positive transfection, RNAi, and rescue experiments.γ-H2AX focus formation assay results indicated that overexpression of SKP2 in the irradiated cells inhibited the DNA damage of RIBE cells. However, when SKP2 expression decreased in irradiated cells, the DNA damage of RIBE cells increased. Increased or decreased expression levels of SKP2 had effects on Rad51 expression under the conditions of RIBE. Conclusions: These results showed, for the first time, that SKP2 expression can inhibit RIBE of EC cells. The mechanism may function, at least partly, through the regulation of Rad51 in the ability to repair DNA damage.

  1. Photoreactivation of ultraviolet radiation-induced pyrimidine dimers in neonatal BALB/c mouse skin

    Ananthaswamy, H.N.; Fisher, M.S.

    1981-01-01

    The numbers of ultraviolet light (uv)-induced pyrimidine dimers in the DNA of neonatal BALB/c mouse skin were measured by assessing the sensitivity of the DNA to Micrococcus luteus uv endonuclease. Irradiation of neonatal BALB/c mice with FS40 sunlamps caused a dose-dependent induction of endonuclease-sensitive sites (pyrimidine dimers) in DNA extracted from back skin. Exposure of these uv-irradiated neonatal mice to photoreactivating (PR) light (cool white fluorescent lamp and incandescent lamp) caused a reduction in the number of pyrimidine dimers in the DNA, as revealed by a shift in low-molecular-weight DNA to high-molecular-weight DNA. In contrast, DNA profiles of the skin of either uv-irradiated mice or uv-irradiated mice kept in the dark for the same duration as those exposed to PR light did not show a loss of uv-induced endonuclease-sensitive sites. Furthermore, reversing the order of treatment, i.e., administering PR light first and then uv, did not produce a reduction in pyrimidine dimers. These results demonstrate that PR or uv-induced pyrimidine dimers occurs in neonatal BALB/c mouse skin. The optimal wavelength range for in vivo PR appears to be in the visible region of the spectrum (greater than 400 nm). Although dimer formation could be detected in both dermis and epidermis, PR occurred only in the dermis. Furthermore, the PR phenomenon could not be detected in the skin of adult mice from the same inbred strain

  2. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma

    Bald, Tobias; Quast, Thomas; Landsberg, Jennifer; Rogava, Meri; Glodde, Nicole; Lopez-Ramos, Dorys; Kohlmeyer, Judith; Riesenberg, Stefanie; van den Boorn-Konijnenberg, Debby; Hömig-Hölzel, Cornelia; Reuten, Raphael; Schadow, Benjamin; Weighardt, Heike; Wenzel, Daniela; Helfrich, Iris; Schadendorf, Dirk; Bloch, Wilhelm; Bianchi, Marco E.; Lugassy, Claire; Barnhill, Raymond L.; Koch, Manuel; Fleischmann, Bernd K.; Förster, Irmgard; Kastenmüller, Wolfgang; Kolanus, Waldemar; Hölzel, Michael; Gaffal, Evelyn; Tüting, Thomas

    2014-03-01

    Intermittent intense ultraviolet (UV) exposure represents an important aetiological factor in the development of malignant melanoma. The ability of UV radiation to cause tumour-initiating DNA mutations in melanocytes is now firmly established, but how the microenvironmental effects of UV radiation influence melanoma pathogenesis is not fully understood. Here we report that repetitive UV exposure of primary cutaneous melanomas in a genetically engineered mouse model promotes metastatic progression, independent of its tumour-initiating effects. UV irradiation enhanced the expansion of tumour cells along abluminal blood vessel surfaces and increased the number of lung metastases. This effect depended on the recruitment and activation of neutrophils, initiated by the release of high mobility group box 1 (HMGB1) from UV-damaged epidermal keratinocytes and driven by Toll-like receptor 4 (TLR4). The UV-induced neutrophilic inflammatory response stimulated angiogenesis and promoted the ability of melanoma cells to migrate towards endothelial cells and use selective motility cues on their surfaces. Our results not only reveal how UV irradiation of epidermal keratinocytes is sensed by the innate immune system, but also show that the resulting inflammatory response catalyses reciprocal melanoma-endothelial cell interactions leading to perivascular invasion, a phenomenon originally described as angiotropism in human melanomas by histopathologists. Angiotropism represents a hitherto underappreciated mechanism of metastasis that also increases the likelihood of intravasation and haematogenous dissemination. Consistent with our findings, ulcerated primary human melanomas with abundant neutrophils and reactive angiogenesis frequently show angiotropism and a high risk for metastases. Our work indicates that targeting the inflammation-induced phenotypic plasticity of melanoma cells and their association with endothelial cells represent rational strategies to specifically interfere

  3. Regulatory effect of Bcl-2 in ultraviolet radiation-induced apoptosis of the mouse crystalline lens.

    Dong, Yuchen; Zheng, Yajuan; Xiao, Jun; Zhu, Chao; Zhao, Meisheng

    2016-03-01

    The aim of the present study was to analyze the role of Bcl-2 during the process of apoptosis in the mouse crystalline lens. In total, 12 normal mice served as the control group and 12 Bcl-2 knockout (K.O) mice served as the experimental group. The mouse crystalline lens was sampled for the detection of Bcl-2 and caspase-3 expression following exposure to ultraviolet (UV) radiation. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to determine Bcl-2 expression in the groups of normal mice receiving UV radiation or not receiving UV radiation. Samples of the murine crystalline lens were microscopically harvested and analyzed using western blotting. Apoptosis was detected using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Furthermore, caspase 3 activity was examined using enzyme-linked immunosorbent assay kits, and RT-qPCR was used to analyze caspase-3 expression levels. The results of the present study demonstrated that there was no statistically significant difference in the level of Bcl-2 gene transcription between the two groups. In addition, UV radiation did not change the macrostructure of the crystalline lens in the group of normal mice or the group of Bcl-2 K.O mice. The results of the TUNEL assay indicated that the normal-UV group exhibited a more significant apoptosis level compared with the Bcl-2 K.O-UV group. Furthermore, the mRNA expression level of caspase-3 in the normal-UV group was significantly higher compared with the normal-nonUV group (Plens.

  4. Kinetics of radiation-induced apoptosis in neonatal urogenital tissues with and without protein synthesis inhibition

    Gobe, G.C.; Harmon, B.; Schoch, E.; Allan, D.J. [Queensland Univ., St. Lucia, QLD (Australia). Dept. of Chemistry

    1996-12-31

    The difference in incidence of radiation-induced apoptosis between two neonatal urogenital tissues, kidney and testis, was analysed over a 24h period. Concurrent administration of cycloheximide (10mg/kg body weight), a protein synthesis inhibitor, with radiation treatment was used to determine whether new protein synthesis had a role in induction of apoptosis in this in vivo model. Many chemotherapeutic drugs act via protein synthesis inhibition, and we believe that the results of this latter analysis may provide information for the planning of concurrent radio and chemotherapy. Apoptosis was quantified using morphological parameters, and verified by DNA gel electrophoresis for the typical banding pattern, and by electron microscopy. The proliferative index in tissues was studied, using [6-{sup 3}H]-thymidine uptake ( 1h prior to euthanasia and collection of tissues) and autoradiography as indicators of cell proliferation (S-phase). Tissue was collected 2, 4, 6, 8, and 24h after radiation treatment. Expression of one of the apoptosis-associated genes, Bcl-2 (an apoptosis inhibitor/cell survival gene), was studied using immunohistochemistry. Apoptosis peaked at 4h in the testis and 6h in the kidney, emphasising the necessity of knowing tissue differences in radiation response if comparing changes at a particular time. A higher proportion (almost five fold) of the apoptotic cells died in S-phase in the kidney than the testis, over the 24h. Protein synthesis inhibition completely negated induction of apoptosis in both tissues. Necrosis was not identified at any time. Cycloheximide treatment greatly diminished Bcl-2 expression. The differences in response of the two tissues to irradiation relates to their innate cell (genetic) controls, which may be determined by their state of differentiation at time of treatment, or the tissue type. This in vivo study also suggests the model may be useful for analysis of other cancer therapies for example polychemotherapies or chemo

  5. Kinetics of radiation-induced apoptosis in neonatal urogenital tissues with and without protein synthesis inhibition

    Gobe, G.C.; Harmon, B.; Schoch, E.; Allan, D.J.

    1996-01-01

    The difference in incidence of radiation-induced apoptosis between two neonatal urogenital tissues, kidney and testis, was analysed over a 24h period. Concurrent administration of cycloheximide (10mg/kg body weight), a protein synthesis inhibitor, with radiation treatment was used to determine whether new protein synthesis had a role in induction of apoptosis in this in vivo model. Many chemotherapeutic drugs act via protein synthesis inhibition, and we believe that the results of this latter analysis may provide information for the planning of concurrent radio and chemotherapy. Apoptosis was quantified using morphological parameters, and verified by DNA gel electrophoresis for the typical banding pattern, and by electron microscopy. The proliferative index in tissues was studied, using [6- 3 H]-thymidine uptake ( 1h prior to euthanasia and collection of tissues) and autoradiography as indicators of cell proliferation (S-phase). Tissue was collected 2, 4, 6, 8, and 24h after radiation treatment. Expression of one of the apoptosis-associated genes, Bcl-2 (an apoptosis inhibitor/cell survival gene), was studied using immunohistochemistry. Apoptosis peaked at 4h in the testis and 6h in the kidney, emphasising the necessity of knowing tissue differences in radiation response if comparing changes at a particular time. A higher proportion (almost five fold) of the apoptotic cells died in S-phase in the kidney than the testis, over the 24h. Protein synthesis inhibition completely negated induction of apoptosis in both tissues. Necrosis was not identified at any time. Cycloheximide treatment greatly diminished Bcl-2 expression. The differences in response of the two tissues to irradiation relates to their innate cell (genetic) controls, which may be determined by their state of differentiation at time of treatment, or the tissue type. This in vivo study also suggests the model may be useful for analysis of other cancer therapies for example polychemotherapies or chemo

  6. Mechanisms of inhibition of DNA replication by ultraviolet light in normal human and xeroderma pigmentosum fibroblasts

    Kaufmann, W.K.; Cleaver, J.E.

    1981-01-01

    The inhibition of DNA replication in ultraviolet-irradiated human fibroblasts was characterized by quantitative analysis of radiation-induced alterations in the steady-state distribution of sizes of pulse-labeled, nascent DNA. Low, noncytotoxic fluences rapidly produced an inhibition of DNA synthesis in half-replicon-size replication intermediates. With time, the inhibition produced by low fluences spread progressively to include multi-replicon-size intermediates. The results indicate that ultraviolet radiation inhibits the initiation of DNA synthesis in replicons. Higher cytotoxic fluences inhibited DNA synthesis in operating replicons. Xeroderma pigmentosum fibroblasts with deficiencies in DNA excision repair exhibited an inhibition of replicon initiation after low radiation fluences, indicating the effect was not solely dependent upon operation of the nucleotidyl excision repair pathway. Owing to their inability to remove pyrimidine dimers ahead of DNA growing points, the repair-deficient cells also were more sensitive than normal cells to the ultraviolet-induced inhibition of chain elongation. Xeroderma pigmentosum cells belonging to the variant class were even more sensitive to inhibition of chain elongation despite their ability to remove pyrimidine dimers. The analysis suggested that normal and repair-deficient human fibroblasts either are able to rapidly bypass certain dimers or these dimers are not recognized by the chain elongation machinery. (author)

  7. JNK inhibition sensitizes tumor cells to radiation-induced premature senescence via Bcl-2/ROS/DDR signaling pathway

    Lee, Jae Seon; Lee, Je Jung

    2009-01-01

    Premature senescence is considered as a cellular defense mechanism to prevent tumorigenesis. Although recent evidences demonstrate that c-Jun N-terminal kinase (JNK) is involved in the senescence process, the target and exact mechanism of JNK signaling in the regulation of cell proliferation has yet to be defined. In this study, we investigated the role of JNK in premature senescence and demonstrated JNK inhibition sensitized tumor cells to radiation-induced premature senescence

  8. Inhibition of DNA replication by ultraviolet light

    Edenberg, H.J.

    1976-01-01

    DNA replication in ultraviolet-irradiated HeLa cells was studied by two different techniques: measurements of the kinetics of semiconservative DNA synthesis, and DNA fiber autoradiography. In examining the kinetics of semiconservative DNA synthesis, density label was used to avoid measuring the incorporation due to repair replication. The extent of inhibition varied with time. After doses of less than 10 J/m 2 the rate was initially depressed but later showed some recovery. After higher doses, a constant, low rate of synthesis was seen for at least the initial 6 h. An analysis of these data indicated that the inhibition of DNA synthesis could be explained by replication forks halting at pyrimidine dimers. DNA fiber autoradiography was used to further characterize replication after ultraviolet irradiation. The average length of labeled segments in irradiated cells increased in the time immediately after irradiation, and then leveled off. This is the predicted pattern if DNA synthesis in each replicon continued at its previous rate until a lesion is reached, and then halted. The frequency of lesions that block synthesis is approximately the same as the frequency of pyrimidine dimers

  9. Protective effect of Juglans regia L. against ultraviolet B radiation induced inflammatory responses in human epidermal keratinocytes.

    Muzaffer, Umar; Paul, V I; Prasad, Nagarajan Rajendra; Karthikeyan, Ramasamy; Agilan, Balupillai

    2018-03-15

    Juglans regia L. has a history of traditional medicinal use for the treatment of various maladies and have been documented with significant antioxidant and antiinflammatory properties. Although all parts of the plant are medicinally important, but male the flower of the plant has not been yet investigated against the photo-damage. The present study, we sought to determine the photoprotective effect of the male flower of J. regia L. against ultraviolet-B radiation-induced inflammatory responses in human skin cells. The profile of pharmacological active compounds present in the male flower of J. regia was analyzed by GC-MS. Then, the antioxidant property of methanolic extract of J. regia (MEJR) was analyzed by in vitro free radical scavenging assays. Further, we analyzed the sun protection factor of this extract by spectrophotometry. Moreover, we investigated the photoprotective effect of MEJR against UVB induced inflammatory signaling in human epidermal cells. Human skin epidermal keratinocytes (HaCaT) were pretreated with the MEJR (80 µg/ml), 30 min prior to UVB-irradiation at a dose of 20 mJ/cm 2 and were investigated for lipid peroxidation, enzymatic antioxidants activity, apoptosis and inflammatory markers expression level. The GC-MS results showed the presence of good amount of pharmacologically active compounds in the MEJR. We observed that the MEJR possess significant free radical scavenging activity and it was comparable with standard antioxidants. Further, the MEJR exhibits 8.8 sun-protection-factor (SPF) value. Pretreatment with MEJR, 30 min prior to UVB-irradiation, prevented ROS generation, lipid peroxidation and restored the activity of antioxidant status in HaCaT cells. Moreover, MEJR pretreatment significantly prevented UVB activated inflammatory markers like TNF-α, IL-1, IL-6, NF-κB, COX-2 in HaCaT. The present findings suggest that MEJR exhibit photoprotective effects and hence it may be useful for the treatment of inflammation related

  10. Selenoprotein P Inhibits Radiation-Induced Late Reactive Oxygen Species Accumulation and Normal Cell Injury

    Eckers, Jaimee C.; Kalen, Amanda L.; Xiao, Wusheng; Sarsour, Ehab H.; Goswami, Prabhat C., E-mail: prabhat-goswami@uiowa.edu

    2013-11-01

    Purpose: Radiation is a common mode of cancer therapy whose outcome is often limited because of normal tissue toxicity. We have shown previously that the accumulation of radiation-induced late reactive oxygen species (ROS) precedes cell death, suggesting that metabolic oxidative stress could regulate cellular radiation response. The purpose of this study was to investigate whether selenoprotein P (SEPP1), a major supplier of selenium to tissues and an antioxidant, regulates late ROS accumulation and toxicity in irradiated normal human fibroblasts (NHFs). Methods and Materials: Flow cytometry analysis of cell viability, cell cycle phase distribution, and dihydroethidium oxidation, along with clonogenic assays, were used to measure oxidative stress and toxicity. Human antioxidant mechanisms array and quantitative real-time polymerase chain reaction assays were used to measure gene expression during late ROS accumulation in irradiated NHFs. Sodium selenite addition and SEPP1 overexpression were used to determine the causality of SEPP1 regulating late ROS accumulation and toxicity in irradiated NHFs. Results: Irradiated NHFs showed late ROS accumulation (4.5-fold increase from control; P<.05) that occurs after activation of the cell cycle checkpoint pathways and precedes cell death. The mRNA levels of CuZn- and Mn-superoxide dismutase, catalase, peroxiredoxin 3, and thioredoxin reductase 1 increased approximately 2- to 3-fold, whereas mRNA levels of cold shock domain containing E1 and SEPP1 increased more than 6-fold (P<.05). The addition of sodium selenite before the radiation treatment suppressed toxicity (45%; P<.05). SEPP1 overexpression suppressed radiation-induced late ROS accumulation (35%; P<.05) and protected NHFs from radiation-induced toxicity (58%; P<.05). Conclusion: SEPP1 mitigates radiation-induced late ROS accumulation and normal cell injury.

  11. Protective Effect of Diphlorethohydroxycarmalol against Ultraviolet B Radiation-Induced DNA Damage by Inducing the Nucleotide Excision Repair System in HaCaT Human Keratinocytes

    Mei Jing Piao

    2015-09-01

    Full Text Available We investigated the protective properties of diphlorethohydroxycarmalol (DPHC, a phlorotannin, against ultraviolet B (UVB radiation-induced cyclobutane pyrimidine dimers (CPDs in HaCaT human keratinocytes. The nucleotide excision repair (NER system is the pathway by which cells identify and repair bulky, helix-distorting DNA lesions such as ultraviolet (UV radiation-induced CPDs and 6-4 photoproducts. CPDs levels were elevated in UVB-exposed cells; however, this increase was reduced by DPHC. Expression levels of xeroderma pigmentosum complementation group C (XPC and excision repair cross-complementing 1 (ERCC1, which are essential components of the NER pathway, were induced in DPHC-treated cells. Expression of XPC and ERCC1 were reduced following UVB exposure, whereas DPHC treatment partially restored the levels of both proteins. DPHC also increased expression of transcription factor specificity protein 1 (SP1 and sirtuin 1, an up-regulator of XPC, in UVB-exposed cells. DPHC restored binding of the SP1 to the XPC promoter, which is reduced in UVB-exposed cells. These results indicate that DPHC can protect cells against UVB-induced DNA damage by inducing the NER system.

  12. 2-deoxy-d-glucose (2-DG) inhibits radiation induced carcinogenesis (skin tumors) in mice

    Singh, Saurabh; Bhuria, Vikas; Pandey, Sanjay; Saluja, Daman; Dwarakanath, B.S.

    2014-01-01

    One of the late effects of radiation exposure i.e. carcinogenesis is exemplified by atomic bomb survivors, radiotherapy patients and occupational workers. Enhanced glucose metabolism (Warburg's effect) is a fundamental metabolic change in transformed cells which drives tumorigenesis. It is suggested that Dietary Energy Restriction (DER) that targets glucose metabolism may afford protection against radiation-induced carcinogenesis. However, DER is practically difficult to sustain in humans. Therefore, we have hypothesized that the glycolytic inhibitor, 2-deoxy-D-glucose (2-DG), a potential energy restriction mimetic agent (ERMA) may impair the process of tumorigenesis as an alternative to DER. In the present studies we investigated the effects of dietary 2-DG on radiation induced papillomas in mice. Swiss albino mice (male) were irradiated with a fractionated dose schedule (1.5 Gy ionizing radiation/week for four weeks) focally on the shaved back followed by the application of tumor promoting agent (TPA) once weekly till the termination of the study. Mice were administered 2-DG (0.2% and 0.4% w/v) containing water starting a week after last irradiation. A significant reduction in the tumor incidence, tumor burden, besides increase in the latency period was observed in the 2-DG fed mice. The average tumor incidence (papillomas formation) was reduced to 25% and 37% in 0.2% and 0.4% 2-DG group respectively from 47% in the control group with a significant delay in the onset. Under these conditions, 2-DG considerably enhanced the level of reduced glutathione (GSH) with a concomitant decrease in the lipid peroxidation. 2-DG fed tumor bearing mice showed decrease in splenic CD4 + to CD8 + T-cell ratio and prevented the tumor induced augmentation of T-regulatory cells (CD4 + CD25 + ) which correlated with an increase in CD8 + (CTLs) cells. Dietary 2-DG also reduced the tumor associated and radiation induced angiogenesis. These observations suggest that dietary 2-DG

  13. Inhibition of seagrass photosynthesis by ultraviolet-B radiation

    Trocine, R.P.; Rice, J.D.; Wells, G.N.

    1981-01-01

    Effects of ultraviolet-B radiation on the photosynthesis of seagrasses (Halophila engelmanni Aschers, Halodule wrightii Aschers, and Syringodium filiforme (Kuetz) were examined. The intrinsic tolerance of each seagrass to ultraviolet-B, the presence and effectiveness of photorepair mechanisms to ultraviolet-B-induced photosynthetic inhibition, and the role of epiphytic growth as a shield from ultraviolet-B were investigated. Halodule was found to possess the greatest photosynthetic tolerance for ultraviolet-B. Photosynthesis in Syringodium was slightly more sensitive to ultraviolet-B while Halophila showed relatively little photosynthetic tolerance. Evidence for a photorepair mechanism was found only in Halodule. Syringodium appeared to rely primarily on a thick epidermal cell layer to reduce photosynthetic damage. Halophila seemed to have no morphological or photorepair capabilities to deal with ultraviolet-B. This species appeared to rely on epiphytic and detrital shielding and the shade provided by other seagrasses to reduce ultraviolet-B irradiation to tolerable levels. The presence of epiphytes on leaf surfaces was found to reduce the extent of photosynthetic inhibition from ultraviolet-B exposure in all species. Halophila appears to obtain an increased photosynthetic tolerance to ultraviolet-B as an indirect benefit of chloroplast clumping to avoid photo-oxidation by intense levels of photosynthetically active radiation

  14. Inhibition of seagrass photosynthesis by ultraviolet-B radiation.

    Trocine, R P; Rice, J D; Wells, G N

    1981-07-01

    Effects of ultraviolet-B radiation on the photosynthesis of seagrasses (Halophila engelmanni Aschers, Halodule wrightii Aschers, and Syringodium filiforme Kütz) were examined. The intrinsic tolerance of each seagrass to ultraviolet-B, the presence and effectiveness of photorepair mechanisms to ultraviolet-B-induced photosynthetic inhibition, and the role of epiphytic growth as a shield from ultraviolet-B were investigated.Halodule was found to possess the greatest photosynthetic tolerance for ultraviolet-B. Photosynthesis in Syringodium was slightly more sensitive to ultraviolet-B while Halophila showed relatively little photosynthetic tolerance. Evidence for a photorepair mechanism was found only in Halodule. This mechanism effectively attenuated photosynthetic inhibition induced by ultraviolet-B dose rates and dosages in excess of natural conditions. Syringodium appeared to rely primarily on a thick epidermal cell layer to reduce photosynthetic damage. Halophila seemed to have no morphological or photorepair capabilities to deal with ultraviolet-B. This species appeared to rely on epiphytic and detrital shielding and the shade provided by other seagrasses to reduce ultraviolet-B irradiation to tolerable levels. The presence of epiphytes on leaf surfaces was found to reduce the extent of photosynthetic inhibition from ultraviolet-B exposure in all species.Observations obtained in this study seem to suggest the possibility of anthocyanin and/or other flavonoid synthesis as an adaptation to long term ultraviolet-B irradiation by these species. In addition, Halophila appears to obtain an increased photosynthetic tolerance to ultraviolet-B as an indirect benefit of chloroplast clumping to avoid photo-oxidation by intense levels of photosynthetically active radiation.

  15. Inhibition of radiation-induced EGFR nuclear import by C225 (Cetuximab) suppresses DNA-PK activity

    Dittmann, Klaus; Mayer, Claus; Rodemann, Hans-Peter

    2005-01-01

    Background and purpose: Inhibition of EGFR-function can induce radiosensitization in tumor cells. Purpose of our investigation was to identify the possible molecular mechanism of radiosensitization following treatment with anti-EGFR-antibody C225 (Cetuximab). Materials and methods: The effect of C225 on radiation response was determined in human cell lines of bronchial carcinoma (A549) and breast adenoma cells (MDA MB 231). The molecular effects of C225 on EGFR-function after irradiation were analyzed applying western blotting, immune-precipitation and kinase assays. Effects on DNA-repair were detected by quantification of γ-H2AX positive foci 24 h after irradiation. Results: The EGFR specific antibody C225 induced radiosensitization in A549 and also in MDA MB 231 cells. Radiosensitization in A549 was associated with blockage of radiation-induced EGFR transport into the nucleus, and immobilized the complex of EGFR with DNA-dependent protein kinase (DNA-PK) in the cytoplasm. As a consequence radiation-induced DNA-PK activation was abolished, a process that is essential for DNA-repair after radiation exposure. Likewise C225 treatment increased the residual amount of γ-H2AX-positive foci 24 h after irradiation in A549 and in MDA MB 231 cells. Conclusions: Our results suggest that irradiation induced DNA-PK activation-essential for DNA repair-may be hampered specifically by use of the anti-EGFR-antibody C225. This process is associated with radiosensitization

  16. Inhibition of oxygen-dependent radiation-induced damage by the nitroxide superoxide dismutase mimic, tempol

    Mitchell, J.B.; DeGraff, W.; Kaufman, D.; Krishna, M.C.; Samuni, A.; Finkelstein, E.; Ahn, M.S.; Hahn, S.M.; Gamson, J.; Russo, A.

    1991-01-01

    Stable nitroxide radicals have been previously shown to function as superoxide dismutase (SOD)2 mimics and to protect mammalian cells against superoxide and hydrogen peroxide-mediated oxidative stress. These unique characteristics suggested that nitroxides, such as 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol), might protect mammalian cells against ionizing radiation. Treating Chinese hamster cells under aerobic conditions with 5, 10, 50, and 100 mM Tempol 10 min prior to X-rays resulted in radiation protection factors of 1.25, 1.30, 2.1, and 2.5, respectively. However, the reduced form of Tempol afforded no protection. Tempol treatment under hypoxic conditions did not provide radioprotection. Aerobic X-ray protection by Tempol could not be attributed to the induction of intracellular hypoxia, increase in intracellular glutathione, or induction of intracellular SOD mRNA. Tempol thus represents a new class of non-thiol-containing radiation protectors, which may be useful in elucidating the mechanism(s) of radiation-induced cellular damage and may have broad applications in protecting against oxidative stress

  17. Inhibition of radiation induced migration of human head and neck squamous cell carcinoma cells by blocking of EGF receptor pathways

    Pickhard, Anja C; Schlegel, Jürgen; Arnold, Wolfgang; Reiter, Rudolf; Margraf, Johanna; Knopf, Andreas; Stark, Thomas; Piontek, Guido; Beck, Carolin; Boulesteix, Anne-Laure; Scherer, Elias Q; Pigorsch, Steffi

    2011-01-01

    Recently it has been shown that radiation induces migration of glioma cells and facilitates a further spread of tumor cells locally and systemically. The aim of this study was to evaluate whether radiotherapy induces migration in head and neck squamous cell carcinoma (HNSCC). A further aim was to investigate the effects of blocking the epidermal growth factor receptor (EGFR) and its downstream pathways (Raf/MEK/ERK, PI3K/Akt) on tumor cell migration in vitro. Migration of tumor cells was assessed via a wound healing assay and proliferation by a MTT colorimeritric assay using 3 HNSCC cell lines (BHY, CAL-27, HN). The cells were treated with increasing doses of irradiation (2 Gy, 5 Gy, 8 Gy) in the presence or absence of EGF, EGFR-antagonist (AG1478) or inhibitors of the downstream pathways PI3K (LY294002), mTOR (rapamycin) and MEK1 (PD98059). Biochemical activation of EGFR and the downstream markers Akt and ERK were examined by Western blot analysis. In absence of stimulation or inhibition, increasing doses of irradiation induced a dose-dependent enhancement of migrating cells (p < 0.05 for the 3 HNSCC cell lines) and a decrease of cell proliferation (p < 0.05 for the 3 HNSCC cell lines). The inhibition of EGFR or the downstream pathways reduced cell migration significantly (almost all p < 0.05 for the 3 HNSCC cell lines). Stimulation of HNSCC cells with EGF caused a significant increase in migration (p < 0.05 for the 3 HNSCC cell lines). After irradiation alone a pronounced activation of EGFR was observed by Western blot analysis. Our results demonstrate that the EGFR is involved in radiation induced migration of HNSCC cells. Therefore EGFR or the downstream pathways might be a target for the treatment of HNSCC to improve the efficacy of radiotherapy

  18. Radiosensitive Down syndrome lymphoblastoid lines have normal ionizing-radiation-induced inhibition of DNA synthesis

    Ganges, M.B.; Robbins, J.H.; Jiang, H.; Hauser, C.; Tarone, R.E.

    1988-01-01

    The extent of X-ray-induced inhibition of DNA synthesis was determined in radiosensitive lymphoblastoid lines from 3 patients with Down syndrome and 3 patients with ataxia telangiectasia (AT). Compared to 6 normal control lines, the 3 AT lines were abnormally resistant to X-ray-induced inhibition of DNA synthesis, while the 3 Down syndrome lines had normal inhibition. These results demonstrate that radiosensitive human cells can have normal X-ray-induced inhibition of DNA synthesis and provide new evidence for the dissociation of radioresistant DNA synthesis. (author). 27 refs.; 1 fig.; 1 tab

  19. Quantification of ultraviolet radiation-induced DNA damage in the urine of Swedish adults and children following exposure to sunlight

    Liljendahl, Tove Sandberg; Kotova, Natalia; Segerbäck, Dan

    2012-01-01

    DNA damage following exposure to ultraviolet radiation (UVR) is important in skin cancer development. The predominant photoproduct, cyclobutane thymine dimer (T=T), is repaired and excreted in the urine, where it provides a biomarker of exposure. To quantify urinary T=T levels after recreational sunlight exposure in adults and children. Average UVR doses were measured with personal dosimeters. Urinary T=T was analysed with (32)P-postlabelling. ResuLTS: Background levels of T=T increased...

  20. Protective effect of topically applied polypeptide from Chlamys farreri against ultraviolet radiation-induced chronic skin damage in guinea pig

    Chi, Mingliang; Cao, Pengli; Yu, Guoying; Zhu, Li; Wang, Yuejun; Wang, Chunbo

    2003-12-01

    Polypeptide from Chlamys farreri (PCF), a topical polypeptide isolated from Chlamys farreri, was used in this experiment aimed to investigate the photoprotective effect of PCF against chronic skin damage induced by ultraviolet A (UVA) and ultraviolet B (UVB) radiation. The chronic ultraviolet-irradiated guinea pig model was established, and visible changes in the skin including wrinkling, sagging and erythema were observed. Malondialdehyde (MDA) and antioxidant enzymes including superoxide dismutase (SOD) and glutathione peroxidase (GSH-px) in the dorsal skin were determined using biochemical methods. The results showed: (1) PCF (5 % and 20%) could greatly protect the dorsal skin of guinea pig against wrinkling, sagging and erythema induced by UV radiation in a concentration-dependent manner. (2) PCF could reduce MDA formation in the dorsal skin caused by UV irradiation, while increasing the activities of SOD and GSH-px. (3) The differences among the PCF groups and UV model group were significant ( Psolar UV spectrum photoprotection; and that the antioxidant property of PCF might play a role in photoprotection.

  1. Inhibition of the CXCL12/CXCR4-axis as preventive therapy for radiation-induced pulmonary fibrosis.

    Hui-Kuo G Shu

    Full Text Available A devastating late injury caused by radiation is pulmonary fibrosis. This risk may limit the volume of irradiation and compromise potentially curative therapy. Therefore, development of a therapy to prevent this toxicity can be of great benefit for this patient population. Activation of the chemokine receptor CXCR4 by its ligand stromal cell-derived factor 1 (SDF-1/CXCL12 may be important in the development of radiation-induced pulmonary fibrosis. Here, we tested whether MSX-122, a novel small molecule and partial CXCR4 antagonist, can block development of this fibrotic process.The radiation-induced lung fibrosis model used was C57BL/6 mice irradiated to the entire thorax or right hemithorax to 20 Gy. Our parabiotic model involved joining a transgenic C57BL/6 mouse expressing GFP with a wild-type mouse that was subsequently irradiated to assess for migration of GFP+ bone marrow-derived progenitor cells to the irradiated lung. CXCL12 levels in the bronchoalveolar lavage fluid (BALF and serum after irradiation were determined by ELISA. CXCR4 and CXCL12 mRNA in the irradiated lung was determined by RNase protection assay. Irradiated mice were treated daily with AMD3100, an established CXCR4 antagonist; MSX-122; and their corresponding vehicles to determine impact of drug treatment on fibrosis development. Fibrosis was assessed by serial CTs and histology. After irradiation, CXCL12 levels increased in BALF and serum with a corresponding rise in CXCR4 mRNA within irradiated lungs consistent with recruitment of a CXCR4+ cell population. Using our parabiotic model, we demonstrated recruitment of CXCR4+ bone marrow-derived mesenchymal stem cells, identified based on marker expression, to irradiated lungs. Finally, irradiated mice that received MSX-122 had significant reductions in development of pulmonary fibrosis while AMD3100 did not significantly suppress this fibrotic process.CXCR4 inhibition by drugs such as MSX-122 may alleviate potential

  2. Inhibition of the CXCL12/CXCR4-axis as preventive therapy for radiation-induced pulmonary fibrosis.

    Shu, Hui-Kuo G; Yoon, Younghyoun; Hong, Samuel; Xu, Kaiming; Gao, Huiying; Hao, Chunhai; Torres-Gonzalez, Edilson; Nayra, Cardenes; Rojas, Mauricio; Shim, Hyunsuk

    2013-01-01

    A devastating late injury caused by radiation is pulmonary fibrosis. This risk may limit the volume of irradiation and compromise potentially curative therapy. Therefore, development of a therapy to prevent this toxicity can be of great benefit for this patient population. Activation of the chemokine receptor CXCR4 by its ligand stromal cell-derived factor 1 (SDF-1/CXCL12) may be important in the development of radiation-induced pulmonary fibrosis. Here, we tested whether MSX-122, a novel small molecule and partial CXCR4 antagonist, can block development of this fibrotic process. The radiation-induced lung fibrosis model used was C57BL/6 mice irradiated to the entire thorax or right hemithorax to 20 Gy. Our parabiotic model involved joining a transgenic C57BL/6 mouse expressing GFP with a wild-type mouse that was subsequently irradiated to assess for migration of GFP+ bone marrow-derived progenitor cells to the irradiated lung. CXCL12 levels in the bronchoalveolar lavage fluid (BALF) and serum after irradiation were determined by ELISA. CXCR4 and CXCL12 mRNA in the irradiated lung was determined by RNase protection assay. Irradiated mice were treated daily with AMD3100, an established CXCR4 antagonist; MSX-122; and their corresponding vehicles to determine impact of drug treatment on fibrosis development. Fibrosis was assessed by serial CTs and histology. After irradiation, CXCL12 levels increased in BALF and serum with a corresponding rise in CXCR4 mRNA within irradiated lungs consistent with recruitment of a CXCR4+ cell population. Using our parabiotic model, we demonstrated recruitment of CXCR4+ bone marrow-derived mesenchymal stem cells, identified based on marker expression, to irradiated lungs. Finally, irradiated mice that received MSX-122 had significant reductions in development of pulmonary fibrosis while AMD3100 did not significantly suppress this fibrotic process. CXCR4 inhibition by drugs such as MSX-122 may alleviate potential radiation-induced lung

  3. Inhibition of radiation-induced DNA strand breaks by hoechst 33258: OH-radical scavenging and DNA radical quenching

    Adhikary, A.; Bothe, E.; Von Sonntag, C.; Adhikary, A.

    1997-01-01

    The minor-groove-binding dye Hoechst 33258 has been found to protect pBR322 DNA in aqueous solution against radiation-induced single-strand breaks (ssb). This protective effect has been assumed to be largely due to the scavenging of the strand-break-generating OH radicals by Hoechst. From D 37 values for ssb at different Hoechst concentrations the value of the OH radical scavenging constant of DNA-bound Hoechst has been estimated at k Ho/DNA = 2.7 * 10 11 dm 3 mol -1 . This unexpectedly high value has led us to study the reactions of OH radicals with Hoechst in the absence and in the presence of double-stranded calf thymus DNA (ds DNA) by pulse radiolysis, and the formation of radiation-induced ssb by low angle laser light scattering. The D 37 /D 37 0 values at different Hoechst concentrations agree with the values obtained by Martin and al. and demonstrate the protection. However, this protection cannot be explained on the basis of OH radical scavenging alone using the above rate constants. There must, in addition, be some quenching of DNA radicals. Hoechst radicals are formed in the later ms time range, i.e a long time after the disappearance of the OH radicals. This delayed Hoechst radical formation has been assigned to a a reaction of DNA radicals with Hoechst, thereby inhibiting strand breakage. In confirmation, pulse radiolysis of aqueous solution of nucleotides in the presence of Hoechst yields a similar delayed Hoechst radical formation. The data indicate that in DNA the cross-section of this quenching has a diameter of 3 to 4 base pairs per Hoechst molecule. (N.C.)

  4. Catalase inhibits ionizing radiation-induced apoptosis in hematopoietic stem and progenitor cells.

    Xiao, Xia; Luo, Hongmei; Vanek, Kenneth N; LaRue, Amanda C; Schulte, Bradley A; Wang, Gavin Y

    2015-06-01

    Hematologic toxicity is a major cause of mortality in radiation emergency scenarios and a primary side effect concern in patients undergoing chemo-radiotherapy. Therefore, there is a critical need for the development of novel and more effective approaches to manage this side effect. Catalase is a potent antioxidant enzyme that coverts hydrogen peroxide into hydrogen and water. In this study, we evaluated the efficacy of catalase as a protectant against ionizing radiation (IR)-induced toxicity in hematopoietic stem and progenitor cells (HSPCs). The results revealed that catalase treatment markedly inhibits IR-induced apoptosis in murine hematopoietic stem cells and hematopoietic progenitor cells. Subsequent colony-forming cell and cobble-stone area-forming cell assays showed that catalase-treated HSPCs can not only survive irradiation-induced apoptosis but also have higher clonogenic capacity, compared with vehicle-treated cells. Moreover, transplantation of catalase-treated irradiated HSPCs results in high levels of multi-lineage and long-term engraftments, whereas vehicle-treated irradiated HSPCs exhibit very limited hematopoiesis reconstituting capacity. Mechanistically, catalase treatment attenuates IR-induced DNA double-strand breaks and inhibits reactive oxygen species. Unexpectedly, we found that the radioprotective effect of catalase is associated with activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway and pharmacological inhibition of STAT3 abolishes the protective activity of catalase, suggesting that catalase may protect HSPCs against IR-induced toxicity via promoting STAT3 activation. Collectively, these results demonstrate a previously unrecognized mechanism by which catalase inhibits IR-induced DNA damage and apoptosis in HSPCs.

  5. A tan in a test tube - in vitro models for investigating ultraviolet radiation-induced damage in skin.

    Fernandez, Tara L; Dawson, Rebecca A; Van Lonkhuyzen, Derek R; Kimlin, Michael G; Upton, Zee

    2012-06-01

    Presently, global rates of skin cancers induced by ultraviolet radiation (UVR) exposure are on the rise. In view of this, current knowledge gaps in the biology of photocarcinogenesis and skin cancer progression urgently need to be addressed. One factor that has limited skin cancer research has been the need for a reproducible and physiologically-relevant model able to represent the complexity of human skin. This review outlines the main currently-used in vitro models of UVR-induced skin damage. This includes the use of conventional two-dimensional cell culture techniques and the major animal models that have been employed in photobiology and photocarcinogenesis research. Additionally, the progression towards the use of cultured skin explants and tissue-engineered skin constructs, and their utility as models of native skin's responses to UVR are described. The inherent advantages and disadvantages of these in vitro systems are also discussed. © 2012 John Wiley & Sons A/S.

  6. Bystander effects in UV-induced genomic instability: Antioxidants inhibit delayed mutagenesis induced by ultraviolet A and B radiation

    Dahle Jostein

    2005-01-01

    Full Text Available Abstract Background Genomic instability is characteristic of many types of human cancer. Recently, we reported that ultraviolet radiation induced elevated mutation rates and chromosomal instability for many cell generations after ultraviolet irradiation. The increased mutation rates of unstable cells may allow them to accumulate aberrations that subsequently lead to cancer. Ultraviolet A radiation, which primarily acts by oxidative stress, and ultraviolet B radiation, which initially acts by absorption in DNA and direct damage to DNA, both produced genomically unstable cell clones. In this study, we have determined the effect of antioxidants on induction of delayed mutations by ultraviolet radiation. Delayed mutations are indicative of genomic instability. Methods Delayed mutations in the hypoxanthine phosphoribosyl transferase (hprt gene were detected by incubating the cells in medium selectively killing hprt mutants for 8 days after irradiation, followed by a 5 day period in normal medium before determining mutation frequencies. Results The UVB-induced delayed hprt mutations were strongly inhibited by the antioxidants catalase, reduced glutathione and superoxide dismutase, while only reduced glutathione had a significant effect on UVA-induced delayed mutations. Treatment with antioxidants had only minor effects on early mutation frequenies, except that reduced glutathione decreased the UVB-induced early mutation frequency by 24 %. Incubation with reduced glutathione was shown to significantly increase the intracellular amount of reduced glutathione. Conclusion The strong effects of these antioxidants indicate that genomic instability, which is induced by the fundamentally different ultraviolet A and ultraviolet B radiation, is mediated by reactive oxygen species, including hydrogen peroxide and downstream products. However, cells take up neither catalase nor SOD, while incubation with glutathione resulted in increased intracellular levels of

  7. Effect of the uvr D3 mutation on ultraviolet radiation-induced DNA-repair replication in Escherichia coli K12

    Carlson, K.M.; Smith, K.C.

    1981-01-01

    Ultraviolet-radiation-induced DNA-repair replication was measured in wild-type, polA1, uvrD3, and polA1 uvrD3 strains of Escherichia coli K 12. A large stimulation of repair replication was observed in the uvrD3 strain, compared to the wild-type and polA1 strains. This enhanced repair replication was reduced in the polA1 uvrD3 strain. Therefore, a uvrD3 mutation appears to affect the amount of repair replication performed by DNA polymerase I. In the polA1 strain, there also appears to be an effect of the uvrD3 mutation on the amount of repair replication performed by DNA polymerase III (and/or II). The enhanced repair replication observed for the uvrD3 strains appears to be in response to the enhanced DNA degradation observed for these strains. (orig.)

  8. Solar ultraviolet radiation induces biological alterations in human skin in vitro: Relevance of a well-balanced UVA/UVB protection

    Françoise Bernerd

    2012-01-01

    Full Text Available Cutaneous damages such as sunburn, pigmentation, and photoaging are known to be induced by acute as well as repetitive sun exposure. Not only for basic research, but also for the design of the most efficient photoprotection, it is crucial to understand and identify the early biological events occurring after ultraviolet (UV exposure. Reconstructed human skin models provide excellent and reliable in vitro tools to study the UV-induced alterations of the different skin cell types, keratinocytes, fibroblasts, and melanocytes in a dose- and time-dependent manner. Using different in vitro human skin models, the effects of UV light (UVB and UVA were investigated. UVB-induced damages are essentially epidermal, with the typical sunburn cells and DNA lesions, whereas UVA radiation-induced damages are mostly located within the dermal compartment. Pigmentation can also be obtained after solar simulated radiation exposure of pigmented reconstructed skin model. Those models are also highly adequate to assess the potential of sunscreens to protect the skin from UV-associated damage, sunburn reaction, photoaging, and pigmentation. The results showed that an effective photoprotection is provided by broad-spectrum sunscreens with a potent absorption in both UVB and UVA ranges.

  9. Solar ultraviolet radiation induces biological alterations in human skin in vitro: relevance of a well-balanced UVA/UVB protection.

    Bernerd, Francoise; Marionnet, Claire; Duval, Christine

    2012-06-01

    Cutaneous damages such as sunburn, pigmentation, and photoaging are known to be induced by acute as well as repetitive sun exposure. Not only for basic research, but also for the design of the most efficient photoprotection, it is crucial to understand and identify the early biological events occurring after ultraviolet (UV) exposure. Reconstructed human skin models provide excellent and reliable in vitro tools to study the UV-induced alterations of the different skin cell types, keratinocytes, fibroblasts, and melanocytes in a dose- and time-dependent manner. Using different in vitro human skin models, the effects of UV light (UVB and UVA) were investigated. UVB-induced damages are essentially epidermal, with the typical sunburn cells and DNA lesions, whereas UVA radiation-induced damages are mostly located within the dermal compartment. Pigmentation can also be obtained after solar simulated radiation exposure of pigmented reconstructed skin model. Those models are also highly adequate to assess the potential of sunscreens to protect the skin from UV-associated damage, sunburn reaction, photoaging, and pigmentation. The results showed that an effective photoprotection is provided by broad-spectrum sunscreens with a potent absorption in both UVB and UVA ranges.

  10. Ultraviolet Radiation-Induced Cytogenetic Damage in White, Hispanic and Black Skin Melanocytes: A Risk for Cutaneous Melanoma

    Dasgupta, Amrita [Hampton University Skin of Color Research Institute, Hampton, VA 23668 (United States); Katdare, Meena, E-mail: mkatdare@gmail.com [Hampton University Skin of Color Research Institute, Hampton, VA 23668 (United States); Department of Dermatology, Eastern Virginia Medical School, Norfolk, VA 23507 (United States)

    2015-08-14

    Cutaneous Melanoma (CM) is a leading cause of cancer deaths, with reports indicating a rising trend in the incidence rate of melanoma among Hispanics in certain U.S. states. The level of melanin pigmentation in the skin is suggested to render photoprotection from the DNA-damaging effects of Ultraviolet Radiation (UVR). UVR-induced DNA damage leads to cytogenetic defects visualized as the formation of micronuclei, multinuclei and polymorphic nuclei in cells, and a hallmark of cancer risk. The causative relationship between Sun exposure and CM is controversial, especially in Hispanics and needs further evaluation. This study was initiated with melanocytes from White, Hispanic and Black neonatal foreskins which were exposed to UVR to assess their susceptibility to UVR-induced modulation of cellular growth, cytogenetic damage, intracellular and released melanin. Our results show that White and Hispanic skin melanocytes with similar levels of constitutive melanin are susceptible to UVR-induced cytogenetic damage, whereas Black skin melanocytes are not. Our data suggest that the risk of developing UVR-induced CM in a skin type is correlated with the level of cutaneous pigmentation and its ethnic background. This study provides a benchmark for further investigation on the damaging effects of UVR as risk for CM in Hispanics.

  11. Ultraviolet Radiation-Induced Cytogenetic Damage in White, Hispanic and Black Skin Melanocytes: A Risk for Cutaneous Melanoma

    Dasgupta, Amrita; Katdare, Meena

    2015-01-01

    Cutaneous Melanoma (CM) is a leading cause of cancer deaths, with reports indicating a rising trend in the incidence rate of melanoma among Hispanics in certain U.S. states. The level of melanin pigmentation in the skin is suggested to render photoprotection from the DNA-damaging effects of Ultraviolet Radiation (UVR). UVR-induced DNA damage leads to cytogenetic defects visualized as the formation of micronuclei, multinuclei and polymorphic nuclei in cells, and a hallmark of cancer risk. The causative relationship between Sun exposure and CM is controversial, especially in Hispanics and needs further evaluation. This study was initiated with melanocytes from White, Hispanic and Black neonatal foreskins which were exposed to UVR to assess their susceptibility to UVR-induced modulation of cellular growth, cytogenetic damage, intracellular and released melanin. Our results show that White and Hispanic skin melanocytes with similar levels of constitutive melanin are susceptible to UVR-induced cytogenetic damage, whereas Black skin melanocytes are not. Our data suggest that the risk of developing UVR-induced CM in a skin type is correlated with the level of cutaneous pigmentation and its ethnic background. This study provides a benchmark for further investigation on the damaging effects of UVR as risk for CM in Hispanics

  12. GSK126 (EZH2 inhibitor) interferes with ultraviolet A radiation-induced photoaging of human skin fibroblast cells

    Qin, Haiyan; Zhang, Guang; Zhang, Lianbo

    2018-01-01

    Polycomb group genes (PcG) encode chromatin modification proteins that are involved in the epigenetic regulation of cell differentiation, proliferation and the aging processes. The key subunit of the PcG complex, enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2), has a central role in a variety of mechanisms, such as the formation of chromatin structure, gene expression regulation and DNA damage. In the present study, ultraviolet A (UVA) was used to radiate human dermal fibroblasts in order to construct a photo-aged cell model. Subsequently, the cell viability assay, Hoechst staining, apoptosis detection using flow cytometry, senescence-associated β-galactosidase (SA-β-gal) staining and erythrocyte exclusion experiments were performed. GSK126, a histone methylation enzyme inhibitor of EZH2, was used as an experimental factor. Results suggested that GSK126 downregulated the mRNA expression levels of EZH2 and upregulated the mRNA expression levels of BMI-1. Notably, GSK126 affected the transcription of various photoaging-related genes and thus protected against photoaging induced by UVA radiation. PMID:29545866

  13. Ultraviolet Type B-Radiation-Induced Hyperplasia and Seborrheic Keratosis is Reduced by Application of Commercial Sunscreens

    Azad K Saeed1*, Snur MA Hassan1 and Nali A Maaruf2

    2016-11-01

    Full Text Available Fifty-six mice were classified into four groups; Group A (control group, n=8, Group B (exposure group, n=16, Group C (n=16 treated with sunscreen 15 minutes before UVB irradiations and group D (n=16 sunscreen treated 60 minutes before UVB exposure. Mice were irradiated 30 minutes 5days/week (12 weeks, and group C-D treated five days/week (12 weeks. Skin samples were taken in the mid and end of the experiment. The result of this study revealed that, epidermal thickness in group A was 7.155µm. At the mid-period of the experiment, severe epidermal hyperplasia was observed in group B with epidermal thickness 118.712µm, while in group C and D mild to moderate epidermal hyperplasia were noted with decreasing epidermal thickness to 64.154 and 90.042µm respectively. At the end of the experiment in Group B epidermal thickness reached to 281.35µm with seborrheic keratosis development, whereas in group C and D totally inhibited the development of seborrheic keratosis and epidermal thickness decreased again into 42.347 and 55.915µm. In conclusion, chronic UVB radiation-led to epidermal hyperplasia and seborrheic keratosis, sunscreen prevented the development of seborrheic keratosis and decreased the UVB-induced epidermal hyperplasia.

  14. Mammalian Target of Rapamycin Inhibition With Rapamycin Mitigates Radiation-Induced Pulmonary Fibrosis in a Murine Model

    Chung, Eun Joo [Radiation Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland (United States); Sowers, Anastasia; Thetford, Angela [Radiation Biology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland (United States); McKay-Corkum, Grace; Chung, Su I. [Radiation Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland (United States); Mitchell, James B. [Radiation Biology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland (United States); Citrin, Deborah E., E-mail: citrind@mail.nih.gov [Radiation Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland (United States)

    2016-11-15

    Purpose: Radiation-induced pulmonary fibrosis (RIPF) is a late toxicity of therapeutic radiation. Signaling of the mammalian target of rapamycin drives several processes implicated in RIPF, including inflammatory cytokine production, fibroblast proliferation, and epithelial senescence. We sought to determine if mammalian target of rapamycin inhibition with rapamycin would mitigate RIPF. Methods and Materials: C57BL/6NCr mice received a diet formulated with rapamycin (14 mg/kg food) or a control diet 2 days before and continuing for 16 weeks after exposure to 5 daily fractions of 6 Gy of thoracic irradiation. Fibrosis was assessed with Masson trichrome staining and hydroxyproline assay. Cytokine expression was evaluated by quantitative real-time polymerase chain reaction. Senescence was assessed by staining for β-galactosidase activity. Results: Administration of rapamycin extended the median survival of irradiated mice compared with the control diet from 116 days to 156 days (P=.006, log-rank test). Treatment with rapamycin reduced hydroxyproline content compared with the control diet (irradiation plus vehicle, 45.9 ± 11.8 μg per lung; irradiation plus rapamycin, 21.4 ± 6.0 μg per lung; P=.001) and reduced visible fibrotic foci. Rapamycin treatment attenuated interleukin 1β and transforming growth factor β induction in irradiated lungs compared with the control diet. Type II pneumocyte senescence after irradiation was reduced with rapamycin treatment at 16 weeks (3-fold reduction at 16 weeks, P<.001). Conclusions: Rapamycin protected against RIPF in a murine model. Rapamycin treatment reduced inflammatory cytokine expression, extracellular matrix production, and senescence in type II pneumocytes.

  15. Radiation-induced enteropathy: Molecular basis of pentoxifylline–vitamin E anti-fibrotic effect involved TGF-β1 cascade inhibition

    Hamama, Saad; Gilbert-Sirieix, Marie; Vozenin, Marie-Catherine; Delanian, Sylvie

    2012-01-01

    Background: Radiation-induced fibrosis is a serious late complication of radiotherapy. Pentoxifylline–vitamin E has proven effective and safe in clinical trials in the treatment of fibrosis, while the molecular mechanism of its activity is yet unexplored. Methods: Ten patients suffering from radiation-induced enteropathy were treated with pentoxifylline–vitamin E combination with SOMA score as the primary endpoint. In parallel, primary smooth muscle cells isolated from intestinal samples isolated from humans with radiation enteropathy were incubated with pentoxifylline, trolox (vit. E hydrophilic analogous) or their combination. Activation of the TGF-β1/Smad and Rho/ROCK pathways was subsequently investigated using Q-RT-PCR, gene reporter, Western-blot, ELISA and immunohistochemistry. Results: Pentoxifylline–vitamin E combination induces regression of symptoms (SOMA) by −41% and −80% at 6 and 18 months. In vitro, pentoxifylline and trolox synergize to inhibit TGF-β1 protein and mRNA expression. This inhibitory action is mediated at the transcriptional level and leads to subsequent inhibition of TGF-β1/Smad targets (Col Iα1, FN1, PAI-1, CTGF), while it has no effect on the Rho/ROCK pathway. Conclusions: The anti-fibrotic effect of combined pentoxifylline–vitamin E is at least in part mediated by inhibition of the TGF-β1 cascade. It strengthens previous clinical data showing pentoxifylline–vitamin E synergy and supports its use as a first-line treatment of radiation-induced fibrosis.

  16. Leptin deficiency-induced obesity exacerbates ultraviolet B radiation-induced cyclooxygenase-2 expression and cell survival signals in ultraviolet B-irradiated mouse skin

    Sharma, Som D.; Katiyar, Santosh K.

    2010-01-01

    Obesity has been implicated in several inflammatory diseases and in different types of cancer. Chronic inflammation induced by exposure to ultraviolet (UV) radiation has been implicated in various skin diseases, including melanoma and nonmelanoma skin cancers. As the relationship between obesity and susceptibility to UV radiation-caused inflammation is not clearly understood, we assessed the role of obesity on UVB-induced inflammation, and mediators of this inflammatory response, using the genetically obese (leptin-deficient) mouse model. Leptin-deficient obese (ob/ob) mice and wild-type counterparts (C57/BL6 mice) were exposed to UVB radiation (120 mJ/cm 2 ) on alternate days for 1 month. The mice were then euthanized and skin samples collected for analysis of biomarkers of inflammatory responses using immunohistochemistry, western blotting, ELISA and real-time PCR. Here, we report that the levels of inflammatory responses were higher in the UVB-exposed skin of the ob/ob obese mice than those in the UVB-exposed skin of the wild-type non-obese mice. The levels of UVB-induced cyclooxygenase-2 expression, prostaglandin-E 2 production, proinflammatory cytokines (i.e., tumor necrosis factor-α, interleukin-1β, interleukin-6), and proliferating cell nuclear antigen and cell survival signals (phosphatidylinositol-3-kinase and p-Akt-Ser 473 ) were higher in the skin of the ob/ob obese mice than the those in skin of their wild-type non-obese counterparts. Compared with the wild-type non-obese mice, the leptin-deficient obese mice also exhibited greater activation of NF-κB/p65 and fewer apoptotic cells in the UVB-irradiated skin. Our study suggests for the first time that obesity in mice is associated with greater susceptibility to UVB-induced inflammatory responses and, therefore, obesity may increase susceptibility to UVB-induced inflammation-associated skin diseases, including the risk of skin cancer.

  17. Inhibition of gamma-radiation induced DNA damage in plasmid pBR322 by TMG, a water-soluble derivative of vitamin E.

    Rajagopalan, Rema; Wani, Khalida; Huilgol, Nagaraj G; Kagiya, Tsutomu V; Nair, Cherupally K Krishnan

    2002-06-01

    Alpha-tocopherol monoglucoside (TMG), a water-soluble derivative of alpha-tocopherol, has been examined for its ability to protect DNA against radiation-induced strand breaks. Gamma radiation, up to a dose of 6 Gy (dose rate, 0.7 Gy/minute), induced a dose-dependent increase in single strand breaks (SSBs) in plasmid pBR322 DNA. TMG inhibited the formation of gamma-radiation induced DNA single strand breaks (SSBs) in a concentration-dependent manner; 500 microM of TMG protected the single strand breaks completely. It also protected thymine glycol formation induced by gamma-radiation in a dose-dependent manner, based on an estimation of thymine glycol by HPLC.

  18. Inhibition of {gamma}-radiation induced DNA damage in plasmid pBR322 by TMG, a water-soluble derivative of vitamin E

    Rajagopalan, R.; Nair, C.K.K. [Bhabha Atomic Research Centre, Mumbai (India); Wani, K.; Huilgol, N.G. [Nanavati Hospital and MRC, Vile Parle (India); Kagiya, Tsutomu V. [Kinki Research Foundation, Kyoto (Japan)

    2002-06-01

    Alpha-tocopherol monoglucoside (TMG), a water-soluble derivative of {alpha}-tocopherol, has been examined for its ability to protect DNA against radiation-induced strand breaks. Gamma radiation, up to a dose of 6 Gy (dose rate, 0.7 Gy/minute), induced a dose-dependent increase in single strand breaks (SSBs) in plasmid pBR322 DNA. TMG inhibited the formation of {gamma}-radiation induced DNA single strand breaks (SSBs) in a concentration-dependent manner; 500 {mu}M of TMG protected the single strand breaks completely. It also protected thymine glycol formation induced by {gamma}-radiation in a dose-dependent manner, based on an estimation of thymine glycol by HPLC. (author)

  19. Inhibition of γ-radiation induced DNA damage in plasmid pBR322 by TMG, a water-soluble derivative of vitamin E

    Rajagopalan, R.; Nair, C.K.K.; Wani, K.; Huilgol, N.G.; Kagiya, Tsutomu V.

    2002-01-01

    Alpha-tocopherol monoglucoside (TMG), a water-soluble derivative of α-tocopherol, has been examined for its ability to protect DNA against radiation-induced strand breaks. Gamma radiation, up to a dose of 6 Gy (dose rate, 0.7 Gy/minute), induced a dose-dependent increase in single strand breaks (SSBs) in plasmid pBR322 DNA. TMG inhibited the formation of γ-radiation induced DNA single strand breaks (SSBs) in a concentration-dependent manner; 500 μM of TMG protected the single strand breaks completely. It also protected thymine glycol formation induced by γ-radiation in a dose-dependent manner, based on an estimation of thymine glycol by HPLC. (author)

  20. SN-38 Acts as a Radiosensitizer for Colorectal Cancer by Inhibiting the Radiation-induced Up-regulation of HIF-1α.

    Okuno, Takayuki; Kawai, Kazushige; Hata, Keisuke; Murono, Koji; Emoto, Shigenobu; Kaneko, Manabu; Sasaki, Kazuhito; Nishikawa, Takeshi; Tanaka, Toshiaki; Nozawa, Hiroaki

    2018-06-01

    Hypoxia offers resistance to therapy in human solid tumors. The aim of the study was to investigate whether SN-38, the active metabolite of irinotecan, acts as a radiosensitizer through inhibition of hypoxia-inducible factor (HIF)-1α in the human colorectal cancer (CRC) cells. HT29 and SW480 cells were cultured with SN-38 (0-4 μM) immediately after irradiation (0-8 Gy). HIF-1α expression was assessed using flow-cytometry and western blot analysis. Cell proliferation was evaluated by the calcein assay. Apoptosis and cell cycle were determined by flow-cytometry. Radiation up-regulated HIF-1α, and SN-38 inhibited the radiation-induced HIF-1α. The combination of radiation and SN-38 inhibited cell proliferation more than radiation alone; treatment with SN-38 after radiation exposure did not increase the number of apoptotic cells, whereas, it enhanced the S and G 2 /M cell-cycle arrest and decreased the population of cells in G 1 Conclusion: SN-38 inhibits the radiation-induced up-regulation of HIF-1α and acts as a radiosensitizer by inducing cell-cycle arrest in CRC cells. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. Differences in inhibition by beta-arabinofuranosyladenine (araA) of radiation induced DNA damage repair in exponentially growing and plateau-phase CHO-cells

    Iliakis, G.; Seaner, R.

    1988-01-01

    The effect of beta-arabinofuranosyladenine (araA) on the repair of radiation induced DNA damage, as measured by the DNA unwinding technique, was studied in exponentially growing and plateau-phase CHO-cells after exposure to X-rays. Induction of DNA damage by radiation was found to be similar in exponentially growing and plateau-phase cells. In the absence of araA, repair of radiation induced DNA damage proceeded with similar kinetics in exponentially growing and plateau-phase cells. AraA at concentrations between 0-1500 μM inhibited DNA repair both in exponentially growing and in plateau-phase cells. However, the degree of inhibition was significantly higher (by a factor of 3) in plateau-phase cells. A similar degree of repair inhibition by araA was observed in plateau-phase cells treated in their conditioned medium, as well as in plateau-phase cells that were transferred in fresh growth medium just before treatment initiation. These results indicate the importance of biochemical parameters associated with alterations in the growth state of the cells for the inhibitory effect of araA and may help in the elucidation of the molecular mechanism(s) underlying repair inhibition by inhibitors of DNA replication. (orig.)

  2. Kaempferol protects against gamma radiation-induced mortality and damage via inhibiting oxidative stress and modulating apoptotic molecules in vivo and vitro.

    Wang, Jing; Li, Tiejun; Feng, Jingjing; Li, Li; Wang, Rong; Cheng, Hao; Yuan, Yongfang

    2018-04-20

    To investigate the potential protective effect of kaempferol, a representative flavonoid, against radiation induced mortality and injury in vivo and vitro.C57BL/6 male mice and human umbilical venous endothelial cells (HUVECs) were pretreated with kaempferol before radiation. We found that kaempferol can effectively increase 30-day survival rate after 8.5 Gy lethal total body irradiation (TBI). Mice were sacrificed at 7th day after 7 Gy TBI, we found kaempferol against radiation-induced tissues damage, by inhibiting the oxidative stress, and attenuating morphological changes and cell apoptosis. In vitro, kaempferol increased HUVECs cell viability and decrease apoptosis. It also mitigated oxidative stress and restored the abnormal expression of prx-5, Cyt-c, Caspase9 and Caspase3 in mRNA and protein level in HUVECs after radiation. Taken together, it suggests kaempferol can protect against gamma-radiation induced tissue damage and mortality. The present study is the first report of the radioprotective role of kaempferol in vivo and vitro. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Mesenchymal stem cell-conditioned medium prevents radiation-induced liver injury by inhibiting inflammation and protecting sinusoidal endothelial cells

    Chen Yixing; Zeng Zhaochong; Sun Jing; Huang Yan; Zhang Zhenyu; Zeng Haiying

    2015-01-01

    Current management of radiation-induced liver injury is limited. Sinusoidal endothelial cell (SEC) apoptosis and inflammation are considered to be initiating events in hepatic damage. We hypothesized that mesenchymal stem cells (MSCs) possess anti-apoptotic and anti-inflammatory actions during hepatic irradiation, acting via paracrine mechanisms. This study aims to examine whether MSC-derived bioactive components are protective against radiation-induced liver injury in rats. MSC-conditioned medium (MSC-CM) was generated from rat bone marrow–derived MSCs. The effect of MSC-CM on the viability of irradiated SECs was examined by flow cytometric analysis. Activation of the Akt and ERK pathways was analyzed by western blot. MSC-CM was also delivered to Sprague–Dawley rats immediately before receiving liver irradiation, followed by testing for pathological features, changes in serum hyaluronic acid, ALT, and inflammatory cytokine levels, and liver cell apoptosis. MSC-CM enhanced the viability of irradiated SECs in vitro and induced Akt and ERK phosphorylation in these cells. Infusion of MSC-CM immediately before liver irradiation provided a significant anti-apoptotic effect on SECs and improved the histopathological features of injury in the irradiated liver. MSC-CM also reduced the secretion and expression of inflammatory cytokines and increased the expression of anti-inflammatory cytokines. MSC-derived bioactive components could be a novel therapeutic approach for treating radiation-induced liver injury. (author)

  4. GSK-3β Inhibition Attenuates LPS-Induced Death but Aggravates Radiation-Induced Death via Down-Regulation of IL-6

    Bailong Li

    2013-12-01

    Full Text Available Background: Exposure of high dose ionizing radiation is lethal. Signal pathways involved in radiation biology reaction still remain illdefined. Lipopolysaccharides (LPS, the ligands of Toll-like receptor 4(TLR4, could elicit strong immune responses. Glycogen synthase kinase-3β(GSK-3β promotes the production of inflammatory molecules and cell migration. Inhibition of GSK-3β provides protection against inflammation in animal models. The aim of the study was to investigate role of GSK-3β in LPS shock and ionizing radiation. Methods: WT or IL-6-/-mice or cells were pretreated with SB216763, a GSK-3β inhibitor, and survival of the mice was determined. Cell viability was assayed by Cell Counting Kit. Apoptosis was assayed by Annexin V-PI double staining. Serum concentrations of IL-6 and TNF-α were determined by ELISA. Results: SB216763 attenuated LPS induced mice or cell death but aggravated radiation induced mice or cell death. SB216763 reduced IL-6, but not TNF-α levels in vivo. IL-6-/- mice were more resistant to LPS-induced death but less resistant to radiation-induced death than wild type mice. Conclusions: Inhibition of GSK-3β conferred resistance to LPS shock but fostered death induced by ionizing radiation. Inhibition of GSK-3β was effective by reducing IL-6.

  5. Intake of high-fat diet stimulates the risk of ultraviolet radiation-induced skin tumors and malignant progression of papillomas to carcinoma in SKH-1 hairless mice

    Vaid, Mudit; Singh, Tripti; Prasad, Ram [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Katiyar, Santosh K., E-mail: skatiyar@uab.edu [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294 (United States)

    2014-01-01

    Previously, we showed that administration of a high-fat diet (HF-diet) to C57BL/6 mice exacerbates their response to short-term UVB radiation-induced inflammation in the skin. To explore the effects of an HF-diet on UVB-induced tumorigenesis, we have used the SKH-1 hairless mouse model in which the mice are exposed to UVB radiation (180 mJ/cm{sup 2}) three times a week for 24 weeks. The development of UVB-induced skin tumors was rapid and the tumor multiplicity and tumor size were significantly higher (P < 0.01–0.005) in the mice fed an HF-diet than the mice fed a control-diet (C-diet). Moreover, the malignant progression of UVB-induced papillomas to carcinomas was higher in HF-diet-fed mice. On analysis of tumors and tumor-uninvolved skin samples from the tumor-bearing mice, we found that administration of an HF-diet significantly enhanced the levels of UVB-induced expression of cyclooxygenase-2 (COX-2), prostaglandin E{sub 2} (P < 0.01), and PGE{sub 2} receptors, and activation of NF-κB in the UVB-exposed skin as well as in tumors. In addition the HF-diet enhanced the expression of proinflammatory cytokines, including tumor necrosis factor-α (P < 0.01), interleukin (IL)-1β (P < 0.01) and IL-6 (P < 0.05) in the UVB-exposed skin as well as in tumors. Western blot analysis revealed that HF-diet enhanced the levels of epidermal cell proliferation, phosphatidylinositol 3-kinase and phosphorylation of Akt at Ser{sup 473} in UVB-exposed skin and skin tumors. Collectively, these data demonstrate that the regular consumption of an HF-diet increases the risk of photocarcinogenesis in mice and that this is associated with enhanced expression of inflammatory mediators in the UVB-exposed skin and tumors. - Highlights: • Consumption of high-fat diet increases UVB-induced skin tumor development in mice. • Intake of high-fat diet stimulates progression of UV-induced papilloma to carcinoma. • Intake of high-fat diet enhances inflammation in UV-exposed skin • Regular

  6. Celecoxib Induced Tumor Cell Radiosensitization by Inhibiting Radiation Induced Nuclear EGFR Transport and DNA-Repair: A COX-2 Independent Mechanism

    Dittmann, Klaus H.; Mayer, Claus; Ohneseit, Petra A.; Raju, Uma; Andratschke, Nickolaus H.; Milas, Luka; Rodemann, H. Peter

    2008-01-01

    Purpose: The purpose of the study was to elucidate the molecular mechanisms mediating radiosensitization of human tumor cells by the selective cyclooxygenase (COX)-2 inhibitor celecoxib. Methods and Materials: Experiments were performed using bronchial carcinoma cells A549, transformed fibroblasts HH4dd, the FaDu head-and-neck tumor cells, the colon carcinoma cells HCT116, and normal fibroblasts HSF7. Effects of celecoxib treatment were assessed by clonogenic cell survival, Western analysis, and quantification of residual DNA damage by γH 2 AX foci assay. Results: Celecoxib treatment resulted in a pronounced radiosensitization of A549, HCT116, and HSF7 cells, whereas FaDu and HH4dd cells were not radiosensitized. The observed radiosensitization could neither be correlated with basal COX-2 expression pattern nor with basal production of prostaglandin E2, but was depended on the ability of celecoxib to inhibit basal and radiation-induced nuclear transport of epidermal growth factor receptor (EGFR). The nuclear EGFR transport was strongly inhibited in A549-, HSF7-, and COX-2-deficient HCT116 cells, which were radiosensitized, but not in FaDu and HH4dd cells, which resisted celecoxib-induced radiosensitization. Celecoxib inhibited radiation-induced DNA-PK activation in A549, HSF7, and HCT116 cells, but not in FaDu and HH4dd cells. Consequentially, celecoxib increased residual γH2AX foci after irradiation, demonstrating that inhibition of DNA repair has occurred in responsive A549, HCT116, and HSF7 cells only. Conclusions: Celecoxib enhanced radiosensitivity by inhibition of EGFR-mediated mechanisms of radioresistance, a signaling that was independent of COX-2 activity. This novel observation may have therapeutic implications such that COX-2 inhibitors may improve therapeutic efficacy of radiation even in patients whose tumor radioresistance is not dependent on COX-2

  7. Gamma radiation induced oxidative stress and apoptosis inhibiting properties of bacterial secondary metabolite RK-IP-006.G in J774A.1 murine cell line

    Malhotra, Poonam; Gupta, Ashutosh K.; Singh, Praveen K.; Chhachhia, Neha; Singh, Shravan K.; Raj Kumar

    2014-01-01

    Redox imbalance due to radiation induced oxidation of vital bio-macromolecules activates inflammatory response cascade leading to cell death. In present study, bacterial secondary metabolite, RK-IP-006.G, was evaluated for its oxidative stress and apoptosis inhibiting activities in irradiated J774A.1 murine macrophage cell line. Radiation induced intracellular ROS generation and its inhibition upon RK-IP-006.G pretreatment was estimated using 2',7'dichlorodihydroflurescein diacetate (DCFDA). Modulation in mitochondrial membrane potential (MMP) in irradiated cells and its protection by RK-IP-006.G pretreatment was evaluated using Rhodamine-123. Modulation in protein expression in irradiated and RK-IP-006.G treated J774A.1 cells was assessed by SDS-PAGE. Compensatory effect of RK-IP-006.G treatment on TNF-α expression in irradiated cells was estimated using ELISA assay. APO-BrDU assay was performed to evaluate radiation-induced apoptosis in irradiated cells. Radiation-induced cell damage and protective ability of RK-IP-006.G was also evaluated using Differential Interference Contrast Microscopy. Results of the study indicated significant (p< 0.05) decrease in DCFDA fluorescence in irradiated cells that were pretreated (∼2h) with RK-IP-006.G (0.25 μg/ml) as compared to irradiated cells. Similarly, significant (p<0.05) decrease in MMP was observed in irradiated cells pretreated with RK-IP-006.G (0.25 μg/ml) as compared to only irradiated cells at 1 h time point. SDS-PAGE analysis clearly demonstrated up-regulation of some prominent proteins in irradiated cells pretreated with RK-IP-006.G at 2-4h after treatment as compared to irradiated control. Significant (p<0.05) down regulation in TNF-α expression was observed in irradiated cells that pretreated with RK-IP-006.G compared to irradiated controls. APO-BrDU assay revealed significant reduction in apoptosis in irradiated cells pretreated with RK-IP-006.G when compared to irradiated control. The findings

  8. Ultraviolet radiation-induced interleukin 6 release in HeLa cells is mediated via membrane events in a DNA damage-independent way.

    Kulms, D; Pöppelmann, B; Schwarz, T

    2000-05-19

    Evidence exists that ultraviolet radiation (UV) affects molecular targets in the nucleus or at the cell membrane. UV-induced apoptosis was found to be mediated via DNA damage and activation of death receptors, suggesting that nuclear and membrane effects are not mutually exclusive. To determine whether participation of nuclear and membrane components is also essential for other UV responses, we studied the induction of interleukin-6 (IL-6) by UV. Exposing HeLa cells to UV at 4 degrees C, which inhibits activation of surface receptors, almost completely prevented IL-6 release. Enhanced repair of UV-mediated DNA damage by addition of the DNA repair enzyme photolyase did not affect UV-induced IL-6 production, suggesting that in this case membrane events predominant over nuclear effects. UV-induced IL-6 release is mediated via NFkappaB since the NFkappaB inhibitor MG132 or transfection of cells with a super-repressor form of the NFkappaB inhibitor IkappaB reduced IL-6 release. Transfection with a dominant negative mutant of the signaling protein TRAF-2 reduced IL-6 release upon exposure to UV, indicating that UV-induced IL-6 release is mediated by activation of the tumor necrosis factor receptor-1. These data demonstrate that UV can exert biological effects mainly by affecting cell surface receptors and that this is independent of its ability to induce nuclear DNA damage.

  9. Madecassoside Inhibits Melanin Synthesis by Blocking Ultraviolet-Induced Inflammation

    Eunsun Jung

    2013-12-01

    Full Text Available Madecassoside (MA, a pentacyclic triterpene isolated from Centella asitica (L., is used as a therapeutic agent in wound healing and also as an anti-inflammatory and anti-aging agent. However, the involvement of MA in skin-pigmentation has not been reported. This study was conducted to investigate the effects of MA on ultraviolet (UV-induced melanogenesis and mechanisms in a co-culture system of keratinocytes and melanocytes. MA significantly inhibited UVR-induced melanin synthesis and melanosome transfer in the co-culture system. These effects were further demonstrated by the MA-induced inhibition of protease-activated receptor-2 expression and its signaling pathway, cyclooxygenase-2, prostaglandin E2 and prostaglandin F2 alpha in keratinocytes. The clinical efficacy of MA was confirmed on artificially tanned human skin. MA significantly reduced UV-induced melanin index at 8 weeks after topical application. Overall, the study demonstrated significant benefits of MA use in the inhibition of hyperpigmentation caused by UV irradiation.

  10. Ultraviolet B radiation induces impaired lifecycle traits and modulates expression of cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus.

    Puthumana, Jayesh; Lee, Min-Chul; Park, Jun Chul; Kim, Hui-Su; Hwang, Dae-Sik; Han, Jeonghoon; Lee, Jae-Seong

    2017-03-01

    To evaluate the effects of ultraviolet B (UV-B) radiation at the developmental, reproductive, and molecular levels in aquatic invertebrates, we measured UV-B-induced acute toxicity, impairments in developmental and reproductive traits, and UV-B interaction with the entire family of cytochrome P450 (CYP) genes in the intertidal benthic copepod Tigriopus japonicus. We found a significant, dose-dependent reduction (Pcopepods through the predicted AhR-mediated up-regulation of CYP genes. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effects of Chk1 inhibition on the temporal duration of radiation-induced G2 arrest in HeLa cells

    Nahar, Kamrun; Goto, Tatsuaki; Kaida, Atsushi; Deguchi, Shifumi; Miura, Masahiko

    2014-01-01

    Chk1 inhibitor acts as a potent radiosensitizer in p53-deficient tumor cells by abrogating the G2/M check-point. However, the effects of Chk1 inhibitor on the duration of G2 arrest have not been precisely analyzed. To address this issue, we utilized a cell-cycle visualization system, fluorescent ubiquitination-based cell-cycle indicator (Fucci), to analyze the change in the first green phase duration (FGPD) after irradiation. In the Fucci system, G1 and S/G2/M cells emit red and green fluorescence, respectively; therefore, G2 arrest is reflected by an elongated FGPD. The system also allowed us to differentially analyze cells that received irradiation in the red or green phase. Cells irradiated in the green phase exhibited a significantly elongated FGPD relative to cells irradiated in the red phase. In cells irradiated in either phase, Chk1 inhibitor reduced FGPD almost to control levels. The results of this study provide the first clear information regarding the effects of Chk1 inhibition on radiation-induced G2 arrest, with special focus on the time dimension. (author)

  12. Pharmacological inhibition of radiation induced in vitro tumor cell/endothelium cell interactions and in vivo metastasis processes

    Herzog, Melanie

    2013-01-01

    Exposure of endothelial cells with ionizing radiation (IR) or treatment with inflammatory cytokines (e. g. TNFα) induces a Rho-GTPase and NF-κB dependent activation of the expression of various cell adhesion molecules, including E-selectin. E-selectin mediates the adhesion of tumor cells (TC) to endothelial cells and is probably involved in the extravasation step of circulating tumor cells. HMG-CoA reductase inhibitors (e. g. lovastatin) inhibit the function of Rho-GTPases and thus are anticipated to attenuate Rho-regulated cell-cell-adhesion as well. This study focuses on the influence of IR and TNFα on the expression of endothelial- and/or tumor cell-specific pro-adhesive factors and whether these effects are influenced by lovastatin. To this end, the effect of IR and TNFα on cell-cell-interactions between human colon carcinoma cells (HT29) and human umbilical vein endothelial cells (HUVEC) was investigated using an ELISA-based cell adhesion-assay. Moreover, the influence of pre-treatment with lovastatin and other types of inhibitors on HUVEC-HT29 adhesion was monitored. Additionally, we investigated the effect of lovastatin on mRNA expression level of different cell adhesion molecules, metastatic factors and DNA-repair genes upon radiation exposure by qRT-PCR. To scrutinize the in vivo relevance of the data obtained, we investigated the effect of total body irradiation (TBI) on the mRNA expression of pro-adhesive factors in BALB/c mice. To analyze tumor cell extravasation, tumor cells were injected into the lateral tail vein of immundeficient mice, followed by total body irradiation (TBI, 4 Gy). After four weeks a large increase of lung metastases was monitored, which could be blocked by preatreatment of the mice with lovastatin, the Rac1-specific small-molecule inhibitor NSC23766 as well as the sLe x -mimetic glycyrrhizin. Summarizing, we provide evidence, that irradiation promotes upregulation of different cell adhesion molecules in vitro and stimulates

  13. 8-prenylnaringenin and tamoxifen inhibit the shedding of irradiated epithelial cells and increase the latency period of radiation-induced oral mucositis. Cell culture and murine model

    Ryck, Tine de; Impe, Annouchka van; Bracke, Marc E. [Ghent University, Laboratory of Experimental Cancer Research, Department Radiation Oncology and Experimental Cancer Research, Ghent (Belgium); Vanhoecke, Barbara W. [Ghent University, Laboratory of Experimental Cancer Research, Department Radiation Oncology and Experimental Cancer Research, Ghent (Belgium); Ghent University, Laboratory of Microbial Ecology and Technology (LabMET), Ghent (Belgium); Heyerick, Arne [Ghent University, Laboratory of Pharmacognosy and Phytochemistry, Ghent (Belgium); Vakaet, Luc; Neve, Wilfried de [Ghent University Hospital, Department of Radiation Oncology, Ghent (Belgium); Mueller, Doreen [Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Department of Radiotherapy and Radiation Oncology, OncoRay-National Center for Radiation Research in Oncology, Dresden (Germany); Schmidt, Margret [Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Department of Radiotherapy and Radiation Oncology, OncoRay-National Center for Radiation Research in Oncology, Dresden (Germany); German Cancer Consortium (DKTK) partner site Dresden and German Cancer Center (DKFZ), Heidelberg (Germany); Doerr, Wolfgang [Medical Faculty and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Department of Radiotherapy and Radiation Oncology, OncoRay-National Center for Radiation Research in Oncology, Dresden (Germany); Medical University, Department of Radiation Oncology, CCC, and CD-Laboratory RadOnc, Vienna (Austria)

    2015-05-01

    The major component in the pathogenesis of oral radiation-induced mucositis is progressive epithelial hypoplasia and eventual ulceration. Irradiation inhibits cell proliferation, while cell loss at the surface continues. We conceived to slow down this desquamation by increasing intercellular adhesion, regulated by the E-cadherin/catenin complex. We investigated if 8-prenylnaringenin (8-PN) or tamoxifen (TAM) decrease the shedding of irradiated human buccal epithelial cells in vitro and thus delay the ulcerative phase of radiation-induced mucositis in vivo. In vitro, aggregates of buccal epithelial cells were irradiated and cultured in suspension for 11 days. 8-PN or TAM were investigated regarding their effect on cell shedding. In vivo, the lower tongue surface of mice was irradiated with graded single doses of 25 kV X-rays. The incidence, latency, and duration of the resulting mucosal ulcerations were analyzed after topical treatment with 8-PN, TAM or solvent. 8-PN or TAM prevented the volume reduction of the irradiated cell aggregates during the incubation period. This was the result of a higher residual cell number in the treated versus the untreated irradiated aggregates. In vivo, topical treatment with 8-PN or TAM significantly increased the latency of mucositis from 10.9 to 12.1 and 12.4 days respectively, while the ulcer incidence was unchanged. 8-PN and TAM prevent volume reduction of irradiated cell aggregates in suspension culture. In the tongues of mice, these compounds increase the latency period. This suggests a role for these compounds for the amelioration of radiation-induced mucositis in the treatment of head and neck tumors. (orig.) [German] Die wesentliche Komponente in der Pathogenese der radiogenen Mukositis ist eine progressive epitheliale Hypoplasie und letztendlich Ulzeration. Die Bestrahlung hemmt die Zellproliferation, waehrend der Zellverlust an der Oberflaeche fortbesteht. Wir versuchten, diese Desquamation durch eine Stimulation der

  14. Ultraviolet radiation-induced histopathologic changes in the skin of the marsupial Monodelphis domestica. II. Quantitative studies of the photoreactivation of induced hyperplasia and sunburn cell formation

    Ley, R.D.; Applegate, L.A.

    1985-01-01

    Induction of sunburn cells (SBCs) and hyperplasia of the epidermis of the marsupial Monodelphis domestica by ultraviolet radiation (UVR) has been studied. A dose of 500 J/m2 (approximately 1 minimal erythemal dose) from an FS-40 sunlamp induced measurable numbers of SBCs with a peak number at 32-48 h post-UVR exposure of skin to photoreactivating light suppressed the induction of SBCs by approximately 75%. Pre-UVR exposure to photoreactivating light had no effect on the induction of SBCs. Induction of hyperplasia also was suppressed to a similar extent by post-UVR photoreactivation treatment. These studies identify pyrimidine dimers in DNA as the major photoproduct involved in the induction of SBCs and hyperplasia in M. domestica by UVR

  15. The effects of topically applied glycolic acid and salicylic acid on ultraviolet radiation-induced erythema, DNA damage and sunburn cell formation in human skin.

    Kornhauser, Andrija; Wei, Rong-Rong; Yamaguchi, Yuji; Coelho, Sergio G; Kaidbey, Kays; Barton, Curtis; Takahashi, Kaoruko; Beer, Janusz Z; Miller, Sharon A; Hearing, Vincent J

    2009-07-01

    alpha-Hydroxy acids (alphaHAs) are reported to reduce signs of aging in the skin and are widely used cosmetic ingredients. Several studies suggest that alphaHA can increase the sensitivity of skin to ultraviolet radiation. More recently, beta-hydroxy acids (betaHAs), or combinations of alphaHA and betaHA have also been incorporated into antiaging skin care products. Concerns have also arisen about increased sensitivity to ultraviolet radiation following use of skin care products containing beta-HA. To determine whether topical treatment with glycolic acid, a representative alphaHA, or with salicylic acid, a betaHA, modifies the short-term effects of solar simulated radiation (SSR) in human skin. Fourteen subjects participated in this study. Three of the four test sites on the mid-back of each subject were treated daily Monday-Friday, for a total of 3.5 weeks, with glycolic acid (10%), salicylic acid (2%), or vehicle (control). The fourth site received no treatment. After the last treatment, each site was exposed to SSR, and shave biopsies from all four sites were obtained. The endpoints evaluated in this study were erythema (assessed visually and instrumentally), DNA damage and sunburn cell formation. Treatment with glycolic acid resulted in increased sensitivity of human skin to SSR, measured as an increase in erythema, DNA damage and sunburn cell formation. Salicylic acid did not produce significant changes in any of these biomarkers. Short-term topical application of glycolic acid in a cosmetic formulation increased the sensitivity of human skin to SSR, while a comparable treatment with salicylic acid did not.

  16. Nicotinamide enhances repair of arsenic and ultraviolet radiation-induced DNA damage in HaCaT keratinocytes and ex vivo human skin.

    Benjamin C Thompson

    Full Text Available Arsenic-induced skin cancer is a significant global health burden. In areas with arsenic contamination of water sources, such as China, Pakistan, Myanmar, Cambodia and especially Bangladesh and West Bengal, large populations are at risk of arsenic-induced skin cancer. Arsenic acts as a co-carcinogen with ultraviolet (UV radiation and affects DNA damage and repair. Nicotinamide (vitamin B3 reduces premalignant keratoses in sun-damaged skin, likely by prevention of UV-induced cellular energy depletion and enhancement of DNA repair. We investigated whether nicotinamide modifies DNA repair following exposure to UV radiation and sodium arsenite. HaCaT keratinocytes and ex vivo human skin were exposed to 2μM sodium arsenite and low dose (2J/cm2 solar-simulated UV, with and without nicotinamide supplementation. DNA photolesions in the form of 8-oxo-7,8-dihydro-2'-deoxyguanosine and cyclobutane pyrimidine dimers were detected by immunofluorescence. Arsenic exposure significantly increased levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine in irradiated cells. Nicotinamide reduced both types of photolesions in HaCaT keratinocytes and in ex vivo human skin, likely by enhancing DNA repair. These results demonstrate a reduction of two different photolesions over time in two different models in UV and arsenic exposed cells. Nicotinamide is a nontoxic, inexpensive agent with potential for chemoprevention of arsenic induced skin cancer.

  17. Ultraviolet-B radiation induced cross-linking improves physical properties of cold- and warm-water fish gelatin gels and films.

    Otoni, Caio G; Avena-Bustillos, Roberto J; Chiou, Bor-Sen; Bilbao-Sainz, Cristina; Bechtel, Peter J; McHugh, Tara H

    2012-09-01

    Cold- and warm-water fish gelatin granules were exposed to ultraviolet-B radiation for doses up to 29.7 J/cm(2). Solutions and films were prepared from the granules. Gel electrophoresis and refractive index were used to examine changes in molecular weight of the samples. Also, the gel strength and rheological properties of the solutions as well as the tensile and water vapor barrier properties of the films were characterized. SDS-PAGE and refractive index results indicated cross-linking of gelatin chains after exposure to radiation. Interestingly, UV-B treated samples displayed higher gel strengths, with cold- and warm-water fish gelatin having gel strength increases from 1.39 to 2.11 N and from 7.15 to 8.34 N, respectively. In addition, both gelatin samples exhibited an increase in viscosity for higher UV doses. For gelatin films, the cold-water fish gelatin samples made from irradiated granules showed greater tensile strength. In comparison, the warm-water gelatin films made from irradiated granules had lower tensile strength, but better water vapor barrier properties. This might be due to the UV induced cross-linking in warm-water gelatin that disrupted helical structures. Journal of Food Science copy; 2012 Institute of Food Technologists® No claim to original US government works.

  18. Protective effect of 3,4-dihydroxybenzoic acid isolated from Cladophora wrightiana Harvey against ultraviolet B radiation-induced cell damage in human HaCaT keratinocytes.

    Cha, Ji Won; Piao, Mei Jing; Kim, Ki Cheon; Zheng, Jian; Yao, Cheng Wen; Hyun, Chang Lim; Kang, Hee Kyoung; Yoo, Eun Sook; Koh, Young Sang; Lee, Nam Ho; Ko, Mi Hee; Hyun, Jin Won

    2014-03-01

    The aim of the present study was to elucidate the protective properties of 3,4-dihydroxybenzoic acid (DBA) isolated from Cladophora wrightiana Harvey (a green alga) against ultraviolet B (UVB)-induced damage to human HaCaT keratinocytes. DBA exhibited scavenging actions against the 1,1-diphenyl-2-picrylhydrazyl radical, the superoxide anion, and the hydroxyl radical. Furthermore, DBA decreased the levels of intracellular reactive oxygen species generated by hydrogen peroxide or UVB treatment of the cells. DBA also decreased the UVB-augmented levels of phospho-histone H2A.X and the extent of comet tail formation, which are both indications of DNA damage. In addition, the compound safeguarded keratinocytes from UVB-induced injury by reversing the production of apoptotic bodies, overturning the disruption of mitochondrial membrane potential, increasing the expression of the anti-apoptotic protein, B-cell lymphoma 2, and decreasing the expression of the pro-apoptotic proteins, Bcl-2-associated X and cleaved caspase-3. Taken together, these results demonstrate that DBA isolated from a green alga protects human keratinocytes against UVB-induced oxidative stress and apoptosis.

  19. Src is activated by the nuclear receptor peroxisome proliferator-activated receptor β/δ in ultraviolet radiation-induced skin cancer.

    Montagner, Alexandra; Delgado, Maria B; Tallichet-Blanc, Corinne; Chan, Jeremy S K; Sng, Ming K; Mottaz, Hélén; Degueurce, Gwendoline; Lippi, Yannick; Moret, Catherine; Baruchet, Michael; Antsiferova, Maria; Werner, Sabine; Hohl, Daniel; Saati, Talal Al; Farmer, Pierre J; Tan, Nguan S; Michalik, Liliane; Wahli, Walter

    2014-01-01

    Although non-melanoma skin cancer (NMSC) is the most common human cancer and its incidence continues to rise worldwide, the mechanisms underlying its development remain incompletely understood. Here, we unveil a cascade of events involving peroxisome proliferator-activated receptor (PPAR) β/δ and the oncogene Src, which promotes the development of ultraviolet (UV)-induced skin cancer in mice. UV-induced PPARβ/δ activity, which directly stimulated Src expression, increased Src kinase activity and enhanced the EGFR/Erk1/2 signalling pathway, resulting in increased epithelial-to-mesenchymal transition (EMT) marker expression. Consistent with these observations, PPARβ/δ-null mice developed fewer and smaller skin tumours, and a PPARβ/δ antagonist prevented UV-dependent Src stimulation. Furthermore, the expression of PPARβ/δ positively correlated with the expression of SRC and EMT markers in human skin squamous cell carcinoma (SCC), and critically, linear models applied to several human epithelial cancers revealed an interaction between PPARβ/δ and SRC and TGFβ1 transcriptional levels. Taken together, these observations motivate the future evaluation of PPARβ/δ modulators to attenuate the development of several epithelial cancers.

  20. Protein Kinase Cε, Which Is Linked to Ultraviolet Radiation-Induced Development of Squamous Cell Carcinomas, Stimulates Rapid Turnover of Adult Hair Follicle Stem Cells

    Singh, A.; Singh, A.; Sand, J. M.; Bin Hafeez, B.; Verma, A. K.; Sand, J. M.; Heninger, E.

    2013-01-01

    To find clues about the mechanism by which kinase C epsilon (PKCε) may impart susceptibility to ultraviolet radiation (UVR)-induced development of cutaneous squamous cell carcinomas (SCC), we compared PKCε transgenic (TG) mice and their wild-type (WT) litter mates for (1) the effects of UVR exposures on percent of putative hair follicle stem cells (HSC s ) and (2) HSCs proliferation. The percent of double HSC s (CD34+ andα6-integrin or CD34+/CD49f+) in the isolated keratinocytes were determined by flow cytometric analysis. Both single and chronic UVR treatments (1.8 kJ/m 2 ) resulted in an increase in the frequency of double positive HSCs in PKCεTG mice as compared to their WT litter mates. To determine the rate of proliferation of bulge region stem cells, a 5-bromo-2-deoxyuridine labeling (BrdU) experiment was performed. In the WT mice, the percent of double positive HSC s retaining BrdU label was 28.4±0.6% compared to 4.0±0.06% for the TG mice, an approximately 7-fold decrease. A comparison of gene expression profiles of FACS sorted double positive HSCs showed increased expression of Pes1, Rad21, Tfdp1 and Cks1b genes in TG mice compared to WT mice. Also, PKCεover expression in mice increased the clonogenicity of isolated keratinocytes, a property commonly ascribed to stem cells.

  1. Inhibition of in vitro SV40 DNA replication by ultraviolet light

    Gough, G.; Wood, R.W.

    1989-01-01

    Ultraviolet light-induced DNA damage was found to inhibit SV40 origin-dependent DNA synthesis carried out by soluble humancell extracts. Replication of SV40-based plasmids was reduced to approx. 35% of that in unirradiated controls after irradiation with 50-100 J/m 2 germicidal ultraviolet light, where an average of 3-6 pyrimidine dimer photoproducts were formed per plasmid circle. Inhibition of the DNA helicase activity of T antigen (required for initiation of replication in the in vitro system) was also investigated, and was only significant after much higher fluences, 1000-5000 J/m 2 . The data indicate that DNA damage by ultraviolet light inhibits DNA synthesis in cell-free extracts principally by affecting components of the replication complex other than the DNA helicase activity of T antigen. The soluble system could be used to biochemically investigate the possible bypass or tolerance of DNA damage during replication (author). 21 refs.; 2 figs

  2. Ultraviolet B radiation induces impaired lifecycle traits and modulates expression of cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus

    Puthumana, Jayesh; Lee, Min-Chul; Park, Jun Chul; Kim, Hui-Su; Hwang, Dae-Sik; Han, Jeonghoon, E-mail: jeonghoon@skku.edu; Lee, Jae-Seong, E-mail: jslee2@skku.edu

    2017-03-15

    Highlights: • Impaired effects of UV-B on the copepod Tigriopus japonicus were examined. • Modulation of entire CYP genes were analyzed in response to UV-B. • CYP inhibitor (PBO) confirmed the role of CYP in UV-B induced mortality. • Low-dose UV-B found induce developmental delays, and higher doses cause reproductive impairments. • Study predicted the mechanistic effects of UV-B in copepods through the AhR-mediated up-regulation of CYP genes. - Abstract: To evaluate the effects of ultraviolet B (UV-B) radiation at the developmental, reproductive, and molecular levels in aquatic invertebrates, we measured UV-B-induced acute toxicity, impairments in developmental and reproductive traits, and UV-B interaction with the entire family of cytochrome P450 (CYP) genes in the intertidal benthic copepod Tigriopus japonicus. We found a significant, dose-dependent reduction (P < 0.05) in the survival of T. japonicus that began as a developmental delay and decreased fecundity. The 48 h LD10 and LD50 were 1.35 and 1.84 kJ/m{sup 2}, and the CYP inhibitor (PBO) elevated mortality, confirming the involvement of CYP genes in UV-B induced toxicity. Low-dose UV-B (1.5 kJ/m{sup 2}) induced developmental delays, and higher doses (6–18 kJ/m{sup 2}) caused reproductive impairments in ovigerous females. The significant up-regulation of CYP genes belonging to clans 2/3/MT/4/20 in T. japonicus exposed to UV-B (12 kJ/m{sup 2}) confirmed molecular interaction between UV-B and CYP genes. Moreover, orphan CYPs, such as CYP20A1, provide good insight on the deorphanization of invertebrate CYPs. Overall, these results demonstrate the involvement of UV-B radiation in the expression of all the CYP genes in T. japonicus and their susceptibility to UV-B radiation. This will provide a better understanding of the mechanistic effects of UV-B in copepods through the predicted AhR-mediated up-regulation of CYP genes.

  3. Ultraviolet B radiation induces impaired lifecycle traits and modulates expression of cytochrome P450 (CYP) genes in the copepod Tigriopus japonicus

    Puthumana, Jayesh; Lee, Min-Chul; Park, Jun Chul; Kim, Hui-Su; Hwang, Dae-Sik; Han, Jeonghoon; Lee, Jae-Seong

    2017-01-01

    Highlights: • Impaired effects of UV-B on the copepod Tigriopus japonicus were examined. • Modulation of entire CYP genes were analyzed in response to UV-B. • CYP inhibitor (PBO) confirmed the role of CYP in UV-B induced mortality. • Low-dose UV-B found induce developmental delays, and higher doses cause reproductive impairments. • Study predicted the mechanistic effects of UV-B in copepods through the AhR-mediated up-regulation of CYP genes. - Abstract: To evaluate the effects of ultraviolet B (UV-B) radiation at the developmental, reproductive, and molecular levels in aquatic invertebrates, we measured UV-B-induced acute toxicity, impairments in developmental and reproductive traits, and UV-B interaction with the entire family of cytochrome P450 (CYP) genes in the intertidal benthic copepod Tigriopus japonicus. We found a significant, dose-dependent reduction (P < 0.05) in the survival of T. japonicus that began as a developmental delay and decreased fecundity. The 48 h LD10 and LD50 were 1.35 and 1.84 kJ/m"2, and the CYP inhibitor (PBO) elevated mortality, confirming the involvement of CYP genes in UV-B induced toxicity. Low-dose UV-B (1.5 kJ/m"2) induced developmental delays, and higher doses (6–18 kJ/m"2) caused reproductive impairments in ovigerous females. The significant up-regulation of CYP genes belonging to clans 2/3/MT/4/20 in T. japonicus exposed to UV-B (12 kJ/m"2) confirmed molecular interaction between UV-B and CYP genes. Moreover, orphan CYPs, such as CYP20A1, provide good insight on the deorphanization of invertebrate CYPs. Overall, these results demonstrate the involvement of UV-B radiation in the expression of all the CYP genes in T. japonicus and their susceptibility to UV-B radiation. This will provide a better understanding of the mechanistic effects of UV-B in copepods through the predicted AhR-mediated up-regulation of CYP genes.

  4. Ultraviolet radiation-induced mutability of isogenic uvrA and uvrB strains of Escherichia coli K-12 W3110

    Barfknecht, T.R.; Smith, K.C.

    1977-01-01

    E. coli K-12 W3110 uvrB5 strain has been shown to have a higher UV induced reversion frequency than its wild-type parent when plotted on the basis of mutation frequency versus survival. However for the E. coli B/r WP2s uvrA strain this higher mutability has been observed only at survival levels of 80-100%. A study was undertaken to determine if these differences in UV mutability were due primarily to the uvrA and uvrB mutations, or to other genetic background differences. Isogenic strains of E. coli K-12 W3110 carrying uvrA6, uvrB5, uvrA6 and uvrB5, and the uvrA allele from E.coli B/r WP2s were used. Results indicate that the enrichment of minimal medium with a small amount of nutrient broth is sufficient to inhibit minimal medium recovery (MMR) and to enhance leu + reversion of the leu B missense mutation in these uvr - strains. This suggests that there may be a relationship between MMR and error-free postreplication repair. Further research is in progress to clarify the relationship between MMR and broth enhancement of UV-induced mutagenesis in uvr - strains of E. Coli K-12 W3110. (author)

  5. Ultraviolet radiation-induced mutability of isogenic uvrA and uvrB strains of Escherichia coli K-12 W3110

    Barfknecht, T R; Smith, K C [Stanford Univ., Calif. (USA). Dept. of Radiology

    1977-12-01

    Escherichia coli K-12 W3110 uvrB5 strain has been shown to have a higher uv-induced reversion frequency than its wild-type parent when plotted on the basis of mutation frequency versus survival. However for the E. coli B/r WP2s uvrA strain this higher mutability has been observed only at survival levels of 80 to 100%. A study was undertaken to determine if ly to the uvrA and uvrB mutations, or to other genetic background differences. Isogenic strains of E. coli K-12 W3110 carrying uvrA6, uvrB5, uvrA6, and uvrB5, and the uvrA allele from E.coli B/r WP2s were used. Results indicate that the enrichment of minimal medium with a small amount of nutrient broth is sufficient to inhibit minimal medium recovery (MMR) and to enhance leu/sup +/ reversion of the leu B missense mutation in these uvr/sup -/ strains. This suggests that there may be a relationship between MMR and error-free postreplication repair. Further research is in progress to clarify the relationship between MMR and broth enhancement of uv-induced mutagenesis in uvr/sup -/ strains of E. Coli K-12 W3110.

  6. MiR-124 Inhibits Growth and Enhances Radiation-Induced Apoptosis in Non-Small Cell Lung Cancer by Inhibiting STAT3

    Mengjie Wang

    2017-12-01

    Full Text Available Background/Aims: A growing body of evidence indicates that the abnormal expression of microRNAs (miRNAs play an important role in sensitizing the cellular response to ionizing radiation (IR. The aim of this study was to investigate whether the expression of miR-124 correlated with radiosensitivity in the context of non-small-cell lung carcinoma (NSCLC. Methods: Quantitative reverse transcription polymerase chain reaction (RT-PCR was used to quantify miR-124 expression in NSCLC tissues and cell lines. The role of miR-124 in NSCLC proliferation and radiosensitivity was analyzed using CCK-8 and flow cytometry apoptosis assays. Luciferase activity assays, RT-PCR, and Western blot assays were performed to confirm the target gene of miR-124. Results: In this study, we found that miR-124 was downregulated both in clinical NSCLC samples and in cell lines. miR-124 inhibited the proliferation of NSCLC cells and enhanced the apoptosis of NSCLC cells exposed to ionizing radiation. We identified signal transducer and activator of transcription 3 (STAT3 as a direct target of miR-124 by using target prediction algorithms and luciferase assays. Overexpression of STAT3 in A549 cell lines restored the enhanced radiosensitivity induced by miR-124. Conclusion: Taking these observations into consideration, we illustrated that miR-124 is a potential target for enhancing the radiosensitivity of NSCLC cells by targeting STAT3.

  7. Inhibition of DNA repair in ultraviolet-irradiated human cells by hydroxyurea

    Francis, A.A.; Carrier, W.L.; Smith, D.P.; Regan, J.D.; Blevins, R.D.

    1979-01-01

    The effect on DNA repair in ultraviolet-irradiated human skin fibroblasts by hydroxyurea has been examined in this study using three independent methods for measuring DNA repair: the 5-bromodeoxyuridine photolysis assay which measures DNA repair replication, chromatographic measurement of thymine-containing dimers, and measurement of specific ultraviolet-endonuclease-sensitive sites in irradiated DNA. Little effect on hydroxyurea was observed at the concentration of 2mM, which is often used to inhibit semiconservative DNA synthesis; however, 10 mM hydroxyurea resulted in marked inhibition (65-70%) of excision repair. This inhibition was accompanied by a possible doubling in the size of the repaired region. The accumulation of large numbers of single-strand breaks following ultraviolet irradiation and hydroxyurea incubation seen by other investigators was not observed with the normal skin fibroblasts used in this study. A comparison of hydroxyurea effects on the different DNA repair assays indicates inhibition of one step in DNA repair also results in varying degrees of inhibition of other steps as well. (Auth.)

  8. Inhibition of DNA repair in ultraviolet-irradiated human cells by hydroxyurea

    Francis, A.A. (Oak Ridge National Lab., TN); Blevins, R.D.; Carrier, W.L.; Smith, D.P.; Regan, J.D.

    1979-01-01

    The effect on DNA repair in ultraviolet-irradiated human skin fibroblasts by hydroxyurea has been examined in this study using three independent methods for measuring DNA repair: the 5-bromodeoxyuridine photolysis assay which measures DNA repair replication, chromatographic measurement of thymine-containing dimers, and measurement of specific ultraviolet-endonuclease-sensitive sites in irradiated DNA. Little effect of hydroxyurea was observed at the concentration of 2 mM, which is often used to inhibit semiconservative DNA synthesis; however, 10 mM hydroxyurea resulted in marked inhibition (65 to 70%) of excision repair. This inhibition was accompanied by a possible doubling in the size of the repaired region. The accumulation of large numbers of single-strand breaks following ultraviolet irradiation and hydroxyurea incubation seen by other investigators was not observed with the normal skin fibroblasts used in this study. A comparison of hydroxyurea effects on the different DNA repair assays indicates inhibition of one step in DNA repair also results in varying degrees of inhibition of other steps as well.

  9. Radiation-induced pneumothorax

    Epstein, D.M.; Littman, P.; Gefter, W.B.; Miller, W.T.; Raney, R.B. Jr.

    1983-01-01

    Pneumothorax is an uncommon complication of radiation therapy to the chest. The proposed pathogenesis is radiation-induced fibrosis promoting subpleural bleb formation that ruptures resulting in pneumothorax. We report on two young patients with primary sarcomas without pulmonary metastases who developed spontaneous pneumothorax after irradiation. Neither patient had antecedent radiographic evidence of pulmonary fibrosis

  10. Regulatory T Cells Contribute to the Inhibition of Radiation-Induced Acute Lung Inflammation via Bee Venom Phospholipase A₂ in Mice.

    Shin, Dasom; Lee, Gihyun; Sohn, Sung-Hwa; Park, Soojin; Jung, Kyung-Hwa; Lee, Ji Min; Yang, Jieun; Cho, Jaeho; Bae, Hyunsu

    2016-04-30

    Bee venom has long been used to treat various inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis. Previously, we reported that bee venom phospholipase A₂ (bvPLA₂) has an anti-inflammatory effect through the induction of regulatory T cells. Radiotherapy is a common anti-cancer method, but often causes adverse effects, such as inflammation. This study was conducted to evaluate the protective effects of bvPLA₂ in radiation-induced acute lung inflammation. Mice were focally irradiated with 75 Gy of X-rays in the lung and administered bvPLA₂ six times after radiation. To evaluate the level of inflammation, the number of immune cells, mRNA level of inflammatory cytokine, and histological changes in the lung were measured. BvPLA₂ treatment reduced the accumulation of immune cells, such as macrophages, neutrophils, lymphocytes, and eosinophils. In addition, bvPLA₂ treatment decreased inflammasome-, chemokine-, cytokine- and fibrosis-related genes' mRNA expression. The histological results also demonstrated the attenuating effect of bvPLA₂ on radiation-induced lung inflammation. Furthermore, regulatory T cell depletion abolished the therapeutic effects of bvPLA₂ in radiation-induced pneumonitis, implicating the anti-inflammatory effects of bvPLA₂ are dependent upon regulatory T cells. These results support the therapeutic potential of bvPLA₂ in radiation pneumonitis and fibrosis treatments.

  11. Radiation-induced apoptosis

    Ohyama, Harumi

    1995-01-01

    Apoptosis is an active process of gene-directed cellular self-destruction that can be induced in many cell types via numerous physiological and pathological stimuli. We found that interphasedeath of thymocytes is a typical apoptosis showing the characteristic features of apoptosis including cell shrinkage, chromatin condensation and DNA degradation. Moderate dose of radiation induces extensive apoptosis in rapidly proliferating cell population such as the epithelium of intestinal crypt. Recent reports indicate that the ultimate form of radiation-induced mitotic death in several cells is also apoptosis. One of the hallmarks of apoptosis is the enzymatic internucleosomal degradation of chromatin DNA. We identified an endonuclease responsible for the radiation-induced DNA degradation in rat thymocytes. The death-sparing effects of interrupting RNA and protein synthesis suggested a cell genetic program for apoptosis. Apoptosis of thymocytes initiated by DNA damage, such as radiation and radio mimetic substance, absolutely requires the protein of p53 cancer suppresser gene. The cell death induced by glucocorticoid, or aging, has no such requirement. Expression of oncogene bcl-2 rescues cells from the apoptosis. Massive apoptosis in radiosensitive cells induced by higher dose radiation may be fatal. It is suggested that selective apoptotic elimination of cells would play an important role for protection against carcinogenesis and malformation through removal of cells with unrepaired radiation-induced DNA damages. Data to evaluate the significance of apoptosis in the radiation risk are still poor. Further research should be done in order to clarify the roles of the cell death on the acute and late effects of irradiation. (author)

  12. Radiation-induced myelopathy

    Gaenshirt, H [Heidelberg Univ. (F.R. Germany). Neurologische Klinik

    1975-10-01

    12 cases of radiation-induced myelopathy after /sup 60/Co teletherapy are reported on. Among these were 10 thoracal lesions, one cerviothoracal lesion, and one lesion of the medulla oblongata. In 9 cases, Hodgkin's disease had been the primary disease, tow patients had been irradiated because of suspected vertebral metastases of cancer of the breast, and one patient had suffered from a glomus tumour of the petrous bone. The spinal doses had exceeded the tolerance doses recommended in the relevant literature. There was no close correlation between the radiation dose and the course of the disease. The latency periods between the end of the radiotherapy and the onset of the neurological symptons varied from 6 to 16 mouths and were very constant in 7 cases with 6 to 9 months. The segmental height of the lesion corresponded to the level of irradiation. The presenting symptons of radiation-induced myelopathy are buruing dysaesthesias and Brown-Sequard's paralysis which may develop into transverse lesion of the cord with paraplegia still accompanied by dissociated perception disorders. The disease developed intermittently. Disturbances of the bladder function are frequent. The fluid is normal in most cases. Myelographic examinations were made in 8 cases. 3 cases developed into stationary cases exhibiting. Brown-Sequard syndrome, while 9 patients developed transverse lesion of the cord with paraplegia. 3 patients have died; antopsy findings are given for two of these. In the pathogenesis of radiation-induced myelopathy, the vascular factor is assumed to be of decisive importance.

  13. STUDIES ON BIOLUMINESCENCE : XVII. FLUORESCENCE AND INHIBITION OF LUMINESCENCE IN CTENOPHORES BY ULTRA-VIOLET LIGHT.

    Harvey, E N

    1925-01-20

    1. Small dumps of the luminous cells of Mnemiopsis cannot readily be stimulated mechanically but will luminesce on treatment with saponin solution. Larger groups of luminous cells (such as are connected with two paddle plates) luminesce on mechanical stimulation. This suggests that mechanical stimulation to luminesce occurs chiefly through a nerve mechanism which has been broken up in the small dumps of luminous tissue. 2. The smallest bits of luminous tissue, even cells freed from the animal by agitation, that will pass through filter paper, lose their power to luminesce in daylight and regain it (at least partially) in the dark. 3. Luminescence of the whole animal and of individual cells is suppressed by near ultra-violet light (without visible light). 4. Inhibition in ultra-violet light is not due to stimulation (by the ultra-violet light) of the animal to luminesce, thereby using up the store of photogenic material. 5. Animals stimulated mechanically several times and placed in ultra-violet light show a luminescence along the meridians in the same positions as the luminescence that appears on stimulation. This luminescence in the ultra-violet or "tonic luminescence," is not obtained with light adapted ctenophores and is interpreted to be a fluorescence of the product of oxidation of the photogenic material. 6. Marked fluorescence of the luminous organ of the glowworm (Photuris) and of the luminous slime of Chatopterus may be observed in ultra-violet but no marked fluorescence of the luminous substances of Cypridina is apparent. 7. Evidence is accumulating to show a close relation between fluorescent and chemiluminescent substances in animals, similar to that described for unsaturated silicon compounds and the Grignard reagents.

  14. Radiation-induced cancer

    Dutrillaux, B.; CEA Fontenay-aux-Roses, 92

    1998-01-01

    The induction of malignant diseases is one of the most concerning late effects of ionising radiation. A large amount of information has been collected form atomic bomb survivors, patients after therapeutic irradiation, occupational follow-up and accidentally exposed populations. Major uncertainties persist in the (very) low range i.e, population and workers radioprotection. A review of the biological mechanisms leading to cancer strongly suggests that the vast majority of radiation-induced malignancies arise as a consequence of recessive mutations can be unveiled by ageing, this process being possibly furthered by constitutional or acquired genomic instability. The individual risk is likely to be very low, probably because of the usual dose level. However, the magnitude of medical exposure and the reliance of our societies on nuclear industry are so high that irreproachable decision-making processes and standards for practice are inescapable. (author)

  15. Radiation induced oral mucositis

    P S Satheesh Kumar

    2009-01-01

    Full Text Available Patients receiving radiotherapy or chemotherapy will receive some degree of oral mucositis The incidence of oral mucositis was especially high in patients: (i With primary tumors in the oral cavity, oropharynx, or nasopharynx; (ii who also received concomitant chemotherapy; (iii who received a total dose over 5,000 cGy; and (iv who were treated with altered fractionation radiation schedules. Radiation-induced oral mucositis affects the quality of life of the patients and the family concerned. The present day management of oral mucositis is mostly palliative and or supportive care. The newer guidelines are suggesting Palifermin, which is the first active mucositis drug as well as Amifostine, for radiation protection and cryotherapy. The current management should focus more on palliative measures, such as pain management, nutritional support, and maintenance, of good oral hygiene

  16. Radiation induced pesticidal microbes

    Kim, Ki Yup; Lee, Y. K.; Kim, J. S.; Kim, J. K.; Lee, S. J.; Lim, D. S

    2001-01-01

    To isolate pesticidal microbes against plant pathogenic fungi, 4 strains of bacteria(K1. K3, K4, YS1) were isolated from mushroom compost and hot spring. K4, K1, K3, YS1 strain showed wide antifungal spectrum and high antifungal activities against 12 kinds of fungi. Specific proteins and the specific transcribed genes were found from the YS1 and its radiation-induced mutants. And knock-out mutants of antifungal activity were derived by transposon mutagenesis. From these knock-out mutants, the antifungal activity related genes and its modification by gamma-ray radiation are going to be studied. These results suggested that radiation could be an useful tool for the induction of functional mutants.

  17. Radiation induced pesticidal microbes

    Kim, Ki Yup; Lee, Y. K.; Kim, J. S.; Kim, J. K.; Lee, S. J.; Lim, D. S.

    2001-01-01

    To isolate pesticidal microbes against plant pathogenic fungi, 4 strains of bacteria(K1. K3, K4, YS1) were isolated from mushroom compost and hot spring. K4, K1, K3, YS1 strain showed wide antifungal spectrum and high antifungal activities against 12 kinds of fungi. Specific proteins and the specific transcribed genes were found from the YS1 and its radiation-induced mutants. And knock-out mutants of antifungal activity were derived by transposon mutagenesis. From these knock-out mutants, the antifungal activity related genes and its modification by gamma-ray radiation are going to be studied. These results suggested that radiation could be an useful tool for the induction of functional mutants

  18. Radiation-induced cerebrovasculopathy

    Ikeyama, Yukihide; Abiko, Seisho; Kurokawa, Yasushi; Okamura, Tomomi; Watanabe, Kohsaku; Inoue, Shinichi; Fujii, Yasuhiro.

    1993-01-01

    We reported a patient who suffered from cerebrovasculopathy after irradiation therapy for astrocytoma located at the left temporal lobe. An eleven year-old boy who presented with headache and vomiting received partial removal of a tumor. Histological diagnosis of the tumor was astrocytoma (grade II). His preoperative cerebral angiograms showed mass sign solely, without stenosis or occlusion of the cerebral vessel. Postoperatively, he was treated with irradiation therapy involving the whole brain with a total of 30 Gy, and gamma knife therapy. Six months after irradiation, he started suffering from frequent cerebral ischemic attacks, but there was no regrowth of the tumor visible on CT scans. Cerebral angiograms were made again, and revealed multifocal stenoses in the bilateral internal carotid arteries, middle cerebral arteries, and the anterior cerebral artery. His symptoms did not improve after conservative treatment with steroids, calcium antagonist, or low molecular weight dextran. Although he received a superficial temporal artery-middle cerebral artery (STA-MCA) anastomoses bilaterally, multiple cerebral infarctions appeared. Although irradiation therapy is acceptable in patients with brain tumor, cerebrovasculopathy after irradiation should be considered as one of the most important complications, and the risk incurred by irradiation therapy should lead to more careful consideration and caution when treating intracranial brain tumors, especially in children. From our experience, the usefulness of bypass surgery for radiation-induced cerebrovasculopathy is still controversial. (author)

  19. Growth of antarctic cyanobacteria under ultraviolet radiation: UVA counteracts UVB inhibition

    Quesada, A.; Mouget, J.L.; Vincent, W.F.

    1995-01-01

    A mat-forming cyanobacterium (Phormidium murayi West and West) isolated from an ice-shelf pond in Antarctica was grown under white light combined with a range of UVA and UVB irradiance. The 4-day growth rate decreased under increasing ultraviolet (UV) radiation, with a ninefold greater response to UVB relative to UVA. In vivo absorbance spectra showed that UVA and to a greater extent UVB caused a decrease in phycocyanin/chlorophyll a and an increase in carotenoids/chlorophyll a. The phycocyanin/chlorophyll a ratio was closely and positively correlated to the UVB-inhibited growth rate. Under fixed spectral gradients of UV radiation, the growth inhibition effect was dominated by UVB. However, at specific UVB irradiances the inhibition of growth depended on the ratio of UVB to UVA, and growth rates increased linearly with increasing UVA. These results are consistent with the view that UVB inhibition represents the balance between damage and repair processes that are each controlled by separate wavebands. They also underscore the need to consider UV spectral balance in laboratory and field assays of UVB toxicity. 49 refs., 6 figs

  20. Thread Embedding Acupuncture Inhibits Ultraviolet B Irradiation-Induced Skin Photoaging in Hairless Mice

    Yoon-Jung Kim

    2015-01-01

    Full Text Available Thread embedding acupuncture (TEA is an acupuncture treatment applied to many diseases in Korean medical clinics because of its therapeutic effects by continuous stimulation to tissues. It has recently been used to enhance facial skin appearance and antiaging, but data from evidence-based medicine are limited. To investigate whether TEA therapy can inhibit skin photoaging by ultraviolet B (UVB irradiation, we performed analyses for histology, histopathology, in situ zymography and western blot analysis in HR-1 hairless mice. TEA treatment resulted in decreased wrinkle formation and skin thickness (Epidermis; P=0.001 versus UV in UVB irradiated mice and also inhibited degradation of collagen fibers (P=0.010 versus normal by inhibiting proteolytic activity of gelatinase matrix-metalloproteinase-9 (MMP-9. Western blot data showed that activation of c-Jun N-terminal kinase (JNK induced by UVB (P=0.002 versus normal group was significantly inhibited by TEA treatment (P=0.005 versus UV with subsequent alleviation of MMP-9 activation (P=0.048 versus UV. These results suggest that TEA treatment can have anti-photoaging effects on UVB-induced skin damage by maintenance of collagen density through regulation of expression of MMP-9 and related JNK signaling. Therefore, TEA therapy may have potential roles as an alternative treatment for protection against skin damage from aging.

  1. Validating the pivotal role of the immune system in low-dose radiation-induced tumor inhibition in Lewis lung cancer-bearing mice.

    Zhou, Lei; Zhang, Xiaoying; Li, Hui; Niu, Chao; Yu, Dehai; Yang, Guozi; Liang, Xinyue; Wen, Xue; Li, Min; Cui, Jiuwei

    2018-04-01

    Although low-dose radiation (LDR) possesses the two distinct functions of inducing hormesis and adaptive responses, which result in immune enhancement and tumor inhibition, its clinical applications have not yet been elucidated. The major obstacle that hinders the application of LDR in the clinical setting is that the mechanisms underlying induction of tumor inhibition are unclear, and the risks associated with LDR are still unknown. Thus, to overcome this obstacle and elucidate the mechanisms mediating the antitumor effects of LDR, in this study, we established an in vivo lung cancer model to investigate the participation of the immune system in LDR-induced tumor inhibition and validated the pivotal role of the immune system by impairing immunity with high-dose radiation (HDR) of 1 Gy. Additionally, the LDR-induced adaptive response of the immune system was also observed by sequential HDR treatment in this mouse model. We found that LDR-activated T cells and natural killer cells and increased the cytotoxicity of splenocytes and the infiltration of T cells in the tumor tissues. In contrast, when immune function was impaired by HDR pretreatment, LDR could not induce tumor inhibition. However, when LDR was administered before HDR, the immunity could be protected from impairment, and tumor growth could be inhibited to some extent, indicating the induction of the immune adaptive response by LDR. Therefore, we demonstrated that immune enhancement played a key role in LDR-induced tumor inhibition. These findings emphasized the importance of the immune response in tumor radiotherapy and may help promote the application of LDR as a novel approach in clinical practice. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  2. Radiation induced nano structures

    Ibragimova, E.M.; Kalanov, M.U.; Khakimov, Z.

    2006-01-01

    Full text: Nanometer-size silicon clusters have been attracting much attention due to their technological importance, in particular, as promising building blocks for nano electronic and nano photonic systems. Particularly, silicon wires are of great of interest since they have potential for use in one-dimensional quantum wire high-speed field effect transistors and light-emitting devices with extremely low power consumption. Carbon and metal nano structures are studied very intensely due to wide possible applications. Radiation material sciences have been dealing with sub-micron objects for a long time. Under interaction of high energy particles and ionizing radiation with solids by elastic and inelastic mechanisms, at first point defects are created, then they form clusters, column defects, disordered regions (amorphous colloids) and finally precipitates of another crystal phase in the matrix. Such irradiation induced evolution of structure defects and phase transformations was observed by X-diffraction techniques in dielectric crystals of quartz and corundum, which exist in and crystal modifications. If there is no polymorphism, like in alkali halide crystals, then due to radiolysis halogen atoms are evaporated from the surface that results in non-stoichiometry or accumulated in the pores formed by metal vacancies in the sub-surface layer. Nano-pores are created by intensive high energy particles irradiation at first chaotically and then they are ordered and in part filled by inert gas. It is well-known mechanism of radiation induced swelling and embrittlement of metals and alloys, which is undesirable for construction materials for nuclear reactors. Possible solution of this problem may come from nano-structured materials, where there is neither swelling nor embrittlement at gas absorption due to very low density of the structure, while strength keeps high. This review considers experimental observations of radiation induced nano-inclusions in insulating

  3. Radiation-induced sprout and growth inhibition in vegetables with special reference to the susceptibility to microbial attacks and the effect of calcium

    Skou, J.P.

    1979-03-01

    Experiments have shown ionizing irradiation to be an effective method for sprout and growth inhibition but it is necessary to keep the doses at the absolute minimum in order to avoid unwanted by-effects One of the by-effects is an increased susceptibility to storage rot in potatoes, onions and carrots. This effect is connected with the wounding and bruising caused by digging up and handling as the wound healing process is inhibited simultaneously with the sprout inhibition. Patogens increase tissue permeability during pathogenesis and, as irradiation has an analogous effect on tissues it might facilitate the growth of the pathogens. Irradiation softens the tissue and mobilizes the calcium in the tissue; this may thereby make the tissue more accessible to microbial attack. An external supply of calcium increases the firmness of tissue, reduces tissue permeability, and may compensate for the loss of calcium in irradiated tissue mainly as a result of a surplus of calcium in the wounds. Botrytis cinerea and Sclerotinia sclerotiorum were some of the most wide spread and serious pathogens in carrots, which vegetable were the main object of the studies. Culture filtrates of these fungi had a strong macerating activity on carrot tissues. The effect, which results from activity and interaction of pectolytic enzymes and oxalic acid, could be reduced or nullified by calcium. A diversity of the groups of pectolytic enzymes are widely distributed among organisms and not confined to plant pathogens. Because of this, because there exists pectolytic enzymes for every condition and pectic substances, and because calcium is not very inhibiting to all kinds of pectolytic enzymes it is not to be expected that the protective effect of calcium will always be expressed to the same extent on storage of the products. (author)

  4. Action spectrum for inhibition by ultraviolet radiation of photosystem 2 activity in spinach thylakoids

    Bornman, J.F.; Bjoern, L.O.; Aakerlund, H.-E.

    1984-01-01

    The effect of ultraviolet (UV) radiation (half-band width 10 nm) in the wavelength range 248-340 nm on chlorophyll fluorescence from a thin layer of spinach thylakoid suspension was investigated. It was found that the parameter most sensitive to UV radiation was the rise time of variable fluorescence. The increase in rise time was proportional to UV photon fluence and was used for the determination of an action spectrum. The action spectrum falls off from a maximum at ca. 275 nm towards longer wavelengths and rises from a minimum at 260 nm towards shorter wavelengths. The results also suggest that the UV inhibition is mainly on the PS 2 oxidizing side. Possibly damage is also inflicted to the PS 2 reaction center. (orig.)

  5. Recovery of DNA synthesis from inhibition by ultraviolet light in mammalian cells

    Ventura, A M; Ortega, J M; Schumacher, R I; Meneghini, R

    1987-01-01

    In general mammalian cells recover from DNA synthesis inhibition by ultraviolet light (u.v.) before most of the pyrimidine dimers have been removed from the genome. Using metabolic inhibitors, it has been shown that (1) even the low repair rate exhibited by V79 cells is important for recovery; although most of the dimers remain in the V79 genome after recovery of DNA synthesis, either the removal of lesions from some important region of chromatin or the activity of the repair process itself is important for the recovery; (2) the recovery mechanism is induced and depends on RNA synthesis and the production of specific factors. Finally, we have observed that cells previously treated with fluorodeoxyuridine become more resistant to inhibition by u.v. Since it has been shown that this drug activates unused origins of replication in Chinese hamster cells, reducing the average replicon size, we assume that the acquired resistance has to do with the operation of a larger number of small replicons.

  6. ADA-07 Suppresses Solar Ultraviolet-Induced Skin Carcinogenesis by Directly Inhibiting TOPK.

    Gao, Ge; Zhang, Tianshun; Wang, Qiushi; Reddy, Kanamata; Chen, Hanyong; Yao, Ke; Wang, Keke; Roh, Eunmiri; Zykova, Tatyana; Ma, Weiya; Ryu, Joohyun; Curiel-Lewandrowski, Clara; Alberts, David; Dickinson, Sally E; Bode, Ann M; Xing, Ying; Dong, Zigang

    2017-09-01

    Cumulative exposure to solar ultraviolet (SUV) irradiation is regarded as the major etiologic factor in the development of skin cancer. The activation of the MAPK cascades occurs rapidly and is vital in the regulation of SUV-induced cellular responses. The T-LAK cell-originated protein kinase (TOPK), an upstream activator of MAPKs, is heavily involved in inflammation, DNA damage, and tumor development. However, the chemopreventive and therapeutic effects of specific TOPK inhibitors in SUV-induced skin cancer have not yet been elucidated. In the current study, ADA-07, a novel TOPK inhibitor, was synthesized and characterized. Pull-down assay results, ATP competition, and in vitro kinase assay data revealed that ADA-07 interacted with TOPK at the ATP-binding pocket and inhibited its kinase activity. Western blot analysis showed that ADA-07 suppressed SUV-induced phosphorylation of ERK1/2, p38, and JNKs and subsequently inhibited AP-1 activity. Importantly, topical treatment with ADA-07 dramatically attenuated tumor incidence, multiplicity, and volume in SKH-1 hairless mice exposed to chronic SUV. Our findings suggest that ADA-07 is a promising chemopreventive or potential therapeutic agent against SUV-induced skin carcinogenesis that acts by specifically targeting TOPK. Mol Cancer Ther; 16(9); 1843-54. ©2017 AACR . ©2017 American Association for Cancer Research.

  7. Aqueous extract of Pinus caribaea inhibits the damage induced by ultraviolet radiations, in plasmid DNA

    Marioly Vernhes Tamayo

    2017-08-01

    Full Text Available Context: The incidence of solar ultraviolet radiation (UV on Earth has increased due to diminish of the ozone layer. This enviromental agent is highly genotoxic causing numerous damage in DNA molecule. Nowadays there is a growing interest in the search of compounds capable to minimize these effects. In particular, phytocompounds have been tested as excelent candidates for their antigenotoxic properties. Aims: To evaluate the protective effect of the aqueous extract of Pinus caribaea (EPC against the damage induced by the UVB and UVC radiation. Methods: The cell-free plasmid DNA assay was employed. The forms of plasmid were separated electrophoretically in agarose gel. For genotoxic and photoprotective evaluation of P. caribaea, different concentrations of the extract (0.1 – 2.0 mg/mL and exposure times were evaluated. The CPD lesions were detected enzymatically. Additionally, the transmittance of the aqueous extract against 254 nm and 312 nm was measured. Results: None of the concentrations were genotoxic in 30 min of treatment, for superior times a clastogenic effect was observed. The EPC despite inhibiting the activity of the enzyme T4 endo V, impedes photolesions formation in DNA at concentrations ≥ 0.1 mg/mL. Conclusions: The EPC has photoprotective properties, this effect could be related with its antioxidants and absorptives capacities.

  8. Biological Mechanisms Underlying the Ultraviolet Radiation-Induced Formation of Skin Wrinkling and Sagging I: Reduced Skin Elasticity, Highly Associated with Enhanced Dermal Elastase Activity, Triggers Wrinkling and Sagging

    Imokawa, Genji; Ishida, Koichi

    2015-01-01

    The repetitive exposure of skin to ultraviolet B (UVB) preferentially elicits wrinkling while ultraviolet A (UVA) predominantly elicits sagging. In chronically UVB or UVA-exposed rat skin there is a similar tortuous deformation of elastic fibers together with decreased skin elasticity, whose magnitudes are greater in UVB-exposed skin than in UVA-exposed skin. Comparison of skin elasticity with the activity of matrix metalloproteinases (MMPs) in the dermis of ovariectomized rats after UVB or UVA irradiation demonstrates that skin elasticity is more significantly decreased in ovariectomized rats than in sham-operated rats, which is accompanied by a reciprocal increase in elastase activity but not in the activities of collagenases I or IV. Clinical studies using animal skin and human facial skin demonstrated that topical treatment with a specific inhibitor or an inhibitory extract of skin fibroblast-derived elastase distinctly attenuates UVB and sunlight-induced formation of wrinkling. Our results strongly indicated that the upregulated activity of skin fibroblast-derived elastase plays a pivotal role in wrinkling and/or sagging of the skin via the impairment of elastic fiber configuration and the subsequent loss of skin elasticity. PMID:25856675

  9. Radiation-induced gene responses

    Woloschak, G.E.; Paunesku, T.; Shearin-Jones, P.; Oryhon, J.

    1996-01-01

    In the process of identifying genes that are differentially regulated in cells exposed to ultraviolet radiation (UV), we identified a transcript that was repressed following the exposure of cells to a combination of UV and salicylate, a known inhibitor of NF-kappaB. Sequencing this band determined that it has identify to lactate dehydrogenase, and Northern blots confirmed the initial expression pattern. Analysis of the sequence of the LDH 5' region established the presence of NF-kappaB, Sp1, and two Ap-2 elements; two partial AP- 1; one partial RE, and two halves of E-UV elements were also found. Electromobility shift assays were then performed for the AP-1, NF- kappaB, and E-UV elements. These experiments revealed that binding to NF-kappaB was induced by UV but repressed with salicylic acid; UV did not affect AP-1 binding, but salicylic acid inhibited it alone or following UV exposure; and E-UV binding was repressed by UV, and salicylic acid had little effect. Since the binding of no single element correlated with the expression pattern of LDH, it is likely that multiple elements govern UV/salicylate-mediated expression

  10. Differential retinoic acid inhibition of ornithine decarboxylase induction by 12-O-tetradecanoylphorbol-13-acetate and by germicidal ultraviolet light

    Lichti, U.; Patterson, E.; Hennings, H.; Yuspa, S.H.

    1981-01-01

    Several retinoids including retinoic acid effectively inhibit phorbol ester-mediated tumor promotion and ornithine decarboxylase (ODC) induction in mouse epidermis. To understand better the possible cellular site of action of retinoids, the inhibitory action of retinoic acid on the induction of ODC was compared for two distinctly different inducers, namely, 12-O-tetradecanoylphorbol-13-acetate (TPA) and germicidal ultraviolet light (uv), in primary mouse epidermal cell cultures. It was found that the induction of ODC by TPA is almost completely prevented by retinoic acid while the induction by uv is only moderately inhibited. The differential inhibition of enzyme induction cannot be accounted for by selective retinoid inhibition of DNA, RNA, or protein synthesis either alone or in concert with TPA or uv. These agents possibly act at transcription or translation, both of which are required for ODC induction by TPA or uv

  11. Radiation induced crosslinking of polytetrafluoroethylene

    Oshima, Akihiro; Tabata, Yoneho; Ikeda, Shigetoshi; Otsuhata, Kazushige; Kudoh, Hisaaki; Seguchi, Tadao.

    1995-01-01

    The Irradiation temperature effect on polytetrafluoroethylene (PTFE) from room temperature to 380degC was investigated by tensile test and thermal analysis. The behavior of tensile properties and changes of crystallinity on irradiation indicated the formation of a network structure in PTFE by radiation induced crosslinking in inert gas in the molten state just above the melting temperature of PTFE (327degC). The crosslinked PTFE showed a much improved radiation resistance in an atmospheric radiation field. (author)

  12. Radiation-induced chromosomal instability

    Ritter, S.

    1999-01-01

    Recent studies on radiation-induced chromosomal instability in the progeny of exposed mammalian cells were briefly described as well as other related studies. For the analysis of chromosomal damage in clones, cells were seeded directly after exposure in cell well-dish to form single cell clones and post-irradiation chromosome aberrations were scored. Both exposure to isoeffective doses of X-ray or 270 MeV/u C-ions (13 keV/μm) increased the number of clones with abnormal karyotype and the increase was similar for X-ray and for C-ions. Meanwhile, in the progeny of cells for mass cultures, there was no indication of a delayed expression of chromosomal damage up to 40 population doublings after the exposure. A high number of aberrant cells were only observed directly after exposure to 10.7 MeV/u O-ions, i.e. in the first cycle cells and decreased with subsequent cell divisions. The reason for these differences in the radiation-induced chromosomal instability between clonal isolates and mass culture has not been clarified. Recent studies indicated that genomic instability occurs at a high frequency in the progeny of cells irradiated with both sparsely and densely ionizing radiation. Such genomic instability is thought likely to increase the risk of carcinogenesis, but more data are required for a well understanding of the health risks resulting from radiation-induced delayed instability. (M.N.)

  13. Radiation-induced heart injury

    Suzuki, Yoshihiko; Niibe, Hideo

    1975-01-01

    In order to identify radiation-induced heart injury and to differentiate it from heart disease, an attempt was made to clarify post-irradiation heart injury by investigating the histological changes which occur during the internal between the irradiation and the time of demonstrable histological changes. A study was made of 83 autopsies in which most of the primary neoplasms were breast cancers, lung cancers and mediastinal tumors. In 43 of these autopsies the heart had been irradiated. Sixty eight dd-strain mice were also used for microautoradiographic study. Histological changes in the heart were observed in 27 of the 43 cases receiving irradiation. The limit of the tolerance dose to the heart for indicating histological changes was 1220 ret in humans. The latent period without histological changes was 2.7 months after initiation of radiation therapy. Greater heart injury was observed after re-irradiation or after the combined therapy of radiation and chemotherapy especially mitomycin (MMC). The histological findings after treatment with MMC were similar to those of radiation-induced heart injury. Results of the study indicate that the damage is secondary to radiation-induced changes of the vascula connective tissue. (Evans, G.)

  14. Comparison of radiation-induced and thermal oxidative aging of polyethylene in the presence of inhibitors

    Dalinkevich, A.A.; Piskarev, I.M.

    1996-01-01

    Thermal oxidative and radiation-induced oxidative aging of inhibited polyethylene of commercial brands with known properties was studied at 60, 80 and 140 deg C. Radiation-induced oxidative aging was carried out under X-ray radiation with E max = 25 keV at dose rates providing specimen oxidation in kinetic conditions. The value of activation energy of thermal oxidative destruction of inhibited polyethylene under natural conditions of its employment at 60-140 deg C (E a = 60 kJ/mol) was obtained by comparison of data for radiation-induced and thermal oxidative destruction

  15. Ultraviolet light inhibition of phytochrome-induced flavonoid biosynthesis and DNA photolyase formation in mustard cotyledons (Sinapis alba L.)

    Buchholz, G.; Ehmann, B.; Wellmann, E.

    1995-01-01

    In cotyledons of etiolated mustard (Sinapis alba L.) seedlings, phytochrome-far-red-absorbing form-induced flavonoid biosynthesis was found to be inhibited by short-term ultraviolet (UV) irradiations. UV inhibition was shown for the synthesis of quercetin, anthocyanin, and also for the accumulation of the mRNA for chalcone synthase, the key enzyme of this pathway. The UV effect was more pronounced on flavonoid biosynthesis, a process that selectively occurs in the epidermal layers, than on the synthesis of mRNA for chlorophyll a/b-binding protein localized in the mesophyll tissue. These UV inhibitory effects were accompanied by cyclobutane pyrimidine dimer (CPD) formation showing a linear fluence-response relationship. CPD formation and UV inhibition of flavonoid biosynthesis was found to be partially reversible by blue/UV-A light via DNA photolyase (PRE), allowing photoreactivation of the DNA by splitting of CPDs, which are the cause of the UV effect. Like flavonoid formation PRE was also induced by the far-red-absorbing form of phytochrome and induction was inhibited by UV. A potential risk of inhibition, in response to solar UV-B irradiation, was shown for anthocyanin formation. This inhibition, however, occurred only if photoreactivation was experimentally reduced. The PRE activity present in the etiolated seedlings (further increasing about 5-fold during light acclimatization) appears to be sufficient to prevent the persistence of CPDs even under conditions of high solar irradiation

  16. DNA damage and photosynthetic inhibition induced by solar ultraviolet radiation in tropical phytoplankton (Lake Titicaca, Bolivia)

    Helbling, EW; Villafane, VE; Buma, AGJ; Andrade, M; Zaratti, F

    Experiments were conducted during October 1998 in Lake Titicaca, Bolivia (16 degrees S, 68 degrees W, 3810 m a.s.l), to determine the effects of solar ultraviolet radiation (UVR) on phytoplankton photosynthetic rates and DNA damage. Water samples were taken daily and incubated ir? situ or in

  17. Ubiquitin-dependent system controls radiation induced apoptosis

    Delic, J.; Magdelenat, H.; Glaisner, S.; Magdelenat, H.; Maciorowski, Z.

    1997-01-01

    The selective proteolytic pathway, dependent upon 'N-end rule' protein recognition/ubiquitination and on the subsequent proteasome dependent processing of ubiquitin conjugates, operates in apoptosis induced by γ-irradiation. The proteasome inhibitor peptide aldehyde, MG132, efficiently induced apoptosis and was also able (at doses lower than those required for apoptosis induction) to potentiate apoptosis induced by DNA damage. Its specificity is suggested by the induction of the ubiquitin (UbB and UbC) and E1 (ubiquitin activating enzyme) genes and by an altered ubiquitination pattern. More selectively, a di-peptide competitor of the 'N-end rule' of ubiquitin dependent protein processing inhibited radiation induced apoptosis. This inhibition is also followed by an altered ubiquitination pattern and by activation of Poly (ADP-ribose) polymerase (PARP). These data strongly suggest that early apoptosis radiation induced events are controlled by ubiquitin-dependent proteolytic processing. (author)

  18. Inhibition of X-ray-induced protection of Escherichia coli K-12 cells against the lethal effects of ultra-violet light by nitrofurantoin

    Martignoni, K D [Muenchen Univ. (Germany, F.R.). Strahlenbiologisches Inst.

    1978-06-01

    Wild-type cells of E.coli K-12 showed increasing U.V. resistance if they were X-irradiated and incubated at 37/sup 0/C in growth medium before the U.V. exposure. Development of higher U.V. resistance could be inhibited by incubating the X-irradiated cells either at temperatures below 15/sup 0/C, or in the presence of 0.01 M KCN. Nitrofurantoin (NF), which was recently found specifically to inhibit inducible enzyme synthesis, had only a transient inhibitory effect on X-ray-induced U.V. resistance. Cells grown in glucose medium showed less inhibition by NF of X-radiation-induced resistance to U.V.-radiation than did cells grown in glycerol, or in glucose medium with added cyclic AMP. It is suggested that X-ray-induced U.V. resistance requires active cellular metabolism, but it is not subject to catabolite repression. The following hypothesis is offered to explain the action of NF : Under de-repressed conditions (without catabolite repression by glucose) nitrofurantoin could counteract the radiation-induced inhibition of a repair inhibitor (such as post-irradiation DNA degradation).

  19. Radiation-induced trioxane postpolymerization in the liquid phase

    Kapustina, I.B.; Starchenko, T.V.

    1979-01-01

    Radiation-induced trioxane postpolymerization in the presence of maleic anhydride and different solvents in the liquid phase has been studied. It has been found that addition of small quantities of different solvents inhibits the trioxane polymerization process both in the presence of maleic anhydride and in the absence of it. Trioxane postpolymerization in a solvent-nonsolvent mixture gives fibrous polyoxymethylene with high molecular mass and high yield

  20. Radiation-induced thermoacoustic imaging

    Bowen, T.

    1984-01-01

    This invention provides a new technique for obtaining information non-invasively on the composition and structures of a material or body by detecting radiation-induced thermoacoustic image features. This is accomplished by utilizing the acoustic wave generated by sudden thermal stress. The sudden thermal stress is induced by a pulse of radiation which deposits energy causing a rapid, but very small, rise of temperature (typically, ΔT approximately 10sup(-6) - 10sup(-5) deg C). The radiation may be ionizing radiation, such as high energy electrons, photons (x-rays), neutrons, or other charged particles or it may be non-ionizing radiation, such as R.F. and microwave electromagnetic radiation and ultrasonic radiation. The choice of radiation depends on the nature of the body to be imaged and the type of information desired

  1. Ultraviolet Radiation Induced Apoptosis in Human Skin In Vivo

    Sheehan, J.M.; Young, A.R

    2000-07-01

    Sunburn cells, having many characteristics of apoptotic cells, appear in human skin after exposure to UVB. Time-courses and dose responses for solar simulated radiation (SSR)-induced sunburn cells in human volunteers of skin type II have been determined. For the time-course, two groups of volunteers were exposed to two minimal erythema doses (MED) of SSR. Punch biopsies were obtained from Group 1 immediately, 3, 6, 12, 18 and 24 h after SSR exposure and Group 2 were biopsied immediately, 18, 24, 36, 48 and 72 h after exposure. For the dose-response (Group 3), biopsies were taken 24 h after SSR exposure to 0, 0.25, 0.5, 1, 2 and 3 MED. Sections were stained with H and E and also using TUNEL and analysed by light microscopy. Results show a dose-dependent appearance of SBC after SSR exposure. The time point for maximum SBC counts with both H and E staining and TUNEL staining lie between 24 and 36 h. (author)

  2. Ultraviolet Radiation Induced Apoptosis in Human Skin In Vivo

    Sheehan, J.M.; Young, A.R.

    2000-01-01

    Sunburn cells, having many characteristics of apoptotic cells, appear in human skin after exposure to UVB. Time-courses and dose responses for solar simulated radiation (SSR)-induced sunburn cells in human volunteers of skin type II have been determined. For the time-course, two groups of volunteers were exposed to two minimal erythema doses (MED) of SSR. Punch biopsies were obtained from Group 1 immediately, 3, 6, 12, 18 and 24 h after SSR exposure and Group 2 were biopsied immediately, 18, 24, 36, 48 and 72 h after exposure. For the dose-response (Group 3), biopsies were taken 24 h after SSR exposure to 0, 0.25, 0.5, 1, 2 and 3 MED. Sections were stained with H and E and also using TUNEL and analysed by light microscopy. Results show a dose-dependent appearance of SBC after SSR exposure. The time point for maximum SBC counts with both H and E staining and TUNEL staining lie between 24 and 36 h. (author)

  3. Solar ultraviolet radiation induced variations in the stratosphere and mesosphere

    Hood, L. L.

    1987-01-01

    The detectability and interpretation of short-term solar UV induced responses of middle atmospheric ozone, temperature, and dynamics are reviewed. The detectability of solar UV induced perturbations in the middle atmosphere is studied in terms of seasonal and endogenic dynamical variations. The interpretation of low-latitude ozone and possible temperature responses on the solar rotation time scale is examined. The use of these data to constrain or test photochemical model predictions is discussed.

  4. Effect of bFGF on radiation-induced apoptosis of vascular endothelial cells

    Gu Qingyang; Wang Dewen; Li Yuejuan; Peng Ruiyun; Dong Bo; Wang Zhaohai; Liu Jie; Deng Hua; Jiang Tao

    2003-01-01

    Objective: To study the effect of bFGF on radiation-induced apoptosis vascular endothelial cells. Methods: A cell line PAE (porcine aortic endothelial cells) and primary cultured HUVEC (human umbilical vein endothelial cells) were irradiated with 60 Co γ-rays to establish cell apoptosis models. Flow cytometry with annexin-V-FITC + PI labeling was used to evaluate cell apoptosis. Different amounts of bFGF were used to study their effects on radiation-induced endothelial cell apoptosis. Results and Conclusions: It is found that bFGF could inhibit radiation-induced endothelial cell apoptosis in a considerable degree

  5. DNA replication in ultraviolet light irradiated Chinese hamster cells: the nature of replicon inhibition and post-replication repair

    Doniger, J.

    1978-01-01

    DNA replication in ultraviolet light irradiated Chinese hamster cells was studied using techniques of DNA fiber autoradiography and alkaline sucrose sedimentation. Bidirectionally growing replicons were observed in the autoradiograms independent of the irradiation conditions. After a dose of 5 J/m 2 at 254 nm the rate of fork progression was the same as in unirradiated cells, while the rate of replication was reduced by 50%. After a dose of 10J/m 2 the rate of fork progression was reduced 40%, while the replication rate was only 25% of normal. Therefore, at low doses of ultraviolet light irradiation, the inhibition of DNA replication is due to reduction in the number of functioning replicons, while at higher doses the rate of fork progression is also slowed. Those replicons which no longer function after irradiation are blocked in fork movement rather than replicon initiation. After irradiation, pulse label was first incorporated into short nascent strands, the average size of which was approximately equal to the distance between pyrimidine dimers. Under conditions where post-replication repair occurs these short strands were eventually joined into larger pieces. Finally, the data show that slowing post-replication repair with caffeine does not slow fork movement. The results presented here support the post-replication repair model of 'gapped synthesis' and rule out a major role for 'replicative bypass'. (author)

  6. Comparison of gamma radiation - induced effects in two human prostate cancer cells

    Vucic, V.; Adzic, M.; Ruzdijic, S.; Radojcic, M.B. . E-mail address of corresponding author: vesnav@vin.bg.ac.yu; Vucic, V.)

    2005-01-01

    In this study, the effects of gamma radiation on two hormone refractory human prostate cancer cell lines, DU 145 and PC-3, were followed. It was shown that gamma radiation induced significant inhibition of cell proliferation and viability in dose dependent manner. Antiproliferative effects of radiation were similar in both cell lines, and more pronounced than cytotoxic effects. In addition to that, PC-3 cell line was more resistant to radiation -induced cytotoxicity. (author)

  7. Radiation induced sulfur dioxide removal

    Chmielewski, A.G.

    2000-01-01

    The biggest source of air pollution is the combustion of fossil fuels, were pollutants such as particulate, sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), and volatile organic compounds (VOC) are emitted. Among these pollutants, sulfur dioxide plays the main role in acidification of the environment. The mechanism of sulfur dioxide transformation in the environment is partly photochemical. This is not direct photooxidation, however, but oxidation through formed radicals. Heterogenic reactions play an important role in this transformation as well; therefore, observations from environmental chemistry can be used in air pollution control engineering. One of the most promising technologies for desulfurization of the flue gases (and simultaneous denitrification) is radiation technology with an electron accelerator application. Contrary to the nitrogen oxides (NO x ) removal processes, which is based on pure radiation induced reactions, sulfur dioxide removal depends on two pathways: a thermochemical reaction in the presence of ammonia/water vapor and a radiation set of radiochemical reactions. The mechanism of these reactions and the consequent technological parameters of the process are discussed in this paper. The industrial application of this radiation technology is being implemented in an industrial pilot plant operated by INCT at EPS Kaweczyn. A full-scale industrial plant is currently in operation in China, and two others are under development in Japan and Poland. (author)

  8. Partial inhibition of in vitro pollen germination by simulated solar ultraviolet-B radiation

    Flint, S.D.; Caldwell, M.M.

    1984-01-01

    Pollen from four temperate-latitude taxa were treated with UV radiation in a portion of the UV-B (280-320 nm) waveband during in vitro germination. Inhibition of germination was noted in this pollen compared to samples treated identically except for the exclusion of the UV-B portion of the spectrum. Levels similar to maximum solar UV-B found in temperate-latitude areas failed to inhibit pollen germination significantly, while levels similar to maximum solar UV-B found in equatorial alpine locations caused partial inhibition of germination in three of the four taxa examined

  9. Inhibition and recovery of the rate of DNA synthesis in V79 Chinese hamster cells following ultraviolet light irradiation

    Ventura, A.M.; Meneghini, R.

    1984-01-01

    Chinese hamster fibroblasts (V79 cell line) exhibit the phenomenon of recovery of DNA synthesis from the initial inhibition observed after ultraviolet light irradiation, in the absence of significant excision of pyrimidine dimers. In an attempt to determine whether the initial inhibition and subsequent recovery can be accounted for by parallel variations in the rate of movement of the replication fork, the cells were pulse-labeled with radioactive bromodeoxyuridine at different times following irradiation and their DNA centrifuged in neutral CsCl density gradients. When DNA synthesis inhibition was at a maximum, an accumulation of DNA, of density intermediate between hybrid and nonsubstituted DNA, was noticed in the density-distribution profiles. The density distribution of DNA along the gradient can provide an estimate of the rate of movement of the replication fork, and the results indicate that most of the variation in the overall rate of DNA synthesis can be accounted for by a parallel variation in the rate of fork movement. (Auth.)

  10. Effect of epicatechin against radiation-induced oral mucositis: in vitro and in vivo study.

    Yoo Seob Shin

    Full Text Available PURPOSE: Radiation-induced oral mucositis limits the delivery of high-dose radiation to head and neck cancer. This study investigated the effectiveness of epicatechin (EC, a component of green tea extracts, on radiation-induced oral mucositis in vitro and in vivo. EXPERIMENTAL DESIGN: The effect of EC on radiation-induced cytotoxicity was analyzed in the human keratinocyte line HaCaT. Radiation-induced apoptosis, change in mitochondrial membrane potential (MMP, reactive oxygen species (ROS generation and changes in the signaling pathway were investigated. In vivo therapeutic effects of EC for oral mucositis were explored in a rat model. Rats were monitored by daily inspections of the oral cavity, amount of oral intake, weight change and survival rate. For histopathologic evaluation, hematoxylin-eosin staining and TUNEL staining were performed. RESULTS: EC significantly inhibited radiation-induced apoptosis, change of MMP, and intracellular ROS generation in HaCaT cells. EC treatment markedly attenuated the expression of p-JNK, p-38, and cleaved caspase-3 after irradiation in the HaCaT cells. Rats with radiation-induced oral mucositis showed decreased oral intake, weight and survival rate, but oral administration of EC significantly restored all three parameters. Histopathologic changes were significantly decreased in the EC-treated irradiated rats. TUNEL staining of rat oral mucosa revealed that EC treatment significantly decreased radiation-induced apoptotic cells. CONCLUSIONS: This study suggests that EC significantly inhibited radiation-induced apoptosis in keratinocytes and rat oral mucosa and may be a safe and effective candidate treatment for the prevention of radiation-induced mucositis.

  11. Caffeine Markedly Enhanced Radiation-Induced Bystander Effects

    Jiang Erkang; Wu Lijun

    2009-01-01

    In this paper it is shown that incubation with 2 mM caffeine enhanced significantly the MN (micronucleus) formation in both the 1 cGy α-particle irradiated and non-irradiated bystander regions. Moreover, caffeine treatment made the non-irradiated bystander cells more sensitive to damage signals. Treated by c-PTIO(2-(4-carboxy-phenyl)- 4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide), a nitric oxide (NO) scavenger, the MN frequencies were effectively inhibited, showing that nitric oxide might be very important in mediating the enhanced damage. These results indicated that caffeine enhanced the low dose α-particle radiation-induced damage in irradiated and non-irradiated bystander regions, and therefore it is important to investigate the relationship between the radiosensitizer and radiation-induced bystander effects (RIBE). (ion beam bioengineering)

  12. Ionizing radiation induces stemness in cancer cells.

    Laura Ghisolfi

    Full Text Available The cancer stem cell (CSC model posits the presence of a small number of CSCs in the heterogeneous cancer cell population that are ultimately responsible for tumor initiation, as well as cancer recurrence and metastasis. CSCs have been isolated from a variety of human cancers and are able to generate a hierarchical and heterogeneous cancer cell population. CSCs are also resistant to conventional chemo- and radio-therapies. Here we report that ionizing radiation can induce stem cell-like properties in heterogeneous cancer cells. Exposure of non-stem cancer cells to ionizing radiation enhanced spherogenesis, and this was accompanied by upregulation of the pluripotency genes Sox2 and Oct3/4. Knockdown of Sox2 or Oct3/4 inhibited radiation-induced spherogenesis and increased cellular sensitivity to radiation. These data demonstrate that ionizing radiation can activate stemness pathways in heterogeneous cancer cells, resulting in the enrichment of a CSC subpopulation with higher resistance to radiotherapy.

  13. Pyruvate metabolism: A therapeutic opportunity in radiation-induced skin injury

    Yoo, Hyun; Kang, Jeong Wook [Department of Radiation Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Lee, Dong Won [Department of Plastic Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Oh, Sang Ho [Department of Dermatology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Lee, Yun-Sil [College of Pharmacy & Division of Life and Pharmaceutical Sciences, Ewah Womans University, Seoul 120-750 (Korea, Republic of); Lee, Eun-Jung [Department of Radiation Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Cho, Jaeho, E-mail: jjhmd@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of)

    2015-05-08

    Ionizing radiation is used to treat a range of cancers. Despite recent technological progress, radiation therapy can damage the skin at the administration site. The specific molecular mechanisms involved in this effect have not been fully characterized. In this study, the effects of pyruvate, on radiation-induced skin injury were investigated, including the role of the pyruvate dehydrogenase kinase 2 (PDK2) signaling pathway. Next generation sequencing (NGS) identified a wide range of gene expression differences between the control and irradiated mice, including reduced expression of PDK2. This was confirmed using Q-PCR. Cell culture studies demonstrated that PDK2 overexpression and a high cellular pyruvate concentration inhibited radiation-induced cytokine expression. Immunohistochemical studies demonstrated radiation-induced skin thickening and gene expression changes. Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness and inflammatory cytokine expression. These findings indicated that regulation of the pyruvate metabolic pathway could provide an effective approach to the control of radiation-induced skin damage. - Highlights: • The effects of radiation on skin thickness in mice. • Next generation sequencing revealed that radiation inhibited pyruvate dehydrogenase kinase 2 expression. • PDK2 inhibited irradiation-induced cytokine gene expression. • Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness.

  14. Radiation-induced instability of human genome

    Ryabchenko, N.N.; Demina, Eh.A.

    2014-01-01

    A brief review is dedicated to the phenomenon of radiation-induced genomic instability where the increased level of genomic changes in the offspring of irradiated cells is characteristic. Particular attention is paid to the problems of genomic instability induced by the low-dose radiation, role of the bystander effect in formation of radiation-induced instability, and its relationship with individual radiosensitivity. We believe that in accordance with the paradigm of modern radiobiology the increased human individual radiosensitivity can be formed due to the genome instability onset and is a significant risk factor for radiation-induced cancer

  15. Inhibition by hyperthermia of repair synthesis and chromatin reassembly of ultraviolet-induced damage to DNA

    Bodell, W.J.; Cleaver, J.E.; Roti Roti, J.L.

    1984-01-01

    The authors have investigated the effects of hyperthermia treatment on sequential steps of the repair of UV-induced DNA damage in HeLa cells. DNA repair synthesis was inhibited by 40% after 15 min of hyperthermia treatment at 45 0 C; greater inhibition of repair synthesis occurred with prolonged incubation at 45 0 C. Enzymatic digestion of repair-labeled DNA with Exonuclease III indicated that once DNA repair was initiated, the DNA repair patch was synthesized to completion and that ligation of the DNA repair patch occurred. Thus, the observed inhibition of UV-induced DNA repair synthesis by hyperthermia treatment may be the result of inhibition of enzymes involved in the initiating steps(s) of DNA repair. DNA repair patches synthesized in UV-irradiated cells labeled at 37 0 C with[ 3 H]Thd were 2.2-fold more sensitive to micrococcal nuclease digestion than was parental DNA; if the length of the labeling period was prolonged, the nuclease sensitivity of the repair patch synthesized approached that of the parental DNA. DNA repair patches synthesized at 45 0 C, however, remained sensitive to micrococcal nuclease digestion even after long labeling periods, indicating that heat treatment inhibits the reassembly of the DNA repair patch into nucleosomal structures. 23 references, 3 figures, 2 tables

  16. Inhibition and recovery of DNA synthesis in human cells after exposure to ultraviolet light

    Painter, R.B.

    1985-01-01

    The inhibition of DNA synthesis in normal human cells by UV is a complex function of fluence because it has several causes. At low fluences, inhibition of replicon initiation is most important. This is made clear by the fact that it occurs to a lesser degree in cells from patients with ataxia telangiectasia (AT). Assuming that only leading strand synthesis is blocked by UV-induced lesions, single lesions between replicons in parental strands for leading strand synthesis inhibit DNA synthesis by acting as temporary blocks until they are replicated by extension of the lagging strand of the adjacent replicon. A more severe inhibition occurs when two lesions are induced between adjacent growing replicons, because one in four possible configurations may result in a long-lived unreplicated region (LLUR). In the absence of excision repair, these may eventually be replicated by activation of an otherwise unused origin within the LLUR. The frequency of LLURs increases steeply with fluence. Activation of normally unused origins to replicate LLURs may facilitate recovery from inhibition of DNA synthesis, but repair of lesions is probably more important. In excision-repair-defective cells, an LLUR without an origin to initiate its replication may be a lethal lesion. (orig.)

  17. Better flocculants by radiation induced polymerization

    Laizier, J.; Gaussens, G.

    1978-01-01

    The use of radiation induced polymerization should theoritically allow to prepare better flocculants. The testings of several products prepared by such a process shows that better properties are indeed obtained: better efficiencies, lower amounts needed, better overall properties [fr

  18. Inhibition of ultraviolet irradiation response of human skin by topical phlogostatic compounds

    Weirich, E.G.; Lutz, U.C.

    1977-01-01

    By adaption of the model of UV dermatitis in human skin a test procedure has been developed which facilitates realistic assessment of topical contra-inflammatory activity of steroidal as well as non-steroidal compounds. Sixt typical skin drug agents were tested according to their reaction inhibition effect. (orig./MG) [de

  19. Radiation-induced O-glycoside bond scission in carbohydrates

    Kisel', R.M.

    2005-01-01

    Regularities in formation of products resulting from O-glycoside bond cleavage on radiolysis of aqueous solutions of (-methyl-D-glucopyranoside (I), 3-O-methylglucopyranose (II), maltose and lactose were studied. Oxygen and quinones were shown to inhibit radiation-induced homolytic destruction processes taking place in glycosides. The data obtained in this study enabled the authors to demonstrate an important role played by fragmentation reaction of C-2 radicals generated from the starting substances in formation of final radiolysis products. (authors)

  20. Inhibition of human peripheral blood lymphocyte function by protoporphyrin and longwave ultraviolet light

    Barrett, K.E.; Yen, A.; Montisano, D.; Gigli, I.; Bigby, T.D.

    1994-01-01

    Modulation of immunologic effector cells by exogenous photoactive substances has been advanced as an underlying mechanism for the efficacy of various photochemotherapeutic regimens. It is also possible that endogenous photosensitizers, such as protoporphyrin, could similarly modify the function of immune cell types. The authors examined the effects of protoporphyrin plus longwave UV light on the ability of human PBL to proliferate in response to mitogens. Noncytotoxic dosages of protoporphyrin plus UV light suppressed PHA-stimulated proliferation of both PBMC and enriched T cells. CD8 + cells were more sensitive to this inhibitory effect than CD4 + cells. The inhibitory effect was also observed when proliferation was induced by the combination of a phorbol ester and ionomycin. Inhibition of PBMC proliferation was associated with inhibition of IL-2 secretion but proliferation was not restored with exogenous IL-2. Instead, the effect of protoporphyrin plus UV light may be on IL-2R. Cells treated with protoporphyrin and UV light did not display the increase in CD25 and β-chain of the IL-2R induced by PHA in control cells. In contrast to the effects of protoporphyrin and UV light on IL-2 and IL-2R α-chain protein expression, the accumulation of mRNA for these proteins induced by PHA was unaffected. None of the effects of protoporphyrin plus UV light on lymphocytes were observed in control experiments where cells were treated with either protoporphyrin or UV light alone. They conclude that biologically relevant dosages of protoporphyrin and UV light modify the function of circulating lymphocytes. 26 refs., 8 figs., 1 tab

  1. 3 cases of radiation-induced sarcoma

    Shiba, Keiichiro; Fukuma, Hisatoshi; Beppu, Yasuo; Hirota, Teruyuki; Shinohara, Norio.

    1982-01-01

    Criteria for the diagnosis of radiation-induced sarcoma have been previously described. All cases must have a history of irradiation and the second neoplasm must have arisen in the area of the radiation field. A latent period of several years must have elapsed after irradiation before clinical evidence of a second malignant neoplasm. Most important thing is that, all suspected cases must have been proved histologically. We have experienced 3 cases of radiation-induced sarcoma, they were 42-years-old man who developed an osteosarcoma of the lumbar spine at the field of postoperative irradiation for seminoma 7 years previously, 69-years-old woman who developed a malignant fibrous histiocytoma of the buttock at the field of radical radiation for uterine carcinoma 7 years previously and 59-years-old woman who developed an extraskeletal osteosarcoma of the abdominal wall at the field of postoperative irradiation for uterine sarcoma 7 years previously. The last case is very rare and only 8 cases of radiation-induced extraskeletal osteosarcoma have been reported. Since there has been a definite trend in the treatment of cancer toward employing radiation for more favorable cases, in addition to technical improvements in the administration of radiotherapy and more modern equipment, survival data may have been altered considerably in many malignant tumors. Accordingly, more radiation-induced tumors may be encountered in the future. The clinical presentation and histopathology of these radiation-induced sarcomas are presented with a review of the literature. (author)

  2. Arctigenin protects against ultraviolet-A-induced damage to stemness through inhibition of the NF-κB/MAPK pathway.

    Park, See-Hyoung; Cho, Jae Youl; Oh, Sae Woong; Kang, Mingyeong; Lee, Seung Eun; Yoo, Ju Ah; Jung, Kwangseon; Lee, Jienny; Lee, Sang Yeol; Lee, Jongsung

    2018-02-25

    The stemness of stem cells is negatively affected by ultraviolet A (UVA) irradiation. This study was performed to examine the effects of arctigenin on UVA-irradiation-induced damage to the stemness of human mesenchymal stem cells (hMSCs) derived from adipose tissue. The mechanisms of action of arctigenin were also investigated. A BrdU-incorporation assay demonstrated that arctigenin attenuated the UVA-induced reduction of the cellular proliferative potential. Arctigenin also increased the UVA-induced reduction in stemness of hMSCs by upregulating stemness-related genes such as SOX2, OCT4, and NANOG. In addition, the UVA-induced reduction in the mRNA expression level of hypoxia-inducible factor (HIF)-1α was significantly recovered by arctigenin. The antagonizing effect of arctigenin on UVA irradiation was mediated by reduced PGE 2 production through the inhibition of MAPKs (p42/44 MAPK, p38 MAPK, and JNK) and NF-κB. Overall, these findings suggest that arctigenin can ameliorate the reduced stemness of hMSCs induced by UVA irradiation. The effects of arctigenin are mediated by PGE 2 -cAMP signaling-dependent upregulation of HIF-1α. Therefore, arctigenin could be used as an antagonist to attenuate the effects of UVA irradiation. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Specific inhibition of Wee1 kinase and Rad51 recombinase: A strategy to enhance the sensitivity of leukemic T-cells to ionizing radiation-induced DNA double-strand breaks

    Havelek, Radim; Cmielova, Jana; Kralovec, Karel; Bruckova, Lenka; Bilkova, Zuzana; Fousova, Ivana; Sinkorova, Zuzana; Vavrova, Jirina; Rezacova, Martina

    2014-01-01

    Highlights: • Pre-treatment with the inhibitors increased the sensitivity of Jurkat cells to irradiation. • Combining both inhibitors together resulted in a G2 cell cycle arrest abrogation in Jurkat. • Jurkat cells pre-treated with inhibitors were positive for γH2AX foci 24 h upon irradiation. • Pre-treatment with Rad51 RI-1 had no effect on apoptosis induction in MOLT-4 cells. • When dosed together, the combination decreased MOLT-4 cell survival. - Abstract: Present-day oncology sees at least two-thirds of cancer patients receiving radiation therapy as a part of their anticancer treatment. The objectives of the current study were to investigate the effects of the small molecule inhibitors of Wee1 kinase II (681641) and Rad51 (RI-1) on cell cycle progression, DNA double-strand breaks repair and apoptosis following ionizing radiation exposure in human leukemic T-cells Jurkat and MOLT-4. Pre-treatment with the Wee1 681641 or Rad51 RI-1 inhibitor alone increased the sensitivity of Jurkat cells to irradiation, however combining both inhibitors together resulted in a further enhancement of apoptosis. Jurkat cells pre-treated with inhibitors were positive for γH2AX foci 24 h upon irradiation. MOLT-4 cells were less affected by inhibitors application prior to ionizing radiation exposure. Pre-treatment with Rad51 RI-1 had no effect on apoptosis induction; however Wee1 681641 increased ionizing radiation-induced cell death in MOLT-4 cells

  4. Radiation-induced centers in inorganic glasses

    Brekhovskikh, S.M.; Tyul'nin, V.A.

    1988-01-01

    The nature, structure and formation mechanisms of radiation-induced colour centers, EPR, luminescence, generated ionizing radiation in nonorganic oxide glasses are considered. Experimental material covering both fundamental aspects of radiation physics and glass chemistry, and aspects intimately connected with the creation of new materials with the given radiation-spectral characteristics, with possibilities to prepare radiation-stable and radiation-sensitive glasses is systematized and generalized. Considerable attention is paid to the detection of radiation-induced center binding with composition, glass structures redox conditions for their synthesis. Some new possibilities of practical application of glasses with radiation-induced centers, in particular, to record optical information are reflected in the paper

  5. Radiation-induced brain injury: A review

    Michael eRobbins

    2012-07-01

    Full Text Available Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (> 6 months to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses > 30 Gy; white matter necrosis occurs at fractionated doses > 60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain

  6. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    Meng, Zhen [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn [Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China)

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.

  7. Radiation-induced linking reactions in polyethylene

    Zoepfl, F.J.

    1983-01-01

    Three types of measurements are reported relating to chemical reactions in polyethylene induced by ionizing radiation: 1) viscometric and low-angle laser light scattering measurements to determine the effect of a radical scavenger on the yield of links; 2) calorimetric measurements to determine the effect of radiation-induced linking on the melting behavior of polyethylene; and 3) high-resolution solution carbon 13 nuclear magnetic resonance (NMR) spectrometry measurements to determine the nature of the links and the method of their formation. The NMR results present the first direct detection of radiation-induced long-chain branching (Y links) in polyethylene, and place an apparent upper limit on the yield of H-shaped crosslinks that are formed when polyethylene is irradiated to low absorbed doses. The effect of radiation-induced linking on the melting behavior of polyethylene was examined using differential scanning calorimetry (DSC). It was found that radiation-induced links do not change the heat of fusion of polythylene crystals, but decrease the melt entropy and increase the fold surface free energy per unit area of the crystals. The carbon 13 NMR results demonstrate that long-chain branches (Y links) are formed much more frequently than H-shaped crosslinks at low absorbed doses. The Y links are produced by reactions of alkyl free radicals with terminal vinyl groups in polyethylene

  8. Mechanisms of transient radiation-induced creep

    Pyatiletov, Yu.S.

    1981-01-01

    Radiation-induced creep at the transient stage is investigated for metals. The situation, when several possible creep mechanisms operate simultaneously is studied. Among them revealed are those which give the main contribution and determine thereby the creep behaviour. The time dependence of creep rate and its relation to the smelling rate is obtained. The results satisfactorily agree with the available experimental data [ru

  9. Reducing radiation induced emesis in abdominal radiotherapy

    Griffin, K.

    1994-01-01

    In patients with seminoma testes, a comparison was made between radiation induced emesis suffered by patients receiving 'dogleg' radiotherapy with those suffered by patients who received para-aortic radiotherapy. The same comparisons were made between the effects suffered by those patients who received the anti-emetic, Ondansetron, and those suffered by patients who received conventional anti-emetics. (UK)

  10. Sequential activation of proteases in radiation induced apoptosis

    Watters, D.; Waterhouse, N.

    1997-01-01

    Full text: Significant advances have been made in recent years in unraveling the molecular mechanisms of apoptosis particularly in relation to Fas- and TNF-mediated cell death, however there are considerable gaps in our knowledge of the processes involved in apoptosis induced by ionizing radiation. We have used the degradation of specific proteolytic targets in a pair of isogenic Burkitt's Iymphoma cells lines (BL30A, sensitive and BL30K resistant) to study the sequence of events in the execution of radiation-induced apoptosis. Fodrin can be cleaved to fragments of 150 kDa and 120 kDa. In the case of Fas-mediated apoptosis both cleavages are inhibited by the caspase inhibitor zVAD-fmk at 10 μM, a concentration which inhibits all the hallmarks of apoptosis. However in radiation-induced apoptosis, inhibition of the clevage of fodrin to the 150 kDa fragment requires 100 μM zVAD-fink while apoptosis itself is inhibited at 10 μM. This suggests that different enzymes are responsible for the generation of the 150 kDa fragment in the two models of apoptosis. Fodrin has been reported to be cleaved by μ-calpain to a 150 kDa fragment however, the involvement of μ-calpain in apoptosis has not yet been established. In murine fodrin there is a caspase cleavage site within 1 kDa of the calpain cleavage site. In vitro studies using purified enzymes showed that only caspase-3 and μ-calpain could cleave fodrin in untreated cell extracts to the same sized fragments as seen during apoptosis in vivo. We provide evidence for the early activation of μ-calpain after ionizing radiation in the sensitive BL30A cell line, and show that the time course of μ-calpain activation parallels that of the appearance of the 150 kDa fragment. Caspase-3 is activated much later and is likely to be responsible for the generation of the 120 kDa fragment. μ-Calpain was not activated in the resistant cell line. Based on these results we propose a model for the proteolytic cascade in radiation-induced

  11. Radiation-induced brain injury: A review

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G. [Department of Radiation Oncology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Wheeler, Kenneth T. [Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Department of Radiology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Chan, Michael D., E-mail: mrobbins@wakehealth.edu [Department of Radiation Oncology, Wake Forest School of Medicine,, Winston-Salem, NC (United States); Brain Tumor Center of Excellence, Wake Forest School of Medicine,, Winston-Salem, NC (United States)

    2012-07-19

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  12. Radiation-induced brain injury: A review

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G.; Wheeler, Kenneth T.; Chan, Michael D.

    2012-01-01

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  13. Bile acids in radiation-induced diarrhea

    Arlow, F.L.; Dekovich, A.A.; Priest, R.J.; Beher, W.T.

    1987-01-01

    Radiation-induced bowel disease manifested by debilitating diarrhea is an unfortunate consequence of therapeutic irradiation for pelvic malignancies. Although the mechanism for this diarrhea is not well understood, many believe it is the result of damage to small bowel mucosa and subsequent bile acid malabsorption. Excess amounts of bile acids, especially the dihydroxy components, are known to induce water and electrolyte secretion and increase bowel motility. We have directly measured individual and total bile acids in the stool samples of 11 patients with radiation-induced diarrhea and have found bile acids elevated two to six times normal in eight of them. Our patients with diarrhea and increased bile acids in their stools had prompt improvement when given cholestyramine. They had fewer stools and returned to a more normal life-style

  14. Radiation-induced meningiomas in pediatric patients

    Moss, S.D.; Rockswold, G.L.; Chou, S.N.; Yock, D.; Berger, M.S.

    1988-01-01

    Radiation-induced meningiomas rarely have latency periods short enough from the time of irradiation to the clinical presentation of the tumor to present in the pediatric patient. Three cases of radiation-induced intracranial meningiomas in pediatric patients are presented. The first involved a meningioma of the right frontal region in a 10-year-old boy 6 years after the resection and irradiation of a 4th ventricular medulloblastoma. Review of our pediatric tumor cases produced a second case of a left temporal fossa meningioma presenting in a 15-year-old boy with a history of irradiation for retinoblastoma at age 3 years and a third case of a right frontoparietal meningioma in a 15-year-old girl after irradiation for acute lymphoblastic leukemia. Only three cases of meningiomas presenting in the pediatric age group after radiation therapy to the head were detected in our review of the literature

  15. Radiation-induced conductivity of polynaphthoyl benzimidazole

    Tiutnev, A P; Berlin, A M; Saenko, V S; Rusanov, A L; Korshak, V V

    1985-01-01

    The nonstationary radiation-induced conductivity of polynaphthoyl benzimidazole, synthesized by single-stage high-temperature catalytic polycondensation, is investigated experimentally. It is shown that the radiation-induced conductivity of this material is characterized by an anomalous (non-Gaussian) transfer of excess charge carriers. The activation energy of the delayed component (0.1 ms after pulse termination) is determined to be 0.12 eV; the volt-ampere characteristic of this component is nonlinear, with the coefficient of nonlinearity increasing with the intensity of the external electric field. Experimental results are interpreted on the basis of the phenomenological theory of jump conductivity proposed by Zviagin. 15 references.

  16. Ionizing radiation induced malignancies in man

    Dutrillaux, B.

    1997-01-01

    Using data on gene and chromosome alterations in human cancers, it is proposed that most radiation induced cancers are a consequence of recessive mutations of tumor suppressor genes. This explains the long delay between radiation exposure and the cancer onset. As a consequence, radiation induced cancers belong to groups of tumors where no specific translocations (forming or activating oncogenes) but multiple unbalanced chromosome rearrangements (deletions unmasking recessive mutations) exist. This explains why osteosarcomas, malignant fibrous histiocytoma, chondrosarcomas are frequently induced, but not liposarcoma, Ewing sarcomas and rhabdomyosarcomas, among others. A single exception confirms this rule: papillary thyroid cancer, frequently induced in exposed children, in which structural rearrangements frequently form a RET/PTC3 fusion gene. This fusion gene is the results of the inversion of a short segment of chromosome 10, and it is assumed that such rearrangement (small para-centric inversion) can easily occur after exposure to radiations, at contrast with translocations between to genes belonging to different chromosomes. (author)

  17. Radiation-induced degradation of pollutants

    Proksch, E.

    1988-01-01

    This article outlines the fundamentals of radiation-induced degradation of noxious substances in drinking water and waste water and discusses the relevant literature. Radiation methods present a number of advantages and disadvantages, which should carefully be considered in each case. In many cases, there seems to be merit in combining the radiation method with other techniques, as e.g. ozone treatement and biodegradation. 30 refs., 3 figs. (Author)

  18. Hereditary Factors Involved in Radiation-Induced Leukaemogenesis

    Duplan, J.F.

    1969-01-01

    The hereditary factors involved in radiation-induced leukaemogenesis were studied in pure AKR and C57BL strains, their first-generation hybrids and their back-crosses. It is known that the heredity of spontaneous lymphoid leukaemias is attributable to hereditary factors, of which only some are chromosomal, and the same situation can be considered to exist as regards the heredity of radiation-induced leukoses. In order to identify the various chromosomal and non-chromosomal factors concerned, three types of experiment were conducted with the pure strains and with each of the crosses, intended to evaluate (a) the incidence of spontaneous lymphoid leukoses, (b) the incidence of radiation-induced leukoses and (c) the inhibition of radioleukaemo- genesis by the injection of isogenic haematopoietic cells. The results show that the main non-chromosomal factor is the leukaemogenic Gross virus (VG) in the case of the AKR strain and the radioleukaemia virus (VRL) in that of the C57BL strain; these two agents are transmitted by the mother to her progeny. The VG may be responsible for radioleukaemias as well as for spontaneous leukoses, but the VRL does not produce spontaneous leukaemias even in back-crosses possessing a substantial fraction of the AKR genome, which is particularly conducive to leukaemogenesis. Restoration using C57BL bone marrow brings about a distinct inhibition of leukaemogenesis in all animals deriving from crossings for which this material is histocompatible; AKR marrow, however, never exhibits any restorative activity. Three hypotheses may be put forward to explain these results. The first is that C57BL bone marrow contains many more precursor elements than AKR marrow, these cells being necessary for inhibition of the leukaemogenic process. The second hypothesis is that the AKR strain lacks a factor which is essential for the utilization of these precursors. Finally the third hypothesis, which seems the least probable, is that AKR cells are much more

  19. Radiation induced glioblastoma. A case report

    Kato, Naoki; Kayama, Takamasa; Sakurada, Kaori; Saino, Makoto; Kuroki, Akira [Yamagata Univ. (Japan). School of Medicine

    2000-05-01

    We report a surgical case of a 54-year-old woman with a radiation induced glioblastoma. At the age of 34, the patient was diagnosed to have a non-functioning pituitary adenoma. It was partially removed followed by 50 Gy focal irradiation with a 5 x 5 cm lateral opposed field. Twenty years later, she suffered from rapidly increasing symptoms such as aphasia and right hemiparesis. MRI showed a large mass lesion in the left temporal lobe as well as small mass lesions in the brain stem and the right medial temporal lobe. These lesions situated within the irradiated field. Magnetic resonance spectroscopy revealed relatively high lactate signal and decreased N-acetyl aspartate, choline, creatine and phosphocreatine signals. Increased lactate signal meant anaerobic metabolism that suggested the existence of a rapidly growing malignant tumor. Thus, we planned surgical removal of the left temporal lesion with the diagnosis of a radiation induced malignant glioma. The histological examination revealed a glioblastoma with radiation necrosis. MIB-1 staining index was 65%. Postoperatively, her symptoms improved, but she died from pneumonia 1 month after the surgery. A autopsy was obtained. The lesion of the left temporal lobe was found to have continuity to the lesion in the midbrain, the pons and the right temporal lobe as well. High MIB-1 staining index suggested that a radiation induced glioblastoma had high proliferative potential comparing with a de novo and secondary glioblastoma. (author)

  20. Radiation-induced cancers in man

    Hirose, Fumio

    1978-01-01

    Radiation-induced cancers in man were divided into three groups, a group in which cancers occurred after atomic bomb exposure, a group in which cancers occurred in radiologists and other medical specialists, and a group in which cancers occurred after exposure to diagnostic radiation, and they were summarized. In atomic bomb survivors leukemia, thyroid cancer, salivary gland cancer, lung cancer, and breast cancer occurred so frequently. In addition to them, mortality ratios by malignant lymphoma, stomach cancer, esophageal cancer, and by cancer of urinary tract were increased. The incidence of leukemia was decreased in those who treated radiation owing to the development of the protection of occupational exposure, and the incidence of radiation-induced cancers was decreased in patients owing to the improvement of therapy. However, a new problem has arisen as to the occurrence of cancers after medical exposure, such as various histological types of cancers after the treatment of skin diseases on the head, and breast cancer after the treatment of pneumothorax. Dose-to-effect relation, hereditary factors, effect of age, immunological influences and endocrine actions were also studied in each radiation-induced cancer. (Ichikawa, K.)

  1. Radiation-induced heart injury. Radiopathological study

    Suzuki, Y; Niibe, H [Gunma Univ., Maebashi (Japan). School of Medicine

    1975-11-01

    In order to identify radiation-induced heart injury and to differentiate it from heart disease, an attempt was made to clarify post-irradiation heart injury by investigating the histological changes which occur during the interval between the irradiation and the time of demonstrable histological changes. A study was made of 83 autopsies in which most of the primary neoplasms were breast cancers, lung cancers and mediastinal tumors. In 43 of these autopsies the heart had been irradiated. Sixty eight dd-strain mice were also used for microautoradiographic study. Histological changes in the heart were observed in 27 of the 43 cases receiving irradiation. The limit of the tolerance dose to the heart for indicating histological changes was 1220 ret in humans. The latent period without histological changes was 2.7 months after initiation of radiation therapy. Greater heart injury was observed after re-irradiation or after the combined therapy of radiation and chemotherapy especially mitomycin (MMC). The histological findings after treatment with MMC were similar to those of radiation-induced heart injury. Results of the study indicate that the damage is secondary to radiation-induced changes of the vascula connective tissue.

  2. Genetic alterations during radiation-induced carcinogenesis

    Kodama, Seiji

    1995-01-01

    This paper reviews radiation-induced genetic alterations and its carcinogenesis, focusing on the previous in vitro assay outcome. A colony formation assay using Syrian hamster fetal cells and focus formation assay using mouse C3H10T1/2 cells are currently available to find malignant transformation of cells. Such in vitro assays has proposed the hypothesis that radiation-induced carcinogenesis arises from at least two-stage processes; i.e., that an early step induced by irradiation plays an important role in promoting the potential to cause the subsequent mutation. A type of genetic instability induced by radiation results in a persistently elevated frequency of spontaneous mutations, so-called the phenomenon of delayed reproductive death. One possible mechanism by which genetic instability arises has been shown to be due to the development of abnormality in the gene group involved in the maintenance mechanism of genome stability. Another possibility has also been shown to stem from the loss of telomere (the extremities of a chromosome). The importance of search for radiation-induced genetic instability is emphasized in view of the elucidation of carcinogenesis. (N.K.)

  3. Radiation-induced cancers in man

    Hirose, F [Hiroshima Univ. (Japan). Research Inst. for Nuclear Medicine and Biology

    1978-07-01

    Radiation-induced cancers in man were divided into three groups, a group in which cancers occurred after atomic bomb exposure, a group in which cancers occurred in radiologists and other medical specialists, and a group in which cancers occurred after exposure to diagnostic radiation, and they were summarized. In atomic bomb survivors leukemia, thyroid cancer, salivary gland cancer, lung cancer, and breast cancer occurred so frequently. In addition to them, mortality ratios by malignant lymphoma, stomach cancer, esophageal cancer, and by cancer of urinary tract were increased. The incidence of leukemia was decreased in those who treated radiation owing to the development of the protection of occupational exposure, and the incidence of radiation-induced cancers was decreased in patients owing to the improvement of therapy. However, a new problem has arisen as to the occurrence of cancers after medical exposure, such as various histological types of cancers after the treatment of skin diseases on the head, and breast cancer after the treatment of pneumothorax. Dose-to-effect relation, hereditary factors, effect of age, immunological influences and endocrine actions were also studied in each radiation-induced cancer.

  4. Modulation of radiation-induced apoptosis and G{sub 2}/M block in murine T-lymphoma cells

    Palayoor, S.T.; Macklis, R.M.; Bump, E.A.; Coleman, C.N. [Harvard Medical School, Boston, MA (United States)

    1995-03-01

    Radiation-induced apoptosis in lymphocyte-derived cell lines is characterized by endonucleolytic cleavage of cellular DNA within hours after radiation exposure. We have studied this phenomenon qualitatively (DNA gel electrophoresis) and quantitatively (diphenylamine reagent assay) in murine EL4 T-lymphoma cells exposed to {sup 137}Cs {gamma} irradiation. Fragmentation was discernible within 18-24 h after exposure. It increased with time and dose and reached a plateau after 8 Gy of {gamma} radiation. We studied the effect of several pharmacological agents on the radiation-induced G{sub 2}/M block and DNA fragmentation. The agents which reduced the radiation-induced G{sub 2}/M-phase arrest (caffeine, theobromine, theophylline and 2-aminopurine) enhanced the degree of DNA fragmentation at 24 h. In contrast, the agents which sustained the radiation-induced G{sub 2}/M-phase arrest (TPA, DBcAMP, IBMX and 3-aminobenzamide) inhibited the DNA fragmentation at 24 h. These studies on EL4 lymphoma cells are consistent with the hypothesis that cells with radiation-induced genetic damage are eliminated by apoptosis subsequent to a G{sub 2}/M block. Furthermore, it may be possible to modulate the process of radiation-induced apoptosis in lymphoma cells with pharmacological agents that modify the radiation-induced G{sub 2}/M block, and to use this effect in the treatment of patients with malignant disease. 59 refs., 7 figs.

  5. Modulation of radiation-induced apoptosis and G2/M block in murine T-lymphoma cells

    Palayoor, S.T.; Macklis, R.M.; Bump, E.A.; Coleman, C.N.

    1995-01-01

    Radiation-induced apoptosis in lymphocyte-derived cell lines is characterized by endonucleolytic cleavage of cellular DNA within hours after radiation exposure. We have studied this phenomenon qualitatively (DNA gel electrophoresis) and quantitatively (diphenylamine reagent assay) in murine EL4 T-lymphoma cells exposed to 137 Cs γ irradiation. Fragmentation was discernible within 18-24 h after exposure. It increased with time and dose and reached a plateau after 8 Gy of γ radiation. We studied the effect of several pharmacological agents on the radiation-induced G 2 /M block and DNA fragmentation. The agents which reduced the radiation-induced G 2 /M-phase arrest (caffeine, theobromine, theophylline and 2-aminopurine) enhanced the degree of DNA fragmentation at 24 h. In contrast, the agents which sustained the radiation-induced G 2 /M-phase arrest (TPA, DBcAMP, IBMX and 3-aminobenzamide) inhibited the DNA fragmentation at 24 h. These studies on EL4 lymphoma cells are consistent with the hypothesis that cells with radiation-induced genetic damage are eliminated by apoptosis subsequent to a G 2 /M block. Furthermore, it may be possible to modulate the process of radiation-induced apoptosis in lymphoma cells with pharmacological agents that modify the radiation-induced G 2 /M block, and to use this effect in the treatment of patients with malignant disease. 59 refs., 7 figs

  6. The nature and principles of the radiation-induced cancerogenesis

    Lips'ka, A.YI.; Serkyiz, Ya.Yi.

    2004-01-01

    The paper represents the analysis of the authors and literary data concerning the nature and principles of the radiation-induced neoplasms. The mechanisms of the radiation-induced cancerogenesis development are not clear understood. The experimental data altogether do not allow developing the mathematical model of the radiation-induced cancerogenesis at the molecular level. This model has to take into account all necessary indices including radiation factor and the state of the organism. The general principles of the radiation-induced cancerogenesis have been formulated in the present review. It is possible to use these principles in order to predict and calculate the risks of the radiation-induced neoplasms

  7. Pharmacological inhibition of radiation induced in vitro tumor cell/endothelium cell interactions and in vivo metastasis processes; Pharmakologische Hemmung strahleninduzierter Tumorzell-Endothelzell-Interaktionen in vitro und Metastasierungsprozesse in vivo

    Herzog, Melanie

    2013-05-07

    Exposure of endothelial cells with ionizing radiation (IR) or treatment with inflammatory cytokines (e. g. TNFα) induces a Rho-GTPase and NF-κB dependent activation of the expression of various cell adhesion molecules, including E-selectin. E-selectin mediates the adhesion of tumor cells (TC) to endothelial cells and is probably involved in the extravasation step of circulating tumor cells. HMG-CoA reductase inhibitors (e. g. lovastatin) inhibit the function of Rho-GTPases and thus are anticipated to attenuate Rho-regulated cell-cell-adhesion as well. This study focuses on the influence of IR and TNFα on the expression of endothelial- and/or tumor cell-specific pro-adhesive factors and whether these effects are influenced by lovastatin. To this end, the effect of IR and TNFα on cell-cell-interactions between human colon carcinoma cells (HT29) and human umbilical vein endothelial cells (HUVEC) was investigated using an ELISA-based cell adhesion-assay. Moreover, the influence of pre-treatment with lovastatin and other types of inhibitors on HUVEC-HT29 adhesion was monitored. Additionally, we investigated the effect of lovastatin on mRNA expression level of different cell adhesion molecules, metastatic factors and DNA-repair genes upon radiation exposure by qRT-PCR. To scrutinize the in vivo relevance of the data obtained, we investigated the effect of total body irradiation (TBI) on the mRNA expression of pro-adhesive factors in BALB/c mice. To analyze tumor cell extravasation, tumor cells were injected into the lateral tail vein of immundeficient mice, followed by total body irradiation (TBI, 4 Gy). After four weeks a large increase of lung metastases was monitored, which could be blocked by preatreatment of the mice with lovastatin, the Rac1-specific small-molecule inhibitor NSC23766 as well as the sLe{sup x}-mimetic glycyrrhizin. Summarizing, we provide evidence, that irradiation promotes upregulation of different cell adhesion molecules in vitro and

  8. Proteome analysis of Radiation-induced pulmonary fibrosis

    Song, Jie Young; Lim, Hee Soon; Kim, Hyung Doo; Shim, Ji Young; Han, Young Soo; Son, Hyeog Jin Son; Yun, Yeon Sook

    2005-01-01

    Pulmonary fibrosis is perhaps the most universal late effect of organ damage after both chemical insult and irradiation in the treatment of lung cancer. The use chemotherapy and radiation therapy, alone or combined, can be associated with clinically significant pulmonary toxicity, which leads to pneumonia and pulmonary fibrosis. It is also reported that about 100,000 people in the United States are suffered from pulmonary fibrosis. Therefore, pulmonary fibrosis will be more focused by medicinal researchers. Because current therapies, aimed at inhibiting pulmonary inflammation that often precedes fibrosis, are effective only in a minority of suffered patients, novel therapeutic methods are highly needed. Some researchers have used bleomycininduced pulmonary fibrosis as a basis for looking at the molecular mechanisms of fibrosis, and total gene expression was monitored using genomics method. However, radiation-induced pulmonary fibrosis has not been fully focused and investigated. Here, we have analyzed changes in gene expression in response to γ- irradiation by using proteomic analysis

  9. Radiation-induced gene expression in human subcutaneous fibroblasts is predictive of radiation-induced fibrosis

    Rødningen, Olaug Kristin; Børresen-Dale, Anne-Lise; Alsner, Jan

    2008-01-01

    BACKGROUND AND PURPOSE: Breast cancer patients show a large variation in normal tissue reactions after ionizing radiation (IR) therapy. One of the most common long-term adverse effects of ionizing radiotherapy is radiation-induced fibrosis (RIF), and several attempts have been made over the last...... years to develop predictive assays for RIF. Our aim was to identify basal and radiation-induced transcriptional profiles in fibroblasts from breast cancer patients that might be related to the individual risk of RIF in these patients. MATERIALS AND METHODS: Fibroblast cell lines from 31 individuals......-treated fibroblasts. Transcriptional differences in basal and radiation-induced gene expression profiles were investigated using 15K cDNA microarrays, and results analyzed by both SAM and PAM. RESULTS: Sixty differentially expressed genes were identified by applying SAM on 10 patients with the highest risk of RIF...

  10. Effect of salidroside on radiation-induced bone marrow adipogenesis

    Zhu Jincan; Chen Xiaoyu; Liu Chengcheng; Zhu Aizhen; Liu Shantao; Liu Gexiu

    2014-01-01

    Objective: To investigate the potential and underlying molecular mechanism of salidroside in ameliorating radiation-induced bone marrow adipogenesis and stimulating hematopoiesis. Methods: The female BALB/c mice aged 6-7 weeks were randomly divided into normal control group, radiation group and salidroside group. The radiation group and salidroside group were irradiated with 6.0 Gy of "6"0Co γ-rays. The salidroside group was intraperitoneally injected with 30 mg·kg"-"1·d"-"1 salidroside at 12 h and then every day until 8th d after radiation. The normal control group and radiation group were treated with equal volume of saline as control of salidroside. At 14 d after radiation, the mice weight, peripheral blood count, femur bone marrow histology, and the proportion of adipocyte area were measured, and the expressions of PPAR-γ and FABP4 were detected by q-PCR. Results: After irradiation, the numbers of white blood cells, hemoglobin and platelet in peripheral blood were reduced obviously, and the percentage of adipocyte area was increased significantly. Compared with mice in the radiation group, salidroside inhibited adipogenesis and reduced the proportion of adipocyte area (t = 13.31, P < 0.05) by reducing the expressions of PPAR-γ and FABP4 (t = 8.64, 13.19, P < 0.05). The number of white blood cells was partly recovered at 7 d after irradiation (t = 5.80, P < 0.05). Both white blood cells and hemoglobinin in peripheral blood of the salidroside group were higher than those in the radiation group at 14 d after irradiation. Conclusions: Salidroside could inhibit radiation-induced bone marrow adipogenesis and regulate bone marrow microenvironment, thereby promotes hematopoietic recovery in mice after radiation injury. (authors)

  11. Plasma Rich in Growth Factors Inhibits Ultraviolet B Induced Photoageing of the Skin in Human Dermal Fibroblast Culture.

    Anitua, Eduardo; Pino, Ander; Orive, Gorka

    Ultraviolet irradiation is able to deeply penetrate into the dermis and alter fibroblast structure and function, leading to a degradation of the dermal extracellular matrix. The regenerative effect of plasma rich in growth factors (PRGF) on skin ageing was investigated using UVB photo-stressed human dermal fibroblasts as an in vitro culture model. PRGF was assessed over the main indicative features of ultraviolet B irradiation, including ROS formation, cell viability and death detection, apoptosis/ necrosis analysis and biosynthetic activity measurement. Four different UV irradiation protocols were tested in order to analyze the beneficial effects of PRGF. Ultraviolet irradiation exhibited a dose dependent cytotoxicity and dose of 400mJ/cm2 was selected for subsequent experiments. PRGF increased the cell viability and decreased the cell death comparing to the non-treated group. The apoptosis and necrosis were significantly lower in PRGF treated fibroblasts. ROS production after UV irradiation was significantly reduced in the presence of PRGF. Procollagen type I, hyaluronic acid and TIMP-1 levels were higher in the when treated with PRGF. This preliminary in vitro study suggests that PRGF is able to prevent UVB derived photooxidative stress and to diminish the cell damage caused by ultraviolet irradiation.

  12. Cleavage of ST6Gal I by Radiation-Induced BACE1 Inhibits Golgi-Anchored ST6Gal I-Mediated Sialylation of Integrin β1 and Migration in Colon Cancer Cells

    Lee, Minyoung; Park, Jung-Jin; Ko, Young-Gyu; Lee, Yun-Sil

    2012-01-01

    BACE 1 inhibited integrin β1 sialylation and migration by Golgi-anchored form of ST6Gal I. Our results suggest that soluble ST6Gal I, possibly in cooperation with the Golgi-bound form, may participate in cancer progression and metastasis prior to being secreted from cancer cells

  13. CopA3 Peptide Prevents Ultraviolet-Induced Inhibition of Type-I Procollagen and Induction of Matrix Metalloproteinase-1 in Human Skin Fibroblasts

    Dong-Hee Kim

    2014-05-01

    Full Text Available Ultraviolet (UV exposure is well-known to induce premature aging, which is mediated by matrix metalloproteinase-1 (MMP-1 activity. A 9-mer peptide, CopA3 (CopA3 was synthesized from a natural peptide, coprisin, which is isolated from the dung beetle Copris tripartitus. As part of our continuing search for novel bioactive natural products, CopA3 was investigated for its in vitro anti-skin photoaging activity. UV-induced inhibition of type-I procollagen and induction of MMP-1 were partially prevented in human skin fibroblasts by CopA3 peptide in a dose-dependent manner. At a concentration of 25 μM, CopA3 nearly completely inhibited MMP-1 expression. These results suggest that CopA3, an insect peptide, is a potential candidate for the prevention and treatment of skin aging.

  14. Radiation-induced cerebrovascular disease in children

    Wright, T.L.; Bresnan, M.J.

    1976-01-01

    Radiation-induced internal carotid artery occlusion has not been well recognized previously as a cause of childhood cerebrovascular disease. A child who had received radiation as a neonate for a hemangioma involving the left orbit at the age of 6 years experienced a recurrent right-sided paresis, vascular headaches, and speech difficulties. Angiography showed a hypoplastic left carotid artery with occlusion of both the anterior and middle cerebral arteries. Collateral vessels bypassed the occluded-stenotic segments. Review of the literature showed two additional cases of large vessel occlusion in childhood associated with anastomatic telangiectatic vessel development following early radiation therapy of facial hemangioma

  15. Radiation induced peroxidation in model lipid systems

    Dahlan, K.Z.B.H.M.

    1981-08-01

    In the studies of radiation induced lipid peroxidation, lecithin-liposomes and aqueous micellar solutions of sodium linoleate (or linoleic acid) have been used as models of lipid membrane systems. The liposomes and aqueous linoleate micelles were irradiated in the presence of O 2 and N 2 O/O 2 (80/20 v/v). The peroxidation was initiated using gamma radiation from 60 Co radiation source and was monitored by measuring the increase in absorbance of conjugated diene at 232 nm and by the thiobarbituric acid (TBA) test. The oxidation products were also identified by GLC and GLC-MS analysis. (author)

  16. Radiation-induced damage of membranes

    Yonei, Shuji

    1977-01-01

    An outline of membranous structure was stated, and radiation-induced damage of membranes were surveyed. By irradiation, permeability of membranes, especially passive transportation mechanism, was damaged, and glycoprotein in the surface layers of cells and the surface layer structures were changed. The intramembranous damage was induced by decrease of electrophoresis of nuclear mambranes and a quantitative change of cytochrome P450 of microsomal membranes of the liver, and peroxidation of membranous lipid and SH substitute damage of membranous protein were mentioned as the mechanism of membranous damage. Recovery of membranous damage depends on radiation dose and temperature, and membranous damage participates largely in proliferation death. (tsunoda, M.)

  17. Radiation-induced sensitisation of stainless steels

    Norris, D.I.R.

    1987-01-01

    The book contains the proceedings of a symposium on radiation-induced sensitization of stainless steels, which took place at Berkeley, United Kingdom, 1986. The purpose of the symposium was to examine the mechanism leading to inter-granular corrosion of 20%Cr/25% Ni/Nb stainless steel cladding of AGR fuel following irradiation. Nine papers are presented, of which three are theoretical, two papers are based upon corrosion studies of 20%Cr/25%Ni/Nb steel, and the remaining are concerned with compositional redistribution and its measurement. (U.K.)

  18. A report on radiation-induced gliomas

    Salvati, M.; Artico, M.; Caruso, R.; Rocchi, G.; Orlando, E.R.; Nucci, F.

    1991-01-01

    Radiation-induced gliomas are uncommon, with only 73 cases on record to date. The disease that most frequently occasioned radiation therapy has been acute lymphoblastic leukemia (ALL). Three more cases are added here, two after irradiation for ALL and one after irradiation for tinea capitis. In a review of the relevant literature, the authors stress the possibility that the ALL-glioma and the retinoblastoma-glioma links point to syndromes in their own right that may occur without radiation therapy.56 references

  19. Radiation-induced diploid spermatids in mice

    Hacker-Klom, U.; Heiden, Th.; Otto, F.J.; Goehde, W.; Mauro, F.

    1989-01-01

    Diploid elongated spermatids of mice were enriched by flow cytometry and cell sorting using a new type of sorter (Partec). The sorted abnormal spermatids were identified morphologically and by nuclear area integration. The radiation-induced increase in the frequency of diploid elongated spermatids was monitored with time following acute X-ray exposure of mice. Dose-response curves for acute 60 Co-gamma and 14 MeV neutron irradiations yielded an RBE value of 4.3 for the doubling of the control level. (author)

  20. Radiation induced liver disease: A clinical update

    Benson, R.; Madan, R.; Chander, S.; Kilambi, R.

    2016-01-01

    Radiation-induced liver disease (RILD) or radiation hepatitis is a sub-acute form of liver injury due to radiation. It is one of the most dreaded complications of radiation which prevents radiation dose escalation and re irradiation for hepatobiliary or upper gastrointestinal malignancies. This complication should be kept in mind whenever a patient is planned for irradiation of these malignancies. Although, incidence of RILD is decreasing due to better knowledge of liver tolerance, improved investigation modalities and modern radiation delivery techniques, treatment options are still limited. In this review article, we have focussed on pathophysiology, risk factors, prevention and management of RILD

  1. Radiation-induced diploid spermatids in mice

    Hacker-Klom, U; Heiden, Th; Otto, F J; Goehde, W; Mauro, F

    1989-05-01

    Diploid elongated spermatids of mice were enriched by flow cytometry and cell sorting using a new type of sorter (Partec). The sorted abnormal spermatids were identified morphologically and by nuclear area integration. The radiation-induced increase in the frequency of diploid elongated spermatids was monitored with time following acute X-ray exposure of mice. Dose-response curves for acute /sup 60/Co-gamma and 14 MeV neutron irradiations yielded an RBE value of 4.3 for the doubling of the control level. (author).

  2. Injection profiles with radiation induced copolymers

    Knight, B.L.; Rhudy, J.S.; Gogarty, W.B.

    1976-01-01

    The injectivity profile of a heterogeneous formation and/or vertical conformance is improved by injecting an aqueous solution into the formation, the solution containing a polymer obtained as a product of radiation-induced polymerization of acrylamide and/or methacrylamide and acrylic acid, methacrylic acid, and/or alkali metal salts thereof. The polymerization is preferably carried out in a 10 to 60 percent aqueous solution with gamma radiation; the aqueous monomer solution preferably contains 25 to 99 percent acrylamide and 1 to 75 percent sodium acrylate. Immiscible, miscible, or miscible-like displacing processes can be used in conjunction with this invention. 20 claims

  3. Resveratrol Protects Against Ultraviolet A-Mediated Inhibition of the Phagocytic Function of Human Retinal Pigment Epithelial Cells Via Large-Conductance Calcium-Activated Potassium Channels

    Shwu-Jiuan Sheu

    2009-07-01

    Full Text Available This study was undertaken to examine the protective effect of resveratrol on human retinal pigment epithelial (RPE cell phagocytosis against ultraviolet irradiation damage. Cultured RPE cells were exposed to ultraviolet A (UVA, 20 minutes irradiation, and treated with meclofenamic acid (30μM, 20 minutes, paxilline (100 μM, 20 minutes or resveratrol (10μM, 20 minutes. Meclofenamic acid and resveratrol were given after exposure to UVA. Pretreatment with meclofenamic acid, resveratrol or paxilline before UVA irradiation was also performed. Fluorescent latex beads were then fed for 4 hours and the phagocytotic function was assessed by flow cytometry. UVA irradiation inhibited the phagocytic function of human RPE cells. The large-conductance calcium-activated potassium channel activator meclofenamic acid ameliorated the damage caused by UVA irradiation. Pretreatment with resveratrol acid also provided protection against damage caused by UVA. Posttreatment with meclofenamic acid offered mild protection, whereas resveratrol did not. In conclusion, the red wine flavonoid resveratrol ameliorated UVA-mediated inhibition of human RPE phagocytosis. The underlying mechanism might involve the large-conductance calcium-activated potassium channels.

  4. Effects of an Amifostine analogue on radiation induced lung inflammation and fibrosis

    Arora, Aastha; Bhuria, Vikas; Soni, Ravi; Singh, Saurabh; Hazari, Puja Panwar; Bhatt, Anant Narayan; Dwarakanath, B.S.; Pathak, Uma; Mathur, Shweta; Sandhir, Rajat

    2014-01-01

    Radiation-induced pulmonary toxicity causes significant morbidity and mortality in patients irradiated for thoracic malignancies as well as in victims of accidental radiation exposure. We have recently established the efficacy of an analogue of Amifostine (DRDE-30) in reducing the mortality of whole body irradiated mice. The widely used radioprotector Amifostine has been found to reduce the incidence of radiation induced pneumonitis during radiation therapy for non small cell lung carcinoma. In the present study, we investigated the potential of DRDE-30 in ameliorating the radiation induced lung damage. Intra-peritoneal administration of DRDE-30 at 220 mg/kg b.wt 30 min. prior to 13.5 Gy thoracic radiation enhanced the 24-month survival of C57BL/6 mice to 80% compared to 0% with radiation alone. Reduced protein content and cell number in the broncheo-alveolar lavage fluid suggested reduction in radiation induced vascular permeability in DRDE-30 treated mice. Higher levels of MnSOD and Catalase observed under these conditions indicated that strengthening of the anti-oxidant defense system by DRDE-30 could also contribute to the protection against radiation induced lung damage. Reduced levels of p-p38 observed under these conditions suggested down-regulation of the p38/MAP kinase pathway as one of the plausible mechanisms underlying anti-inflammatory effects of DRDE-30, while lower levels of Vimentin seen, indicated inhibition of epithelial to mesenchymal transition revealing its anti-fibrotic effect as well. Structural analysis with X-ray CT indicated comparable lung architecture in control and drug treated mice in terms of reduced opacity, which correlated well with the lung morphology (H and E staining) and reduced collagen deposition (trichrome staining). These results demonstrate the potential of DRDE-30 in reducing radiation induced pulmonary toxicity by attenuating the inflammatory and fibrotic responses. (author)

  5. RhoA GTPase regulates radiation-induced alterations in endothelial cell adhesion and migration

    Rousseau, Matthieu; Gaugler, Marie-Hélène; Rodallec, Audrey; Bonnaud, Stéphanie; Paris, François; Corre, Isabelle

    2011-01-01

    Highlights: ► We explore the role of RhoA in endothelial cell response to ionizing radiation. ► RhoA is rapidly activated by single high-dose of radiation. ► Radiation leads to RhoA/ROCK-dependent actin cytoskeleton remodeling. ► Radiation-induced apoptosis does not require the RhoA/ROCK pathway. ► Radiation-induced alteration of endothelial adhesion and migration requires RhoA/ROCK. -- Abstract: Endothelial cells of the microvasculature are major target of ionizing radiation, responsible of the radiation-induced vascular early dysfunctions. Molecular signaling pathways involved in endothelial responses to ionizing radiation, despite being increasingly investigated, still need precise characterization. Small GTPase RhoA and its effector ROCK are crucial signaling molecules involved in many endothelial cellular functions. Recent studies identified implication of RhoA/ROCK in radiation-induced increase in endothelial permeability but other endothelial functions altered by radiation might also require RhoA proteins. Human microvascular endothelial cells HMEC-1, either treated with Y-27632 (inhibitor of ROCK) or invalidated for RhoA by RNA interference were exposed to 15 Gy. We showed a rapid radiation-induced activation of RhoA, leading to a deep reorganisation of actin cytoskeleton with rapid formation of stress fibers. Endothelial early apoptosis induced by ionizing radiation was not affected by Y-27632 pre-treatment or RhoA depletion. Endothelial adhesion to fibronectin and formation of focal adhesions increased in response to radiation in a RhoA/ROCK-dependent manner. Consistent with its pro-adhesive role, ionizing radiation also decreased endothelial cells migration and RhoA was required for this inhibition. These results highlight the role of RhoA GTPase in ionizing radiation-induced deregulation of essential endothelial functions linked to actin cytoskeleton.

  6. Laser radiation effect on radiation-induced defects in heavy ion tracks in dielectrics

    Egorov, A.N.; Zhiryakov, B.M.; Kushin, V.V.; Lyapidevskij, V.K.; Khokhlov, N.B.

    1988-01-01

    Possibility of laser radiation resonance effect on radiation-induced defects in heavy ion tracks in dielectric materials is investigated. Absorption spectra in infrared, visible and ultraviolet ranges for cellulose nitrate samples irradiated by 6 MeV/nucleon 58 Ni ions and reactor gamma radiation are measured. Absorption spectra for irradiated and reference samples are presented. Two absorption bands λ 1 =0.33 μm (E 1 =3.9 eV) and λ 2 =0.72 μm (E 2 =1.7 eV) are detected. Etching rate decrease in a track under laser radiation effect is noticed. 3 refs.; 1 fig

  7. Study on radiation-inducible genes

    Lim, Sang Yong; Kim, Dong Ho; Joe, Min Ho; Song, Hyu Npa

    2012-01-01

    Transcription of previously identified radiation-inducible genes, uscA and cyoA, was examined responding to radiation. The putative promoter regions of both genes were cloned into pRS415 vector containing lacZ, and the core promoter region necessary for radiation response were determined through promoter deletion method. To investigate the role of uscA, which is assumed to be small RNA related with radiation response, a deletion mutant strain of uscA was constructed. However, uscA deletion did not affect bacterial survival against radiation exposure. The use of bacteria as anticancer agents has attracted interest. In this study, we tried to develop tumor targeting bacteria in which the radiation-inducible promoter activate a transgene encoding a cytotoxic protein. For outward secretion of anticancer protein produced inside bacteria, the N-terminal 140 amino acid of SspH1 was found to function as a secretion signal peptide. To create an attenuated tumor-targeting bacteria, Salmonella ptsI mutant strain was constructed, and we found that its virulence decreased. Finally, the tumor-targeting ability of ptsI mutant was verified by the use of in-vivo imaging analysis

  8. Study on radiation-inducible genes

    Lim, Sang Yong; Kim, Dong Ho; Joe, Min Ho; Park, Hae Jun; Song, Hyu Npa

    2012-01-01

    Radiation-inducible genes of E. coli, which is a model strain for bacterial study, and Salmonella, which is a typical strain for pathogenic bacteria were compared through omic analysis. Heat shock response genes and prophage genes were induced by radiation in Salmonella, not in E. coli. Among prophage genes tested, STM2628 showed the highest activation by radiation, and approximately 1 kb promoter region was turned out to be necessary for radiation response. To screen an artificial promoter showing activation by 2 Gy, the high-throughput screening method using fluorescent MUG substrate was established. The use of bacteria as anticancer agents has attracted interest. In this study, we tried to develop tumor targeting bacteria in which the radiation-inducible promoter activate a transgene encoding a cytotoxic protein. To do this, a tumor-targeting hfq Salmonella mutant strain was constructed, and we found that its virulence decreased. For outward secretion of anticancer protein produced inside bacteria, the signal peptide of SspH1 was determined and the signal peptide was proven to be able to secrete an anticancer protein. Tumor xenograft mouse model was secured, which can be used for efficiency evaluation of bacterial tumor therapy

  9. Study of radiation-induced chromosomal aberrations

    Wolfring, E.

    2004-06-01

    A method for determining chromosomal aberrations was established for the purpose of examining the relative biological effectiveness (RBE) of photon radiation with respect to mammary epithelium cells. Cells were exposed to 25 kV X-radiation and to 200 kV X-radiation for comparison and the resulting concentrations of chromosomal aberrations were compared. The RBE M value for radiation-induced fragmentation was found to be 4.2 ± 2.4, while the RBE M value for radiation-induced generation of dicentric chromosomes was found to be 0.5 ± 0.5. In addition to the evaluation of chromosomal aberrations the number of cell cycles undergone by the cells was monitored by means of BrDU staining. As expected, the proportion of cells which underwent more than one cell cycle following exposure to 5 Gy was very low in both cases, amounting to 1.9% (25 kV) and 3.2 (200 kV). Non-radiated cells yielded control values of 26.0% and 12.6%, suggesting variations in external conditions from day to day

  10. Radiation- induced aneuploidy in mammalian germ cells

    Tease, C.

    1989-01-01

    The ability of ionizing radiation to induce aneuploidy in mammalian germ cells has been investigated experimentally in the laboratory mouse using a variety of cytogenetic and genetic methods. These studies have provided unambiguous evidence of induced nondisjunction in both male and female germ cells when the effect of irradiation is screened in meiotic cells or preimplantation embryos. In contrast, however, cytogenetic analyses of post-implantation embryos and genetic assays for induced chromosome gains have not found a significant radiation effect. These apparently contradictory findings may be reconciled if (a) radiation induces tertiary rather than primary trisomy, or (b) induces embryo-lethal genetic damage, such as deletions, in addition to numerical anomalies. Either or both of these explanations may account for the apparent loss during gestation of radiation-induced trisomic embryos. Extrapolating from the information so far available, it seems unlikely that environmental exposure to low doses if low dose rate radiation will result in a detectable increase in the rate of aneuploidy in the human population. (author)

  11. Study on radiation-inducible genes

    Lim, Sang Yong; Kim, Dong Ho; Joe, Min Ho; Park, Hae Jun; Song, Hyu Npa

    2012-01-15

    Radiation-inducible genes of E. coli, which is a model strain for bacterial study, and Salmonella, which is a typical strain for pathogenic bacteria were compared through omic analysis. Heat shock response genes and prophage genes were induced by radiation in Salmonella, not in E. coli. Among prophage genes tested, STM2628 showed the highest activation by radiation, and approximately 1 kb promoter region was turned out to be necessary for radiation response. To screen an artificial promoter showing activation by 2 Gy, the high-throughput screening method using fluorescent MUG substrate was established. The use of bacteria as anticancer agents has attracted interest. In this study, we tried to develop tumor targeting bacteria in which the radiation-inducible promoter activate a transgene encoding a cytotoxic protein. To do this, a tumor-targeting hfq Salmonella mutant strain was constructed, and we found that its virulence decreased. For outward secretion of anticancer protein produced inside bacteria, the signal peptide of SspH1 was determined and the signal peptide was proven to be able to secrete an anticancer protein. Tumor xenograft mouse model was secured, which can be used for efficiency evaluation of bacterial tumor therapy.

  12. Study on radiation-inducible genes

    Lim, Sang Yong; Kim, Dong Ho; Joe, Min Ho; Song, Hyu Npa

    2012-01-15

    Transcription of previously identified radiation-inducible genes, uscA and cyoA, was examined responding to radiation. The putative promoter regions of both genes were cloned into pRS415 vector containing lacZ, and the core promoter region necessary for radiation response were determined through promoter deletion method. To investigate the role of uscA, which is assumed to be small RNA related with radiation response, a deletion mutant strain of uscA was constructed. However, uscA deletion did not affect bacterial survival against radiation exposure. The use of bacteria as anticancer agents has attracted interest. In this study, we tried to develop tumor targeting bacteria in which the radiation-inducible promoter activate a transgene encoding a cytotoxic protein. For outward secretion of anticancer protein produced inside bacteria, the N-terminal 140 amino acid of SspH1 was found to function as a secretion signal peptide. To create an attenuated tumor-targeting bacteria, Salmonella ptsI mutant strain was constructed, and we found that its virulence decreased. Finally, the tumor-targeting ability of ptsI mutant was verified by the use of in-vivo imaging analysis.

  13. Cell kinetic studies on radiation induced leukemogenesis

    Nakao, Isamu; Suzuki, Gen; Imai, Yasufumi; Kawase, Yoshiko; Nose, Masako; Hirashima, Kunitake; Bessho, Masami

    1989-01-01

    The purpose of this study was threefold: (1) to determine the clonal origin of radiation-induced thymic lymphoma in mice with cellular mosaicism for phosphoglycerate kinase; (2) to determine the incidence and latent period of myeloid leukemia and thymic lymphoma induced by whole-body exposure to median doses (3.0 Gy or less) in RFM/MsNrs-2 mice; and (3) to examine the influence of human recombinant interleukin-2 (hrIL-2). Thymic lymphoma was of a single cell origin. The incidence of radiation-induced myeloid leukemia and thymic lymphoma in RFM mice increased in a dose dependent fashion. Mean latent periods of both myeloid leukemia and thymic lymphoma after irradiation became shorter in proportion to radiation doses. When hrIL-2 was injected to RFM mice receiving 3.0 Gy, mean survivals were shorter in thymoma-bearing mice than the control mice. This suggested that hrIL-2 shortens the promotion step of thymoma. Administration of hrIL-2 failed to alter the incidence of myeloid leukemia or the mean survival of mice having myeloid leukemia, indicating that the protocol of hrIL-2 administration was not so sufficient as to alter the myeloid leukemogenesis. (Namekawa, K)

  14. Radiation induced genetic damage in Aspergillus nidulans

    Georgiou, J.T.

    1984-01-01

    The mechanism by which ionizing radiation induces genetic damage in haploid and diploid conidia of Aspergillus nidulans was investigated. Although the linear dose-response curves obtained following low LET irradiation implied a 'single-hit' action of radiation, high LET radiations were much more efficient than low LET radiations, which suggests the involvement of a multiple target system. It was found that the RBE values for non-disjunction and mitotic crossing-over were very different. Unlike mitotic crossing-over, the RBE values for non-disjunction were much greater than for cell killing. This suggests that non-disjunction is a particularly sensitive genetical endpoint that is brought about by damage to a small, probably non-DNA target. Radiosensitisers were used to study whether radiation acts at the level of the DNA or some other cellular component. The sensitisation to electrons and/or X-rays by oxygen, and two nitroimidazoles (metronidazole and misonidazole) was examined for radiation induced non-disjunction, mitotic crossing-over, gene conversion, point mutation and cell killing. It was found that these compounds sensitised the cells considerably more to genetic damage than to cell killing. (author)

  15. Radiation-induced brain damage in children

    Oi, Shizuo; Kokunai, Takashi; Ijichi, Akihiro; Matsumoto, Satoshi; Raimondi, A.J.

    1990-01-01

    The nature and sequence of the radiation-induced changes in the brain were studied postmortem in 34 children with glioma, 22 of whom underwent central nervous system radiation therapy. Twenty received whole-brain or whole-neuroaxis radiation at a total mean dosage of 4063 cGy. Brain tissue alternations were analyzed histologically by means of various staining methods, including immunohistochemical techniques. The histological features of irradiated brains were compared with those of non-irradiated brains. Microscopic findings included demyelination (seven cases), focal necrosis (six cases), cortical atrophy (four cases), endothelial proliferation (four cases), and telangiectatic vascular proliferation with vascular thickening and oozing of a thick fluid (one case). Such findings were rare in non-irradiated patients. Demyelination was observed earliest in a patient who died 5 months after radiation therapy and was more common after 9 months. Focal necrosis was first observed 9 months post-irradiation but was more advanced and extensive after 1 year. Calcified foci were found only after 60 months. Various vascular changes such as vascular thickening and thrombosis suggested ischemic insult to the brain as a late effect of radiation injury. The results of this study suggest that the immature brain may be more sensitive to radiation than is the adult brain, and that the manifestations of radiation-induced injury depend on the time elapsed after irradiation. (author)

  16. Effect of pH on radiation-induced apoptosis

    Chang, W. Song; Park, Heon J.; Lyons, John C.; Auger, Elizabeth A.; Lee, Hyung-Sik

    1996-01-01

    Purpose/Objective: The effect of environmental pH on the radiation-induced apoptosis in tumor cells in vitro was investigated. Materials and Methods: SCK mammary adenocarcinoma cells of A/J mice were irradiated with γ-rays using a 137 Cs irradiator and incubated in media of different pHs. After incubation at 37 degree sign C for 24-120 hrs., the extent of apoptosis was determined using agarose gel electrophoresis of DNA, in situ TUNEL staining, flow cytometry, and release of 3 H from 3 H-thymidine labeled cells. The membrane integrity, using the trypan blue exclusion method, and the clonogenicity of the cells were also determined. Results: Irradiation with 2-12 Gy of γ-rays induced apoptosis in pH 7.5 medium within 48 hrs. The radiation-induced apoptosis progressively declined as the medium pH was lowered so that little apoptosis occurred in 48 hrs. after irradiation with 12 Gy in pH 6.6 medium. However, when the cells were irradiated and incubated for 48 hrs. in pH 6.6 medium and then medium was replaced with pH 7.5 medium, apoptosis promptly occurred. Apoptosis also occurred even in pH 6.6 medium when the cells were irradiated and maintained in pH 7.5 medium for 8 hrs. or longer post-irradiation before incubation in pH 6.6 medium. Conclusion: An acidic environment markedly suppresses radiation-induced apoptosis probably by suppressing the expression of initial signals responsible for irradiation-induced apoptosis. Indications are that the signals persist in an acidic environment and trigger apoptosis when the environmental acidity is eased. Our results suggest that the acidic environment in human tumors may inhibit the apoptosis after irradiation. However, apoptosis may be triggered when reoxygenation occurs after irradiation, and thus, the intratumor environment becomes less acidic after irradiation. Not only the change in pO 2 but the change in pH during the course of fractionated radiotherapy may greatly influence the outcome of the treatment

  17. Three cases of radiation-induced cancer in oral regions

    Kawamura, Hiroshi; Shinoki, Kunihiko; Endo, Yoshitaka; Fujita, Yasushi; Hayashi, Susumu

    1985-01-01

    Three cases of radiation-induced cancer in the oral regions were reported with relation to radiation therapy. One was the general radiation-induced cancer following radiotherapy for the hemangioma. The other two cases, which belonged in the B-1 group of Sakai and his coworker's diagnostic criteria for radiation-induced cancer, were those occurring after radiotherapy for the malignant tumors. Due to the relatively high dosage exposure by the patient in the radiotherapy it is necessary to look out the latency of the radiation-induced cancer. After radiotherapy, careful and periodical observation is important for immediate treatment in an early stage for the radiation-induced cancer to have a favorable prognosis. In addition careful observation of the changes after radiotherapy helps in discovering the precancerous lesions from the therapy. For the radiation-induced cancer, surgical treatment would be the best, however, radiation therapy is also effective in certain cases. (author)

  18. Role of neurotensin in radiation-induced hypothermia in rats

    Kandasamy, S.B.; Hunt, W.A.; Harris, A.H.

    1991-01-01

    The role of neurotensin in radiation-induced hypothermia was examined. Intracerebroventricular (ICV) administration of neurotensin produced dose-dependent hypothermia. Histamine appears to mediate neurotensin-induced hypothermia because the mast cell stabilizer disodium cromoglycate and antihistamines blocked the hypothermic effects of neurotensin. An ICV pretreatment with neurotensin antibody attenuated neurotensin-induced hypothermia, but did not attenuate radiation-induced hypothermia, suggesting that radiation-induced hypothermia was not mediated by neurotensin

  19. Radiation-induced bone neoplasma in facial cranium

    Zomer-Drozda, J; Buraczewska-Lipinska, H; Buraczewski, J [Instytut Onkologii, Warsaw (Poland)

    1976-01-01

    Radiation-induced bone neoplasms in the region of facial cranium account for about 40% of all radiation-induced tumours of bones, although the number of cases with lesions irradiated in this area is proportionally much lower than the number of cases treated with radiotherapy in other parts of the body. Four personal cases of radiation-induced tumours with complicated course are reported. Attention is called to the value of radiological investigations in the diagnosis of bone diseases and in differential diagnosis of radiation-induced tumours of bones.

  20. UV-B Radiation Induces Root Bending Through the Flavonoid-Mediated Auxin Pathway in Arabidopsis.

    Wan, Jinpeng; Zhang, Ping; Wang, Ruling; Sun, Liangliang; Wang, Wenying; Zhou, Huakun; Xu, Jin

    2018-01-01

    Ultraviolet (UV)-B radiation-induced root bending has been reported; however, the underlying mechanisms largely remain unclear. Here, we investigate whether and how auxin and flavonoids are involved in UV-B radiation-induced root bending in Arabidopsis using physiological, pharmacological, and genetic approaches. UV-B radiation modulated the direction of root growth by decreasing IAA biosynthesis and affecting auxin distribution in the root tips, where reduced auxin accumulation and asymmetric auxin distribution were observed. UV-B radiation increased the distribution of auxin on the nonradiated side of the root tips, promoting growth and causing root bending. Further analysis indicated that UV-B induced an asymmetric accumulation of flavonoids; this pathway is involved in modulating the accumulation and asymmetric distribution of auxin in root tips and the subsequent redirection of root growth by altering the distribution of auxin carriers in response to UV-B radiation. Taken together, our results indicate that UV-B radiation-induced root bending occurred through a flavonoid-mediated phototropic response to UV-B radiation.

  1. Radiation-induced creep and swelling

    Heald, P.T.

    1977-01-01

    The physical basis for radiation induced creep and swelling is reviewed. The interactions between the point defects and dislocations are recalled since these interactions are ultimately responsible for the observable deformation phenomena. Both the size misfit interaction and the induced inhomogeneity interaction are considered since the former gives rise to irradiation swelling while the latter, which depends on both internal and external stresses, results in irradiation creep. The defect kinetics leading to the deformation processes are discussed in terms of chemical rate theory. The rate equations for the spatially averaged interstitial and vacancy concentrations are expressed in terms of the microstructural sink strengths and the solution of these equations leads to general expressions for the deformation rates

  2. Studies on radiation-induced graft polymerization

    Omichi, Hideki

    1978-09-01

    Radiation-induced graft polymerization is used extensively to improve physical properties of polymers, but few processes are now commercialized. The reason for this is partly inadequate basic research on the reaction and partly the difficulty in developing the grafting process with large radiation source. Firstly, new techniques are proposed of studying kinetics of the graft polymerization in heterogeneous system. Based on the grafting yield, the molecular weight of graft chains, and the amount of radicals given by ESR and activation analysis, kinetic parameters are obtained and the reaction mechanism of grafting process is discussed. Secondly, the development of grafting process of poly (vinyl chloride)-butadiene is described. By study of the reaction, process design, construction and operation of the pilot plant, and economic analysis of the process, this process with 60 Co gamma ray sources is shown to be industrially promising. (author)

  3. Radiation-induced lesions of the aorta

    Doessing, M; Rasmussen, S [Medical Department C, Diakonissestiftelsen, Copenhagen (Denmark); Fischer-Hansen, B; Walbom-Joergensen, S

    1977-04-09

    A description is given of pathological changes detected in the aortic arch of a 21-year-old man. The patient died from an acute myocardial infarction 16 months after a dose of 3696 rads to a mantle field for Hodgkin's disease confined to the midcervical lymph nodes on the left side of the neck. Histological examination of the exposed part of the aortic arch showed the wall to be focally thickened owing to a pronounced fibrosis of the luminal third of the wall. The elastic lamellae in this area were reduced in number, broken up, and haphazardly arranged. The intima appeared normal. There was no leucocytic infiltration, no proliferation of vasa vasorum and no significant adventitial fibrosis. It is suggested that these noncharacteristic changes may have been early radiation-induced lesions which later might induce fibrotic scarring with perhaps clinically evident disease.

  4. Radiation-induced emulsion polymerization of tetrafluoroethylene

    Suwa, Takeshi

    1979-10-01

    The radiation-induced emulsifier-free emulsion polymerization of tetrafluoroethylene (TFE) has been studied at initial pressure 2 - 25 kg/cm 2 and temperature 30 0 - 110 0 C for dose rate 0.57 x 10 4 - 3.0 x 10 4 rad/hr. Polytetrafluoroethylene (PTFE), a hydrophobic polymer, forms as a stable latex in the absence of an emulsifier. Stability of the latex is governed by the dose rate/TFE pressure ratio; it increases with sufficient TFE monomer. PTFE particles produced in this polymerization system are stable due to the carboxyl end groups and adsorption of OH - and HF on the particles. PTFE latex of molecular weight higher than 2 x 10 7 is obtained by addition of a radical scavenger such as hydroquinone. The molecular weight of PTFE can be measured from the heat of crystallization conveniently with high reliability, which was found in the course of study on the melting and crystallization behavior. (author)

  5. Radiation-induced mutations and plant breeding

    Naqvi, S.H.M.

    1985-01-01

    Ionizing radiation could cause genetic changes in an organism and could modify gene linkages. The induction of mutation through radiation is random and the probability of getting the desired genetic change is low but can be increased by manipulating different parameters such as dose rate, physical conditions under which the material has been irradiated, etc. Induced mutations have been used as a supplement to conventional plant breeding, particularly for creating genetic variability for specific characters such as improved plant structure, pest and disease resistance, and desired changes in maturity period; more than 200 varieties of crop plants have been developed by this technique. The Pakistan Atomic Energy Commission has used this technique fruitfully to evolve better germplasm in cotton, rice, chickpea, wheat and mungbean; some of the mutants have become popular commercial varieties. This paper describes some uses of radiation induced mutations and the results achieved in Pakistan so far

  6. Radiation-induced mutations in mammals

    Ehling, U.H.

    1993-01-01

    The aims of the proposed project are to provide a better basis for extrapolation of animal data to man. Genetic endpoint, strain and species comparisons are made, which will provide critical experimental data regarding strategies in extrapolating laboratory animal data to man. Experiments were conducted to systematically compare the spontaneous and radiation-induced mutation rates for recessive specific-locus, dominant cataract and enzyme activity alleles in the mouse as well as a comparison of the mutation rate in the mouse and hamster for dominant cataract and enzyme activity alleles. The comparison of the radiation-dose response for recessive specific-locus and dominant cataract mutations are extended. Selected mutations are characterized at the genetic, biochemical and molecular levels. (R.P.) 5 refs., 3 tabs

  7. Radiation-induced mutation at minisatellite loci

    Dubrova, Y.E.; Nesterov, V.N.; Krouchinsky, N.G.

    1997-01-01

    We are studying the radiation-induced increase of mutation rate in minisatellite loci in mice and humans. Minisatellite mutations were scored by multilocus DNA fingerprint analysis in the progeny of γ-irradiated and non-irradiated mice. The frequency of mutation in offspring of irradiated males was 1.7 higher that in the control group. Germline mutation at human minisatellite loci was studied among children born in heavily polluted areas of the Mogilev district of Belarus after the Chernobyl accident and in a control population. The frequency of mutation assayed both by DNA fingerprinting and by eight single locus probes was found to be two times higher in the exposed families than in the control group. Furthermore, mutation rate was correlated with the parental radiation dose for chronic exposure 137 Cs, consistent with radiation-induction of germline mutation. The potential use of minisatellites in monitoring germline mutation in humans will be discussed

  8. Ionizing radiation-induced cell death

    Szumiel, I.

    1994-01-01

    Selected aspects of radiation-induced cell death, connected with signal transduction pathways are reviewed. Cell death is defined as insufficiency of the cellular signal transducing system to maintain the cell's physiological functions. The insufficiency may be due to impaired signal reception and/or transduction, lack or erroneous transcription activation, and eventual cellular ''misexpression'' of the signal. The molecular basis of this insufficiency would be damage to genomic (but also other cellular) structures and closing of specific signalling pathways or opening of others (like those leading to apoptosis). I describe experimental data that suggest an important role of RAS/NFI and p53/p105 Rb proteins in cell cycle control-coupled responses to DNA damage. (Author)

  9. An integrated model for radiation induced cancer

    Hall, E.J.; Varma, M.

    1994-01-01

    Risk estimates for radiation induced cancer are based on epidemiological data, principally the Japanese A bomb survivors. These estimates for radiation are better known than for any other environmental pollutant, but they do not relate directly to exposure to low doses and low dose rate. Recent rapid advances in molecular genetics, coupled with steady gains in cellular biology, radiation physics and chemistry led to the notion that the time may not be far off when it may be possible to arrive at human cancer risk estimates entirely from laboratory data. Whether risk estimates based on laboratory data will ever replace estimates based on epidemiological studies is an open question. What is clear is that laboratory data can supplement the present risk estimates by providing information on the relative effectiveness of high LET radiations, the importance of dose rate and dose protraction, and by identifying subpopulations which are unusually sensitive or resistant to radiation carcinogenesis. (author)

  10. Radiation-induced segregation in model alloys

    Ezawa, T.; Wakai, E.; Oshima, R.

    2000-12-01

    The dependence of the size factor of solutes on radiation-induced segregation (RIS) was studied. Ni-Si, Ni-Co, Ni-Cu, Ni-Mn, Ni-Pd, and Ni-Nb binary solid solution alloys were irradiated with electrons in a high voltage electron microscope at the same irradiation conditions. A focused beam and a grain boundary were utilized to generate a flow of point defects to cause RIS. From the concentration profile obtained by an energy dispersive X-ray analysis, the amount of RIS was calculated. The amount of RIS decreased as the size of the solute increased up to about 10%. However, as the size increased further, the amount of RIS increased. This result shows that RIS is not simply determined by the size effect rule.

  11. Radiation-induced grafting onto wool

    Muller-Schulte, D.

    1979-10-01

    Radiation-induced grafting tests were done on single wool fibres. Different vinyl monomers were used for this purpose and they were grafted in twenty different solvents which were selected for their swelling effiency and solvent parameters. The tests were done once with and once without the addition of water. The presence of water causes the polymer uptake to increase considerably. Formic acid/methanol and methanol were found to be the most suitable solvent systems, as they have the highest hydrogen-bond interaction effiency. The moisture uptake of wool depends on the hydrophily and hydrophoby of the grafted polymers. The single-fibre tests serve as a basis for analogous grafting tests on wool fabrics. The permanent- press was improved by graftng with hydrophoric polymers and polymers with a high glass-transition temperature [af

  12. Radiation-induced electron migration along DNA

    Fuciarelli, A.F.; Sisk, E.C.; Miller, J.H.; Zimbrick, J.D.

    1994-04-01

    Radiation-induced electron migration along DNA is a mechanism by which randomly produced stochastic energy deposition events can lead to nonrandom types of damage along DNA manifested distal to the sites of the initial energy deposition. Electron migration along DNA is significantly influenced by the DNA base sequence and DNA conformation. Migration along 7 base pairs in oligonucleotides containing guanine bases was observed for oligonucleotides irradiated in solution which compares to average migration distances of 6 to 10 bases for Escherichia coli DNA irradiated in solution and 5.5 base pairs for Escherichia coli DNA irradiated in cells. Evidence also suggests that electron migration can occur preferentially in the 5' to 3' direction along DNA. Our continued efforts will provide information regarding the contribution of electron transfer along DNA to formation of locally multiply damaged sites created in DNA by exposure to ionizing radiation

  13. Opposite effects of WR-2721 and WR-1065 on radiation-induced hypothermia: possible correlation with oxygen uptake

    Kandasamy, S.B.; Kumar, K.S.; Hunt, W.A.; Weiss, J.F.

    1988-01-01

    Ionizing radiation induces hypothermia in guinea pigs. While systemic injection of the radioprotectant S-2-(3-aminopropylamino)ethylphosphorothioic acid (WR-2721) did not block hyperthermia induced by exposure to 10 Gy of gamma radiation, central administration did attenuate it. The dephosphorylated metabolite of WR-2721, N-(2-mercaptoethyl)-1,3-diaminopropane (WR-1065), accentuated radiation-induced hypothermia by both routes of administration. In brain homogenates, oxygen uptake was inhibited by WR-2721 but elevated by WR-1065. These results suggest that the antagonism of radiation-induced hypothermia found only after central administration of WR-2721 is due to its direct actions and not to its dephosphorylated metabolite and that this effect may be correlated with the inhibition by WR-2721 of oxygen uptake

  14. Radiation-induced premature menopause: a misconception

    Madsen, Berit L.; Giudice, Linda; Donaldson, Sarah S.

    1995-01-01

    Purpose: To disprove the common view that women who have undergone irradiation to fields excluding the pelvis are at risk for radiation-induced premature menopause, we reviewed menstrual function and fertility among women treated with subtotal lymphoid irradiation for Hodgkin's Disease. Methods and Materials: Treatment and follow-up records of all women less than age 50 at the time of diagnosis of Stage I or II supradiaphragmatic Hodgkin's Disease, treated with subtotal lymphoid irradiation alone and enrolled in radiotherapy trials from 1967 to 1985, were reviewed. In addition, patients were surveyed regarding their menstrual status and fertility history. Results: Thirty-six women, aged 10 to 40 years, with normal menstrual function at the time of Hodgkin's diagnosis, were identified. Mean follow-up was 14 years, with a range of 1.25-22.75 years. The average radiation dose to mantle and paraaortic fields was 40-44 Gy; the calculated scatter radiation dose to the pelvis at the ovaries was 3.2 Gy. There were 38 pregnancies in 18 women; all offspring are normal. One of 36 women (2.7%) experienced premature menopause. The reported rate of premature menopause in women who have not undergone irradiation is 1-3%; not significantly different than the rate in our study. There is a syndrome whereby antibodies to several endocrine organs occur (including the ovary), which is associated with premature ovarian failure. This syndrome may be associated with prior radiation to the thyroid, such as that given by mantle-irradiation for Hodgkin's Disease. We report such a case. Conclusion: There is little risk of premature menopause in women treated with radiation fields that exclude the pelvis. Women with presumed radiation-induced premature menopause warrant an evaluation to exclude other causes of ovarian failure, such as autoimmune disorders

  15. Spontaneous and radiation induced gene conversion in Saccharomyces cerevisiae

    Rao, B.S.; Murthy, M.S.S.

    1977-01-01

    Spontaneous and radiation induced gene conversion to arginine independence was studied in a heteroallelic diploid strain of yeast Saccharomyces cerevisiae BZ 34. When stationary phase cells were incubated in phosphate buffer (pH 7 ) at 30 0 C under aerated condition for 48 hours, the conversion frequency increased by a factor of about 1000 times the background. This was found to be so even when the cells were incubated in saline (0.85%) or distilled water. Various conditions influencing this enhancement have been investigated. Conversion frequency enhancement was not significant under anoxic conditions and was absent at low temperatures and in log phase cells. Caffeine could inhibit this enhancement when present in the suspension medium. These results can be explained on the basis of the induction of meiosis in cells held in buffer. Microscopic examination confirmed this view. Under conditions not favourable for the onset of meiosis there is no significant enhancement in conversion frequency. In stationary phase cells exposed to series of gamma doses, the conversion frequency increases with dose. Post irradiation incubation in buffer further increases the conversion frequency. However, the increase expressed as the ratio of the conversion frequency on buffer holding to that on immediate plating decreased with increasing dose. This decrease in enhancement with increasing dose may be due to the dose dependent inhibition of meiosis. (author)

  16. Mechanisms of radiation-induced neoplastic cell transformation

    Yang, T.C.H.; Tobias, C.A.

    1984-04-01

    Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table

  17. Mechanisms of radiation-induced neoplastic cell transformation

    Yang, T.C.H.; Tobias, C.A.

    1984-04-01

    Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table.

  18. Lycium barbarum Polysaccharides Protect Rat Corneal Epithelial Cells against Ultraviolet B-Induced Apoptosis by Attenuating the Mitochondrial Pathway and Inhibiting JNK Phosphorylation

    Shaobo Du

    2017-01-01

    Full Text Available Lycium barbarum polysaccharides (LBPs have been shown to play a key role in protecting the eyes by reducing the apoptosis induced by certain types of damage. However, it is not known whether LBPs can protect damaged corneal cells from apoptosis. Moreover, no reports have focused on the role of LBPs in guarding against ultraviolet B- (UVB- induced apoptosis. The present study aimed to investigate the protective effect and underlying mechanism of LBPs against UVB-induced apoptosis in rat corneal epithelial (RCE cells. The results showed that LBPs significantly prevented the loss of cell viability and inhibited cell apoptosis induced by UVB in RCE cells. LBPs also inhibited UVB-induced loss of mitochondrial membrane potential, downregulation of Bcl-2, and upregulation of Bax and caspase-3. Finally, LBPs attenuated the phosphorylation of c-Jun NH2-terminal kinase (JNK triggered by UVB. In summary, LBPs protect RCE cells against UVB-induced damage and apoptosis, and the underlying mechanism involves the attenuation of the mitochondrial apoptosis pathway and the inhibition of JNK phosphorylation.

  19. Radiation induced diffusion as a method to protect surface

    Baumvol, I.J.R.

    1980-01-01

    Radiation induced diffusion forms a coating adeherent and without interface on the surface of metalic substrates. This coating improves the behaviour of metal to corrosion and abrasion. The effect of radiation induced diffusion of tin and calcium on pure iron surface is described and analyzed in this work. (author) [pt

  20. Radiation induced changes in the airway - anaesthetic implications ...

    Radiation induced changes in the airway - anaesthetic implications: case report. Mallika Balakrishnan, Renju Kuriakose, Rachel Cherian Koshy. Abstract. Radiation induces a variety of changes in the airway that can potentially lead to difficult intubation. Osteoradionecrosis (ORN) of the mandible, a severe consequence of ...

  1. Radiation-induced xerostomia in a patient with nasopharyngeal ...

    OBJECTIVE: This study reports a case of radiation-induced xerstomia in a patient with nasopharyngeal cancer, to emphasize the need for prompt oral care to prevent untoward effects of xerostomia and to improve patients' quality of life. CASE REPORT: A 60 year old man diagnosed of radiation-induced xerostomia, after 6 ...

  2. A novel topical protectant for the prevention of β-radiation induced moist desquamation

    Ma, L.; Wilcock, S.; Rezvani, M.; Hsia, C.

    2003-01-01

    Full text: Effective therapies for the prevention of radiation-induced skin burns that could be readily deployed under a nuclear accident or nuclear terrorism scenario are urgently needed. In this report we describe the efficacy of a novel radioprotectant (DMZ911) in a model of b-radiation induced moist desquamation (MD) in pig skin. DMZ911 is a nitroxide-based topical cream that effectively delivers the nitroxide into viable skin cells. Stable nitroxide compounds have been shown to be effective against both X-ray and ?-ray-induced damage in vivo and in vitro. A pig skin model of β-radiation-induced MD was employed in this study. Exposure to 30 Gy was used to induce skin lesions involving >80% moist desquamation in prescribed test sites on flank skin of female Large White pigs. DMZ911 or placebo was applied to various test sites 2 hours prior to radiation exposure. Lesions were scored based on the area of the test site containing 50% MD (severe) as determined by clinical assessment using blinded observers. Treatment with DMZ911 resulted in a 31% net reduction in MD when compared to placebo treated sites following an 8-week study period. This reduction was observed whether all sites or only those with severe MD were considered. Skin damage (as indicated by MD) from radiation exposure was significantly reduced by 31% (p = 0.05) following pretreatment with the novel topical radioprotectant DMZ911. This observation suggests that skin lesion development from radiation-induced oxidative damage cascades may be successfully inhibited by treatment with DMZ911. This topical therapeutic agent represents a novel treatment for nuclear radiation induced skin injury. DMZ911 may have unique applications in radiation oncology, cosmetic and therapeutic UV, laser, glycolic and dermabrasion procedures

  3. Radiation-induced cancer in Japan

    Yamashita, Shoji; Sekizuka, Eiichi; Yamashita, Hisao; Takami, Akira; Kubo, Atsushi

    2001-01-01

    Results of two questionnaire surveys on radiation-induced malignant tumors conducted in 1977 and 1984 in Japan are briefly summarized. A total of 234 universities and general hospitals (139 in 1977, and 95 in 1984) responded and provided data from 1945 to 1977 and from 1978 to 1984. The number of patients with benign disease who developed secondary malignant tumors following radiation therapy was 150 in the first survey (1977) and 86 in the second survey (1984). The underlying benign diseases of these patients included tuberculous lymphadenitis, skin disease, hemangioma, and thyroid disease, and the most frequent radiation-induced malignant tumors in these patients were malignant tumors of the pharynx (80), cancer of the larynx (26), malignant tumors of the thyroid gland (22), cancer of the esophagus (219), and skin cancer (21). In patients with head and neck diseases the highest correlation between underlying benign disease and radiation-induced malignant tumors was between cervical tuberculous lymphadenitis and tumors of the pharynx (67 patients), followed by cancer of the larynx (19), and malignant tumors of the thyroid gland (11). There were also correlations between thyroid disease and malignant tumors of the thyroid gland (8 patients), hemangioma and skin cancer (7), and skin disease and skin cancer (8). The ratio of the observed values to predicted values (O/E ratio) in these patients was highest for cancer of the pharynx (118), followed by cancer of the parotid gland (42), skin cancer (31), cancer of the esophagus (22), malignant tumors of the thyroid gland (21), and cancer of the larynx (16). The number of patients with malignant tumors who developed secondary malignant tumors following radiation therapy was 140 in 1977 and 108 in 1984, and the underlying malignant tumors in these patients included tumors of the uterus (106), breast (32), and head and neck (80). The most frequent secondary malignant tumors were soft tissue tumors, followed by leukemia, and

  4. Inhibition of Cartilage Acidic Protein 1 Reduces Ultraviolet B Irradiation Induced-Apoptosis through P38 Mitogen-Activated Protein Kinase and Jun Amino-Terminal Kinase Pathways

    Yinghong Ji

    2016-11-01

    Full Text Available Background/Aims: Ultraviolet B (UVB irradiation can easily induce apoptosis in human lens epithelial cells (HLECs and further lead to various eye diseases including cataract. Here for the first time, we investigated the role of cartilage acidic protein 1 (CRTAC1 gene in UVB irradiation induced-apoptosis in HLECs. Methods: Three groups of HLECs were employed including model group, empty vector group, and CRTAC1 interference group. Results: After UVB irradiation, the percentage of primary apoptotic cells was obviously fewer in CRTAC1 interference group. Meanwhile, inhibition of CRTAC1 also reduced both reactive oxygen species (ROS production and intracellular Ca2+ concentration, but the level of mitochondrial membrane potential (Δψm was increased in HLECs. Further studies indicated that superoxide dismutase (SOD activity and total antioxidative (T-AOC level were significantly increased in CRTAC1-inhibited cells, while the levels of malondialdehyde (MDA and lactate dehydrogenase (LDH were significantly decreased. ELISA analysis of CRTAC1-inhibited cells showed that the concentrations of tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6 were significantly decreased, but the concentration of interleukin-10 (IL-10 was significantly increased. Western blot analyses of eight apoptosis-associated proteins including Bax, Bcl-2, p38, phospho-p38 (p-p38, Jun amino-terminal kinases (JNK1/2, phospho-JNK1/2 (p-JNK1/2, calcium-sensing receptor (CasR, and Ca2+/calmodulin-dependent protein kinase II (CaMKII indicated that the inhibition of CRTAC1 alleviated oxidative stress and inflammation response, inactivated calcium-signaling pathway, p38 and JNK1/2 signal pathways, and eventually reduced UVB irradiation induced-apoptosis in HLECs. Conclusion: These results provided new insights into the mechanism of cataract development, and demonstrated that CRTAC1 could be a potentially novel target for cataract treatment.

  5. Inhibition of Cartilage Acidic Protein 1 Reduces Ultraviolet B Irradiation Induced-Apoptosis through P38 Mitogen-Activated Protein Kinase and Jun Amino-Terminal Kinase Pathways.

    Ji, Yinghong; Rong, Xianfang; Li, Dan; Cai, Lei; Rao, Jun; Lu, Yi

    2016-01-01

    Ultraviolet B (UVB) irradiation can easily induce apoptosis in human lens epithelial cells (HLECs) and further lead to various eye diseases including cataract. Here for the first time, we investigated the role of cartilage acidic protein 1 (CRTAC1) gene in UVB irradiation induced-apoptosis in HLECs. Three groups of HLECs were employed including model group, empty vector group, and CRTAC1 interference group. After UVB irradiation, the percentage of primary apoptotic cells was obviously fewer in CRTAC1 interference group. Meanwhile, inhibition of CRTAC1 also reduced both reactive oxygen species (ROS) production and intracellular Ca2+ concentration, but the level of mitochondrial membrane potential (Δψm) was increased in HLECs. Further studies indicated that superoxide dismutase (SOD) activity and total antioxidative (T-AOC) level were significantly increased in CRTAC1-inhibited cells, while the levels of malondialdehyde (MDA) and lactate dehydrogenase (LDH) were significantly decreased. ELISA analysis of CRTAC1-inhibited cells showed that the concentrations of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were significantly decreased, but the concentration of interleukin-10 (IL-10) was significantly increased. Western blot analyses of eight apoptosis-associated proteins including Bax, Bcl-2, p38, phospho-p38 (p-p38), Jun amino-terminal kinases (JNK1/2), phospho-JNK1/2 (p-JNK1/2), calcium-sensing receptor (CasR), and Ca2+/calmodulin-dependent protein kinase II (CaMKII) indicated that the inhibition of CRTAC1 alleviated oxidative stress and inflammation response, inactivated calcium-signaling pathway, p38 and JNK1/2 signal pathways, and eventually reduced UVB irradiation induced-apoptosis in HLECs. These results provided new insights into the mechanism of cataract development, and demonstrated that CRTAC1 could be a potentially novel target for cataract treatment. © 2016 The Author(s) Published by S. Karger AG, Basel.

  6. The effect of ultraviolet radiation on early stages of activation of human lymphocytes: inhibition is independent of effects on DNA

    Castellanos, G; Owens, T; Rudd, C

    1982-01-01

    whether activation was measured by the incorporation of labelled leucine, uridine, or thymidine. If UV was applied at 44 h after culture in presence of Con A, the incorporation of [3H]thymidine measured 4 h later was seen to be inhibited but transcription and translation were scarcely affected. UV...... lymphocytes, when this was measured by means of 86Rb uptake after 2-4 h culture. The mitogen-stimulated activation of cation pump function has previously been shown to be unaffected by concentrations of cycloheximide and actinomycin D which produce virtually complete inhibition of protein and RNA synthesis...

  7. Gamma Radiation-Induced Template Polymerization Technique

    Siyam, T.

    2005-01-01

    Gamma radiation induced copolymerization of acrylamide sodiumacrylate (AM-AANa) in the presence and absence of the polymer additive was studied at low monomer concentration(1.4M/l). The results showed that the exponents of the dose rate for the polymerization rate was found to be 1.3 and 1.4 in the absence and in the presence of the polymer additive respectively. The molecular weight of the formed polymer increased by addition of the polymer to the system. In the presence of the polymer the comonomers polymerize on the added polymer. In the absence of the added polymer the comonomers polymerize according to the copolymerization process at the initial stage of the copolymerization. While at high conversion the residual comonomers polymerize on the formed macromolecular chains of the produced polymer. These studies showed that the copolymerization in the presence of added polymer is completely template copolymerization while in the absence of the polymer the copolymerization process is only template process with a high conversion

  8. Radiation-Induced Mutation and Crop Improvement

    Lee, Y. I.; Song, H. S.; Kim, J. S.; Shin, I. C.; Lee, S. J.

    1987-01-01

    Radiation induced mutations have not only been used directly as a cultivar in crop plants, but also indirectly as a genetic resource that is essential to conventional plant breeding. M 1 plant survivals of three rice cultivars treated with gamma rays of 200-350 Gy varied from 30-40%. The survival of the Sawing variety was less sensitive to radiation, but its fertility was more sensitive in comparison with Seomjin and Sponging. Various dwarf or semi-dwarf mutants and early=matured mutants have been selected in the M 2 and M 3 generations of the three rice cultivars irradiated with gamma rays. Other desirable mutants also have been selected, such as high-yielding, high-tailoring and disease-resistant. The genetic nature of most of the selected short calm and earliness mutants was fixed in M 2 or M 3 generations. Dwarfism of IEAR 308 and Monogynol 10 were found to have a single recessive gene. However, the dwarf of IEAR 308 has a recessive deficit phenomenon. The highest genetic heritability of plant height was observed in the cross combination of Monogynol 10 Χ Pawling

  9. Radiation induced mutations for breeding of sorghum

    Bretaudeau, A [Rural Polytechnic Inst., Katibougou, Koulikoro (Mali)

    1997-07-01

    Several sorghum cultivars of Mali were irradiated with different doses of gamma rays and compared with the Caudatum types. Radio-sensitivity studies suggested that the local types were less sensitive to radiation than the introduced types. Whereas the local varieties survived dose of 300 Gy, in Caudatum types, seed germination and growth were significantly reduced at 200 Gy. Several agronomically important mutants were obtained among the progeny of the local types. Some of the mutants were shorter and had improved panicle characteristics. Radiation-induced variation was observed in several characters such as plant height, resistance to lodging, plant architecture, drought tolerance, panicle length and compactness, seed size and color, seed quality (viterous or floury) and protein content, glume color and structure, flowering data (early and late maturity), and tillering capacity. One mutant was drought tolerant. Promising mutants were selected and are presently under evaluation in the National List Trials to confirm their potential and future release. Selected variants have been also crossed with local types to obtain promising material. (author). 8 refs, 2 tabs.

  10. Operative treatment of radiation-induced fistulae

    Balslev, I.; Harling, H.

    1987-01-01

    Out of 136 patients with radiation-induced intestinal complications, 45 had fistulae. Twenty-eight patients had rectovaginal fistulae while the remainder had a total of 13 different types of fistulae. Thirty-seven patients were treated operatively and eight were treated conservatively. Thirty-three patients were submitted to operation for rectal fistulae. Of these, 28 were treated by defunctioning colostomy, three were treated by Hartmann's method and resection and primary anastomosis was carried out in two patients. In the course of the period of observation, 35% of the patients developed new radiation damage. The frequency in the basic material without fistulae was 21% (0.05< p<0.10). Following establishment of defunctioning colostomy on account of rectovaginal fistulae in 25 patients, eight patients developed new fistulae, Significantly more patients with fistulae died of recurrence as compared with patients with other lesions (p<0.01). Defunctioning colostomy in the treatment of rectal fistula is a reasonable form of treatment in elderly patients and in case of recurrence. Younger patients should be assessed in a special department in view of the possibility of a sphincter-preserving procedure following resection of the rectum and restorative anastomosis. (author)

  11. Operative treatment of radiation-induced fistulae

    Balslev, I.; Harling, H.

    1987-01-01

    Out of 136 patients with radiation-induced intestinal complications, 45 had fistulae. Twenty-eight patients had rectovaginal fistulae while the remainder had a total of 13 different types of fistulae. Thirty-seven patients were treated operatively and eight were treated conservatively. Thirty-three patients were submitted to operation for rectal fistulae. Of these, 28 were treated by defunctioning colostomy, three were treated by Hartmann's method and resection and primary anastomosis was carried out in two patients. In the course of the period of observation, 35% of the patients developed new radiation damage. The frequency in the basic material without fistulae was 21% (0.05

  12. Radiation-induced cancer in laryngectomized patients

    Miyahara, Hiroshi; Tsuruta, Yoshihiro; Sato, Takeo; Yoshino, Kunitoshi; Umatani, Katunori

    1991-01-01

    Three patients developed hypopharyngo-cervical esophageal carcinoma, 6.5, 13, and 12 years after total laryngectomy. The first patient had received irradiation (60 Gy) for hypopharyngeal carcinoma. The recurrent tumor was removed with total pharyngolaryngoesophagectomy and reconstruction was performed with a local skin flap. After 6 years and 6 months, she developed progressive dysphagia. A new cervical esophageal skin cancer was diagnosed by pharyngoesophagography and treated. The second patient had had total laryngectomy for laryngeal carcinoma and received irradiation (100 Gy) post-operatively. After 13 years, he developed progressive dysphagia. Pharyngoesophagography revealed cervical esophageal carcinoma. The third patient had received irradiation for laryngeal carcinoma (60 Gy) and underwent total laryngectomy because of recurrence. After 12 years she developed dysphagia, and was treated for hypopharyngeal carcinoma. These three patients seemed to have radiation-induced carcinoma. Patients treated with total laryngectomy and irradiation who later complain of progressive dysphagia should be examined carefully to differentiate between postoperative stenosis due to scarring and a new carcinoma. (author)

  13. Radiation induced mutations for breeding of sorghum

    Bretaudeau, A.

    1997-01-01

    Several sorghum cultivars of Mali were irradiated with different doses of gamma rays and compared with the Caudatum types. Radio-sensitivity studies suggested that the local types were less sensitive to radiation than the introduced types. Whereas the local varieties survived dose of 300 Gy, in Caudatum types, seed germination and growth were significantly reduced at 200 Gy. Several agronomically important mutants were obtained among the progeny of the local types. Some of the mutants were shorter and had improved panicle characteristics. Radiation-induced variation was observed in several characters such as plant height, resistance to lodging, plant architecture, drought tolerance, panicle length and compactness, seed size and color, seed quality (viterous or floury) and protein content, glume color and structure, flowering data (early and late maturity), and tillering capacity. One mutant was drought tolerant. Promising mutants were selected and are presently under evaluation in the National List Trials to confirm their potential and future release. Selected variants have been also crossed with local types to obtain promising material. (author). 8 refs, 2 tabs

  14. Radiation-induced cranial nerve palsy

    Berger, P.S.; Bataini, J.P.

    1977-01-01

    Twenty-five patients with 35 cranial nerve palsies were seen at the Fondation Curie during follow-up after radical radiotherapy for head and neck tumors. The twelfth nerve was involved in 19 cases, the tenth in nine, and the eleventh in five; the fifth and second nerves were involved once each and in the same patient. The twelfth nerve was involved alone in 16 patients and the tenth nerve alone in three, with multiple nerves involved in the remaining six patients. The palsy was noted from 12 to 145 months after diagnosis of the tumor. The latency period could be correlated with dose so that the least square fit equation representing NSD vs delay is NSD = 2598--Delay (in months) x 4.6, with a correlation coefficient of -0.58. The distinction between tumor recurrence and radiation-induced nerve palsy is critical. It can often be inferred from the latency period but must be confirmed by observation over a period of time

  15. Radiation-induced valvular heart disease.

    Gujral, Dorothy M; Lloyd, Guy; Bhattacharyya, Sanjeev

    2016-02-15

    Radiation to the mediastinum is a key component of treatment with curative intent for a range of cancers including Hodgkin's lymphoma and breast cancer. Exposure to radiation is associated with a risk of radiation-induced heart valve damage characterised by valve fibrosis and calcification. There is a latent interval of 10-20 years between radiation exposure and development of clinically significant heart valve disease. Risk is related to radiation dose received, interval from exposure and use of concomitant chemotherapy. Long-term outlook and the risk of valve surgery are related to the effects of radiation on mediastinal structures including pulmonary fibrosis and pericardial constriction. Dose prediction models to predict the risk of heart valve disease in the future and newer radiation techniques to reduce the radiation dose to the heart are being developed. Surveillance strategies for this cohort of cancer survivors at risk of developing significant heart valve complications are required. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. Pathology of radiation induced lung damage

    Kawabata, Yoshinori; Murata, Yoshihiko; Ogata, Hideo; Katagiri, Shiro; Sugita, Hironobu; Iwai, Kazuo; Sakurai, Isamu.

    1985-01-01

    We examined pathological findings of radiation induced lung damage. Twenty-three cases are chosen from our hospital autopsy cases for 9 years, which fulfil strict criteria of radiation lung damage. Lung damage could be classified into 3 groups : 1) interstitial pneumonia type (9 cases), 2) intermediate pneumonia type (8 cases), and 3) alveolar pneumonia type (6 cases), according to the degree of intra-luminal exudation. These classification is well correlated with clinical findings. Pathological alveolar pneumonia type corresponds to symptomatic, radiologic ground glass pneumonic shadow. And pathologic interstitial type corresponds to clinical asymptomatic, radiologic reticulo-nodular shadow. From the clinico-pathological view point these classification is reasonable one. Radiation affects many lung structures and showed characteristic feature of repair. Elastofibrosis of the alveolar wall is observed in every cases, obstructive bronchiolitis are observed in 5 cases, and obstructive bronchiolitis in 9 cases. They are remarkable additional findings. Thickening of the interlobular septum, broncho-vascular connective tissue, and pleural layer are observed in every cases together with vascular lesions. (author)

  17. Radiation-induced ηe-modes

    Shukla, P.K.; Yu, M.Y.

    1990-01-01

    Impurity radiation in a plasma can cause not only static instabilities, but also dynamic instabilities related to the drift and acoustic waves. Radiative instabilities are of much interest because they are associated with relatively high frequency and short wavelength fluctuations, which have been suspected to be responsible for anomalous electron energy transport in tokamak edge plasmas. In this paper, we consider radiation-induced η e instabilities, taking into account electrostatic effects as well as density and temperature inhomogeneities. Also included are the effects of finite gyroradius and dissipation. It is found that the latter can cause strong linear coupling between the modes of interest. The resulting instabilities can have larger growth rates than the static radiative instability. Analytical expressions for the growth rates and instability regimes are given for the limiting cases of practical interest. In particular, it is shown that the η e -mode can couple to both radiation and dissipation to cause resistive instabilities. The parameter regimes of the original radiative as well as the dissipative modes are thereby broadened and shifted because of the interaction. (author) 3 refs

  18. Trans-differentiation of neural stem cells: a therapeutic mechanism against the radiation induced brain damage.

    Kyeung Min Joo

    Full Text Available Radiation therapy is an indispensable therapeutic modality for various brain diseases. Though endogenous neural stem cells (NSCs would provide regenerative potential, many patients nevertheless suffer from radiation-induced brain damage. Accordingly, we tested beneficial effects of exogenous NSC supplementation using in vivo mouse models that received whole brain irradiation. Systemic supplementation of primarily cultured mouse fetal NSCs inhibited radiation-induced brain atrophy and thereby preserved brain functions such as short-term memory. Transplanted NSCs migrated to the irradiated brain and differentiated into neurons, astrocytes, or oligodendrocytes. In addition, neurotrophic factors such as NGF were significantly increased in the brain by NSCs, indicating that both paracrine and replacement effects could be the therapeutic mechanisms of NSCs. Interestingly, NSCs also differentiated into brain endothelial cells, which was accompanied by the restoration the cerebral blood flow that was reduced from the irradiation. Inhibition of the VEGF signaling reduced the migration and trans-differentiation of NSCs. Therefore, trans-differentiation of NSCs into brain endothelial cells by the VEGF signaling and the consequential restoration of the cerebral blood flow would also be one of the therapeutic mechanisms of NSCs. In summary, our data demonstrate that exogenous NSC supplementation could prevent radiation-induced functional loss of the brain. Therefore, successful combination of brain radiation therapy and NSC supplementation would provide a highly promising therapeutic option for patients with various brain diseases.

  19. Modification of radiation-induced oxidative damage in liposomal and microsomal membrane by eugenol

    Pandey, B.N. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Lathika, K.M. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Mishra, K.P. [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)]. E-mail: kpm@magnum.barc.ernet.in

    2006-03-15

    Radiation-induced membrane oxidative damage, and their modification by eugenol, a natural antioxidant, was investigated in liposomes and microsomes. Liposomes prepared with DPH showed decrease in fluorescence after {gamma}-irradiation, which was prevented significantly by eugenol and correlated with magnitude of oxidation of phospholipids. Presence of eugenol resulted in substantial inhibition in MDA formation in irradiated liposomes/microsomes, which was less effective when added after irradiation. Similarly, the increase in phospholipase C activity observed after irradiation in microsomes was inhibited in samples pre-treated with eugenol. Results suggest association of radio- oxidative membrane damage with alterations in signaling molecules, and eugenol significantly prevented these membrane damaging events.

  20. Investigation of radiation-induced multilayered signalling response of the inflammatory pathway

    Babini, G.; Ugolini, M.; Morini, J.; Baiocco, G.; Ottolenghi, A.; Mariotti, L.; Tabarelli de Fatis, P.; Liotta, M.

    2015-01-01

    Ionising radiation exposure of cells might induce the perturbation of cell functions and, in particular, the activation or inhibition of several important pathways. This perturbation can cause the deregulation of both intra- and extra-cellular signalling cascades (such as the inflammatory pathway) and alter not only the behaviour of directly exposed cells but also the neighbouring nonirradiated ones, through the so-called bystander effect. The aim of the present work was to investigate the complex nonlinear interactions between the inflammatory pathway and other strictly interlaced signalling pathways, such as Erk1/2 and Akt/PKB, focusing on the radiation-induced perturbation of such pathways in the dose range of 0 -2 Gy. The results show how radiation affects these interconnected pathways and how confounding factors, such as the change of culture medium, can hide radiation-induced perturbations. (authors)

  1. Scopolamine methylbromide mitigates radiation induced damage and lethality in zebrafish

    Shrivastava, Nitisha; Joshi, Jayadev; Ghosh, Subhajit; Dimri, Manali; Prem Kumar, Indracanti; Sehgal, Neeta

    2014-01-01

    In view of the strategic importance radiation countermeasures hold, the present study was undertaken to screen a collection of small molecule clinical compounds for possible radioprotective action using zebrafish as a model system. Preliminary screening in developing zebrafish embryos (24 hour post fertilization, (hpf)) using damage manifestations and survival as end point identified scopolamine methylbromide (SMB), a muscarinic receptor antagonist, as a potential radiomitigator. It was found to be optimal (60% survival advantage after 6 th post irradiation day) at a dose of 80 μM when added 3 h post 20 Gy exposure. Mechanistic studies suggested that SMB though exhibited no significant antioxidant potential, but was found to limit radiation induced apoptosis (pre G1 population) quantified through flow cytometry (6 and 5% reduction after 8 or 24 h after treatments) and annexin V staining (8% reduction). Further, quantitative analysis, using caspase 3 assay, revealed a 2.46 fold increase in apoptosis in irradiated group and treatment of irradiated zebrafish embryos with SMB led to a significant reduction in global apoptosis (1.7 fold; p<0.05) when compared to irradiated group. In silico studies based on structural and functional similarity with known radioprotectors suggested similarities with atropine, a known anti-inflammatory agent with muscarinic antagonism and radioprotective potential. In view of this SMB was tested, in silico, for possible anti-inflammatory action. Molecular docking studies revealed that SMB interacts (B.E-8.0 Kcal/mole) with cycloxygenase-2 (COX-2). In lieu of this, anti-inflammation activity was assessed through ChIN (chemically induced inflammation) method in 3 dpf (days post fertilization) embryos and SMB was found to significantly inhibit inflammation at all doses studied from 20-200 μM at 3 and 6 hpi (hours post inflammation). Overall the result suggests that scopolamine methylbromide mitigates radiation induced injury and lethality in

  2. The reduction of radiation-induced mitotic delay by caffeine: a test of the cyclic AMP hypothesis

    Oleinick, N.L.; Brewer, E.N.; Rustad, R.C.

    1978-01-01

    A study has been made of the reduction in γ-radiation-induced mitotic delay by caffeine in the naturally-synchronous plasmodial slime mould. Physarum polycephalum during late G 2 and early prophase, and the results compared with those obtained with other compounds of similar structure and/or physiological function. The reduction of radiation-induced mitotic delay was related to increasing concentrations of caffeine over at least two orders of magnitude. Pre-irradiation treatment with caffeine had no detectable effect. Caffeine had to be present for most, if not all, of the post-irradiation pre-mitotic period. Other chemicals which are reported to inhibit cyclic AMP phosphodiesterase either reduce or increase radiation-induced mitotic delay. The results therefore indicate that the reduction of mitotic delay by caffeine is not a result of altered cyclic AMP levels. (UK)

  3. Radiation-Induced Alopecia after Endovascular Embolization under Fluoroscopy

    Vipawee Ounsakul

    2016-01-01

    Full Text Available Radiation-induced alopecia after fluoroscopically guided procedures is becoming more common due to an increasing use of endovascular procedures. It is characterized by geometric shapes of nonscarring alopecia related to the area of radiation. We report a case of a 46-year-old man presenting with asymptomatic, sharply demarcated rectangular, nonscarring alopecic patch on the occipital scalp following cerebral angiography with fistula embolization under fluoroscopy. His presentations were compatible with radiation-induced alopecia. Herein, we also report a novel scalp dermoscopic finding of blue-grey dots in a target pattern around yellow dots and follicles, which we detected in the lesion of radiation-induced alopecia.

  4. Delayed Radiation-Induced Vasculitic Leukoencephalopathy

    Rauch, Philipp J. [Departments of Pathology and Neurosurgery, Yale University School of Medicine, New Haven, Connecticut (United States); Faculty of Medicine, University of Heidelberg, Heidelberg (Germany); Park, Henry S. [Departments of Pathology and Neurosurgery, Yale University School of Medicine, New Haven, Connecticut (United States); Knisely, Jonathan P.S. [Department of Radiation Medicine, North Shore University Hospital, Manhasset, New York (United States); Chiang, Veronica L. [Departments of Pathology and Neurosurgery, Yale University School of Medicine, New Haven, Connecticut (United States); Vortmeyer, Alexander O., E-mail: alexander.vortmeyer@yale.edu [Departments of Pathology and Neurosurgery, Yale University School of Medicine, New Haven, Connecticut (United States)

    2012-05-01

    Purpose: Recently, single-fraction, high-dosed focused radiation therapy such as that administered by Gamma Knife radiosurgery has been used increasingly for the treatment of metastatic brain cancer. Radiation therapy to the brain can cause delayed leukoencephalopathy, which carries its own significant morbidity and mortality. While radiosurgery-induced leukoencephalopathy is known to be clinically different from that following fractionated radiation, pathological differences are not well characterized. In this study, we aimed to integrate novel radiographic and histopathologic observations to gain a conceptual understanding of radiosurgery-induced leukoencephalopathy. Methods and Materials: We examined resected tissues of 10 patients treated at Yale New Haven Hospital between January 1, 2009, and June 30, 2010, for brain metastases that had been previously treated with Gamma Knife radiosurgery, who subsequently required surgical management of a symptomatic regrowing lesion. None of the patients showed pathological evidence of tumor recurrence. Clinical and magnetic resonance imaging data for each of the 10 patients were then studied retrospectively. Results: We provide evidence to show that radiosurgery-induced leukoencephalopathy may present as an advancing process that extends beyond the original high-dose radiation field. Neuropathologic examination of the resected tissue revealed traditionally known leukoencephalopathic changes including demyelination, coagulation necrosis, and vascular sclerosis. Unexpectedly, small and medium-sized vessels revealed transmural T-cell infiltration indicative of active vasculitis. Conclusions: We propose that the presence of a vasculitic component in association with radiation-induced leukoencephalopathy may facilitate the progressive nature of the condition. It may also explain the resemblance of delayed leukoencephalopathy with recurring tumor on virtually all imaging modalities used for posttreatment follow-up.

  5. A case of radiation induced cancer

    Ozawa, Kazuyoshi; Tsuchikawa, Kohzo; Sato, Akira; Kato, Joji (Nippon Dental Univ., Niigata (Japan). School of Dentistry at Niigata)

    1994-06-01

    A case of carcinoma on the right buccal mucosa is presented. The case was suspected to have been induced by irradiation therapy for a carcinoma on the left buccal mucosa. An external radiotherapy, 6-MeV Linac, had been done for the carcinoma on the left buccal mucosa in a 55-year-old female, with single lateral direction from the left to the right in 1977. In 1985, a papillary lesion on the right buccal mucosa was detected, and histological examination revealed a papilloma without atypism. In 1991, as an ulcer on the right upper buccal fold as well as three papillary lesions in the central portion of the right buccal mucosa were found, the patient was referred to our clinic. Microscopical findings were consistent with the early invasive carcinomas. A surgical excision of these whole lesions and skin graft were completed. The criteria of this case for the suspicion of radiation-induced carcinoma were as follows. There was a long latent period of 14 years. The previous dose of irradiation, 60 Gy, was sufficient. The right buccal mucosa was involved in the radiation field. A severe scar on the left cheek resulted from the previous irradiation. Anatomically, there is no evidence of the secondary carcinoma on the right buccal mucosa with the primary carcinoma on the left buccal mucosa. No evidence for recurrence of the tumors on both sides of buccal mucosa has been detected so far. Further observations will be necessary to detect other tumors in the irradiated field later on. (author).

  6. Radiation-induced carotid artery atherosclerosis

    Gujral, Dorothy M.; Chahal, Navtej; Senior, Roxy; Harrington, Kevin J.; Nutting, Christopher M.

    2014-01-01

    Purpose: Carotid arteries frequently receive significant doses of radiation as collateral structures in the treatment of malignant diseases. Vascular injury following treatment may result in carotid artery stenosis (CAS) and increased risk of stroke and transient ischaemic attack (TIA). This systematic review examines the effect of radiotherapy (RT) on the carotid arteries, looking at the incidence of stroke in patients receiving neck radiotherapy. In addition, we consider possible surrogate endpoints such as CAS and carotid intima-medial thickness (CIMT) and summarise the evidence for radiation-induced carotid atherosclerosis. Materials and methods: From 853 references, 34 articles met the criteria for inclusion in this systematic review. These papers described 9 studies investigating the incidence of stroke/TIA in irradiated patients, 11 looking at CAS, and 14 examining CIMT. Results: The majority of studies utilised suboptimally-matched controls for each endpoint. The relative risk of stroke in irradiated patients ranged from 1.12 in patients with breast cancer to 5.6 in patients treated for head and neck cancer. The prevalence of CAS was increased by 16–55%, with the more modest increase seen in a study using matched controls. CIMT was increased in irradiated carotid arteries by 18–40%. Only two matched-control studies demonstrated a significant increase in CIMT of 36% and 22% (p = 0.003 and <0.001, respectively). Early prospective data demonstrated a significant increase in CIMT in irradiated arteries at 1 and 2 years after RT (p < 0.001 and <0.01, respectively). Conclusions: The incidence of stroke was significantly increased in patients receiving RT to the neck. There was a consistent difference in CAS and CIMT between irradiated and unirradiated carotid arteries. Future studies should optimise control groups

  7. Hazard of the radiation induced thyroid cancer

    Buglova, Ye.Ye.

    2001-01-01

    The level of thyroid cancer in Belarus before Chernobyl accident was low and made in different age and sex groups 0,03-2,5 (male) and 0,1-3,9 (female) per 100000 correspondingly. Different risk factors, which can influence the thyroid cancer development, are being taken into account. They are the factors of environment (strong external irradiation, long-time irradiation for medical purposes or in result of disaster), endo gen factors (hormonal, reproductive, genetic predisposition), some medicinal preparations and other. The protective effect of vegetable and fish consumption was found out. Among the factors of thyroid cancer development one of the most important is radiation. There is a point of view, which assumes that one of the reasons of thyroid cancer cases increase among the population of developed countries is increase of radiation induced thyroid cancer. The results of first research testify the influence of radiation factor on thyroid cancer development. During the period 1920 -1960 in the USA X-ray therapy was applied for the treatment of different good-quality diseases. Thyroid got in the zone of irradiation during the complex treatment with using of radiation. The results of the research of 1970 revealed that 70% of children with thyroid cancer were exposed to radiation in children's age. The subsequent researches of by-effects from the side of a thyroid at beam therapy of various diseases alongside with the results of the estimation of consequences of inhabitants of Hiroshima and Nagasaki irradiation owing to nuclear bombardment have shown the influence of irradiation of a thyroid on cancer development. High quantity of radio-epidemiological researches was directed to the studying of the consequences of thyroid external irradiation at young age. In all carried out researches the quantity of observed thyroid cancer cases among irradiated people has exceeded number of expected. The influence of thyroid internal irradiation by I-131 at young age was

  8. Rosiglitazone attenuates pulmonary fibrosis and radiation-induced intestinal damage

    Mangoni, M.; Gerini, C.; Sottili, M.; Cassani, S.; Stefania, G.; Biti, G.; Castiglione, F.; Vanzi, E.; Bottoncetti, A.; Pupi, A.

    2011-01-01

    Full text of publication follows: Purpose.-The aim of the study was to evaluate radioprotective effect of rosiglitazone (RGZ) on a murine model of late pulmonary damage and of acute intestinal damage. Methods.- Lung fibrosis: C57 mice were treated with the radiomimetic agent bleomycin, with or without rosiglitazone (5 mg/kg/day). To obtain an independent qualitative and quantitative measure for lung fibrosis we used high resolution CT, performed twice a week during the entire observation period. Hounsfield Units (HU) of section slides from the upper and lower lung region were determined. On day 31 lungs were collected for histological analysis. Acute intestinal damage: mice underwent 12 Gy total body irradiation with or without rosiglitazone. Mice were sacrificed 24 or 72 h after total body irradiation and ileum and colon were collected. Results.- Lung fibrosis: after bleomycin treatment, mice showed typical CT features of lung fibrosis, including irregular septal thickening and patchy peripheral reticular abnormalities. Accordingly, HU lung density was dramatically increased. Rosiglitazone markedly attenuated the radiological signs of fibrosis and strongly inhibited HU lung density increase (60% inhibition at the end of the observation period). Histological analysis revealed that in bleomycin-treated mice, fibrosis involved 50-55% of pulmonary parenchyma and caused an alteration of the alveolar structures in 10% of parenchyma, while in rosiglitazone-treated mice, fibrosis involved only 20-25% of pulmonary parenchyma, without alterations of the alveolar structures. Acute intestinal damage: 24 h after 12 Gy of total body irradiation intestinal mucosa showed villi shortening, mucosal thickness and crypt necrotic changes. Rosiglitazone showed a histological improvement of tissue structure, with villi and crypts normalization and oedema reduction. Conclusion.- These results demonstrate that rosiglitazone displays a protective effect on pulmonary fibrosis and radiation-induced

  9. Rosiglitazone attenuates pulmonary fibrosis and radiation-induced intestinal damage

    Mangoni, M.; Gerini, C.; Sottili, M.; Cassani, S.; Stefania, G.; Biti, G. [Radiotherapy Unit, Clinical Physiopathology Department, University of Florence, Firenze (Italy); Castiglione, F. [Department of Human Pathology and Oncology, University of Florence, Firenze (Italy); Vanzi, E.; Bottoncetti, A.; Pupi, A. [Nuclear Medicine Unit, Clinical Physiopathology Department, University of Florence, Firenze (Italy)

    2011-10-15

    Full text of publication follows: Purpose.-The aim of the study was to evaluate radioprotective effect of rosiglitazone (RGZ) on a murine model of late pulmonary damage and of acute intestinal damage. Methods.- Lung fibrosis: C57 mice were treated with the radiomimetic agent bleomycin, with or without rosiglitazone (5 mg/kg/day). To obtain an independent qualitative and quantitative measure for lung fibrosis we used high resolution CT, performed twice a week during the entire observation period. Hounsfield Units (HU) of section slides from the upper and lower lung region were determined. On day 31 lungs were collected for histological analysis. Acute intestinal damage: mice underwent 12 Gy total body irradiation with or without rosiglitazone. Mice were sacrificed 24 or 72 h after total body irradiation and ileum and colon were collected. Results.- Lung fibrosis: after bleomycin treatment, mice showed typical CT features of lung fibrosis, including irregular septal thickening and patchy peripheral reticular abnormalities. Accordingly, HU lung density was dramatically increased. Rosiglitazone markedly attenuated the radiological signs of fibrosis and strongly inhibited HU lung density increase (60% inhibition at the end of the observation period). Histological analysis revealed that in bleomycin-treated mice, fibrosis involved 50-55% of pulmonary parenchyma and caused an alteration of the alveolar structures in 10% of parenchyma, while in rosiglitazone-treated mice, fibrosis involved only 20-25% of pulmonary parenchyma, without alterations of the alveolar structures. Acute intestinal damage: 24 h after 12 Gy of total body irradiation intestinal mucosa showed villi shortening, mucosal thickness and crypt necrotic changes. Rosiglitazone showed a histological improvement of tissue structure, with villi and crypts normalization and oedema reduction. Conclusion.- These results demonstrate that rosiglitazone displays a protective effect on pulmonary fibrosis and radiation-induced

  10. Indomethacin attenuation of radiation-induced hyperthermia does not modify radiation-induced motor hypoactivity

    Ferguson, J.L.; Kandasamy, S.B.; Harris, A.H.; Davis, H.D.; Landauer, M.R. [Armed Forces Radiobiology Research Inst., Bethesda, MD (United States)

    1996-09-01

    Exposure of rats to 5-10 Gy of ionizing radiation produces hyperthermia and reduces motor activity. Previous studies suggested that radiation-induced hyperthermia results from a relatively direct action on the brain and is mediated by prostaglandins. To test the hypothesis that hypoactivity may be, in part, a thermoregulatory response to this elevation in body temperature, adult male rats were given indomethacin (0.0, 0.5, 1.0, and 3.0 mg/kg, intraperitoneally), a blocker of prostaglandin synthesis, and were either irradiated (LINAC 18.6 MeV (nominal) high-energy electrons, 10 Gy at 10 Gy/min, 2.8 {mu}sec pulses at 2 Hz) or sham-irradiated. The locomotor activity of all rats was then measured for 30 min in a photocell monitor for distance traveled and number of vertical movements. Rectal temperatures of irradiated rats administered vehicle only were elevated by 0.9{+-}0.2degC at the beginning and the end of the activity session. Although indomethacin, at the two higher doses tested, attenuated the hyperthermia in irradiated rats by 52-75%, it did not attenuate radiation-induced reductions in motor activity. These results indicate that motor hypoactivity after exposure to 10 Gy of high-energy electrons is not due to elevated body temperature or to the increased synthesis of prostaglandins. (author)

  11. Indomethacin attenuation of radiation-induced hyperthermia does not modify radiation-induced motor hypoactivity

    Ferguson, J.L.; Kandasamy, S.B.; Harris, A.H.; Davis, H.D.; Landauer, M.R.

    1996-01-01

    Exposure of rats to 5-10 Gy of ionizing radiation produces hyperthermia and reduces motor activity. Previous studies suggested that radiation-induced hyperthermia results from a relatively direct action on the brain and is mediated by prostaglandins. To test the hypothesis that hypoactivity may be, in part, a thermoregulatory response to this elevation in body temperature, adult male rats were given indomethacin (0.0, 0.5, 1.0, and 3.0 mg/kg, intraperitoneally), a blocker of prostaglandin synthesis, and were either irradiated (LINAC 18.6 MeV (nominal) high-energy electrons, 10 Gy at 10 Gy/min, 2.8 μsec pulses at 2 Hz) or sham-irradiated. The locomotor activity of all rats was then measured for 30 min in a photocell monitor for distance traveled and number of vertical movements. Rectal temperatures of irradiated rats administered vehicle only were elevated by 0.9±0.2degC at the beginning and the end of the activity session. Although indomethacin, at the two higher doses tested, attenuated the hyperthermia in irradiated rats by 52-75%, it did not attenuate radiation-induced reductions in motor activity. These results indicate that motor hypoactivity after exposure to 10 Gy of high-energy electrons is not due to elevated body temperature or to the increased synthesis of prostaglandins. (author)

  12. Novel features of radiation-induced segregation and radiation-induced precipitation in austenitic stainless steels

    Jiao, Z., E-mail: zjiao@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Was, G.S. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2011-02-15

    Three stainless steel alloys, high-purity 304 (HP304), high-purity 304 with high Si (HP304 + Si) and commercial purity 304 (CP304), were irradiated with 2 MeV protons to a dose of 5 dpa at 360 deg. C and subsequently examined using atom probe tomography (APT) and scanning transmission electron microscopy-energy dispersive X-ray spectrometry (STEM-EDS). Several novel features of radiation-induced segregation and radiation-induced precipitation were observed. There is a significant variation in the composition of enriched and depleted elements in the grain boundary plane and along the dislocation loop core. Boron segregation to the grain boundary prior to irradiation is not affected by the irradiation. Phosphorus segregation is enhanced by irradiation. Carbon depletes at the grain boundary and may be affected by co-segregation with Cr. APT and STEM-EDS measurements are in excellent agreement for almost all the elements studied. The segregation behavior of elements at dislocations mirrors that at the grain boundary, but at a lower magnitude, except for Si. Ni/Si-rich clusters formed in irradiated HP304 + Si and CP304 are probably the precursors of {gamma}' or other Si- and Ni-rich phases. Copper depletion was observed at both the grain boundary and the dislocation loops. Regions adjacent to the depleted zones were sites for Cu cluster formation, which were also spatially correlated with Ni/Si-rich clusters.

  13. Characterization of a Novel Radiation-Induced Sarcoma Cell Line

    Lang, J.; Zhu, W.Z.; Nokes, B.; Sheth, S.G.; Novák, Petr; Fuchs, L.; Watts, G.; Futscher, B. W.; Mineyev, N.; Ring, A.

    2015-01-01

    Roč. 111, č. 6 (2015), s. 669-682 ISSN 0022-4790 Institutional support: RVO:60077344 Keywords : Sarcoma * radiation-induced * breast * cancer Subject RIV: FD - Oncology ; Hematology Impact factor: 3.151, year: 2015

  14. Radiation induced changes in the airway - anaesthetic implications

    Adele

    CASE REPORT. Southern African Journal of Anaesthesia & Analgesia - May 2004. 19. Radiation ... Summary: Radiation induces a variety of changes in the airway that can potentially lead to difficult intubation. ... Mask holding and ventilation is.

  15. Image Guidance and Assessment of Radiation Induced Gene Therapy

    Pelizzari, Charles

    2004-01-01

    Image guidance and assessment techniques are being developed for combined radiation/gene therapy, which utilizes a radiation-inducible gene promoter to cause expression of tumor necrosis factor alpha...

  16. A case of radiation-induced osteosarcoma of the maxilla

    Tanaka, Rie; Asato, Ryo; Tanaka, Shinzo; Hiratsuka, Yasuyuki; Ito, Juichi

    2003-01-01

    Radiation-induced osteosarcoma in the head and neck region is very rare. A 68-year-old female, who had been treated with radiation for malignant lymphoma of the right maxillary sinus, presented with right cheek swelling. Imaging examinations demonstrated a huge mass occupying the right nasal cavity and paranasal sinuses. Total maxillectomy was performed, and the tumor was histologically diagnosed as osteosarcoma. Diagnosis and treatment for radiation-induced osteosarcoma in the head and neck is discussed. (author)

  17. A case of radiation-induced osteosarcoma of the maxilla

    Tanaka, Rie [Shimada City Hospital, Shizuoka (Japan); Asato, Ryo; Tanaka, Shinzo; Hiratsuka, Yasuyuki; Ito, Juichi [Kyoto Univ. (Japan). Faculty of Medicine

    2003-02-01

    Radiation-induced osteosarcoma in the head and neck region is very rare. A 68-year-old female, who had been treated with radiation for malignant lymphoma of the right maxillary sinus, presented with right cheek swelling. Imaging examinations demonstrated a huge mass occupying the right nasal cavity and paranasal sinuses. Total maxillectomy was performed, and the tumor was histologically diagnosed as osteosarcoma. Diagnosis and treatment for radiation-induced osteosarcoma in the head and neck is discussed. (author)

  18. Radiation-induced neuropathies: collateral damage of improved cancer prognosis

    Pradat, Pierre-Francois; Maisonobe, Thierry; Psimaras, Dimitri; Lenglet, Timothee; Porcher, Raphael; Lefaix, J.L.; Delenian, S.

    2012-01-01

    Because of the improvement of cancer prognosis, long-term damages of treatments become a medical and public health problem. Among the iatrogenic complications, neurological impairment is crucial to consider since motor disability and pain have a considerable impact on quality of life of long cancer survivors. However, radiation-induced neuropathies have not been the focus of great attention. The objective of this paper is to provide an updated review about the radiation-induced lesions of the peripheral nerve system. Radiation-induced neuropathies are characterized by their heterogeneity in both symptoms and disease course. Signs and symptoms depend on the affected structures of the peripheral nerve system (nerve roots, nerve plexus or nerve trunks). Early-onset complications are often transient and late complications are usually progressive and associated with a poor prognosis. The most frequent and well known is delayed radiation-induced brachial plexopathy, which may follow breast cancer irradiation. Radiation-induced lumbosacral radiculoplexopathy is characterized by pure or predominant lower motor neuron signs. They can be misdiagnosed, confused with amyotrophic lateral sclerosis (ALS) or with leptomeningeal metastases since nodular MRI enhancement of the nerve roots of the cauda equina and increased cerebrospinal fluid protein content can be observed. In the absence of specific markers of the link with radiotherapy, the diagnosis of post-radiation neuropathy may be difficult. Recently, a posteriori conformal radiotherapy with 3D dosimetric reconstitution has been developed to link a precise anatomical site to unexpected excess irradiation. The importance of early diagnosis of radiation-induced neuropathies is underscored by the emergence of new disease-modifying treatments. Although the pathophysiology is not fully understood, it is already possible to target radiation-induced fibrosis but also associated factors such as ischemia, oxidative stress and

  19. Radiation-Induced Second Cancer Risk Estimates From Radionuclide Therapy

    Bednarz, Bryan; Besemer, Abigail

    2017-09-01

    The use of radionuclide therapy in the clinical setting is expected to increase significantly over the next decade. There is an important need to understand the radiation-induced second cancer risk associated with these procedures. In this study the radiation-induced cancer risk in five radionuclide therapy patients was investigated. These patients underwent serial SPECT imaging scans following injection as part of a clinical trial testing the efficacy of a 131Iodine-labeled radiopharmaceutical. Using these datasets the committed absorbed doses to multiple sensitive structures were calculated using RAPID, which is a novel Monte Carlo-based 3D dosimetry platform developed for personalized dosimetry. The excess relative risk (ERR) for radiation-induced cancer in these structures was then derived from these dose estimates following the recommendations set forth in the BEIR VII report. The radiation-induced leukemia ERR was highest among all sites considered reaching a maximum value of approximately 4.5. The radiation-induced cancer risk in the kidneys, liver and spleen ranged between 0.3 and 1.3. The lifetime attributable risks (LARs) were also calculated, which ranged from 30 to 1700 cancers per 100,000 persons and were highest for leukemia and the liver for both males and females followed by radiation-induced spleen and kidney cancer. The risks associated with radionuclide therapy are similar to the risk associated with external beam radiation therapy.

  20. The protective effect of Transhinone II A in radiation-induced pulmonary fibrosis

    Li Guanghu; Li Zhiping; Xu Yong; Xu Feng; Wang Jin

    2006-01-01

    Objective: To investigate the protective effect and it's possible mechanism of Tanshinone II A in radiation-induced pulmonary fibrosis. Methods: Having the right hemithorax of female Wistar rats irradiated 30 Gy in 10 fractions within 14 days by 6 MV photons, the radiation-induced pulmonary fibrosis animal model was established. In the treatment group, sodium Tanshinone II A sulfonate (15 mg/kg) was given by intraperitoneal injection 1 hour before each fraction of irradiation. Five months after irradiation, the difference of the histopathological changes, the hyckoxyproline content and expression of TGF-β1 between the radiation alone group, tanshinone plus radiation and control group were analyzed by HE stain, Massion stain, immunohistochemical methor and reverse transcriptase polymerase chain reaction(RT-PCR) method. Results: The histopathological comparison revealed the protective effect of Tanshinone II A. The content of hydroxyproline was (21.99±3.96), (38.25± 7.18), (28.94±4.29) μg/g in the control group, radiation alone group and radiation plus Tanshinone II A. The expression of TGF-β1 (mRNA and protein) was reduced by Tanshinone II A. Pathological changes of the pulmonary fibrosis was reduced by Tanshinone II A yet. Conclusions: Our study shows that Tanshinone II A can inhibit radiation-induced pulmonary fibrosis, and the possible mechanism of its may be made possible through down-regulating the expression of TGF-β1 in the irritated lung tissue. (authors)

  1. Ultraviolet radiation

    Hawk, J.

    1986-01-01

    Ultraviolet radiation (UVR) from the sun or artificial sources is reflected or transmitted at the surface of the skin, about 5% of normally incident rays being directly reflected. The transmitted fraction is scattered, photochemically absorbed or dissipated as heat within the skin, or passes from it to contribute to the variable total amount of reflected and transmitted radiation. The UVR absorbers in skin are not definitely known, but DNA is a definite target and probably lipoprotein membranes, RNA, proteins, mucopolysaccharides, elastin and collagen. Photochemical or free radical damage to absorber or nearby organelles leads to pharmacological, ultrastructural, histological and clinical changes. Most frequent DNA damage is pyrimidine dimer formation, apparently inhibiting cell function and replication. This is largely enzymatically repaired in man in the dark by excision repair, post-replication repair and possible other enzymatic mechanisms, and at least in some organisms by light-induced photoreactivation repair. UVR exposure causes well recognized acute and chronic clinical syndromes in man. These are discussed in this paper

  2. Microfabricated electrochemical sensor for the detection of radiation-induced DNA damage

    Wang, J.; Rivas, G.; Ozsoz, M.; Grant, D.H.; Cai, X.; Parrado, C. [New Mexico State Univ., Las Cruces, NM (United States)

    1997-04-01

    An electrochemical biosensor protocol for the detection of radiation-induced DNA damage is described. The procedure employs a dsDNA-coated screen-printed electrode and relies on changes in the guanine-DNA oxidation signal upon exposure to ultraviolet radiation. The decreased signal is ascribed primarily to conformational changes in the DNA and to the photoconversion of the guanine-DNA moiety to a nonelectroactive monomeric base product. Factors influencing the response of these microfabricated DNA sensors, such as irradiation time, wavelength, and distance, are explored, and future prospects are discussed. Similar results are given for the use of bare strip electrodes in connection with irradiated DNA solutions. 8 refs., 4 figs.

  3. Characterization of radiation-induced Apoptosis in rodent cell lines

    Guo, Min; Chen, Changhu; Ling, C.C.

    1997-01-01

    For REC:myc(ch1), Rat1 and Rat1:myc b cells, we determined the events in the development of radiation-induced apoptosis to be in the following order: cell division followed by chromatin condensation, membrane blebbing, loss of adhesion and the uptake of vital dye. Experimental data which were obtained using 4 He ions of well defined energies and which compared the dependence of apoptosis and clonogenic survival on 4 He range strongly suggested that in our cells both apoptosis and loss of clonogenic survival resulted from radiation damage to the cell nucleus. Corroboratory evidence was that BrdU incorporation sensitized these cells to radiation-induced apoptosis. Comparing the dose response for apoptosis and the clonogenic survival curves for Rat1 and Rat1:myc b cells, we concluded that radiation-induced cell inactivation as assayed by clonogenic survival, and that a modified linear-quadratic model, proposed previously, modeled such a contribution effectively. In the same context, the selective increase in radiation-induced apoptosis. Comparing the dose response for apoptosis and the clonogenic survival curves for Rat1 and Rat1:myc b cells, we concluded that radiation-induced apoptosis contributed to the overall radiation-induced cell inactivation as assayed by clonogenic survival, and that a modified linear-quadratic model, proposed previously, modeled such a contribution effectively. In the same context, the selective increase in radiation-induced apoptosis during late S and G 2 phases reduced the relative radioresistance observed for clonogenic survival during late S and G 2 phases. 30 refs., 8 figs

  4. Mechanisms of radiation-induced gene responses

    Woloschak, G.E.; Paunesku, T.

    1996-01-01

    In the process of identifying genes differentially expressed in cells exposed ultraviolet radiation, we have identified a transcript having a 26-bp region that is highly conserved in a variety of species including Bacillus circulans, yeast, pumpkin, Drosophila, mouse, and man. When the 5' region (flanking region or UTR) of a gene, the sequence is predominantly in +/+ orientation with respect to the coding DNA strand; while in the coding region and the 3' region (UTR), the sequence is most frequently in the +/-orientation with respect to the coding DNA strand. In two genes, the element is split into two parts; however, in most cases, it is found only once but with a minimum of 11 consecutive nucleotides precisely depicting the original sequence. The element is found in a large number of different genes with diverse functions (from human ras p21 to B. circulans chitonase). Gel shift assays demonstrated the presence of a protein in HeLa cell extracts that binds to the sense and antisense single-stranded consensus oligomers, as well as to the double- stranded oligonucleotide. When double-stranded oligomer was used, the size shift demonstrated as additional protein-oligomer complex larger than the one bound to either sense or antisense single-stranded consensus oligomers alone. It is speculated either that this element binds to protein(s) important in maintaining DNA is a single-stranded orientation for transcription or, alternatively that this element is important in the transcription-coupled DNA repair process

  5. The use of recombinant DNA techniques to study radiation-induced damage, repair and genetic change in mammalian cells

    Thacker, J.

    1986-01-01

    A brief introduction is given to appropriate elements of recombinant DNA techniques and applications to problems in radiobiology are reviewed with illustrative detail. Examples are included of studies with both 254 nm ultraviolet light and ionizing radiation and the review progresses from the molecular analysis of DNA damage in vitro through to the nature of consequent cellular responses. The review is dealt with under the following headings: Molecular distribution of DNA damage, The use of DNA-mediated gene transfer to assess damage and repair, The DNA double strand break: use of restriction endonucleases to model radiation damage, Identification and cloning of DNA repair genes, Analysis of radiation-induced genetic change. (UK)

  6. Influence of novobiocin on mitotic events and radiation-induced G2-arrest

    Rowley, R.

    1987-01-01

    Novobiocin was used in CHO cells to test for an involvement of topoisomerase II activity in; 1) the induction of, and recovery from, radiation-induced G 2 -arrest and 2) progression through mitosis. Novobiocin blocked recovery from G 2 -arrest with a concentration dependency which suggested that this effect resulted from protein synthesis inhibition. Novobiocin alone, at concentrations above 500 μgml, blocked cell progression in early mitosis. The transition point was distinct from that of protein and RNA synthesis inhibitors and was the only arrest point in mitosis. A similar block was imposed by coumermycin. While this may indicate a requirement for topoisomerase II activity during chromosome condensation, it was also associated with inhibition of histone phosphorylation. Histone H3 phosphorylation is believed to be necessary for chromosome condensation and, when inhibited by novobiocin, correlates with a block in premature chromatin condensation in tsBN2 cells. The authors' data thus unite these two findings, provide an opportunity to analyse the temporal relationship between histone phosphorylation and mitotic events and suggest that topological reorganization of the chromatin is not involved in radiation-induced G 2 arrest

  7. Protective effect of esculentoside A on radiation-induced dermatitis and fibrosis

    Xiao Zhenyu; Su Ying; Yang Shanmin; Yin Liangjie; Wang Wei; Yi Yanghua; Fenton, Bruce M.; Zhang Lurong; Okunieff, Paul

    2006-01-01

    Purpose: To investigate the effect of esculentoside A (EsA) on radiation-induced cutaneous and fibrovascular toxicity and its possible molecular mechanisms, both in vivo and in vitro. Methods and Materials: Mice received drug intervention 18 hours before 30 Gy to the right hind leg. Alterations in several cytokines expressed in skin tissue 2 days after irradiation were determined by ELISA. Early skin toxicity was evaluated 3 to 4 weeks after irradiation by skin scoring, and both tissue contraction and expression of TGF-β1 were determined for soft-tissue fibrosis 3 months after irradiation. In vitro, the effect of EsA on radiation-induced nitric oxide (NO) and cytokine production in different cell types was measured by application of 2, 4, and 8 Gy. Results: In vivo, EsA reduced levels of IL-1α, MCP-1, VEGF, and TGF-β1 in cutaneous tissue and reduced soft-tissue toxicity. In vitro, EsA inhibited the IL-1α ordinarily produced after 4 Gy in A431 cells. In Raw264.7 cells, EsA reduced levels of IL-1α, IL-1β, and NO production costimulated by radiation and lipopolysaccharide (LPS). In L-929 cells, EsA inhibited VEGF, TNF, and MCP-1 production at 2, 4, and 8 Gy. Conclusions: Esculentoside A protects soft tissues against radiation toxicity through inhibiting the production of several proinflammatory cytokines and inflammatory mediators in epithelial cells, macrophages, fibroblasts, and skin tissue

  8. Radiation Induced Vaccination to Breast Cancer

    2016-12-01

    of anti-TGFβ antibody clearly boosted the CD8 memory pool, especially the central memory type, to the detriment of T effector cells. Similar findings...interest also because T cell inflammation of the memory type correlates with better prognosis in colorectal cancer presumably through stronger recall ...ABSTRACT Inhibiting TGFβ in the context of focal irradiation seems to create a favorable systemic immune landscape that drives T cell memory

  9. Role of endothelium in radiation-induced normal tissue damages

    Milliat, F.

    2007-05-01

    More than half of cancers are treated with radiation therapy alone or in combination with surgery and/or chemotherapy. The goal of radiation therapy is to deliver enough ionising radiation to destroy cancer cells without exceeding the level that the surrounding healthy cells can tolerate. Unfortunately, radiation-induced normal tissue injury is still a dose limiting factor in the treatment of cancer with radiotherapy. The knowledge of normal tissue radiobiology is needed to determine molecular mechanisms involved in normal tissue pathogenic pathways in order to identify therapeutic targets and develop strategies to prevent and /or reduce side effects of radiation therapy. The endothelium is known to play a critical role in radiation-induced injury. Our work shows that endothelial cells promote vascular smooth muscle cell proliferation, migration and fibro-genic phenotype after irradiation. Moreover, we demonstrate for the first time the importance of PAI-1 in radiation-induced normal tissue damage suggesting that PAI-1 may represent a molecular target to limit injury following radiotherapy. We describe a new role for the TGF-b/Smad pathway in the pathogenesis of radiation-induced damages. TGF-b/Smad pathway is involved in the fibro-genic phenotype of VSMC induced by irradiated EC as well as in the radiation-induced PAI-1 expression in endothelial cells. (author)

  10. Radiation-induced camptocormia and dropped head syndrome. Review and case report of radiation-induced movement disorders

    Seidel, Clemens; Kuhnt, Thomas; Kortmann, Rolf-Dieter; Hering, Kathrin

    2015-01-01

    In recent years, camptocormia and dropped head syndrome (DHS) have gained attention as particular forms of movement disorders. Camptocormia presents with involuntary forward flexion of the thoracolumbar spine that typically increases during walking or standing and may severely impede walking ability. DHS is characterized by weakness of the neck extensors and a consecutive inability to extend the neck; in severe cases the head is fixed in a ''chin to chest position.'' Many diseases may underlie these conditions, and there have been some reports about radiation-induced camptocormia and DHS. A PubMed search with the keywords ''camptocormia,'' ''dropped head syndrome,'' ''radiation-induced myopathy,'' ''radiation-induced neuropathy,'' and ''radiation-induced movement disorder'' was carried out to better characterize radiation-induced movement disorders and the radiation techniques involved. In addition, the case of a patient developing camptocormia 23 years after radiation therapy of a non-Hodgkin's lymphoma of the abdomen is described. In total, nine case series of radiation-induced DHS (n = 45 patients) and - including our case - three case reports (n = 3 patients) about radiogenic camptocormia were retrieved. Most cases (40/45 patients) occurred less than 15 years after radiotherapy involving extended fields for Hodgkin's disease. The use of wide radiation fields including many spinal segments with paraspinal muscles may lead to radiation-induced movement disorders. If paraspinal muscles and the thoracolumbar spine are involved, the clinical presentation can be that of camptocormia. DHS may result if there is involvement of the cervical spine. To prevent these disorders, sparing of the spine and paraspinal muscles is desirable. (orig.) [de

  11. Control of radiation-induced diarrhea with cholestyramine

    Heusinkveld, R.S.; Manning, M.R.; Aristizabal, S.A.

    1978-01-01

    Cholestyramine is a non-absorbable ion-exchange resin which specifically binds bile salts. We have treated seven patients with acute or chronic radiation-induced diarrhea that was refractory to the usual methods of control with cholestyramine. In each case, the diarrhea was controlled with cholestyramine. This observation supports previous experimental work with animals which indicated that bile salts contribute to the genesis of radiation-induced diarrhea. Cholestyramine is well-tolerated, but should not be administered with certain oral medications. The results of this small series are preliminary, but point the way toward a more extensive clinical trial to define the usefulness of cholestyramine in the treatment of refractory acute or chronic radiation-induced diarrhea

  12. Effect of dose on radiation-induced conductivity in polymers

    Tyutnev, A.P.; Saenko, V.S.; Pozhidaev, E.D.; Ikhsanov, R.Sh.

    2007-01-01

    Numerical simulation of radiation-induced conductivity in polymers upon long-term irradiation on the basis of the generalized Rose-Fowler-Vaisberg model, which allows for both dipolar carrier transport and generation of radiation traps during irradiation, was performed. The unusual properties of radiation-induced conductivity, such as the appearance of a maximum on current transients, the absence of a steady state, and a substantial difference between these curves for the first and subsequent irradiation, are rationalized in terms of the formation of free radicals, the major feature of radiolysis in the chemical aspect. This interpretation does not require the involvement of degradation or crosslinking processes, unlike other interpretations that appear in the literature. With the use of low-density polyethylene as an example, it was shown that radiation-induced conductivity both upon pulse and continuous irradiation can satisfactorily be described with the unified set of parameters of the generalized Rose-Fowler-Vaisberg model [ru

  13. Membrane phospholipids and radiation-induced death of mammalian cells

    Wolters, H.

    1987-01-01

    Radiation-induced cell killing is generally believed to be a consequence of residual DNA damage or damage that is mis-repaired. However, besides this DNA damage, damage to other molecules or structures of the cell may be involved in the killing. Especially membranes have been suggested as a determinant in cellular radiosensitivity. In this thesis experiments are described, dealing with the possible involvement of membranes in radiation-induced killing of mammalian cells. A general treatise of membrane structure is followed by information concerning deleterious effects of radiation on membranes. Consequences of damage to structure and function of membranes are reviewed. Thereafter evidence relating to the possible involvement of membranes in radiation-induced cell killing is presented. (Auth.)

  14. Carboplatin enhances the production and persistence of radiation-induced DNA single-strand breaks

    Yang, L.; Douple, E.B.; O'Hara, J.A.; Wang, H.J.

    1995-01-01

    Fluorometric analysis of DNA unwinding and alkaline elution were used to investigate the production and persistence of DNA single-strand breaks (SSBs) in Chinese hamster V79 and xrs-5 cells treated with the chemotherapeutic agent carboplatin in combination with radiation. Carboplatin was administered to cells before irradiation in hypoxic conditions, or the drug was added immediately after irradiation during the postirradiation recovery period in air. The results of DNA unwinding studies suggest that carboplatin enhances the production of radiation-induced SSBs in hypoxic V79 cells and xrs-5 cells by a factor of 1.86 and 1.83, respectively, when combined with radiation compared to the SSBs produced by irradiation alone. Carboplatin alone did not produce a measureable number of SSBs. Alkaline elution profiles also indicated that the rate of elution of SSBs was higher in cells treated with the carboplatin is present after irradiation and during the postirradiation recovery period, the rejoining of radiation-induced SSBs by a factor of 1.46 in V79 cells with 20 Gy irradiation and by a factor of 2.02 in xrs-5 cells with 20 Gy irradiation. When carboplatin is present after irradiation and during the postirradiation recovery period, the rejoining of radiation-induced SSBs is inhibited during this postirradiation incubation period (radiopotentiation) with a relative inhibition factor at 1 h postirradiation of 1.25 in V79 cells and 1.15 in xrs-5 cells. An increased production and persistence of SSBs resulting from the interaction of carboplatin with radiation may be an important step in the mechanism responsible for the potentiated cell killing previously from studies in animal tumors and in cultured cells. 31 refs., 7 figs

  15. Mechanistic issues for modeling radiation-induced segregation

    Simonen, E.P.; Bruemmer, S.M.

    1993-03-01

    Model calculations of radiation-induced chromium depletion and radiation-induced nickel enrichment at grain boundaries are compared to measured depletions and enrichments. The model is calibrated to fit chromium depletion in commercial purity 304 stainless steel irradiated in boiling water reactor (BWR) environments. Predicted chromium depletion profiles and the dose dependence of chromium concentration at grain boundaries are in accord with measured trends. Evaluation of chromium and nickel profiles in three neutron, and two ion, irradiation environments reveal significant inconsistencies between measurements and predictions

  16. Radiation-induced radical ions in calcium sulfite

    Bogushevich, S. E.

    2006-07-01

    We have used EPR to study the effect of γ radiation on calcium sulfite. We have observed and identified the radiation-induced radical ions SO 2 - (iso) with g = 2.0055 and SO 2 - (orth-1) with g1 = 2.0093, g2 = 2.0051, g3 = 2.0020, identical to the initial and thermally induced SO 2 - respectively, SO 3 - (iso) with g = 2.0031 and SO 3 - (axial) with g⊥ = 2.0040, g∥ = 2.0023, identical to mechanically induced SO 3 - . We have established the participation of radiation-induced radical ions SO 3 - in formation of post-radiation SO 2 - .

  17. Radiation induced ionic polymerisation and grafting of vinyl monomers

    Stannett, V.T.

    1981-01-01

    Some special aspects of the radiation induced ionic polymerisation and grafting of vinyl monomers will be described. In particular the effects of solvents on the cationic polymerisation of the vinyl ethers will be discussed in detail. The unequivocal free ion nature of the polymerisation makes such information of considerable general interest. Estimates of the propagation rate constants with free cation polymerisation in solvents of different dielectric constants and solvation powers will be presented. Finally, some observations on the radiation induced graft polymerisation of ethyl vinyl ether to poly(vinyl chloride) and to polypropylene will be presented. (author)

  18. Radiation-induced osteosarcoma of the calvaria; Case report

    Sugita, Yasuo; Shigemori, Minoru; Miyagi, Jun; Ochiai, Satoshi; Lee, Souichi; Watanabe, Toshinori; Abe, Hitoshi; Morimatsu, Minoru [Kurume Univ., Fukuoka (Japan). School of Medicine

    1992-01-01

    The authors report a case of radiation-induced calvarial osteosarcoma. A 58-year-old female received subtotal removal of the pituitary adenoma and 5000 rads postoperative irradiation. Seven years later, an osteoblastic osteosarcoma occurred in the frontotemporal region. She received total tumor removal and chemotherapy. However, computed tomography subsequently revealed multiple small lesions at the margin of the bone flap. A chest x-ray film demonstrated lung metastasis. Local recurrence and lung metastasis require careful attention in radiation-induced osteosarcoma patients. (author).

  19. Radiation induced mitotic delay and stimulation of growth

    Feldmann, A.

    1974-01-01

    The mechanisms responsible for the radiation induced mitotic delay and stimulation of growth are discussed in connection with the results of studies in Lemna minor and Lepidium sativum. The action of temperature seems to be of major importance. As many authors suggest that various chemical agents and slight intoxications also affect mitosis in a way similar to that induced by ionizing radiation, the radiation induced stimulation has lost its specific character and approaches might be found for further investigations of this phenomenon. (MG) [de

  20. Radiation-induced void swelling in metals and alloys

    Zelinskij, V.F.; Neklyudov, I.M.; Ozhigov, L.S.; Reznichenko, Eh.A.; Rozhkov, V.V.; Chernyaeva, T.T.

    1979-01-01

    Main regularities in the development of radiation-induced void swelling are considered. Special attention is paid to consideration of a possibility to obtain information on material behaviour under conditions of reactor irradiation proceeding from the data of simulation experiments and to methods of rate control, for the processes which occur in material during irradiation and further annealing by the way of rationalized alloying, of thermomechanical treatment and programmed change of irradiation conditions under operation. Problems of initiation and growth of voids in irradiated materials are discussed as well as the ways to decrease the rate of radiation-induced void swelling

  1. Ultraviolet Extensions

    2008-01-01

    [figure removed for brevity, see original site] Side-by-Side Comparison Click on image for larger view This ultraviolet image from NASA's Galaxy Evolution Explorer shows the Southern Pinwheel galaxy, also know as Messier 83 or M83. It is located 15 million light-years away in the southern constellation Hydra. Ultraviolet light traces young populations of stars; in this image, young stars can be seen way beyond the main spiral disk of M83 up to 140,000 light-years from its center. Could life exist around one of these far-flung stars? Scientists say it's unlikely because the outlying regions of a galaxy are lacking in the metals required for planets to form. The image was taken at scheduled intervals between March 15 and May 20, 2007. It is one of the longest-exposure, or deepest, images ever taken of a nearby galaxy in ultraviolet light. Near-ultraviolet light (or longer-wavelength ultraviolet light) is colored yellow, and far-ultraviolet light is blue. What Lies Beyond the Edge of a Galaxy The side-by-side comparison shows the Southern Pinwheel galaxy, or M83, as seen in ultraviolet light (right) and at both ultraviolet and radio wavelengths (left). While the radio data highlight the galaxy's long, octopus-like arms stretching far beyond its main spiral disk (red), the ultraviolet data reveal clusters of baby stars (blue) within the extended arms. The ultraviolet image was taken by NASA's Galaxy Evolution Explorer between March 15 and May 20, 2007, at scheduled intervals. Back in 2005, the telescope first photographed M83 over a shorter period of time. That picture was the first to reveal far-flung baby stars forming up to 63,000 light-years from the edge of the main spiral disk. This came as a surprise to astronomers because a galaxy's outer territory typically lacks high densities of star-forming materials. The newest picture of M83 from the Galaxy Evolution Explorer is shown at the right, and was taken over a longer period of time. In fact, it is one of the

  2. Ultraviolet sterilization

    Schenck, G.O.

    1987-01-01

    Artificial ultraviolet radiation sources can supply bactericidal energy in such a high dosage that in less than a second a higher degree of disinfection is accomplished than by sun irradiation in hours. Bacteria, viruses, phages, and organic micropollutants can be degraded by photochemical wet combustion down to and below detection limits of organic carbon. There are no known ultraviolet-resistant microorganisms. There are limitations to ultraviolet treatment which can often be overcome by adequate technical measures. Unlike other water purification processes, ultraviolet irradiation only exterminates living organisms. The radiation must be able to penetrate to the objects of the kill; in a dose large enough to kill, and long enough to kill and prevent new growth. Contrary to filters, ultraviolet flow-through reactors do not restrict free flow significantly. In contrast to distillation, ultraviolet irradiation imposes no phase changes to the water. Used as a sequence in ultrapure water systems, maintenance requirements are virtually nonexistent; because of the absence of dissolved and particulate matter in purified water, mechanical cleaning of the photoreactor chambers is not essential. The process is highly economical; energy consumption is low and supervision minimal. 103 refs., 45 figs., 15 tabs

  3. Poor outcome in radiation-induced constrictive pericarditis

    Karram, T.; Rinkevitch, D.; Markiewicz, W.

    1993-01-01

    The purpose was to compare the outcome of patients with radiation-induced constrictive pericarditis versus patients with constiction due to another etiology. Twenty patients with constrictive pericarditis were seen during 1975-1986 at a single medical center. Six had radiation-induced constrictive pericarditis (Group A). The etiology was idiopathic in ten subjects and secondary to carcinomatous encasement, chronic renal failure, purulent infection and tuberculosis in one patient each (Group B, N = 14). Meang age was 53.4 ± 15.5 years. Extensive pericardiectomy was performed in 3/6 Group A and 13/14 Group B patients. All Group A patients died, 4 weeks - 11 years post-diagnosis (median = 10 months). Two Group A patients died suddenly, one died post-operatively of respiratory failure, another of pneumonia and two of recurrent carcinoma. Thirteen Group B patients are alive (median follow-up = 72 months). The only death in this group was due to metastatic cancer. The poor outcome with radiation-induced constriction is probably multi-factorial. Poor surgical outcome is to be expected in patients with evidence of recurrent tumor, high-dose irradiation, pulmonary fibrosis or associated radiation-induced myocardinal, valvular or coronary damage

  4. Homoeologous chromatin exchange in a radiation-induced gene transfer

    Dvorak, J.; Knott, D.R.

    1977-01-01

    Some of the ionizing-radiation-induced translocations between alien and wheat chromosomes show no deleterious effects and are transmitted normally through the pollen. Translocations of this type will be called ''compensating''. In one such compensating translocation, designated T4, it was found that chromatin in the long arm of wheat chromosome 7D was replaced with homoeologous chromatin of the Agropyron chromosome

  5. Radiation-induced vascular lesions of the skin: an overview

    Flucke, U.E.; Requena, L.; Mentzel, T.

    2013-01-01

    Radiation-induced cutaneous vascular neoplasms occur infrequently and comprise benign, so-called atypical vascular lesions (AVL) and angiosarcomas (AS), often being high-grade malignant tumors. Both arise most frequently within previously irradiated skin in breast-conserving-treated mammary cancer

  6. Radiation-induced nitration of organic compounds in aqueous solutions

    Ershov, B.G.; Gordeev, A.V.; Bykov, G.L.

    2009-01-01

    Radiation-induced nitration of organic compounds in aqueous solutions was studied. It was found that γ-irradiation of solutions containing acetic and nitric acid and/or their salts gives nitromethane. Dependences of the product yield on the absorbed dose and the contents of components were established. The mechanism of radiation nitration involving radicals is discussed. (author)

  7. Seven cases of radiation-induced cutaneous squamous cell carcinoma

    Sugita, Kazunari; Yamamoto, Osamu; Suenaga, Yoshinori

    2000-01-01

    We report 7 cases of radiation-induced skin cancer. The diagnosis was based on the history of radiotherapy for benign skin diseases (5 cases) and of occupational exposures to medical doctors (2 cases). All cases were squamous cell carcinomas which arose from chronic radiodermatitis. The estimated latent period of these tumors ranged from 6 to 64 years, with an average of 29.9 years. After surgical treatments of the lesions, no local recurrences were observed in all cases. Benign skin diseases had sometimes been treated with low-energy radiation before the 1960s. Considering the estimated latent period, the peak time point of developing risk of radiation-induced skin cancer by such treatment has been already passed, however, the danger of it should not be ignored in future. In association with multiplicity of radiation usage, occupational exposure of radiation may develop the risk of occurrence of skin cancer in future. Therefore, we should recognize that radiation-induced skin cancer is not in the past. In the cases of chronic skin diseases showing warty keratotic growth, erosion and ulcer, we should include chronic radio-dermatitis in the differential diagnosis. It is necessary to recall all patients about the history of radiotherapy or radiation exposure. Rapid histopathological examination is mandatory because of the suspicion of radiation-induced skin cancer. (author)

  8. Radiation-induced hondrosarcoma - a clinical case from our practice

    Marinova, L.; Georgiev, R.; Mihaylova, I.

    2013-01-01

    We present a clinical case of radiation - induced occipital extracerebral chondrosarcoma in 36 years old young man. The patient had undergone two brain operations 8 years ago due to oligodendroglioma in the left temporo - parietal area. These surgical interventions were partial and subtotal tumor extirpation, followed by local radiotherapy to the brain to a total dose of 56Gy. The necessity of immunohistochemistry (IHH) analysis for pathologic differential diagnosis in high grade brain and peripheral tumors was discussed. In this particular case a precise differential diagnosis between peripheral chondrosarcoma and Ewing sarcoma/pPNET is needed. important risk factors for the development of radiation-induced brain tumors and chondrosarcoma, extremely rarely diagnosed, was discussed. A very accurate precising of the treatment radiation dose is needed in young patients with malignant brain tumors, not only in the surrounding healthy brain tissues, but also in other tissues, such as skin, subcutaneous layer and bone. The exceeding of the radiation dose in the bone above 45-50 Gy, increases the risk of radiation - induced sarcoma with latent period over 8 years. Key words: Hondrosarcoma. Radiotherapy. Radiation-induced Sarcoma. Complex Treatment. Immunohistochemistry

  9. Dose rate effectiveness in radiation-induced teratogenesis in mice

    Kato, F.; Ootsuyama, A.; Norimura, T.

    2000-01-01

    To investigate the role of p53 gene in tissue repair of teratogenic injury, we compared incidence of radiation-induced malformations in homozygous p53(-/-) mice, heterozygous p53(+/-) mice and wild-type p53(+/+) mice. After X-irradiation with 2 Gy at high dose rate on 9.5 days of gestation, p53(-/-) mice showed higher incidences of anomalies and higher resistance to prenatal deaths than p53(+/+) mice. This reciprocal relationship of radiosensitivity to anomalies and deaths supports the notion that embryos or fetuses have a p53-dependent 'guardian' that aborts cells bearing radiation-induced teratogenic DNA damage. In fact, after X-irradiation, the number of apoptotic cells was greatly increased in p53(+/+) fetuses but not in p53(-/-) fetuses. The same dose of γ-ray exposure at low dose rate on 9.5-10.5 day of gestation produced significant reduction of radiation-induced malformation in p53(+/+) and p53(+/-) mice, remained teratogenic for p53(-/-) mice. These results suggest that complete elimination of teratogenic damage from irradiated tissues requires the concerted cooperation of two mechanisms; proficient DNA repair and the p53-dependent apoptotic tissue repair. When concerted DNA repair and apoptosis functions efficiently, there is a threshold dose-rate for radiation-induced malformations. (author)

  10. Kinetics of radiation-induced segregation in ternary alloys

    Lam, N.O.; Kumar, A.; Wiedersich, H.

    1982-01-01

    Model calculations of radiation-induced segregation in ternary alloys have been performed, using a simple theory. The theoretical model describes the coupling between the fluxes of radiation-induced defects and alloying elements in an alloy A-B-C by partitioning the defect fluxes into those occurring via A-, B-, and C-atoms, and the atom fluxes into those taking place via vacancies and interstitials. The defect and atom fluxes can be expressed in terms of concentrations and concentration gradients of all the species present. With reasonable simplifications, the radiation-induced segregation problem can be cast into a system of four coupled partial-differential equations, which can be solved numerically for appropriate initial and boundary conditions. Model calculations have been performed for ternary solid solutions intended to be representative of Fe-Cr-Ni and Ni-Al-Si alloys under various irradiation conditions. The dependence of segregation on both the alloy properties and the irradiation variables, e.g., temperature and displacement rate, was calculated. The sample calculations are in good qualitative agreement with the general trends of radiation-induced segregation observed experimentally

  11. Seven cases of radiation-induced cutaneous squamous cell carcinoma

    Sugita, Kazunari; Yamamoto, Osamu; Suenaga, Yoshinori [Univ. of Occupational and Environmental Health, Kitakyushu, Fukuoka (Japan). School of Medicine

    2000-09-01

    We report 7 cases of radiation-induced skin cancer. The diagnosis was based on the history of radiotherapy for benign skin diseases (5 cases) and of occupational exposures to medical doctors (2 cases). All cases were squamous cell carcinomas which arose from chronic radiodermatitis. The estimated latent period of these tumors ranged from 6 to 64 years, with an average of 29.9 years. After surgical treatments of the lesions, no local recurrences were observed in all cases. Benign skin diseases had sometimes been treated with low-energy radiation before the 1960s. Considering the estimated latent period, the peak time point of developing risk of radiation-induced skin cancer by such treatment has been already passed, however, the danger of it should not be ignored in future. In association with multiplicity of radiation usage, occupational exposure of radiation may develop the risk of occurrence of skin cancer in future. Therefore, we should recognize that radiation-induced skin cancer is not in the past. In the cases of chronic skin diseases showing warty keratotic growth, erosion and ulcer, we should include chronic radio-dermatitis in the differential diagnosis. It is necessary to recall all patients about the history of radiotherapy or radiation exposure. Rapid histopathological examination is mandatory because of the suspicion of radiation-induced skin cancer. (author)

  12. Poor outcome in radiation-induced constrictive pericarditis

    Karram, T.; Rinkevitch, D.; Markiewicz, W. (Technion Medical School, Haifa (Israel))

    1993-01-15

    The purpose was to compare the outcome of patients with radiation-induced constrictive pericarditis versus patients with constiction due to another etiology. Twenty patients with constrictive pericarditis were seen during 1975-1986 at a single medical center. Six had radiation-induced constrictive pericarditis (Group A). The etiology was idiopathic in ten subjects and secondary to carcinomatous encasement, chronic renal failure, purulent infection and tuberculosis in one patient each (Group B, N = 14). Meang age was 53.4 [+-] 15.5 years. Extensive pericardiectomy was performed in 3/6 Group A and 13/14 Group B patients. All Group A patients died, 4 weeks - 11 years post-diagnosis (median = 10 months). Two Group A patients died suddenly, one died post-operatively of respiratory failure, another of pneumonia and two of recurrent carcinoma. Thirteen Group B patients are alive (median follow-up = 72 months). The only death in this group was due to metastatic cancer. The poor outcome with radiation-induced constriction is probably multi-factorial. Poor surgical outcome is to be expected in patients with evidence of recurrent tumor, high-dose irradiation, pulmonary fibrosis or associated radiation-induced myocardinal, valvular or coronary damage.

  13. Homoeologous chromatin exchange in a radiation-induced gene transfer

    Dvorak, J; Knott, D R [Department of Crop Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

    1977-03-01

    Some of the ionizing-radiation-induced translocations between alien and wheat chromosomes show no deleterious effects and are transmitted normally through the pollen. Translocations of this type will be called ''compensating''. In one such compensating translocation, designated T4, it was found that chromatin in the long arm of wheat chromosome 7D was replaced with homologous chromatin of the Agropyron chromosome.

  14. Radiation-induced augmentation of the immune response

    Anderson, R.E.; Lefkovits, I.; Troup, G.M.

    1980-01-01

    Radiation-induced augmentation of the immune response has been shown to occur both in vivo and in vitro. Evidence is presented to implicate injury to an extremely radiosensitive T cell in the expression of this phenomenon. Experiments are outlined which could be employed to support or reflect this hypothesis

  15. Preparation of polymer microspheres by radiation-induced polymerization

    Naka, Y.; Yamamoto, Y.; Yoshida, Y.; Tagawa, S.

    1995-01-01

    Cross-liking monomer, diethylene glycol dimethacrylate gives microspheres from organic solution by radiation-induced polymerization. /One of the remarkable result is that the number of the microspheres is not changing during the polymerization. Ethyl methacrylate, maleic anhydride, styrene and acrylamide are used as comonomers. These comonomers give the microspheres in the range of 0 to 0.4 as mol fractions. (author)

  16. Specitic gene alterations in radiation-induced tumorigenesis

    Ahn, Joo Mee; Kang, Chang Mo; Lee, Seung Sook; Cho, Chul Koo; Bae, Sang Woo; Lee, Su Jae; Lee, Yun Sil [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2004-07-01

    To identify a set of genes involved in the development of radiation-induced tumorigenesis, we used DNA microarrays consisting of 1,176 mouse genes and compared expression profiles of radioresistant cells, designated NIH3T3-R1 and -R4. These cells were tumorigenic in a nude mouse grafting system, as compared to the parental NIH3T3 cells. Expressions of MDM2, CDK6 and CDC25B were found to increase more than 3-fold. Entactin protein levels were downregulated in NIH3T3-R1 and -R4 cells. Changes in expression genes were confirmed by reverse transcription-PCR or western blotting. When these genes were transfected to NIH3T3 cells, the CDC25B and MDM2 overexpressing NIH3T3 cells showed radioresistance, while 2 CDK6 overexpressing cells did not. In the case of entactin overexpressing NIH3T3-R1 or R-4 cells were still radioresistant. Furthermore, the CDC25B and MDM2 overexpressing cells grafted to nude mice, were tumorigenic. NIH3T3-R1 and R4 cells showed increased radiation-induced apoptosis, accompanied by faster growth rate, rather than and earlier radiation-induced G2/M phase arrest, suggesting that the radioresistance of NIH3T3-R1 and R4 cells was due to faster growth rate, rather than induction of apoptosis. In the case of MDM2 and CDC25B overexpressing cells, similar phenomena, such as increased apoptosis and faster growth rate, were shown. The above results, therefore, demonstrate involvement of CDC25B and MDM2 overexpression in radiation-induced tumorigenesis and provide novel targets for detection of radiation-induced carcinogenesis.

  17. The effects of cysteamine on the radiation-induced apoptosis

    Choi, Young Min; Cho, Heung Lae; Park, Chang Gyo; Lee, Hyung Sik; Hur, Won Joo

    2000-01-01

    To investigate the pathways of radiation induced apoptosis and the effect of cysteamine (β-mercaptoethylamine), as a radioprotector, on it. HL-60 cells were assigned to control, irradiated, and cysteamine (1 mM, 10 mM) pretreated groups. Irradiation was given in a single fraction of 10 Gy (6 MV x-ray) and cysteamine was administered 1 hour before irradiation. The activities of caspase-8 were measured in control and irradiated group to evaiuate its relation to the radiation induced apoptosis. To evaluate the role of cysteamine in radiation induced apoptosis, the number of viable cells, the expression and activity or caspase-3, and the expression of poly (ADP-ribose) polymerase (PARP) were measured and compared after irradiating the HL cells with cysteamine pretreatment or not. The intracellular caspase-8 activity, known to be related to the death receptor induced apoptosis, was not affected by irradiation( p>0.05). The number of viable cells began to decrease from 6 hours after irradiation (p>0.05), but the number of viable cells in 1 mM cysteamine pretreated group was not decreased after irradiation and was similar to those in the control group. In caspase-3 analyses, known as apoptosis executioner, its expression was not different but its activity was increased by irradialion(p>0.05). However, this increase of activity was suppressed by the pretreatment of 1 mM cysteamine. The cleavage of PARP, thought to be resulted from caspase-3 activation, occurred, after irradiation, which was attenuated by the pretreatment of 1 mM cysteamine. These results show that radiation induced apoptotic process is somewhat different from death receptor induced one and the pretreatment of 1 mM cysteamine has a tendency to decrease the radiation-induced apoptosis in HL-60 cells

  18. Radiation-induced cancers of the head and neck, (3)

    Umatani, Katsunori; Satoh, Takeo; Yoshino, Kunitoshi; Takagi, Tadashi; Fujii, Takashi; Hatta, Chihiro; Maetani, Chikahide; Lu, Bo

    1989-01-01

    This paper discusses twenty patients with radiation-induced cancers of the head and neck treated in the Department of Otorhinolaryngology, the Center for Adult Diseases, Osaka, from January 1979 to December 1985. The most common site of radiation-induced cancers was the hypopharynx and cervical esophagus (70%). We found synchronous double cancers in 2 out of the 20 patients (10%). One patient had hypopharyngeal cancer and thyroid cancer, and the other had oropharyngeal cancer and thyroid cancer. All of the laryngeal cancers were in the supraglottic area. Cancer of the hypopharynx and cervical esophagus occurred more frequently in females (1:3.7 males-females ratio). Half of the patients (10/20) had received irradiation for tuberculous cervical adenitis and 8 patients had been irradiated for malignant tumors. The averaged latent period in the patients who had irradiated for benign conditions was 37.4 years, and that for malignant diseases was 16.0 years. Therefore the latent period of the former was 2.3 times as long as that of the latter. The incidence of radiation-induced cancers in all the patients who had the cancer of the hypopharynx and cervical esophagus was 9% and that of the laryngeal cancer was 0.7%. The incidence of radiation-induced cancers in the hypopharynx and cervical esophagus remarkably differed from that in the larynx. However, it was suggested that the larynx was as resistant to radiation induction as the hypopharynx. Six of the 20 patients (30%) had radiation-induced thyroid tumors. Among them, the incidence of cancers was 33%. (author)

  19. Solar ultraviolet radiation cataract.

    Löfgren, Stefan

    2017-03-01

    Despite being a treatable disease, cataract is still the leading cause for blindness in the world. Solar ultraviolet radiation is epidemiologically linked to cataract development, while animal and in vitro studies prove a causal relationship. However, the pathogenetic pathways for the disease are not fully understood and there is still no perfect model for human age related cataract. This non-comprehensive overview focus on recent developments regarding effects of solar UV radiation wavebands on the lens. A smaller number of fundamental papers are also included to provide a backdrop for the overview. Future studies are expected to further clarify the cellular and subcellular mechanisms for UV radiation-induced cataract and especially the isolated or combined temporal and spatial effects of UVA and UVB in the pathogenesis of human cataract. Regardless of the cause for cataract, there is a need for advances in pharmaceutical or other treatment modalities that do not require surgical replacement of the lens. Copyright © 2016. Published by Elsevier Ltd.

  20. Modulation of ionizing radiation induced oxidative imbalance by semi-fractionated extract of Piper betle

    Verma, Savita; Dutta, Ajaswrata; Sankhwar, Sanghmitra; Shukla, Sandeep Kumar

    2010-01-01

    The study was planned to evaluate modulatory effect of aqueous extract of Piper betle leaf (PBL) on ionizing radiation mediated oxidative stress leading to normal tissues damage during radiotherapy and other radiation exposures. The total polyphenols and flavonoids known as free radical scavenger (chelators) were measured in the extract. To ascertain antioxidant potential of PBL extract, we studied free radical scavenging, metal chelation, reducing power, lipid peroxidation inhibition and ferric reducing antioxidant properties (FRAP ) using in vitro assays. Mice were exposed to varied radiation doses administered with the same extract prior to irradiation to confirm its oxidative stress minimizing efficacy by evaluating ferric reducing ability of plasma, reduced glutathione, lipid peroxidation and micro-nuclei frequency. PBL extract was effective in scavenging DPPH (up to 92% at 100 µg/ml) and superoxide radicals (up to 95% at 80 µg/ml), chelated metal ions (up to 83% at 50 µg/ml) and inhibited lipid peroxidation (up to 45.65% at 500 µg/ml) in a dose dependant manner using in vitro model. Oral administration of PBL extract (225 mg/kg body weight) 1 hr before irradiation in mice significantly enhanced (p < 0.01) radiation abated antioxidant potential of plasma and GSH level in all the observed organs. The treatment with extract effectively lowered the radiation induced lipid peroxidation at 24 hrs in all the selected organs with maximum inhibition in thymus (p < 0.01). After 48 hrs, lipid peroxidation was maximally inhibited in the group treated with the extract. Frequency of radiation induced micronucleated cells declined significantly (34.78%, p < 0.01) at 24 hrs post-irradiation interval by PBL extract administration. The results suggest that PBL extract has high antioxidant potential and relatively non-toxic and thus could be assertively used to mitigate radiotherapy inflicted normal tissues damage and also injuries caused by moderate doses of radiation

  1. Smad, but not MAPK, pathway mediates the expression of type I collagen in radiation induced fibrosis

    Yano, Hiroyuki; Hamanaka, Ryoji; Nakamura, Miki; Sumiyoshi, Hideaki; Matsuo, Noritaka; Yoshioka, Hidekatsu

    2012-01-01

    Highlights: ► We examine how radiation affects the expression level and signal pathway of collagen. ► TGF-β1 mRNA is elevated earlier than those of collagen genes after irradiation. ► Smad pathway mediates the expression of collagen in radiation induced fibrosis. ► MAPK pathways are not affected in the expression of collagen after irradiation. -- Abstract: Radiation induced fibrosis occurs following a therapeutic or accidental radiation exposure in normal tissues. Tissue fibrosis is the excessive accumulation of collagen and other extracellular matrix components. This study investigated how ionizing radiation affects the expression level and signal pathway of type I collagen. Real time RT-RCR showed that both α1and α2 chain of type I collagen mRNA were elevated from 48 h after irradiation with 10 Gy in NIH3T3 cells. The relative luciferase activities of both genes and type I collagen marker were elevated at 72 h. TGF-β1 mRNA was elevated earlier than those of type I collagen genes. A Western blot analysis showed the elevation of Smad phosphorylation at 72 h. Conversely, treatment with TGF-β receptor inhibitor inhibited the mRNA and relative luciferase activity of type I collagen. The phosphorylation of Smad was repressed with the inhibitor, and the luciferase activity was cancelled using a mutant construct of Smad binding site of α2(I) collagen gene. However, the MAPK pathways, p38, ERK1/2 and JNK, were not affected with specific inhibitors or siRNA. The data showed that the Smad pathway mediated the expression of type I collagen in radiation induced fibrosis.

  2. Protective effect of flax seed oil against radiation induced hematological alterations in mammals

    Sharma, Jyoti; Singh, Ritu; Goyal, P.K.; Singh, Seema

    2014-01-01

    Human beings are exposed to ionizing and non ionizing radiation from natural as well as manmade sources. Ionizing radiations are one of the predominant exogenous factors that have deleterious consequences to human life. Exposure to ionizing radiations damages the hematopoietic, gastrointestinal or central nervous systems, depending on radiation dose. Hence, there is an urgent need to prevent such deleterious effects caused due to ionizing radiations. Chemical protection involves the use of synthetic and natural products against planned radiation exposure. Medicinal plants are rich in antioxidants and their chemical constituents may be the potential source for radioprotective agents. Linum usitatissimum plant (family: Linaceae), source of flaxseed oil (FSO), is well known for its anticarcinogenic, antidiabetic, cardioprotector, antiulcer properties owing to the presence of various phytochemicals. The present study has been focused to find out the preventive action of flaxseed oil against radiation induced hematological and biochemical lesions in mammals. For this purpose, FSO (50μL/animal/day) was orally administered to Swiss albino mice for five days, prior to 6 Gy gamma radiation exposure. The animals were sacrificed on 1 st , 3 rd , 7 th , 15 th and 30 th day after irradiation. Radiation treated control group exhibited significant reduction in erythrocytes count, hemoglobin content, hematocrit value and total WBC count in peripheral blood. In contrast, pretreatment with FSO significantly increased all these blood constituents. Further, the antioxidant parameters such as reduced glutathione, catalase, and superoxide dismutase showed a significant elevation in FSO pretreated group which were reduced in irradiated control group. Similarly, radiation induced increase lipid peroxidation in blood was significantly inhibited after FSO treatment. The present results indicate that the flaxseed oil has the ability to debilitate the radiation induced adverse alterations in

  3. Radiation-induced DNA-protein cross-links: Mechanisms and biological significance.

    Nakano, Toshiaki; Xu, Xu; Salem, Amir M H; Shoulkamy, Mahmoud I; Ide, Hiroshi

    2017-06-01

    Ionizing radiation produces various DNA lesions such as base damage, DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and DNA-protein cross-links (DPCs). Of these, the biological significance of DPCs remains elusive. In this article, we focus on radiation-induced DPCs and review the current understanding of their induction, properties, repair, and biological consequences. When cells are irradiated, the formation of base damage, SSBs, and DSBs are promoted in the presence of oxygen. Conversely, that of DPCs is promoted in the absence of oxygen, suggesting their importance in hypoxic cells, such as those present in tumors. DNA and protein radicals generated by hydroxyl radicals (i.e., indirect effect) are responsible for DPC formation. In addition, DPCs can also be formed from guanine radical cations generated by the direct effect. Actin, histones, and other proteins have been identified as cross-linked proteins. Also, covalent linkages between DNA and protein constituents such as thymine-lysine and guanine-lysine have been identified and their structures are proposed. In irradiated cells and tissues, DPCs are repaired in a biphasic manner, consisting of fast and slow components. The half-time for the fast component is 20min-2h and that for the slow component is 2-70h. Notably, radiation-induced DPCs are repaired more slowly than DSBs. Homologous recombination plays a pivotal role in the repair of radiation-induced DPCs as well as DSBs. Recently, a novel mechanism of DPC repair mediated by a DPC protease was reported, wherein the resulting DNA-peptide cross-links were bypassed by translesion synthesis. The replication and transcription of DPC-bearing reporter plasmids are inhibited in cells, suggesting that DPCs are potentially lethal lesions. However, whether DPCs are mutagenic and induce gross chromosomal alterations remains to be determined. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Smad, but not MAPK, pathway mediates the expression of type I collagen in radiation induced fibrosis

    Yano, Hiroyuki [Department of Matrix Medicine, Oita University, 1-1 Idaigaoka Hasama-machi, Yufu, Oita 879-5593 (Japan); Division of Radioisotope Research, Department of Research Support, Research Promotion Project, Oita University, 1-1 Idaigaoka Hasama-machi, Yufu, Oita 879-5593 (Japan); Hamanaka, Ryoji; Nakamura, Miki [Cell Biology, Faculty of Medicine, Oita University, 1-1 Idaigaoka Hasama-machi, Yufu, Oita 879-5593 (Japan); Sumiyoshi, Hideaki; Matsuo, Noritaka [Department of Matrix Medicine, Oita University, 1-1 Idaigaoka Hasama-machi, Yufu, Oita 879-5593 (Japan); Yoshioka, Hidekatsu, E-mail: hidey@oita-u.ac.jp [Department of Matrix Medicine, Oita University, 1-1 Idaigaoka Hasama-machi, Yufu, Oita 879-5593 (Japan)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer We examine how radiation affects the expression level and signal pathway of collagen. Black-Right-Pointing-Pointer TGF-{beta}1 mRNA is elevated earlier than those of collagen genes after irradiation. Black-Right-Pointing-Pointer Smad pathway mediates the expression of collagen in radiation induced fibrosis. Black-Right-Pointing-Pointer MAPK pathways are not affected in the expression of collagen after irradiation. -- Abstract: Radiation induced fibrosis occurs following a therapeutic or accidental radiation exposure in normal tissues. Tissue fibrosis is the excessive accumulation of collagen and other extracellular matrix components. This study investigated how ionizing radiation affects the expression level and signal pathway of type I collagen. Real time RT-RCR showed that both {alpha}1and {alpha}2 chain of type I collagen mRNA were elevated from 48 h after irradiation with 10 Gy in NIH3T3 cells. The relative luciferase activities of both genes and type I collagen marker were elevated at 72 h. TGF-{beta}1 mRNA was elevated earlier than those of type I collagen genes. A Western blot analysis showed the elevation of Smad phosphorylation at 72 h. Conversely, treatment with TGF-{beta} receptor inhibitor inhibited the mRNA and relative luciferase activity of type I collagen. The phosphorylation of Smad was repressed with the inhibitor, and the luciferase activity was cancelled using a mutant construct of Smad binding site of {alpha}2(I) collagen gene. However, the MAPK pathways, p38, ERK1/2 and JNK, were not affected with specific inhibitors or siRNA. The data showed that the Smad pathway mediated the expression of type I collagen in radiation induced fibrosis.

  5. Ultraviolet spectral energy differences affect the ability of sunscreen lotions to prevent ultraviolet-radiation-induced immunosuppression

    Roberts, L.K.; Beasley, D.G.; Learn, D.B.; Giddens, L.D.; Beard, J.; Stanfield, J.W.

    1996-01-01

    Acute exposure to UV radiation causes immunosuppression of contact hypersensitivity (CH) responses. Past studies conducted with unfiltered sunlamps emitting non-solar spectrum UV power (wavelengths below 295 nm) or using excessive UV doses have suggested sunscreens may not prevent UV-induced immunosuppression in mice. This study was thus designed to evaluate critically the effects of different UV energy spectra on the immune protection capacity of sunscreen lotions. Minimum immune suppression doses (MISD), i.e. the lowest UV dose to cause ∼ 50% suppression of the CH response to dinitrofluorobenzene in C3H mice, were established for three artificial UV sources. The MISD for each UV source was 0.25 kJ/m 2 for unfiltered FS20 sunlamps (FS), 0.90 kJ/m 2 for Kodacel-filtered FS20 sunlamps (KFS), which do not emit UV power at wavelengths 2 for a 1000 W filtered xenon arc lamp solar simulator. Using MISD as baseline, sunscreens with labeled sun protection factors (SPF) of 2, 8, 15 and 30 were tested with each UV source to establish their relative immune protection factors. The immune protection factor of each sunscreen exceeded its labeled SPF in tests conducted with the solar simulator, which has a UV power spectrum (295-400 nm) similar to that of sunlight. Conversely, sunscreen immune protection factors were significantly less than the labeled SPF in tests conducted with FS and KFS. Comparison of the immunosuppression effectiveness spectra showed that relatively small amounts of nonsolar spectrum UV energy, i.e. UVC (200-290 nm) and/or shorter wavelength UVB (between 290 and 295 nm), produced by FS and KFS contributes significantly to the induction of immunosuppression. (Author)

  6. Mathematical modelling of solar ultraviolet radiation induced optical degradation in anodized aluminum

    Ruley, John D.

    1986-01-01

    In the design of spacecraft for proper thermal balance, accurate information on the long-term optical behavior of the spacecraft outer skin materials is necessary. A phenomenological model for such behavior is given. The underlying principles are explained and some examples are given of the model's fit to actual measurements under simulated Earth-orbit conditions. Comments are given on the applicability of the model to materials testing and thermal modelling.

  7. Ultraviolet Radiation Induces Dose-Dependent Pigment Dispersion in Crustacean Chromatophores

    Gouveia, Glauce Ribeiro; Lopes, Thaís Martins; Neves, Carla Amorim; Nery, Luiz Eduardo Maia; Trindade, Gilma Santos

    2004-01-01

    Pigment dispersion in chromatophores as a response to UV radiation was investigated in two species of crustaceans, the crab Chasmagnathus granulata and the shrimp Palaemonetes argentinus. Eyestalkless crabs and shrimps maintained on either a black or a white background were irradiated with different UV bands. In eyestalkless crabs the significant minimal effective dose inducing pigment dispersion was 0.42 J/cm2 for UVA and 2.15 J/cm2 for UVB. Maximal response was achieved with 10.0 J/cm...

  8. Ultraviolet radiation induces dose-dependent pigment dispersion in crustacean chromatophores.

    Gouveia, Glauce Ribeiro; Lopes, Thaís Martins; Neves, Carla Amorim; Nery, Luiz Eduardo Maia; Trindade, Gilma Santos

    2004-10-01

    Pigment dispersion in chromatophores as a response to UV radiation was investigated in two species of crustaceans, the crab Chasmagnathus granulata and the shrimp Palaemonetes argentinus. Eyestalkless crabs and shrimps maintained on either a black or a white background were irradiated with different UV bands. In eyestalkless crabs the significant minimal effective dose inducing pigment dispersion was 0.42 J/cm(2) for UVA and 2.15 J/cm(2) for UVB. Maximal response was achieved with 10.0 J/cm(2) UVA and 8.6 J/cm(2) UVB. UVA was more effective than UVB in inducing pigment dispersion. Soon after UV exposure, melanophores once again reached the initial stage of pigment aggregation after 45 min. Aggregated erythrophores of shrimps adapted to a white background showed significant pigment dispersion with 2.5 J/cm(2) UVA and 0.29 J/cm(2) UVC. Dispersed erythrophores of shrimps adapted to a black background did not show any significant response to UVA, UVB or UVC radiation. UVB did not induce any significant pigment dispersion in shrimps adapted to either a white or a black background. As opposed to the tanning response, which only protects against future UV exposure, the pigment dispersion response could be an important agent protecting against the harmful effects of UV radiation exposure.

  9. Infrared A radiation promotes survival of human melanocytes carrying ultraviolet radiation-induced DNA damage.

    Kimeswenger, Susanne; Schwarz, Agatha; Födinger, Dagmar; Müller, Susanne; Pehamberger, Hubert; Schwarz, Thomas; Jantschitsch, Christian

    2016-06-01

    The link between solar radiation and melanoma is still elusive. Although infrared radiation (IR) accounts for over 50% of terrestrial solar energy, its influence on human skin is not well explored. There is increasing evidence that IR influences the expression patterns of several molecules independently of heat. A previous in vivo study revealed that pretreatment with IR might promote the development of UVR-induced non-epithelial skin cancer and possibly of melanoma in mice. To expand on this, the aim of the present study was to evaluate the impact of IR on UVR-induced apoptosis and DNA repair in normal human epidermal melanocytes. The balance between these two effects is a key factor of malignant transformation. Human melanocytes were exposed to physiologic doses of IR and UVR. Compared to cells irradiated with UVR only, simultaneous exposure to IR significantly reduced the apoptotic rate. However, IR did not influence the repair of UVR-induced DNA damage. IR partly reversed the pro-apoptotic effects of UVR via modification of the expression and activity of proteins mainly of the extrinsic apoptotic pathway. In conclusion, IR enhances the survival of melanocytes carrying UVR-induced DNA damage and thereby might contribute to melanomagenesis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Radiation-induced camptocormia and dropped head syndrome. Review and case report of radiation-induced movement disorders

    Seidel, Clemens; Kuhnt, Thomas; Kortmann, Rolf-Dieter; Hering, Kathrin [Leipzig University, Department of Radiotherapy and Radiation Oncology, Leipzig (Germany)

    2015-10-15

    In recent years, camptocormia and dropped head syndrome (DHS) have gained attention as particular forms of movement disorders. Camptocormia presents with involuntary forward flexion of the thoracolumbar spine that typically increases during walking or standing and may severely impede walking ability. DHS is characterized by weakness of the neck extensors and a consecutive inability to extend the neck; in severe cases the head is fixed in a ''chin to chest position.'' Many diseases may underlie these conditions, and there have been some reports about radiation-induced camptocormia and DHS. A PubMed search with the keywords ''camptocormia,'' ''dropped head syndrome,'' ''radiation-induced myopathy,'' ''radiation-induced neuropathy,'' and ''radiation-induced movement disorder'' was carried out to better characterize radiation-induced movement disorders and the radiation techniques involved. In addition, the case of a patient developing camptocormia 23 years after radiation therapy of a non-Hodgkin's lymphoma of the abdomen is described. In total, nine case series of radiation-induced DHS (n = 45 patients) and - including our case - three case reports (n = 3 patients) about radiogenic camptocormia were retrieved. Most cases (40/45 patients) occurred less than 15 years after radiotherapy involving extended fields for Hodgkin's disease. The use of wide radiation fields including many spinal segments with paraspinal muscles may lead to radiation-induced movement disorders. If paraspinal muscles and the thoracolumbar spine are involved, the clinical presentation can be that of camptocormia. DHS may result if there is involvement of the cervical spine. To prevent these disorders, sparing of the spine and paraspinal muscles is desirable. (orig.) [German] In den letzten Jahren haben Bewegungsstoerungen von Wirbelsaeule und paraspinaler Muskulatur in

  11. A study of radiation-induced cerebral vascular injury in nasopharyngeal carcinoma patients with radiation-induced temporal lobe necrosis.

    Jianhong Ye

    Full Text Available To investigate radiation-induced carotid and cerebral vascular injury and its relationship with radiation-induced temporal lobe necrosis in nasopharyngeal carcinoma (NPC patients.Fifty eight NPC patients with radiation-induced temporal lobe necrosis (TLN were recruited in the study. Duplex ultrasonography was used to scan bilateral carotid arterials to evaluate the intima-media thickness (IMT and occurrence of plaque formation. Flow velocities of bilateral middle cerebral arteries (MCAs, internal carotid arteries (ICAs and basal artery (BA were estimated through Transcranial Color Doppler (TCD. The results were compared with data from 33 patients who were free from radiation-induced temporal lobe necrosis after radiotherapy and 29 healthy individuals.Significant differences in IMT, occurrence of plaques of ICAs and flow velocities of both MCAs and ICAs were found between patients after radiotherapy and healthy individuals (p<0.05. IMT had positive correlation with post radiation interval (p = 0.049. Compared with results from patients without radiation-induced TLN, the mean IMT was significantly thicker in patients with TLN (p<0.001. Plaques were more common in patients with TLN than patients without TLN (p = 0.038. In addition, flow velocities of MCAs and ICAs in patients with TLN were much faster (p<0.001, p<0.001. Among patients with unilateral TLN, flow velocity of MCAs was significantly different between ipsilateral and contralateral sides to the lesion (p = 0.001.Thickening of IMT, occurrence of plaque formation and hemodynamic abnormality are more common in patients after radiotherapy, especially in those with TLN, compared with healthy individuals.

  12. Development and Characterization of VEGF165-Chitosan Nanoparticles for the Treatment of Radiation-Induced Skin Injury in Rats

    Daojiang Yu

    2016-10-01

    Full Text Available Radiation-induced skin injury, which remains a serious concern in radiation therapy, is currently believed to be the result of vascular endothelial cell injury and apoptosis. Here, we established a model of acute radiation-induced skin injury and compared the effect of different vascular growth factors on skin healing by observing the changes of microcirculation and cell apoptosis. Vascular endothelial growth factor (VEGF was more effective at inhibiting apoptosis and preventing injury progression than other factors. A new strategy for improving the bioavailability of vascular growth factors was developed by loading VEGF with chitosan nanoparticles. The VEGF-chitosan nanoparticles showed a protective effect on vascular endothelial cells, improved the local microcirculation, and delayed the development of radioactive skin damage.

  13. Protective effect of zingerone, a dietary compound against radiation induced damage

    Satish Rao, B.S.; Rao, Nageshwar

    2012-01-01

    The radioprotective potential of phenolic alkanone, Zingerone (ZO) was investigated using human peripheral blood lymphocytes as well as Chinese hamster fibroblast (V79) cells growing in vitro and in vivo by using Swiss albino mice exposed to gamma radiation. In the in vivo studies, mice were administered with ZO (10-100 mg/kg b.wt), once daily for five consecutive days. One hour after the last administration of ZO on the fifth day, animals were whole body exposed to 10 Gy gamma radiations. The radioprotective potential was assessed using animal survival, haemopoietic stem cell survival (CFU) assay, mouse bone marrow micronucleus test, histological observations of intestinal and bone marrow damage. Effect of ZO pretreatment on radiation-induced changes in glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT) and lipid peroxidation (LPx) levels was also analyzed. ZO treatment resulted increase in the LD50/30 by 1.8 Gy (dose reduction factor = 1.2). The number of spleen colonies after whole body irradiation of mice (4.5 or 7.5 Gy) was increased when ZO was administered 1 h prior to irradiation. The histological observations indicated a decline in the villus height and crypt number with an increase in goblet and dead cell population in the irradiated group, which was normalized by pretreatment with ZO. A significant (p < 0.001) reduction in micronucleated polychromatic, normochromatic erythrocytes, increased PCE/NCE ratio, increase in the GSH, GST, SOD, CAT and decreased LPx levels were observed in ZO by pretreated group when compared to the irradiated animals. Our in vitro and in vivo studies demonstrate the potential of ZO in mitigating radiation-induced cytotoxic, genotoxicity, apoptosis in cell culture and animal mortality, cytogenetic damage, intestinal and bone marrow protection in vivo. Radioprotective potential of ZO may be attributed to the inhibition radiation-induced decline in the endogenous antioxidant levels

  14. Influence of cigarette smoke and green tea on radiation-induced micronucleated polychromatic erythrocytes

    Gao Yong; Hao Enzhu; Ni Yanbo

    2006-01-01

    Objective: To observe the effects of cigarette smoke and green tea on radiation-induced bone marrow cell mutation, and to provide scientific information for prevention and treatment of radiation damage. Methods: There were 8 groups in the factorial experiment design with 3 factors at 2 levels. Mice were randomly divided into each group. There were 8 mice in each group. Mice in seven experimental groups were exposed to cigarette smoke, green tea, radiation or their mixtures respectively. One group was treated as the blank control group. The frequencies of micrnucleated polychromatic erythrocytes (MPCE) were scored by single blinded method. The data were analyzed with factorial experiments analysis of variance using SAS 8.0. Results: Analysis of variance showed that radiation, cigarette smoke and green tea were independently significant factors (P<0.01). Interactions between cigarette smoke and radiation or between green tea and radiation were statistically significant (P<0.01). Conclusion: Radiation and cigarette smoke can cause bone marrow cell mutations independently. There is synergistic effect between cigarette smoke and radiation. Green tea can inhibit radiation-induced cell mutation. (authors)

  15. Radiation-Induced Testicular Injury and Its Amelioration by Tinospora cordifolia (An Indian Medicinal Plant Extract

    Priyanka Sharma

    2011-01-01

    Full Text Available The primary objective of this investigation is to determine the deleterious effects of sub lethal gamma radiation on testes and their possible inhibition by Tinospora cordifolia extract (TCE. For this purpose, one group of male Swiss albino mice was exposed to 7.5 Gy gamma radiation to serve as the irradiated control, while the other group received TCE (75 mg/kg b. wt./day orally for 5 consecutive days half an hr before irradiation to serve as experimental. Exposure of animals to 7.5 Gy gamma radiation resulted into significant decrease in body weight, tissue weight, testes- body weight ratio and tubular diameter up to 15 days of irradiation. Cent percent mortality was recorded by day 17th in irradiated control, whereas all animals survived in experimental group. TCE pretreatment rendered significant increase in body weight, tissue weight, testes- body weight ratio and tubular diameter at various intervals as compared to irradiated group. Radiation induced histological lesions in testicular architecture were observed more severe in irradiated control then the experimental. TCE administration before irradiation significantly ameliorated radiation induced elevation in lipid peroxidation and decline in glutathione concentration in testes. These observations indicate the radio- protective potential of Tinospora cordifolia root extract in testicular constituents against gamma irradiation in mice.

  16. Radiation-induced apoptosis in sensitive and resistant cells isolated from a mouse lymphoma

    Story, M.D.; Voehringer, D.W.; Malone, C.G.; Hobbs, M.L.; Meyn, R.E.

    1994-01-01

    Cells were isolated from a mouse lymphoma (LY-TH) and grown in vitro. They were susceptible to radiation-induced apoptosis after low doses with the appearance of endonucleolytically fragmented DNA 1 h after irradiation. Four hours after receiving 5 Gy, 80% of the DNA was endonucleolytically cleaved. Apoptosis induction by DNA double-strand break (dsb) formation was more effective compared with induction by single-strand break (ssb) formation. After long-term culturing, LY-TH cultures became refractory to apoptosis. Apoptosis-permissive cells (LY-as, cloned from LY-TH cells) were three times more radiosensitive than clonally expanded apoptosis-refractory cells (LY-ar). Low dose-rate irradiation and maintenance at 25 o C for 5 h postirradiation was sparing in LY-ar but not LY-as cells, suggesting a repair deficiency in LY-as cells. Analysis of dsb rejoining kinetics revealed no difference in the initial phase of dsb rejoining. After 1 h, however, relative dsbs in the LY-as variant increased as endonucleolytic cleavage was initiated. Signalling for radiation-induced apoptosis in LY-as cells was independent of the DNA dsb repair pathway and appeared determined by initial events, whereas in LY-ar cells, because of an inhibition in the apoptotic pathway, survival was enhanced and modifiable by repair processes. (author)

  17. Ionizing radiation-induced bystander mutagenesis and adaptation: Quantitative and temporal aspects

    Zhang Ying; Zhou Junqing; Baldwin, Joseph; Held, Kathryn D.; Prise, Kevin M.; Redmond, Robert W.; Liber, Howard L.

    2009-01-01

    This work explores several quantitative aspects of radiation-induced bystander mutagenesis in WTK1 human lymphoblast cells. Gamma-irradiation of cells was used to generate conditioned medium containing bystander signals, and that medium was transferred onto naive recipient cells. Kinetic studies revealed that it required up to 1 h to generate sufficient signal to induce the maximal level of mutations at the thymidine kinase locus in the bystander cells receiving the conditioned medium. Furthermore, it required at least 1 h of exposure to the signal in the bystander cells to induce mutations. Bystander signal was fairly stable in the medium, requiring 12-24 h to diminish. Medium that contained bystander signal was rendered ineffective by a 4-fold dilution; in contrast a greater than 20-fold decrease in the cell number irradiated to generate a bystander signal was needed to eliminate bystander-induced mutagenesis. This suggested some sort of feedback inhibition by bystander signal that prevented the signaling cells from releasing more signal. Finally, an ionizing radiation-induced adaptive response was shown to be effective in reducing bystander mutagenesis; in addition, low levels of exposure to bystander signal in the transferred medium induced adaptation that was effective in reducing mutations induced by subsequent γ-ray exposures.

  18. Exosome-mediated microRNA transfer plays a role in radiation-induced bystander effect.

    Xu, Shuai; Wang, Jufang; Ding, Nan; Hu, Wentao; Zhang, Xurui; Wang, Bing; Hua, Junrui; Wei, Wenjun; Zhu, Qiyun

    2015-01-01

    Bystander effects can be induced through cellular communication between irradiated cells and non-irradiated cells. The signals that mediate this cellular communication, such as cytokines, reactive oxygen species, nitric oxide and even microRNAs, can be transferred between cells via gap junctions or extracellular medium. We have previously reported that miR-21, a well described DDR (DNA damage response) microRNA, is involved in radiation-induced bystander effects through a medium-mediated way. However, the mechanisms of the microRNA transfer have not been elucidated in details. In the present study, it was found that exosomes isolated from irradiated conditioned medium could induce bystander effects. Furthermore, we demonstrated plenty of evidences that miR-21, which is up-regulated as a result of mimic transfection or irradiation, can be transferred from donor or irradiated cells into extracellular medium and subsequently get access to the recipient or bystander cells through exosomes to induce bystander effects. Inhibiting the miR-21 expression in advance can offset the bystander effects to some extent. From all of these results, it can be concluded that the exosome-mediated microRNA transfer plays an important role in the radiation-induced bystander effects. These findings provide new insights into the functions of microRNAs and the cellular communication between the directly irradiated cells and the non-irradiated cells.

  19. The effect of vitamin D prophylaxis on radiation induced pulmonary damage

    Yazici, G.; Yildiz, F.; Iskit, A.; Surucu, S.; Firat, P.; Hayran, M.; Ozyigit, G.; Cengiz, M.; Erdemli, E.

    2011-01-01

    Vitamin D has a selective radio and chemosensitizing effect on tumor cells. In vitro and in vivo studies have shown that vitamin D inhibits collagen gel construction, induces type II pneumocyte proliferation and surfactant synthesis in the lungs, and decreases vascular permeability caused by radiation. The aim of this experimental study was to determine if vitamin D has a protective effect against radiation-induced pulmonary damage. Adult Wistar rats were divided into 4 groups. Group 1 was comprised of control animals. Group 2, which was administered 0.25 μg/kg/day of vitamin D3 for 8 weeks, was the vitamin D control group. Rats in groups 3 and 4 were given 20 Gy right hemithorax radiotherapy, and in addition group 4 was given vitamin D3 treatment, which began the day before the radiotherapy and continued for 8 weeks. At the 8 th and the 12 th weeks of the study 4 rats from each group were sacrificed. Right lungs were dissected for light and electron microscopic study. The electron microscopy examinations revealed statistically significant differences between group 3 and 4, and in group 4 there was less interstitial inflammation and collagen deposition, and the alveolar structure and the cells lining the alveolar walls were protected. These results confirm that vitamin D has a protective effect against radiation-induced pulmonary toxicity. These findings should be evaluated with further clinical studies. (author)

  20. Lithium delays the radiation-induced apoptotic process in external granule cells of mouse cerebellum

    Inouye, Minoru; Yamamura, Hideki; Nakano, Atsuhiro.

    1995-01-01

    Proliferating cells of the external granular layer (EGL) in the developing cerebellum are highly sensitive to ionizing radiation. We examined the effect of lithium, an inhibitor of intracellular signaling, on the manifestation of radiation-induced apoptosis. Newborn mice were exposed to 0.5 Gy gamma-irradiation alone, or first were treated with lithium (10 μmol/g, SC) then given 0.5 Gy irradiation 2 hr later. The EGL was examined histologically for apoptosis at various times after treatment. Apoptotic cells increased rapidly, peaked (about 14%) 6 hr after irradiation, then decreased gradually to the control level by 24 hr. Prior treatment with lithium delayed the manifestation of apoptosis, the peak appearing at 12 hr. The disappearance of dead cells was delayed for about one day. The lithium concentration in the whole brain increased rapidly, being 30 μg/g at the time of irradiation and remaining at more than 40 μg/g for 40 hr. Lithium is reported to inhibit guanine-nucleotide binding to G proteins as well as phosphoinositide turnover. Of the variety of lesions induced by radiation, DNA double strand breaks are the most important source of cell lethality. The present findings, however, suggest that cyclic AMP-mediated and/or phosphoinositide-mediated signaling systems regulate radiation-induced apoptosis. (author)

  1. Lithium delays the radiation-induced apoptotic process in external granule cells of mouse cerebellum.

    Inouye, M; Yamamura, H; Nakano, A

    1995-09-01

    Proliferating cells of the external granular layer (EGL) in the developing cerebellum are highly sensitive to ionizing radiation. We examined the effect of lithium, an inhibitor of intracellular signaling, on the manifestation of radiation-induced apoptosis. Newborn mice were exposed to 0.5 Gy gamma-irradiation alone, or first were treated with lithium (10 mumol/g, SC) then given 0.5 Gy irradiation 2 hr later. The EGL was examined histologically for apoptosis at various times after treatment. Apoptotic cells increased rapidly, peaked (about 14%) 6 hr after irradiation, then decreased gradually to the control level by 24 hr. Prior treatment with lithium delayed the manifestation of apoptosis, the peak appearing at 12 hr. The disappearance of dead cells was delayed for about one day. The lithium concentration in the whole brain increased rapidly, being 30 micrograms/g at the time of irradiation and remaining at more than 40 micrograms/g for 40 hr. Lithium is reported to inhibit guanine-nucleotide binding to G proteins as well as phosphoinositide turnover. Of the variety of lesions induced by radiation, DNA double strand breaks are the most important source of cell lethality. The present findings, however, suggest that cyclic AMP-mediated and/or phosphoinositidemediated signaling systems regulate radiation-induced apoptosis.

  2. Lithium delays the radiation-induced apoptotic process in external granule cells of mouse cerebellum

    Inouye, Minoru; Yamamura, Hideki [Nagoya Univ. (Japan). Research Inst. of Environmental Medicine; Nakano, Atsuhiro

    1995-09-01

    Proliferating cells of the external granular layer (EGL) in the developing cerebellum are highly sensitive to ionizing radiation. We examined the effect of lithium, an inhibitor of intracellular signaling, on the manifestation of radiation-induced apoptosis. Newborn mice were exposed to 0.5 Gy gamma-irradiation alone, or first were treated with lithium (10 {mu}mol/g, SC) then given 0.5 Gy irradiation 2 hr later. The EGL was examined histologically for apoptosis at various times after treatment. Apoptotic cells increased rapidly, peaked (about 14%) 6 hr after irradiation, then decreased gradually to the control level by 24 hr. Prior treatment with lithium delayed the manifestation of apoptosis, the peak appearing at 12 hr. The disappearance of dead cells was delayed for about one day. The lithium concentration in the whole brain increased rapidly, being 30 {mu}g/g at the time of irradiation and remaining at more than 40 {mu}g/g for 40 hr. Lithium is reported to inhibit guanine-nucleotide binding to G proteins as well as phosphoinositide turnover. Of the variety of lesions induced by radiation, DNA double strand breaks are the most important source of cell lethality. The present findings, however, suggest that cyclic AMP-mediated and/or phosphoinositide-mediated signaling systems regulate radiation-induced apoptosis. (author).

  3. Grape extract protects against γ-radiation-induced membrane damage strains of human erythrocytes

    Das, Subir Kumar

    2017-01-01

    The membrane integrity of circulating red blood cells (RBCs) is compromised by the deleterious actions of γ-radiation in humans. Grapes are the richest source of antioxidants due to presence of potentially bioactive phytochemicals. The objective of the present study was to assess the radioprotective actions of grape extracts against the γ-radiation-induced membrane permeability of human erythrocytes. The scavenging activities in seeds of grape in DPPH, hydrogen peroxide and hydroxyl radicals, were higher than skin or pulp of different cultivars. Grape extracts also showed appreciable extent of total antioxidant capacity and effective antihemolytic action. Grape extracts significantly ameliorated the γ-radiation-induced increase of the levels of thiobarbituric acid-reactive substances (TBARS, an index of lipid peroxidation) in the RBC membrane ghosts. Stored blood showed higher levels of K + ion as compared to the normal blood which was elevated by γ-radiation. Membrane ATPase was inhibited by the exposure to γ-radiation.Treatment of RBCs with the grape extracts prior to the exposure of γ-radiation significantly mitigated these changes in the erythrocyte membranes caused by the lower dose of radiation (4 Gy). (author)

  4. Antitumor bystander effect induced by radiation-inducible target gene therapy combined with α particle irradiation

    Liu Hui; Jin Chufeng; Wu Yican; Ge Shenfang; Wu Lijun; FDS Team

    2012-01-01

    In this work, we investigated the bystander effect of the tumor and normal cells surrounding the target region caused by radiation-inducible target gene therapy combined with α-particle irradiation. The receptor tumor cell A549 and normal cell MRC-5 were co-cultured with the donor cells irradiated to 0.5 Gy or the non-irradiated donor cells, and their survival and apoptosis fractions were evaluated. The results showed that the combined treatment of Ad-ET and particle irradiation could induce synergistic antitumor effect on A549 tumor cell, and the survival fraction of receptor cells co-cultured with the irradiated cells decreased by 6%, compared with receptor cells co-cultured with non-irradiated cells, and the apoptosis fraction increased in the same circumstance, but no difference was observed with the normal cells. This study demonstrates that Ad-ET combined with α-particle irradiation can significantly cause the bystander effect on neighboring tumor cells by inhibiting cell growth and inducing apoptosis, without obvious toxicity to normal cells. This suggests that combining radiation-inducible TRAIL gene therapy and irradiation may improve tumor treatment efficacy by specifically targeting tumor cells and even involving the neighboring tumor cells. (authors)

  5. Modulating factors in the expression of radiation-induced oncogenic transformation

    Hall, E.J.; Hei, T.K.

    1990-01-01

    Many assays for oncogenic transformation have been developed ranging from those in established rodent cell lines where morphological alteration is scored, to those in human cells growing in nude mice where tumor invasiveness is scored. In general, systems that are most quantitaive are also the least relevant in terms of human carcinogenesis and human risk estimation. The development of cell culture systems has made it possible to assess at the cellular level the oncogenic potential of a variety of chemical, physical and viral agents. Cell culture systems afford the opportunity to identify factors and conditions that may prevent or enhance cellular transformation by radiation and chemicals. Permissive and protective factors in radiation-induced transformation include thyroid hormone and the tumor promoter TPA that increase the transformation incidence for a given dose of radiation, and retinoids, selenium, vitamin E, and 5-aminobenzamide that inhibit the expression of transformation. Densely ionizing α-particles, similar to those emitted by radon daughters, are highly effective in inducing transformations and appear to interact in a supra-additive fashion with asbestos fibers. The activation of a known dominant oncogene has not yet been demonstrated in radiation-induced oncogenic transformation. The most likely mechanism for radiation activation of an oncogene would be via the production of a chromosomal translocation. Radiation also efficiently induces deletions and may thus lead to the loss of a suppressor gene

  6. Treatment of Radiation Induced Biological Changes by Bone Marrow Transplantation

    El-Missiry, M.A.; Shehata, G.; Roushdy, H.M; Fayed, Th.A.

    1999-01-01

    Preventing the propagation of radiation induced oxidative damage has been a subject of considerable investigations. The ultimate goal of the present study is to use bone marrow cells to ameliorate or to treat the radiation sickness. Transplantation of bone marrow cell has shown promising results in the present experimental radiation treatment. In this report, suspension of bone marrow cells was injected into rats 12 h. after exposure to 4.5 Gy whole body gamma irradiation. Significant results were recorded on the successful control of the radiation induced disorders in a number of biochemical parameters including certain enzymatic and nonenzymatic antioxidants (superoxide dismutase and glutathione) and certain parameters related to kidney function including creatinine, urea as well as Atpase Activity in blood serum, urine and kidney tissue

  7. A case of radiation-induced cancer of the hypopharynx

    Miyamoto, Kouji; Shimizu, Yukio; Yura, Jirou; Itoh, Yasufumi; Ikeda, Tsuneko; Outsubo, Toshio; Saitou, Hitoshi

    2001-01-01

    We report a case of radiation-induced cancer of the hypopharynx in a 65-year-old woman. The patient had received radiation treatment for Basedow's disease for several years starting at the age of 10 years. On June 26, 1993, she was examined at our hospital because of hoarseness and dysphagia. On July 22, right lobectomy was performed for suspected thyroid cancer. During this operation, endoscopy revealed hypopharyngeal cancer. Twenty-two days after surgery, total pharyngolaryngectomy and total esophagectomy were performed and a pharyngogastrostomy and a permanent tracheostomy were created. Histologic examination revealed moderately differentiated squamous cell cancer. This case was diagnosed as radiation-induced caner according to the diagnostic criteria of Sakai. (author)

  8. Radiation Induced Color Centers in a La Doped PWO Crystal

    Deng, Qun

    1998-01-01

    This report presents result of a study on radiation induced color center densities in a La doped lead tungstate ( PWO) crystal. The creation and annihilation constants of radiation induced color centers were determined by using transmittance data measured for a PWO sample before and during Co-60 gamma ray irradiation at a dose rate of 15 rad/hr. Following a model of color center kinetics, these constants were used to calculate color center densities under irradiations at 100 rad/hr. The result was found to be in a good agreement with experimental data, indicating that this model of color center kinetics can be used to predict behavior of PWO crystals under irradiation.

  9. Depleted uranium and radiation - induced lung cancer and leukaemia

    Mould, R.F.

    2002-01-01

    Reports of leukaemias and other cancers among servicemen who took part in the 1991 Gulf war or in the more recent operations in the Balkans are of continuing interest, as is the possibility, however slight, that depleted uranium (DU) is one of the causative factors. This commentary includes the results of a UK epidemiological study on the mortality of Gulf war veterans and , although not containing information on DU exposure, gives data on overall levels of mortality and therefore carries more weight than anecdotal reports. Also included are brief summaries on radiation-induced lung cancer in uranium workers as well as radiation-induced leukaemia in Japanese atomic bomb survivors and patients ankylosing spondylitis treated using x-rays. This commentary concludes with a critique of Iraqi cancer statistics as well as giving information on environmental contamination in Kosovo and the use of DU ammunition. (author)

  10. Computer modelling of radiation-induced bystander effect

    Khvostunov, Igor K.; Nikjoo, Hooshang

    2002-01-01

    Radiation-induced genomic instability and bystander effects are now well established consequences of exposure of living cells to ionising radiation. It has been observed that cells not directly hit by radiation tracks may still exhibit radiation effects. We present a quantitative modelling of the radiation-induced bystander effect based on a diffusion model of spreading the bystander signal. The model assumes the bystander factor to be a protein of low molecular weight, given out by the hit cell, diffusing in the medium and reacting with non-hit cells. The model calculations successfully predict the results of cell survival in an irradiated conditioned medium. The model predicts the shape of dose-effect relationship for cell survival and oncogenic transformation induced by broad-beam and micro-beam irradiation by alpha-particles. (author)

  11. Radiation induced sarcomas of bone following therapeutic radiation

    Kim, J.H.; Chu, F.C.H.; Woodward, H.Q.; Huvos, A.

    1983-01-01

    Because of new therapeutic trends of multi-modality and the importance of late effects, we have updated our series of radiation induced bone sarcomas seen at Memorial Sloan-Kettering Cancer Center over the past four decades. A total of 37 cases of bone sarcoma arising from normal bone in the irradiated field was analyzed. The median for latent period from irradiation to diagnosis of bone sarcoma was 11 years with a minimum latent period of four years. The median radiation dose for the bone sarcoma was 6000 rad in 6 weeks with a minimum total radiation dose of 3000 rad in 3 weeks. We have found nine patients who developed bone sarcomas in the radiation field after successful treatment of Hodgkin's disease. Criteria for radiation induced bone sarcomas and the magnitude of the risk of bone sarcomas are briefly discussed

  12. Radiation-induced soft-tissue and bone sarcoma

    Kim, J.H.; Chu, F.C.; Woodard, H.Q.; Melamed, R.; Huvos, A.; Cantin, J.

    1978-01-01

    From the records of Memorial Hospital of the past 50 years, 47 cases with an established diagnosis of radiation-induced sarcoma were identified and divided into two groups: the first included 20 cases of soft-tissue sarcoma arising from irradiated tissues, and the second comprised 27 cases of bone sarcoma arising from normal bones in the irradiated field. Medians for the latent periods from irradiation to diagnosis of bone and soft-tissue sarcoma were 11 and 12, years, respectively. In bone sarcomas, the latent period was longer after larger radiation doses and children appeared to be more susceptible to cancer induction than adults. Criteria for establishing the diagnosis of radiation-induced sarcoma and the magnitude of the risk of bone sarcoma are discussed

  13. Radiation-induced tritium labelling and product analysis

    Peng, C.T. (California Univ., San Francisco, CA (United States). Dept. of Pharmaceutical Chemistry)

    1993-05-01

    By-products formed in radiation-induced tritium labelling are identified by co-chromatography with authentic samples or by structure prediction using a quantitative structure-retention index relationship. The by-products, formed from labelling of steroids, polynuclear aromatic hydrocarbons, 7-membered heterocyclic ring structures, 1,4-benzodiazepines, 1-haloalkanes, etc. with activated tritium and adsorbed tritium, are shown to be specifically labelled and anticipated products from known chemical reactions. From analyses of the by-products, one can conclude that the hydrogen abstraction by tritium atoms and the substitution by tritium ions are the mechanisms of labelling. Classification of the tritium labelling methods, on the basis of the type of tritium reagent, clearly shows the active role played by tritium atoms and ions in radiation-induced methods. (author).

  14. Radiation induced graft copolymerization of acrylamide onto poly (3-hydroxybutyrate)

    Gonzalez Torres, Maykel; Rapado Paneque, Manuel; Paredes Zaldivar, Mayte; Altanes Valentin, Sonia; Barrera Gonzalez, Gisela

    2008-01-01

    The graft copolymer poly (3-hydroxybutyrate)-g- polyacrylamide [P (HB-g-AAm)] was synthesized by radiation induced graft copolymerization of acrylamide onto poly (3-hydroxybutyrate). The study was conducted by the simultaneous irradiation method. The structure of [P (HB-g-AAm)] was identified by Fourier Transform Infrared (FTIR) spectroscopy. Thermal behavior of the graft copolymer was also studied by Thermal Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). From the results it was found that FTIR studies showed new signals (stretching -N-H) as strong evidence of grafting. The grafting degree was found to be 10 % and the thermodynamic parameter obtained from the DSC thermogram of plain PHB and the graft copolymer varied showing decrease in the material crystallinity and increase in the glass transition temperature. These results demonstrate that the radiation induced graft copolymerization reaction of acrylamide onto PHB was successively achieved. (Author)

  15. A case of radiation-induced cancer of the hypopharynx

    Miyamoto, Kouji; Shimizu, Yukio; Yura, Jirou; Itoh, Yasufumi; Ikeda, Tsuneko [Matsunami General Hospital, Kasamatsu, Gifu (Japan); Outsubo, Toshio; Saitou, Hitoshi

    2001-06-01

    We report a case of radiation-induced cancer of the hypopharynx in a 65-year-old woman. The patient had received radiation treatment for Basedow's disease for several years starting at the age of 10 years. On June 26, 1993, she was examined at our hospital because of hoarseness and dysphagia. On July 22, right lobectomy was performed for suspected thyroid cancer. During this operation, endoscopy revealed hypopharyngeal cancer. Twenty-two days after surgery, total pharyngolaryngectomy and total esophagectomy were performed and a pharyngogastrostomy and a permanent tracheostomy were created. Histologic examination revealed moderately differentiated squamous cell cancer. This case was diagnosed as radiation-induced caner according to the diagnostic criteria of Sakai. (author)

  16. Radiation-induced malignant tumours: a specific cytogenetic profile?

    Chauveinc, L.; Gaboriaux, G.; Dutrillaux, A. M.; Dutrillaux, B.; Chauveinc, L.; Ricoul, M.; Sabatier, L.; Dutrillaux, B.

    1997-01-01

    To date, there is no criterion enabling to determine the spontaneous or radio-induced origin of malignant tumour occurring in a previously irradiated patient. Biological studies are rare. The cytogenetic data which could be found in the literature for eleven radio-induced tumours suggest that aneuploidies and polyclonality are frequent events. We studied, by R-Banding cytogenetic technique, five patients with short-term cultures (3 cases), short and long-term cultures (1 case) and xeno-grafting on nude pattern a high rate of balanced translocations, numerous random break points and a polyclonal evolution (10 clones). All other tumours, including the xeno-grafting sarcoma, had a monoclonal profile with complex karyotypes, hypo-diploid formulas and many deletions. These results show that the mechanism of radiation-induced tumours frequently involves chromosomes losses and deletions. The most likely explanation is that these alterations unmask radiation induced recessive mutations of tumour suppressor genes. (authors)

  17. Radiation induced DNA damage and repair in mutagenesis

    Strniste, G.F.; Chen, D.J.; Okinaka, R.T.

    1987-01-01

    The central theme in cellular radiobiological research has been the mechanisms of radiation action and the physiological response of cells to this action. Considerable effort has been directed toward the characterization of radiation-induced DNA damage and the correlation of this damage to cellular genetic change that is expressed as mutation or initiating events leading to cellular transformation and ultimately carcinogenesis. In addition, there has been a significant advancement in their understanding of the role of DNA repair in the process of mutation leading to genetic change in cells. There is extensive literature concerning studies that address radiation action in both procaryotic and eucaryotic systems. This brief report will make no attempt to summarize this voluminous data but will focus on recent results from their laboratory of experiments in which they have examined, at both the cellular and molecular levels, the process of ionizing radiation-induced mutagenesis in cultured human cells

  18. Radiation-induced gene amplification in rodent and human cells

    Luecke-Huhle, C.; Gloss, B.; Herrlich, P.

    1990-01-01

    Ionizing and UV radiations induce amplification of SV40 DNA sequences integrated in the genome of Chinese hamster cells and increase amplification of the dihydrofolate reductase (DHFR) gene during methotrexate selection in human skin fibroblasts of a patient with ataxia telangiectasia. Various types of external (60-Co-γ-rays, 241-Am-α-particles, UV) or internal radiation (caused by the decay of 125 I incorporated into DNA in form of I-UdR) were applied. By cell fusion experiments it could be shown that SV40 gene amplification is mediated by one or several diffusible trans-acting factors induced or activated in a dose dependent manner by all types of radiation. One of these factors binds to a 10 bp sequence within the minimal origin of replication of SV40. In vivo competition with an excess of a synthetic oligonucleotide comprising this sequence blocks radiation-induced amplification. (author) 25 refs.; 8 figs

  19. Regulation of radiation-induced protein kinase Cδ activation in radiation-induced apoptosis differs between radiosensitive and radioresistant mouse thymic lymphoma cell lines

    Nakajima, Tetsuo; Yukawa, Osami; Tsuji, Hideo; Ohyama, Harumi; Wang, Bing; Tatsumi, Kouichi; Hayata, Isamu; Hama-Inaba, Hiroko

    2006-01-01

    Protein kinase Cδ (PKCδ) has an important role in radiation-induced apoptosis. The expression and function of PKCδ in radiation-induced apoptosis were assessed in a radiation-sensitive mouse thymic lymphoma cell line, 3SBH5, and its radioresistant variant, XR223. Rottlerin, a PKCδ-specific inhibitor, completely abolished radiation-induced apoptosis in 3SBH5. Radiation-induced PKCδ activation correlated with the degradation of PKCδ, indicating that PKCδ activation through degradation is involved in radiation-induced apoptosis in radiosensitive 3SBH5. In radioresistant XR223, radiation-induced PKCδ activation was lower than that in radiosensitive 3SBH5. Cytosol PKCδ levels in 3SBH5 decreased markedly after irradiation, while those in XR223 did not. There was no apparent change after irradiation in the membrane fractions of either cell type. In addition, basal cytosol PKCδ levels in XR223 were higher than those in 3SBH5. These results suggest that the radioresistance in XR223 to radiation-induced apoptosis is due to a difference in the regulation of radiation-induced PKCδ activation compared to that of 3SBH5. On the other hand, Atm -/- mouse thymic lymphoma cells were more radioresistant to radiation-induced apoptosis than wild-type mouse thymic lymphoma cells. Irradiated wild-type cells, but not Atm -/- cells, had decreased PKCδ levels, indicating that the Atm protein is involved in radiation-induced apoptosis through the induction of PKCδ degradation. The decreased Atm protein levels induced by treatment with Atm small interfering RNA had no effect on radiation-induced apoptosis in 3SBH5 cells. These results suggest that the regulation of radiation-induced PKCδ activation, which is distinct from the Atm-mediated cascade, determines radiation sensitivity in radiosensitive 3SBH5 cells

  20. Study of radiation induced structural changes in nitrile rubber

    Cardona, F.; Hill, D.J.T.; Pomery, P.J.; Whittaker, A.K.

    1996-01-01

    Full text: Copolymers of butadiene (BD) and acrylonitrile (AN) (NBR rubber), have become important commercial material. NBR rubbers are part of a larger classification of products often referred to as special-purpose rubbers. Oil resistance is the most important property of nitrile rubbers, and refer to the ability of the vulcanised product to retain its original physical properties such as modulus, tensile strength, abrasion resistance and dimensions, while in contact with oils and fuels. Despite these reported advantages very few studies have been conducted on the radiation yields and structural changes in nitrile rubbers during exposure to high energy radiation. In this study we are investigating the stability against gamma and UV radiation, to different doses in vacuum, of butadiene, acrylonitrile and NBR copolymers with different composition ratio BD/AN. The mechanism of radiation induced structural changes is being investigated using experimental techniques such as ESR, NMR (Solid-state), FT-IR, RAMAN and UV spectroscopy. Also is being investigated the effect of irradiation on the mechanical properties of stressed and unstressed samples by TGA, DSC, DMA, Instron and Creep Test measurements. So far the main effect have been a marked radiation-induced loss of unsaturation in the butadiene units, cis to trans isomerization and formation of crosslink structures (intermolecular and intramolecular). One of the main challenges in the studies of NBR polymers is to observe directly the crosslinks produces by the radiation induced chemical reactions. IR spectroscopy is unsuitable because of the low molar absorbity of the peaks related to intermolecular crosslinking and the overlapping of the peaks (1630-1670 cm-1) related to intramolecular crosslinking (cyclization), with conjugated and nonconjugated (-C=C-; -C=N-) double bonds. A. K. Whittaker has shown that crosslink structures in PBD can be detected and measured directly using solid-state 13 C NMR. This technique

  1. Heavy-ion radiation induced bystander effect in mice

    Liang, Shujian; Sun, Yeqing; Zhang, Meng; Wang, Wei; Cui, Changna

    2012-07-01

    Radiation-induced bystander effect is defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, Low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic, metabolomics and proteomics play significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male mice head were exposed to 2000mGy dose of 12C heavy-ion radiation and the distant organ liver was detected on 1h, 6h, 12h and 24h after radiation, respectively. MSAP was used to monitor the level of polymorphic DNA methylation changes. The results show that heavy-ion irradiate mouse head can induce liver DNA methylation changes significantly. The percent of DNA methylation changes are time-dependent and highest at 6h after radiation. We also prove that the hypo-methylation changes on 1h and 6h after irradiation. But the expression level of DNA methyltransferase DNMT3a is not changed. UPLC/Synapt HDMS G2 was employed to detect the proteomics of bystander liver 1h after irradiation. 64 proteins are found significantly different between treatment and control group. GO process show that six of 64 which were unique in irradiation group are associated with apoptosis and DNA damage response. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo.

  2. [The occupational radiation-induced cataract in five industrial radiographers].

    Benzarti Mezni, A; Loukil, I; Hriz, N; Kallel, K; Mlaiki, N; Ben Jemaâ, A

    2012-04-01

    The industrial uses of ionizing radiation in Tunisia are expanding, especially in industry and most particularly in the nondestructive testing of welds. Thus workers operating in the non-destructive testing of welds may develop a radiation-induced cataract varying in time to onset depending on the dose. To describe the characteristics of the radiation-induced cataract in patients exposed to ionizing radiation, determine the risk factors of radiation-induced cataracts. This was an anamnestic, clinical, and environmental study of five cases of radiation-induced cataract in workers employed in non-destructive testing of welds. This series of five cases had a mean age of 30.2 years and 5.53 years of work experience, ranging from 14 months to 15 years. All the patients were male and industrial radiographers specialized in nondestructive testing of welds. The average duration of exposure to ionizing radiation was 5.53 years. None of the patients had worn protective gear such as eye goggles. The ophthalmic check-up for the five special industrial radiographers showed punctuate opacities in three cases, punctiform opacities in one eye in one case, and phacosclerosis with bilateral lens multiple crystalline stromal opacities in a case of micro-lens opacities in both eyes with opalescence of both eyes in one case. These cataracts had been declared as occupational diseases. The value of a specialized ophthalmologic surveillance among these workers and the early diagnosis of lens opacities must be emphasized. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  3. Radiation-induced transient absorption in single mode optical fibers

    Looney, L.D.; Lyons, P.B.

    1988-01-01

    This paper reviews the measurements conducted by the Los Alamos National Laboratory in support of these NATO efforts wherein radiation-induced transient absorption was measured over time ranges from a few ns to several μs for two single mode fibers. Experimental conditions were varied to provide data for future development of standarized test conditions for single mode fibers. 8 refs., 11 figs

  4. Radiation-induced morphea of the breast: a case report

    Cheah Nellie LC

    2008-04-01

    Full Text Available Abstract Radiation-induced morphea (RIM of the breast is a rare complication of radiotherapy. It is disfiguring, painful and defeats the purpose of achieving a good cosmesis in breast-conservation surgery. This report describes a severe case of RIM in a breast cancer patient together with photographic illustrations of the serial changes over time and histopathology slides. A review of the literature is provided.

  5. 'Water Structure' versus 'Radical Scavenger' theories as explanations for the suppressive effects of DMSO and related compounds on radiation-induced transformation in vitro

    Kennedy, A.R.; Symons, M.C.R.

    1987-01-01

    We report here that dimethylsulfoxide (DMSO): (i) suppresses radiation-induced transformation in vitro, even when DMSO treatments begin as late as 10 days post-irradiation; (ii) inhibits the 12-O-tetradecanoylphorbol-13-acetate (TPA) enhancement of radiation-induced transformation in vitro; (iii) does not affect the expression of transformed cells as foci (when surrounded by non-transformed cells); and (iv) may be affecting radiation-induced transformation through its solvent properties (i.e. the 'Water Structure' theory), while its effects on the TPA enhancement of radiation transformation may be mediated by its free radical scavenging abilities. DMSO, dimethylformamide (DMF) and dimethylacetamide (DMA) are similar solvents which are all very effective in their ability to suppress radiation-induced transformation in vitro. As DMSO is known to be an extremely effective OH free-radical scavenging agent, while DMF and DMA are not as efficient at scavenging free radicals, our results suggest that properties other than free-radical scavenging ability may be important in the suppressive effects of these compounds on radiation-induced transformation in vitro. (author)

  6. Caspase-independent cell death mediated by apoptosis-inducing factor (AIF) nuclear translocation is involved in ionizing radiation induced HepG2 cell death

    Sun, Hengwen; Yang, Shana; Li, Jianhua; Zhang, Yajie; Gao, Dongsheng; Zhao, Shenting

    2016-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expression in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.

  7. Radiation induced structural changes in alpha-copper-zinc alloys

    Schuele, W.; Gieb, M.

    1991-01-01

    During irradiation of alpha-copper-zinc alloys with high energy electrons and protons a decrease of the electrical resistivity due to an increase of the degree of short range order is observed through radiation enhanced diffusion followed by an increase of the electrical resistivity through the formation of radiation induced interstitial clusters. The initial formation rate of interstitial clusters increases about linearly with the displacement rate for electron and proton irradiation. The largest initial formation rate is found between 60 and 130 0 C becoming negligibly small above 158 0 C and decreases drastically below 60 0 C. The dynamic steady state interstitial cluster concentration increases with decreasing irradiation temperature in the investigated temperature range between 158 and 40 0 C. Above 158 0 C the formation rate of interstitial clusters is negligibly small. Thus the transition temperature for radiation induced interstitial cluster formation is 158 0 C, depending mainly on the migration activation energy of vacancies. The radiation induced interstitial clusters are precipitates in those alloys in which the diffusion rate of the undersized component atoms via an interstitialcy diffusion mechanism is larger than that of the other atoms

  8. Protection against radiation-induced performance decrement in mice

    Mukherjee, S.K.; Pant, Kanchan; Goel, H.C.; Jain, Viney

    1997-01-01

    Recognizing that there is lack of information on the effects of low-level ionizing radiations and the modifying role of radioprotectors, an attempt has been made in this study to explore the relationship between impairment of spatial learning and low level of radiation exposure. A radial arm maze was utilised to evaluate radiation-induced behavioural alterations and performance decrement in mice. Immediately after whole body exposure to gamma radiation (absorbed dose, 1 Gy) significant perturbations in the learned behaviour of the animals were observed. The regular control movement became irregular and the food consumption time was reduced appreciably (40%). Recovery took place in four days. If diltiazem (7 mg/kg b.w.), a Ca 2+ channel blocker and a radioprotector, was administered i.p. 20-30 min prior to irradiation, radiation-induced behavioural abnormalities were reduced. Mechanisms underlying protection by diltiazem against radiation-induced performance decrement observed in the present study need to be investigated. (author). 23 refs., 2 figs

  9. Radiation-induced grain boundary segregation in austenitic stainless steels

    Bruemmer, S.M.; Charlot, L.A.; Vetrano, J.S.; Simonen, E.P.

    1994-11-01

    Radiation-induced segregation (RIS) to grain boundaries in Fe-Ni-Cr-Si stainless alloys has been measured as a function of irradiation temperature and dose. Heavy-ion irradiation was used to produce damage levels from 1 to 20 displacements per atom (dpa) at temperatures from 175 to 550 degrees C. Measured Fe, Ni, and Cr segregation increased sharply with irradiation dose (from G to 5 dpa) and temperature (from 175 to about 350 degrees C). However, grain boundary concentrations did not change significantly as dose or temperatures were further increased. Although interfacial compositions were similar, the width of radiation-induced enrichment or depletion profiles increased consistently with increasing dose or temperature. Impurity segregation (Si and P) was also measured, but only Si enrichment appeared to be radiation-induced. Grain boundary Si peaked at levels approaching 10 at% after irradiation doses to 10 dpa at an intermediate temperature of 325 degrees C. No evidence of grain boundary silicide precipitation was detected after irradiation at any temperature. Equilibrium segregation of P was measured in the high-P alloys, but interfacial concentration did not increase with irradiation exposure. Comparisons to reported RIS in neutron-irradiated stainless steels revealed similar grain boundary compositional changes for both major alloying and impurity elements

  10. Radiation-Induced Differentiation in Human Lung Fibroblast

    Park, Sa-Rah; Ahn, Ji-Yeon; Han, Young-Soo; Shim, Jie-Young; Yun, Yeon-Sook; Song, Jie-Young

    2007-01-01

    One of the most common tumors in many countries is lung cancer and patients with lung cancer may take radiotherapy. Although radiotherapy may have its own advantages, it can also induce serious problems such as acute radiation pneumonitis and pulmonary fibrosis. Pulmonary fibrosis is characterized by excessive production of α-SMA and accumulation of extracellular matrix (ECM) such as collagen and fibronectin. There has been a great amount of research about fibrosis but the exact mechanism causing the reaction is not elucidated especially in radiation-induced fibrosis. Until now it has been known that several factors such as transforming growth factor (TGF-β), tumor necrosis factor (TNF), interleukin (IL)-1, IL-6, platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) are related to fibrosis. Among them TGF-β with Smad signaling is known to be the main stream and other signaling molecules such as MAPK, ERK and JNK (3) also participates in the process. In addition to those above factors, it is thought that more diverse and complicate mechanisms may involve in the radiationinduced fibrosis. Therefore, to investigate the underlying mechanisms in radiation induced fibrosis, first of all, we confirmed whether radiation induces trans differentiation in human normal lung fibroblasts. Here, we suggest that not only TGF-β but also radiation can induce trans differentiation in human lung fibroblast WI-38 and IMR-90

  11. Radiation-induced tumors of the nervous system

    Bernstein, M.; Laperriere, N.

    1991-01-01

    Therapeutic and nontherapeutic ionizing radiation has long been recognized as a putative carcinogenic agent, but the evidence that radiation causes tumors is circumstantial at worst and statistically significant at best. There are no distinct histological, biochemical, cytogenetic, or clinical criteria that can be used to determine if an individual tumor was caused directly by previous irradiation of the anatomic area. Additional supportive evidence for radiation-induced tumors includes a position correlation between radiation dose and tumor incidence (usually in the low dose range) and experimental induction of the same neoplasm in appropriate animal models. even if these criteria are fulfilled, coincidental development of a second tumor can never be discounted in an individual patient, particularly if there is an underlying diathesis to develop multiple tumors of different histology, such as in Recklinghausen's disease, or if there is an strong family history for the development of neoplastic disease. In this paper, the authors critically evaluate the available evidence to support the hypothesis that radiation induces tumors in the nervous system. The current concepts of radiation carcinogenesis are discussed and are followed by a discussion of animal data and clinical experience in humans. Finally, a brief discussion on treatment of radiation-induced nervous system tumors is presented

  12. Radiation-induced pseudotumor following therapy for soft tissue sarcoma

    Moore, Lacey F.; Kransdorf, Mark J. [Mayo Clinic, Department of Radiology, Jacksonville, FL (United States); Buskirk, Steven J. [Mayo Clinic, Department of Radiation Oncology, Jacksonville, FL (United States); O' Connor, Mary I. [Mayo Clinic, Department of Orthopedic Surgery, Jacksonville, FL (United States); Menke, David M. [Mayo Clinic, Department of Pathology, Jacksonville, FL (United States)

    2009-06-15

    The purpose of this study was to describe the prevalence and imaging appearance of radiation induced pseudotumors in patients following radiation therapy for extremity soft tissue sarcomas. We retrospectively reviewed the serial magnetic resonance (MR) images of 24 patients following radiation therapy for extremity soft tissue sarcomas. A total of 208 exams were reviewed (mean, 8.7 exams per patient) and included all available studies following the start of radiation therapy. Exams were analyzed for the identification of focal signal abnormalities within the surgical bed suggesting local tumor recurrence. Histopathologic correlation was available in nine patients suspected of having local tumor recurrence. Additional information recorded included patient demographics, tumor type and location, radiation type, and dose. The study group consisted of 12 men and 12 women, having an average age of 63 years (range, 39-88 years). Primary tumors were malignant fibrous histiocytoma (n = 13), leiomyosarcoma (n = 6), liposarcoma (n = 3), synovial sarcoma (n = 1), and extraskeletal chondrosarcoma (n = 1). All lesions were high-grade sarcomas, except for two myxoid liposarcomas. Average patient radiation dose was 5,658 cGy (range, 4,500-8,040 cGy). Average follow-up time was 63 months (range, 3-204 months). Focal signal abnormalities suggesting local recurrence were seen in nine (38%) patients. Three of the nine patients with these signal abnormalities were surgically proven to have radiation-induced pseudotumor. The pseudotumors developed between 11 and 61 months following the initiation of radiation therapy (mean, 38 months), with an average radiation dose of 5,527 cGy (range, 5,040-6,500 cGy). MR imaging demonstrated a relatively ill-defined ovoid focus of abnormal signal and intense heterogeneous enhancement with little or no associated mass effect. MR imaging of radiation-induced pseudotumor typically demonstrates a relatively ill-defined ovoid mass-like focus of intense

  13. Relationship between radiation induced activation of DNA repair genes and radiation induced apoptosis in human cell line A431

    Bom, Hee Seung; Min, Jung Jun; Kim, Kyung Keun; Choi, Keun Hee

    2000-01-01

    The purpose of this study was to evaluate the relationship between radiation-induced acivation of DNA repair genes and radiation induced apoptosis in A431 cell line. Five and 25 Gys of gamma radiation were given to A431 cells by a Cs-137 cell irradiator. Apoptosis was evaluated by flow cytometry using annexin V-fluorescein isothiocyanate and propidium iodide staining. The expression of DNA repair genes was evaluated by both Northern and Western blot analyses. The number of apoptotic cells increased with the increased radiation dose. It increased most significantly at 12 hours after irradiation. Expression of p53, p21, and ℎRAD50 reached the highest level at 12 hours after 5 Gy irradiation. In response to 25 Gy irradiation, ℎRAD50 and p21 were expressed maximally at 12 hours, but p53 and GADD45 genes showed the highest expression level after 12 hours. Induction of apoptosis and DNA repair by ionizing radiation were closely correlated. The peak time of inducing apoptosis and DNA repair was 12 hours in this study model. ℎRAD50, a recently discovered DNA repair gene, was also associated with radiation-induced apoptosis.=20

  14. Radiation-Induced Changes in Some Biochemical Parameters of the Haemopoietic Tissue of Rabbits

    Izak, G.; Karsai, A.; Eylon, L. [Haematology Research Laboratory, Hadassah University Hospital (Israel); Hebrew University-Hadassah Medical School, Jerusalem (Israel)

    1968-08-15

    Bone-marrow and reticulocyte suspensions obtained from rabbits following massive haemorrhage were irradiated by a cobalt source with doses ranging between 1000-10 000 rad. The radiation-induced injury to the nucleic acid synthesizing apparatus and to the haem-and protein-producing activity of the bone-marrow cells, as well as the damage to the haemoglobin synthesizing system of the reticulocytes, was investigated shortly after exposure. The amino-acid incorporation activity into protein was substantially reduced, together with all the other parameters measured in the bone-marrow cells, while globin synthesis was not affected at the same radiation dose in the reticulocytes. On the other hand, incorporation of haem precursors into protoporphyrin and of radio iron into protoporphyrin was inhibited both in the nucleated erythroid precursors and in the reticulocytes, more so in the former than in the latter. The implications of these findings and possible means to repair the biochemical injury are discussed. (author)

  15. Effects of estradiol on radiation-induced apoptosis in immunocytes of mouse

    Wu Wei; Yang Rujun; Kong Xiantao; Zhang Lingzhen; Li Bolong; Cai Jianming

    2000-01-01

    Objective: To assess the effects of estradiol on 60 Co γ-radiation induced apoptosis of splenic lymphocytes and thymocytes, and surface molecule expression of splenic lymphocytes. Methods: Mice were whole body irradiated with 4.0 Gy γ-rays. By flow cytometry and electrophoretic analysis of DNA, the changes in apoptosis of mouse immunocytes were determined. The splenic lymphocytes were analyzed by flow cytometry with fluorescent monoclonal antibodies. Results: 10 days after administration of estradiol, the characteristic DNA ladder in mice 8h after irradiation was minor than in mice without estradiol administration,indicating that the apoptotic rate reduced on flow cytometry. CD4+ T cells, CD8+ T cells and IgM+ B cells up regulated Fas, CD25 and CD69 expression, but did not so in the estradiol treated mice. Conclusion: Estradiol can block CD25, CD69 and Fas overexpression, thereby inhibiting Fas mediated apoptosis induced by γ-irradiation

  16. Inhibition of Cartilage Acidic Protein 1 Reduces Ultraviolet B Irradiation Induced-Apoptosis through P38 Mitogen-Activated Protein Kinase and Jun Amino-Terminal Kinase Pathways

    Yinghong Ji; Xianfang Rong; Dan Li; Lei Cai; Jun Rao; Yi Lu

    2016-01-01

    Background/Aims: Ultraviolet B (UVB) irradiation can easily induce apoptosis in human lens epithelial cells (HLECs) and further lead to various eye diseases including cataract. Here for the first time, we investigated the role of cartilage acidic protein 1 (CRTAC1) gene in UVB irradiation induced-apoptosis in HLECs. Methods: Three groups of HLECs were employed including model group, empty vector group, and CRTAC1 interference group. Results: After UVB irradiation, the percentage of primary ap...

  17. Alteration of the digestive motility linked with radiation-induced inflammatory processes in rats

    Picard, C.

    2000-12-01

    Exposure to ionizing radiation, whether accidental or for medical reasons, may lead to gastro-intestinal injury, characterized by nausea, vomiting, diarrhea and abdominal cramps. The aetiology of radiation-induced diarrhea remains to date unclear. In this study, we have investigated the acute effects of a 10 Gy abdominal irradiation on rat digestive functions. The objective of the first study was to evaluate the role of sensory afferent neurons, capsaicin-sensitive, on morphological changes and the inflammatory response following exposure. Three days after irradiation, we observed an inflammatory response characterized by neutrophils infiltration and mast cells de-granulation. No effect of capsaicin pre-treatment was seen on these parameters. However, neutrophils infiltration was increased as early as one day after irradiation in capsaicin-treated rats. No difference in severity of diarrhea was observed after denervation nor in morphological changes. These data demonstrate that abdominal irradiation results in diarrhea concomitant with an inflammatory response, and that sensory innervation does not play a major protective role. The objective of the rest of the work was in the first instance to characterize radiation-induced alterations of intestinal and colonic motility leading to diarrhea and secondly to evaluate the role of serotonin in such disorders. Perturbations in intestinal (MMC) and colonic (LSB) motor profiles were observed from the first day onwards. Migrating motor complexes (MMC) were completely disrupted at three days at the same time as the onset of diarrhea. In addition to inhibition of LSB, colonic fluid absorptive capacity was decreased and serotonin colonic tissue levels were increased three days after irradiation. Radiation-induced diarrhea was reduced by treatment with an antagonist of 5-HT 3 receptors, granisetron, as were alterations of colonic motility and serotonin tissue levels. However, this treatment did not significantly ameliorate

  18. Methylglyoxal-bis(guanylhydrazone), a polyamine analogue, sensitized γ-radiation-induced cell death in HL-60 leukemia cells Sensitizing effect of MGBG on γ-radiation-induced cell death.

    Kim, Jin Sik; Lee, Jin; Chung, Hai Won; Choi, Han; Paik, Sang Gi; Kim, In Gyu

    2006-09-01

    Methylglyoxal-bis(guanylhydrazone) (MGBG), a polyamine analogue, has been known to inhibit the biosynthesis of polyamines, which are important in cell proliferation. We showed that MGBG treatment significantly affected γ-radiation-induced cell cycle transition (G(1)/G(0)→S→G(2)/M) and thus γ-radiation-induced cell death. As determined by micronuclei and comet assay, we showed that it sensitized the cytotoxic effect induced by γ-radiation. One of the reasons is that polyamine depletion by MGBG treatment did not effectively protect against the chemical (OH) or physical damage to DNA caused by γ-radiation. Through in vitro experiment, we confirmed that DNA strand breaks induced by γ-radiation was prevented more effectively in the presence of polyamines (spermine and spermidine) than in the absence of polyamines. MGBG also blocks the cell cycle transition caused by γ-radiation (G(2) arrest), which helps protect cells by allowing time for DNA repair before entry into mitosis or apoptosis, via the down regulation of cyclin D1, which mediates the transition from G(1) to S phase of cell cycle, and ataxia telangiectasia mutated, which is involved in the DNA sensing, repair and cell cycle check point. Therefore, the abrogation of G(2) arrest sensitizes cells to the effect of γ-radiation. As a result, γ-radiation-induced cell death increased by about 2.5-3.0-fold in cells treated with MGBG. However, exogenous spermidine supplement partially relieved this γ-radiation-induced cytotoxicity and cell death. These findings suggest a potentially therapeutic strategy for increasing the cytotoxic efficacy of γ-radiation.

  19. Radiation-induced crosslinking of polymeric micelles as nanoparticle for immobilization of bioactive compound

    Rida Tajau; Khairul Zaman Mohd Dahlan; Mohd Hilmi Mahmood; Wan Md Zin Wan Yunus; Kamaruddin Hashim; Nor Azowa Ibrahim; Maznah Ismail; Mek Zah Salleh

    2012-01-01

    The purpose of this study was to develop the bioactive-loaded polymeric nanoparticle by radiation-induced crosslinking technique. The polymeric micelles consist of acrylated palm oil (APO), anionic surfactant and aqueous solution was prepared for immobilization of bioactive compound for example the Thymoquinone (TQ). The TQ-loaded APO micelle was subjected to ionizing radiation to induce crosslinked polymeric structure of the TQ-loaded APO nanoparticle. The formation of TQ-loaded APO micro micelle and nano particle were evaluated by the Dynamic Light Scattering (DLS), the Fourier Transform Infrared (FTIR) Spectroscopy and the Transmission Electron Microscopy (TEM) for characterization the size, the shape, the chemical structure and the irradiation effect of the micelle and the nano particle. The results indicate that the size of APO micro and nano particles varies from 120 to 270 nanometer (nm) upon gamma irradiation at doses ranging from 1 to 25 kilo gray (kGy). In addition, size of the particle was found decreasing upon irradiation due to the crosslinking interaction. The study demonstrated that the APO micro-and nanoparticle can retained and controlled the release rate of the thymoquinone at up to 24 hours as determined using ultraviolet-visible (UV-Vis) spectrophotometer. These findings suggested that the ionizing radiation method can be utilized to prepare nano-size APO particles, with the presence of TQ. (author)

  20. Radiation induced coloring of glasses measured during and after electron irradiation

    Swyler, K.J.; Hardy, W.H. II; Levy, P.W.

    1975-01-01

    The growth of color centers during irradiation, and the decay after irradiation, were studied in two glasses using recently developed equipment for making optical absorption and luminescence measurements during and after electron irradiation. The glasses studied were NBS 710, a soda-lime silicate glass, and NBS 711, a lead silicate glass. Both glasses exhibit similar coloring characteristics. The radiation-induced absorption spectra consists of a weak gaussian shaped band in the visible, a stronger gaussian band in the ultraviolet, and a band edge ''shift'' which may be accurately approximated by a third gaussian band. For all absorption bands, the color center vs dose (or irradiation time) curves can be accurately resolved into two saturating exponential and one linear component. The decay curves obtained after the irradiation is terminated can be accurately expressed by three exponential components. Coloring and decay curves made at different dose rates indicate that the processes responsible for decay after irradiation and electron hole recombination during irradiation play important roles in determining the rate and extent of coloring. Results are qualitatively in agreement with some very simple kinetic treatments for color center formation. In some, but not all, respects the quantitative agreement is also good. Lastly, the results indicate that it is necessary to make measurements during irradiation to establish the formation kinetics of color centers that are unstable at the bombardment temperature. (U.S.)

  1. UV radiation-induced photochemical damage of tryptophan in peptides, proteins and ocular lenses

    Hibbard, L.B.

    1985-01-01

    These studies were undertaken to investigate the possible involvement of the amino acid tryptophan in the near-ultraviolet radiation-induced photochemical alteration of peptides and proteins and the role tryptophan photolysis plays in ocular lens damage. Sample irradiations were performed to determine if tryptophan photolysis occurs with radiation in the UV-A region in comparison to photolysis induced by wavelengths in the normal absorption band of the amino acid (UV-B). Photolysis studies were carried out on free tryptophan and two dipeptides, tryptophyglycine and glycyltryptophan, in aqueous solutions at different pH values in the range 4.5-10.0 under aerated or anaerobic conditions. Rates of photolysis of these 290 nm-irradiated compounds, detected by observing tryptophan fluorescence intensity loss during irradiation, were compared and significant differences were observed for each compound which varied with pH and oxygen environment. Another series of experiments examined the photolysis of tryptophan residues in lens proteins in whole rat lenses induced by 290 nm and 298 nm dye laser radiation. Tryptophan residue photolysis was, once again, monitored by loss in tryptophan fluorescence intensity. A relationship was derived between tryptophan loss and photoproduct buildup during irradiation

  2. Real time in situ spectroscopic characterization of radiation induced cationic polymerization of glycidyl ethers

    Mascioni, Matteo; Sands, James M.; Palmese, Giuseppe R.

    2003-01-01

    Radiation curable polymeric materials suffer from relatively poor mechanical properties. Moreover, the curing behavior of such systems (i.e. the exact relationship between chemical kinetics and key processing variables) is not fully understood. In order to design improved epoxy based electron beam (EB) curable systems, and in order to develop appropriate process models, a detailed knowledge of the kinetics of epoxy cationic polymerization induced by ultraviolet (UV) or EB irradiation is required. In this work, we present our development of a technique based on real time near infrared (RTIR) spectroscopy for performing in situ kinetic analysis of radiation induced cationic polymerization of epoxy systems. To our knowledge this is the first time such data have been collected and presented for high-energy EB (10 MeV) induced polymerization. A demonstration of the technique for deterministic evaluation of degree of cure is shown using model glycidyl ether (phenyl glycidyl ether and diglycidyl ether of bisphenol A) resins and isothermal curing conditions. The impact of initiation rate on polymerizations with UV and EB for the cationic initiator is directly evident by comparative analysis. The sensitivity of the RTIR method and ability to produce quantitative data evidence of reaction mechanisms is demonstrated. The type of data presented in this work forms the basis for cure models being developed

  3. Modeling of excimer laser radiation induced defect generation in fluoride phosphate glasses

    Natura, U.; Ehrt, D.

    2001-01-01

    Fluoride phosphate (FP) glasses with low phosphate content are high-transparent in the deep ultraviolet (UV) range and attractive candidates for UV-optics. Their optical properties are complementary to fluoride crystals. The anomalous partial dispersion makes them desirable for optical lens designs to reduce the secondary spectrum. Their UV transmission is limited by trace impurities introduced by raw materials and decreases when exposed to UV-radiation (lamps, lasers). The experiments of the paper published previously in this journal were used in order to separate radiation induced absorption bands in the fluoride phosphate glass FP10. In this paper the generation mechanism of the phosphorus-oxygen related hole center POHC 2 is investigated in detail in glasses of various compositions (various phosphate and impurity contents) in order to predict the transmission loss in case of long-time irradiation. Experiments were carried out using ArF- and KrF-excimer lasers (ns-pulses). POHC 2 generation strongly depends on the phosphate content and on the content of Pb 2+ . A model was developed on these terms. Rate equations are formulated, incorporating the influence of the Pb 2+ -content on the defect generation, a two-step creation term including an energy transfer process and a one-photon bleaching term. This results in a set of coupled nonlinear differential equations. Absorption coefficients and lifetimes of the excited states were calculated as well. Experimental results compared well with the numerical analysis of the theoretical rate equations

  4. Construction of radiation - induced metastasis model in vivo

    Park, Jong Kuk; Jang, Su Jin; Kang, Sung Wook; Kim, Jae Sung; Hwang, Sang Gu; Kang, Joo Hyun [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2011-05-15

    In treatment of cancer, distant metastases are important limiting factor because an estimated 50% of all cancer patients will develop metastases, and the metastases are major causing of cancer treatment failure. Recently a few reports indicated {gamma}-radiation induced an increase of invasiveness of several cancer cells. In this study, we had tried to show the possibility that radiation could also induce metastasis in vivo system. To prove our hypothesis, we constructed primary tumor by using C6-TL transfectant cell line expressing HSV1-tk and firefly luciferase (fLuc), and then {gamma}-radiation was treated to xenografts locally. Treatment of {gamma}-radiation to primary C6-TL xenografts of mice reduced size of xenografts and elongated survival of mice than those of mock control mice. But we also show that {gamma}-radiation treatment was followed by the growth of dormant metastases in various organs including lung and intestine after 2-4 weeks of {gamma}-radiation treatment. When bioluminescence imaging indicated growth of tumor in organs in mice, we sacrificed the mice and repeat acquired bioluminescence imaging after repeatedly. These images presented tumor growth locations exactly in organs. Because metastatic tumor candidates have morphology of foci, biopsies were performed for histological analysis or PCR analysis to confirm metastases. In most foci, histological analysis indicated several features of typical cancer tissue and PCR analysis showed present of fLuc gene in metastases. Detection of fLuc gene in metastases indicated these foci were originated from primary C6-TL xenografts, and the results suggest that {gamma}-radiation could promote metastasis in vivo as well as in vitro system. Although we need to understand changes of intracellular signaling or physiological phenomena of the radiation-induced metastasis yet, these results also imply that {gamma}-radiation treatment only to cancer patients need to pay attention carefully, and development of new

  5. Radioprotective effects of melatonin on radiation-induced cataract

    Karslioglu, Ie.; Ertekin, M.V.; Taysi, S.; Kocer, Ie.; Sezen, O.; Koc, M.; Bakan, N.; Gepdiremen, A.

    2005-01-01

    One of the mechanisms proposed to explain lens opacification is the oxidation of crystallins, either by radiation or reactive oxygen species (ROS). It has been shown that melatonin has both an anti-peroxidative effect on several tissues and a scavenger effect on ROS. The purpose of this study was to determine the antioxidant role of melatonin (5 mg/kg/day) against radiation-induced cataract in the lens after total-cranium irradiation of rats with a single dose of 5 Gy. Sprague-Dawley rats were divided into four groups. Control group received neither melatonin nor irradiation. Irradiated rats (IR) and melatonin+irradiated rats (IR+Mel) groups were exposed to total cranium irradiation of 5 Gy in a single dose by using a cobalt-60 teletherapy unit. IR+Mel and melatonin (Mel) groups were administered 5 mg/kg melatonin daily by intraperitoneal injections during ten days. Chylack's cataract classification was used in this study. At the end of the 10 th day, the rats were killed and their eyes were enucleated to measure the antioxidant enzymes i.e. the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and lipid peroxidation level (malondialdehyde (MDA)). Irradiation significantly increased the MDA level, as an end product of lipid peroxidation, and also significantly decreased SOD and GSH-Px activity, emphasizing the generation of increased oxidative stress. Rats injected with melatonin only did not cause cataract formation. Melatonin supplementation with irradiation significantly increased the activity of SOD and GSH-Px enzymes and significantly decreased the MDA level. Total cranium irradiation of 5 Gy in a single dose enhanced cataract formation, and melatonin supplementation protected the lenses from radiation-induced cataract formation. Our results suggest that supplementing cancer patients with adjuvant therapy of melatonin may reduce patients suffering from toxic therapeutic regimens such as chemotherapy and/or radiotherapy and may provide

  6. Radiation-induced erectile dysfunction: Recent advances and future directions

    Javed Mahmood, PhD

    2016-07-01

    Full Text Available Prostate cancer is one of the most prevalent cancers and the second leading cause of cancer-related deaths in men in the United States. A large number of patients undergo radiation therapy (RT as a standard care of treatment; however, RT causes erectile dysfunction (radiation-induced erectile dysfunction; RiED because of late side effects after RT that significantly affects quality of life of prostate cancer patients. Within 5 years of RT, approximately 50% of patients could develop RiED. Based on the past and current research findings and number of publications from our group, the precise mechanism of RiED is under exploration in detail. Recent investigations have shown prostate RT induces significant morphologic arterial damage with aberrant alterations in internal pudendal arterial tone. Prostatic RT also reduces motor function in the cavernous nerve which may attribute to axonal degeneration may contributing to RiED. Furthermore, the advances in radiogenomics such as radiation induced somatic mutation identification, copy number variation and genome-wide association studies has significantly facilitated identification of biomarkers that could be used to monitoring radiation-induced late toxicity and damage to the nerves; thus, genomic- and proteomic-based biomarkers could greatly improve treatment and minimize arterial tissue and nerve damage. Further, advanced technologies such as proton beam therapy that precisely target tumor and significantly reduce off-target damage to vital organs and healthy tissues. In this review, we summarize recent advances in RiED research and novel treatment modalities for RiED. We also discuss the possible molecular mechanism involved in the development of RiED in prostate cancer patients. Further, we discuss various readily available methods as well as novel strategies such as stem cell therapies, shockwave therapy, nerve grafting with tissue engineering, and nutritional supplementations might be used to

  7. Radiation-induced rhabdomyosarcomatous transformation of a recurrent meningeal haemangiopericytoma

    Ka Kit Leung, G.; Chun Kit Lee, W.; Nicholls, J.M.

    2007-01-01

    A 53-year-old woman presented in 1979 with a posterior fossa meningeal haemangiopericytoma (HPC) for which she underwent surgical resection and post-operative radiotherapy. Repeated tumor recurrences occurred 18 years afterwards which were treated with resections and stereotactic radiotherapy. Surgery for tumor recurrence in 2005 revealed features of rhabdomyosarcomatous transformation. To our knowledge, this is the first reported case of rhabdomyosarcomatous transformation within a HPC which was likely to be radiation-induced, and was associated with relentless disease progression more than 20 years after the initial presentation. (author)

  8. Segregation effect of radiation induced crosslinking of HDPE: morphology change

    Deng Pengyang; Zhong Xiaoguang

    2000-01-01

    Scanning Electronic Microscopy has been used to study morphology of pure gel; sol-gel blend and sol-gel segregation samples of radiation induced crosslinking of HDPE. The results show that the morphology of segregation sample is the same as that of pure gel and different from that of sol-gel blend. This kind of morphology change proves that the sol-gel blend have occurred a liquid---solid phase segregation in the melting state. The liquid phase (sol) will naturally immersed in the network of the gel. (author)

  9. Radiation-induced hyperprolactinaemia in a treated acromegalic

    Shalet, S.M.; MacFarlane, I.A.; Beardwell, C.G.

    1979-01-01

    A 31-year-old acromegalic was normoprolactinaemic after partial removal of her pituitary tumour. The post-operative external pituitary irradiation lowered the mean growth hormone (GH) level from 75 mU/l to less than 1 mU/l within 2 years. However, at the same time hyperprolactinaemia developed. These changes in the GH and prolactin levels were confirmed 3 and 4 years after irradiation. The cause of the hyperprolactinaemia was radiation-induced hypothalamic damage. Therefore it is suggested that similar damage may occur in patients receiving external pituitary irradiation for 'prolactinomas' and that this mechanism may contribute to the persistent hyperprolactinaemia observed in such patients. (author)

  10. The effect of caffeine on radiation-induced division delay

    Snyder, M.H.; Kimler, B.F.; Leeper, D.B.

    1977-01-01

    Caffeine (100 μg/ml) was added to monolayer cultures of Chinese hamster ovary cells coincident with 60 Co γ-irradiation (75 to 300 rad). The results indicated that caffeine (at concentrations that did not perturb cell-cycle progression as monitored by the mitotic selection technique) exerted a protective effect against radiation-induced division delay. This protection consisted of an increase in the number of cells that were refractory to the radiation insult, as well as a decrease in the average time that non-refractory cells were delayed before they recovered their ability to progress through the cell cycle. (U.K.)

  11. Tissue culture regeneration and radiation induced mutagenesis in banana

    Kulkarni, V.M.; Ganapathi, T.R.

    2009-01-01

    Radiation induced mutagenesis is an important tool for banana genetic improvement. At BARC, protocols for shoo-tip multiplication of commercial banana varieties have been developed and transferred to user agencies for commercial production. Excellent embryogenic cell suspensions were established in banana cvs. Rasthali and Rajeli, and were maintained at low temperatures for long-term storage. Normal plantlets were successfully regenerated from these cell suspensions. The cell suspensions and shoot-tip cultures were gamma-irradiated for mutagenesis. The mutagenized populations were field screened and a few interesting mutants have been isolated. The existence of genetic variation was confirmed using DNA markers. Further evaluation of these mutants is in progress. (author)

  12. Radiation-induced glycoside bond breaking in cellulose methyl ethers

    Petryaev, E.P.; Boltromeyuk, V.V.; Kovalenko, N.I.; Shadyro, O.I.

    1988-01-01

    Radiation-induced destruction of cellulose methyl ethers of different degree of esterification in aqueous solutions with and without acceptors: (N 2 O, O 2 , H 2 O + , Co(2), Cu(2)) is investigated. It is established that OH radicals make main contribution into radiolytic transformations of cellulose ethers in aqueous solutions. Reactions of radicals with free valency on carbon atoms containing secondary nonsubstituted hydroxyl groups lead also to glycoside bond breaking besides the reaction of β-fragmentation and hydrolysis of radicals with an unpaired electron localized near C 1 , C 4 , C 5 aroms

  13. Management of radiation-induced accelerated carotid atherosclerosis

    Loftus, C.M.; Biller, J.; Hart, M.N.; Cornell, S.H.; Hiratzka, L.F.

    1987-01-01

    Patients with long survival following cervical irradiation are at risk for accelerated carotid atherosclerosis. The neurologic presentation in these patients mimics naturally occurring atheromatous disease, but patients often present at younger ages and with less concurrent coronary or systemic vascular disease. Hypercholesterolemia also contributes to this accelerated arteriosclerosis. Angiographic findings in this disorder include disproportionate involvement of the distal common carotid artery and unusually long carotid lesions. Pathologic findings include destruction of the internal elastic lamina and replacement of the normal intima and media with fibrous tissue. This article describes two surgical patients with radiation-induced accelerated carotid atherosclerosis who typify the presentation and characteristics of this disease

  14. Effect of electrodes in the radiation induced conductivity for polymers

    Gregorio Filho, R.; Gross, B.

    1988-01-01

    Samples of PET with 23 μm thickness were exposed to continuous X-rays and the radiation-induced conductivity (RIC) as a function of time were measured, using electrodes of evaporated aluminum and gold. The results showed that the use of higher atomic number metal electrodes increase the received dose rate by sample, without almost modifying the time evolution of the RIC or its dependence with the applied electric field intensity. It is also showed that this increase is caused by the electrode placed in the face of the sample where the radiation strikes, as well as by the one placed in the oposite face. (author) [pt

  15. Radiation-induced attenuation in integrated optical materials

    Evans, B.D.

    1989-01-01

    This paper reports that three materials commonly employed in opto-electronic integrated circuits evaluated for radiation-induced optical attenuation in the range 300 nm to 3000 nm. These include optically clear epoxy and crystalline lithium niobate after Co-60 exposure and crystalline tellurium dioxide after mixed gamma/fast-neutron exposure. In all these materials, however, induced loss was restricted to shorter wavelengths; attenuation induced at the telecommunications windows near 850, 1300 and 1550 nm was <0.1 dB/cm

  16. Radiation-induced cationic curing of vinyl ethers

    Lapin, S.C.

    1992-01-01

    Recently there has been an increasing interest in nonacrylate radiation-curable coatings. Vinyl ethers are particularly reactive under cationic polymerization reaction conditions. The high efficiency of the photoacid initiators combined with the high reactivity of vinyl ether monomers makes this a potentially very useful system. This chapter discusses the preparation of vinyl ethers, introduces vinyl ether-functional monomers and oligomers, describes radiation-induced cationic polymerization of vinyl ethers, and discusses various coating systems. Throughout the chapter, an emphasis is placed on radiation-curable coating applications. 64 refs., 5 figs., 11 tabs

  17. Immobilization of yeast cells by radiation-induced polymerization

    Fujimura, T.; Kaetsu, I.

    1982-01-01

    Radiation-induced polymerization method was applied to the immobilization of yeast cells. The effects of irradiation, cooling and monomer, which are neccessary for polymerization, were recovered completely by subsequent aerobical incubation of yeast cells. The ethanol productive in immobilized yeast cells increased with the increase of aerobical incubation period. The growth of yeast cells in immobilized yeast cells was indicated. The maximum ethanol productivity in immobilized yeast cell system was around three times as much as that in free yeast cell system. (orig.)

  18. Radiation-induced life-shortening and premature aging

    Walburg, H.E. Jr.

    1975-01-01

    Data from a number of studies on irradiated laboratory animals showed that almost none of the characteristic lesions associated with senescence that were studied adequately reflects a radiation effect analogous to premature aging. In fact, most of the age-related changes showed no effect of radiation at all, and many of those that did (for example, graying of hair, sterility, cataract formation) did not appear to be due to similar mechanisms. It is concluded that, in the light of more recent information, the hypothesis of radiation-induced premature aging requires reassessment. (80 references) (CH)

  19. Delayed radiation-induced necrosis of the brain stem

    Yukawa, Osamu; Kodama, Yasunori; Kyoda, Jun; Yuki, Kiyoshi; Taniguchi, Eiji; Katayama, Shoichi; Hiroi, Tadashi; Uozumi, Toru.

    1993-01-01

    A 46-year-old man had surgery for a mixed glioma of the frontotemporal lobe. Postoperatively he received 50 Gy of irradiation. Sixteen months later he developed left hemiparesis and left facial palsy. MRI revealed lesion brain stem and basal ganglia. Despite chemotherapy and an additional 50 Gy dose, the patient deteriorated. Autopsy revealed a wide spread radiation-induced necrosis in the right cerebral hemisphere, midbrain and pons. In radiation therapy, great care must be taken to protect the normal brain tissue. (author)

  20. Facial reconstruction for radiation-induced skin cancer

    Panje, W.R.; Dobleman, T.J.

    1990-01-01

    Radiation-induced skin cancers can be difficult to diagnose and treat. Typically, a patient who has received orthovoltage radiotherapy for disorders such as acne, eczema, tinea capitis, skin tuberculosis, and skin cancer can expect that aggressive skin cancers and chronic radiodermatitis may develop subsequently. Cryptic facial cancers can lead to metastases and death. Prophylactic widefield excision of previously irradiated facial skin that has been subject to multiple recurrent skin cancers is suggested as a method of deterring future cutaneous malignancy and metastases. The use of tissue expanders and full-thickness skin grafts offers an expedient and successful method of subsequent reconstruction

  1. Radiation-induced invagination of the nuclear envelope

    Szekely, J.G.; Copps, T.P.; Morash, B.D.

    1980-01-01

    Using electron microscopy, we have measured radiation-induced invagination of the nuclear envelope of Chinese hamster V-79 and mouse L cells to produce a quantifiable radiation endpoint on a membrane system. In the dose ranges measured (800 to 3000 rad in L cells and 1270 to 5700 rad in V-79 cells), the amount of invagination increased with dose and continued to develop in intact cells for up to 72 hr after the original population was irradiated. Small vacuoles, which sometimes appeared in the nuclei of L cells, were also more numerous in irradiated cells and increased with dose and incubation time in a similar fashion to invagination development

  2. Weak-beam electron microscopy of radiation-induced segregation

    Saka, H.

    1983-01-01

    The segregation of solute atoms to dislocations during irradiation by 1 MeV electrons in a HVEM was studied by measuring the dissociation width of extended dislocations in Cu-5.1 at.%Si, Cu-5.3 at.%Ge, Ag-9.4 at.% In and Ag-9.6 at.%Al alloys. 'Weak-beam' electron microscopy was used. In Cu-Si (oversized solute), Cu-Ge (oversize) and Ag-Al (undersize), solute enrichment was observed near dislocations, while in Ag-In (oversize) solute depletion was observed. The results are discussed in terms of current mechanisms for radiation-induced segregation. (author)

  3. Use of radiation-induced polymers in cement slurries

    Knight, B.L.; Rhudy, J.S.; Gogarty, W.B.

    1976-01-01

    Water loss from cement slurries is reduced by incorporating within a cement slurry a polymer obtained as a product of radiation-induced polymerization of acrylamide and/or methacrylamide and acrylic acid, methacrylic acid, and/or alkali metal salts thereof. The polymerization is preferably carried out in 10-60 percent aqueous monomer solution with gamma radiation. The aqueous monomer solution preferably contains 25-99 percent acrylamide and 75-1 percent sodium acrylate. The polymer can be present in concentration of about 0.001 to about 3.0 weight percent, based on the aqueous phase of the slurry

  4. 'Like new': plastic wastes regeneration by radiation induced grafting

    Laizier, J.; Gaussens, G.; Lemaire, F.

    1978-01-01

    The reclaiming and the recycling of plastic wastes is made especially difficult when those wastes are a mixture of various plastics; this is due to the incompatibility of the polymers. The radiation induced grafting allows to overcome this incompatibility. Results are given which shows that, for various mixtures of reclaimed polyethylene, PVC and polystyrene, an improvement of the properties of the processed blends is obtained by grafting the mixtures of wastes by a suitable polymer; the obtained properties of those regenerated plastic blends are enough attractive from the technical point of view to open a market to those products with a reasonable economical value [fr

  5. The Development of Countermeasures for Space Radiation Induced Adverse Health Effects

    Kennedy, Ann

    The Development of Countermeasures for Space Radiation Induced Adverse Health Effects Ann R. Kennedy Department of Radiation Oncology, University of Pennsylvania School of Medicine, 195 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA, United States 19104-6072 The development of countermeasures for radiation induced adverse health effects is a lengthy process, particularly when the countermeasure/drug has not yet been evaluated in human trials. One example of a drug developed from the bench to the clinic is the soybean-derived Bowman-Birk inhibitor (BBI), which has been developed as a countermeasure for radiation induced cancer. It was originally identified as a compound/drug that could prevent the radiation induced carcinogenic process in an in vitro assay system in 1975. The first observation that BBI could inhibit carcinogenesis in animals was in 1985. BBI received Investigational New Drug (IND) Status with the U.S. Food and Drug Administration (FDA) in 1992 (after several years of negotiation with the FDA about the potential IND status of the drug), and human trials began at that time. Phase I, II and III human trials utilizing BBI have been performed under several INDs with the FDA, and an ongoing Phase III trial will be ending in the very near future. Thus, the drug has been in development for 35 years at this point, and it is still not a prescription drug on the market which is available for human use. A somewhat less time-consuming process is to evaluate compounds that are on the GRAS (Generally Recognized as Safe) list. These compounds would include some over-the-counter medications, such as antioxidant vitamins utilized in human trials at the levels for which Recommended Dietary Allowances (RDAs) have been established. To determine whether GRAS substances are able to have beneficial effects on radiation induced adverse health effects, it is still likely to be a lengthy process involving many years to potentially decades of human trial work. The

  6. Sestrin2 protects the myocardium against radiation-induced damage

    Zeng, Yue-Can; Chi, Feng; Xing, Rui; Gao, Song; Chen, Jia-Jia; Duan, Qiong-Yu; Sun, Yu-Nan; Niu, Nan; Tang, Mei-Yue; Wu, Rong; Zeng, Jing; Wang, Hong-Mei

    2016-01-01

    The purpose of this study was to investigate the role of Sestrin2 in response to radiation-induced injury to the heart and on the cardiomyopathy development in the mouse. Mice with genetic deletion of the Sestrin2 (Sestrin2 knockout mice [Sestrin2 KO]) and treatment with irradiation (22 or 15 Gy) were used as independent approaches to determine the role of Sestrin2. Echocardiography (before and after isoproterenol challenge) and left ventricular (LV) catheterization were performed to evaluate changes in LV dimensions and function. Masson's trichrome was used to assess myocardial fibrosis. Immunohistochemistry and Western blot were used to detect the capillary density. After 22 or 15 Gy irradiation, the LV ejection fraction (EF) was impaired in wt mice at 1 week and 4 months after irradiation when compared with sham irradiation. Compared to wt mice, Sestrin2 KO mice had significant reduction in reduced LVEF at 1 week and 4 months after irradiation. A significant increase in LV end-diastolic pressure and myocardial fibrosis and a significant decrease in capillary density were observed in irradiation-wt mice, as well as in irradiation-Sestrin2 KO mice. Sestrin2 involved in the regulation of cardiomyopathy (such as myocardial fibrosis) after irradiation. Overexpression of Sestrin2 might be useful in limiting radiation-induced myocardial injury. (orig.)

  7. Radiation-induced segregation in Cu-Au alloys

    Hashimoto, T.; Rehn, L.E.; Okamoto, P.R.

    1987-01-01

    Radiation-induced segregation in a Cu-lat.% Au alloy was investigated using in-situ Rutherford backscattering spectrometry. Irradiation with 1.8-MeV helium produced nonequilibrium gold atom depletion in the near surface region. The amount of segregation was measured as a function of dose, dose rate, and temperature. Segregation was observed in the temperature range between about 300 and 500 0 C. For a calculated dose rate of 3.9 x 10/sup -5/ dpa/s, the radiation-induced segregation rate peaked near 400 0 C. Theoretical analysis based on the Johnson-Lam model predicted that the amount of segregation would be directly proportional to dose at the early stage of irradiation, would deviate from linearity with a continuously decreasing slope of intermediate doses, and finally approach a constant value after high doses. The analysis also predicted that the segregation rate would vary as the - 1/4th power of the dose rate at constant dose in the low temperature region. These predictions were all verified experimentally. A procedure for extracting relative defect production efficiencies from similar measurements is discussed

  8. Radiation-induced electron migration in nucleic acids

    Fuciarelli, A.F.; Sisk, E.C.; Miller, J.H.; Zimbrick, J.D.

    1994-01-01

    Radiation-induced electron migration along DNA is a mechanism by which randomly produced stochastic energy deposition events can lead to non-random types of damage along DNA manifested distal to the sites of the initial energy deposition. Radiation-induced electron migration in nucleic acids has been examined using oligonucleotides containing 5-bromouracil (5-BrU). Interaction of 5-BrU with solvated electrons results in release of bromide ions and formation of uracil-5-yl radicals. Monitoring either bromide ion release or uracil formation provides an opportunity to study electron migration processes in model nucleic acid systems. Using this approach we have discovered that electron migration along oligonucleotides is significantly influenced by the base sequence and strandedness. Migration along 7 base pairs in oligonucleotides containing guanine bases was observed for oligonucleotides irradiated in solution, which compares with mean migration distances of 6-10 bp for Escherichia coli DNA irradiated in solution and 5.5 bp for E. coli DNA irradiated in cells. Evidence also suggests that electron migration can occur preferentially in the 5' to 3' direction along a double-stranded oligonucleotide containing a region of purine bases adjacent to the 5-BrU moiety. Our continued efforts will provide information regarding the contribution of electron transfer along DNA to formation of locally multiply damaged sites created in DNA by exposure to ionizing radiation. (Author)

  9. Improvement of boiling heat transfer by radiation induced boiling enhancement

    Imai, Yasuyuki; Okamoto, Koji; Madarame, Haruki; Takamasa, Tomoji

    2003-01-01

    For nuclear reactor systems, the critical heat flux (CHF) data is very important because it limits reactor efficiency. Improvement of CHF requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. In our previous study, we confirmed that the surface wettability changed significantly or that highly hydrophilic conditions were achieved, after irradiation of 60 Co gamma ray, by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of RISA on boiling phenomena, surface wettability in a high-temperature environment and critical heat flux (CHF) of metal oxides irradiated by gamma rays were investigated. A CHF experiment in the pool boiling condition was carried out under atmospheric pressure. The heating test section made of titanium was 0.2 mm in thickness, 3 mm in height, and 60 mm in length. Oxidation of the surface was carried out by plasma jetting for 40 seconds. The test section was irradiated by 60 Co gamma ray with predetermined radiation intensity and period. The CHF of oxidized titanium was improved up to 100 percent after 800 kGy 60 Co gamma ray irradiation. We call this effect Radiation Induced Boiling Enhancement (RIBE). Before we conducted the CHF experiment, contact angles of the test pieces were measured to show the relationship between wettability and CHF. The CHF in the present experiment increases will surface wettability in the same manner as shown by Liaw and Dhir's results. (author)

  10. Ionizing radiation induced conductivity in Mylar (PET) and Kapton (Polyimide)

    Gregorio Filho, R.

    1986-01-01

    The extensive results of measurements of the prompt and delayed radiation-induced conductivity of samples of PET and Kapton are presented. Experimental parameters, such as the effective energy of the radiation, the exposure rate, the total dose, the value of the applied electric field, the nature of the electrodes, and the ambiental conditions were changed within wide limits. We also report measurement of thermally stimulated currents for non-irradiated and for irradiated samples which allowed us to investigate the trap-structure of the materials. Measurements of photo-Compton currents with different electrode materials and sample thicknesses gave information about the relation between the nature of the electrodes and the amplitudes of the currents. Based on the generalized rate theory of radiation-induced conduction we developed a theoretical model which includes the effect of the applied electric field on the carrier generation yield (geminate recombination, Onsager effect). Comparison of experimental and theoretical curves allowed us to determine the values of the main conduction parameters, such as carrier mobility, recombination coefficient, trap densities, for the materials under investigation. (Author) [pt

  11. Allopurinol gel mitigates radiation-induced mucositis and dermatitis

    Kitagawa, Junichi; Nasu, Masanori; Okumura, Hayato; Matsumoto, Shigeji; Shibata, Akihiko; Makino, Kimiko; Terada, Hiroshi

    2008-01-01

    It has not been verified whether allopurinol application is beneficial in decreasing the severity of radiation-induced oral mucositis and dermatitis. Rats were divided into 4 groups and received 15 Gy irradiation on the left whisker pad. Group 1 received only irradiation. Group 2 was maintained by applying allopurinol/carrageenan-mixed gel (allopurinol gel) continuously from 2 days before to 20 days after irradiation. Group 3 had allopurinol gel applied for 20 days after radiation. Group 4 was maintained by applying carrageenan gel continuously from 2 days before to 20 days after irradiation. The intra oral mucosal and acute skin reactions were assessed daily using mucositis and skin score systems. The escape thresholds for mechanical stimulation to the left whisker pad were measured daily. In addition, the irradiated tissues at the endpoint of this study were compared with naive tissue. Escape threshold in group 2 was significantly higher than that in group 1, and mucositis and skin scores were much improved compared with those of group 1. Concerning escape threshold, mucositis and skin scores in group 3 began to improve 10 days after irradiation. Group 4 showed severe symptoms of mucositis and dermatitis to the same extent as that observed in group 1. In the histopathological study, the tissues of group 1 showed severe inflammatory reactions, compared with those of group 2. These results suggest that allopurinol gel application can mitigate inflammation reactions associated with radiation-induced oral mucositis and dermatitis. (author)

  12. Radiation-induced mucositis pain in laryngeal cancer

    Takahashi, Atsuhito; Shoji, Kazuhiko; Iki, Takehiro; Mizuta, Masanobu; Matsubara, Mami

    2009-01-01

    Radiation therapy in those with head and neck malignancies often triggers painful mucositis poorly controlled by nonsteroidal antiinflammatory drugs (NSAIDs). To better understand how radiation-induced pain develops over time, we studied the numerical rating scale (NRS 0-5) pain scores from 32 persons undergoing radiation therapy of 60-72 Gy for newly diagnosed laryngeal cancer. The degree of mucositis was evaluated using Common Terminology Criteria for Adverse Events version3.0 (CTCAE v3.0). We divided the 32 into a conventional fractionation (CF) group of 14 and a hyperfractionation (HF) group of 18, and further divided laryngeal cancer into a small-field group of 23 and a large-field group of 9. The mucositis pain course was similar in CF and HF, but mucositis pain was severer in the HF group, which also required more NSAIDs. Those in the large-field group had severer pain and mucositis and required more NSAIDs than those in the small-field group. We therefore concluded that small/large-field radiation therapy, rather fractionation type, was related to the incidence of radiation-induced mucositis pain. (author)

  13. Protection from ionizing radiation induced damages by phytoceuticals and nutraceuticals

    Nair, C.K.K.

    2012-01-01

    Exposure of living systems to ionizing radiation cause a variety of damages to DNA and membranes due to generation of free radicals and reactive oxygen species. The radiation induced lesions in the cellular DNA are mainly strand breaks, damage to sugar moiety, alterations and elimination of bases, cross links of the intra and inter strand type and cross links to proteins while peroxidation of the lipids and oxidation of proteins constitute the major lesions in the membranes. The radioprotectors elicit their action by various mechanisms such as i) by suppressing the formation of reactive species, ii) detoxification of radiation induced species, iii) target stabilization and iv) enhancing the repair and recovery processes. The radioprotective compounds are of importance in medical, industrial, environmental, military and space science applications. Radiation protection might offer a tactical advantage on the battlefield in the event of a nuclear warfare. Radioprotectors might reduce the cancer risk to populations exposed to radiations directly or indirectly through industrial and military applications. The antioxidant and radioprotective properties a few of these agents under in vitro and in vivo conditions in animal models will be discussed

  14. Sestrin2 protects the myocardium against radiation-induced damage

    Zeng, Yue-Can; Chi, Feng; Xing, Rui; Gao, Song; Chen, Jia-Jia; Duan, Qiong-Yu; Sun, Yu-Nan; Niu, Nan; Tang, Mei-Yue; Wu, Rong [Shengjing Hospital of China Medical University, Department of Medical Oncology, Cancer Center, Shenyang (China); Zeng, Jing [University of Washington School of Medicine, Department of Radiation Oncology, Seattle, WA (United States); Wang, Hong-Mei [Nanfang Hospital of Southern Medical University, Department of Radiation Oncology, Guangzhou (China)

    2016-05-15

    The purpose of this study was to investigate the role of Sestrin2 in response to radiation-induced injury to the heart and on the cardiomyopathy development in the mouse. Mice with genetic deletion of the Sestrin2 (Sestrin2 knockout mice [Sestrin2 KO]) and treatment with irradiation (22 or 15 Gy) were used as independent approaches to determine the role of Sestrin2. Echocardiography (before and after isoproterenol challenge) and left ventricular (LV) catheterization were performed to evaluate changes in LV dimensions and function. Masson's trichrome was used to assess myocardial fibrosis. Immunohistochemistry and Western blot were used to detect the capillary density. After 22 or 15 Gy irradiation, the LV ejection fraction (EF) was impaired in wt mice at 1 week and 4 months after irradiation when compared with sham irradiation. Compared to wt mice, Sestrin2 KO mice had significant reduction in reduced LVEF at 1 week and 4 months after irradiation. A significant increase in LV end-diastolic pressure and myocardial fibrosis and a significant decrease in capillary density were observed in irradiation-wt mice, as well as in irradiation-Sestrin2 KO mice. Sestrin2 involved in the regulation of cardiomyopathy (such as myocardial fibrosis) after irradiation. Overexpression of Sestrin2 might be useful in limiting radiation-induced myocardial injury. (orig.)

  15. Radiation-induced segregation in binary and ternary alloys

    Okamoto, P.R.; Rehn, L.E.

    1979-01-01

    A review is given of our current knowledge of radiation-induced segregation of major and minor elements in simple binary and ternary alloys as derived from experimental techniques such as Auger electron spectroscopy, secondary-ion mass spectroscopy, ion-backscattering, infrared emissivity measurements and transmission electron microscopy. Measurements of the temperature, dose and dose-rate dependences as well as of the effects of such materials variables as solute solubility, solute misfit and initial solute concentration has proved particularly valuable in understanding the mechanisms of segregation. The interpretation of these data in terms of current theoretical models which link solute segregation behavior to defect-solute binding interactions and/or to the relative diffusion rates of solute and solvent atoms the interstitial and vacancy migration mechanisms has, in general, been fairly successful and has provided considerable insight into the highly interrelated phenomena of solute-defect trapping, solute segregation, phase stability and void swelling. Specific examples in selected fcc, bcc and hcp alloy systems are discussed with particular emphasis given to the effects of radiation-induced segregation on the phase stability of single-phase and two-phase binary alloys and simple Fe-Cr-Ni alloys. (Auth.)

  16. Neurolysis and myocutaneous flap for radiation induced brachial plexus neuropathy

    Hirachi, Kazuhiko; Minami, Akio; Kato, Hiroyuki; Nishio, Yasuhiko; Ohnishi, Nobuki

    1998-01-01

    Surgical treatment for radiation induced brachial plexus neuropathy is difficult. We followed 9 patients of radiation induced brachial plexus neuropathy who were surgically treated with neurolysis and myocutaneous flap coverage. Their ages ranged from 29 to 72 years old. Their diagnoses were breast cancer in 6 patients, lingual cancer in 1, thyroid cancer in 1 and malignant lymphoma in 1. Total dose of radiation ranged from 44 to 240 Gy. Interval from radiation therapy to our surgery ranged from 1 to 18 years (mean 6.7 years). Chief complaints were dysesthesia in 9 patients, motor weakness in 7 patients and dullach in scar formation of radiated skin in 7 patients. Preoperative neural functions were slight palsy in 1, moderate palsy in 5 and complete palsy in 3. In surgical treatment, neurolysis of the brachial plexus was done and it was covered by latissimus dorsi myocutaneous flap. We evaluated about dysesthesia and motor recovery after treatment for neuropathy. Follow up periods ranged from 1 to 11 years (average in 5 years). Dysesthesia improved in 6 patients and got worse in 3 patients. Motor weakness recovered in only 2 patients and got worse in 7 patients. From our results, intolerable dysesthesia which was first complaint of these patients improved. But motor function had not recovered. Our treatment was thought to be effective for extraneural factor like an compression neuropathy by scar formation and poor vascularity. But it was not effective for intraneural damage by radiation therapy. (author)

  17. Treatment of a radiation-induced brachial plexopathy

    Tanaka, Ichirou; Harashina, Takao; Inoue, Takeo; Ueda, Kouichi; Hatoko, Mituo; Shidara, Yukinobu; Ito, Yoshiyasu.

    1990-01-01

    A radiation-induced brachial plexopathy after a mastectomy causes severe pain and numbness, as well as motor and sensory disorders. Severe pain is often resistant to analgesic blocks, and in most instances, the effect of neurolysis is only temporary. We have treated two such patients with microsurgical neurolysis and then have covered the nerve by transferred muscles. In one case, the exposed brachial plexus was covered with a pedicled latissimus dorsi muscle flap, and in the other, with a free rectus abdominis muscle flap. Pain and numbness were markedly improved in these two patients soon after the surgery, and the improvement in the sensory function also was relatively satisfactory. In one case, the motor function also improved. These patients have had no recurrence of pain or numbness for 4 years and 2 months and 4 years and 7 months after surgery, respectively. Further, their sensory and motor disorders did not advance. Surgical indications for a radiation-induced brachial plexopathy remain controversial, since the operation does not always ensure a marked improvement in the sensory and motor functions. Further, the operation is ineffective for patients with advanced nerve degeneration. Taking these factors into consideration, the preoperative predication of beneficial effects from this surgery is difficult. Despite our limited experience, however, our surgical method has been thought to be effective because it achieves a marked improvement in the numbness and pain experienced in the arms, which are usually the patients' chief complaints. (author)

  18. Improvement of boiling heat transfer by radiation induced boiling enhancement

    Imai, Y.; Okamoto, K.; Madarame, H.; Takamasa, T.

    2003-01-01

    For nuclear reactor systems, the Critical Heat Flux (CHF) data is very important because it limits reactor efficiency. Improvement of CHF requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. In our previous study, we confirmed that the surface wettability changed significantly or that highly hydrophilic conditions were achieved, after irradiation of 60Co gamma ray, by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of RISA on boiling phenomena, surface wettability in a high-temperature environment and Critical Heat Flux (CHF) of metal oxides irradiated by gamma rays were investigated. A CHF experiment in the pool boiling condition was carried out under atmospheric pressure. The heating test section made of titanium was 0.2mm in thickness, 3mm in height, and 60mm in length. Oxidation of the surfaces was carried out by plasma jetting for 40 seconds. The test section was irradiated by 60Co gamma ray with predetermined radiation intensity and period. The CHF of oxidized titanium was improved up to 100 percent after 800kGy 60Co gamma ray irradiation. We call this effect Radiation Induced Boiling Enhancement (RIBE). Before we conducted the CHF experiment, contact angles of the test pieces were measured to show the relationship between wettability and CHF. The CHF in the present experiment increases with surface wettability in the same manner as shown by Liaw and Dhir's results

  19. Radiation-Induced Correlation between Molecules Nearby Metallic Antenna Array

    Yoshiki Osaka

    2015-01-01

    Full Text Available We theoretically investigate optical absorption of molecules embedded nearby metallic antennas by using discrete dipole approximation method. It is found that the spectral peak of the absorption is shifted due to the radiation-induced correlation between the molecules. The most distinguishing feature of our work is to show that the shift is largely enhanced even when the individual molecules couple with localized surface plasmons near the different antennas. Specifically, we first consider the case that two sets of dimeric gold blocks with a spacing of a few nanometers are arranged and reveal that the intensity and spectral peak of the optical absorption strongly depend on the position of the molecules. In addition, when the dimeric blocks and the molecules are periodically arranged, the peak shift is found to increase up to ~1.2 meV (300 GHz. Because the radiation-induced correlation is essential for collective photon emission, our result implies the possibility of plasmon-assisted superfluorescence in designed antenna-molecule complex systems.

  20. Radiation-induced skin carcinomas of the head and neck

    Ron, E.; Modan, B.; Preston, D.; Alfandary, E.; Stovall, M.; Boice, J.D. Jr.

    1991-01-01

    Radiation exposures to the scalp during childhood for tinea capitis were associated with a fourfold increase in skin cancer, primarily basal cell carcinomas, and a threefold increase in benign skin tumors. Malignant melanoma, however, was not significantly elevated. Overall, 80 neoplasms were identified from an extensive search of the pathology logs of all major hospitals in Israel and computer linkage with the national cancer registry. Radiation dose to the scalp was computed for over 10,000 persons irradiated for ringworm (mean 7 Gy), and incidence rates were contrasted with those observed in 16,000 matched comparison subjects. The relative risk of radiogenic skin cancer did not differ significantly between men or women or by time since exposure; however, risk was greatest following exposures in early childhood. After adjusting for sex, ethnic origin, and attained age, the estimated excess relative risk was 0.7 per Gy and the average excess risk over the current follow-up was 0.31/10(4) PY-Gy. The risk per Gy of radiation-induced skin cancer was intermediate between the high risk found among whites and no risk found among blacks in a similar study conducted in New York City. This finding suggests the role that subsequent exposure to uv radiation likely plays in the expression of a potential radiation-induced skin malignancy

  1. [Biomarkers of radiation-induced DNA repair processes].

    Vallard, Alexis; Rancoule, Chloé; Guy, Jean-Baptiste; Espenel, Sophie; Sauvaigo, Sylvie; Rodriguez-Lafrasse, Claire; Magné, Nicolas

    2017-11-01

    The identification of DNA repair biomarkers is of paramount importance. Indeed, it is the first step in the process of modulating radiosensitivity and radioresistance. Unlike tools of detection and measurement of DNA damage, DNA repair biomarkers highlight the variations of DNA damage responses, depending on the dose and the dose rate. The aim of the present review is to describe the main biomarkers of radiation-induced DNA repair. We will focus on double strand breaks (DSB), because of their major role in radiation-induced cell death. The most important DNA repair biomarkers are DNA damage signaling proteins, with ATM, DNA-PKcs, 53BP1 and γ-H2AX. They can be analyzed either using immunostaining, or using lived cell imaging. However, to date, these techniques are still time and money consuming. The development of "omics" technologies should lead the way to new (and usable in daily routine) DNA repair biomarkers. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  2. Radiation-induced recurrent intestinal pseudo-obstruction

    Conklin, J.L.; Anuras, S.

    1981-01-01

    The syndrome of intestinal pseudo-obstruction is a complex of signs and symptoms of intestinal obstruction without evidence of mechanical obstruction of the intestinal lumen. A patient with radiation-induced intestinal pseudoobstruction is described. The patient is a 74-year old woman with a history of chronic diarrhea, recurrent episodes of crampy abdominal pain, nausea and vomiting since receiving a 13,000 rad radiation dose to the pelvis in 1954. She has been hospitalized on many occasions for symptoms and signs of bowel obstruction. Upper gastrointestinal contrast roentgenograms with small bowel follow-through done during these episodes revealed multiple dilated loops of small bowel with no obstructing lesion. Barium enemas revealed no obstructing lesion. Each episode resolved with conservative therapy. Other secondary causes for intestinal pseudo-obstruction were ruled out in our patient. She gave no history of familial gastrointestinal disorders. Although postirradiation motility abnormalities have been demonstrated experimentally this is the first report of radiation induced intestinal pseudo-obstruction

  3. Radiation induced effects in the developing central nervous system

    Gisone, P.; Dubner, D.; Michelin, S.C.; Perez, M.R. Del

    1997-01-01

    The embryo and the human foetus are particularly sensitive to ionizing radiation and this sensitivity presents various qualitative and quantitative functional changes during intra-uterine development. Apart from radiation induced carcinogenesis, the most serious consequence of prenatal exposure in human beings is severe mental retardation. The principal data on radiation effects on human beings in the development of the central nervous system come form epidemiological studies carried out in individuals exposed in utero during the atomic explosion at Hiroshima and Nagasaki. These observations demonstrate the existence of a time of maximum radiosensitivity between the weeks 8 and 15 of the gestational period, a period in which the proliferation and neuronal migration takes place. Determination of the characteristics of dose-response relationship and the possible existence of a threshold dose of radiation effects on the development of the central nervous system is relevant to radiation protection against low dose radiation and the establishment of dose limits for occupational exposure and the public. Studies were conducted on the generation of nitrous-oxide and its relation with the production of active species of oxygen in brains of exposed rats in utero exposed to doses of up to 1 Gy during their maximum radiosensitivity. The possible role of the mechanism of radiation induced damage in the development of the central nervous system is discussed

  4. Radiation-induced grafting of styrene on polypropylene pellets

    Souza, Camila P.; Ferreira, Henrique P.; Parra, Duclerc F.; Lugao, Ademar B.

    2009-01-01

    The changes of radiation-induced in polypropylene (PP) pellets exposed to gamma irradiation in inert atmosphere were investigated in correlation with the applied doses (10 and 50 kGy). Also, results from the grafting of styrene onto PP pellets using simultaneous irradiation at the same doses are presented. The grafting reaction was carried out using toluene as solvent, under nitrogen atmosphere and at room temperature. The properties of the irradiated and grafted PP pellets were studied using Melt Flow Index, thermal analysis (TG and DSC), and ATR-IR. The degree of grafting (DOG) for the grafted pellets was gravimetrically determined. The results showed that radiation-induced graft polymerization on pellets were successfully obtained and the influence of dose irradiated did not change the thermal properties in spite of the increase in the MFI and consequently this increase in the viscosity results an decrease the molecular mass. The MFI for grafted pellets was not achievable because the high degree of viscosity of polymer, even arising the test temperature, the polymer was not flow enough. (author)

  5. Radiation-induced polymerization and radiation effect on polymers

    Seguchi, Tadao

    1977-12-01

    The processes of radiation-induced polymerization of monomers and also radiation effects on polymers have been studied by instrumental analyses of electron spin resonance (ESR), nuclear magnetic resonance (NMR) and electron microscopy. In radiation-induced polymerization, graft-copolymerization and absorbed state polymerization were taken up. For graft-copolymerization, monomers such as methylmethacrylate and butadiene were made to react with irradiated polyethylene, and behaviors of the initiating radicals and propagating radicals were followed under the reaction by ESR. For absorbed state polymerization, acrylonitrile/zeolite and methylmethacrylate/zeolite were chosen. Absorbed monomers were irradiated at 77 0 K and polymerized at room temperature. Active species and the concentrations were measured by ESR and the yields of polymer were observed by NMR. In radiation effect on polymers, polyvinylfluoride, polyvinylidenfluoride and polytetrafluoroethylene were taken up. Active species trapped in the polymer matrixes were identified and decay and reactivity of the species were also studied. On the basis of information from the electron microscopy and x-ray analysis, radiation effects on these polymers are described. In polytetrafluoroethylene produced by radiation polymerization, the relation between morphology and polymerization conditions and also the process of crystallization during polymerization were studied. (auth.)

  6. Characterization of radiation-induced emesis in the ferret

    King, G.L.

    1988-01-01

    Forty-eight ferrets (Mustela putorius furo) were individually head-shielded and radiated with bilateral 60 Co gamma radiation at 100 cGy min-1 at doses ranging between 49 and 601 cGy. The emetic threshold was observed at 69 cGy, the ED50 was calculated at 77 cGy, and 100% incidence of emesis occurred at 201 cGy. With increasing doses of radiation, the latency to first emesis after radiation decreased dramatically, whereas the duration of the prodromal period increased. Two other sets of experiments suggest that dopaminergic mechanisms play a minor role in radiation-induced emesis in the ferret. Twenty-two animals were injected either intravenously or subcutaneously with 30 to 300 micrograms/kg of apomorphine. Fewer than 50% of the animals vomited to 300 micrograms/kg apomorphine; central dopaminergic receptor activation was apparent at all doses. Another eight animals received 1 mg/kg domperidone prior to either 201 (n = 4) or 401 (n = 4) cGy radiation and their emetic responses were compared with NaCl-injected-irradiated controls (n = 8). At 201 cGy, domperidone significantly reduced only the total time in emetic behavior. At 401 cGy, domperidone had no salutary effect on radiation-induced emesis. The emetic responses of the ferret to radiation and apomorphine are compared with these responses in other vomiting species

  7. ROS Mediates Radiation-Induced Differentiation in Human Lung Fibroblast

    Park, Sa Rah; Ahn, Ji Yeon; Kim, Mi Hyeung; Lim, Min Jin; Yun, Yeon Sook; Song, Jie Young

    2009-01-01

    One of the most common tumors worldwide is lung cancer and the number of patients with lung cancer received radiotherapy is increasing rapidly. Although radiotherapy may have lots of advantages, it can also induce serious adverse effects such as acute radiation pneumonitis and pulmonary fibrosis. Pulmonary fibrosis is characterized by excessive production of smooth muscle actin-alpha (a-SMA) and accumulation of extracellular matrix (ECM) such as collagen and fibronectin. There has been a great amount of research about fibrosis but the exact mechanism causing the reaction is not elucidated especially in radiation-induced fibrosis. Until now it has been known that several factors such as transforming growth factor (TGF-b), tumor necrosis factor (TNF), IL-6, platelet-derived growth factor (PDGF) and reactive oxygen species are related to fibrosis. It is also reported that reactive oxygen species (ROS) can be induced by radiation and can act as a second messenger in various signaling pathways. Therefore we focused on the role of ROS in radiation induced fibrosis. Here, we suggest that irradiation generate ROS mainly through NOX4, result in differentiation of lung fibroblast into myofibroblast

  8. Origin of specific chromosome aberration in radiation-induced leukemia

    Ban, Nobuhiko; Kai, Michiaki; Masuno, Yoko

    2005-01-01

    The theme in the title is discussed from the four aspects of specific chromosome aberration (sAb) patterns in radiation-induced leukemia (RIL), possibility for radiation to induce the sAb in RIL, any evidence for participation of delayed aberration to form sAb and the proportion of such healthy humans as having the specifically rearranged genome. Data of sAb observed in leukemia of 25 A-bomb survivors and of 38 patients post radiotherapy of cancers give a rather common pattern. However, many inconsistent results are obtained for sAb in patients post radiotherapy, A-bomb survivors, residents living in radio-contaminated houses in Taipei, in vitro exposure, and Chernobyl residents. At present, any clear evidence is available neither for sAb derived from the delayed aberration nor for estimating the proportion with the specifically rearranged gene. As above, it is unlikely that radiation induces such a translocation abnormality as BCR-ABL specifically seen in leukemia, and this aspect will be important for studies on the genesis of RIL and its risk assessment. (S.I.)

  9. Radiation induced segregation and point defects in binary copper alloys

    Monteiro, W.A.

    1984-01-01

    Considerable progress, both theoretical and experimental, has been made in establishing and understanding the influence of factors such as temperature, time, displacement rate dependence and the effect of initial solute misfit on radiation induced solute diffusion and segregation. During irradiation, the composition of the alloy changes locally, due to defect flux driven non-equilibrium segregation near sinks such as voids, external surfaces and grain boundaries. This change in composition could influence properties and phenomena such as ductility, corrosion resistance, stress corrosion cracking, sputtering and blistering of materials used in thermo-nuclear reactors. In this work, the effect of 1 MeV electron irradiation on the initiation and development of segregation and defect diffusion in binary copper alloys has been studied in situ, with the aid of a high voltage electron microscope. The binary copper alloys had Be, Pt and Sn as alloying elements which had atomic radii less than, similar and greater than that of copper, respectively. It has been observed that in a wide irradiation temperature range, stabilization and growth of dislocation loops took place in Cu-Sn and Cu-Pt alloys. Whereas in the Cu-Be alloy, radiation induced precipitates formed and transformed to the stable γ phase. (Author) [pt

  10. International Activities in Radiation-Induced Carcinogenesis. Survey Paper

    Komarov, E. [World Health Organization, Geneva (Switzerland)

    1969-11-15

    During the past 10 years special attention has been paid to the problem of late effects of radiation and in particular to radiation-induced carcinogenesis and leukaemogenesis. In the UNSCEAR report of 1958-1962 this.problem was mentioned as being of considerable importance from the point of view of estimation of risk to the population from environmental radiation. In 1964 a special report was prepared by UNSCEAR on radiation- induced carcinogenesis. In the ICRP publication No. 8, a chapter dealing with assessment of somatic risks discussed the problem of leukaemia and other neoplasms and particularly stressed the problem of thyroid carcinoma-and bone sarcoma. WHO panels of experts discussed the problem in 1960-1966 and made some recommendations for international activity in this field. In spite of the amount of scientific attention that has been given in recent years to experimental radiobiology in animals and lower forms, it has become abundantly clear that information directly applicable to humans is woefully inadequate and that there is a desperate need for carefully collected data from man on which to base public health planning and day to day work in radiation protection. This has long been recognized in the technical program of WHO in the emphasis given to the practical importance of epidemiology in human radiobiology and the degree to which it depends upon international collaboration.

  11. Regulation of radiation-induced apoptosis by early growth response-1 gene in solid tumors

    Ahmed, M.

    2003-01-01

    Ionizing radiation exposure is associated with activation of certain immediate-early genes that function as transcription factors. These include members of jun or fos and early growth response (EGR) gene families. In particular, the functional role of EGR-1 in radiation-induced signaling is pivotal since the promoter of EGR-1 contains radiation-inducible CArG DNA sequences. The Egr-1 gene belongs to a family of Egr genes that includes EGR-2, EGR-3, EGR-4, EGR-α and the tumor suppressor, Wilms' tumor gene product, WT1. The Egr-1 gene product, EGR-1, is a nuclear protein that contains three zinc fingers of the C 2 H 2 subtype. The EGR-1 GC-rich consensus target sequence, 5'-GCGT/GGGGCG-3' or 5'-TCCT/ACCTCCTCC-3', has been identified in the promoter regions of transcription factors, growth factors, receptors, cell cycle regulators and pro-apoptotic genes. The gene targets mediated by Egr-1 in response to ionizing radiation include TNF-α , p53, Rb and Bax, all these are effectors of apoptosis. Based on these targets, Egr-1 is a pivotal gene that initiates early signal transduction events in response to ionizing radiation leading to either growth arrest or cell death in tumor cells. There are two potential application of Egr-1 gene in therapy of cancer. First, the Egr-1 promoter contains information for appropriate spatial and temporal expression in-vivo that can be regulated by ionizing radiation to control transcription of genes that have pro-apoptotic and suicidal function. Secondly, EGR-1 protein can eliminate 'induced-radiation resistance' by inhibiting the functions of radiation-induced pro-survival genes (NFκB activity and bcl-2 expression) and activate pro-apoptotic genes (such as bax) to confer a significant radio-sensitizing effect. Together, the reported findings from my laboratory demonstrate clearly that EGR-1 is an early central gene that confers radiation sensitivity and its pro-apoptotic functions are synergized by abrogation of induced radiation

  12. The effect of modulators of radiation-induced G2 arrest on the repair of radiation-induced DNA damage detectable by neutral filter elution

    Rowley, R.; Kort, L.

    1988-01-01

    The influence of cycloheximide (50 μg/ml), caffeine (5 mM) and cordycepin (0.15 mM) on the repair of the damage detectable in DNA by neutral filter elution was determined. Chinese hamster ovary cells (CHO) were irradiated with X-ray doses of 20, 60 and 100 Gy then allowed to repair without drug treatment or in the presence of each drug for intervals up to 6 h. DNA damage repair proceeded in two phases. The fast component of the repair process (t 1/2 approx. 7 min) was not modified by drug treatment; the slow component (t 1/2 170 min) was unaffected by cycloheximide or cordycepin, but appeared to be inhibited by caffeine. It was concluded that: (a) the lesion which results in radiation-induced G 2 arrest is not the lesion which is detectable by neutral filter elution, and (b) the influence of caffeine on dsb repair is specific to caffeine and is not mediated by a reduction in the duration of G 2 arrest. (author)

  13. Effect of 8-methoxypsoralen plus long-wave ultraviolet (PUVA) radiation on mast cells. II. In vitro PUVA inhibits degranulation of rat peritoneal mast cells induced by compound 48/80

    Toda, K.; Danno, K.; Tachibana, T.; Horio, T.

    1986-01-01

    Rat peritoneal mast cells incubated with a histamine liberator, compound 48/80, showed a significantly reduced capacity for releasing histamine following in vitro treatment with 0.1 micrograms/ml of 8-methoxypsoralen (8-MOP) plus 1-5 J/cm2 of long-wave ultraviolet (UVA) irradiation (PUVA). No remarkable inhibition in histamine release was observed in the cells treated with 8-MOP only. Irradiation with 5 J/cm2 of UVA alone exerted an inhibitory effect on histamine release, to a lesser extent than PUVA. PUVA irradiation did not bring any decrease in cell viability or any spontaneous release of histamine from irradiated cells as shown by phase-contrast microscopy and by histamine assay, respectively. These results suggest that PUVA treatment may cause a noncytotoxic disturbance at mast cell membranes or on surface receptors, leading to a decreased capacity for secreting chemical mediators

  14. Modulation of modeled microgravity on radiation-induced bystander effects in Arabidopsis thaliana

    Wang, Ting [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Sun, Qiao [Space Molecular Biological Lab, China Academy of Space Technology, Beijing 100086 (China); Xu, Wei; Li, Fanghua [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Li, Huasheng; Lu, Jinying [Space Molecular Biological Lab, China Academy of Space Technology, Beijing 100086 (China); Wu, Lijun; Wu, Yuejin [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China); Liu, Min [Space Molecular Biological Lab, China Academy of Space Technology, Beijing 100086 (China); Bian, Po [Key Laboratory of Ion Beam Bio-engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, Anhui 230031 (China)

    2015-03-15

    Highlights: • The effects of microgravity on the radiation-induced bystander effects (RIBE) were definitely demonstrated. • The effects of microgravity on RIBE might be divergent for different biological events. • The microgravity mainly modified the generation or transport of bystander signals at early stage. - Abstract: Both space radiation and microgravity have been demonstrated to have inevitable impact on living organisms during space flights and should be considered as important factors for estimating the potential health risk for astronauts. Therefore, the question whether radiation effects could be modulated by microgravity is an important aspect in such risk evaluation. Space particles at low dose and fluence rate, directly affect only a fraction of cells in the whole organism, which implement radiation-induced bystander effects (RIBE) in cellular response to space radiation exposure. The fact that all of the RIBE experiments are carried out in a normal gravity condition bring forward the need for evidence regarding the effect of microgravity on RIBE. In the present study, a two-dimensional rotation clinostat was adopted to demonstrate RIBE in microgravity conditions, in which the RIBE was assayed using an experimental system of root-localized irradiation of Arabidopsis thaliana (A. thaliana) plants. The results showed that the modeled microgravity inhibited significantly the RIBE-mediated up-regulation of expression of the AtRAD54 and AtRAD51 genes, generation of reactive oxygen species (ROS) and transcriptional activation of multicopy P35S:GUS, but made no difference to the induction of homologous recombination by RIBE, showing divergent responses of RIBE to the microgravity conditions. The time course of interaction between the modeled microgravity and RIBE was further investigated, and the results showed that the microgravity mainly modulated the processes of the generation or translocation of the bystander signal(s) in roots.

  15. Lovastatin attenuates ionizing radiation-induced normal tissue damage in vivo

    Ostrau, Christian; Huelsenbeck, Johannes; Herzog, Melanie; Schad, Arno; Torzewski, Michael; Lackner, Karl J.; Fritz, Gerhard

    2009-01-01

    Background and purpose: HMG-CoA-reductase inhibitors (statins) are widely used lipid-lowering drugs. Moreover, they have pleiotropic effects on cellular stress responses, proliferation and apoptosis in vitro. Here, we investigated whether lovastatin attenuates acute and subchronic ionizing radiation-induced normal tissue toxicity in vivo. Materials and methods: Four hours to 24 h after total body irradiation (6 Gy) of Balb/c mice, acute pro-inflammatory and pro-fibrotic responses were analyzed. To comprise subchronic radiation toxicity, mice were irradiated twice with 2.5 Gy and analyses were performed 3 weeks after the first radiation treatment. Molecular markers of inflammation and fibrosis as well as organ toxicities were measured. Results: Lovastatin attenuated IR-induced activation of NF-κB, mRNA expression of cell adhesion molecules and mRNA expression of pro-inflammatory and pro-fibrotic marker genes (i.e. TNFα, IL-6, TGFβ, CTGF, and type I and type III collagen) in a tissue- and time-dependent manner. γH2AX phosphorylation stimulated by IR was not affected by lovastatin, indicating that the statin has no major impact on the induction of DNA damage in vivo. Radiation-induced thrombopenia was significantly alleviated by lovastatin. Conclusions: Lovastatin inhibits both acute and subchronic IR-induced pro-inflammatory and pro-fibrotic responses and cell death in normal tissue in vivo. Therefore, lovastatin might be useful for selectively attenuating acute and subchronic normal tissue damage caused by radiotherapy.

  16. Solar ultraviolet hazards

    Azmah Ali

    1995-01-01

    The paper discussed the following subjects: the sources of ultraviolet radiation, solar ultraviolet radiation definition, effects of over exposure to solar ultraviolet radiation, exposure limits and radiation protection of this radiation

  17. Contribution of radiation-induced, nitric oxide-mediated bystander effect to radiation-induced adaptive response.

    Matsumoto, H.; Ohnishi, T.

    There has been a recent upsurge of interest in radiation-induced adaptive response and bystander effect which are specific modes in stress response to low-dose low-dose rate radiation Recently we found that the accumulation of inducible nitric oxide NO synthase iNOS in wt p53 cells was induced by chronic irradiation with gamma rays followed by acute irradiation with X-rays but not by each one resulting in an increase in nitrite concentrations of medium It is suggested that the accumulation of iNOS may be due to the depression of acute irradiation-induced p53 functions by pre-chronic irradiation In addition we found that the radiosensitivity of wt p53 cells against acute irradiation with X-rays was reduced after chronic irradiation with gamma rays This reduction of radiosensitivity of wt p53 cells was nearly completely suppressed by the addition of NO scavenger carboxy-PTIO to the medium This reduction of radiosensitivity of wt p53 cells is just radiation-induced adaptive response suggesting that NO-mediated bystander effect may considerably contribute to adaptive response induced by radiation

  18. Effectiveness of the herbal medicine daikenchuto for radiation-induced enteritis.

    Takeda, Takashi; Kamiura, Shouji; Kimura, Tadashi

    2008-07-01

    Radiation-induced enteritis is a serious clinical problem for which there is currently no recommended standard management. Daikenchuto (DKT) is a Japanese herbal medicine that has been used to treat adhesive bowel obstruction in Japan. This report describes a patient with radiation-induced enteritis whose clinical symptoms were much improved by treatment with DKT. The patient was administered DKT, a traditional Japanese herbal formula, orally (2.5 g 3 times daily). Abdominal distention was evaluated objectively with computed tomography. Gastrointestinal symptoms associated with radiation-induced enteritis were controlled successfully with DKT treatment. DKT treatment may be useful for the management of radiation-induced enteritis.

  19. Radiation-induced Pulmonary Damage in Lung Cancer Patients

    Chung, Su Mi; Choi, Ihl Bohng; Kang, Mi Mun; Kim, In Ah; Shinn, Kyung Sub

    1993-01-01

    Purpose: A retrospective analysis was performed to evaluate the incidence of radiation induced lung damage after the radiation therapy for the patients with carcinoma of the lung. Method and Materials: Sixty-six patients with lung cancer (squamous cell carcinoma 27, adenocarcinoma 14, large cell carcinoma 2, small cell carcinoma 13, unknown 10) were treated with definitive, postoperative or palliative radiation therapy with or without chemotherapy between July 1987 and December 1991. There were 50 males and 16 females with median age of 63 years(range: 33-80 years). Total lung doses ranged from 500 to 6,660 cGy (median 3960 cGy) given in 2 to 38 fractions (median 20) over a range of 2 to 150 days (median 40 days) using 6 MV or 15 MV linear accelerator. To represent different fractionation schedules of equivalent biological effect, the estimated single dose(ED) model, ED=D·N-0.377·T-0.058 was used in which D was the lung dose in cGy, N was the number of fractions, and T was the overall treatment time in days. The range of ED was 370 to 1357. The endpoint was a visible increase in lung density within the irradiated volume on chest X-ray as observed independently by three diagnostic radiologists. Patients were grouped according to ED, treatment duration, treatment modality and age, and the percent incidence of pulmonary damage for each group was determined. Result: In 40 of 66 patients, radiation induced change was seen on chest radiographs between 11 days and 314 days after initiation of radiation therapy. The incidence of radiation pneumonitis was increased according to increased ED, which was statistically significant (p=0.001). Roentgenographic charges consistent with radiation pneumonitis were seen in 100% of patients receiving radiotherapy after lobectomy or pneumonectomy, which was not statistically significant. In 32 patients who also received chemotherapy, there was no difference in the incidence of radiation induced charge between the group with radiation

  20. Wnt/β-catenin pathway involvement in ionizing radiation-induced invasion of U87 glioblastoma cells

    Dong, Zhen; Zhou, Lin; Han, Na; Zhang, Mengxian; Lyu, Xiaojuan

    2015-01-01

    Radiotherapy has been reported to promote the invasion of glioblastoma cells; however, the underlying mechanisms remain unclear. Here, we investigated the role of the Wnt/β-catenin pathway in radiation-induced invasion of glioblastoma cells. U87 cells were irradiated with 3 Gy or sham irradiated in the presence or absence of the Wnt/β-catenin pathway inhibitor XAV 939. Cell invasion was determined by an xCELLigence real-time cell analyser and matrigel invasion assays. The intracellular distribution of β-catenin in U87 cells with or without irradiation was examined by immunofluorescence and Western blotting of nuclear fractions. We next investigated the effect of irradiation on Wnt/β-catenin pathway activity using TOP/FOP flash luciferase assays and quantitative polymerase chain reaction analysis of β-catenin target genes. The expression levels and activities of two target genes, matrix metalloproteinase (MMP)-2 and MMP-9, were examined further by Western blotting and zymography. U87 cell invasiveness was increased significantly by ionizing radiation. Interestingly, ionizing radiation induced nuclear translocation and accumulation of β-catenin. Moreover, we found increased β-catenin/TCF transcriptional activities, followed by up-regulation of downstream genes in the Wnt/β-catenin pathway in irradiated U87 cells. Importantly, inhibition of the Wnt/β-catenin pathway by XAV 939, which promotes degradation of β-catenin, significantly abrogated the pro-invasion effects of irradiation. Mechanistically, XAV 939 suppressed ionizing radiation-triggered up-regulation of MMP-2 and MMP-9, and inhibited the activities of these gelatinases. Our data demonstrate a pivotal role of the Wnt/β-catenin pathway in ionizing radiation-induced invasion of glioblastoma cells, and suggest that targeting β-catenin is a promising therapeutic approach to overcoming glioma radioresistance. (orig.) [de

  1. Levels of p21WAF1/CIP1 do not affect radiation-induced cell death in human breast epithelial cells

    Kim, Harold E.; Han, Sue J.; Waid, David; Lee, Yong J.; Kim, Hyeong-Reh Choi

    1997-01-01

    Purpose/Objective: Loss of the wild-type p53 activity and/or overexpression of the proto-oncogene bcl-2 are frequently detected in breast cancer and suggested to be related to resistance to chemotherapy and radiation therapy. The long-term goals of this study are to identify the downstream signaling molecules for anti-proliferative and apoptotic activities of p53 and to investigate the interaction of bcl-2 with p53 in human breast epithelial cells. We previously showed that overexpression of bcl-2 downregulates radiation-induced expression of p21 WAF1/CIP1 , a p53 downstream molecule that functions to inhibit cyclin dependent kinases, and suppresses radiation-induced apoptosis in human breast epithelial cell line (MCF10A). In this study, we investigated the role of p21 WAF1/CIP1 in radiation-induced cell death in MCF10A cells. Materials and Methods: To determine whether downregulation of p21 WAF1/CIP1 is required for anti-apoptotic activity of bcl-2, and to investigate the roles of p21 WAF1/CIP1 in cell death following irradiation, we transfected p21 WAF1/CIP1 expression vector into bcl-2 overexpressing MCF10A cells. The effects of p21 WAF1/CIP1 overexpression on cell growth, radiation-induced apoptosis and clonogenic cell survival were analyzed. Results: Overexpression of p21 WAF1/CIP1 resulted in marked growth inhibition, but no effect on dose-dependent radiation-induced cell lethality as determined by clonogenic survival assay. Radiation-induced apoptosis was not detected in bcl-2 overexpressing MCF10A cells independent of levels of p21 WAF1/CIP1 expression. Conclusion: This study suggests that bcl-2 downregulation of p21 WAF1/CIP1 is independent of anti-apoptotic activity of bcl-2 and that levels of p21 WAF1/CIP1 do not affect radiation-induced cell death in human breast epithelial cells

  2. Acupuncture treatment of patients with radiation-induced xerostomia

    Blom, M.; Dawidson, I.; Johnson, G.; Angmar-Maansson, B.; Fernberg, J.-O.

    1996-01-01

    Xerostomia is a common and usually irreversible side effect in patients receiving radiation therapy (>50 Gy) for head and neck cancer. Of 38 patients with radiation-induced xerostomia, 20 in the experimental group were treated with classical acupuncture and 18 patients in the control group received superficial acupuncture as placebo. Within both groups the patients showed significantly increased salivary flow rates after the acupuncture treatment. In the experimental group 68% and in the control group 50% of the patients had increased salivary flow rates at the end of the observation period. Among those patients who had had all their salivary glands irradiated, 50% in both groups showed increased salivary flow rates (>20%) by the end of the observation period of 1 year. The study indicates that among the patients who had increased salivary flow rates already after the first 12 acupuncture sessions, the majority had high probability of continual improvement after the completion of acupuncture treatment. (Author)

  3. Acupuncture treatment of patients with radiation-induced xerostomia

    Blom, M.; Dawidson, I.; Johnson, G.; Angmar-Maansson, B. [Karolinska Inst., Huddinge (Sweden). Dept. of Cardiology; Fernberg, J.-O. [Karolinska Hospital, Stockholm (Sweden). Dept. of General Oncology

    1996-05-01

    Xerostomia is a common and usually irreversible side effect in patients receiving radiation therapy (>50 Gy) for head and neck cancer. Of 38 patients with radiation-induced xerostomia, 20 in the experimental group were treated with classical acupuncture and 18 patients in the control group received superficial acupuncture as placebo. Within both groups the patients showed significantly increased salivary flow rates after the acupuncture treatment. In the experimental group 68% and in the control group 50% of the patients had increased salivary flow rates at the end of the observation period. Among those patients who had had all their salivary glands irradiated, 50% in both groups showed increased salivary flow rates (>20%) by the end of the observation period of 1 year. The study indicates that among the patients who had increased salivary flow rates already after the first 12 acupuncture sessions, the majority had high probability of continual improvement after the completion of acupuncture treatment. (Author).

  4. Contribution of bystander effects in radiation induced genotoxicity

    Zhou, H.; Persaud, R.; Gillispie, J.; Randers-Pehrson, G.; Hei, T.K.; Suzuki, Masao

    2005-01-01

    The controversial use of a linear, no threshold extrapolation model for low dose risk assessment is based on the accepted dogma that the deleterious effects of ionizing radiation such as mutagenesis and carcinogenesis are attributable mainly to direct damage to DNA. However, this extrapolation was challenged by the recent reports on the bystander phenomenon. The bystander effect contributes to this debate by implying that the biological effects of low doses, where not all cells are traversed by a charged particle, are amplified by the transfer of factors to un-irradiated neighbors. This interested phenomenon implies that a linear extrapolation of risks from high to low doses may underestimate rather than over estimate low dose risks. Together with some radiation-induced phenomena such as adaptive response and genomic instability, the radiobiological response at low doses is likely to be a complex interplay among many factors. (author)

  5. Radiation-induced degradation of 4-chloroaniline in aqueous solution

    Sanchez, M.; Wolfger, H.; Getoff, N.

    2002-01-01

    The radiation-induced decomposition of 4-chloroaniline (4-ClA) was studied under steady-state conditions using aqueous solutions saturated with air, pure oxygen, N 2 O, argon and argon in the presence of t-Butanol. Using HPLC-method, the initial G-values of the substrate degradation as well as of a number of radiolytic products were determined. The formation of aminophenols, chlorophenols, aniline and phenol in addition to chloride, ammonia, formaldehyde and mixture of aldehydes as well as carboxylic acids was studied as a function of absorbed dose. Based on the experimental data, probable reaction mechanisms for the degradation of 4-ClA by γ-rays and the formation of the identified products are presented

  6. Radiation-induced decomposition of anion exchange resins

    Baidak, Aliaksandr; LaVerne, Jay A.

    2010-01-01

    Radiation-induced degradation of the strongly basic anion exchange resin Amberlite TM IRA400 in NO 3 - , Cl - and OH - forms has been studied. The research focused on the formation of molecular hydrogen in the gamma-radiolysis of water slurries of these quaternary ammonium resins with varying water content. Extended studies with various electron scavengers (NO 3 - , N 2 O and O 2 ) prove an important role of e solv - in the formation of H 2 from these resins. An excess production of H 2 in these systems at about 85% water weight fraction was found to be due to trimethylamine, dimethylamine and other compounds that leach from the resin to the aqueous phase. Irradiations with 5 MeV 4 He ions were performed to simulate the effects of α-particles.

  7. Structure and radiation induced swelling of steels and alloys

    Parshin, A.M.

    1983-01-01

    Regularities of vacancy void formation and radiation induced swelling of austenitic chromium-nickel steels and alloyse ferritic steels as well as titanium α-alloys under radiation by light and heavy ions and neutrons are considered. Possible methods for preparation of alloys with increased resistance to radiation swelling are described. Accounting for investigations into ferritic steels and α-alloys of titanium the basic way of weakening vacancy smelling is development of continuous homogeneous decomposition of solid solution using alloying with vividly expressed incubation period at a certain volumetric dilatation as well as decompositions of the type of ordering, K-state, lamination of solid solutions, etc. Additional alloying of solid solutions is also shown to be necessary for increasing recrystallization temperature of cold-deformed steel

  8. Radiation-induced degradation of chlorophenols in aqueous solution

    Hu Jun; Wang Jianlong

    2005-01-01

    Radiation processing is a promising technology for applications in environmental protection, which includes wastewater treatment, micro-polluted drinking water treatment and the treatment of industrial wastewater containing various toxic and nonbiodegradable pollutants, municipal sewage and sludge disinfection, and flue gas desulfuration, etc. The paper reviews manly the recent progresses in radiolysis of chlorinated phenols in aqueous solution. Advantages and existing problems of the method in this particular application ar discussed. Mechanisms of radiation-induced degradation of chlorophenols, and the factors affecting the degradation efficiency, are discussed, too. It is concluded that combined approaches, such ozone oxidation and other methods, are of great help to the radiation processing application, in terms of lowering down the dose and increasing the efficient of pollutant removal. (authors)

  9. Radiation-induced spindle cell sarcoma: A rare case report

    Khan Mubeen

    2009-01-01

    Full Text Available Ionizing radiation has been known to induce malignant transformation in human beings. Radiation-induced sarcomas are a late sequel of radiation therapy. Most sarcomas have been reported to occur after exposure to a radiation dose of 55 Gray (Gy and above, with a dose ranging from 16 to 112 Gys. Spindle cell sarcomas, arising after radiotherapy given to treat the carcinoma of head and neck region is a very uncommon sequel. This is a rare case report of spindle cell sarcoma of left maxilla, in a 24-year-old male, occurring as a late complication of radiotherapy with Cobalt-60 given for the treatment of retinoblastoma of the left eye 21 years back.

  10. Controlled release of biofunctional substances by radiation-induced polymerization

    Yoshida, M.; Kumakura, M.; Kaetsu, I.

    1978-01-01

    The controlled release of potassium chloride from flat circular matrices made by radiation-induced polymerization of a glass-forming monomer at low temperatures has been studied. The water-particle phase content formed in a poly(diethylene glycol dimethacrylate) matrix was controlled by the addition of polyethylene glycol 600. The dispersed water-particle phase content in the matrix was estimated directly and by scanning electron microscopic observations. The release of potassium chloride from the matrix increased linearly with the square root of time. The water content of the matrix had an important effect on the release rate which increases roughly in proportion to water content. This effect can be attributed to the apparent increase of the rate of drug diffusion. (author)

  11. Controlled release of biofunctional substances by radiation-induced polymerization

    Yoshida, M.; Kumakura, M.; Kaetsu, I.

    1978-01-01

    The release behaviour of a drug from flat circular capsules obtained by radiation-induced polymerization at low temperatures and with different hydrophilic properties has been studied. The effect of various factors on release property was investigated. The release process could be divided into three parts, an initial quick release stage, stationary state release stage and a retarded release stage. Release behaviour in the stationary state was examined using Noyes-Whitney and Higuchi equations. It was shown that the hydrophilic property of polymer matrix expressed by water content was the most important effect on diffusion and release rate. Rigidity of the polymer may also affect diffusivity. The first quick release step could be attributed to rapid dissolution of drug in the matrix surface due to polymer swelling. (author)

  12. Liv. 52 protection against radiation induced lesions in mammalian liver

    Saini, M.R.; Saini, N.

    1985-01-01

    Effect of Liv. 52 on mammalian liver was studied after whole-body exposure to 5.5 Gy of 60 Co gamma radiation. It was found that the drug protected the organ against radiation-induced changes. The protective effect was manifested in the form of early recovery as indicated by the absence of pathological changes like cytoplasmic degranulation, loss of nulei from many cells and abnormal architecture at 10 days and restoration of normal structure by 4 weeks. Liv. 52 may neutralize the peroxides formed from water molecules after irradiation which are toxic and cause the damage to the organ. Thus it seems that the drug may act as detoxicating agent. (author)

  13. Radiatively induced breaking of conformal symmetry in a superpotential

    Arbuzov, A.B.; Cirilo-Lombardo, D.J.

    2016-01-01

    Radiatively induced symmetry breaking is considered for a toy model with one scalar and one fermion field unified in a superfield. It is shown that the classical quartic self-interaction of the superfield possesses a quantum infrared singularity. Application of the Coleman–Weinberg mechanism for effective potential leads to the appearance of condensates and masses for both scalar and fermion components. That induces a spontaneous breaking of the initial classical symmetries: the supersymmetry and the conformal one. The energy scales for the scalar and fermion condensates appear to be of the same order, while the renormalization scale is many orders of magnitude higher. A possibility to relate the considered toy model to conformal symmetry breaking in the Standard Model is discussed.

  14. Radiation-induced malignant tumors of skin and their histogenesis

    Li Guomin; Chen Yunchi; Yang Yejing

    1987-01-01

    Seven cases of radiation-induced malignant tumors and 60 cases of chronic radiation damage of skin are reported. Severe hyperplasia, false epitheliomatoid hyperpiasia and atypical proliferation of epithelia and atypical proliferation of fibrohistocytes were the main changes found in chronic radiation damage of skin. The development of malignant tumors from chronic radiation damage of skin can be divided into 4 periods: necrotic and degenerative change period, benign proliferative period, atypical proliferative period and malignant change period. The incidence of hyperplastic changes of skin is related to the time elapse after irradiation and the integrated dose of radiation. The longer the duration after irradiation and the larger the integrated dose are, the higher will be the incidence of hyperplastic changes

  15. Radiation induced phosphorus segregation in austenitic and ferritic alloys

    Brimhall, J.L.; Baer, D.R.; Jones, R.H.

    1984-01-01

    The radiation induced surface segregation (RIS) of phosphorus in stainless steel attained a maximum at a dose of 0.8 dpa then decreased continually with dose. This decrease in the surface segregation of phosphorus at high dose levels has been attributed to removal of the phosphorus layer by ion sputtering. Phosphorus is not replenished since essentially all of the phosphorus within the irradiation zone has been segregated to the surface. Sputter removal can explain the previously reported absence of phosphorus segregation in ferritic alloys irradiated at high dosessup(1,2) (>1 dpa) since irradiation of ferritic alloys to low doses has shown measurable RIS. This sputtering phenomenon places an inherent limitation to the heavy ion irradiation technique for the study of surface segregation of impurity elements. The magnitude of the segregation in ferritics is still much less than in stainless steel which can be related to the low damage accumulation in these alloys. (orig.)

  16. Promotion of initiated cells by radiation-induced cell inactivation.

    Heidenreich, W F; Paretzke, H G

    2008-11-01

    Cells on the way to carcinogenesis can have a growth advantage relative to normal cells. It has been hypothesized that a radiation-induced growth advantage of these initiated cells might be induced by an increased cell replacement probability of initiated cells after inactivation of neighboring cells by radiation. Here Monte Carlo simulations extend this hypothesis for larger clones: The effective clonal expansion rate decreases with clone size. This effect is stronger for the two-dimensional than for the three-dimensional situation. The clones are irregular, far from a circular shape. An exposure-rate dependence of the effective clonal expansion rate could come in part from a minimal recovery time of the initiated cells for symmetric cell division.

  17. Radiation-induced formation of cavities in amorphous germanium

    Wang, L.M.; Birtcher, R.C.

    1989-01-01

    Prethinned polycrystalline Ge TEM samples were irradiated with 1.5 MeV Kr + ions at room temperature while structural and morphological changes were observed in situ in the Argonne High Voltage Electron Microscope-Tandem Facility. After a Kr + dose of 1.2x10 14 ions/cm 2 , the irradiated Ge was completely amorphized. A high density of small void-like cavities was observed after a Kr + dose of 7x10 14 ions/cm 2 . With increasing Kr + ion dose, these cavities grew into large holes transforming the irradiated Ge into a sponge-like porous material after 8.5x10 15 ions/cm 2 . The radiation-induced nucleation of void-like cavities in amorphous material is astonishing, and the final structure of the irradiated Ge with enormous surface area may have potential applications

  18. Radiation-induced polymerization for the immobilization of penicillin acylase

    Boccu, E.; Carenza, M.; Lora, S.; Palma, G.; Veronese, F.M.

    1987-01-01

    The immobilization of Escherichia coli penicillin acylase was investigated by radiation-induced polymerization of 2-hydroxyethyl methacrylate at low temperature. A leak-proof composite that does not swell in water was obtained by adding the cross-linking agent trimethylolpropane trimethacrylate to the monomer-aqueous enzyme mixture. Penicillin acylase, which was immobilized with greater than 70% yield, possessed a higher Km value toward the substrate 6-nitro-3-phenylacetamidobenzoic acid than the free enzyme form (Km = 1.7 X 10(-5) and 1 X 10(-5) M, respectively). The structural stability of immobilized penicillin acylase, as assessed by heat, guanidinium chloride, and pH denaturation profiles, was very similar to that of the free-enzyme form, thus suggesting that penicillin acylase was entrapped in its native state into aqueous free spaces of the polymer matrix

  19. Distraction osteogenesis of radiation-induced orbitozygomatic hypoplasia.

    Grover, Ramon; Murray, Dylan; Fialkov, Jeffrey A

    2008-05-01

    In the last decade, the application of distraction osteogenesis to the craniofacial skeleton has grown to include not only deformities of the mandible, but of the midface, palate, dentoalveolar region, and calvarium. A major advantage of distraction osteogenesis lies in the simultaneous soft tissue histogenesis that accompanies the bony distraction process, allowing for potentially lower relapse rates and improved cosmesis. Although this may seem appropriately suited to irradiation-induced deformities of both hard and soft tissues, there is little in the literature as to the efficacy of this technique in patients who have received radiotherapy. To introduce an effective application of this technology, and highlight some advantages and disadvantages of its application in the irradiated craniofacial skeleton, we present a case of distraction osteogenesis of the orbitozygomatic complex in a patient with radiation induced orbitozygomatic hypoplasia.

  20. Radiation-induced bilateral common carotid artery stenosis

    Kobayashi, Nobuaki; Nakagawa, Yoku; Tashiro, Kunio; Abe, Hiroshi

    1986-01-01

    A case of radiation-induced bilateral common carotid artery stenosis is reported. This 60 years old housewife was hospitalized in 1982 because of sudden onset of mild left hemiparesis. Twenty-five years ago, she underwent radiation therapy of approximately 5,000 rads to the anterior cervical region because of thyroid cancer. Angiograms in 1982 revealed bilateral common carotid artery stenosis, especially in the right common carotid artery, the legion of which were included within the field of radiation performed in 1952. Right thromboendarterectomy was performed in 1983. At operation, slight periarterial fibrosis with calcified arteriosclerotic change was found, and dissection between the thickened intima and the media was not so difficult. Histological change of resected thromboendarterium was similar to the one observed in the pure arteriosclerotic disease. (author)

  1. A review of radiation-induced demagnetization of permanent magnets

    Samin, Adib J.

    2018-05-01

    Radiation-induced demagnetization of permanent magnets is important for a number of applications including space missions, particle accelerators and robots designed to carry out rescue missions at nuclear accidents where magnet failure can lead to serious consequences. This topic has been studied by several investigators over the past three decades and in this work, a review of the available literature is conducted and some general conclusions and trends are presented. In short, it can be gleaned that magnetism loss is dependent on the type of radiation, the energy of the incoming particle and the overall dose or fluence. Furthermore, magnetism loss also shows a dependence on the type of the irradiated magnet, the coercivity of the magnet, the demagnetizing field and the temperature of irradiation.

  2. Molecular analysis of radiation-induced mutations in vitro

    Kronenberg, A.

    1996-01-01

    This review will focus on the nature of specific locus mutations detected in mammalian cells exposed in vitro to different types of ionizing radiations. Ionizing radiation has been shown to produce a wide variety of heritable alterations in DNA. These range from single base pair substitutions to stable loss or translocation of large portions of whole chromosomes. Data will be reviewed for certain test systems that reveal different mutation spectra. Techniques for the analysis of molecular alterations include applications of the polymerase chain reaction, some of which may be coupled with DNA sequence analysis, and a variety of hybridization-based techniques. The complexity of large scale rearrangements is approached with cytogenetic techniques including high resolution banding and various applications of the fluorescence in situ hybridization (FISH) technique. Radiation-induced mutant frequencies and mutation spectra are a function of the linkage constraints on the recovery of viable mutants for a given locus and test system. 44 refs

  3. Kinetics of radiation-induced precipitation at the alloy surface

    Lam, N. Q.; Nguyen, T.; Leaf, G. K.; Yip, S.

    1988-05-01

    Radiation-induced precipitation of a new phase at the surface of an alloy during irradiation at elevated temperatures was studied with the aid of a kinetic model of segregation. The preferential coupling of solute atoms with the defect fluxes gives rise to a strong solute enrichment at the surface, which, if surpassing the solute solubility limit, leads to the formation of a precipitate layer. The moving precipitate/matrix interface was accommodated by means of a mathematical scheme that transforms spatial coordinates into a reference frame in which the boundaries are immobile. Sample calculations were performed for precipitation of the γ'-Ni 3Si layer on Ni-Si alloys undergoing electron irradiation. The dependences of the precipitation kinetics on the defect-production rate, irradiation temperature, internal defect sink concentration and alloy composition were investigated systematically.

  4. Radiation induced defects and thermoluminescence mechanism in aluminum oxide

    Atobe, K.; Kobayashi, T.; Awata, T. [Naruto Univ. of Education, Tokushima (Japan); Okada, M. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst; Nakagawa, M. [Kagawa Univ., Faculty of Education, Takamatsu, Kagawa (Japan)

    2001-01-01

    The thermoluminescence of the irradiated aluminum oxides were measured to study the radiation induced defects and their behaviors. Neutron and {gamma}-ray irradiation were performed for a shingle crystal of the high purity aluminum oxide. The thermoluminescence glow curve and its activation energy were measured. The spectroscopy measurement on the thermoluminescence and the absorption are also carried out. The observed 430 and 340 nm peaks are discussed relating to the F{sup +} and F centers, respectively. Activation state of the F center transits to 3P state through 1P state by emitting phonons. Trapped electron on 3P state emits phonon of 2.9 eV (430 nm) during transition to the ground state. The above reaction can be written by the equation. F{sup +} + e {yields} (F){sup *} {yields} F + h{nu}(2.9 eV, 470 nm). (Katsuta, H.)

  5. Probabilistic methodology for estimating radiation-induced cancer risk

    Dunning, D.E. Jr.; Leggett, R.W.; Williams, L.R.

    1981-01-01

    The RICRAC computer code was developed at Oak Ridge National Laboratory to provide a versatile and convenient methodology for radiation risk assessment. The code allows as input essentially any dose pattern commonly encountered in risk assessments for either acute or chronic exposures, and it includes consideration of the age structure of the exposed population. Results produced by the analysis include the probability of one or more radiation-induced cancer deaths in a specified population, expected numbers of deaths, and expected years of life lost as a result of premature fatalities. These calculatons include consideration of competing risks of death from all other causes. The program also generates a probability frequency distribution of the expected number of cancers in any specified cohort resulting from a given radiation dose. The methods may be applied to any specified population and dose scenario

  6. Radiation induced crystallinity damage in poly(L-lactic acid)

    Kantoglu, O

    2002-01-01

    The radiation-induced crystallinity damage in poly(L-lactic acid) (PLLA) in the presence of air and in vacuum, is studied. From the heat of fusion enthalpy values of gamma irradiated samples, some changes on the thermal properties were determined. To identify these changes, first the glass transition temperature (T sub g) of L-lactic acid polymers irradiated to various doses in air and vacuum have been investigated and it is found that it is independent of irradiation atmosphere and dose. The fraction of damaged units of PLLA per unit of absorbed energy has been measured. For this purpose, SAXS and differential scanning calorimetry methods were used, and the radiation yield of number of damaged units (G(-u)) is found to be 0.74 and 0.58 for PLLA samples irradiated in vacuum and air, respectively.

  7. Factors that modify risks of radiation-induced cancer

    Fabrikant, J.I.

    1988-11-01

    The collective influence of biologic and physical factors that modify risks of radiation-induced cancer introduces uncertainties sufficient to deny precision of estimates of human cancer risk that can be calculated for low-dose radiation in exposed populations. The important biologic characteristics include the tissue sites and cell types, baseline cancer incidence, minimum latent period, time-to-tumor recognition, and the influence of individual host (age and sex) and competing etiologic influences. Physical factors include radiation dose, dose rate, and radiation quality. Statistical factors include time-response projection models, risk coefficients, and dose-response relationships. Other modifying factors include other carcinogens, and other biological sources (hormonal status, immune status, hereditary factors)

  8. Radiation induced mutant crop varieties: accomplishment and societal deployment

    D'Souza, S.F.

    2009-01-01

    One of the peaceful applications of atomic energy is in the field of agriculture. It finds application in crop improvement, crop nutrition, crop protection and food preservation. Genetic improvement of crop plants is a continuous endeavor. Success of a crop improvement programme depends on the availability of large genetic variability, which a plant breeder can combine to generate new varieties. In nature, occurrence of natural variability in the form of spontaneous mutations is extremely low (roughly 10 -6 ), which can be enhanced to several fold (approximately 10 -3 ) by using ionizing radiations or chemical mutagens. Radiation induced genetic variability in crop plants is a valuable resource from which plant breeder can select and combine different desired characteristics to produce better crop varieties. Crop improvement programmes at Bhabha Atomic Research Centre (BARC) envisage radiation based induced mutagenesis along with recombination breeding in country's important cereals (rice and wheat), oilseeds (groundnut, mustard, soybean and sunflower), grain legumes (blackgram, mungbean, pigeonpea and cowpea), banana and sugarcane

  9. Binding of radiation-induced phenylalanine radicals to DNA

    Schans, G.P. van der; Rijn, C.J.S. van; Bleichrodt, J.F.

    1975-11-01

    When an aqueous solution of double-stranded DNA of bacteriophage PM2 containing phenylalanine and saturated with N 2 O is irradiated with γ-rays, radiation-induced phenylalanine radicals are bound covalently. Under the conditions used about 25 phenylalanine molecules may be bound per lethal hit. Also for single-stranded PM2 DNA, most of the phenylalanine radicals bound are non-lethal. Evidence is presented that in double-stranded DNA an appreciable fraction of the single-strand breaks is induced by phenylalanine radicals. Radiation products of phenylalanine and the phenylalanine bound to the DNA decrease the sensitivity of the DNA to the induction of single-strand breaks. There are indications that the high efficiency of protection by radiation products of phenylalanine is due to their positive charge, which will result in a relatively high concentration of these compounds in the vicinity of the negatively charged DNA molecules

  10. Radiation-induced bone tumours in the guinea-pig

    Knowles, J.F.

    1981-01-01

    A remarkably high proportion of guinea-pigs given localized irradiations of 20 Gy x-rays developed bone tumours, 46% of all irradiated with 20 Gy and 86% of those that survived at least a year. Untreated controls were not included in the present experiment, but the authors refer to an earlier experiment using guinea-pigs from the same colony where no bone tumour occurred in 69 unirradiated animals followed for their natural life span i.e. up to 87 months. It is concluded that the author's strain of guinea-pig (details given in a previous paper, Int. J. Radiol. Biol., 40, 265) is particularly prone to radiation-induced bone tumours. Their possible value for investigating processes associated with radiation induction of bone tumours is further enhanced by their relatively large size and long life span (up to 7 years). (U.K.)

  11. Gamma radiation induced and natural variability for nodulation in legumes

    Maherchandani, N; Rana, O P.S. [Haryana Agricultural Univ., Hissar (India). Dept. of Genetics

    1977-09-01

    Gamma radiation induced variability for nodulation was studied in 112 M4 mutant lines of cowpea variety C-15-2. Ten lines superior in nodulation to the original variety have been identified. Natural variability for nodulation and plant growth was investigated in 75 genotypes of chickpea. A number of genotype were found to be superior to cultivated variety C-235 for nodulation characters. Nodule characters were found to be related to dry matter accumulation but not to grain yield. Another experiment on 10 varieties of chick pea conducted under aseptic conditions revealed that host genotypes showed specificity for Rhizobial strains and different Rhizobial strains differed in their effectiveness on different host genotypes. H 551 and H 355 were the most responsive varieties.

  12. Non-radiation induced signals in TL dosimetry

    German, U.; Weinstein, M.

    2002-01-01

    One source of background signals, which are non-radiation related, is the reader system and it includes dark current, external contaminants and electronic spikes. These factors can induce signals equivalent to several hundredths of mSv. Mostly, the effects are minimised by proper design of the TLD reader, but some effects are dependent on proper operation of the system. The other main group of background signals originate in the TL crystal and is due to tribothermoluminescence, dirt, chemical reactions and stimulation by visible or UV light. These factors can have a significant contribution, equivalent to over several mSv, depending on whether the crystal is bare or protected by PTFE. Working in clean environments, monitoring continuously the glow curve and performing glow curve deconvolution are suggested to minimise non-radiation induced spurious signals. (author)

  13. Radiological-morphological synopsis of radiation-induced lung fibrosis

    Bublitz, G.

    1977-01-01

    As delayed radiation damage after treatment of bronchial carcinoma and mamma carcinoma, fibroses occur as a reaction of the tissues. They have become a clinical-functional syndrome because of their uniform clinicaL-radiological symptomatology and pathophysiology. Pulmonary fibrosis as delayed radiation damage has a special importance with its two different radiation effects on connective tissue: a) on existing structures, b) delayed alterations of the connective tissue. As seen from experiments on lungs of men and rats, radiation-induced alterations can be measured by testing the different solubilities of the collagen types. In addition to the pathologically disordered collagen production, 9 weeks after the irradiation the radiation fibrosis leads to an isolated increase of insoluble collagen corresponding to the formation of metabolism-resistant fibrils. (MG) [de

  14. Radiation-induced crosslinking of poly(vinylidene fluoride)

    Makuuchi, Keizo

    1977-07-01

    The factors influencing radiation-induced crosslinking efficiency of poly(vinylidene fluoride) (PVdF) have been studied. Results of the basic research on irradiation conditions (dose rate and atmosphere) and initial physical properties of PVdF (structure of molecular chain and molecular mobility of chain segment) showed that crosslinking efficiency is raised in irradiation at high temperature above 50 0 C under vacuum in the presence of an absorbent for the evolved hydrogen fluoride. The crosslinking reaction is also accelerated with irregular molecular structure such as head-to-head bond in main chain. High crosslinking efficiency is obtained by addition of a polyfunctional monomer having good solubility with PVdF. Mechanical properties of PVdF, the strength at high temperature near the melting point in particular, are improved by crosslinking in the presence of a polyfunctional monomer. (auth.)

  15. Studies on radiation induced changes in bovine hemoglobin type A

    Wdzieczak, J.; Duda, W.; Leyko, W.

    1978-01-01

    In this paper the structural and functional changes of gamma irradiated bovine hemoglobin are presented. Aqueous solutions/1%/of HbO 2 were irradiated in air with doses ranging from 1 to 4 Mrad. Isoelectric focusing indicated change of the charge of irradiated hemoglobin. The isoelectric point of hemoglobin was displaced towards more acid values with increasing doses, up from 1 Mrad. Fingerprint analysis and peptide column chromatography of irradiated hemoglobin demonstrated disturbances increasing with the dose. These changes were confirmed by amino acid analysis which showed that Cys, Met, Trp, His, Pro and Tyr residues were destroyed or modified following irradiation. At doses exceeding 1 Mrad the irradiated solutions of hemoglobin showed a decrease of heme-heme interaction and an increase of affinity for oxygen. Differences observed in oxygen-dissociation curves seem to be correlated with the radiation induced destruction of amino acid residues which are responsible for the functional properties of hemoglobin. (auth.)

  16. Radiation-induced DNA damage and cellular lethality

    Sakai, K.; Okada, S.

    1984-01-01

    Radiation-induced DNA scissions and their repair were investigated in mammalian cells using an alkaline separation method. DNA breaks in mouse L5178Y cells and Chinese hamster V79 cells were grouped into three in terms of their repair profile; fast-reparable breaks (FRBs; T1/2 = 5 min), slow-reparable breaks (SRBs; T1/2 = 70 min) and non-reparable breaks (NRBs). The three types of DNA lesions were studied under conditions where cellular radiosensitivity was modified. The authors obtained the following results: 1. Cell cycle fluctuation: L5178Y showed maximum sensitivity at M and G/sub 1/-S boundary, and minimum sensitivity at G/sub 1/ and late S. Cycle dependency was not found for FRBs or SRBs, but NRBs showed bimodal fluctuation with peaks at M and G/sub 1/-S, and with bottoms at G/sub 1/ and late S. 2. Different sensitivity of L5178Y and V79: L5178Y cells were more sensitive to X-rays (D/sub ο/ = 0.9 Gy) than V79 (D/sub ο/ = 1.8 Gy). The amount of FRBs or SRBs was identical in the two cell lines. However, the amount of NRBs in L5178Y was greater than that in V79. 3. Split dose irradiation: The time interval between two doses resulted in a gradual decrease of NRBs. The time course of the decrease was similar to the split dose recovery in terms of cell death. The parallel relationship between NRBs and cell killing implies that NRBs could play an important role in radiation-induced cell death

  17. Association of single nucleotide polymorphisms with radiation-induced esophagitis

    Zhang Li; Wang Lvhua; Yang Ming; Ji Wei; Zhao Lujun; Yang Weizhi; Zhou Zongmei; Ou Guangfei; Lin Dongxin

    2008-01-01

    Objective: To evaluate the relationship between single nucleotide polymorphism(SNP) of candidate genes and radiation-induced esophagitis (RIE) in patients with lung cancer. Methods: Between Jan. 2004 and Aug. 2006, 170 patients with pathologically diagnosed lung cancer were enrolled in this study. The total target dose was 45-70 Gy (median 60 Gy). One hundred and thirty-two patients were treated with three-dimensional conformal radiotherapy(3DCRT) and 38 with two-dimensional radiotherapy(2DRT). Forty-one patients received radiotherapy alone, 78 received sequential chemoradiotherapy and 51 received concurrent chemoradiotherapy. Thirty-seven SNPs in 20 DNA repair genes were analyzed by using PCR- based restricted fragment length polymorphism (RFLP). These genes were apoptosis and inflammatory cytokine genes including ATM, ERCC1, XRCC3, XRCCI, XPD, XPC, XPG, NBS1, STK15, ZNF350, ADPRT, TP53, FAS, FASL, CYP2D6*4, CASPASE8, COX2,TGF-β, CD14 and ACE. The endpoint was grade ≥2 R I E. Results: Forty of the 170 patients developed grade ≥2 R I E, including 36 in grade 2 and 4 in grade 3. Univariate analysis revealed that radiation technique and concurrent chemoradiotherapy were statistically significant relatives to the incidence of R I E (P=0.032, 0.049), and both of them had the trend associating with the esophagitis (P=0.072, 0.094). An increased incidence of esophagitis was observed associating with the TGF-β 1 -509T and XPD 751Lys/Lys genotypes (χ 2 =5.65, P=0.017; χ 2 =3.84, P=0.048) in multivariate analysis. Conclusions: Genetic polymorphisms in TGF-β 1 gene and XPD gene have a significant association with radiation-induced esophagitis. (authors)

  18. Ion beam induced luminescence: Relevance to radiation induced bystander effects

    Ahmad, S. B.; McNeill, F. E.; Byun, S. H.; Prestwich, W. V.; Seymour, C.; Mothersill, C. E.

    2012-10-01

    The aim of this work is quantify the light emitted as a result of charged particle interaction in materials which may be of relevance to radiation induced "bystander effects" studies. We have developed a system which employs single photon counting to measure the light emitted from samples irradiated under vacuum by a charged particle beam. The system uses a fast photomultiplier tube with a peak cathode response at 420 nm. It has been tested in a proof-of-principle experiment using polystyrene targets. Light output, as a result of irradiation, was measured. The luminescence yield appears to have a non-linear behavior with the incident ion fluence: it rises exponentially to an asymptotic value. The target was irradiated with beam energies varying from 1 to 2 MeV and showed saturation at or before an incident fluence rate of 3 × 1013 H+/cm2 s. The average saturation value for the photon output was found to be 40 × 106 cps. Some measurements were performed using filters to study the emission at specific wavelengths. In the case of filtered light measurements, the photon output was found to saturate at 28 × 103, 10 × 106, and 35 × 106 cps for wavelengths of 280 ± 5 nm, 320 ± 5 nm and 340 ± 5 nm respectively. The light output reaches a maximum value because of damage induced in the polymer. Our measurements indicate a "damage cross section" of the order of 10-14 cm2. The average radiant intensity was found to increase at wavelengths of 280 and 320 nm when the proton energy was increased. This was not found to occur at 340 nm. In conclusion, the light emission at specific wavelengths was found to depend upon the incident proton fluence and the proton energy. The wavelengths of the emitted light measured in this study have significance for the understanding of radiation induced bystander effects.

  19. Defense mechanisms against radiation induced teratogenic damage in mice

    Kato, F.; Ootsuyama, A.; Nomoto, S.; Norimura, T.

    2002-01-01

    Experimental studies with mice have established that fetuses at midgestational stage are highly susceptible to malformation at high, but not low, doses of radiation. When DNA damage is produced by a small amount of radiation, it is efficiently eliminated by DNA repair. However, DNA repair is not perfect. There must be defense mechanisms other than DNA repair. In order to elucidate the essential role of p53 gene in apoptotic tissue repair, we compared the incidence of radiation-induced malformations and deaths (deaths after day 10) in wild-type p53 (+/+) mice and null p53 (-/-) mice. For p53 (+/+) mice, an X-ray dose of 2 Gy given at a high dose-rate (450 mGy/min) to fetuses at 9.5 days of gestation was highly lethal and considerably teratogenic whereas it was only slightly lethal but highly teratogenic for p53 (-/-) fetuses. This reciprocal relationship of radiosensitivity to malformations and deaths supports the notion that fetal tissues have a p53 -dependent idguardianln of the tissue that aborts cells bearing radiation-induced teratogenic DNA damage. When an equal dose of 2 Gy given at a 400-fold lower dose-rate (1.2 mGy/min), this dose became not teratogenic for p53 (+/+) fetuses exhibiting p53 -dependent apoptosis, whereas this dose remained teratogenic for p53 (-/-) fetuses unable to carry out apoptosis. Furthermore, when the dose was divided into two equal dose fractions (1+1 Gy) at high dose rate, separated by 24 hours, the incidences of malformations were equal with control level for p53 (+/+), but higher for p53 (-/-) mice. Hence, complete elimination of teratogenic damage from irradiated tissues requires a concerted cooperation of two mechanisms; proficient DNA repair and p53-dependent apoptotic tissue repair

  20. Radiation-induced apoptosis of lymphocytes in peripheral blood

    Oh, Yoon Kyeong; Lee, Tae Bum; Nam, Taek Keun; Kee, Keun Hong; Choi, Cheol Hee

    2003-01-01

    This study quantitatively evaluated the apoptosis in human peripheral blood lymphocytes using flow cytometry, and investigated the possibility of using this method, with a small amount of blood, and the time and dose dependence of radiation-induced apoptosis. Peripheral blood lymphocytes were isolated from the heparinized venous blood of 11 healthy volunteers, 8 men and 3 women, with each 10 ml of blood being divided into 15 samples. The blood lymphocytes were irradiated using a linear accelerator at a dose rate of 2.4 Gy/min, to deliver doses of 0.5, 1, 2 and 5 Gy. The control samples, and irradiated cells, were maintained in culture medium for 24, 48 and 72 hours following the irradiation. The number of apoptotic cells after the in vitro X-irradiation was measured by flow cytometry after incubation periods of 24, 48 and 72 hours. We also observed the apoptotic cells using a DNA fragmentation assay and electron microscopy. The rate of spontaneous apoptosis increased in relation to the time interval following irradiation (1.761±0.161, 3.563±0.564, 11.098±2.849, at 24, 48, and 72 hours). The apoptotic cells also increased in the samples irradiated with 0.5, 1, 2 and 5 Gy, in a radiation dose and time interval after irradiation manner, with the apoptosis being too great at 72 hours after irradiation. The dose-response curves were characterized by an initial steep increase in the number of apoptotic cells for irradiation doses below 2 Gy, with a flattening of the curves as the dose approached towards 5 Gy. The flow cytometric assay technique yielded adequate data, and required less than 1 mL of blood. The time and dose dependence of the radiation-induced apoptosis, was also shown. It is suggested that the adequate time interval required for the evaluation of apoptosis would be 24 to 48 hours after blood sampling

  1. Radiation-induced thyroid cancer after radiotherapy for childhood cancer

    Jiravova, M. [Department of Nuclear Medicine and Endocrinology, Faculty Hospital Motol, Uk, Prague (Czech Republic)

    2012-07-01

    Full text of the publication follows: The thyroid gland in children is among the most sensitive organs to the carcinogenic effects of ionizing radiation, and very young children are at especially high risk. Due to extreme sensitivity of the thyroid gland in children, there is a risk of radiation - induced thyroid cancer even when the thyroid gland is outside the irradiated field. Increased incidence of thyroid cancer has been noted following radiotherapy not only for childhood Hodgkin disease (majority of observed patients), but also for non-Hodgkin lymphoma, neuroblastoma, Wilms tumor, acute lymphocytic leukemia and tumors of the central nervous system also. Radiation-induced tumors begin to appear 5-10 years after irradiation and excess risk persists for decades, perhaps for the remainder of life. The incidence of thyroid cancer is two- to threefold higher among females than males. Most of the thyroid cancers that occur in association with irradiation are of the papillary type, for which the cure rate is high if tumors are detected early. Our Department in co-operation with Department of Children Hematology and Oncology Charles University Second Faculty of Medicine and Faculty Hospital Motol monitors patients after therapy for cancer in childhood for the long term period. The monitoring is focused on detection of thyroid disorders that occur as last consequences of oncology therapy, especially early detection of nodular changes in thyroid gland and thyroid carcinogenesis. The survey presents two patients observed in our department that were diagnosed with the papillary thyroid carcinoma which occurred 15 and more years after radiotherapy for childhood cancer. After total thyroidectomy they underwent therapy with radioiodine. After radiotherapy it is necessary to pursue a long-term following and assure interdisciplinary co-operation which enables early detection of last consequences of radiotherapy, especially the most serious ones as secondary carcinogenesis

  2. Simulating Space Radiation-Induced Breast Tumor Incidence Using Automata.

    Heuskin, A C; Osseiran, A I; Tang, J; Costes, S V

    2016-07-01

    Estimating cancer risk from space radiation has been an ongoing challenge for decades primarily because most of the reported epidemiological data on radiation-induced risks are derived from studies of atomic bomb survivors who were exposed to an acute dose of gamma rays instead of chronic high-LET cosmic radiation. In this study, we introduce a formalism using cellular automata to model the long-term effects of ionizing radiation in human breast for different radiation qualities. We first validated and tuned parameters for an automata-based two-stage clonal expansion model simulating the age dependence of spontaneous breast cancer incidence in an unexposed U.S. We then tested the impact of radiation perturbation in the model by modifying parameters to reflect both targeted and nontargeted radiation effects. Targeted effects (TE) reflect the immediate impact of radiation on a cell's DNA with classic end points being gene mutations and cell death. They are well known and are directly derived from experimental data. In contrast, nontargeted effects (NTE) are persistent and affect both damaged and undamaged cells, are nonlinear with dose and are not well characterized in the literature. In this study, we introduced TE in our model and compared predictions against epidemiologic data of the atomic bomb survivor cohort. TE alone are not sufficient for inducing enough cancer. NTE independent of dose and lasting ∼100 days postirradiation need to be added to accurately predict dose dependence of breast cancer induced by gamma rays. Finally, by integrating experimental relative biological effectiveness (RBE) for TE and keeping NTE (i.e., radiation-induced genomic instability) constant with dose and LET, the model predicts that RBE for breast cancer induced by cosmic radiation would be maximum at 220 keV/μm. This approach lays the groundwork for further investigation into the impact of chronic low-dose exposure, inter-individual variation and more complex space radiation

  3. Radiation-induced brachial plexus neuropathy in breast cancer patients

    Olsen, N.K.; Pfeiffer, P.; Mondrup, K.; Rose, C. (Odense Univ. Hospital (Denmark). Dept. of Neurology Odense Univ. Hospital (Denmark). Dept. of Clinical Neurophysiology Odense Univ. Hospital (Denmark). Dept. of Oncology R)

    1990-01-01

    The incidence and latency period of radiation-induced brachial plexopathy (RBP) were assessed in 79 breast cancer patients by a neurological follow-up examination at least 60 months (range 67-130 months) after the primary treatment. All patients were treated primarily with simple mastectomy, axillary nodal sampling and radiotherapy (RT). Postoperatively, pre- and postmenopausal patients were randomly allocated chemotherapy for antiestrogen treatment. All patients were recurrence-free at time of examination. Clinically, 35% (25-47%) of the patients had RBP; 19% (11-29%) had definite RBP, i.e. were physically disabled, and 16% (9-26%) had probable RBP. Fifty percent (31-69%) had affection of the entire plexus, 18% (7-35%) of the upper trunk only, and 4% (1-18%) of the lower trunk. In 28% (14-48%) of cases assessment of a definite level was not possible. RBP was more common after radiotherapy and chemotherapy (42%) than after radiotherapy alone (26%) but the difference was not statistically significant (p = 0.10). The incidence of definite RBP was significantly higher in the younger age group (p = 0.02). This could be due to more extensive axillary surgery but also to the fact that chemotherapy was given to most premenopausal patients. In most patients with RBP the symptoms began during or immediately after radiotherapy, and were thus without significant latency. Chemotherapy might enhance the radiation-induced effect on nerve tissue, thus diminishing the latency period. Lymphedema was present in 22% (14-32%), especially in the older patients, and not associated with the development of RBP. In conclusion, the damaging effect of RT on peripheral nerve tissue was documented. Since no successful treatment is available, restricted use of RT to the brachial plexus is warranted, especially when administered concomitantly with cytotoxic therapy. (orig.).

  4. Genetic analysis of radiation-induced mouse thymic lymphomas

    Kominami, R.; Wakabayashi, Y.; Niwa, O.

    2003-01-01

    Mouse thymic lymphomas are one of the classic models of radiation-induced malignancies, and the model has been used for the study of genes involved in carcinogenesis. ras oncogenes are the first isolate which undergoes mutations in 10 to 30 % of lymphomas, and p16INK4a and p19ARF in the INK4a-ARF locus are also frequently inactivated. In our previous study, the inactivation of Ikaros, a key regurator of lymphoid system, was found in those lymphomas, and it was suggested that there are other responsible genes yet to be discovered. On the other hand, genetic predisposition to radiation-induced lymphoma often differs in different strains, and this reflects the presence of low penetrance genes that can modify the impact of a given mutation. Little study of such modifiers or susceptibility genes has been performed, either. Recent availability of databases on mouse genome information and the power of mouse genetic system underline usefulness of the lymphoma model in search for novel genes involved, which may provide clues to molecular mechanisms of development of the radiogenic lymphoma and also genes involved in human lymphomas and other malignancies. Accordingly, we have carried out positional cloning for the two different types of tumor-related genes. In this symposium, our current progress is presented that includes genetic mapping of susceptibility/ resistance loci on mouse chromosomes 4, 5 and 19, and also functional analysis of a novel tumor suppressor gene, Rit1/Bcl11b, that has been isolated from allelic loss (LOH) mapping and sequence analysis for γ -ray induced mouse thymic lymphomas

  5. Radiation induces aerobic glycolysis through reactive oxygen species

    Zhong, Jim; Rajaram, Narasimhan; Brizel, David M.; Frees, Amy E.; Ramanujam, Nirmala; Batinic-Haberle, Ines; Dewhirst, Mark W.

    2013-01-01

    Background and purpose: Although radiation induced reoxygenation has been thought to increase radiosensitivity, we have shown that its associated oxidative stress can have radioprotective effects, including stabilization of the transcription factor hypoxia inducible factor 1 (HIF-1). HIF-1 is known to regulate many of the glycolytic enzymes, thereby promoting aerobic glycolysis, which is known to promote treatment resistance. Thus, we hypothesized that reoxygenation after radiation would increase glycolysis. We previously showed that blockade of oxidative stress using a superoxide dismutase (SOD) mimic during reoxygenation can downregulate HIF-1 activity. Here we tested whether concurrent use of this drug with radiotherapy would reduce the switch to a glycolytic phenotype. Materials and methods: 40 mice with skin fold window chambers implanted with 4T1 mammary carcinomas were randomized into (1) no treatment, (2) radiation alone, (3) SOD mimic alone, and (4) SOD mimic with concurrent radiation. All mice were imaged on the ninth day following tumor implantation (30 h following radiation treatment) following injection of a fluorescent glucose analog, 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG). Hemoglobin saturation was measured by using hyperspectral imaging to quantify oxygenation state. Results: Mice treated with radiation showed significantly higher 2-NBDG fluorescence compared to controls (p = 0.007). Hemoglobin saturation analysis demonstrated reoxygenation following radiation, coinciding with the observed increase in glycolysis. The concurrent use of the SOD mimic with radiation demonstrated a significant reduction in 2-NBDG fluorescence compared to effects seen after radiation alone, while having no effect on reoxygenation. Conclusions: Radiation induces an increase in tumor glucose demand approximately 30 h following therapy during reoxygenation. The use of an SOD mimic can prevent the increase in aerobic glycolysis when used

  6. Near-field photochemical and radiation-induced chemical fabrication of nanopatterns of a self-assembled silane monolayer

    Ulrich C. Fischer

    2014-09-01

    Full Text Available A general concept for parallel near-field photochemical and radiation-induced chemical processes for the fabrication of nanopatterns of a self-assembled monolayer (SAM of (3-aminopropyltriethoxysilane (APTES is explored with three different processes: 1 a near-field photochemical process by photochemical bleaching of a monomolecular layer of dye molecules chemically bound to an APTES SAM, 2 a chemical process induced by oxygen plasma etching as well as 3 a combined near-field UV-photochemical and ozone-induced chemical process, which is applied directly to an APTES SAM. All approaches employ a sandwich configuration of the surface-supported SAM, and a lithographic mask in form of gold nanostructures fabricated through colloidal sphere lithography (CL, which is either exposed to visible light, oxygen plasma or an UV–ozone atmosphere. The gold mask has the function to inhibit the photochemical reactions by highly localized near-field interactions between metal mask and SAM and to inhibit the radiation-induced chemical reactions by casting a highly localized shadow. The removal of the gold mask reveals the SAM nanopattern.

  7. The role of amino acids on the development of radiation-induced damage of central nervous system

    Yamatodani, Atsushi; Yamamoto, Kouichi; Yamamoto, Takashi; Moriyasu, Saeko

    2006-01-01

    We have found that heavy-ion (carbon) irradiation significantly increased the extracellular glutamate, the major excitatory neurotransmitter in the central nervous system, in the hypothalamus of rats. We also found that the increase of glutamate is dependent on the Ca 2+ ion, suggesting that the increased glutamate is derived from the release from neurons or glial cells. However, the underlying mechanisms of the increase of glutamate release are still unclear. In this study, we investigated that the effects of the glial selective metabolic inhibitor (L-aminoadipatic acid (L-AA), glutamine synthetase inhibitor (methionine sulfoximide (MSO)) and inhibitor of glutamate release from glial cell (carboxyphenylglycine (CPG)) on the increased glutamate measured by in vivo brain microdialysis. L-AA and MSO completely inhibited the radiation-induced increase of glutamate, but CPG did not inhibit the increase. Administration of glutamine recovered the increased extracellular glutamate level in the MSO-treated rats. These results suggested that neurons, but not glial cells, play an important role in the radiation-induced increase of extracellular glutamate. (author)

  8. Evidence for Radiation-Induced Disseminated Intravascular Coagulation as a Major Cause of Radiation-Induced Death in Ferrets

    Krigsfeld, Gabriel S.; Savage, Alexandria R.; Billings, Paul C.; Lin, Liyong; Kennedy, Ann R., E-mail: akennedy@mail.med.upenn.edu

    2014-03-15

    Purpose: The studies reported here were performed as part of a program in space radiation biology in which proton radiation like that present in solar particle events, as well as conventional gamma radiation, were being evaluated in terms of the ability to affect hemostasis. Methods and Materials: Ferrets were exposed to 0 to 2 Gy of whole-body proton or gamma radiation and monitored for 30 days. Blood was analyzed for blood cell counts, platelet clumping, thromboelastometry, and fibrin clot formation. Results: The lethal dose of radiation to 50% of the population (LD{sub 50}) of the ferrets was established at ∼1.5 Gy, with 100% mortality at 2 Gy. Hypocoagulability was present as early as day 7 postirradiation, with animals unable to generate a stable clot and exhibiting signs of platelet aggregation, thrombocytopenia, and fibrin clots in blood vessels of organs. Platelet counts were at normal levels during the early time points postirradiation when coagulopathies were present and becoming progressively more severe; platelet counts were greatly reduced at the time of the white blood cell nadir of 13 days. Conclusions: Data presented here provide evidence that death at the LD{sub 50} in ferrets is most likely due to disseminated intravascular coagulation (DIC). These data question the current hypothesis that death at relatively low doses of radiation is due solely to the cell-killing effects of hematopoietic cells. The recognition that radiation-induced DIC is the most likely mechanism of death in ferrets raises the question of whether DIC is a contributing mechanism to radiation-induced death at relatively low doses in large mammals.

  9. Involvement of prostaglandins and histamine in radiation-induced temperature responses in rats

    Kandasamy, S.B.; Hunt, W.A.

    1990-01-01

    Exposure of rats to 1-15 Gy of gamma radiation induced hyperthermia, whereas exposure to 20-150 Gy produced hypothermia. Since radiation exposure induced the release of prostaglandins (PGs) and histamine, the role of PGs and histamine in radiation-induced temperature changes was examined. Radiation-induced hyper- and hypothermia were antagonized by pretreatment with indomethacin, a cyclooxygenase inhibitor. Intracerebroventricular administration of PGE2 and PGD2 induced hyper- and hypothermia, respectively. Administration of SC-19220, a specific PGE2 antagonist, attenuated PGE2- and radiation-induced hyperthermia, but it did not antagonize PGD2- or radiation-induced hypothermia. Consistent with an apparent role of histamine in hypothermia, administration of disodium cromoglycate (a mast cell stabilizer), mepyramine (H1-receptor antagonist), or cimetidine (H2-receptor antagonist) attenuated PGD2- and radiation-induced hypothermia. These results suggest that radiation-induced hyperthermia is mediated via PGE2 and that radiation-induced hypothermia is mediated by another PG, possibly PGD2, via histamine

  10. The effect of ethanol on the γ radiation induced polymerization of styrene

    Zhang Xujia; Ha Hongfei; Wu Jilan

    1990-01-01

    The γ radiation induced polymerization of styrene in the presence of ethanol was studied at dose rate of 5 x 10 17 eV/ml min. The result showed that the radiation induced polymerization of styrene was sensitized by ethanol. The experimental results were in agreement with the theoretical calculation of WAS equation. The mechanism of sensitization was proposed as proton transfer reaction

  11. Flavonols Protect Against UV Radiation-Induced Thymine Dimer Formation in an Artificial Skin Mimic.

    Maini, Sabia; Fahlman, Brian M; Krol, Ed S

    2015-01-01

    Exposure of skin to ultraviolet light has been shown to have a number of deleterious effects including photoaging, photoimmunosuppression and photoinduced DNA damage which can lead to the development of skin cancer. In this paper we present a study on the ability of three flavonols to protect EpiDerm™, an artificial skin mimic, against UV-induced damage. EpiDerm™ samples were treated with flavonol in acetone and exposed to UVA (100 kJ/m(2) at 365 nm) and UVB (9000 J/m(2) at 310 nm) radiation. Secretion of matrix metalloproteinase-1 (MMP-1) and tumor necrosis factor-α (TNF-a) were determined by ELISA, cyclobutane pyrimidine dimers were quantified using LC-APCI-MS. EpiDerm™ treated topically with quercetin significantly decreased MMP-1 secretion induced by UVA (100 µM) or UVB (200 µM) and TNF-a secretion was significantly reduced at 100 µM quercetin for both UVA and UVB radiation. In addition, topically applied quercetin was found to be photostable over the duration of the experiment. EpiDerm™ samples were treated topically with quercetin, kaempferol or galangin (52 µM) immediately prior to UVA or UVB exposure, and the cyclobutane thymine dimers (T-T (CPD)) were quantified using an HPLC-APCI MS/MS method. All three flavonols significantly decreased T-T (CPD) formation in UVB irradiated EpiDerm™, however no effect could be observed for the UVA irradiation experiments as thymine dimer formation was below the limit of quantitation. Our results suggest that flavonols can provide protection against UV radiation-induced skin damage through both antioxidant activity and direct photo-absorption. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  12. Radiation-induced chemical evolution of glycine to (Gly)2, (Gly)3, and (Gly)4

    Matsui, T.; Izumi, Y.; Kamohara, M.; Nakagawa, K.; Yokoya, A.

    2006-01-01

    Recently amino acids were detected from some meteorites. Since these amino acids were found after hydrolysis, some oligopeptides were possibly formed in space. A simulation experiment of chemical evolution from Glycine (Gly) to Glycylglycine ((Gly)2) was reported by Kaneko et al. In this work, we irradiated (Gly)2 with 8 eV vacuum ultraviolet photons or with 530 eV soft X-ray photons and examined absolute values of quantum yield of radiation-induced chemical evolution from Gly2 to Glycylglycylglycine ((Gly)3) and Glycylglycylglycylglycine ((Gly)4). Thin films of (Gly)2 were prepared on quartz plate or CuBe plate with a vacuum evaporation technique. These samples were irradiated by 8 eV photons from a Xe 2 * excimer lamp or by 530 eV soft X-ray photons at SPring-8 Synchrotron Radiation Facility. Irradiated samples were analyzed with a high performance liquid chromatography HPLC. Decomposition of (Gly)2 and production of Gly, (Gly)3 and (Gly)4 were observed. Quantum yield Y was defined to be N = Y N 0 , where N is the number of produced or decomposed molecule, and N 0 is the number of (Gly)2 molecules excited by photons. Obtained results by 8 eV irradiation were summarized in Table 1. The similar magnitude of decomposition of (Gly)2 may show that yield of the primary breaking reaction upon photo-excitation is of similar magnitude. It should be noted that (Gly)3 and (Gly)4 was produced by irradiation with the yield of 10 -4 without any catalysis. For soft X-ray irradiation, yield of Gly was tentatively determined to be about 40. This largervalue than that for 8 eV irradiation may originate from large energy of incident soft X-ray photons just like a result reported by Simakov et al. We will discuss in detail at the conference. (authors)

  13. Countermeasures for Space Radiation Induced Malignancies and Acute Biological Effects

    Kennedy, Ann

    The hypothesis being evaluated in this research program is that control of radiation induced oxidative stress will reduce the risk of radiation induced adverse biological effects occurring as a result of exposure to the types of radiation encountered during space travel. As part of this grant work, we have evaluated the protective effects of several antioxidants and dietary supplements and observed that a mixture of antioxidants (AOX), containing L-selenomethionine, N-acetyl cysteine (NAC), ascorbic acid, vitamin E succinate, and alpha-lipoic acid, is highly effective at reducing space radiation induced oxidative stress in both in vivo and in vitro systems, space radiation induced cytotoxicity and malignant transformation in vitro [1-7]. In studies designed to determine whether the AOX formulation could affect radiation induced mortality [8], it was observed that the AOX dietary supplement increased the 30-day survival of ICR male mice following exposure to a potentially lethal dose (8 Gy) of X-rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 hours following exposure to doses of 1 Gy and 8 Gy. Antioxidant treatment also resulted in increased bone marrow cell counts following irradiation, and prevented peripheral lymphopenia following 1 Gy irradiation. Supplementation with antioxidants in irradiated animals resulted in several gene expression changes: the antioxidant treatment was associated with increased Bcl-2, and decreased Bax, caspase-9 and TGF-β1 mRNA expression in the bone marrow following irradiation. These results suggest that modulation of apoptosis may be mechanistically involved in hematopoietic system radioprotection by antioxidants. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow following sub-lethal or potentially lethal irradiation. Taken together

  14. Increased radiosensitivity and radiation-induced apoptosis in SRC-3 knockout mice

    Jin Jie; Wang Yu; Xu Yang; Chen Shilei; Wang Junping; Ran Xinze; Su Yongping; Wang Jin

    2014-01-01

    Steroid receptor coactivator-3 (SRC-3), a multifunctional transcriptional coactivator, plays an important role in regulation of cell apoptosis in chemoresistant cancer cells. However, its role in radiation-induced apoptosis in hematopoietic cells is still unclear. In this study, we used SRC-3 knockout (SRC-3 -/- ) mice to assess the role of SRC-3 in radiation-induced hematopoietic injury in vivo. After a range of doses of irradiation, SRC-3 -/- mice exhibited lower counts of peripheral blood cells and bone marrow (BM) mononuclear cells and excessive BM depression, which resulted in a significantly higher mortality compared with wildtype mice. Moreover, BM mononuclear cells obtained from SRC-3 -/- mice showed a remarkable increase in radiation-induced apoptosis. Collectively, our data demonstrate that SRC-3 plays a role in radiation-induced apoptosis of BM hematopoietic cells. Regulation of SRC-3 might influence the radiosensitivity of hematopoietic cells, which highlights a potential therapeutic target for radiation-induced hematopoietic injury. (author)

  15. Radiation-induced chondrosarcoma of the maxilla 7-year after combined chemoradiation for tonsillar lymphoma.

    Mohammadianpanah, M; Gramizadeh, B; Omidvari, Sh; Mosalaei, A

    2004-01-01

    Radiation-induced sarcoma is a rare complication of radiation therapy. We report a case of radiation-induced chondrosarcoma of the maxilla. An 80-year-old Persian woman developed radiation-induced chondrosarcoma of the left maxilla 7 years after combined chemotherapy and external beam radiation therapy for the Ann Arbor stage IE malignant lymphoma of the right tonsil. She underwent suboptimal tumour resection and died due to extensive locoregional disease 8 months later. An English language literature search of Medline using the terms chondrosarcoma, radiation-induced sarcoma and maxilla revealed only one earlier reported case. We describe the clinical and pathological features of this case and review the literature on radiation-induced sarcomas.

  16. Radiation-induced chondrosarcoma of the maxilla 7-year after combined chemoradiation for tonsillar lymphoma

    Mohammadianpanah M

    2004-07-01

    Full Text Available Radiation-induced sarcoma is a rare complication of radiation therapy. We report a case of radiation-induced chondrosarcoma of the maxilla. An 80-year-old Persian woman developed radiation-induced chondrosarcoma of the left maxilla 7 years after combined chemotherapy and external beam radiation therapy for the Ann Arbor stage IE malignant lymphoma of the right tonsil. She underwent suboptimal tumour resection and died due to extensive locoregional disease 8 months later. An English language literature search of Medline using the terms chondrosarcoma, radiation-induced sarcoma and maxilla revealed only one earlier reported case. We describe the clinical and pathological features of this case and review the literature on radiation-induced sarcomas.

  17. Radiation-induced segregation and phase stability in ferritic-martensitic alloy T 91

    Wharry, Janelle P.; Jiao Zhijie; Shankar, Vani [University of Michigan, 2355 Bonisteel Blvd, Ann Arbor, MI 48109-2104 (United States); Busby, Jeremy T. [Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831 (United States); Was, Gary S., E-mail: gsw@umich.edu [University of Michigan, 2355 Bonisteel Blvd, Ann Arbor, MI 48109-2104 (United States)

    2011-10-01

    Radiation-induced segregation in ferritic-martensitic alloy T 91 was studied to understand the behavior of solutes as a function of dose and temperature. Irradiations were conducted using 2 MeV protons to doses of 1, 3, 7 and 10 dpa at 400 deg. C. Radiation-induced segregation at prior austenite grain boundaries was measured, and various features of the irradiated microstructure were characterized, including grain boundary carbide coverage, the dislocation microstructure, radiation-induced precipitation and irradiation hardening. Results showed that Cr, Ni and Si segregate to prior austenite grain boundaries at low dose, but segregation ceases and redistribution occurs above 3 dpa. Grain boundary carbide coverage mirrors radiation-induced segregation. Irradiation induces formation of Ni-Si-Mn and Cu-rich precipitates that account for the majority of irradiation hardening. Radiation-induced segregation behavior is likely linked to the evolution of the precipitate and dislocation microstructures.

  18. Appearance of radiation-induced lesions after radiotherapy for Hodgkin's disease of the mediastinum and lungs

    Zomer-Drozda, J [Instytut Onkologii, Warsaw (Poland)

    1976-01-01

    The incidence of radiation-induced lesions of lung tissue adjacent to the mediastinum and covered by radiation was established on the basis of a retrospective analysis of radiograms of 245 patients treated at the Institute of Oncology in Warsaw in the years 1951-1968, who received radiotherapy to the mediastinal lymph nodes. The radiation-induced lesions were divided into 4 grades depending on their extent and intensity of pulmonary tissue damage. Criteria for classification of radiation-induced fibrosis into the above mentioned grades were established. The correlation between radiation-induced injury and the doses of X-rays applied to the mediastinal lymph nodes was analysed. The importance of radiation-induced changes in the mediastinum and lungs for the diagnosis of recurrences in the irradiated fields, in the marginal areas and granulomatous infiltrations in pulmonary tissue is discussed.

  19. Caspase-independent cell death mediated by apoptosis-inducing factor (AIF) nuclear translocation is involved in ionizing radiation induced HepG2 cell death

    Sun, Hengwen [Department of Radiation, Cancer Center of Guangdong General Hospital (Guangdong Academy of Medical Science), Guangzhou, 510080, Guangdong (China); Yang, Shana; Li, Jianhua [Department of Physiology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China); Zhang, Yajie [Department of Pathology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China); Gao, Dongsheng [Department of Oncology, Guangdong Medical College Affiliated Pengpai Memorial Hospital, Hai Feng, 516400, Gungdong (China); Zhao, Shenting, E-mail: zhaoshenting@126.com [Department of Physiology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China)

    2016-03-25

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expression in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.

  20. Water structure versus radical scavenger theories as explanations for the suppressive effects of DMSO and related compounds on radiation-induced transformation in vitro

    Kennedy, A.R.; Symons, M.C.

    1987-05-01

    We report here that dimethylsulfoxide (DMSO): suppresses radiation-induced transformation in vitro, even when DMSO treatments begin as late as 10 days post-irradiation (when cells are in the confluent, stationary phase of growth); inhibits the 12-O-tetradecanoylphorbol-13-acetate (TPA) enhancement of radiation-induced transformation in vitro; does not affect the expression of transformed cells as foci (when surrounded by non-transformed cells); and may be affecting radiation-induced transformation through its solvent properties (i.e. the Water Structure theory), while its effects on the TPA enhancement of radiation transformation may be mediated by its free radical scavenging abilities. DMSO, dimethylformamide (DMF) and dimethylacetamide (DMA) are similar solvents which are all very effective in their ability to suppress radiation-induced transformation in vitro (at concentrations in the cellular media down to 0.01%). As DMSO is known to be an extremely effective OH. free-radical scavenging agent, while DMF and DMA are not as efficient at scavenging free radicals, our results suggest that properties other than free-radical scavenging ability may be important in the suppressive effects of these compounds on radiation-induced transformation in vitro. It is known that low concentrations of such basic aprotic solvents modify water structure so as to suppress the protic (H-bond donor) reactivity of water and enhance its basic (H-bond receptor) reactivity. These reactivity changes may well be responsible for the effects noted above. DMSO, DMF and DMA are also capable of suppressing the TPA enhancement of radiation transformation (at concentrations of the compounds of 0.1% or higher). For this effect, the ability of these compounds to scavenge OH. shows a general correlation with their ability to suppress the TPA enhancement of transformation, suggesting that the Radical Scavenger theory may explain the ability of DMSO to suppress promotion in vitro.